TRANSITIONAL ELEMENT AND APPLICATIONS TO FRACTURE MECHANICS

FORMULATION OF TRANSITIONAL ELEMENTS

AND

APPLICATIONS TO LINEAR ELASTIC FRACTURE MECHANICS

By

P. T. PATRICK LEUNG, B.Sc. (CIVIL ENGINEERING)

A Thesis

Submitted to the School of Graduate Studies in Partial Fuilfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

June, 1982

MASTER OF ENGINEERING (1982) (Civil Engineering and Engineering Mechanics) McMASTER UNIVERSITY Hamilton, Ontario

TITLE: Formulation of Transitional Elements and Applications to Linear Elastic Fracture Mechanics

AUTHOR: P.T. Patrick Leung, B.Sc. (Civil Engineering), Queen's University at Kingston, Ontario

SUPERVISOR: Dr. Farooque A. Mirza

NUMBER OF PAGES: 205

ABSTRACT

Mixed transitional finite elements, which enable the simultaneous use of the three-node triangular mixed and eight-node isoparametric displacement finite elements, are developed to reduce the amount of computer storage required in the mixed finite element method. Numerical testing of the simultaneous use of the above mixed, mixed transitional and displacement finite elements are also carried out to investigate numerical instability, orientation problems and convergence in the energy sense. The examples of a plane stress cantilever subjected to parabolically varying end shear and a plane strain, square plate with a circular hole in the middle are analyzed and the results obtained are found to be in very good agreement with those reported in the literature.

The three-element scheme above is then applied to problems in linear elastic fracture mechanics. The energy release rate approach using the direct derivative method is incorporated to compute the Mode I stress intensity factor K_I . Two plane stress isotropic rectangular plates with symmetric edge cracks and a central crack, respectively, and a plane stress orthotropic square plate with a central crack are analyzed. The stress intensity factors obtained are in excellent agreement with the available numerical results, and with significant reduction in computer storage requirements compared to that of the mixed finite element method alone. Mixed mode linear elastic fracture problems are also considered. In this case, Ishikawa's scheme of decomposing the near crack tip stress and displacement fields is used along with the direct derivative method to compute the mixed mode stress intensity factors K_I and K_{II} . The stress intensity factors K_I and K_{II} obtained for a deep cantilever with an edge crack subjected to end shear are within 0.62 and 3.74 percent of the numerical results reported in the literature. The prediction of the branching angles for crack extensions are examined and the criterion of maximum energy release rate is used along with Ishikawa's scheme to calculate the angles of crack branching for a plane stress square plate with an oblique crack, subject to uniaxial tension. Good agreement with the results using the maximum stress criterion is observed.

ACKNOWLEDGEMENTS

In presenting this thesis, the author wishes to express his thanks and gratitude to his supervisor, Dr. F. A. Mirza for his advice and guidance during the research and preparation of this thesis.

The financial support of the Natural Sciences and Engineering Research Council of Canada, Grant A1003 and the McMaster University Sherman Scholarship (1980-1982) are gratefully acknowledged.

Finally, a special thanks to Ms. Marlene Fletcher for her time in typing and making this thesis presentable.

TABLE OF CONTENTS

		Page
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	FORMULATION OF MIXED FINITE ELEMENT AND MIXED	6
	TRANSITIONAL FINITE ELEMENTS	/
	2.1 Finite Element Formulation Using Hellinger-	6
	Reissner Variational Principle	
	2.2 Formulation of Mixed Finite Element in Plane	10
	Elasticity	
	2.3 Mixed Transitional Finite Elements in Plane	12
	Elasticity	
CHAPTER 3	NUMERICAL TESTING OF MIXED TRANSITIONAL WITH MIXED	27
	AND ISOPARAMETRIC FINITE ELEMENTS	
	3.1 Solution Technique for the Indefinite System	27
	of Matrix Equations	
	3.2 Numerical Instability	31
	3.3 Orientation Problem with Four-Node Mixed	35
	Transitional Finite Element	
	3.4 Convergence of Mixed Transitional Elements and	44
	Combination of Mixed, Mixed Transitional and	
	Isoparametric Finite Elements	
	3.5 Example of Plane Square Plate with a Circular	50
	Hole	

- vi -

CHAPTER 4	LINE	AR ELAS	FIC FRACTURE MECHANICS (LEFM) BY FINITE	72
	ELEMENT METHOD			
	4.1	Linear	Elastic Fracture Mechanics (LEFM)	72
	4.2	Applica	ation of Finite Element Methods in Lin-	77
		ear Ela	astic Fracture Mechanics	
	4.3	Calcula	ation of Mode I Stress Intensity Factor	81
		using 1	Direct Derivative Method in Conjunction	
		with M	ixed, Mixed Transitional and Isopara-	
		metric	Displacement Elements	
	4.4	Numeri	cal Examples	87
		4.4.1	Isotropic Rectangular Plates with	87
			Symmetric Edge Cracks and a Central	
			Crack	
		4.4.2	Orthotropic Square Plate with a Central	93
			Crack	
CHAPTER 5	CRACI	K EXTENS	SION UNDER COMBINED MODES	108
	5.1	Finite	Element Analysis for Calculation of	108
		Stress	Intensity Factors K_{I} and K_{II} under	
		Combine	ed Modes	
		5.1.1	Calculation of K_{τ} and $K_{\tau\tau}$ using Energy	109
			Approach	
		512	Numori col Examples	119
	E 0	J• I • 4	Numericat Prampies	100
	3.4	Fractul	re criteria for rrediction of Direction	122

	5.2.1 Maximum Stress Criterion	122
	5.2.2 Minimum Strain Energy Density Criter-	123
	ion	
	5.2.3 Maximum Energy Release Rate Criterion	124
5.3	Numerical Examples	129
CHAPTER 6 CONCI	LUSIONS	145
APPENDIX A	Finite Element Matrix for the Three-node	150
	Triangular Mixed Element with Linear	
	Displacement and Stress Approximations	
APPENDIX B	Finite Element Matrix for the Four-node	156
	Triangular Mixed Transitional Element	
	(Uncondensed)	
APPENDIX C	Finite Element Equations for Condensed Mixed	160
	Transitional Finite Elements	
APPENDIX D	Direct Derivative Method of Calculating Energy	166
	Release Rate	
APPENDIX E	Program Listings	173

BIBLIOGRAPHY

198

LIST OF FIGURES

Page

54

- FIGURES TITLES
- 2.1 22 Node numbers and degrees of freedom for a threenode triangular mixed finite element. 2.2 22 Definition of area co-ordinates. 2.3 Comparison of three-node triangular mixed and 23 eight-node isoparametric displacement finite elements. 2.4 Connection of mixed and isoparametric displacement 24 finite elements by mixed transitional finite ele-

ments.

- 2.5 Simultaneous application of mixed variational and 25 minimum potential energy principles to a single domain and stresses on the common boundary.
- 2.6 Four-node triangular mixed transitional finite 26 element and its shape functions.
- 3.1 Premultiplication of the master matrix <u>S</u> by its 53 own transpose \underline{S}^{T} .
- 3.2 Combination of a condensed four-node transitional element, a three-node transitional element and an isoparametric element, used to investigate the effect of the magnitude of the modulus of elasticity.

3.3	Linear elastic cantilevered beam with fully fixed	55
	supports subjected to parabolic end shear.	
3.4	Node numbers and degrees of freedom for a four-	56
	node triangular mixed transitional finite element,	
	uncondensed.	
3.5	Isoceles four-node triangular mixed transitional	56
	finite elements with $m_{12} = -m_{13}$.	· .
3.6	Four-node triangular mixed transitional finite	57
	element with a right angle between sides $1-2$ and	
	1-3 and with sides $1-2$ and $1-3$ parallel to the	
	global coordinate axes.	
3.7	Plane stress square plate with parabolically vary-	57
	ing end loads.	
3.8	Triangular mixed transitional finite elements used	58
	for the finite element analysis of the square	
	plate with parabolically varying end loads -	
	Figure 3.7.	
3.9	Finite element grids for the square plate with	59
	parabolically varying end loads.	
3.10	Strain energy convergence for the square plate	60
	with parabolically varying end loads, using three-	
	node mixed transitional elements, condensed four-	
	node mixed transitional elements and uncondensed	
	four-node mixed transitional elements.	
3.11	Linear elasticity cantilever with boundary trac-	61

- x

Page

65

67

69

tions and conditions used.

- 3.12 Finite element grids for the mixed, condensed 62 mixed transitional and isoparametric displacement type finite element.
- 3.13 Finite element grids for the mixed, uncondensed 63 mixed transitional and isoparametric displacement type finite elements.
- 3.14 Strain energy convergence for the cantilevered 64 beam in Figure 3.11.
- 3.15 Plots of extreme fibre stress along the axis of the cantilever (Figure 3.11) for varous shapes of uncondensed four-node triangular mixed transitional finite elements.
- 3.16 Plane square plate with a circular hole in the 66 middle, isotropic and orthtropic.
- 3.17 Finite element grid for the square plate with a circular hole in the middle, Grid I. Isotropic and orthotropic cases.
- 3.18 Finite element grid for the square plate with a 68 circular hole in the middle, Grid II. Isotropic and orthotropic cases.
- 3.19 Comparison of finite element results for the isotropic square plate with a circular hole in the middle with theoretical results for an infinite plate, uncondensed and condensed mixed transi-

- xi -

tional finite elements.

3.20 Comparison of finite element results for the 70 orthotropic square plate with a circular hole in the middle with theoretical results for an infinite plate, uncondensed and condensed mixed transitional finite elements. 3.21 Finite element grid for the square plate with a 71 circular hole in the middle, Ref. [8]. 4.1 Three different modes of fractures. 96 4.2 Stress components near the crack tip in Cartesian 97 rectangular coordinates. 4.3 Typical contour for evaluation of J-integral. 97 4.4 Accommodation of crack extension Δa by advancing 98 nodes on the path Γ_0 . 4.5(a)99 Typical finite element mesh with mixed, mixed transitional and isoparametric displacement type finite elements. 4.5(b) 100 Accommodation of crack extension Δa by advancing nodes on path Γ_0 in Figure 4.5(a). 4.6 Rectangular plates with cracks used for determin-101 ing the crack intensity factors $\boldsymbol{K}_{_{\boldsymbol{T}}}\boldsymbol{\cdot}$ 4.7 Finite element mesh used for determining the crack 102 intensity factor K_{τ} , used for both symmetric edge

and central cracks.

4.8 Finite element mesh used for determining the crack 103 intensity factor K_{τ} , used for both symmetric edge and central cracks, Ref. [33]. 4.9 Normal stress distribution along the edge OA of 104 the rectangular plate with cracks. Figure 4.6. 4.10 Fluctuations of normal stress along the edge OA of 105 the rectangular plate with symmetric edge cracks, Figure 4.6(a). 4.11 106 Orthotropic square plate with a central crack used for determining the crack intensity factor ${\rm K}_{_{\rm T}}.$ 4.12 Finite element mesh used for determining the crack 107 intensity factor $\boldsymbol{K}_{_{\boldsymbol{T}}}$ for the square plate with a central crack, Figure 4.11. 5.1 Crack tip coordinate system 134 5.2(a) Finite element grid around the crack tip. 134 5.2(b) Modelling of crack branching by moving the node at 135 the crack tip only. 5.2(c) Modelling of crack branching by introducing two 135 extra elements. 5.3 Deep cantilevered beam subjected to end shear used 136 for determining the crack intensity factor $\boldsymbol{K}_{_{T}}$ and K_{TT}. 5.4 Finite element mesh used for determining the crack 137 intensity factors $K^{}_{T}$ and $K^{}_{TT}$ for the deep canti-

Page

levered beam subjected to end shear.

- xiii -

- 138 5.5 Deep cantilevered beam subjected to both tension and end shear used for determining the crack intensity factors K_{T} and K_{TT} . Plot of energy release rate G against angle of 139 5.6 crack extension θ for the deep cantilevered beam subjected to both tension and end shear, Figure 5.5. 5.7 Stress components near the crack tip in polar 140 coordinates. 5.8 140 Problem of a branched crack. 5.9 Square plate with an oblique crack subjected to 141 tensile loading used for determining the crack intensity factors $\boldsymbol{K}_{_{T}}$ and $\boldsymbol{K}_{_{TT}}$ and the angle of crack branching θ . 5.10(a)Finite element mesh used for determining the crack 142 intensity factors K_{I} and K_{TT} and the angle of crack branching θ for the square plate with an oblique crack subject to uniaxial tension τ_0 . 5.10(b) Details of the finite element mesh around the 143 crack tips for the square plate with an oblique crack subjected to uniaxial tension. 144 5.11 Fracture angle θ against crack angle β for a
 - uniaxial tension.

square plate with an oblique crack subjected to

LIST OF TABLES

Page

- TABLES TITLES
- 3.1 33 Eigenvalue analysis of a combination of a fournode transitional element, a three-node transitional element and an isoparametric element. 35 3.2 Results for a cantilever analyzed using values of the modulus of elasticity E from 3.0 to 3.0×10^{-6} . 45 3.3 Strain energies and percentage errors for the square plate with parabolically varying end loads, Figure 3.7. 47 3.4 Displacements, stresses, and strain energies for the square plate with parabolically varying end loads, Figure 3.7. 48 3.5 Results for the cantilevered beam with three supports, Figure 3.11. Errors in strain energy and tip displacement for 49 3.6 the cantilevered beam with three supports, Figure 3.11. Comparison of computer storage requirements and 52 3.7 stresses at the edge of the hole in a square plate under tension, Figure 3.16. Isotropic and Orthotropic.

4.1	Stress intensity factors from the finite element	90
	analysis of the rectangular plate with symmetric	
	edge cracks, Figure 4.6(a). (Mixed, Mixed	
	transitional and eight-node isoparametric finite	
	elements.)	
4.2	Stress intensity factor from the finite element	9 0
	analysis of the rectangular plate with a central	
	crack, Figure 4.6(b). (Mixed, Mixed transitional	
	and eight-node isoparametric finite elements.)	
4.3	Comparison of stress intensity factors from Refer-	92
	ence [33] and the present analysis.	
4.4	Material properties used for determining the	95
· · · ·	stress intensity factor K_{I} for a centrally cracked	
	orthotropic square plate.	
4.5	Comparison of K_{I}^{K}/K_{∞} from the present finite ele-	95
	ment analysis and that from Reference [3].	
5.1	Results for K_{I} and K_{II} for a deep cantilevered	119
	beam subjected to end shear, Figure 5.3.	
5.2	Results for K and K for a deep cantilevered I II	121
	beam subjected to both end shear and tension,	
	Figure 5.5.	ŧ
5.3	Energy release rates for different angles of crack	121
	extension for the deep cantilevered beam subjected	

to end shear and tension, Figure 5.5.

- xvi -

Page

5.4 Values of
$$C_1^{*}$$
 and C_2^{*} (Wang [54]). 127

......

.

5.5 Values of
$$F_{11}(\gamma)$$
, $F_{12}(\gamma)$, $F_{21}(\gamma)$ and $F_{22}(\gamma)$. 129

- 5.6 Predicted angles of crack extension for the deep 130 cantilevered beam with end shear and tension, Figure 5.5.
- 5.7 Stress intensity factors for the square plate with 131 an oblique crack subjected to uniaxial tension, Figure 5.9.
- 5.8 Predicted angles of crack extension for the square 133 plate with an oblique crack subjected to uniaxial tension, Figure 5.9.

CHAPTER 1

INTRODUCTION, PURPOSE AND SCOPE

1.1 Introduction

The finite element method is currently the most widely used numerical method for analyzing boundary value problems for which no closed form solutions exist or are extremely difficult to obtain.

For decades the use of either displacement or equilibrium finite element method based on the principles of minimum potential energy and minimum complimentary energy, respectively, have dominated analyses of problems in continuum mechanics. The mixed finite element method in plane elasticity, based on the Hellinger-Reissner variational principle has been investigated by Oden [4], Oden and Reddy [5], Oden and Lee [6], Mirza and Olson [7] and Mirza [8]. Mirza [8] established the energy convergence in plane elasticity problems. A three-node triangular mixed finite element with linear stress and displacement approximations was applied to plane elasticity with improvements in accuracy and the energy convergence rate over the constant stress triangular displacement finite element which uses the same linear displacement approximations. The computer storage required in the mixed finite element method is, however, much larger than the corresponding displacement finite element method, in spite of the aforementioned improvements.

The mixed finite element method in conjunction with the energy release rate concepts has also been applied to stress singular problems with cracks by Mirza and Olson [33]. It was shown to possess an excellent potential for analysis of stress singular problems in terms of improved convergence in energy and accuracy in stresses. However, again, very large computer storage is required in such analyses.

1.2 Purpose and Scope

In order to reduce the amount of computer storage inherent in the mixed finite element method, transitional mixed finite elements are developed in this thesis to enable the simultaneous use of the threenode triangular mixed finite elements [7] and the eight-node isoparametric displacement finite elements in a single finite element domain. Such simultaneous use of the mixed and displacement finite elements is then applied to the analyses of mixed mode stress singular crack problems in linear elastic fracture mechanics with the mixed finite elements used in the region immediately surrounding the crack tip with a stress singularity and the isoparametric displacement finite element in the region where stresses are more regular. Stress intensity factors K_I and K_{II} are calculated and the angles of crack branching in mixed mode fracture problems are predicted using the energy approach.

The Hellinger-Reissner variational principle in plane elasticity is introduced in Chapter 2 where the formulations of mixed finite elements are discussed. Four-node triangular mixed transitional finite elements (uncondensed and condensed versions) are formulated in detail.

- 2 -

The condensed version also necessitates the use of a three-node triangular transitional mixed element with only stress degrees of freedom at two of its nodes to connect the three-node triangular mixed and the eight-node isoparametric finite elements.

Numerical testings of the simultaneous use of the three-node triangular mixed and eight-node isoparametric displacement finite elements, connected by the mixed transitional elements are given in Chapter A solution technique for matrix equations, involving transformation 3. of indefinite matrices to positive definite matrices, is also presented in Chapter 3. Numerical instability of the mixed finite element method and orientation problems of the four-node mixed transitional finite elements are investigated. The rates of energy convergence of the mixed transitional elements are studied through analysis of a plane stress, square plate with parabolically varying end loads. When the mixed, mixed transitional and the isoparametric displacement finite elements are used simultaneously, the energy convergence rate is investigated by analyzing a plane stress cantilever subjected to a parabolically varying end shear. The plane strain problem of a square plate with a circular hole in the middle is also analyzed for stress concentrations.

Chapters 4 and 5 are devoted to applications of the simultaneous use of the three types of elements mentioned above to problems in linear elastic fracture mechanics. A brief account of linear elastic fracture mechanics is presented in Chapter 4. Applications of the finite element method to fracture problems are also given and, in particular, the direct derivative energy approach [7, 38] is described in detail and

- 3 -

applied to calculate the stress intensity factor K_I for mode I (opening mode) cracking. Three problems are analyzed and the finite element solutions are compared with the results available in the literature. The problems include an isotropic plane stress rectangular plate, first with symmetric edge cracks, then a central crack and an orthotropic plane stress square plate with a central crack.

Mixed mode fracture problems are considered in Chapter 5. The energy approach of analyzing such problems is discussed and the use of Ishikawa's scheme [39, 40] to determine the stress intensity factors K_{T} (mode I) and K_{TT} (mode II, in plane sliding) using only a single virtual crack extension is presented. This is then used to analyze deep cantilevered beams with an edge crack subject to loads which caused mixed mode fracture. Crack branching theory due to Hellen et al., [41] is also presented and compared with the energy approach utilizing Ishikawa's scheme. The calculation and prediction of the angle of crack branching is also attempted. Various mixed mode fracture criteria are examined and, in particular, the criterion of maximum energy release rate is adopted. Finally the criterion of maximum energy release rate, using results by Wang [54] together with the stress intensity factors calculated using Ishikawa's scheme, is used to calculate the angles of crack branching for a plane stress, square plate under tension with an oblique crack in the middle. The results are compared with those obtained by using the maximum stress criterion by Erdogan and Sih [48] and the criterion of maximum energy release rate via the approach due to Hellen et al., [41].

- 4 -

Lastly, some general conclusions, limitations and suggestions are presented in Chapter 6.

CHAPTER 2

FORMULATION OF MIXED FINITE ELEMENT AND MIXED TRANSITIONAL

FINITE ELEMENTS

In linear elasticity, finite elements can be formulated using the variational principles [1]. A finite element formulated using the Hellinger-Reissner variational principle [2] based on assumed displacement and stress fields is called the mixed finite element. A detailed derivation of the mixed transitional finite element using the Hellinger-Reissner variational principle is presented in this chapter. The mixed triangular, transitional elements enable the use of the three-node mixed triangular elements in conjunction with the eight-node isoparametric displacement finite elements [9]. A brief account of triangular mixed and eight-node isoparametric elements is also included.

2.1 Finite Element Formulation Using Hellinger-Reissner Variational Principle

The differential equations to be satisfied in linear elasticity include the equilibrium equations, the constitutive relationships and the compatibility equations which are also subjected to some boundary conditions [3]. Reissner [2] developed a functional which, for plane elasticity, takes the following form:

$$I_{R} = \iiint [\tau_{11}\varepsilon_{11} + \tau_{22}\varepsilon_{22} + \tau_{12}\gamma_{12} - W]dV$$

$$-\iint_{\nabla} [\bar{F}_{1}u_{1} + \bar{F}_{2}u_{2}]d\nabla - \iint_{S_{1}} [\bar{P}_{1}u_{1} + \bar{P}_{2}u_{2}]dS.$$
(2.1.1)

Where $\tau_{11}, \tau_{22}, \tau_{12}$ are the stress components; ε₁₁, ε₂₂, γ₁₂ are the strain components; is the complimentary energy density; $\bar{\mathbf{F}}_1$, $\bar{\mathbf{F}}_2$ are the prescribed body forces in the x_1 and x, directions; $\overline{P}_1, \overline{P}_2$ are the prescribed surface tractions in the x, and x, directions; are the displacements in the x_1 and x_2 direcu1, u2 tions; is that part of the surface where surface

tractions are prescribed; and

is the volume.

The variational theorem can be stated in the following manner

[2]:

S₁

V

"Among all states of stress and displacement which satisfy the boundary conditions of prescribed surface displacement, the actually occuring state of stress and displacement is determined by the variational equation $\delta I = 0."$

 $\delta \left\{ \int \int \int [\tau_{11} \varepsilon_{11} + \tau_{22} \varepsilon_{22} + \tau_{12} \gamma_{12} - W] dV - \int \int \int [\overline{F}_1 u_1 + \overline{F}_2 u_2] dV \right\}$

$$-\iint_{S_1} [\vec{P}_1 u_1 + \vec{P}_2 u_2] dS \} = 0$$
 (2.1.2)

(

Furthermore, if the kinematic strain-displacement equations of elasticity

$$\varepsilon_{11} = \frac{\partial u_1}{\partial x_1}, \quad \varepsilon_{22} = \frac{\partial u_2}{\partial x_2}, \quad \gamma_{12} = \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1}$$
 (2.1.3)

are employed, thus assuring kinematic compatibility, the Euler equations at stationarity of the variational principle are the equilibrium equations, the constitutive relations and the boundary conditions. In fact,

$$\delta \mathbf{I}_{\mathbf{R}} = \iiint_{\mathbf{V}} \left[\left(\frac{\partial \mathbf{u}_{1}}{\partial \mathbf{x}_{1}} - \frac{\partial \mathbf{W}}{\partial \tau_{11}} \right) \delta \tau_{11} + \left(\frac{\partial \mathbf{u}_{2}}{\partial \mathbf{x}_{2}} - \frac{\partial \mathbf{W}}{\partial \tau_{22}} \right) \delta \tau_{22} + \cdots \right]$$
$$- \left(\frac{\partial \tau_{11}}{\partial \mathbf{x}_{1}} + \frac{\partial \tau_{12}}{\partial \mathbf{x}_{2}} + \overline{\mathbf{F}}_{1} \right) \delta \mathbf{u}_{1} + \cdots \right] d\mathbf{V}$$
$$+ \iint_{\mathbf{S}_{1}} \left[(\mathbf{P}_{1} - \overline{\mathbf{P}}_{1}) \delta \mathbf{u}_{1} + (\mathbf{P}_{2} - \overline{\mathbf{P}}_{2}) \delta \mathbf{u}_{2} \right] d\mathbf{S} = 0.$$
(2.1.4)

Since $\delta \tau_{11}$, $\delta \tau_{22}$, $\delta \tau_{12}$, δu_1 and δu_2 are arbitrary variations, the aforementioned system of equations is obtained in the following manner:

- 8 -

$$\tau_{i_{1},i_{1}} + F_{i_{1}} = 0$$
 $i,j = 1, 2$ (2.1.5)

 $\tau = E \varepsilon \qquad i,j = 1, 2 \qquad (2.1.6)$ ii iikl kl

 $P_i = \vec{P}_i \text{ on } S_1 \qquad i = 1, 2$ (2.1.7)

Oden [4], Oden and Reddy [5], Oden and Lee [6] and Mirza and Olson [7] studied the convergence and performance of the mixed finite element method in plane elasticity. It was reported in reference [7] that when the approximations for stresses and displacements are chosen independently, the following completeness criterion has to be satisfied:

> "The strains from the stress approximations should possess at least all the strain modes that are present in the strains derived from the displacement approximations, with rigid body modes precluded."

Violation of this criterion will lead to "mechanisms", i.e. nonstressing strain modes. This means that the strain energy of the system will not be definite and the matrix equations for an application will be singular. Such "mechanisms" cannot be removed by simply removing the rigid body modes.

The convergence studies carried out in reference [7] also indicated that, provided both the stresses and displacements are made continuous across interelement boundaries, the error in strain energy is governed by the mean square error in the stress approximations. This means that if the error in stresses is $O(l_{a}^{2})$, where l_{a} is the largest

- 9 -

diameter within an element, the error in strain energy is expected to be $0(t_e^4)$ which is $0(N^{-4})$ for a uniform grid, where N is the number of elements along a typical length of a finite element grid.

2.2 Formulation of Mixed Finite Element in Plane Elasticity

In the formulation of the element matrices, it is convenient to write the functional in Equation (2.1.1) using matrix notations. Thus

$$I_{R}(\underline{\Lambda}) = \int_{V} [\underline{\tau}^{T} \underline{\tau} \underline{u} - \frac{1}{2} \underline{\tau}^{T} \underline{C} \underline{\tau}] dV - \int_{V} \underline{\overline{F}}^{T} \underline{u} dV - \int_{S_{1}} \underline{\overline{P}}^{T} \underline{u} dS \qquad (2.2.1)$$

where, for plane elasticity,

$$\underline{\tau} = \langle \tau_{11} \ \tau_{22} \ \tau_{12} \rangle^{\mathrm{T}}$$
(2.2.2)

$$\underline{\overline{P}} = \langle \overline{P}_1 | \overline{P}_2 \rangle^T$$

 $\underline{\mathbf{u}} = \langle \mathbf{u}_1 | \mathbf{u}_2 \rangle^{\mathrm{T}}$

 $\underline{\Lambda} = \langle \underline{\tau}^{\mathrm{T}} \ \underline{u}^{\mathrm{T}} \rangle^{\mathrm{T}}$ $\underline{\overline{F}} = \langle \overline{F}_{1} \ \overline{F}_{2} \rangle^{\mathrm{T}}$

(2.2.6)

$$\underline{\mathbf{T}} = \begin{bmatrix} \overline{\partial} & & & \\ \overline{\partial} \mathbf{x}_1 & & & \\ 0 & & \frac{\partial}{\partial \mathbf{x}_2} \\ \\ \overline{\partial} & & \frac{\partial}{\partial \mathbf{x}_2} \\ \overline{\partial} \mathbf{x}_2 & & \frac{\partial}{\partial \mathbf{x}_1} \end{bmatrix} \qquad \begin{bmatrix} \underline{\mathbf{C}} = \begin{bmatrix} \alpha & -\beta & 0 \\ -\beta & \gamma & 0 \\ 0 & 0 & \delta \end{bmatrix} \qquad (2.2.7)$$

The matrix <u>C</u> above is the compliance matrix. It is shown here in a symbolic form. For the isotropic plane stress case, $\alpha = \gamma = 1/E$, $\beta = \nu/E$ and $\delta = E/2(1 + \nu)$, where E is the modulus of elasticity and ν is Poisson's ratio.

The element matrix for plane stress linear elasticity for linear displacements and linear stresses is given in reference [7]. As shown in Figure (2.1), it is a three node triangular element with u_1 , u_2 , τ_{11} , τ_{22} and τ_{12} as nodal degrees of freedom. Using area coordinates, the linear approximations for displacements and stresses can be written as

$$u_{i} = \langle L_{1} \ L_{2} \ L_{3} \rangle \left\{ \begin{array}{c} u_{i}^{1} \\ u_{i}^{2} \\ u_{i}^{3} \\ u_{i}^{3} \end{array} \right\} ; i = 1, 2 \qquad (2.2.8)$$

$$\tau_{ij} = \langle L_{1} \ L_{2} \ L_{3} \rangle \left\{ \begin{array}{c} \tau_{ij}^{1} \\ \tau_{ij}^{2} \\ \tau_{ij}^{3} \\ \tau_{ij}^{3} \end{array} \right\} ; i = j = 1, 2 \qquad (2.2.9)$$

- 11 -

where L_1 , L_2 , and L_3 are the area coordinates as defined in Figure (2.2).

Derivation of the element matrix for this element is similar to the derivation of the element matrix for the mixed transitional element to be presented in the next section. All relevant matrices for this element are given in Appendix A.

Applications of the mixed element above have been demonstrated by Mirza and Olson [7]. Improved accuracy of the three-node triangular mixed element over the constant stress triangular displacement element (C.S.T.), which uses the same linear displacement approximations, was observed. Also, the predicted strain energy convergence rate of the mixed element has been confirmed through applications on various examples in reference [8].

2.3 Mixed Transitional Finite Elements in Plane Elasticity

The mixed finite element method has been applied to stress singular problems in plane elasticity by Mirza and Olson [33]. It was concluded that the strain energy convergence rate is at least $O(N^{-1})$ and the numerical results from the mixed finite element analysis of a plane stress square plate with symmetric edge cracks, using the three-node triangular mixed elements, yielded a strain energy convergence rate of nearly $O(N^{-2})$. Moreover, it was observed that in order to achieve the same accuracy as obtained with displacement elements, much fewer total degrees of freedom were needed in spite of more degrees of freedom per node needed for the mixed finite elements. Therefore, the mixed finite element method seems to have an excellent potential for numerical analysis of stress singular problems.

In spite of the improved accuracy and convergence, the use of mixed elements alone, when applied to stress singular problems, requires a much larger amount of computer storage because of the larger half-band widths due to increased number of degrees of freedom per node. It is therefore proposed to use the three-node triangular mixed elements in conjunction with the conventional displacement elements, with the mixed elements used exclusively over part of the region where the stress gradients are expected to be very large. Since the energy convergence rate of the three-node triangular mixed elements is $O(N^{-4})$, it is desirable to use a displacement type element which exhibits the same energy convergence rate. The eight-node isoparametric element is considered here. Formulation of the element method, e.g. Zienkiewicz [9].

The displacement variation along the sides of the eight-node isoparametric element is quadratic whereas that along the sides of the mixed element is linear. Moreover, the mixed element has nodal degrees of freedom in both displacements and stresses whereas the eight-node isoparametric element has only displacements as nodal degrees of freedom, Figure (2.3). Therefore, one or more types of transitional elements have to be developed to connect the above-mentioned two types of elements. There are two possible ways of connecting the three-node triangular mixed and eight-node isoparametric elements. These are illustrated in Figure (2.4). Since the displacement variation is quadratic along the sides of the eight-node isoparametric element, a triangular transitional element with three corner nodes and one mid side node along one of its sides is used. Hence displacement compatibility along the interelement boundary would be guaranteed through a proper choice of displacement polynomials. As shown in Figure (2.4a), one option is to use both stress and displacement degrees of freedom at all nodes of the transitional element. Since the isoparametric element has only displacement degrees of freedom, double nodes (which have the same coordinates) would have to be used along the interelement boundary between the transitional and the isoparametric elements. Thus, equating only the displacements at the double nodes would ensure displacement continuity provided that the variation is quadratic.

The second option (Figure (2.4b)) is to condense out the stress degrees of freedom at the three nodes of the transitional element which connect it to the isoparametric element. In this case, however, another type of transitional element, which is formed by condensing out the stress degrees of freedom at only one node of the three-node triangular mixed element, also has to be used. Assemblage of the various elements follows the usual routines of finite element analysis. Both types of transitional elements will be used in investigating the energy convergence rate in the next chapter. It should be pointed out here that both the uncondensed and condensed, transitional elements are also mixed formulations.

- 14 -

The use of the mixed finite elements in conjunction with the involves isoparametric displacement finite elements the use of Hellinger-Reissner mixed variational principle over the region where mixed elements are used and the principle of minimum potential energy in the region where the isoparametric displacement elements are employed, Figure (2.5). In the region where the mixed finite elements via Hellinger-Reissner principle are used, both stresses and displacements are required to be continuous across the interelement boundaries for faster convergence [8]. Whereas in the region where the displacement finite elements via the principle of minimum potential energy are employed, only the displacements are required to be continuous across the interelement boundaries. These continuity requirements are satisfied within the two regions, respectively. The question remains as to what continuity requirements are needed along the common boundary of the two regions where the mixed variational principle is used on one side and the principle of minimum potential energy on the other side. For quadratic variation along the common boundary, displacement continuity is ensured by equating the displacement degrees of freedom at the common nodes. However, the stress continuity along the common boundary is not maintained. Stresses calculated on one side of the common boundary can be considered as the stress boundary conditions for the region on the other side. Stress continuity can then be attempted by introducing the following boundary integrals in the formulation of the finite elements adjacent to the common boundary:

$$\int_{S_{c}} (\tau_{nn}^{MT} - \tau_{nn}^{I}) \widetilde{u}_{n} dS$$

$$\int_{S} (\tau_{ns}^{MT} - \tau_{ns}^{I}) \widetilde{u}_{s} dS$$

Where n, s

ũ, ũ

Sc

are the outward normal and tangential directions at the common boundary are the normal and tangential stresses calculated for the mixed element edge; are the normal and tangential stresses calculated for the isoparametric element edge; are the normal and tangential displacements; is the element edge length along the common

(2.3.1)

(2.3.2)

boundary.

These integrals imply continuity only in a weighted integral sense and not pointwise. It is hoped that at extremum the error, due to lack of stress continuity required by the mixed and mixed transitional elements and not required by the displacement isoparametric finite elements, will be minimuim.

The incorporation of boundary integrals in expressions (2.3.1) and (2.3.2) will, however, lead to very complicated element formulations Numerical results of the finite element and perhaps to no avail. analyses, using both triangular mixed and isoparametric displacement

- 16 -

elements, reveal that reasonably accurate results can be obtained without incorporating such integrals. It is thus expected that the boundary integrals for the mixed transitional and isoparametric elements lying alongside the common boundary must have a cancelling effect and the stress values along this common boundary adjust themselves even if no such boundary integrals are employed. Therefore, in subsequent element formulations, the bounday integrals in expressions (2.3.1) and (2.3.2) will be deleted.

The four-node triangular, transitional element and its shape functions are shown in Figure (2.6). The following approximations are used for both stresses and displacements.

$$u_{i} = \langle N_{1} N_{2} N_{3} N_{4} \rangle \begin{cases} u_{i}^{1} \\ u_{i}^{2} \\ u_{i}^{3} \\ u_{i}^{4} \\ u_{i}^{4} \end{cases} ; i = 1, 2 \qquad (2.3.3)$$

$$\tau_{ij} = \langle N_{1} N_{2} N_{3} N_{4} \rangle \begin{cases} \tau_{ij}^{1} \\ \tau_{ij}^{2} \\ \tau_{ij}^{3} \\ \tau_{ij}^{4} \\ \tau_{ij}^{4} \\ \end{array} ; i = j = 1, 2 \qquad (2.3.4)$$

Where

$$N_1 = L_1$$
 (2.3.5)

$$N_2 = L_2(1 - 2L_3)$$
(2.3.6)

$$N_3 = L_3(1 - 2L_2)$$
 (2.3.7)

$$N_4 = 4L_2L_3$$
 (2.3.8)

Equations
$$(2.3.3)$$
 and $(2.3.4)$ can be rewritten as

$$u = \underline{N} \, \widetilde{\underline{u}} \tag{2.3.9}$$

$$\underline{\tau} = \underline{N} \, \underline{\widetilde{\tau}} \tag{2.3.10}$$

Where
$$\underline{\widetilde{u}} = \langle u_1^1 \ u_1^2 \ u_1^3 \ u_1^4 \ u_2^1 \ u_2^2 \ u_2^2 \ u_2^4 \ v_2^4 \ \rangle^T$$
 (2.3.11)

$$\widetilde{\tau} = \langle \tau_{11}^{1} \tau_{11}^{2} \tau_{11}^{3} \tau_{11}^{4} \tau_{22}^{1} \tau_{22}^{2} \tau_{22}^{3} \tau_{22}^{4} \tau_{12}^{1} \tau_{12}^{2} \tau_{12}^{3} \tau_{12}^{4} \rangle^{\mathrm{T}}$$

$$(2_{2},3_{2},12)$$

$$N = \begin{bmatrix} N_{1} & N_{2} & N_{3} & N_{4} \\ & & N_{1} & N_{2} & N_{3} & N_{4} \end{bmatrix}$$
(2.3.13)
$$\overline{N} = \begin{bmatrix} N_{1} & N_{2} & N_{3} & N_{4} \\ & & & N_{1} & N_{2} & N_{3} & N_{4} \end{bmatrix}$$
(2.3.14)

(2.3.14)
Substitution of (2.3.9) and (2.3.10) into (2.2.1) yields

$$I_{R}(\underline{\widetilde{\Lambda}}) = \int_{V} [\underline{\widetilde{\tau}}^{T} \ \underline{\widetilde{N}} \ \underline{T} \ \underline{N} \ \underline{\widetilde{u}} - \frac{1}{2} \ \underline{\widetilde{\tau}}^{T} \ \underline{\widetilde{N}} \ \underline{C} \ \underline{\widetilde{N}} \ \underline{\widetilde{\tau}}] dV$$

$$-\int_{V} \underbrace{\vec{F}}^{T} \underline{N} \, \underline{\vec{u}} \, dV - \int_{S_{1}} \underbrace{\vec{P}}^{T} \underline{N} \, \underline{\vec{u}} \, dS$$

(2.3.15)

where $\underline{\widetilde{\Lambda}} = \langle \underline{\widetilde{u}}^{T} \ \underline{\widetilde{\tau}}^{T} \rangle^{T}$.

Now for stationarity of the mixed variational principle

$$\frac{\partial I_{R}(\underline{\widetilde{\Lambda}})}{\partial \underline{\widetilde{u}}} = 0 \text{ and } \frac{\partial I_{R}(\underline{\widetilde{\Lambda}})}{\partial \underline{\widetilde{\tau}}} = 0.$$
 (2.3.17)

These then lead to the following element matrix equation,

$$\begin{bmatrix} \underline{O} & \left\{ \int_{V} \underline{\vec{N}}^{T} \underline{T} & \underline{N} & dV \right\}^{T} \\ \int_{V} \underline{\vec{N}}^{T} \underline{T} & \underline{N} & dV \end{bmatrix} \begin{bmatrix} \underline{\widetilde{u}} \\ \underline{\widetilde{u}} \\ \underline{\widetilde{v}} \end{bmatrix} = \left\{ \begin{bmatrix} \int_{V} \underline{\vec{F}}^{T} & \underline{N} & dV \end{bmatrix}^{T} \\ \underline{\widetilde{v}} \end{bmatrix} + \left\{ \begin{bmatrix} \int_{S} \underline{\vec{P}}^{T} & \underline{N} & dS \end{bmatrix}^{T} \\ \underline{\widetilde{v}} \end{bmatrix} \right\}$$

$$\begin{bmatrix} \int_{V} \underline{\vec{N}}^{T} & \underline{T} & \underline{N} & dV \end{bmatrix} - \int_{V} \underline{\vec{N}}^{T} & \underline{C} & \underline{\widetilde{N}} & dV \end{bmatrix} \begin{bmatrix} \underline{\widetilde{u}} \\ \underline{\widetilde{\tau}} \end{bmatrix} = \left\{ \underbrace{O} \\ \underline{O} \end{bmatrix} + \left\{ \underbrace{O} \\ \underline{O} \end{bmatrix} \right\}$$

$$(2.3.18)$$

which can be rewritten as

$$\begin{bmatrix} 0 & 0 & a^{T} & 0 & b^{T} \\ 0 & 0 & 0 & b^{T} & a^{T} \\ a & 0 & \alpha c & -\beta c & 0 \\ 0 & b & -\beta c & \gamma c & 0 \\ b & a & 0 & 0 & \delta c \end{bmatrix} \begin{bmatrix} \tilde{u} \\ \tilde{\tau} \\ \tilde{\tau} \end{bmatrix} = \begin{cases} d \\ e \\ 0 \\ \tilde{\tau} \end{bmatrix} + \begin{array}{c} \text{Consistent} \\ \text{Load} \\ \text{Vector} \end{bmatrix} (2.3.19)$$

$$\text{Where} \quad a_{i,j} = \int_{V} N_{i}N_{j,x_{1}} \, dV \quad i, j = 1, 2, 3, 4 \qquad (2.3.20)$$

$$b_{i,j} = \int_{V} N_{i}N_{j,x_{2}} \, dV \quad i, j = 1, 2, 3, 4 \qquad (2.3.21)$$

$$c_{i,j} = -\int_{V} N_{i}N_{j} \, dV \quad i, j = 1, 2, 3, 4 \qquad (2.3.22)$$

$$d_{i} = \int_{V} \bar{F}_{1} N_{i} \, dV \quad i = 1, 2, 3, 4 \qquad (2.3.23)$$

$$e_{i} = \int_{V} \bar{F}_{2} N_{i} \, dV \quad i = 1, 2, 3, 4 \qquad (2.3.24)$$

and α , β , γ and δ are elements of the compliance matrix as defined previously. The element matrix is symmetric but in general indefinite. The submatrices and the element matrix are listed in Appendix B.

(2.3.24)

The element matrix for the four-node transitional element with stress degrees of freedom at only one of its nodes is derived by condensing out τ_{11}^2 , τ_{11}^3 , τ_{11}^4 , τ_{22}^2 , τ_{22}^3 , τ_{22}^4 , τ_{12}^2 , τ_{12}^3 and τ_{12}^4 . The resulting element matrix is given in Appendix C along with the element matrix for the transitional element obtained by condensing out

- 20 -

the stress degrees of freedom at one node only (node 3) of the threenode triangular mixed element.

The linear variation in displacements and stresses along two edges and quadratic variation along the third edge of the four-node mixed transitional element suggest that the chosen polynomial may lack spatial isotropy. As such, some orientation problems with the transitional element are anticipated. It should also be pointed out that because of the mixed variational formulation of the element, there are doubts about the proper representation of strain modes derived from the assumed displacement fields and the dependence of the stress modes possessed by the independently assumed stress fields on the strain modes through the constitutive equations. A numerical investigation into this problem is presented in the next chapter.

- 21 -

FIG. 2.1: NODE NUMBERS AND DEGREES OF FREEDOM FOR A THREE-NODE TRIANGULAR MIXED FINITE ELEMENT.

×1

FIG. 2.2: DEFINITION OF AREA COORDINATES.

- 22 -

FIG. 2.3: COMPARISON OF THREE-NODE TRIANGULAR MIXED AND EIGHT-NODE ISOPARAMETRIC DISPLACEMENT FINITE ELEMENTS.

a) SCHEME FOR UNCONDENSED TRANSITIONAL FINITE ELEMENTS.

b) SCHEME FOR CONDENSED TRANSITIONAL FINITE ELEMENTS.

NODES WITH STRESS AND DISPLACEMENT DEGREES OF FREEDOM.

- NODES WITH DISPLACEMENT DEGREES OF FREEDOM.
- M.F.E. MIXED FINITE ELEMENT.
- T.F.E. TRANSITIONAL FINITE ELEMENT.
- I.F.E. ISOPARAMETRIC FINITE ELEMENT.
- FIG. 2.4: CONNECTION OF MIXED AND ISOPARAMETRIC DISPLACEMENT FINITE ELEMENTS BY MIXED TRANSITIONAL FINITE ELEMENTS.

FIG. 2.5: SIMULTANEOUS APPLICATION OF MIXED VARIATIONAL AND MINIMUM POTENTIAL ENERGY PRINCIPLES TO A SINGLE DOMAIN AND STRESSES ON THE COMMON BOUNDARY.

N3

5

N4

FIG. 2.6: FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENT AND ITS SHAPE FUNCTIONS.

CHAPTER 3

NUMERICAL TESTING OF MIXED TRANSITIONAL WITH MIXED AND

ISOPARAMETRIC FINITE ELEMENTS

The use of triangular mixed finite elements in conjunction with eight-node isoparametric displacement finite elements has been proposed in the previous chapter. The mixed transitional finite elements, which connect the two types of elements above, have been formulated. Results of numerical tests carried out for investigating performance of the proposed three or four element combination schemes are presented in this chapter. After presenting the solution technique adopted, numerical instability and orientation problems of the transitional elements are studied through eigenvalue analyses and applications of the proposed procedure to some boundary value problems for which the exact or nearly exact solutions are available in the literature. The convergence of the mixed transitional finite elements in the energy sense, and that of the combined elements, is also studied and presented. Finally, the use of mixed transitional finite elements with mixed and isoparametric elements is illustrated through more elaborate examples.

3.1 Solution Technique for the Indefinite System of Matrix Equations

The element matrix for the mixed finite elements (Appendix A) is of the form,

(3.1.1)

where m and n are the numbers of degrees of freedom in displacements and stresses, respectively. The matrix \underline{S}^{e} is real, symmetric and would have real eigenvalues. The submatrix \underline{B}^{e} is positive definite. It is shown in Appendix B of reference [8] that if r is rank of the matrix \underline{S}^{e} , then the eigenvalue distribution is of the following type:

(i) m positive and n negative eigenvalues if r = m + n;

(ii) (r - n) positive, (m + n - r) zero and n negative eigenvalues if r < m + n.

If the completeness criterion stated in Section 2.1 is satisfied by the assumed displacement and stress approximations for the plane elasticity mixed finite elements, rank r of the element matrix in Equation (3.1.1) is equal to m + n - 3. The element matrix will then have (m - 3) positive, 3 zero and n negative eigenvalues where the zero eigenvalues correspond to the rigid body modes. Upon elimination of the rigid body modes, the element matrix will have both positive and negative eigenvalues and is therefore indefinite. The global matrix equations for mixed elements used in conjunction with the isoparametric elements will also be indefinite in general, with both positive and negative eigenvalues after rigid body modes have been removed. Although the method of Gaussian elimination with partial pivoting can be employed to solve such indefinite equations, the central memory storage required for the global matrix would be very large. An alternative scheme is proposed to help reduce the storage requirements and presented here.

The global matrix equation can be written as

$$\underline{S \Lambda} = \underline{F} \tag{3.1.2}$$

where <u>S</u> is the global matrix which is real but indefinite, <u>A</u> is the vector of unknowns which consists of both stresses and displacements, and <u>F</u> is the consistent load vector. If the total displacement and stress degrees of freedom are M and N, respectively, then for a properly constrained body there will be M positive and N negative eigenvalues $(+\lambda_1, +\lambda_2, \ldots, +\lambda_M, -\lambda_{M+1}, -\lambda_{M+2}, \ldots, \lambda_{M+N})$. It can be shown [10] that if λ_1 is an eigenvalue of <u>S</u> associated with the eigenvector $\underline{\Lambda}_1$, i.e.

$$\underline{S} \underline{\Lambda}_{i} = \lambda_{i} \underline{\Lambda}_{i}$$
(3.1.3)

then for any positive integer K, the following is true.

$$\underline{\mathbf{s}}^{\mathbf{K}} \underline{\mathbf{\Lambda}}_{\mathbf{i}} = \boldsymbol{\lambda}_{\mathbf{i}}^{\mathbf{K}} \underline{\mathbf{\Lambda}}_{\mathbf{i}}$$

In particular, if K = 2, $\underline{S}^2 \underline{\Lambda}_i = [\underline{S} \underline{S}]\underline{\Lambda}_i = [\underline{S}^T \underline{S}]\underline{\Lambda}_i = \lambda_1^2 \underline{\Lambda}_i$ for symmetric \underline{S} . Therefore, if we premultiply the global matrix \underline{S} by its transpose, a matrix with eigenvalues equal to the squares of the corresponding eigenvalues of \underline{S} is obtained and the resulting matrix $\underline{S}^T \underline{S}$ will be positive definite, i.e. all eigenvalues are positive. From the above consideration, it is obvious that the indefinite global matrix equation can be transformed into a positive definite matrix equation by premultiplying both sides of Equation (3.1.2) by the transpose of S.

$$[\underline{\mathbf{S}}^{\mathrm{T}} \ \underline{\mathbf{S}}]\underline{\mathbf{\Lambda}} = [\underline{\mathbf{S}}^{\mathrm{T}} \ \underline{\mathbf{F}}]$$
(3.1.5)

The solution to Equation (3.1.5) is the same as that of Equation (3.1.2) provided the rank of $\underline{S}^T \underline{S}$ is the same as that of \underline{S} . The solution scheme indicated by Equation (3.1.5) is also referred to as the discretized least square method [11]. To minimize the amount of computer storage required, the global matrix equations are stored using the skyline technique [12] in which variable half bandwidths are used. Premultiplying a matrix stored using this technique by its transpose requires special attention to storage addressing. A computer subroutine MULTIP has been written to perform such manipulations and is given in the program listing in Appendix E. Figure (3.1) shows a premultiplication of \underline{S} with \underline{S}^T and indicates doubling of variable half bandwidths excluding the diagonal. It should be noted that the storage required to carry out the Gaussian elimination process for the 12 × 12 matrix of Figure (3.1) would require matrix size of 156, i.e.

$$N(3LB + 1) = 12(3 \times 4 + 1) = 156$$

where N = total degrees of freedom and LB = half bandwidth excluding the diagonal. On the other hand, the matrix size required for the positive definite $\underline{S}^{T} \underline{S}$ matrix using the skyline technique is 51, a substantially smaller storage requirement.

3.2 Numerical Instability

The uncondensed element matrix equation (2.3.19) for isotropic elastic properties can be written as

				-		<u>۱</u>			
<u>0</u>	<u>0</u>	\underline{a}^{T}	<u>0</u>	<u>b</u> T	ũ		<u>d</u>		
<u>0</u>	0	<u>0</u>	<u>b</u> T	<u>a</u> T			e 		
a	<u>0</u>	$+\frac{1}{E}C$	$-\frac{v}{E}C$	<u>0</u>		}=		·	(3.2.1)
<u>0</u>	b	$-\frac{v}{E}$ <u>C</u>	$+\frac{1}{E}C$	<u>0</u>	~ ۲		<u>0</u>		-
<u>b</u>	a	<u>0</u>	<u>0</u>	<u>2(1+ν)</u> Ε <u></u>					

It should be noted that the submatrix \underline{C} is divided by the modulus of elasticity E. Usually a large value of E leads to a very large ratio between the largest and the smallest matrix elements, which can lead to ill-conditioning of the system matrix. The condensed element matrix equations given in Appendix C also show that, after condensation, in addition to having some elements of the condensed matrix dividied by E, there are also some elements which are multiplied by E. Ratio between the largest and the smallest elements of the condensed matrix will then be much larger than that for the uncondensed matrix. Therefore, perhaps, a more severe ill-conditioning may result for large E values.

Eigenvalue analyses are performed on the triangular mixed element, the mixed transitional elements and a combination of mixed, mixed transitional and eight-node isoparametric element matrices. The modulus of elasticity has been varied from 1.0 to 100,000,000.0.

It is observed that for all eigenvalue analyses performed, the order of magnitude of the negative eigenvalues decreases as the value of E increases, with the first few significant figures varying slightly at the same time. Except for the uncondensed elements, the order of magnitude of the positive eigenvalues increases as the value of E increases. The first few significant figures of the positive eigenvalues remain essentially constant. Results of the eigenvalue analysis for a combination of a condensed four-node mixed transitional element, a three-node mixed transitional element and an isoparametric element, as shown in Figure (3.2), are given in Table (3.1).

For E increasing from 1.0 to 100,000,000.0, the order of magnitude of the negative eigenvalues decreases from about 10^{-1} to 10^{-8} while that of the positive eigenvalues increases from about 10^{1} to 10^{+9} . Thus for large values of E, the ratio of the largest positive and negative eigenvalues is of the order 10^{17} . Moreover, for small values of E,

		and the second	A contraction of the second	in the second	a second and the			
	1	100	1,000	10,000	100,000	1,000,000	10,000,000	100,000,000
1	-0.3516	-0.3874E-01	-0.3876E-03	-0.3880E-04	-0.3408E-05	-0.1853E-05	-0.6483E-07	-0,5891E-06
2	-0.1844	-0.1995E-02	-0,1992E-03	-0.1995E-04	-0,1919E-05	-0.1372E-06	-0.3260E-07	-0.4191E-06
- 3	-0.1444	-0.1454E-02	-0.1454E-03	-0.1445E-04	-0.1402E-05	-0.6493E-06	-0.1344E-07	-0.3260E-08
4	-0.1153	-0.1192E-02	-0.1192E-03	-0.1197E-04	-0.1350E-05	0.7436E-08	-0.1262E-07	-0.1624E-08
5	-0.7479E-01	-0.7565E-03	-0.7565E-04	-0.6025E-05	-0.8180E-06	0.5098E-06	-0.7228E-08	-0.1334E-08
6	-0.4401E-01	-0.4411E-03	-0.4411E-04	-0.5979E-05	-0.8172E-06	0.2736E-05	0.4704E-06	-0.1259E-08
7	-0.2956E-14	-0.1789E-12	-0.7592E-11	-0.3128E-10	0.2846E-09	0.4331E-05	0.6808E-05	-0.7228E-09
8	-0.1738E-14	-0.1029E-12	-0.1040E-12	0.6096E-08	0.1967E-08	0.2890E-02	0.1162E-02	-0.6999E-09
9	0.6272E-14	0.9486E-08	0.1625E-12	0.2234E-04	0.1237E-05	0.4295E-02	0.1409E-02	0.4618E-02
10	0.1167	0.1144E+02	0.1143E+03	0.1143E+04	0.1143E+05	0.1428E+06	0.1428E+07	0.1428E+06
11	0.2128	0.2115E+02	0.2115E+03	0.2115E+04	0.2115E+05	0.2115E+06	0.2115E+07	0.2114E+08
12	0.3810	0.3646E+02	0.3646E+03	0.3646E+04	0.3646E+05	0.3646E+06	0.3646E+07	0.3646E+08
13	0.4032	0.3994E+02	0.3997E+03	0.3997E+04	0.3997E+05	0.3997E+06	0.3997E+07	0.3997E+08
14	0.5944	0,5565E+02	0.5565E+03	0.5565E+04	0.5565E+05	0.5565E+06	0.5565E+07	0.5565E+08
15	0.6717	0.6438E+02	0.6438E+03	0.6438E+04	0.6438E+05	0.6438E+06	0.6438E+07	0.6438E+08
16	0.7050	0.6917E+02	0.6917E+03	0.6917E+04	0.6917E+05	0.6917E+06	0.6917E+07	0.6917E+08
17	0.1055E+01	0.1043E+03	0.1043E+04	0.1043E+05	0.1043E+06	0.1043E+07	0.1043E+08	0.1043E+09
18	0.1103E+01	0.1095E+03	0.1095E+04	0.1095E+05	0.1095E+06	0.1095E+07	0.1095E+08	0.1095E+09
19	0.1402E+01	0.1399E+03	0.1399E+04	0.1399E+05	0.1399E+06	0.1399E+07	0.1399E+08	0.1399E+09
20	0.1440E+01	0.1437E+03	0.1437E+04	0.1437E+05	0.1437E+06	0.1437E+07	0.1437E+08	0.1437E+09
21	0.1704E+01	0.1702E+03	0.1702E+04	0.1702E+05	0.1702E+06	0.1702E+07	0.1702E+08	0.1702E+09
22	0.1931E+01	0.1929E+03	0.1929E+04	0.1929E+05	0,1929E+06	0.1929E+07	0.1929E+08	0.1929E+09
23	0.2752E+01	0.2752E+03	0.2752E+04	0.2752E+05	0.2752E+06	0.2752E+07	0.2752E+08	0.2752E+09
24	0.3577E+01	0.3576E+03	0.3576E+04	0,3576E+05	0.3576E+06	0.3576E+07	0.3576E+08	0.3576E+09
25	0.5113E+01	0.5113E+03	0.5113E+04	0.5113E+05	0.5113E+06	0.5113E+07	0.5113E+08	0.5113E+09
26	0.6801E+01	0.6801E+03	0.6801E+04	0.6801E+05	0.6801E+06	0.6801E+07	0.6801E+08	0.6801E+09

TABLE 3.1 Eigenvalue Analysis of a Combination of a Four-node Transitional Element, a Three-node Transitional Element and an isoparametric Element.

+ 33

computer results give zero eigenvalues as of the order 10^{-14} which depends upon the machine accuracy, and is much smaller than the orders of magnitude of the positive and negative eigenvalues. As the value of E becomes very large, the 'zero eigenvalues' given by the computer are of the order 10^{-5} to 10^{-9} , while the orders of magnitude of the negative eigenvalues are of the order 10^{-6} to 10^{-8} . The 'zero' and negative eigenvalues become much closer and numerical instability is expected as the 'zero' eigenvalues given by computer results are not small enough to be regarded as zero eigenvalues. It is to be noted that after premultiplication of the matrix by its own transpose as indicated in the previous section, the ratio of the largest positive and negative eigenvalues of the resulting matrix will be 10^{34} instead of 10^{17} . Thus the solution technique adopted in the previous section will suffer from a further magnified numerical instability.

One can overcome the problem of numerical instability by employing double precision arithmetic on the computer or through some improved iterative techniques. Since only linear elasticity problems are considered in this work, it is sufficient to perform all computer calculations with a small value for the modulus of elasticity E, say 1.0, and the resulting solutions can be scaled accordingly for appropriate large E values. Moreover, the stress results should theoretically be independent of the E value and need not be scaled.

In order to demonstrate the effects of numerical instability, consider the cantileverd beam shown in Figure (3.3). (The same cantilever, with slightly different support conditions, will be analyzed in subsequent convergence studies.) The Poisson's ratio is 0.25 and the modulus of elasticity E is varied from 3.0 to 3.0×10^6 . Results are given in Table (3.2). It is observed that as E value increases, value of τ_{11} at node 10 loses accuracy and eventually an ill-conditioned matrix results for very large E values using the solution technique described in the previous section.

Modulus of Elasticity (E)	Strain Energy (U)	Tip Displacement (δ _T)	τ _{ll} at Node 10
3.0 30.0 300.0 3,000.0 30,000.0 300,000.0 3,000,000.0 10,000,000.0 25,000,000.0 30,000,000.0	$.6992217735744 \times 10^{5}$ $.6992217529958 \times 10^{4}$ $.6992217599054 \times 10^{3}$ $.6992218558375 \times 10^{2}$ $.6992217225374 \times 10^{1}$.6991962855168 $.6961538016872 \times 10^{-1}$ $.1917723486110 \times 10^{-1}$.111 conditioned .111 conditioned	$.34959359 \times 10^{4}$ $.34959358 \times 10^{3}$ $.34959358 \times 10^{2}$ $.34959363 \times 10^{1}$.34959349 $.34957418 \times 10^{-2}$ $.3476489 \times 10^{-3}$ $.92138441 \times 10^{-3}$	24.194055 24.194054 24.194054 24.194033 24.191548 23.862192 - 15.291709 191.13958

TABLE 3.2: Results for a cantilever analyzed using values of the modulus of elasticity from 3.0 to 3.0×10^{-6} .

3.3 Orientation Problem with Four-Node Mixed Transitional Finite

Element

The approximations for both displacements and stresses for the four-node mixed transitional element are given by Equations (2.3.3) and (2.3.4) in terms of area coordinates. However, the same approximations can be derived by starting with a complete quadratic polynomial with six arbitrary constants, i.e.

$$u_{i} = a_{1}^{i} + a_{2}^{i} x_{1} + a_{3}^{i} x_{2} + a_{4}^{i} x_{1}^{2} + a_{5}^{i} x_{1} x_{2} + a_{6}^{i} x_{2}^{2}; \quad i = 1, 2 \quad (3.3.1)$$

$$\tau_{ij} = b_{1}^{ij} + b_{2}^{ij} x_{1} + b_{3}^{ij} x_{2} + b_{4}^{ij} x_{1}^{2} + b_{5}^{ij} x_{1} x_{2} + b_{6}^{ij} x_{2}^{2};$$

$$i, j = 1, 2, 3 \quad (3.3.2)$$

Variations of u and τ_{ij} along edge 1-2 of the four-node mixed triangular element, Figure (3.4), can be obtained by substituting $x_2 = m_{12}x_1$ in equations (3.3.1) and (3.3.2):

$$u_{i} = a_{1}^{i} + a_{2}^{i} x_{1} + a_{3}^{i} (m_{12}x_{1}) + a_{4}^{i} x_{1}^{2} + a_{5}^{i} (m_{12}x_{1}^{2}) + a_{6}^{i} (m_{12}x_{1})^{2};$$

$$i = 1, 2 \qquad (3.3.3)$$

$$\tau_{ij} = b_1^{ij} + b_2^{ij} x_1 + b_3^{ij} (m_{12}x_1) + b_4^{ij} x_1^2 + b_5^{ij} (m_{12}x_1^2) + b_6^{ij} (m_{12}^2 x_1^2);$$

$$i = j = 1, 2 \qquad (3.3.4)$$

where m_{12} is the slope of edge 1-2.

In order to force linear variations of displacements and stresses along edge 1-2, the coefficient of x_1^2 term in Equations (3.3.3) and (3.3.4) must vanish, i.e.,

$$a_4^i + m_{12} a_5^i + m_{12}^2 a_6^i = 0$$
 $i = 1, 2$ (3.3.5)

 $b_4^{ij} + m_{12} b_5^{ij} + m_{12}^2 b_6^{ij} = 0$ i = j = 1, 2 (3.3.6)

Similarly, for linear variations of displacements and stresses along edge 1-3, the following constraints result,

$$a_4^i + m_{13} a_5^i + m_{13}^2 a_6^i = 0$$
 $i = 1, 2$ (3.3.7)

$$b_4^{ij} + m_{13} b_5^{ij} + m_{13}^2 b_6^{ij} = 0$$
 i, j = 1, 2 (3.3.8)

where m_{13} is the slope of edge 1-3. Equations (3.3.5) to (3.3.8) can be used to solve for a_5^i and a_6^i in terms of a_4^i and for b_5^{ij} and b_6^{ij} in terms of b_4^{ij} , respectively. The displacement and stress variations are then given by

$$u_{1} = a_{1}^{1} + a_{2}^{1} x_{1} + a_{3}^{1} x_{2} + a_{4}^{1} (x_{1}^{2} + \alpha x_{1} x_{2} + \beta x_{2}^{2})$$
(3.3.9)

$$\tau_{ij} = b_1^{ij} + b_2^{ij} x_1 + b_3^{ij} x_2 + b_4^{ij} (x_1^2 + \alpha x_1 x_2 + \beta x_2^2)$$
(3.3.10)

where

$$\alpha = \frac{\left(\frac{m_{12} + m_{13}}{m_{12}m_{13}}\right)}{\left(\frac{1}{m_{12}m_{13}}\right)}$$
(3.3.11)
$$\beta = \frac{1}{\frac{m_{12}m_{13}}{m_{13}}}$$
(3.3.12)

Equation (3.3.9) is differentiated to obtain strains as follows:

$$\varepsilon_{11} = \frac{\partial u_1}{\partial x_1} = a_2^{11} + a_4^{11} (2x_1 + \alpha x_2)$$
(3.3.13)

$$\varepsilon_{22} = \frac{\partial u_2}{\partial x_2} = a_3^{22} + a_4^{22} (\alpha x_1 + 2\beta x_2)$$
(3.3.14)

$$\gamma_{12} = \frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} = a_3^{12} + a_2^{12} + a_4^{12}(\alpha x_1 + 2\beta x_2) + a_4^{12}(2x_1 + \alpha x_2) \quad (3.3.15)$$

Inspection of Equations (3.3.13) to (3.3.15) and Equation (3.3.10) shows that the strains from the stress approximations possess all of the strain modes that are present in the strains derived from the displacement appproximations. The completeness criterion stated in Section (2.1) is therefore satisfied by the displacement and stress approximations given by Equations (3.3.9) and (3.3.10) and mechanisms, non stressing strain modes, will not be present. However, examination of Equation (3.3.10) indicates that for a general state of stress, the stress approximations will have difficulties in satisfying the equilibrium equations $\tau_{1,1} = 0$, i, j = 1, 2. This is explained next.

Substitution of the stress approximations given by Equation (3.3.10) gives the relationships that have to be satisfied by the arbitrary constants for exact satisfaction of the equilibrium equations. For example, if the approximations for τ_{11} and τ_{12} are substituted into the equilibrium equation $\tau_{11,1} + \tau_{12,2} = 0$, we obtain

- 38 -

$$\frac{\partial \tau_{11}}{\partial x_1} + \frac{\partial \tau_{12}}{\partial x_2} = b_2^{11} + b_4^{11}(2x_1 + \alpha x_2) + b_3^{12} + b_4^{12}(\alpha x_1 + 2\beta x_2) = (b_2^{11} + b_3^{12}) + (2b_4^{11} + \alpha b_4^{12})x_1 + (\alpha b_4^{11} + 2\beta b_4^{12})x_2 = 0.$$
(3.3.16)

Similarly, if the approximations for τ_{22} and τ_{12} are substituted into the equation $\tau_{12,1} + \tau_{22,2} = 0$, the following is obtained.

$$\frac{\partial \tau_{12}}{\partial x_1} + \frac{\partial \tau_{22}}{\partial x_2} = b_2^{12} + b_4^{12} (2x_1 + \alpha x_2) + b_3^{22} + b_4^{22} (\alpha x_1 + 2\beta x_2) = (b_2^{12} + b_3^{22}) + (2b_4^{12} + \alpha b_4^{22})x_1 + (\alpha b_4^{12} + 2\beta b_4^{22})x_2 = 0.$$
(3.3.17)

Thus for the equilibrium equations to be satisfied at every point within the element, the following two sets of relationships have to be satisfied by the arbitrary constants in the approximations for stresses, Equation (3.3.10).

$$b_2^{11} + b_3^{12} = 0$$
 (3.3.18)

$$2b_4^{11} + \alpha b_4^{12} = 0 \tag{3.3.19}$$

 $\alpha b_4^{11} + 2\beta b_4^{12} = 0 \tag{3.3.20}$

and
$$b_2^{12} + b_3^{22} = 0$$

(3.3.21)

$$2b_4^{12} + \alpha b_4^{22} = 0 \tag{3.3.22}$$

$$\alpha b_4^{12} + 2\beta b_4^{22} = 0 \tag{3.3.23}$$

It is observed that for non-trivial values of b_4^{11} , b_4^{12} and b_4^{22} , α and β as defined in Equations (3.3.11) and (3.3.12) have to satisfy the following equality.

$$4\beta - \alpha^2 = 0$$
 (3.3.24)

or
$$\beta = \alpha^2 / 4$$
 (3.3.25)

Equation (3.3.25) is satisfied only when $m_{12} = m_{13}$, i.e., the triangular transitional element degenerates into a straight line. Therefore, for exact satisfaction of the equilibrium equations at every point within the element, b_4^{11} , b_4^{12} and b_4^{22} should vanish. With b_4^{11} , b_4^{12} and b_4^{22} equal to zero, the stress approximations given by Equation (3.3.10) will reduce to linear variations of τ_{11} , τ_{12} and τ_{22} over an element. However, in finite element analyses, equilibrium equations are satisfied only approximately in a weighted integral sense and not pointwise. Therefore, for a general state of stress, b_4^{11} , b_4^{12} and b_4^{22} given by a finite element analysis will not be expected to vanish and the stress approximations will be better than just linear. Results from examples to be presented subsequently do show non-linear stress variations along side 2-4-3 of the transitional elements, thus indicating non zero values

of b_4^{11} , b_4^{12} and b_4^{22} .

Equilibrium Equations (3.3.16) and (3.3.17) also reveal that for lines $2x_1 + \alpha x_2 = 0$ and $\alpha x_1 + 2\beta x_2 = 0$, the equilibrium equations can be satisfied for arbitrary values of b_4^{11} , b_4^{12} and b_4^{22} . This means that along these two lines, b_4^{11} , b_4^{12} and b_4^{22} , can attain non unique values. Again, as the equilibrium equations are satisfied only in a weighted integral sense and not pointwise in a finite element analysis, this is expected to give rise to some oscillations in stress values.

The aforementioned oscillations of stresses are expected to vanish if lines, for which equilibrium equations can be satisfied with non unique values of b_4^{11} , b_4^{12} and b_4^{22} , do not exist. This condition is met when α in Equations (3.3.16) and (3.3.17) vanishes. In this case Equations (3.3.16) and (3.3.17) reduce to

$$b_2^{11} + b_3^{12} + 2b_4^{11}x_1 + 2\beta b_4^{12}x_2 = 0$$
 (3.3.26)

and
$$b_2^{12} + b_3^{22} + 2b_4^{12}x_1 + 2\beta b_4^{22}x_2 = 0.$$
 (3.3.27)

Thus for equilibrium to be satisfied anywhere within the element b_4^{11} , b_4^{12} and b_4^{22} should vanish provided there are no body forces.

From Equation (3.3.11), α vanishes if

for non-zero m_{12} and m_{13} . This corresponds to configurations of isoceles triangles shown in Figure (3.5). Apparently, there is no need for restrictions on the orientation of side 2-4-3.

One special case for which the lines with non unique b_{ij}^4 's do not exist is when $m_{12} = 0$ and m_{13} is infinity, Figure (3.6). For side 1-2, $x_2 = 0$ and Equation (3.3.2) gives

$$\tau_{ij} = b_1^{ij} + b_2^{ij} x_1 + b_4^{ij} x_1^2, \quad i, j = 1, 2$$
 (3.3.29)

Similarly, for side 1-3, $x_1 = 0$ and

$$\tau_{ij} = b_1^{ij} + b_3^{ij}x_2 + b_6^{ij}x_2^2, \quad i, j = 1, 2$$
 (3.3.30)

For linear variations of stresses along edges 1-2 and 1-3, b_4^{ij} and b_6^{ij} vanish and stress approximations reduce to

$$\tau_{ij} = b_1^{ij} + b_2^{ij} x_1 + b_3^{ij} x_2 + b_5^{ij} x_1 x_2, \quad i, j = 1, 2 \quad (3.3.31)$$

and for the equilibrium equations to be satisfied, we have

$$(b_2^{11} + b_3^{12}) + b_5^{11} x_2 + b_5^{12} x_1 = 0$$
 (3.3.32)

(3.3.28)

$$(b_2^{12} + b_3^{22}) + b_5^{12} x_2 + b_5^{22} x_1 = 0.$$
 (3.3.33)

Thus there exist no lines along which b_5^{11} , b_5^{12} and b_5^{22} are undetermined when equilibrium is satisfied and stress oscillations are not expected.

It is then postulated that oscillations of stresses will not be expected for four-node transitional mixed elements which satisfy either of the following conditions:

- 1) the element sides form a triangle with $m_{12} = -m_{13}$, Figure (3.5);
- 2) the element sides form a right angle triangle with the right angle between sides 1-2 and 1-3 and with sides 1-2 and 1-3 parallel to the global coordinate axes, Figure (3.6).

A rigorous mathematical justification will not be attempted. However, through various numerical applications of the transitional elements, together with the mixed and isoparametric displacement elements (to be presented in subsequent sections), it is found that good accuracy is obtained by using the orientations and shapes indicated in Figures (3.5) and (3.6), i.e., $m_{12} = -m_{13}$ and $m_{12} = 0$, $m_{13} = \infty$. For other orientations and shapes of the transitional elements, oscillations of stresses over the full domain have indeed been observed. Thus numerical results do confirm that if no lines with non unique arbitrary constants b_4^{ij} exist, the four-node mixed transitional element does seem to perform reasonably well. It is to be noted that by performing a patch test with the mixed transitional elements, constant stress state is reproduced with any arbitrary orientation and shape of the element. This is because only the constants b_1^{ij} in the stress approximation will attain constant stress values. Consequently the problem of non unique values of b_4^{ij} does not arise. This suggests that if, within a finite element grid, the mixed transitional elements are located where the stress state is approximately constant, the mixed transitional element should work reasonably well even if the orientations and shapes are not in accordance with those indicated in Figure (3.5) and (3.6) and stipulated in configurations (1) and (2) earlier.

3.4 <u>Convergence of Mixed Transitional Elements and Combinations of</u> Mixed, Mixed Transitional and Isoparametric Finite Elements

The three-node triangular mixed and the eight-node isoparametric displacement finite elements both have predicted energy convergence rates of $O(N^{-4})$. The use of the three-node triangular mixed finite elements and the eight-node isoparametric displacement elements connected by the mixed transitional elements involves using both the Hellinger-Reissner principle and the principle of minimum potential energy in a finite element application. In order to predict the strain energy convergence rate in such an application, the strain energy convergence rates of the mixed transitional elements are investigated first.

- 44 -

A square plate (plane stress) with parabolically varying end loads, Figure (3.7), is analysed using only the mixed transitional finite elements. The analytical solution [13] is known and hence it has been used to study convergence in strain energy. Due to symmetry, only one quarter of the plate ABCD needs to be analyzed with forced boundary conditions $u_1 = 0$ on AD and $u_2 = 0$ on AB. The mixed transitional elements are shown in Figure (3.8). The finite element grids used for studying the energy convergence rate for each type of mixed transitional finite elements are shown in Figure (3.9). Table (3.3) gives the calculated strain energies in the square plate and percentage errors. Plots of the errors in strain energy versus grid size are shown in Figures (3.10a) to (3.10c).

Finite Element Grid	$10Et^{2}U/(1-v^{2})L^{2}N_{0}$	Error (%)
N = 2	2.652491	5.050
N = 4	2.738196	1.982
N = 8	2.779601	0.500
Exact Solution	2.79357	

(a) Condensed mixed element (3-node transitional element)

Finite Element Grid	$10Et^{2}U/(1-v^{2})L^{2}N_{0}$	Error (%)
N = 2	2.676449	4.192
N = 4	2.747999	1.631
N = 8	2.782233	0.406
Exact Solution	2.79357	

(b) 4-node transitional element, condensed

Finite Element Grid	$10Et^{2}U/(1-v^{2})L^{2}N_{0}$	Error (%)
N = 2	2.709306	3.016
N = 4	2.775975	0.629
N = 8	2.791582	0.071
Exact Solution	2.79357	

(c) 4-node transitional element, uncondensed

TABLE 3.3: Strain energies and percentage errors for the square plate with parabolically varying end loads, Figure (3.7). The calculated values of strain energy seem to be in good agreement with the exact value. The strain energy convergence rate for the three-node transitional and the condensed four-node transitional elements is $0(N^{-2})$, Figure (3.9a and b). The numerical results for the uncondensed four-node transitional elements indicate the strain energy convergence rate of $0(N^{-4})$, Figure (3.10c), which is the same as the strain energy convergence rate of the three-node triangular mixed and the eight-node isoparametric elements. The displacements and stresses given in Table (3.4) are also in good agreement with the analytical values.

The strain energy convergence rate when the three-node triangular, the mixed transitional and the eight-node isoparametric displacement elements are used together is studied next. For this purpose, the cantilevered beam shown in Figure (3.11) is analyzed. The analyses are carried out with condensed transitional elements first and repeated using the uncondensed transitional elements. The finite element grids are given in Figures (3.12) and (3.13). Comparisons of the finite element solutions with the exact solution [8] are presented in Table (3.5). The computed results appear to be in good agreement with the analytical solution. It is observed, however, that the stresses calculated using the uncondensed transitional finite elements have an error of about 11% whereas the stresses calculated using the condensed transitional finite elements resulted in an error of about 2% in the vicinity of the transitional elements.

	"2 _D			۳	D	^T 22 _A			. U			
	 									S1	rain Energy	
Grld	MFE	T.F	.E.	MFE	. T.F	.E.	MFE	T.F	.E.	MFE	T.F	·.E.
Size	Condensed	Condensed	Uncondensed	Condensed	Condensed	Uncondensed	Condensed	Condensed	Uncondensed	Condensed	Condensed	Uncondensed
N = 2	0.448260	0.4613412	0.4792811	-0.149604	-0.1578762	-0,1734217	0,823924	0.936512	0.970385	0,2413767	0.2435569	0.2465469
N - 4	0.461474	0.4654755	0.4727769	-0.141383	-0.1466588	-0,1406876	0,837352	0,912827	0.952797	0,2491758	0.2500697	0.2526137
N = 8	0.461414	0.4627559	0,4644919	-0.139133	-0.1404195	-0.1390017	0.853500	0.904356	0.881212	0.2529436	0.2531832	0.2540340
Exact		0.4616885			-0.1383109			0.85909			0.2542149	

Calculated from displacement field.

TABLE 3.4: Displacements, stresses and strain energies for the square plate with parabolically varying end loads, Figure 3.7

47 -

Elements	Mesh	Strain Energy (U)	Tip Displacement (S _T)	τ at x = 18" 11 at x ₂ = 6"		
Condensed	N = 2	0.6869276367E5	3.440875E4	30.856607		
	N = 4	0.7112716533E5	3.537654E4	29.361476		
Uncondensed	N = 2	0.697070443E5	3.491264E4	37.323863		
	N = 4	0.713329153E5	3.548020E4	26.742277		
Exact		0.714666666655	3.553333E4	30.000000		

TABLE 3.5Results for the cantilevered beam with three supports,Figure 3.11.

Errors in the calculated strain energy are presented in Table (3.6) and plotted against grid size "N" in Figure (3.14). The strain energy convergence rate when using the uncondensed transitional elements to connect the mixed and the isoparametric finite elements, is found to be $O(N^{-4})$, hence maintaining the strain energy convergence rates of all three types of finite elements used in the analyses. When condensed transitional elements, with energy convergence rate of $O(N^{-2})$, are used, the strain energy convergence rate is close to $O(N^{-3})$. Thus, with the condensed transitional elements, energy convergence rate is lower.

Elements	Mesh	Erroi	r in	Convergence Rate
		U(%)	δ _T (%)	
Uncondensed	N = 2 N = 4	2.462 0.187	1.747 0.149	N ⁻⁴
Condensed	N = 2 N = 4	3.880 0.475	3.165 0.441	≃ N ⁻³

TABLE 3.6:Errors in strain energy and tip displacement for the
cantilevered beam with three supports, Figure 3.11.

To illustrate the shape restrictions on the uncondensed fournode transitional element, the cantilever of Figure (3.13) is reanalyzed by distorting shapes of the transitional elements. Figure (3.15) shows plots of the extreme fibre stress along the beam axis for the different transitional element shapes as indicated. It is observed that when edge 2-4-3 of the transitional elements, Figure (3.4), is parallel to one of the global axes and the other two sides being equal in length, thus forming an isoceles triangle ($m_{12} = -m_{13}$), reasonably accurate results for the extreme fibre stresses are obtained. However, when the shapes of the transitional elements deviate from the condition $m_{12} = -m_{13}$, large fluctuations of stresses result, especially in the vicinity of the transitional elements. This confirms the earlier findings that the non unique problem with the quadratic stress modes for non zero a condition does lead to oscillations of the calculated stresses.

3.5 Example of Plane Square Plate with a Circular Hole

The three-node triangular mixed, mixed transitional and the isoparametric displacement finite elements are used to analyze the problem of a plane square plate with a circular hole in the middle, under uniform tension τ_0 , Figure (3.16). The diameter of the hole is taken as one-eighth of the plate width and the plate is of unit thickness. The plane strain state is analyzed for both isotropic and orthotropic cases. Because of symmetry, only one quarter of the plate is analyzed and the two finite element grids used are shown in Figures (3.17) and (3.18). All four-node mixed transitional elements in both grids are isoceles triangles with right angles between sides 1-2 and 1-3. However in the first grid, side 2-4-3 of each transitional element is not parallel to any of the global axes whereas in the second grid, side 2-4-3 of each transitional element is set.

The calculated stresses are plotted in Figures (3.19) and (3.20) along with the analytical solution for an infinite plate [13, 14]. Results obtained with the two different grids are almost the same. In both cases, the finite element solutions over predict the stress concentration at the circular hole. This is expected for a finite plate.

The same problem has been analyzed by Mirza [8] using a more refined grid shown in Figure (3.21). In one case, only the mixed finite elements are used and in the other the constant stress triangular element (CST's). A comparison of the results obtained with the present analyses with that obtained using mixed elements and CST's, respectively, is given in Table (3.7). The amount of computer storage required in each case, except that for the CST elements, is also indicated. In the present analyses the skyline storage technique has been used, while for the other cases the uniform half bandwidth storage scheme was used.

It is observed that the present analyses give less accurate results than that obtained using mixed elements alone. This can be explained by the relatively coarse grids used. However, reasonably accurate results are obtained and the number of degrees of freedom and computer storage required are very much reduced. The number of degrees of freedom is almost halved and the storage requirement for the global matrix reduced from about 45000 to about 10000. Therefore, the present scheme of mixed and the isoparametric elements does indicate the advantage in both lesser storage requirements and relative accuracy.

Finally, it should be pointed out that the four-node mixed transitional element performs well when m_{12} is not equal to minus m_{13} $(m_{12} \neq -m_{13})$. This is because the transitional elements are located in a region of approximately constant stresses where the severity of the orientation problem is very much reduced. Thus no oscillations of stresses have been observed.

(a) ISOTROPIC

	τ ₁₁ (C)/τ ₀	τ ₂₂ (Β)/τ ₀	Storage $\underline{S} \rightarrow \underline{S}^{T}\underline{S}$	DOF	NB
Uncondensed Grid #1	3.4972671	-0.9982387		188	100
Grid #2	3.5115569	-0.9537004	5904 → 11157	193	102
Condensed Grid #1 Grid #2	3.4917262 3.5109618	-0.9937126 -0.9620834	3857 → 7187 4131 → 7905	161 166	73 75
Ref. [8] (All MIXEL)	3.2630492	-1.0931845	43434	342	42
CST (extrapolated)	2.910	-0.878			
Infinite Plate	3.00	-1.00			

(b) ORTHOTROPIC

	τ ₁₁ (C)/τ ₀	τ ₂₂ (Β)/τ ₀	$\frac{\text{Storage}}{\text{S} \longrightarrow \text{S}^{T}\text{S}}$	DOF	NB
Uncondensed Grid #1 Grid #2	3.2743412 3.3049690	-1.2010702 -1.1193274	5615 → 10508 5904 → 11157	188 193	100 102
Condensed Grid #1 Grid #2	3.2684212 3.3038854	-1.1925217 -1.1291649	3857 → 7187 4131 → 7905	161 166	73 75
Ref. [8] (All MIXEL)	3.0852018	-1.6463486	43434	342	42
CST (extrapolated)	2.920	-0.888			
Infinite Plate	2.83	-1.75			

* Half bandwith excluding the diagonal.

TABLE 3.7:

7: Comparison of computer storage requirements and stresses at the edge of the hole in a square plate under tension, Figure 3.16. Isotropic and Orthotropic.

- 53 -

• NODES WITH STRESS AND DISPLACEMENT D.O.F.

• NODES WITH DISPLACEMENT D.O.F.

T.F.E.¹- THREE-NODE TRANSITIONAL FINITE ELEMENT, CONDENSED.

T.F.E.²- FOUR-NODE TRANSITIONAL FINITE ELEMENT, CONDENSED.

I.F.E. - ISOPARAMETRIC DISPLACEMENT FINITE ELEMENT.

FIG. 3.2: COMBINATION OF A CONDENSED FOUR- NODE TRANSITIONAL ELEMENT, A THREE-NODE TRANSITIONAL ELEMENT AND AN ISOPARAMETRIC ELEMENT, USED TO INVESTIGATE THE EFFECT OF THE MAGNITUDE OF THE MODULUS OF ELASTIC-ITY.

PARABOLICALLY VARYING END SHEAR, $P = 40^{K}$

a) CANTILEVER WITH LOAD SYSTEM AND SUPPORT CONDITIONS.

b) FINITE ELEMENT IDEALIZATION ALONG WITH BOUNDARY CONDITIONS.

FIG. 3.3: LINEAR ELASTICITY CANTILEVER BEAM WITH FULLY FIXED SUPPORTS SUBJECTED TO PARABOLIC END SHEAR.

FIG. 3.4 NODE NUMBERS AND DEGREES OF FREEDOM FOR A FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENT, UNCONDENSED

FIG. 3.5: ISOCELES FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENTS WITH $m_{12} = -m_{13}$.

FIG. 3.6: FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENT WITH A RIGHT ANGLE BETWEEN SIDES 1-2 AND 1-3 AND WITH SIDES 1-2 AND 1-3 PARALLEL TO THE GLOBAL COORDINATE AXES.

FIG. 3.7: PLANE STRESS SQUARE PLATE WITH PARABOLICALLY VARYING END LOADS.

م

c) FOUR-NODE TRANSITIONAL ELEMENT, CONDENSED +

FIG. 3.8: TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENTS USED FOR THE FINITE ELEMENT ANALYSIS OF THE SQUARE PLATE WITH PARABOLICALLY VARYING END LOADS-FIGURE. 3.7.

c) FOUR-NODE TRANSITIONAL ELEMENTS, UNCONDENSED.

- NODES WITH STRESS AND DISPLACEMENT DEGREES OF FREEDOM.
- NODES WITH DISPLACEMENT DEGREES OF FREEDOM.
- FIG. 3.9: FINITE ELEMENT GRIDS FOR THE SQUARE PLATE WITH PARABOLICALLY VARYING END LOADS,

- 60 -

PARABOLICALLY VARYING END SHEAR

BOUNDARY CONDITIONS: $U_1(L,0) = U_2(L,0) = U_1(L,-c) = U_1(L,c) = 0$

FIG. 3.11: LINEAR ELASTIC CANTILEVER WITH BOUNDARY TRACTIONS AND CONDITIONS USED.

- 62 -

FIG. 3.12:

- 63 -

▲ WITH UNCONDENSED MIXED TRANSITIONAL ELEMENTS.

FIG.3.14:

STRAIN ENERGY CONVERGENCE FOR THE CANTILEVERED BEAM IN FIGURE 3.11,

FIG. 3.15: PLOTS OF EXTREME FIBRE STRESS ALONG THE AXIS OF THE CANTILEVER (FIGURE 3.11) FOR VARIOUS SHAPES OF UNCONDENSED FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENT.

65

b) ORTHOTROPIC CASE.

FIG. 3.16:

PLANE SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE, ISOTROPIC AND ORTHOTROPIC,

FIG. 3.17: FINITE ELEMENT GRID FOR THE SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE, GRID I. ISOTROPIC AND ORTHOTROPIC CASES.

FIG. 3.18: FINITE ELEMENT GRID FOR THE SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE, GRID II. ISOTROPIC AND ORTHOTROPIC CASES.

FIG. 3.19: COMPARISION OF FINITE ELEMENT RESULTS FOR THE ISOTROPIC SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE WITH THEORETICAL RESULTS FOR AN INFINITE PLATE, UNCONDENSED AND CONDENSED MIXED TRANSITIONAL FINITE ELEMENTS.

- 69

FIG. 3.20: COMPARISION OF FINITE ELEMENT RESULTS FOR THE ORTHOTROPIC SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE WITH THEORETICAL RESULTS FOR AN INFINITE PLATE, UNCONDENSED AND CONDENSED MIXED TRANSITIONAL FINITE ELEMENTS.

FIG. 3.21: FINITE ELEMENT GRID FOR THE SQUARE PLATE WITH A CIRCULAR HOLE IN THE MIDDLE, REFERENCE [8].

CHAPTER 4

LINEAR ELASTIC FRACTURE MECHANICS (LEFM) BY FINITE ELEMENT METHOD

The formulations and numerical tests of the triangular mixed and mixed transitional finite elements have been carried out in the previous chapters. Application of the finite element method to linear elastic fracture mechanics (LEFM) will be presented in this chapter and, in particular, the use of finite element scheme for using the mixed, mixed transitional and isoparametric displacement finite elements in a single finite element mesh. Following a brief account of linear elastic fracture mechanics, various finite element approaches in determining the stress intensity factors are discussed. Details of the direct derivative approach are then given and the classical problems of plates with symmetric edge cracks and a central crack under in-plane loads are analyzed.

4.1 Linear Elastic Fracture Mechanics (LEFM)

Fracture or cracking of a material is the physical separation under severe stress conditions in the presence of a notch or crack in a structure. The concepts and results of LEFM have been used successfully to predict the strength and life of cracked structures, particularly when yielding of the material is confined to a very small region around the crack tip. A brief account of LEFM is presented here.

Generally speaking, there are two approaches for studying fracture, the energy approach and the stress parameter approach. Griffith in 1920 [15, 16] proposed an energy balance argument for coplanar crack growth of a sharp crack. The idea behind Griffith's concept is that a crack will begin to propagate if the energy released during a crack front growth is equal to the energy required to form the new crack sur-This theory, which is valid for brittle materials where the face. deformations are essentially elastic prior to onset of fracture and where the plastic yielding is confined to a very small region around the crack tip, has been the basis of determining the fracture of cracked bodies. Alternatively Irwin [17], in applying Griffith's concept to solve fracture problems, emphasized the stress conditions in the vicinity of the crack tip. In various papers [17, 18, 19], Irwin pointed out, mostly from a mathematical viewpoint, that in fracture mechanics three basic modes of crack extension can be distinguished. These are:

- a) Mode I the opening mode where the displacement discontinuity is perpendicular to the plane of the crack;
- b) Mode II the sliding mode where the displacement discontinuity is in the plane and parallel to the direction of the crack;
 c) Mode III the tearing mode where the displacement discontinuity is in the plane of the crack but perpendicular to it.

The three different modes of crack extension are illustrated in Figure (4.1). In all these cases, it is assumed that the crack is a straight through cut perpendicular to the plane of the material.

- 73 -

In the case of plane strain or plane stress, where the material contains a straight crack subject to in-plane loadings, only the first two modes of crack extension, Modes I and II, are relevant. For these cases, nonzero stress components are mathematically infinite at the crack tip and the stress state in the neighborhood of the crack can be expressed as follows [17, 20, 21], Figure (4.2):

$$\tau_{11} = \frac{K_{I}}{(2r)^{1/2}} \cos (\theta/2) [1 - \sin (\theta/2) \sin (3\theta/2)]$$

 $- \frac{K_{II}}{(2r)^{1/2}} \sin (\theta/2) [2 + \cos (\theta/2) \cos (3\theta/2)] + \cdots$ (4.1.1.a)

$$\tau_{22} = \frac{\kappa_{I}}{(2r)^{1/2}} \cos (\theta/2) [1 + \sin (\theta/2) \cos (3\theta/2)]$$

+
$$\frac{K_{II}}{(2r)^{1/2}} \sin(\theta/2) \cos(\theta/2) \cos(3\theta/2) + \cdots$$
 (4.1.1.b)

$$\tau_{12} = \frac{\kappa_{I}}{(2r)^{1/2}} \cos (\theta/2) \sin (\theta/2) \cos (3\theta/2)$$

+
$$\frac{K_{II}}{(2r)^{1/2}} \cos (\theta/2) [1 - \sin (\theta/2) \sin (3\theta/2)] + \cdots$$
 (4.1.1.c)

where the non-singular stress terms have been dropped and r and θ are the polar coordinates in the $x_1^{-x_2}$ plane. K_I and K_{II} in Equations (4.1.1a, b and c) are called the stress intensity factors and are measures of the intensity of the stress singularities at the crack tip. K_{I} and K_{II} are the symmetric and skew-symmetric components of the stress intensity factors and they are associated with the opening (Mode I) and sliding (Mode II) modes of crack extension, respectively. In general, the stress intensity factors are functions of the crack length, the geometry and the external loadings.

The generalized Griffith-Irwin fracture theory states that under external loading, slow crack extension will start when the corresponding stress intensity factors reach their critical values. The critical values of K_{II} and K_{III} for which a crack becomes unstable and propagates are designated as K_{IC} and K_{IIC} respectively. K_{IC} is also sometimes referred to as the fracture toughness. For design purposes, the critical value of a stress intensity factor is assumed to be a material property. For a given crack configuration and principal mode of fracture, a theoretical stress intensity factor is computed and compared with the critical value of stress intensity factor for the same material. The critical value of stress intensity factor is determined experimentally for the same principal mode of fracture and the same environmental conditions as in the actual application. If the computed theoretical stress intensity factor is less than the critical value, then the crack will not propagate. Otherwise, crack propagation will result. Thus, estimation of the critical state of stress at the crack tip reduces to determination of the elastic stress intensity factors.

Irwin [19] also showed that the stress intensity factors are related to the decrease in potential energy of the cracked system per unit area of crack advance, i.e., the potential energy release rate G. For plane problems, the following equations hold:

$$G_{I} = \frac{-\partial I}{\partial a} = \frac{(\kappa + 1) K_{I}^{2}}{8\mu}$$
(4.1.2)

$$G_{II} = \frac{-\partial \Pi}{\partial a}_{mode 2} = \frac{(\kappa + 1)}{8\mu} K_{II}^2 \qquad (4.1.3)$$

where G_{I} and G_{II} are the potential energy release rates for Mode I and Mode II, respectively; I is the potential energy; μ is the shear modulus; and the elastic constant κ takes the value $(3 - 4\nu)$ for plane strain and $(3 - \nu)/(1 + \nu)$ for plane stress where ν is the Poisson's ratio. It should be noted that G_{I} and G_{II} are formally computed by assuming that the crack extends in a plane collinear with the original crack as in Mode I (which is not necessarily the actual direction of crack propagation under a general state of stress, with both K_{I} and K_{II} having nonzero values) and G_{I} is in fact the energy release rate in Griffith's theory.

From Equations (4.1.2) and (4.1.3) it is seen that the stress intensity factors and the energy release rates are related and the problem of crack instability can be addressed either in terms of stress intensity factors or energy release rates. Under a general state of loading, both K_I and K_{II} corresponding to the opening and sliding modes will attain nonzero values. In this chapter, discussion will be restricted to those cases where the loadings are symmetric about the crack plane (Mode I type). Consequently, the stress state in the vicinity of the crack tip is symmetric about the crack plane and can be adequately described by the first term in Equation (4.1.1), i.e. only K_I will attain a nonzero value. Therefore, the crack will extend in an opening mode and only K_I and G_I have to be calculated.

4.2 Application of Finite Element Method in Linear Elastic Fracture Mechanics

In any application of LEFM principles, the crack tip stress intensity factors have to be determined. A rigorous determination of the stress intensity factors requires an exact solution of the elasticity problem formulated for the cracked body. In most cases, highly sophisticated mathematical analysis is required and exact solutions are either very difficult or impossible to obtain. The stress intensity factors have been calculated for varying crack size and relatively simple-shaped plates by Paris and Sih [22]. For the more realistic complex shapes encountered in practice, however, numerical techniques are generally required and the finite element method has been successfully used to evaluate the stress intensity factors.

When conventional finite elements with polynomial interpolation functions are used in the crack tip region, the characteristic elastic stress singularity can not be represented and as such indirect procedures have been used. Basically there are two different approaches: the extrapolation of a field parameter near the crack tip using the calculated displacement or stress fields, or an energy method whereby the potential energy release rate is calculated which is then used to determine the stress intensity factors using Equations (4.1.2) and (4.1.3).

The extrapolation approach has been used by Chan et al. [23] in conjunction with constant stress triangular elements. The product of $r^{1/2}$ with a stress component as a function of distance r along a ray emanating from the crack tip is plotted and a tangential extrapolation of this quantity to the crack tip at r = 0 is performed from which the stress intensity factors can be determined using the singular stress solution in Equation (4.1.1). Alternatively, the extrapolation can be based on the product of $r^{1/2}$ with a displacement. Stress intensity factors within five percent of the accepted values of K_I are reported. However, such procedures require extremely fine grid refinements near the crack tip and could easily exhaust the storage capacity of most computers. Approximately 2000 degrees of freedom were used to obtain the five percent accuracy reported.

The energy method of calculating the stress intensity factor K_{I} has been used by Mowbray [24] and Hayes [25]. The energy method used in reference [24] is very similar to experimental compliance method. The same specimen was analyzed for several cracks of slightly varying length and the compliance was obtained as a function of crack length a. Numerical differentiation of this relationship with respect to the crack length enables determination of G_{T} , and K_{T} can be calculated from

Equation (4.1.2). Using this method, again about five percent accuracy was obtained for 1000 degrees of freedom with the constant stress elements. The procedure above, however, requires a separate analysis to be performed for each crack configuration with slightly different crack length and therefore can be very costly.

A path independent integral in plane elasticity, called the Jintegral, has been introduced by Rice [26, 27] and is defined as:

$$J = \int_{\Gamma} W dy - \overline{T} \cdot \frac{\partial \overline{u}}{\partial x} ds \qquad (4.2.1)$$

where $W = \int_{0}^{\varepsilon} \sigma_{ij} d\varepsilon_{ij}$ is the strain energy density, \overline{T} is the traction vector on curve Γ around the crack tip in relation to a unit outward normal vector \overline{n} , \overline{u} is the displacement vector and ds is an element of arc-length along the curve Γ , Figure (4.3). It can be shown that the Jintegral is equal to the potential energy release rate for a crack assumed to propagate in its own plane. For mode I loading,

$$J = G_{I} = -\frac{\partial \Pi}{\partial a} = \frac{(\kappa + 1)}{8\mu} K_{I}^{2}$$
(4.2.2)

Hence the potential energy release rate for a particular crack configuration can be obtained by evaluating the J-integral and the stress intensity factor K_I can be determined using Equation (4.2.2) without performing a second analysis for a configuration with a slightly different crack length. The path independence of the J-integral allows its evaluation along a contour far enough away from the crack tip where the finite element solution would be more representative, thus resulting in a better accuracy.

A direct derivative finite element technique, based on the energy release rate, similar to the J-integral, was introduced by Park [28]. Again, a solution for only the original crack length is required and for constant stress triangular elements, it was shown that the direct derivative technique is in fact a numerical analog of the J-integral. Details of the direct derivative method are given in the next section where the method is applied to determine K_I for linear elasticity problems using the mixed, mixed transitional and isoparametric displacement finite elements. This procedure is adopted because the extreme grid refinement in the crack tip region needed for the extrapolation method is not required and there is no need for a second analysis to determine the potential energy release rate.

Instead of using the aforementioned indirect methods to determine the stress intensity factors, special crack tip elements with direct incorporation of the stress singularity in the interpolation functions can be employed [29 to 32]. Improved accuracy is generally obtained by using such special elements and the stress intensity factors can be obtained directly from the finite element solutions. For example, Tracey [29], using a mesh of isoceles trapezoidal special elements surrounding the crack tip was able to obtain five percent accuracy for K_I with only 248 degrees of freedom. Although the special singularity elements can be readily incorporated into an existing finite element program, their versatility in terms of energy convergence rate, changing crack direction and propagation for mixed mode cracking is not clear and are not discussed here.

4.3 <u>Calculation of Mode I Stress Intensity Factor using Direct</u> Derivative Method in Conjunction with Mixed, Mixed Transitional and Isoparametric Displacement Elements

The stress intensity factor K_{I} is related to the potential energy release rate G_{I} and for plane strain and plane stress problems with unit thickness, this relationship is given by

$$G_{I} = -\frac{\partial I}{\partial a} = \frac{(\kappa+1)}{8\mu} K_{I}^{2}$$
(4.3.1)

where a is the crack length and I, μ and κ have been defined previously (Equation (4.1.2)). The direct derivative approach has been used by Park [28] and Mirza [8, 33] using constant strain triangular finite elements and triangular mixed finite elements, respectively. It has been shown by Tong and Pian [34] that in stress singular problems, the use of high order displacement finite elements will not be able to improve the energy convergence rate and the convergence in strain energy is only linear in plane elasticity, i.e., $O(N^{-1})$. However, it was shown in reference [33] that with mixed finite elements, the strain energy convergence rate is at least $O(N^{-1})$ and using triangular mixed finite element with linear stress and displacement approximations, a strain energy convergence rate of $O(N^{-2})$ has been obtained. Also, improved accuracies were demonstrated for the energy release rate and K_T values

with mixed finite elements. It has been pointed out in Chapter 2, however, that the use of mixed finite elements alone requires a much larger computer storage. Therefore it is proposed to use the mixed finite elements near the crack tip where there is a stress singularity and large stress gradients, and to use the eight-node isoparametric displacement finite elements in the region away from the crack tip where stress distribution is more regular. The isoparametric finite elements are connected to the mixed finite elements via the mixed transitional elements developed in Chapter 2. It is expected that the proposed scheme will reduce the computer storage required while maintaining the advantage of improved convergence rate over that when only the displacement type finite elements are used.

In the mixed finite element analysis, the element matrix equations (Equations (2.3.19) and (3.1.1)) are assembled using the usual routines of finite element analysis. The global matrix equation is given by:

$$\begin{bmatrix} \underline{0} & \underline{A}^{\mathrm{T}} \\ \underline{A} & -\underline{B} \end{bmatrix} \begin{bmatrix} \underline{u} \\ \underline{\tau} \end{bmatrix} = \begin{cases} \underline{f} \\ \underline{0} \end{bmatrix}$$
(4.3.2)

and the potential energy can be expressed as [33]:

$$\Pi_{M} = \frac{1}{2} \langle \underline{u}^{T} \ \underline{\tau}^{T} \rangle \begin{bmatrix} \underline{0} & \underline{A}^{T} \\ \underline{A} & -\underline{B} \end{bmatrix} \begin{cases} \underline{u} \\ \underline{\tau} \\ \underline{\tau} \end{cases} - \underline{u}^{T} \underline{f}$$
(4.3.3)

where matrices A and B are global matrices obtained by assembling the

element matrices \underline{A}^{e} 's and \underline{B}^{e} 's (see Equation (3.1.1)), <u>f</u> is the generalized load vector and <u>u</u> and <u>t</u> are the unknown nodal displacements and stresses. The potential energy release rate is obtained by differentiating Π_{M} with respect to the crack length a in the following manner:

$$\frac{\partial I_{M}}{\partial a} = \langle \frac{\partial \underline{u}}{\partial a} \quad \frac{\partial \underline{\tau}}{\partial a} \rangle \begin{bmatrix} \underline{0} & \underline{A}^{T} \\ \underline{A} & -\underline{B} \end{bmatrix} \left\{ \underline{\underline{u}} \\ \underline{\tau} \end{bmatrix} - \left\{ \underline{\underline{f}} \\ \underline{0} \\ \underline{0} \end{bmatrix} + \frac{1}{2} \langle \underline{u}^{T} & \underline{\tau}^{T} \rangle \frac{\partial}{\partial a} \begin{bmatrix} \underline{0} & \underline{A}^{T} \\ \underline{A} & -\underline{B} \end{bmatrix} \left\{ \underline{\underline{u}} \\ \underline{\tau} \\ \underline{\tau} \end{bmatrix} - \underline{\underline{u}}^{T} \frac{\partial \underline{f}}{\partial a}$$
(4.3.4)

However, the first term in Equation (4.3.4) is zero because Equation (4.3.2) has been satisfied exactly in the finite element analysis. Therefore the potential energy release rate becomes:

$$\frac{\partial \Pi_{\underline{M}}}{\partial a} = \frac{1}{2} \langle \underline{u}^{\mathrm{T}} \underline{\tau}^{\mathrm{T}} \rangle \frac{\partial}{\partial a} \begin{bmatrix} \underline{0} & \underline{A}^{\mathrm{T}} \\ \underline{A} & -\underline{B} \end{bmatrix} \begin{bmatrix} \underline{u} \\ \underline{\tau} \end{bmatrix} - \underline{u}^{\mathrm{T}} \frac{\partial f}{\partial a} . \qquad (4.3.5)$$

Furthermore, if the body is loaded by surface tractions applied on the boundary other than the crack surface, then the load vector \underline{f} is independent of the infinitesimal change in the crack length, i.e., $\partial \underline{f}/\partial a = 0$. Thus from Equations (4.3.1) and (4.3.5):

$$\frac{-\partial \Pi}{\partial a} = \frac{(\kappa + 1)}{8\mu} K_{I}^{2} = -\frac{1}{2} \langle \underline{u}^{T} \underline{\tau}^{T} \rangle \frac{\partial S}{\partial a} \left\{ \frac{\underline{u}}{\underline{\tau}} \right\}$$
(4.3.6)

where <u>S</u> is the master finite element matrix in Equation (4.3.2) and $\partial S/\partial a$ represents the change in the master finite element matrix per unit crack extension.

A crack extension can be accommodated using the mesh shown in Figure (4.4) by rigidly translating all nodes on and within the contour Γ_0 about the crack tip by a very small amount Δa in the x_1 -direction. All other nodes remain fixed. Thus the master finite element matrix, which depends on individual element geometries and elastic properties, remain unchanged in the region interior to Γ_0 and exterior to Γ_1 . Therefore the contributions to $\partial S/\partial a$ come from only the band of elements between the contours Γ_0 and Γ_1 , Figure (4.4) and:

$$\frac{\partial \Pi_{\underline{M}}}{\partial a} = \frac{1}{2} \langle \underline{u}^{\mathrm{T}} \ \underline{\tau}^{\mathrm{T}} \rangle \frac{\partial S}{\partial a} \left\{ \frac{\underline{u}}{\underline{\tau}} \right\} = \frac{1}{2} \langle \underline{u}^{\mathrm{T}} \ \tau^{\mathrm{T}} \rangle \sum_{\substack{\underline{\nu} \\ \underline{\iota} = 1}}^{\underline{E}^{\mathrm{O}}} \frac{\partial S_{\underline{\iota}}^{\mathrm{O}}}{\partial a} \left\{ \frac{\underline{u}}{\underline{\tau}} \right\}$$
(4.3.7)

where \underline{u} and $\underline{\tau}$ are the nodal variables for the nodes on Γ_0 and Γ_1 ; \underline{E}^0 is the number of elements between the contours Γ_0 and Γ_1 ; and \underline{S}_1^0 are the element matrices. The change in the element matrix can be calculated directly as:

$$\frac{\partial \underline{S}_{i}}{\partial a} = \frac{\partial \underline{S}_{i}}{\partial x_{1}} \quad \frac{\partial x_{1}}{\partial a}$$
(4.3.8)

where the nodal coordinates are thought of as functions of the crack length a. The derivatives $\partial x_1 / \partial a$ are then either unity or zero, depending on whether x_1 is the x_1 -coordinate of a node located on Γ_0 or 1_j not. Alternatively, $\partial \underline{S}_i / \partial a$ can be approximated by a forward finite difference scheme as:

$$\frac{\partial \underline{S}_{i}^{0}}{\partial a} \simeq \frac{\Delta \underline{S}_{i}^{0}}{\Delta a} = \frac{1}{\Delta a} \begin{bmatrix} \underline{S}_{i}^{0} & -\underline{S}_{i}^{0} \end{bmatrix}$$
(4.3.9)

where $\underline{S}_{i_{a}}^{0}$ is calculated for the initial crack length a; and $\underline{S}_{i_{a}+\Delta a}^{0}$ the same matrices when the x_{1} coordinates of all of the nodes lying on Γ_{0} have been incremented by an amount Δa . Thus from Equation (4.3.7), the potential energy release rate can be calculated as follows.

The master finite element matrix equations need only be solved once, i.e., for the initial crack length a. After obtaining this solution, the potential energy release rate can be calculated in a discrete manner by pre- and post-multiplying the differentiated matrices of Equation (4.3.9) with the solution vectors for the corresponding nodal variables and then summing these over all the elements between Γ_0 and Γ_1 , i.e.,

$$\frac{\Delta \Pi_{\underline{M}}}{\Delta a} = \frac{1}{2} \sum_{\substack{i=1 \\ i=1}}^{E^{0}} \frac{\langle \underline{u}_{i} \ \underline{\tau}_{i} \rangle^{T} \ [\underline{S}_{i}^{0} \ \underline{s}_{i} - \underline{S}_{i}^{0}]}{\Delta a} \left\{ \begin{array}{c} \underline{u}_{i} \\ \underline{u}_{i} \\ \underline{\tau}_{i} \\ \underline{\tau}_{i} \\ \underline{\tau}_{i} \end{array} \right\}$$
(4.3.10)

where \underline{u}_{i}^{e} and $\underline{\tau}_{i}^{e}$ are the nodal displacement and stress degrees of freedom for the nodes corresponding to the ith element within the contour Γ_{0} and Γ_{1} . After computing $\Delta \Pi_{M} / \Delta a$ using Equation (4.3.10), the stress intensity factor K_I can be calculated as:

$$K_{I} = \sqrt{\frac{8\mu}{(\kappa+1)} \left[\frac{-\Delta \Pi}{\Delta a}\right]}$$

(4.3.11)

It should be pointed out that the contour Γ_0 to be translated has to lie inside the body and enclose the crack tip. However, it can be shrunk to a single node at the crack tip so that the summation in Equation (4.3.10) extends over the elements adjacent to the crack tip only.

A typical finite element mesh, when the direct derivative method is used in conjunction with the mixed, mixed transitional and isoparametric displacement finite elements, is shown in Figure (4.5a). The change in the finite element mesh is illustrated in Figure (4.5b). The crack extension is accomodated by rigidly translating all nodes on and within a contour Γ_{Ω} about the crack tip by a small amount Δa as explained previously. However, it should be noted that the contours Γ_0 and Γ_1 are kept within the region where only mixed finite elements are used. The change in potential energy is again given by Equation (4.3.7) and can be calculated as described earlier in this section. A subroutine (DENERG) has been written to perform the calculations described above for the direct derivative method of evaluating the potential energy release rate. For the purpose of computer programming, it is convenient to classify the mixed finite elements within the contours Γ_0 and Γ_1 into two categories; mixed elements with two nodes on contour Γ_{\bigcap} are class ified as element type I and elements with only one node on contour Γ_{Ω} are classified as element type II. Derivations of the changes in element matrices in Equation (4.3.9), i.e. $S_{i}^{U} - S_{i}^{U}$, $i_{a} + \Delta a$ i

are presented in Appendix D for both types of mixed elements. The subroutine DENERG is included in the program listing in Appendix E.

4.4 Numerical Examples

Applications of the energy approach described in the previous section are presented in this section. The stress intensity factor K_I for plates with symmetric edge cracks and a central crack under inplane loads are computed and compared with results available in the literature. Three different problems are analyzed and presented below.

4.4.1 Isotropic Rectangular Plates with Symmetric Edge Cracks and a Central Crack

Two plane strain problems, isotropic rectangular plates one with symmetric edge cracks and the other with a central crack are analyzed. The details of the two plates are shown in Figure (4.6). Because of symmetry about the x_1 and x_2 axes, only a quarter of the plate is analyzed in each case and this is shown in Figure (4.6) as shaded areas along with the respective boundary conditions. The finite element mesh used in both problems is shown in Figure (4.7). Mixed finite elements are used in the near crack tip region and only four eight-node isoparametric displacement finite elements are used in the region away from the crack tip as indicated. Two four-node and four three-node mixed transitional (only for condensed version) elements are used to connect the mixed and isoparametric finite elements. It should be noted that the configuration of the four-node mixed transitional finite elements (uncondensed) conforms with the requirements discussed in Section 3.3. Also indicated in Figure (4.7) are the ratios of the radii r_{Γ_0} to the crack length a (0.0, 0.1, 0.2). These are used to calculate

the potential energy release rates for a crack extension of Δa in the finite element analyses as described in the previous section. Although it is sufficient to solve each problem once for the initial crack length a, the finite element analysis is performed every time here when the contour Γ_0 (with $\frac{r_{\Gamma 0}}{a} = 0.0, 0.1, 0.2$) is translated by the amount $\Delta a = 5 \times 10^{-6} a$ in the direction of the crack. The analyses are carried out first with uncondensed transitional finite elements (which require no three-node transitional elements) and then repeated with condensed transitional finite elements.

The potential energy release rate, in the discretized form, can be expressed as

$$G_{I} = \frac{-\Delta \Pi}{\Delta a}$$

(4.4.1.1)

and $\Delta \Pi = \Pi - \Pi r_{\Gamma_0} - \Pi$

where Π_0 is the potential energy associated with the initial crack and $\Pi_{\rm r}$ when the crack tip has been moved by an amount Δa . The crack ${}^r\Gamma_0$

intensity factor is then calculated by using Equation (4.3.11) which for plane strain problems reduces to the following:

$$K_{I} = \sqrt{\frac{E}{(1 - v^{2})}} \left(\frac{-\Delta \Pi}{\Delta a}\right)^{2} \cdot (4.4.1.2)$$

The results obtained with the uncondensed transitional elements are very nearly the same as those obtained with the condensed transitional elements. Only the uncondensed elements results will be presented here. The numerical results for the plate with symmetric edge cracks are given in Table (4.1) and those for the plate with a central crack in Table (4.2). The crack stress intensity factor for the former is compared with nearly exact K_I obtained by Bowie [35] and that for the plate with a central crack with K_I by Bowie and Neal [36]. In both cases, very satisfactory results are obtained (using a reasonably crude grid), with the smallest percentage errors obtained for the contour Γ_0 with radius $r_{\Gamma_0} = 0.1$ a. The errors in K_I for the plate with symmetric edge cracks and that with a central edge crack are 3.71% and 5.74%,

respectively. In general, the accuracy of the value of K_{I} calculated will depend on the contour Γ_{0} used to calculate the potential energy release rate and personal judgement and experience have to be relied upon to determine the best values.

$\frac{r_{\Gamma_0}}{a}$	$-\frac{EI}{\tau_0^2hbt}$	$-\frac{10^{6}\text{EAII}}{\tau_{0}^{2}\text{hbt}}$	$-\frac{aE \Delta \Pi}{\tau_0^2 hbt \Delta a}$	$\frac{K_{I}}{\tau_{0}/a}$	Error %
0.0 0.1 0.2	1.05748361 1.05748394 1.05748389	1.281555 1.609364 1.557822	0.256311 0.321873 0.311564	1.83845 2.05939 2.02614	14.04 3.71 5.27
Initial Crack	1.05748233	EXACT K ₁ ; ref, [35] 2.13884			

TABLE 4.1: Stress intensity factors from the finite element analysis of the rectangular plate with symmetric edge cracks, Figure 4.6(a). (Mixed, Mixed Transitional and 8-node isoparametric finite elements.)

$\frac{r_0}{a}$	$-\frac{EI}{\tau_0^2hbt}$	$-\frac{10^{6}\text{EAI}}{\tau_{0}^{2}\text{hbt}}$	$-\frac{aE \Delta \Pi}{\tau_0^2 hbt \Delta a}$		Error %		
0.0 0.1 0.2	1.0456331 1.0456335 1.0456334	1.302753 1.548342 1.614274	0.260551 0.329668 0.322855	1.85286 2.08418 2.06253	16.20 5.74 6.72		
Initial Crack	1.0456318	EXACT K _I ; ref, [36] 2.10922					

TABLE 4.2: Stress intensity factors from the finite element analysis of the rectangular plate with a central crack, Figure 4.6(b). (Mixed, Mixed Transitional and 8-node isoparametric finite elements.)

The sensitivity of the calculated values of the energy release rate G_{I} to the magnitude of Δa used is also studied. It is found that the calculated G_{T} values are relatively insensitive to the magnitude of
Δa used for these problems. In general, of course, the size of Δa will affect accuracy of G_{I} . Thus the values of $\Delta a = 5 \times 10^{-6} \times a$ used in the present analyses is very reasonable.

The same problems have been analyzed by Mirza and Olson [33] using the mixed finite elements alone and the finite element grid used is shown in Figure (4.8). It was found that the results with the least percentage error were also obtained for the contour Γ_{Ω} with radius $r_{\Gamma_{0}} = 0.1$ a. Errors in the stress intensity factors K_{I} obtained for the plate with symmetric edge cracks and that with a central crack were 1.97% and 0.89%, respectively. A comparison of the results in reference [33] with that from the present analysis is given in Table (4.3). It is observed that the stress intensity factors $\boldsymbol{K}_{_{\boldsymbol{T}}}$ from the present analysis are not as accurate because of the cruder finite element grids used. However, these are still very reasonably accurate. The computer storage requirement for the global matrix in the present analyses is reduced by more than 10 times which is a very significant improvement. Also, the number of elements and degrees of freedom required are reduced. The calculated values of K_{τ} from the present analysis can be improved by refining the finite element grid in the crack tip region. The storage requirement is still expected to be much less than that reported in reference [33]. Plots of normal stresses on the crack face OA (Figure

(4.6)) are shown in Figure (4.9). The values of the peak stress obtained at the crack tip are about 5.2 times τ_0 .

- 91 -

Author(s)	Number of Elements	Degrees of Freedom	Storage Req'd for Global Matrix	Accuracy of K _I Error %	Type of Element
Mirza [8]	174	505	111,100	1.97	Mixed triangles*, (Symmetric edge cracks).
Mirza [8]	174	505	111,100	0.89	Mixed triangles*, (Central crack).
Present	52	190	10,807	3.71	Mixed triangles*, transitional elements, 8-node isoparametric finite elements, (Symmetric edge cracks).
Present	52	190	10,807	5.74	Mixed triangles*, transitional elements, 8-node isoparametric finite elements, (Central crack).

TABLE 4.3: Comparison of stress intensity factors from the present analyses and reference [33]. * Plane strain mixed finite elements; displacement and stress linear.

Finally, it should be emphasized that the four-node mixed transitional finite element configuration (shape and orientation) used satisfies the requirement in Section (3.3) regarding the orientation problems. In fact, in this work, the stress fluctuations due to orientation problems of the four-node mixed transitional element were first observed when the problem of a rectangular plate with symmetric edge cracks was analysed, Figure (4.10). When uncondensed transitional elements, which fail to comply with the requirements in Section (3.3) were used, the calculated stress intensity factor K_I indicated an error of more than 50%. Thus the present analysis also serves to confirm the orientation problems discussed previously.

4.4.2 Orthotropic Square Plate with a Central Crack

A square orthotropic plate $(2b \times 2c)$ with a central crack of length 2a as shown in Figure (4.11) is analysed for the plane stress state. The lines of material symmetry coincide with the x and y axes. Again, due to symmetry, only one quarter of the plate is analysed and the finite element grid used is shown in Figure (4.12). Note that due to the geometry of the problem, it is found convenient to use only the mixed finite elements. Values of K_I are calculated for different ratios of the principal modulii of elasticity, E_X/E_y . The results are then compared with the numerical results obtained by Bowie and Freese [37] through an extension of the modified mapping-collocation technique. The analytical solution given in [37] is characterized by two parameters, n_1 and n_2 , which are related to the material properties by the following:

$$n_1 n_2 = (E_x / E_y)^{1/2}$$
(4.4.2.1)

$$n_1 + n_2 = \sqrt{2} \left\{ \left(E_x / E_y \right)^{1/2} + E_x / 2\mu_{xy} - \nu_{yx} \right\}^{1/2}.$$
 (4.4.2.2)

In determining the stress intensity factor K_{T} , the parameter n_{1} is kept

- 93 -

as unity and n_2^2 (= E_x/E_y) is left as the parameter to be varied. For the present finite element analysis, however, all values of the material properties are needed. The value of the shear modulus of elasticity is taken to be unity in all of the analyses and for different values of n_2^2 , i.e. E_x/E_y , the principal Modulii (E_x and E_y) and the Poisson's ratios are chosen so that Equation (4.4.2.2) is satisifed. Table (4.4) summarizes the material properties used. The potential energy release rate G_I is calculated using the contour Γ_0 as indicated in Figure (4.12). To compare with the results in [37], G_I is converted to the stress intensity factor K_I . In the case of a crack propagating in its own plane in an orthotropic body, G_T and K_T are related by [38]:

$$G_{I} = \pi K_{I}^{2} \left(\frac{1}{2E_{x}E_{y}}\right)^{1/2} \left\{ \left(\frac{E_{x}}{E_{y}}\right)^{1/2} + \frac{2\left(\frac{y_{x}}{E_{x}}\right) + \frac{1}{\mu_{xy}}}{\frac{2}{E_{x}}} \right\}^{1/2} . \qquad (4.4.2.3)$$

A comparison of the results from the present analysis and those of Bowie and Freese is given in Table (4.5). It is observed that an excellent agreement is obtained and differences in K_I/K_{∞} are less than 1% except or $E_x/E_y = 4.5$ where the difference is 1.16%. In order to test the sensitivity of the finite element solutions to different values of material properties while keeping n_1 and n_2 constant, a different set of elastic properties were used for the case $n_2^2 = 0.7$. It was found that the values of K_I calculated are almost the same as that given in Table (4.5). This agrees with Bowie's results that K_I depends only on the two parameter n_1 and n_2 given by Equations (4.4.2.1) and (4.4.2.2).

$n_2^2 = E_x/E_y$	E x	$E_{y} = E_{x}/n_{2}^{2}$	μ xy	v yx	$v_{xy} = \frac{v_{yx}}{E_x/E_y}$
0.3	1.50	5.00	1.0	0.1	0.33333
0.7	2.16667	3.09523	1.0	0.23333	0.33333
1.0	2.16667	2.66667	1.0	0.33333	0.33333
1.5	3.16667	2.11111	1.0	0.33333	0.22222
4.5	6.16667	1.37037	1.0	0.33333	0.074074

TABLE 4.4: Material Properties used for determining the stress intensity factor K_I for a centrally cracked orthotropic square plate.

$n_2^2 = \frac{E_x}{E_y}$	K _I /K _∞ Bowie & Freese	K _I /K _∞ Present Analysis	Accuracy(% Error)
0.3	1.37	1.363	0.51
0.7	1.26	1.250	0.79
1.0	1.22	1.213	0.57
1.5	1.18	1.181	0.08
4.5	1.12	1.133	1.16
$K_{\infty} = \sqrt{2.4}$			

TABLE 4.5: Comparison of K_{I}/K_{∞} from the present finite element analysis and results by Bowie and Freese [37].

FIG. 4.1: THREE DIFFERENT MODES OF FRACTURE.

FIG. 4.2: STRESS COMPONENTS NEAR THE CRACK TIP IN CARTESIAN RECTANGULAR COORDINATES.

FIG. 4.3: TYPICAL CONTOUR FOR EVALUATION OF J-INTEGRAL.

FIG. 4.4: ACCOMODATION OF CRACK EXTENSION Δ a by advancing nodes on the path $\Gamma_{\rm o}$.

FIG. 4.5 a : TYPICAL FINITE ELEMENT MESH WITH MIXED, MIXED TRAN-SITIONAL AND ISOPARAMENTRIC DISPLACEMENT TYPE FINITE ELEMENTS.

FIG. 4.5 b: ACCOMODATION OF CRACK EXTENSION Δa by Advancing nodes on path Γ_0 in Figure 4.5 a.

- 101 -

FIG. 4.6: RECTANGULAR PLATES WITH CRACKS USED FOR DETER-MINING THE CRACK INTENSITY FACTOR K. THE QUARTER PLATE CONSIDERED FOR THE FINITE ELEMENT ANALYSIS ALONG WITH BOUNDARY CONDITIONS SHOWN AS SHADED AREA.

FIG. 4.7: FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK INTENSITY FACTOR K, USED FOR BOTH SYMMETRIC EDGE CRACKS AND CENTRAL CRACKS.

FIG. 4.8: FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK INTENSITY FACTOR KI. USED FOR BOTH SYMMETRIC EDGE AND CENTRAL CRACKS, REFERENCE [33].

b) CENTRAL CRACK

FIG, 4.9: NORMAL STRESS DISTRIBUTION ALONG THE EDGE OA OF THE RECTANGULAR PLATE WITH CRACKS-FIGURE 4.6.

FIG. 4.10:

FLUCTUATIONS OF NORMAL STRESS ALONG THE EDGE OA OF THE RECTANGULAR PLATE WITH SYMMETRIC EDGE CRACKS-FIGURE 4.6ª.

FIG. 4.11:

ORTHOTROPIC SQUARE PLATE WITH A CENTRAL CRACK USED FOR DETERMINING THE STRESS INTENSITY FACTOR ${\rm K}_{\rm I}$.

FIG. 4.12:

FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK INTENSITY FACTOR K, FOR THE SQUARE PLATE WITH A CENTRAL CRACK-FIGURE 4.11.

CHAPTER 5

CRACK EXTENSION UNDER COMBINED MODES

A brief theory and applications of linear elastic fracture mechanics have been presented in the previous chapter. For a cracked body, loaded symmetrically about the crack plane (Mode I type), the crack will extend in a plane coincident with the original crack and it is sufficient to consider only the Mode I stress intensity factor ${\rm K}_{_{\rm T}}$ or the corresponding energy release rate G_{T} . For a cracked body under general loading (planar), both K_{II} and K_{II} in Equation (4.1.1) exist and combined mode (Mode I and Mode II) situation results. The initial direction of crack extension will be different from that of the original crack plane and is referred to as crack branching or non-coplanar crack growth. In general, both $K_{_{\rm T}}$ and $K_{_{\rm T\,T}}$ have to be calculated and fracture criteria have to be found in order to predict the initial direction of crack extension and the onset of crack growth under such combined modes. The determination of the stress intensity factors K_{T} and K_{TT} by the finite element method using the energy release rate will be presented. Also, currently available fracture criteria for fracture under combined modes will be discussed and used to predict the direction of crack extension.

5.1 Finite Element Analysis for Calculation of Stress Intensity Factors K and K Under Combined Modes

The determination of K_{I} for a cracked body under symmetrical,

Mode I, loading has been discussed in Chapter 4. To analyze combined mode fracture problems, the stress intensity factors K_{I} and K_{II} have to be determined. The extrapolation techniques and special finite elements with proper stress singularity embedded and reported in the previous chapters, could be used for such calculations. However, such procedures require special and much more difficult treatment of the region surrounding the crack tip and will not be used in this work. The energy approach for calculating stress intensity factors does not require special grid refinement in the crack tip region and has been shown to result in large reductions in the computer storage required. It is the purpose here to investigate such an energy approach. In particular, the direct derivative technique presented previously for the calculation of K_{I} for Mode I crack problems will be extended for the calculation of K_{I} and K_{II} for combined mode crack problems in linear elastic fracture mechanics.

5.1.1 Calculation of K_I and K_{II} using Energy Approach

The path independent J-integral introduced in Chapter 4 is equivalent to the potential energy release rate G calculated by assuming that the crack extends in a plane coincident with the original crack. For a cracked body under symmetric (Mode I) loading, this is indeed the actual direction of crack propagation and there is no contribution to the energy release rate due to Mode II ($K_{TT} = 0$). Therefore

 $J = G = G_{I} = \frac{(\kappa + 1)}{8\mu} K_{I}^{2}$

(5.1.1.1)

The direct derivative technique can be used to calculate G_{I} as indicated in the previous chapter and K_{I} can be determined using Equation (5.1.1.1).

In combined mode crack problems (planar), crack extension will not be coplanar with the original crack plane. However, the potential energy release rate for an imaginary or a virtual crack extension assuming coplanar crack growth, i.e. J, can always be calculated using the direct derivative technique. In such cases, both K_I and K_{II} exist and therefore the energy release rate will have contributions from both Modes I and II. Equation (5.1.1.1) then takes the following form [27]:

$$J = G = G_{I} + G_{II} = \frac{(\kappa + 1)}{8\mu} K_{I}^{2} + \frac{(\kappa + 1)}{8\mu} K_{II}^{2}$$
(5.1.1.2)

where G_{I} and G_{II} are the energy release rates due to Modes I and II, respectively. Computation of G can be performed using the direct derivative technique in the same manner as presented in the previous chapter, i.e. $G = -\frac{1}{2} \langle \widetilde{\underline{u}}^{T} \ \widetilde{\underline{\tau}} \rangle^{T} \frac{\Delta S}{\Delta a} \{ \frac{\widetilde{\underline{u}}}{\widetilde{\underline{\tau}}} \}$. However, one cannot distinguish between contributions due to Modes I and II. Thus the energy release rate G has to be separated into the two components G_{I} and G_{II} in order to determine the stress intensity factors K_{I} and K_{II} .

The method of separating G into G_{I} and G_{II} is due to Ishikawa et al. [39, 40]. The cracked body is first analyzed using the finite element method. The displacement and stress solutions $\underline{\tilde{u}}$, $\underline{\tilde{\tau}}$ near the crack

tip are then separated into components $\underline{\tilde{u}}^{I}$, $\underline{\tilde{\tau}}^{I}$ and $\underline{\tilde{u}}^{II}$, $\underline{\tilde{\tau}}^{II}$ for modes I and II, respectively. Displacements and stresses of mode I and mode II are symmetric and skewsymmetric (See Equation (4.1.1)), respectively, with respect to the X_1 axis shown in Figure (5.1). The displacements $\underline{\tilde{u}}$ at point $P(X_1, X_2)$ can be separated in such a form that $\underline{\tilde{u}}$ is the sum of displacements $\underline{\tilde{u}}^{I}$ due to mode I and $\underline{\tilde{u}}^{II}$ due to mode II which have been expressed in terms of the displacements $\underline{\tilde{u}}$ at point $P(X_1, X_2)$ and the displacements $\underline{\tilde{u}}^{I}$ at point P', with coordinates $(X_1, -X_2)$, in the following equations:

$$\underline{\widetilde{u}} = \underline{\widetilde{u}}^{\mathrm{I}} + \underline{\widetilde{u}}^{\mathrm{II}}$$
(5.1.3)

$$\begin{cases} \widetilde{\mathbf{u}}_{1}^{\mathbf{I}} \\ \widetilde{\mathbf{u}}_{2}^{\mathbf{I}} \\ \widetilde{\mathbf{u}}_{2}^{\mathbf{I}} \end{cases} = \frac{1}{2} \begin{cases} \widetilde{\mathbf{u}}_{1} + \widetilde{\mathbf{u}}_{1}^{'} \\ \widetilde{\mathbf{u}}_{2} + \widetilde{\mathbf{u}}_{2}^{'} \\ \end{array} \qquad \text{and} \qquad \begin{cases} \widetilde{\mathbf{u}}_{1}^{\mathbf{I}\mathbf{I}} \\ \widetilde{\mathbf{u}}_{2}^{\mathbf{I}\mathbf{I}} \\ \widetilde{\mathbf{u}}_{2}^{'} \\ \end{cases} = \frac{1}{2} \begin{cases} \widetilde{\mathbf{u}}_{1} - \widetilde{\mathbf{u}}_{1}^{'} \\ \widetilde{\mathbf{u}}_{2} - \widetilde{\mathbf{u}}_{2}^{'} \\ \end{cases} \qquad (5.1.4)$$

where \tilde{u}'_{i} are the displacements of point P', and P and P' always form a pair of symmetric points about the X_{1} axis. Similarly, for stresses $\underline{\tilde{\tau}}$, we have the following:

$$\frac{\tilde{\tau} = \tilde{\tau}^{I} + \tilde{\tau}^{II}}{\left\{ \begin{array}{c} \tilde{\tau}_{11} \\ \tilde{\tau}_{22} \\ \tilde{\tau}_{12} \end{array} \right\}} = \frac{1}{2} \left\{ \begin{array}{c} \tilde{\tau}_{11} + \tilde{\tau}_{11} \\ \tilde{\tau}_{22} + \tilde{\tau}_{22} \\ \tilde{\tau}_{12} + \tilde{\tau}_{12} \end{array} \right\} \text{ and } \left\{ \begin{array}{c} \tilde{\tau}_{II} \\ \tilde{\tau}_{II} \\ \tilde{\tau}_{22} \\ \tilde{\tau}_{II} \\ \tilde{\tau}_{$$

Therefore by using the displacement and stress components, $\underline{\tilde{u}}^{I}$, $\underline{\tilde{\tau}}^{I}$ and $\underline{\tilde{u}}^{II}$, $\underline{\tilde{\tau}}^{II}$, and the direct derivative technique discussed earlier, the energy release rates G_{I} and G_{II} for a combined mode, planar crack problem are given by [39]

$$G_{I} = -\frac{1}{2} \langle \widetilde{\underline{u}}^{I} \ \widetilde{\underline{\tau}}^{I} \rangle \frac{\Delta S}{\Delta a} \quad \left\{ \begin{array}{c} \widetilde{\underline{u}}^{I} \\ \widetilde{\underline{\tau}}^{I} \\ \widetilde{\underline{\tau}}^{I} \end{array} \right\}$$
(5.1.1.7)
$$G_{II} = -\frac{1}{2} \langle \widetilde{\underline{u}}^{II} \ \widetilde{\underline{\tau}}^{II} \rangle \frac{\Delta S}{\Delta a} \quad \left\{ \begin{array}{c} \widetilde{\underline{u}}^{II} \\ \widetilde{\underline{\tau}}^{II} \\ \widetilde{\underline{\tau}}^{II} \end{array} \right\}.$$
(5.1.1.8)

It should be emphasized again that the energy release rates G_{II} and G_{II} are calculated by assuming that the crack extends in a plane coincident with the original crack, which is not necessarily the actual direction of the crack growth for a mixed mode type crack. With G_{I} and G_{II} given by Equations (5.1.1.7) and (5.1.1.8), the stress intensity factors K_{T} and K_{TI} can be calculated using the following equations.

$$G_{I} = \frac{(\kappa + 1)}{8\mu} K_{I}^{2}, \qquad G_{II} = \frac{(\kappa + 1)}{8\mu} K_{II}^{2}$$
 (5.1.1.9)

Thus using Equations (5.1.1.3) to (5.1.1.9) together with a solution for displacements and stresses from a finite element analysis, K_I and K_{II} of a combined mode crack can be determined through a virtual crack extension in the direction of the original crack. This has been implemented in the finite element program. Since only a virtual crack extension is

needed, $\Delta \underline{S}/\Delta a$ is calculated only once. Also, in calculating G_{I} and G_{II} , only the element matrices for the mixed elements within the contours Γ_{0} and Γ_{1} are altered (Figure (4.4)). Hence the separations of $\underline{\tilde{u}}$ and $\underline{\tilde{\tau}}$ for points P and P' need only be performed for those nodes located on contours Γ_{0} and Γ_{1} , respectively. This numerical scheme has been implemented in the subroutine 'DENERG' and will be illustrated through examples subsequently. The above scheme will hereafter be referred to as Ishikawa's scheme.

Another energy approach that requires calculation of the potential energy release rates for two virtual crack extensions in two mutually orthogonal directions has been investigated by Hellen et al., [41, 42] and Vanderglas and Pick [43]. The path independent J-integral was generalized to be a vector J_K by Knowles and Sternberg [44] and for two-dimensional problems the components are given by:

$$J_{1} = \int \left\{ Wn_{1} - \overline{T} \frac{\partial u}{\partial X_{1}} \right\} dS \qquad (5.1.1.10)$$

$$J_2 = \int \left\{ Wn_2 - \overline{T} \frac{\partial \overline{u}}{\partial X_2} \right\} dS$$
 (5.1.1.11)

where n_1 and n_2 are the direction cosines of the unit outward normal n, and W, \overline{n} , \overline{T} and \overline{u} have been defined previously. It has also been mentioned in reference [42] that J_K gives the energy release rates if the crack were to extend in the X_K directions. Thus J_1 is the energy release rate calculated by assuming that the crack extends along axes x_1 and J_2 is the energy release rate calculated assuming that the crack extends along axes X_2 , i.e. perpendicular to the direction of the crack, Figure (5.1). It is important to note that a continuous variation of stress field, as crack extension approaches zero, is assumed even when the crack does not extend in its own plane. Apparently this is not strictly correct; Hussain et al. [45] have calculated the stress field around the crack with a branched tip and found that by letting the length of the branch go to zero, the stress field near the crack tip in the limit does not coincide with the one for the unbranched crack. Thus there exist a discontinuity in the stress field when the crack does not extend in a coplanar manner. This will be commented upon later.

Using the assumption of continuity, Hellen and Blackburn [42] have shown that in two-dimensional elasticity problems with combined mode loadings, the stress intensity factors are related to J_1 and J_2 by:

$$J_{1} = \frac{(1 + \nu)(1 + \kappa)}{4E} (K_{I}^{2} + K_{II}^{2})$$
(5.1.1.12)

$$J_{2} = \frac{-(1+\nu)(1+\kappa)}{2E} K_{I} + K_{II}$$
(5.1.1.13)

where v is the Poisson's Ratio, E is the modulus of elasticity and κ has been defined previously. Also, the energy release rate of crack extension at any angle θ is given as

$$G(\theta) = J_1 \cos\theta + J_2 \sin\theta$$

(5.1.1.14)

From Equation (5.1.1.14), the maximum energy release rate occurs at

$$\theta = \arctan\left(\frac{J_2}{J_1}\right) = \arctan\left(\frac{-2K_IK_{II}}{K_I^2 + K_{II}^2}\right)$$
(5.1.1.15)

and has the value

$$G_{\max} = (J_1^2 + J_2^2)^{1/2} = \frac{(1 + \nu)(1 + \kappa)}{4E} (K_1^4 + 6K_1K_{11} + K_{11}^4)^{1/2} (5.1.1.16)$$

The direct derivative technique can again be used to calculate:

$$J_{1} = -\frac{\partial \Pi}{\partial a} = 0 \cong -\frac{1}{2} \langle \underline{\widetilde{u}}^{T} \ \underline{\widetilde{\tau}}^{T} \rangle \frac{\Delta S}{\Delta a} = 0 \begin{cases} \underline{\widetilde{u}} \\ \underline{\widetilde{\tau}} \end{cases}$$
(5.1.1.17)

$$J_{2} = -\frac{\partial \Pi}{\partial a} \xrightarrow{\theta = \pi/2} \cong -\frac{1}{2} \langle \underline{\widetilde{u}}^{T} \ \underline{\widetilde{\tau}}^{T} \rangle \frac{\Delta S}{\Delta a} \xrightarrow{\theta = \pi/2} \left\{ \frac{\underline{\widetilde{u}}}{\underline{\widetilde{\tau}}} \right\}$$
(5.1.1.18)

In Equations (5.1.1.17) and (5.1.1.18), $\Delta S / \Delta a_{\theta=0}$ and $\Delta S / \Delta a_{\theta=\pi/2}$ are the changes in the global matrix when the crack has extended by a small amount in the direction of the crack and perpendicular to the crack, respectively. Thus, $\Delta S / \Delta a$ has to be calculated twice.

As mentioned above this approach assumes continuity of the stress field and all derivations (e.g. Equations (5.1.1.2) and (5.1.1.3)) are based on the stress and displacement fields of the cracked body before crack branching occurs. Since in the direct derivative technique of calculating J_1 and J_2 (Equations (5.1.1.17) and (5.1.1.18)), the finite element solution $\underline{\tilde{u}}$ and $\underline{\tilde{r}}$ of the cracked body without branching is used, the stress continuity assumption is maintained. Therefore, J_1 and J_2 can be evaluated using the direct derivative method as indicated in Equations (5.1.1.17) and (5.1.1.18) and the stress intensity factors K_I and K_{II} can then be calculated using Equations (5.1.1.12) and (5.1.1.13). Moreover, if the direct derivative method is used to calculate the energy release rate for different angles θ of crack extension, the variation of $G(\theta)$ versus θ will be expected to follow a sinusoidal variation as indicated in Equation (5.1.1.14). However, because of the assumed continuity of stress field, the calculated values of J_K and $G(\theta)$ may not be the correct values of energy release rates for the corresponding angle of crack extension θ .

In the finite element analysis, the virtual crack extension in the direction of the crack, i.e. $\theta = 0.0$, can be accommodated as discussed previously in Chapter 4. The modelling of the virtual crack extension in any other direction, i.e. $\theta \neq 0.0$, presents some difficulties. The finite element grid around the crack tip is shown in Figure (5.2.a). If the crack tip is used as Γ_0 , i.e. $r_{\Gamma_0} = 0.0$, and the vir-

tual crack extension for non-zero θ is accommodated in the same manner as presented previously for $\theta = 0.0$, the finite element grid after the virtual crack extension will be that indicated in Figure (5.2.b). Thus it can be observed that the deflected crack is not modelled exactly by just moving the crack tip by a small amount Δa in the direction under investigation. If the deflected crack tip is to be modelled exactly, two new elements will have to be introduced as shown in Figure (5.2.c)and the stiffness of such elements should be added to $\Delta S/\Delta a$ when calculating G(θ). However, this would introduce uncertainty in the finite element grid error regarding the differences between that of Figure (5.2.a) and (5.2.c), thus affecting the strain energy change associated with the change in crack length Δa . It is found that although the geometry of the original crack plus the virtual extension will not be modelled exactly, accomodation of the virtual crack extension as shown in Figure (5.2.b) usually gives better results for K_I and K_{II} than those obtained by using Figure (5.2.c) when using Hellen et al.'s [41] approach. The same problem with modelling has been pointed out by Hellen [42] and it is anticipated that the modelling shown in Figure (5.2.b) has been used in his works.

The modelling of a virtual crack extension in any arbitrary direction using the crack tip as contour Γ_0 can be performed using the Subroutine DENERG written previously for Mode I crack problems. Hence J_1 and J_2 can be calculated easily and K_I and K_{II} determined. However, it was observed in previous calculations of K_I in Chapter 4 that the most accurate results are usually obtained by using the first ring of nodes around the crack tip as Γ_0 to be moved and using the crack tip as Γ_0 will give results of lesser accuracy. A closer examination of Figure (5.2.b) shows that it is difficult to extend this method of modelling to the case when the crack tip is not used as Γ_0 . Thus, in order to obtain accuracy comparable to that when the first ring of nodes is used as Γ_0 , the finite element grid around the crack tip has to be more refined or special elements as in reference [43] have to be used. On the other hand, when Ishikawa's scheme is used, only a virtual crack extension in the direction of the crack, i.e. $\theta = 0.0$, is needed and the first ring of nodes can readily be used as Γ_0 with no difficulties. In view of this advantage, Ishikawa's scheme will be used to calculate K_I and K_{II} and, together with the fracture criteria to be presented later, to predict the direction of a crack extension.

Finally, it should be mentioned that a contour integral computation of combined mode stress intensity factors has been introduced by Stern, Becker and Dunham [46] and Wang, Yan and Corten [47]. The approach is based on Betti's reciprocal work theorem for plane elastic states and requires no special treatment of the finite element grid around the crack tip. However a path independent integral involving the use of an auxiliary elastic state of stresses and displacements has to be computed and it is found that the use of the energy release rate method utilizing Ishikawa's scheme is much simpler to implement in the present work.

5.1.2 Numerical Examples

To illustrate calculations of K and K for combined mode crack problems using the energy release rate concept via Ishikawa's scheme, two combined mode, plane stress problems are analyzed.

The first problem is a deep cantilevered beam subjected to end shear shown in Figure (5.3). The original crack length is half the

- 118 -

width of the plate and the modulus of elasticity and the Poisson's ratio are 1.0 and 0.25, respectively. The finite element grid is shown in Figure (5.4). Solutions for K_I and K_{II} from the finite element analyses are given in Table (5.1) and are compared with those obtained by Stern, Becker and Dunham [46] using contour integral computations for different contours and boundary collocation procedures. The results from a fairly coarse grid used are quite satisfactory and the values of K_I and K_{II} calculated using the first ring of nodes about the crack tip as Γ_0 , i.e. $\Gamma_{\Gamma_0} = 0.1a$, show deviations of only 0.62% and 3.74% from the collocation

method results. Thus very accurate results can be expected using the present energy release rate scheme and the mixed finite elements.

	ĸ	ĸ
Contour Integral Computations [46]	34.25	4.79
	33.20	4.50
	33.42	4.68
	33.52	4.76
Collocation [46]	34.0	4.55
Present Analysis $r = 0.0$	30.38	4.06
$r_{0} = 0.1a$	33.79	4.72

TABLE 5.1: Results for K and K for a deep cantilevered beam subjected to end shear, Figure 5.3.

The second problem analyzed is shown in Figure (5.5). The geometry is essentially the same as that of the first problem analyzed

- 119 -

except that the plate is subjected to both end shear and tension. The same finite element grid shown in Figure (5.4) is used and results using Ishikawa's approach are given in Table (5.2) for $r_{r_o} = 0.0$ and r_{r_o} $r_{\Gamma_{\alpha}} = 0.1a$. The stress intensity factors K_{I} and K_{II} calculated using the Hellen and Blackburn approach, i.e. Equations (5.1.1.12) and (5.1.1.13), are also given for comparison. As mentioned previously the stress intensity factors can only be calculated using the crack tip as Γ_0 , ie. $r_{\Gamma_0} = 0.0$. The stress intensity factors K_I and K_{II} are in good agreement with those calculated using Ishikawa's approach for r = 0.0and the deviations are 4.58% and 4.56%, respectively. Also the energy release rates for different assumed angles of virtual crack extension are calculated using the model of Figure (5.2.b) and tabulated in Table (5.3). Using the values of energy release rates for $\theta = 0^{\circ}$ and 90° as J_1 and J_2 respectively, values of energy release rates for different angles of propagation are also calculated using Equation (5.1.1.14), and plotted in Figure (5.6). It can be observed that the finite element solutions are in excellent agreement with those calculated using Equation (5.1.1.14) as expected. It should be noted that these values of energy release rates are not strictly correct due to the continuity assumption mentioned earlier. However, for small angles of crack extensions, the error involved is very small.

	GI	G _{II}	ĸ	K _{II}
Ishikawa's Approach $r_{\Gamma_0} = 0.0$	1050.097	14.243	34.405	3.774
r _{r0} = 0.1a	1290.345	19.825	35.921	4.452
	JI	J2	к ₁	к ₂
Hellen and Blackburn's Approach (Equation 5.1.1.12 and 5.1.1.13) $r_{\Gamma_0} = 0.0$	1063.341	-236.478	32.824	3.602

TABLE 5.2: Results for K_{I} and K_{II} for a deep cantilever beam subject to both end shear and tension, Figure 5.5.

<u>^9</u>	Energy Release Rate, $G(\theta)$			
9-	Finite Element Solution	$J_1 \cos\theta + J_2 \sin\theta$		
0	(J ₁) 1064.341	1064.341		
15	966.8689	966.8692		
30	803.5066	803.5069		
45	585.3867	585.3870		
60 75	327.3737	327 . 3739 47.0507		
90	(J ₂) -236.4788	-236.4788		
105	-503.8926	-503.8927		
120	-736.9670	-736.9671		
135 150	-919.8183 -1039.985	-919.8185 -1039.9857		
165 180	-1089.279 -1064.4341	-1089.279 -1064.4347		

TABLE 5.3:

Energy release rates for different angles of crack extension for the deep cantilever beam subjected to end shear and tension, Figure 5.5.

5.2 Fracture Criteria for Prediction of Direction of Crack Extension

A method for determining the stress intensity factors K_I and K_{II} by using the finite element method and Ishikawa's scheme has been presented. For combined mode crack problems, the crack extension will not be coplanar. Thus, in addition to calculation of the stress intensity factors, a fracture criterion must be established in order to analyze the linear elastic fracture problems with crack branching. The remainder of this work will deal with the prediction of the direction of crack extension for a cracked body under combined modes I and II.

There are currently three fracture criteria available for analyzing combined mode crack problems, namely the maximum stress criterion [48 - 51], the minimum strain energy density criterion [52, 53] and the maximum energy release rate criterion which is a generalization of Griffith's original energy release rate concept. These fracture criteria are presented in the following subsections.

5.2.1 Maximum Stress Criterion

For a general loading in a two-dimensional problem, the near crack tip stress field will be determined by the stress intensity factors K_{I} and K_{II} of the original crack. The maximum stress criterion [48] postulates that the crack will start to extend from the crack tip in the direction along which the tangential stress τ_{θ} is a maximum and the shear stress $\tau_{r\theta}$ is zero (Figure (5.7)). Thus, once K_{I} and K_{II} have

been determined, the angle θ_0 for which the tangential stress is a maximum will be given by the following relationship

$$K_{I} \sin \theta + K_{I} (3 \cos \theta - 1) = 0$$
 (5.2.1.1)

5.2.2 Minimum Strain Energy Density Criterion

Sih [52, 53] proposed that the governing quantity for fracture process is the local strain energy density at a certain critical distance from the crack tip. The minimum strain energy density criterion postulates that for a crack under a two-dimensional combined stress field, the initial crack extension takes place in the direction θ_0 along which the strain energy density attains a stationary (minimum) value and reaches a certain critical value, i.e.

$$\frac{\partial W(\theta)}{\partial \theta} = 0$$
 at which $\theta = \theta_0$ (5.2.2.1)

where $W(\theta)$ is the strain energy density and takes the following form:

$$W(\theta) = a_{11} K_{I}^{2} + 2a_{12} K_{I} K_{II} + a_{22} K_{II}^{2}$$
(5.2.2.2)

and

$$a_{11} = \frac{1}{16\pi\mu} (1 + \cos \theta)(\kappa - \cos \theta)$$

$$a_{12} = \frac{\sin \theta}{16\pi\mu} [2 \cos \theta - (\kappa - 1)]$$
 (5.2.2.3)

$$a_{22} = \frac{1}{16\pi\mu} \left[(\kappa + 1)(1 - \cos \theta) + (1 + \cos \theta)(3 \cos \theta - 1) \right]$$

where μ and κ have been defined previously.

Using Equations (5.2.2.1) to (5.2.2.3), the angle θ_0 for which the strain energy density attains a stationary value is given by the relation:

$$\cos 2\theta_0 [(1 - 3\lambda^2) \tan 2\theta_0 + 4\lambda] - (\kappa - 1) \cos \theta_0 [(1 - \lambda^2) \tan \theta_0 + 2\lambda] = 0 \qquad (5.2.2.4)$$

where λ is used to denote the ratio K_{II}/K_{I} . Also, in order to verify that the solution to (5.2.2.4) does correspond to a minimum, the additional condition of $\partial^2 W(\theta)/\partial \theta^2 > 0$ has to be checked.

5.2.3 Maximum Energy Release Rate Criterion

The maximum energy release rate criterion for combined mode crack problems is a generalization of Griffith's energy release rate concept [15, 16]. This criterion implies that the crack will grow in a direction θ_0 for which the energy release rate G(θ) is maximum. Since direction of a crack extension will not be coplanar with the crack plane, it would be necessary to determine the energy release rate as a function of the direction of crack extension and then maximize it.

It was shown previously that by assuming continuity of the stress field, the energy release rate for a crack extension at any angle θ is given by Equation (5.1.1.14), i.e. $G(\theta) = J_1 \cos \theta + J_2 \sin \theta$. However, it has also been mentioned that such continuity cannot be claimed to be true. Therefore, the elasticity solution of a branched crack with an infinitesimal branch must first be obtained. There have been many attempts to solve the problem of a branched crack [45, 54 -62] and all of them indicate a discontinuity in the stress field as the crack branches. This comprises the work of : Hussain, Pu and Underwood [45], Wang [54], Palaniswamy and Knauss [55], Bilby et al. [56, 57], Lo [58], Wu [59 - 61] and Hayashi et al., [62]. A review in this area was presented by Palaniswamy and Knauss [63]. Most of these analyses were based on the Mushelishvili potential formulation and conformal mapping of the branched crack geometry onto a unit circle. The solution is then reduced to either an infinite series expansion or integral equations. However, in spite of all these attempts, there are some disagreements reported in the literature. For example, Lo [58] showed that his results for the stress intensity factors for a branched crack with an infinitesimal branch agree with the results of Palaniswamy and Knauss [55] and Bilby et al., [56, 57] and are at variance with those of Hussain et al., [45]. It was also pointed out that the calculations for the maximum energy release rate, however, agree with those of the above authors and that of Wu [59 - 61]. Wang [54] pointed out that the analysis by Hussain et al., was not satisfactory and solved the problem again. His results contain Hussain's results as a special case but are again at variance with those in References [55 - 57]. It is beyond the scope of present numerical work to draw a conclusive statement as to which result is correct. However, it has been observed that for small angles of crack branching, the energy release rate and the stress intensity factors given by all of the references quoted above are in a reasonably good agreement. For predicting the direction of crack growth using the energy release rate criterion, the expressions derived by Wang [54] will be used in this work.

The problem of a singly branched crack shown in Figure (5.8) was solved by Wang [54]. It was shown in reference [54] that as the length of the branch r_2 approaches zero, the stress intensity factors at the branch tip approach the following limiting values.

$$K_{I} - i K_{II} = \frac{(\alpha - \overline{\alpha\beta})}{1 - \beta\overline{\beta}}$$
(5.2.3.1)

Where

$$\alpha = (\mathring{K}_{I} - i \mathring{K}_{II}) e^{\gamma i} (\frac{1 - \gamma/\pi}{1 + \gamma/\pi})^{\gamma/2\pi}$$
(5.2.3.2)

$$\beta = \frac{1}{4} \left(e^{2\gamma i} - 1 \right) \left(c_1^* + i c_2^* \right)$$
 (5.2.3.3)

and $\overset{\circ}{K}_{I}$ and $\overset{\circ}{K}_{II}$ are the stress intensity factors of a crack which does
not have a branch, i.e. before crack extension, $i = \sqrt{-1}$, α and β are the complex conjugates of α and β , respectively, and C_1^* and C_2^* are constants evaluated from an integral equation [54]. The values of C_1^* and C_2^* are given in Table (5.4) for γ ranging from 0 to 90 degrees.

Y	0°	5°	10°	15°	20°				
c*1	1.00	1.0003	1.0010	1.0023	1.0042				
-c [*] ₂	0	4.137×10 ⁻³	8.297×10 ⁻³	1.250×10 ⁻²	1.678×10 ⁻²				
Ŷ	25°	30°	35°	40°	45°				
c*1	1.0066	1.0095	1.0131	1.0173	1.0222				
-c [*] ₂	2.116×10 ³	2.566×10 ⁻²	3.031×10 ⁻²	3.515×10 ⁻²	4.022×10 ⁻²				
Ŷ	50°	55°	60°	65°	70°				
c ₁ *	1.0279	1.0343	1.0417	1.0500	1.0591				
-c [*] ₂	4.555×10 ⁻²	5.118×10 ⁻²	5.178×10 ⁻²	6.361×10 ⁻²	7.054×10 ⁻²				
Ŷ	75°	80°	85°	90°					
c ₁ *	1.0700	1.0821	1.0957	1.1110					
-c ₂ *	7.804×10 ⁻²	8.624×10 ⁻²	9.524×10 ⁻²	0.1052					
		* *			-				

TABLE 5.4: Values of C_1 and C_2 (Wang [54]).

Using Equations (5.2.3.1) to (5.2.3.3), the stress intensity

factors at the branch tip can also be expressed as:

$$K_{I} = K_{I} F_{11}(\gamma) + K_{II} F_{12}(\gamma)$$

$$K_{II} = K_{I} F_{21}(\gamma) + K_{II} F_{22}(\gamma)$$
(5.2.3.4)

where $F_{ij}(\gamma)$ have been evaluated numerically and are tabulated in Table (5.5). With the values of K_{I} and K_{II} calculated, the energy release rate for the branched crack is calculated by:

$$G(\theta) = \frac{\kappa + 1}{16\mu} \{ K_{I} f_{1} + K_{II} f_{2} \}$$
(5.2.3.5)

$$\hat{f}_{1} = \{ \overset{\circ}{K}_{I} (1 + \cos \theta) - \overset{\circ}{K}_{II} \cdot 3 \sin \theta \} \cos \frac{\theta}{2}$$

$$\hat{f}_{2} = \{ \overset{\circ}{K}_{I} \sin \theta + \overset{\circ}{K}_{II} (3 \cos \theta) \} \cos \frac{\theta}{2}$$

$$(5.2.3.6)$$

where the superscript ° denotes the functions and the quantities associated with the crack before branching. The crack branch configuration in Figure (5.8) is equivalent to the case $\theta = -\gamma$. Thus the energy release rate as a function of the direction of crack extension can be calculated and the critical direction found by maximizing the energy release rate.

 129	-	

0° 1.0 0.0 0.0 1.0 5 0.996376669 0.110221389 -0.045633761 0.9963766 10 0.985501784 0.256654362 -0.090886746 0.9855017 15 0.967367377 0.383060001 -0.135350614 0.9673673	
50.9963766690.110221389-0.0456337610.9963766100.9855017840.256654362-0.0908867460.9855017150.9673673770.383060001-0.1353506140.9673673	
100.9855017840.256654362-0.0908867460.9855017150.9673673770.383060001-0.1353506140.9673673	69
15 0.967367377 0.383060001 -0.135350614 0.9673673	84
	78
20 0.941967671 0.507089163 -0.178607225 0.9419676	71
25 0.909303233 0.627801413 -0.220228709 0.9093032	33
30 0.869402901 0.744154821 -0.259745176 0.8694029	01
35 0.822369570 0.855052729 -0.296606014 0.8223695	69
40 0.768350721 0.959157299 -0.330288315 0.7683507	21
45 0.707627245 1.055065146 -0.360189344 0.7076272	45
50 0.640632778 1.141274706 -0.385678123 0.6406327	78
55 0.567936288 1.216022443 -0.406171714 0.5679362	8 9
60 0.491122705 1.280995092 -0.420303864 0.4911227 ⁴	06
65 0.409066648 1.324790179 -0.429702338 0.4090666	48
70 0.325268794 1.355572731 -0.431764605 0.3252687	94
75 0.240590462 1.368882254 -0.426909399 0.2405904	12
80 0.156851952 1.364080076 -0.415023175 0.1568519	52
85 0.075980844 1.340635356 -0.396294661 0.0759808	43
90 0.0 1.298875746 -0.371167000 0.0	

TABLE 5.5: Values of $F_{11}(\gamma)$, $F_{12}(\gamma)$, $F_{21}(\gamma)$ and $F_{22}(\gamma)$.

5.3 Numerical Examples

The fracture criteria for crack branching presented in the previous section are used to analyze the following examples. The stress intensity factors \mathring{K}_{I} and \mathring{K}_{II} of the unbranched crack are calculated using the energy release rate and Ishikawa's scheme. These are then used along with the fracture criteria to predict the direction of a crack extension.

The first problem considered is the deep cantilevered beam sub-

jected to end shear and tension as shown in Figure (5.3). The stress intensity factors $\overset{\circ}{K_{I}}$ and $\overset{\circ}{K_{II}}$ have been calculated in Section (5.1.2) and that corresponding to $r_{\Gamma_{0}} = 0.1a$ are equal to 35.921 and 4.452, respect-

ively. The predicted values of the direction of crack extension calculated using the fracture criteria presented previously are given in Table (5.6). The predicted values are in reasonably good agreement. The predicted angle calculated using Equation (5.1.1.15) i.e. Hellen et al.'s approach, is also given in Table (5.6) and is in reasonably good agreement with the other values. This may be because the error introduced by the continuity assumption in Hellen et al.'s approach is not very significant for small angles of crack branching as mentioned before.

	Calculated Angle of Crack Extension
Maximum Stress Criterion	-13.7°
Minimum Strain Energy Criterion	-12.5°
Maximum Energy Release Rate Criterion Wang: Equation (5.2.3.5) Hellen: Equation (5.1.1.15)	-11.6° -13.72°

TABLE 5.6: Predicted angles of crack extension for the deep cantilevered beam with end shear and tension, Figure 5.5.

The second problem analyzed is that of a plate with an oblique crack subjected to uniaxial tension τ_0 (Figure (5.9)). The crack makes an angle β with the direction of loading and the direction of crack extension is shown as θ in the figure. The plane stress plate is analy-

zed for different angles of crack orientation, β . The finite element grid used, for $\beta = 45^{\circ}$, is shown in Figure (5.10). Again, it is noted that the configurations of the four-node mixed transitional finite elements conform with the requirements stated in Chapter 3. Also, the grid in the crack tip region is considered to be relatively coarse and, except for $\beta = 45^{\circ}$, only the crack tip can be used as Γ_0 to be moved when using Ishikawa's scheme to calculate the stress intensity factors \mathring{K}_{I} and \mathring{K}_{II} for the unbranched crack. The calculated stress intensity factors are given in Table (5.7) together with the following stress intensity factors for an infinite plate, i.e.

$$K_{\tau} = \tau_{o}a^{1/2} \sin^{2}\beta, \quad K_{\tau\tau} = \tau_{o}a^{1/2} \sin\beta \cos\beta$$
 (5.3.1)

		° K _I			° K _{II}	
β	Infinite Plate	Finite Element	Error %	Infinite Plate	Finite Element	Error %
15° 30° 45° 60° 75°	0.0669 0.250 0.500 0.7499 0.9330	0.0732 0.2925 0.5372 0.8013 1.0281	9.42 17.0 7.4 6.9 10.2	0.250 0.4330 0.50 0.4330 0.250	0.2937 0.5072 0.6009 0.4960 0.3153	17.5 17.1 20.0 14.5 26.1

TABLE 5.7: Stress intensity factors for the square plate with an oblique crack subjected to uniaxial tension, Figure 5.9.

It is observed that the calculated stress intensity factors K_{I} and K_{II} are not very accurate and the deviations from the infinite plate solution range from about 6.9% to 26.1%. This is because of the lack of

- 131 -

a finer grid around the crack tip. The predicted values of the angle of crack extension, θ , calculated using Wang's equation (Equation (5.2.3.5)), Hellen et al.'s approach (Equation (5.1.1.15)) and the finite element method using different virtual crack extensions and crack branch model of Figure (5.2.b) are tabulated in Table (5.8) and plotted in Figure (5.11). Erdogan and Sih's [48] theoretical results using the maximum stress criterion and the stress intensity factors for an infinite plate are also shown in the same figure. It can be observed that the predicted values of θ using Wang's equation and the stress intensity factors calculated using Ishikawa's scheme are in very good agreement with that of Erdogan and Sih. Although a coarse finite elment grid has been used which resulted in relatively large errors in the stress intensity factors as mentioned above, the direction of crack extension can still be predicted fairly accurately. Results calculated using Hellen et al.'s approach agree well with those calculated using Wang's equation and the maximum stress criterion for β angles of 60° and above. For β below 60°, considerable divergence occurs. This is not surprising because the continuity assumption involved in Hellen et al's work (i.e. the derivation of Equation (5.1.1.15)) is not valid. Again, good agreement for β larger than 60° is observed because the error due to continuity assumption is not very significant when the angle of crack branching is relatively small. Finally, the predicted values using the virtual crack extension method are not satisfactory and, perhaps, can be improved by grid refinements near the crack tip. However, this is not feasible because of the storage limitation on the McMaster University CDC CYBER computer. Hence, the foregoing analyses indicate that the direction of crack extension can be satisfactorily predicted using the

energy release rate expression given by Wang (Equation 5.2.3.5) with the stress intensity factors calculated by the direct derviatve method using Ishikawa's scheme and mixed finite elements.

	Angle of	Crack Extension (θ)	
β	Wang's Formula Equation (5.2.3.5)	Hellen's Formula Equation (5.1.1.15)	Finite Element Using Virtual Crack Extension
15°	62.7	29.3	75.4
30°	58.2	40.9	59.8
45°	51.3	44.8	45.3
60°	41.4	41.8	24.9
75°	25.6	25.2	-17.2

TABLE 5.8: Predicted angles of crack extension for the square plate with an oblique crack subjected to uniform tension, Figure 5.9.

FIG. 5.1: CRACK TIP COORDINATE SYSTEM.

FIG. 5.2 ≈: FINITE ELEMENT GRID AROUND THE CRACK TIP.

FIG. 5.2 D: MODELLING OF CRACK BRANCHING BY MOVING THE NODE AT THE CRACK TIP ONLY.

FIG. 5.2 \simeq : MODELLING OF CRACK BRANCHING BY INTRODUCING TWO EXTRA ELEMENTS.

- 135 -

FIG. 5.3: DEEP CANTILEVERED BEAM SUBJECTED TO END SHEAR USED FOR DETERMINING THE CRACK INTENSITY FACTOR K_I AND K_{II}.

FIG. 5.4: FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK INTENSITY FACTORS K, AND K, FOR THE DEEP CANTILEVERED BEAM SUBJECTED^{II}TO END SHEAR.

FIG. 5.5: DEEP CANTILEVERED BEAM SUBJECTED TO BOTH TENSION AND END SHEAR USED FOR DETERMINING THE CRACK INTENSITY FACTORS K_I AND K_{II} .

PLOT OF ENERGY RELEASE RATE G AGAINST ANGLE OF CRACK EXTENSION θ For the deep cantilevered beam subjected to both tension and end shear – figure 5.5.

139

I

FIG. 5.7: STRESS COMPONENTS NEAR THE CRACK TIP IN POLAR COORDINATES.

PROBLEM OF A BRANCHED CRACK.

FIG. 5.9: SQUARE PLATE WITH OBLIQUE CRACK SUBJECTED TO TENSILE LOADING USED FOR DETERMINING THE CRACK INTENSITY FACTORS K_{I} AND K_{II} AND THE ANGLE OF CRACK BRANCHING θ .

FIG. 5.10 a :

FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK INTENSITY FACTOR K_I AND K_{II} AND THE ANGLE OF CRACK BRANCHING FOR THE SQUARE PLATE WITH AN OBLIQUE CRACK SUBJECTED TO UNIAXIAL TENSION τ_{o} .

FIG. 5.10 b: DETAILS OF THE FINITE ELEMENT MESH AROUND THE THE CRACK TIP FOR THE SQUARE PLATE WITH AN OBLIQUE CRACK SUBJECTED TO UNAXIAL TENSION.

FIG. 5.11: FRACTURE ANGLE θ AGAINST CRACK ANGLE β FOR A SQUARE PLATE WITH WITH AN OBLIQUE CRACK SUBJECTED TO TENSION.

CHAPTER 6

CONCLUSIONS

Mixed transitional finite elements, which enable the use of the three-node triangular mixed and eight-node isoparametric displacement finite elements simultaneously, have been developed and tested numerically. Applications of the combination of the above three types of finite elements to both Mode I and mixed mode problems in linear elastic fracture mechanics have also been carried out.

The mixed finite element method [7] via the Hellinger-Reissner's Principle was shown to give much better results than the corresponding displacement finite element method via the Principle of Minimum Potential Energy. However, the mixed method requires more degrees of freedom than the displacement method for the same number of elements, which leads to a tremendous increase in the computer storage required. Mixed transitional finite elements have been developed in this work to enable the use of the mixed and displacement type finite elements in the same finite element grid, with the mixed finite elements used in the region where high stress gradients are expected due to a stress concentration or singularity. In particular, a four-node triangular and a three-node triangular mixed transitional elements have been developed to connect the three-node triangular mixed finite elements by Mirza and Olson [7] and the conventional eight-node isoparametric displacement elements. In general, the computer storage requirement, when using the above mixed,

mixed transitional and displacement finite elements in a single application, has been found to be much less than that required when only the mixed finite elements are used. This is especially so if the region of high stress gradients influenced by a stress singularity is much smaller than some typical dimension of a problem to be analyzed.

The matrix equations in plane elasticity, when the mixed finite elements are used, are always symmetric and indefinite. The master finite element matrix, when premultiplied by its own transpose, becomes positive definite. The matrix equations were solved using a computer subroutine that utilizes the skyline technique, Bathe and Wilson [12], and Gaussian elimination making full use of properties of a symmetric positive definite matrix.

Numerical tests revealed that very large values (around 10°) of the modulus of elasticity E caused ill-conditioning of the matrix equation in mixed finite element applications. For linear elastic problems considered in this work, this problem has been avoided by using a small value of E (=1.0) and the solution was scaled accordingly. Orientation problems with the four-node transitional finite element have also been observed and it is found that the uncondensed, four-node transitional element works well provided that:

1. the element sides form a triangle with $m_{12} = -m_{13}$, Figure (3.5); and

2.

the element sides 1-2 and 1-3 form a right angle and are parallel to the global coordinate axes, Figure (3.6).

- 146 -

The strain energy convergence rate of the uncondensed transitional finite element was found to be $O(N^{-4})$. For the plane stress cantilever subjected to a parabolic end shear stress, it was found that the energy convergence rate of $O(N^{-4})$ of both the three-node triangular mixed and eight-node isoparametric displacement finite elements is maintained when all three types of finite elements are used in the analysis. The strain energy convergence rate of the condensed transitional element was found to be $O(N^{-2})$ and with use of these elements, the strain energy convergence rate for the above-mentioned cantilever became $O(N^{-3})$.

The analysis of a plane, linear elastic, square plate with a circular hole in the middle, using the mixed, mixed transitional and displacement finite elements indicated that the computer storage required is about a quarter of that required when only the mixed finite elements are used. A reasonably good accuracy was also obtained for the stress concentration factors. A faster convergence rate (nearly $O(N^{-2})$) has been obtained by Mirza [8] for the stress singular problem of a plane stress square plate with symmetric edge cracks for which the strain energy converges only linearly with N, even with higher order displacement or hybrid type finite elements, Tong and Pian [34]. The use of the combination of mixed, mixed transitional and displacement finite elements in the analysis of such singular problems, using mixed elements in the vicinity of the singularity, is still expected to result in an improved convergence and accuracy.

The direct derivative energy release rate technique was used to analyze two isotropic rectangular plates with symmetric edge cracks and a central crack, respectively. The computer storage required was about one-tenth of that when only the mixed finite elements are used, with errors in K_I of about 3 to 6% only. An orthotropic square plate with a central crack has also been analyzed for different values of the ratio E_x/E_y . In most cases, the errors in computation of the stress intensity factor K_T were less than one percent.

The direct derivative technique has been extended by incorporating Ishikawa's scheme to calculate stress intensity factors K_I and K_{II} for combined mode fracture problems. For the plane stress cantilever with an edge crack and subjected to end shear, stress intensity factors K_I and K_{II} have been obtained with errors of 0.62% and 3.74%, respectively. Combined mode stress intensity factors can also be calculated using the direct derivative technique via Hellen et al.'s approach [41, 42]. However, in such calculations, only the crack tip can be used as Γ_0 in applying the direct derivative technique and relatively more refined finite element mesh is required to obtain moderately accurate values of K_I and K_{II} .

The maximum energy release rate criterion was used, together with the stress intensity factors calculated using Ishikawa's scheme, to predict direction of a crack extension for combined mode, plane elasticity fracture problems. The energy release rate, as a function of the branch angle derived by Wang [54], was used. A square plate with an oblique crack has also been analyzed and the calculated directions of crack extensions are found to be very close to those given by Erdogan and Sih [48] using the maximum stress criterion. The virtual crack extension method can also be used to search for the direction of maximum energy release rate by introducing virtual extensions in different directions and calculating the corresponding energy release rates. However, this approach requires a more refined finite element grid in the crack tip region than the one used in the present work. Further investigation is not feasible because of the storage limitation on the CDC CYBER computer at McMaster University.

In summary, the use of mixed transitional finite elements, which enable the use of the three-node triangular and eight-node isoparametric displacement finite elements in a single finite element mesh, results in much saving on computer storage required compared to that when only the mixed finite elements are used while still maintaining reasonably good accuracy. The stress intensity factors K_T and K_{TT} calculated using Ishikawa's scheme can be used along with an energy release rate expression to fairly accurately predict the direction of a crack extension; especially when the lack of large central memory on a computer does not allow the use of a very refined finite element mesh. However, some disagreements among the researchers exist regarding the expression for the energy release rate when the crack branches and are reported in the literature. Further investigation into this discrepancy is recommended. There is also a need for development of a numerical algorithm to extend the present investigation so that it can be applied to crack propagation problems.

APPENDIX A

FINITE ELEMENT MATRIX FOR THE THREE-NODE TRIANGULAR MIXED ELEMENT

WITH LINEAR DISPLACEMENT AND STRESS APPROXIMATIONS

The element matrix equation for plane linear elasticity is given here for linear displacement and linear stress approximations within the triangular element shown in Figure (2.1). The material properties are incorporated through the compliance matrix:

α	-β	0
-β	Ŷ	0
0	0	δ
	α -β 0	α -β -β γ 0 0

(A.1)

where α , β , γ and δ depend upon elasticity properties.

The element matrix equation is of the following form:

0	<u>0</u> <u>0</u>	<u>a</u> T <u>0</u>	0 T b			ĩ		<u>d</u> <u>e</u>	
<u>a</u>	0	α <u>C</u>	-β <u>C</u>	<u>0</u>	<		} = <	. · · ·	(A.2)
<u>0</u>	<u>b</u>	- <u>βC</u>	Υ <u>C</u>	<u>0</u>		<u>-</u> ۲		0	
<u>b</u>	a	<u>0</u>	<u>0</u>	δ <u>c</u>					

or
$$\underline{S} \ \underline{\tilde{\Lambda}} = \underline{p}$$
.

minus

by:

where the submatrices <u>a</u>, <u>b</u>, <u>c</u>, <u>d</u>, <u>e</u>, $\frac{1}{u}$ and $\frac{1}{\tau}$ in Equation (A.2) are given

(A.3)

$$a_{j} = \int L L d\Omega; \quad i = j = 1, 2, 3 \quad (A.4)$$

$$b = \int L L d\Omega; \quad i = j = 1, 2, 3 \qquad (A.5)$$

$$ij = \int \Omega I L d\Omega; \quad i = j = 1, 2, 3$$

$$c = \int_{\Omega} L L d\Omega; \qquad i = j = 1, 2, 3 \qquad (A.6)$$

$$\mathbf{d} = \int_{\Omega} \mathbf{f}_{1} \mathbf{L} \, d\Omega; \qquad \mathbf{i} = \mathbf{j} = 1, 2, 3 \qquad (A.7)$$

$$e_{i} = \int_{\Omega} f_{2}L_{i}d\Omega;$$
 $i = j = 1, 2, 3$ (A.8)

$$\frac{\widetilde{u}}{\widetilde{u}} = \langle u_1^1 \ u_1^2 \ u_1^3 \ u_2^1 \ u_2^2 \ u_2^3 \rangle^{\mathrm{T}}$$
(A.9)

$$\frac{\tilde{\tau}}{\tilde{\tau}} = \langle \tau_{11}^{1} \ \tau_{11}^{2} \ \tau_{11}^{3} \ \tau_{22}^{1} \ \tau_{22}^{2} \ \tau_{22}^{3} \ \tau_{12}^{1} \ \tau_{12}^{2} \ \tau_{12}^{3} \rangle^{\mathrm{T}}$$
(A.10)

It is simple to evaluate the submatrices <u>a</u>, <u>b</u>, and <u>c</u>. If (x_{1_i}, x_{2_i}) are the coordinates of the ith node of the triangular element (Figure (2.1)), then the matrices <u>a</u>, <u>b</u> and <u>c</u> in terms of nodal coordinates are:

$$\frac{\mathbf{a}}{3\times 3} = \frac{\mathbf{t}}{6} \begin{bmatrix} \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \\ \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \\ \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \end{bmatrix}$$

$$(A.11)$$

$$\frac{\mathbf{b}}{\mathbf{x}} = \frac{\mathbf{t}}{6} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{2}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \end{bmatrix}$$

$$(A.12)$$

$$\frac{\mathbf{c}}{\mathbf{c}} = -\frac{\mathbf{A}\mathbf{t}}{\mathbf{12}} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$(A.13)$$

where A and t are the area and thickness of the triangular element, respectively. Since <u>c</u> is symmetric, the matrix of coefficients <u>S</u> in Equation (A.3) is also symmetric as expected. The derivation of the load vector $\langle \underline{d}^T \ \underline{e}^T \rangle$ is identical to its generation in the displacement method.

Next, the degrees of freedom $\underline{\widetilde{\Lambda}}$ are rearranged by interchanging the corresponding rows and columns of <u>S</u> such that:

 $\overline{\underline{\Lambda}} = \langle u_1^1 \ u_2^1 \ \tau_{11}^1 \ \tau_{22}^1 \ \tau_{12}^1 \ u_1^2 \ u_2^2 \ \tau_{11}^2 \ \tau_{22}^2 \ \tau_{12}^2 \ u_1^2 \ u_1^3 \ u_2^3 \ \tau_{11}^3 \ \tau_{22}^3 \ \tau_{12}^3 \rangle^T (A.14)$

and the matrix S becomes:

					ī	$\frac{\overline{S}}{5 \times 1}$	5 =						
0	a ₁₁	0	ь ₁₁	0	0	a 21	0	^b 21	0	0	^a 31	0	^b 31
0	0	^ь 11	a 11	0	0	0	^b 21	a 21	0.	0	0	^b 31	a ₃₁
	^h 11	f_11	0	a ₁₂	0	^h 12	f ₁₂	0	^a 13	0	^h 13	f ₁₃	0
		1 ₁₁	0	0	^b 12	f ₁₂	i ₁₂	0	0	^b 13	f ₁₃	i ₁₃	0
			g ₁₁	^b 12	^a 12	0	0	^g 12	^b 13	^a 13	0	0	^g 13
				0	0	^a 22	0	^b 22	0	0	^a 32	0	^b 32
					0	0	^b 22	^a 22	0	0	0	^b 32	a ₃₂
						^h 22	f ₂₂	0	^a 23	0	^h 23	f ₂₃	0
							1 ₂₂	0	0	^b 23	f ₂₃	¹ 23	0
								g ₂₂	^b 23	^a 23	0	0	g ₂₃
	8	y m m	et	ric					0	0	^a 33	0	^b 33
										0	0	^b 33	^a 33
											^h 33	f ₃₃	0
												¹ 33	0
													^g 33

0

(A.15)

 $g = \delta c$

 $\underline{h} = \underline{\alpha c}$

 $\underline{i} = \underline{\gamma c}$

and α , β , γ and δ are elements of the compliance matrix <u>C</u> in Equation (A.1). The corresponding entries in the load vector <u>p</u> are also interchanged and the modified load vector becomes:

 $\overline{\underline{p}} = \langle d_1 \ e_1 \ 0 \ 0 \ 0 \ d_2 \ e_2 \ 0 \ 0 \ 0 \ d_3 \ e_3 \ 0 \ 0 \ 0 \rangle^T$.

Equation (A.3) alters to:

$$\overline{\underline{S}} \ \overline{\underline{\Lambda}} = \overline{\underline{P}}.$$

The compliance matrix in Equation (A.1) for plane stress isotropic case is given by:

 $\underline{C} = \frac{1}{E} \begin{bmatrix} 1 & -v & 0 \\ -v & 1 & 0 \\ 0 & 0 & 2(1+v) \end{bmatrix}$

(A.17)

(A.16)

where E and v are the modulus of elasticity and the Poisson's ratio, respectively. For isotropic plane strain case, the compliance matrix <u>C</u> takes on the following form:

$$\underline{\mathbf{C}} = \frac{1 - \nu^2}{\mathbf{E}} \begin{bmatrix} 1 & \frac{\nu}{1 - \nu} & 0 \\ -\frac{\nu}{1 - \nu} & 1 & 0 \\ 0 & 0 & \frac{2}{1 - \nu} \end{bmatrix}$$
(A.18)

The compliance matrix \underline{C} can also be switched to incorporate the orthotropic cases and the coefficients α , β , γ and δ can be found in Reference [14].

FINITE ELEMENT MATRIX FOR THE FOUR-NODE TRIANGULAR MIXED

TRANSITIONAL ELEMENT (UNCONDENSED)

The element matrix equation for plane linear elasticity is presented for the four-node triangular mixed finite element shown in Figure (2.6). The material properties are again given by the compliance matrix \underline{C} in Equation (A.1) which for isotropic plane stress and plane strain cases are given by Equations (A.17) and (A.18).

The element matrix equation has been given in Equation (2.3.19) as:

or $\underline{\overline{S}} \ \underline{\widetilde{\Lambda}} = \underline{p}$

(B.2)

and the submatrices $\underline{\tilde{u}}$, $\underline{\tilde{\tau}}$, \underline{a} , \underline{b} , \underline{c} , \underline{d} and \underline{e} are as defined in Equations (2.3.11), (2.3.12) and Equations (2.3.20) to (2.3.24). If $(x_1, y_1)_{1i}$ are the coordinates of the ith node of the triangular element (Figure

$$\underline{a} = t \begin{bmatrix} \frac{b_1}{6} & \frac{b_2}{12} - \frac{b_3}{12} & \frac{-b_2}{12} + \frac{b_3}{12} & \frac{b_2}{6} + \frac{b_3}{6} \\ \frac{b_1}{12} & \frac{b_2}{15} - \frac{b_3}{10} & \frac{-b_2}{60} - \frac{b_3}{30} & \frac{b_2}{30} + \frac{b_3}{5} \\ \frac{b_1}{12} & \frac{-b_2}{60} - \frac{b_3}{60} & \frac{-b_2}{10} + \frac{b_3}{15} & \frac{b_2}{5} + \frac{b_3}{30} \\ \frac{b_1}{6} & \frac{b_2}{20} - \frac{4b_3}{30} & \frac{-4b_2}{30^2} + \frac{b_3}{12} & \frac{3b_2}{30} + \frac{3b_3}{30} \end{bmatrix}$$
(B.3)
$$\underline{b} = t \begin{bmatrix} \frac{a_1}{6} & \frac{a_2}{12} - \frac{a_3}{10} & \frac{-a_2}{10^2} + \frac{a_3}{112} & \frac{a_2}{6} + \frac{a_3}{6} \\ \frac{a_1}{12} & \frac{a_2}{15} - \frac{a_3}{10} & \frac{-a_2}{60} - \frac{a_3}{60} & \frac{a_2}{30} + \frac{a_3}{5} \\ \frac{a_1}{12} & \frac{-a_2}{60} - \frac{a_3}{60} & \frac{-4a_2}{10} + \frac{a_3}{15} & \frac{a_2}{5} + \frac{a_3}{30} \\ \frac{a_1}{6} & \frac{a_2}{30} - \frac{4a_3}{30^3} & \frac{-4a_2}{30^2} + \frac{a_3}{12} & \frac{3a_2}{30} + \frac{8a_3}{30} \end{bmatrix}$$
(B.4)
$$\underline{c} = - t \times A \begin{bmatrix} \frac{1}{6} & \frac{1}{20} & \frac{1}{20} & \frac{1}{15} \\ \frac{7}{90} & -\frac{1}{180} & \frac{2}{45} \\ symmetric \frac{7}{90} & \frac{2}{45} \\ \frac{8}{45} \end{bmatrix}$$
(B.5)

where t and A are the thickness and area of the triangle, respectively;

$$a_{1} = x_{1}^{3} - x_{1}^{2}$$

$$a_{2} = x_{1}^{1} - x_{1}^{3}$$

$$a_{3} = x_{1}^{2} - x_{1}^{1}$$

$$b_{1} = x_{2}^{2} - x_{2}^{3}$$

$$b_{2} = x_{2}^{3} - x_{1}^{1}$$

$$b_3 = x_2^1 - x_2^2$$
.

The derivation of the load vector $\langle \underline{d}^T = \underline{e}^T \rangle$ is identical to its generation in the displacement method.

The degrees of freedom $\underline{\widetilde{\Lambda}}$ are then rearranged by interchanging the corresponding rows and columns of <u>S</u> such that:

$$\overline{\underline{\Lambda}} = \langle u_{1}^{1} \ u_{2}^{1} \ \tau_{11}^{1} \ \tau_{22}^{1} \ \tau_{12}^{1} \ u_{1}^{2} \ u_{2}^{2} \ \tau_{21}^{2} \ \tau_{22}^{2} \ \tau_{12}^{2} \ u_{1}^{3} \ u_{2}^{3} \ \tau_{11}^{3} \ \tau_{22}^{3} \ \tau_{12}^{3}$$

$$u_{1}^{4} \ u_{2}^{4} \ \tau_{11}^{4} \ \tau_{22}^{4} \ \tau_{12}^{4} \rangle^{\mathrm{T}}$$
(B.8)

and the matrix \underline{S} is shown in Equation (B.9).

(B.6)

(B.7)

151 - <u>5</u> -20 × 20

- 0 0)	. 11	0	۰.,	0	0	* 21	0	۶ ₂₁	0	0	•31	0	^b 31	0	0	•41	ა	* ₄₁
0)	0	b 11	•11	٥	0	0	b 21	a21	0	0	0	•31	a 31	٥	0	o	541	•41
		•°11	- ^{BC} 11	0	•12	0	۵C ₁₂	-8C ₁₂	0	•13	0	هد 13	-80 ₁₃	٥	•14	٥	aC 14	-3C	0
			۲ ^C II	0	0	b ₁₂	-9C ₁₂	۲C ₁₂	0	0	•13	-8C13	۲1 _{AC}	0	0	^b 14	-\$C ₁₄	1 ⁰ 14	0
				^{٥С} ۱۱	»12	* ₁₂	0	0	6C ₁₂	b 13	*13	0	٥	⁶⁰ 13	b 14	a 14	0	0	*°14
					0	0	•22	0	b 22	0	0	•32	٥	۶ ₃₂	0	0	* 42	0	۶ ₄₂
						0	0	b 22	*22	0	0	0	b32	a 32	٥	٥	0	⁵ 42	a 42
							مc ²⁵	- ^{sc} 22	0	*23	0	۵ ^C 23	-8C23	0	* ₂₄	0	°C24	-3C ₂₄	0
								YC22	0	0	۶ <u>2</u> 3	-5C ₂₃	۲C ₂₃	0	0	٥ ₂₄	5C 24	۲ ⁰ 24	o
									۵C ₂₂	۶ <u>2</u> 3	* 23	٥	• 0	6C ₂₃	^b 24	• 24	0	. ⁰	⁸ 24
										0	0	•33	0	b 33	0	0	e 43	0	^b 43
			y n	l e t	r 1	c					0	٥	Þ33	*33	0	0	0	×43	4 43
												•°33	-8C	0	* 34	0	°C34	-3C ₃₄	0
													۲C ₃₃	0	0	^b 34	-\$C34	۲ ^C 34	0
														⁶⁰ 33	^b 34	*34	0	0	^{ة0} 34
															0	0	* 44	0	544
																0	0	»	344
																	۵C	-2C44	o
													•					۲C ₄₄	0
																			دد _ي ر

 α , β , γ and δ are the elements of the compliance matrix in Equation (A.1). The corresponding entries in the load vector <u>p</u> are also interchanged and the modified load vector takes the following form:

$$\overline{\underline{p}} = \langle d_1 e_1 000 \ d_2 e_2 000 \ d_3 e_3 000 \ d_4 e_4 000 \rangle^T$$
(B.10)

The equation (B.2) alters to:

 $\overline{\underline{S}} \ \overline{\underline{\Lambda}} = \overline{\underline{p}}$

(B.11)

(B.9)

FINITE ELEMENT MATRIX EQUATIONS FOR CONDENSED MIXED TRANSITIONAL FINITE ELEMENTS

The element matrix equations for the four-node triangular mixed transitional element with the stress degrees of freedom at nodes 2, 3, and 4 elminated through static condensation (Figure (3.8c)) and that for the three-node mixed element with the stress degrees of freedom at node 3 condensed out (Figure (3.8a)) are presented.

For the condensed four-node, triangular transitional element, the element matrix equation after condensation is given by:

$$\begin{bmatrix} \frac{1}{6} \underline{M} - \frac{Y}{(\beta^{2} - \alpha Y)} \underline{N} & \frac{1}{6} \underline{P}^{T} - \frac{\beta}{(\beta^{2} - \alpha Y)} \underline{P} & \underline{Q} & \underline{O} & \underline{R} \\ \frac{1}{6} \underline{N} & - \frac{\alpha}{(\beta^{2} - \alpha Y)} \underline{M} & \underline{O} & \underline{R} & \underline{Q} \\ \frac{1}{6} \underline{N} & - \frac{\alpha}{(\beta^{2} - \alpha Y)} \underline{M} & \underline{O} & \underline{R} & \underline{Q} \\ \end{bmatrix} \begin{bmatrix} u_{1}^{1} \\ u_{1}^{1} \\ u_{1}^{1} \\ u_{1}^{2} \\ u_{1}^{3} \\ u_{1}^{3} \\ u_{1}^{4} \\ u_{1}^{4} \\ u_{1}^{1} \\ u_{1}^{2} \\ u_{1}^{3} \\ u_{1}^{4} \\$$

t

where

 $\underline{N} = \frac{1}{360A}$

$$\underline{M} = \frac{1}{360A} \begin{bmatrix} 81.25b_1^2 & 21.25b_1b_2-60b_1b_3 & -60b_1b_2+21.25b_1b_3 & 120b_1b_2+120b_1b_3 \\ & 21.25b_2^2-60b_2b_3+60b_3^2 & 21.25b_2b_3 & -120b_3^2 \\ & symmetric & 60b_2^2+2.125b_3^2-60b_2b_3 & -120b_2^2 \\ & & 240(b_2^2+b_3^2+b_2b_3) \\ & & (c.2) \end{bmatrix}$$

$$R = \frac{1}{16000} \begin{bmatrix} 81.25a_1^2 & 21.25a_1a_2-60a_1a_3 & -60a_1a_2+21.25a_1a_3 & 120a_1a_2+120a_1a_3 \\ & 21.25a_2^2-60a_2a_3+60a_3^2 & 21.25a_2a_3 & -120a_3^2 \end{bmatrix}$$

symmetric $60a_2^2+2.125a_3^2-60a_2a_3 -120a_2^2$ $240(a_2^2+a_3^2+a_2a_3)$ (C.3)

 $-120a_{3}^{2}$

$$\underline{P} = \frac{1}{360A} \begin{bmatrix} 81.25a_1b_1 & 21.25b_1a_2 & -60b_1a_2 & 120b_1a_1 \\ -60b_1a_3 & 21.25b_1a_3 & -120b_1a_3 \end{bmatrix}$$

$$\underline{P} = \frac{1}{360A} \begin{bmatrix} 21.25b_2a_1 & 21.25b_2a_2-30b_3a_2 & 30b_3a_2 & -120b_3a_3-60b_3a_2 \\ -60b_3a_1 & -30b_2a_3+60b_3a_3 & -8.75b_2a_3 & +60b_2a_3 \\ -60b_2a_1 & 30b_2a_3 & 21.25b_3a_3-30b_3a_2 & -120b_2a_2-60b_2a_3 \\ +21.25b_3a_1 & -8.75b_3a_2 & -30b_2a_3+60b_2a_2 & +60b_3a_2 \\ 120b_2a_1 & -120b_3a_3+60a_3b_2 & -120b_2a_2+60b_2a_3 & 240b_3a_3+240b_2a_2 \\ +120b_3a_1 & -60b_2a_3 & -60b_3a_2 & -120b_2a_2+60b_2a_3 & 240b_3a_3+240b_2a_2 \\ +120b_3a_1 & -60b_2a_3 & -60b_3a_2 & -120b_2a_3+120b_3a_2 \\ \end{bmatrix}$$

$$\underline{Q} = \frac{17.5}{360} \langle b_1 \ b_2 \ b_3 \ 0 \rangle^{\mathrm{T}}$$
(C.5)

$$\underline{\mathbf{R}} = \frac{17.5}{360} \langle \mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ 0 \rangle^{\mathrm{T}}$$
(C.6)

The vectors \underline{d} and \underline{e} are the same as the consistent load vectors for the uncondensed elements; t and A are the thickness and area of the triangular element, respectively; \underline{a}_i and \underline{b}_i are defined by:

$$a_{1} = x_{1}^{3} - x_{1}^{2}$$
$$a_{2} = x_{1}^{1} - x_{1}^{3}$$
$$a_{3} = x_{1}^{2} - x_{1}^{1}$$

(C.7)
$$b_{1} = x_{2}^{2} - x_{2}^{3}$$

$$b_{2} = x_{2}^{3} - x_{2}^{1}$$

$$b_{3} = x_{2}^{1} - x_{2}^{2}.$$
(C.8)

where x_{1_i} and x_{2_i} are the coordinates of the ith corner node; and α , β , γ and δ are elements of the compliance matrix <u>C</u> (Equation (A.1)) given by: $C = \begin{bmatrix} \alpha & -\beta & 0 \\ -\beta & \gamma & 0 \\ 0 & 0 & \delta \end{bmatrix}$ (C.9)

For the three-node mixed element with the stress degrees of freedom at node 3 condensed out, the element matrix equation is given by:

$$t \begin{bmatrix} \frac{\gamma}{6(\gamma\alpha-\beta^{2})A} \frac{\tilde{b}^{T}\tilde{b}}{6} & \frac{\beta}{6(\gamma\alpha-\beta^{2})A} \frac{\tilde{b}^{T}\tilde{a}}{6} & \frac{1}{12}\tilde{b}^{T} & 0 & \frac{1}{12}\tilde{a}^{T} \\ + \frac{1}{6\delta A} & \tilde{a}^{T}\tilde{a} & + \frac{1}{6\delta A} & \tilde{a}^{T}\tilde{b} & \frac{1}{12}\tilde{b}^{T} & 0 & \frac{1}{12}\tilde{a}^{T} \\ & \frac{\alpha}{6(\gamma\alpha-\beta^{2})A} \frac{\tilde{a}^{T}\tilde{a}}{6} & 0 & \frac{1}{12}\tilde{a}^{T} & \frac{1}{12}\tilde{b}^{T} \\ & + \frac{1}{6\delta A} & \frac{\tilde{b}^{T}\tilde{b}}{5} & 0 & \frac{1}{12}\tilde{a}^{T} & \frac{1}{12}\tilde{b}^{T} \\ & + \frac{1}{6\delta A} & \frac{\tilde{b}^{T}\tilde{b}}{5} & 0 & \frac{1}{12}\tilde{a}^{T} & \frac{1}{12}\tilde{b}^{T} \\ & \frac{-\alpha A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ \frac{-\alpha A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\alpha A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\alpha A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} & 0 \\ & \frac{-\delta A}{24} \begin{bmatrix}$$

- 164 -

$$\underline{\overline{\mathbf{b}}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix}$$

(C.14)

The vectors \underline{d} and \underline{e} and the constants t, A, a, b, α , β , γ and δ have been defined previously.

APPENDIX D

DIRECT DERIVATIVE METHOD OF CALCULATING ENERGY RELEASE RATE

The potential energy release rate has been given in Equation (4.3.10) as:

$$\frac{\Delta \Pi_{\mathbf{M}}}{\Delta \mathbf{a}} = \frac{1}{2} \sum_{\mathbf{i}=1}^{\mathbf{E}^{0}} \frac{\langle \underline{\mathbf{u}}_{\mathbf{i}} \cdot \underline{\tau}_{\mathbf{i}} \rangle^{\mathsf{T}} [\underline{\mathbf{S}}_{\mathbf{i}}^{0} - \underline{\mathbf{S}}_{\mathbf{i}}^{0}]}{\Delta \mathbf{a}} \left\{ \begin{array}{c} \mathbf{e} \\ \underline{\mathbf{u}}_{\mathbf{i}} \\ \mathbf{e} \\ \underline{\tau}_{\mathbf{i}} \end{array} \right\}$$

where $\Pi_{\underline{M}}$ is the potential energy; Δa is the change in crack length; \underline{E}^{0} is the number of elements between contours Γ_{0} and Γ_{1} between which the element matrices are altered; $\underline{S}_{\underline{i}}^{0}$ is the element matrix calculated for the initial crack length a; $\underline{S}_{\underline{i}}^{0}$ when the crack length has been incremented by an amount Δa ; and $\underline{u}_{\underline{i}}^{e}$ and $\underline{\tau}_{\underline{i}}^{e}$ are the nodal displacement and stress degrees of freedom for the nodes corresponding to the i the element within the contours Γ_{0} and Γ_{1} . The calculation of $[\underline{S}_{\underline{i}}^{0} - \underline{S}_{\underline{i}}^{0}]_{a}$

for the three-node triangular mixed element is given below.

The three-node mixed finite elements between Γ_0 and Γ_1 (Figure (D.1)) can be classified into two types depending on their orientations with respect to Γ_0 . The first type (type I) has two nodes located on contour Γ_0 , while the second type (type II) has only one node located on

contour Γ_0 . The change in element matrices for both types of elements, i.e. $[\underbrace{s_{i}}_{a+\Delta a}^{0} - \underbrace{s_{i}}_{a}^{0}]$, are considered separately.

The element matrix for the three-node triangular mixed finite element is given in Appendix A as:

$$\underline{\mathbf{S}} = \begin{bmatrix} \underline{0} & \underline{0} & \underline{\mathbf{a}}^{\mathrm{T}} & \underline{0} & \underline{\mathbf{b}}^{\mathrm{T}} \\ \underline{0} & \underline{0} & \underline{0} & \underline{\mathbf{b}}^{\mathrm{T}} & \underline{\mathbf{a}}^{\mathrm{T}} \\ \underline{\mathbf{a}} & \underline{0} & \underline{\mathbf{a}}\underline{\mathbf{C}} & -\underline{\mathbf{\beta}}\underline{\mathbf{C}} & \underline{0} \\ \underline{0} & \underline{\mathbf{b}} & -\underline{\mathbf{\beta}}\underline{\mathbf{C}} & \underline{\mathbf{\gamma}}\underline{\mathbf{C}} & \underline{0} \\ \underline{\mathbf{b}} & \underline{\mathbf{a}} & \underline{0} & \underline{0} & \underline{\mathbf{\delta}}\underline{\mathbf{c}} \end{bmatrix}$$

$$\mathbf{a} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \\ \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \\ \mathbf{x}_{2}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{2}^{1} & \mathbf{x}_{2}^{1} - \mathbf{x}_{2}^{2} \end{bmatrix}$$

$$\mathbf{b} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{2}^{2} \\ \mathbf{x}_{1}^{2} - \mathbf{x}_{2}^{3} & \mathbf{x}_{2}^{3} - \mathbf{x}_{1}^{1} & \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{2}^{1} \end{bmatrix}$$

$$\mathbf{b} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \end{bmatrix}$$

$$\mathbf{b} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \end{bmatrix}$$

$$\mathbf{b} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{1} \end{bmatrix}$$

$$\mathbf{b} = \frac{\mathbf{t}}{\mathbf{6}} \begin{bmatrix} \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{3} \\ \mathbf{x}_{1}^{3} - \mathbf{x}_{1}^{2} & \mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{3} & \mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{3} \end{bmatrix}$$

$$\mathbf{b} = \mathbf{b} = \frac{\mathbf{b}}{\mathbf{b}} \begin{bmatrix} \mathbf{b} - \mathbf{b} & \mathbf{b$$

The constants α , β , γ , δ in Equation (D.1) are elements of the compliance matrix <u>C</u> in Equation (A.1); $x_{1i}^{}$, $x_{2i}^{}$ are the coordinates of the ith node of the triangular element; and t and A are the thickness and area of the triangular element, respectively, and A is given by:

$$A = \frac{1}{2} \left(x_1^1 x_2^2 + x_1^2 x_2^3 + x_1^3 x_2^1 - x_1^2 x_2^1 - x_1^3 x_2^2 - x_1^1 x_2^2 \right).$$
 (D.5)

In general, the increment in the crack length Δa can be oriented in a direction other than the directions of the coordinate axes. Therefore, both the x_1 and x_2 coordinates of nodes located on contour Γ_0 will change and the increments in the x_1 and x_2 coordinates are denoted by Δx_1 and Δx_2 , respectively. For the first type of element (type I), only nodes 1 and 2 are located on Γ_0 . Thus $\Delta x_1^3 = \Delta x_2^3 = 0$ and from

Equations (D.2) to (D.3):

$$\Delta \underline{a}^{I} = \frac{1}{6} \begin{bmatrix} \Delta x_{2}^{2^{I}} & -\Delta x_{2}^{1^{I}} & \Delta x_{2}^{1^{I}} & -\Delta x_{2}^{2^{I}} \\ \Delta x_{2}^{2^{I}} & -\Delta x_{2}^{1^{I}} & \Delta x_{2}^{1^{I}} & -\Delta x_{2}^{2^{I}} \\ \Delta x_{2}^{2^{I}} & -\Delta x_{2}^{1^{I}} & \Delta x_{2}^{1^{I}} & -\Delta x_{2}^{2^{I}} \end{bmatrix}$$

(D.6)

$$\Delta \underline{b}^{\mathbf{I}} = \frac{1}{6} \begin{bmatrix} -\Delta \mathbf{x}_{1}^{2\mathbf{I}} & \Delta \mathbf{x}_{1}^{1\mathbf{I}} & \Delta \mathbf{x}_{1}^{2\mathbf{I}} & -\Delta \mathbf{x}_{1}^{1\mathbf{I}} \\ -\Delta \mathbf{x}_{1}^{2\mathbf{I}} & \Delta \mathbf{x}_{1}^{1\mathbf{I}} & \Delta \mathbf{x}_{1}^{2\mathbf{I}} & -\Delta \mathbf{x}_{1}^{1\mathbf{I}} \\ -\Delta \mathbf{x}_{1}^{2\mathbf{I}} & \Delta \mathbf{x}_{1}^{1\mathbf{I}} & \Delta \mathbf{x}_{1}^{2\mathbf{I}} & -\Delta \mathbf{x}_{1}^{1\mathbf{I}} \end{bmatrix}$$
(D.7)
$$\Delta \underline{c}^{\mathbf{I}} = \frac{-\Delta \mathbf{A}^{\mathbf{I}}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
(D.8)

where the superscript I denotes the quantities associated with element type I; $\Delta \underline{a}^{I}$, $\Delta \underline{b}^{I}$ and $\Delta \underline{c}^{I}$ are the changes in the submatrices \underline{a}^{I} , \underline{b}^{I} and \underline{c}^{I} , respectively, due to a crack increment Δa ; and ΔA^{I} is given by:

$$\Delta A^{I} = \frac{1}{2} \left[(x_{2}^{2^{I}} - x_{2}^{3^{I}}) \Delta x_{1}^{1^{I}} + (x_{2}^{3^{I}} - x_{2}^{1^{I}}) \Delta x_{1}^{2^{I}} + (x_{1}^{3^{I}} - x_{1}^{2^{I}}) \Delta x_{2}^{1^{I}} + (x_{1}^{3^{I}} - x_{1}^$$

With $\Delta \underline{a}^{I}$, $\Delta \underline{b}^{I}$ and $\Delta \underline{c}^{I}$ given by Equations (D.6) to (D.8), the change in the element matrix for element type I due to a crack increment $\Delta \underline{a}$ is given by:

$$\begin{bmatrix} \underline{S}_{i}^{0} & \underline{S}_{i}^{0} \end{bmatrix}^{I} = \begin{bmatrix} \underline{O} & \underline{O} & \underline{\Delta a}^{I^{T}} & \underline{O} & \underline{\Delta b}^{I^{T}} \\ \underline{O} & \underline{O} & \underline{O} & \underline{\Delta b}^{I^{T}} & \underline{\Delta a}^{I^{T}} \\ \underline{\Delta a}^{I} & \underline{O} & \underline{\alpha \Delta \underline{C}^{I}} & -\underline{\beta \Delta \underline{C}^{I}} & \underline{O} \\ \underline{O} & \underline{\Delta \underline{b}^{I}} & -\underline{\beta \Delta \underline{C}^{I}} & \underline{O} \\ \underline{\Delta \underline{b}^{I}} & \underline{\Delta \underline{a}^{I}} & \underline{O} & \underline{O} & \underline{\delta \Delta \underline{C}^{I}} \end{bmatrix}$$
(D.10)

For the second type of element (type II), only node 1 is located on Γ_0 . Therefore $\Delta x_2^{1} = \Delta x_2^{2} = \Delta x_1^{3} = \Delta x_2^{3} = 0$ and from Equations (D.2) to (D.3):

$$\Delta \underline{a}^{II} = \frac{1}{6} \begin{bmatrix} 0 & -\Delta x_2^{II} & \Delta x_2^{II} \\ 0 & -\Delta x_2^{II} & \Delta x_2^{II} \\ 0 & -\Delta x_2^{II} & \Delta x_2^{II} \end{bmatrix}$$
(D.11)
$$\Delta \underline{b}^{II} = \frac{1}{6} \begin{bmatrix} 0 & -\Delta x_1^{II} & \Delta x_1^{II} \\ 0 & -\Delta x_1^{II} & \Delta x_1^{II} \\ 0 & -\Delta x_1^{II} & \Delta x_1^{II} \\ 0 & -\Delta x_1^{III} & \Delta x_1^{III} \end{bmatrix}$$
(D.12)
$$\Delta \underline{c}^{II} = \frac{-\Delta A^{II}}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
(D.13)

- 170 -

where the superscript II denotes quantities associated with element type II. In this case ΔA^{II} is given by:

$$\Delta A^{II} = \frac{1}{2} \left[(x_2^{2II} - x_2^{3II}) \Delta x_1^{II} + (x_1^{3II} - x_1^{III}) \Delta x_2^{II} \right]$$
(D.14)

The change in the element matrix for element type II due to a crack increment Δa is then given by:

a) TYPE I ELEMENT

b) TYPE II ELEMENT

FIG. D.1: TYPICAL TYPE I AND TYPE II ELEMENTS BETWEEN CONTOURS Γ_0 AND Γ_1 .

PROGRAM LISTINGS

APPENDIX E

PRCGRAM TST(INPUT=101E,OUTPUT=301B,TAPE5=INPUT,TAPE6=OUTPUT, 1TAFE1=520,TAPE2=520,TAFE3=520,TAPE4=520) DIMENSION ICC(10),LJ(20),S(20,20),X(8),Y(8),FL(20),U(20),D(3,3), 1AA(4,4),BA(4,4),CA(4,4),AT(3),BT(3),AN(8),ANS(8),ANT(8),V(3,16), 2PX(3),PY(3) DIMENSION A(10000),B(500),BB(500),IX(1050),MHT(501),MDIA(501), 1XX(300),YY(300),CFLN(3,3) WRITE(6,1) READ(5,2) NPROB, IPS, IGR, MT, NS, THICK, GR IF (IPS.EQ.D) WRITE (6,25) IF (IPS.EQ.D) WRITE (6,25) WRITE (6,27) MT,NS,IGR, THICK,GR CALL LAYOUT (XX,YY,X,Y,ICO,IX,LJ,NEM,NEMTR,NET,NEI,NNCD,NVAM,NVAI, INNCM,NNOT,NNOI,NVEM,NVET,NVEI,NMAT,NNET,MHT,NENEW) CALL DIAADD (MDIA,MHT,NNET,LBAND,NVA) CALL DIAADD(MDIA, MHT, NEET, LBAND, NVA) WRITE(6,5) NPROB, NNET, LBAND, NVA NNNN=NNET+2 CALL PSET(A, NVA) CALL PSET(B, NNET) CALL PSET(BB, NNET) CALL PRESET(D,3,3) CALL PRESET(CPLN,3,3) CALL PRESET(CPLN,3,3) CALL PRESET(S,20,20) READ(5,6)EX,EY, ANUYX, ANUZY,GXY XN=EX/EY ANUXY=ANUYX/XN WRITE(6,7)EX, ANUXY,EY, ANUYX,GXY, ANUZY IF(IPS.EQ.1) GO TC 55 D(1,1)=EX/(1-XN*ANUYY**2) IPS.EQ.1) GO TC 55 D(1,1)=EX/(1-XN*ANU)Y**2) D(1,2)=D(1,1)*ANUXY D(2,1)=D(1,2) D(2,2)=D(1,1)/XN D(3,3)=GXY CPLN(1,1)=1.0D0/EX CPLN(1,2)=-XN*ANUXY/EX CPLN(2,1)=CPLN(1,2) CPLN(2,2)=YNKEY CPLN(2,2)=XN/EX CPLN(3,3)=1.000/GXY 55 CONTINUE CPLN(1,1)=(1.0-(ANUYX**2)*EY/EX)/EX CPLN(1,2)=-ANUYX*(1.0+ANUZY)/EX CPLN(2,1)=CPLN(1,2) CPLN(2,2)=(1.0-ANUZY**2)/EY CPLN(3,3)=1.0D0/GXY DDD=EX/((1.0+ANUZY)*(1.0-ANUZY-2.0*ANUYX*ANUYX/XN)) D(1,1)=(1.0-ANUZY**2)*DDD D(1,2)=ANUYX*(1.0+ANUZY)*DDD/XN D(2,1)=D(1,2) D(2,2)=(1.0-ANUYX**2/XN)*DDD/XN D(3,3)=GXY 56 CONTINUE REWIND 1 READ(1) (IX(I), I=1.NMAT) IF(NEM.EQ.0) GO TC 95 DO 9 IEL=1, NEM CALL FREADI(X,Y, IS, IB, LJ, NNCM, NVEM)

- 174 -

CALL MIXEL(S,AA,BA,CA,X,Y,AT,ET,AR,CPLN,IS,THICK) MIXBON(X,Y,S,FL,AR,GR,THICK,IB,IGR,IS,NVEM,PX,PY) SETUP(A,B,MDIA,S,LJ,NVEM,FL) ČALL IF(NEMTR.EG.D) DC 96 TFI-CONTINUE С GC T010 DC 96 IEL=1, NEMTR CALL FREADI(X,Y,IS,IB,LJ,NNOM,NVEM) CALL MIXTRAN(S, AA, BA, CA, X, Y, AT, BT, AR, CPLN, IS, THICK) CALL MIXBCN(X, Y, S, FL, AR, GR, THICK, IB, IGR, IS, NVEM, PX, PY) CALL SETUP(A, B, MCIA, S, LJ, NVEM, FL) CCNTINUE IF (NET.EQ.0) GO TC DO 11 IEL=1,NET 10 12 CALL FREADI(X,Y,IS,IB,LJ,NNOT,NVET) CALL TRANEL(S,AA,EA,CA,X,Y,AT,BT,AR,CPLN,IS,THICK) CALL MIXBON(X,Y,S,FL,AF,GR,THICK,IB,IGR,IS,NVET,PX,PY) CALL_SETUP(A,B,MDIA,S,LJ,NVET,FL) CALL SET CONTINUE 11 IF (NEI.EQ.0) GO TC 13 DO 14 IEL=1,NEI CALL FREADI(X,Y,IS,IB,LJ,NNGI,NVEI) CALL ISOPAP(X,Y,S,FL,Y,D,AN,ANS,ANT,THICK,GR,IS,IGR) CALL ISOBON(FL,X,Y,AN,ANS,ANT,THICK,IS,IB,IEL,PX,PY) CALL SETUP(A,B,MDIA,S,LJ,NVEI,FL) 12 CONTINUE 14 IF(NENEW.EG.0) GO TO 777 DO 888 IEL=1,NENEW CALL_FREADI(X,Y,IS,IB,LJ,NNOM,NVEM) CONTINUE 888 CONTINUE REWIND 3 777 WRITE(3) (A(I), I=1, NVA), (B(I), I=1, NNET) CALL MULTIP(A, BB, B, MHT, MDIA, NNET, LBAND, IX WRITE(6,5) NPROB, NNET, LBAND, NVB -NVB) REWIND 4 WRITE(4) (A(I), I=1, NVE)REWIND 3 READ(3) (A(I), I=1, NVA), (B(I), I=1, NNET) CALL MULT(A, B, BB, NNET, JX, MHT, 1, N ,MHT,1,NNET) REWIND 4 READ(4) (A(I), I=1, NVB) CALL COLSOL (A, BB, MDIA, NNET, NVE, 1) REWIND 1 READ(1) (IX(I), I=1, NMAT) CALL EXPAND(EB, NMAT, IX, FL, NNOD, NVAM) IF(NEI.EQ.0) GO TO 30 WRITE(6,15) IF(NEI.EQ.0) GO TO 30 WRITE(6,15) IF(NEM.EC.0) GO TO 85 CO 16 I=1, NEM CALL FREADI(X,Y,IS,IB,LJ,NNCM,NVEM) CONTINUE 18 IF(NEPTR.EG.0) GC TO 17 DC 86 I=1, NEMTR CALL FREADI(X, Y, IS, IB, LJ, NNOM, NVEM) CONTINUE

95

96

85

IF(NET.EQ.0) GO TO 18 DO 29 I=1.NET CALL FREADI(X,Y,IS,IB,LJ,NNOT,NVET) CONTINUE CONTINUE 17 29 ĨŘ WRITE (6,24) DO 19 IEL=1, NEI CALL FREADI(X,Y,IS,IB,LJ,NNOI,NVEI) DO 20 J=1,NVEI IKK=LJ(J) IF(IKK) 21,22,21 22 U(J)=0.D0 GO TO 20 21 U(J)=88(IKK) 21 21 CONTINUE WRITE(6,23) IEL CALL SIGISC(X,Y,V,D,U,AN,ANS,ANT,MT,NS) CONTINUE REWIND 3 19 30 READ(3) (A(I), I=1, NVA), (B(I), I=1, NNET) STENER=0.0 DO 31 I=1, NNET STENER=STENER+B(I)*BB(I) 31 STENER=STENER/2.0 WRITE(6,32) STENER NE=NEM+NEMTR+NET+NEI NE=NEM+NEMTR+NET+NEI FIE=4.0*ATAN(1.0) CALL DENERG(PIE,X,Y,CPLN,THICK,BB,U,FL,S,NVEM,NMAT,LJ, 1IX,AA,BA,CA,AT,BT,NE,MCIA) WRITE(6,996) 1 FORMAT("1",5X,"*** FINITE ELEMENT SOLUTION TO PLANE ELASTICITY PRO 1ELEM USING ",//,5X," MIXED,TRANSITIONAL AND ISOPARAMETRIC ELE 2MENTS***",//) 2 FORMAT(515,2F10.0) 4 FORMAT(415) 5 FORMAT(415) FOFMAT(/,5X, "PROBLEM NC.", I5, 10X, "TOTAL UNKNOWNS", I5, //, 5X, "BANDWI 10TH", I5, 10X, "MATRIX SIZE", I8, /) FOFMAT(6F10.0) FOFMAT(/,5X, "MODULUS CF ELASTICITY IN X =", F15.1, 10X, "ANUXY =", 5 15 E 24 25 26 27 = ",E20.13,//) 99Ĕ

STCP

}	UNSI I RENSSIIIIIII RENSSIIIIIIII BME ====================================	ISION1- ISI	E CM) N) A 220(J,J,J,J,J) (((J,J,J,J,J),J) (((J,J,J,J,J),J),J) (((J,J,J,J,J),J),J) (((J,J,J,J,J),J),J) (((J,J,J,J),J),J)	ANG(S, ,1),A(3,3) *CFLN(*CFLN(*CFLN() *CFLN() *CFLN(A, B, C, C (4, 1), B (4, 1), B (1, 1), 2 (1, 1), 2 (1, 1), 2 (1, 1), 2 (1, 1), 2 (1, 1), 3 (1, 1	PLN, M, N) (4, 1), C (4,	,1)	
2)	SUEROUT	INE	EMAT ANS (1	RX (ANS), ANT (2, 2)	, ANT, X. 1), X(1)	Y,8,AJ,A ,Y(1),8([,DET) 3,1),AJ(2,2),AI(2,2)
	DO 1 K= AJ(1,1)	=1,8	(1,1)	+ANS(K) *X (K)) *Y (K)			
1	AJ(2,1) AJ(2,2)		(2,1) (2,2)	+ANT (K +ANT (K) *X (K)) *Y (K) . (1 - 2) *	FA.1(2-1)		
	AI(1,1) AI(1,2) AI(2,1))=\j =-A =-A	(2,2) J(1,2)	70ÊT 1)/CET	0(192)			
	AI(2,2) DO 2 K=	=AJ =1,8	(1,1)	DET				
2	E(1,K1) E(3,K1) E(3,K1) E(3,K1) E(3,K1) RETURN END) = A I) = A I + 1) = + 1) =	(1,1) (2,1) 8(3,K 8(1,K	*ANS(K *ANS(K (1) (1))+AI(1))+AI(2)	,2)*ANT(K ,2)*ANT(K)	

- 177 -

A

SUBROUTINE COLSOL(A,V,MAXA,NN,NWK,KKK) TC SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN CCRE, USING С TC SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN CCRE, USING CCMPACTED STORAGE AND COLUMN REDUCTION SCHEME INPUT VARIABLES A (NWK) = STIFFNESS MATRIX STORED IN COMPACTED FORM V(NN) = RIGHT-HAND-SIDE L CAD VECTOR A(NWK) = STIFFNESS MATRIX STORED IN V(NN) = RIGHT-HAND-SIDE LCAD VECTOR CCMPACTED FORM MAXA(NNM) = VECTOR CONTAINING ADDRESSES OF DIAGONAL ELEMENTS OF STIFFNESS MATRIX IN A NN = NUMBER OF EQUATIONS NHK = NUMBER OF ELEMENTS EELOW SKYLINE OF MATRIX NNM = NN + 1 KKK = INPUT FLAG EG.1 TRIANGULARIZATION OF STIFFNESS MATRIX EG.2 REDUCTION AND EACK-SUBSTITUTION OF LOAD VECTOR ŌŬŤPŨŦ A(NHK) = C AND L - FACTORS OF STIFFNESS MATRIX V(NN) = DISPLACEMENT VECTOR THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM OR UNIVAC MACHINES. ACTIVATE CEACTIVATE OR ADJUST ABOVE CARD FOR SINGLE OR DOUBLE PRECISION ACTIVATE, AFITHETIC DIMENSION A(1),V(1),MAXA(1) č NNM=NN+1 FEFFORM L+D+L(T) FACTCRIZATION GF STIFFNESS MATRIX C IF(KKK-2)40,150,150DC 140 N=1,NN KN=MAXA(N) 40 KL=KN+1 KU=MAXA(N+1) - 1 KH=KU - KL IF(KH)110,90,50 K=N-KH IC=0 KLT=KU 50 DC 80 J=1,KH IC=IC + 1 KLT=KLT - 1 KI=MAXA(K) ND=MAXA(K+1) - KI - 1 IF(NC)80,80,60 KK=MINO(IC,ND) 60 C=0. DC 70 L=1.KK C = C + A (KI + L) * A (KLT + L)A (KLT) = A (KLT) - C 70 80 90 K = K + 1K=N B=0. DC 100 KK=KL,KU K=K - 1

 $\begin{array}{l} \mathbf{K}\mathbf{I} = \mathbf{M}\mathbf{A}\mathbf{X}\overline{\mathbf{A}}(\mathbf{K}) \\ \mathbf{C} = \mathbf{A}(\mathbf{K}\mathbf{K}) / \mathbf{A}(\mathbf{K}\mathbf{I}) \end{array}$

- 178 -

100

	A(NM) - A(NM) = 0				
110 120	IF (A(KN))120,120,140 WRITE(6,2000) N,A(KN)				
140	STOP CCNTINUE			X	
C 150	REDUCE RIGHT-HAND-SIDE LCAD VEN	CTOR			
	KL=MAXA(N) + 1 Ku=Maxa(N+1) - 1				
160	IF(KU-KL)180,160,160 K=N				
	C=U. DC_170_KK=KL,KU				
170	C = C + A (K) + V (K)				
180 C	CCNTINUE BACK-SUBSTITUTE				
	DC 200 N=1,NN K=MAXA(N)				
200	V(N)=V(N)/A(K) IF (NN.EQ.1) RETURN				
	N=NN DC 230 L=2,NN				•
	$\begin{array}{c} KL = MAXA(N) + 1 \\ KU = MAXA(N+1) - 1 \\ KU = MAXA(N+1) - 1 \end{array}$				
210	$\begin{array}{c} \text{IF}(\text{KU-KL}) \geq \text{SU}_2 \geq \text{IU}_2 \geq \text{IU} \\ \text{K=N} \\ \text{DO} = 220 \text{KV-V} \text{KI} \\ \end{array}$				
220	K = K - 1 V(K) = V(K) - A(KK) + V(N)				
230	N=N-1 RETURN	•			
200	0 FCRMAT(//,5X,"STCP-STIFFNE 15X,"NONPOSITIVE PIVOT FOR ECONT	SS MATRIX IS GUATION", 15,/	NOT POSI /,5X,"PI	TIVE DEFINIT	E*,//, 2)
	END		-		

```
4/ SUBROUTINE COLHT(MHT, NVEL,LJ)
DIMENSION MHT(1),LJ(1)
LS=10000000
DC 100 I=1,NVEL
IF(LJ(I)) 110,100,110
110 IF(LJ(I)-LS) 120,100,100
120 LS=LJ(I)
100 CCNTINUE
DC 200 I=1,NVEL
II=LJ(I)
IF(II.EQ.D) GO TC 200
ME=II-LS
IF(ME.GT.MHT(II)) MHT(II)=ME
CCNTINUE
RETURN
END
```

- 179 -

3

124

5

- 180 -

```
5)
       SUBROUTINE ELDATA(ICO,LJ, MHT, XX, YY, X, Y, NE, NVAM, NVAI, NNODEL, NVEL,
   1IX)
DIMENSION ICO(1),LJ(1),MHT(1),XX(1),YY(1),X(1),Y(1),IX(1)
       WRITE(6,4)
NV=NVAM
       IF(NNCDEL.EG.8) NV=NVAI
NNN=NNODEL+2
      DC 1 I=1,NE
READ(5,2) (ICO(J),J=1,NNN)
IS=ICO(NNN-1)
IE=ICO(NNN)
       DC 3 J=1, NNODEL
J1=(J-1)*NV
J2=NVAM*(ICO(J)-1)
       YY(J)=Y(ICC(J))
YY(J)=Y(ICC(J))
      YY(J)=Y(ICU(J))
DC 3 K=1,NV
LJ(K+J1)=IX(J2+K)
CALL COLHT(MHT,NVEL,LJ)
WRITE(6,5) I,(ICC(J),J=1,NNN)
WRITE(1) (XX(J),J=1,NNODEL),(YY(J),J=1,NNODEL),IS,IB,(LJ(J),J=1,N
    IVEL)
      CCNTINUE
FORMAT(10I3)
FORMAT(//,5X,"ELEMENT",3X,"NODE NUMBERS",2X,"LAST TWO COLUMNS ARE
IS AND IB",//)
FORMAT(5X,I5,8X,10I4)
   1
       RETURN
       END
     SUBROUTINE EXPAND(B, NMAT, IX, FL, NNCD, NVAR)
DIMENSION B(1), IX(1), FL(1)
WRITE(6,40)
DO 1 I=1, NNCD
I2=NVAR+I
I1=I2-NVAR+1
6)
     II=1
00 2
              J=I1, I2
    FL(II)=0.00
IF(IX(J).NE.0) FL(II)=E(IX(J))
II=II+1
CONTINUE
 2
     hRITE(6,41) I,(FL(K),K=1,5)
RETURN
 1
40
   EORMAT(///,"
1"TXY",/)
                             NODE",9X,"U",18X,"V ",17X,"TXX ",17X,"TYY",17X,
41 FORMAT(1X,15,5E20.8)
71
```

Ś) 2 3	SCPODICIORFRE	BPUTTULI ARAR	ON) S B (A(A)	TIPIIESE		E 3500(01 5 1	F) 5 •) F) BI •PO	S(J57G .G .1(0	0B)(5556 (J.))	0,359T)T E0,	((556)) (I Y	F1 561 10 10	55 55 50 50 50 50 50 50 50 50 50 50 50 5	XY 540 0 = ,1	γ(1 Ε,14 1, FX	3	AN • { • { • {	N • N N N B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8	A 8 0 0	NS1) 88 90 81	S • • • • • • • • • • • • • • • • • • •	A1 A 8 7	NT 8874	185 X	H, 1) 88 96	1 + 3855 3)	SA1 9.6		8	, 1 1) 5 5 4 3)	55 18	L.W 55/	P 3 55	X.)	, P , X 55	Y I 5) (3 55	55	, 6/	,		
	5	JJJOHT SCL		EEE ER(AA	123 IN) HSS		31 EL) (A	GNXX	, A	T C	5	5	NT NS	• • • •		T		L)	J	M) +	A	NS	Ţ	٩L	<pre> 4) </pre>	¥.)	× (1	N)	I											
	£			COR(AAQ +			ELLX31	, S ≈ () × ×	D NXY D		NLL+	S • + +			• (() ·		T)	9 1 7 7 7 7	L) ((J	M)) +	A	NT	· (.		4) 4)	**	× (¥ (J	N)												
	8 7 1						344((1 N (J 1 J 2	J J))	E((X + Z	J) JX Z)))	₹. ₹.	(A (A	N	(J (J	E	()	<) <)))) 4	F H	¥ ¥	P X P Y	(() ()	K)	*	W	(])													
100 50		C WW RF FE	NT IT TU FM C	TEERAT		E45 /B	9	9) 5) 5.	7	IE (F "L		40 (1) ; !	,I VE	= ; C `	1, TO	1 R	6) 1) F ()	IR	E	EL	E	ME	N	T	N	បរ	ME	E	R	=		• •	I	5,	2	x,	, • •	IS	5 **	, /	')
4	1	SUI ADA DEI COCODE		SPPP II	TIVO/GEEEE=	NN (- I - SST11	E 3500EE(**		S1X57GS8	P . (55 . 36	AR() 556001 1201	(1 .56 .6	x) x56000	YS(520)		T2,,4	•1 0 1 0 8	-L1 580	,),8.	B + F (8 8 8 0 1			AN) 18877	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	A18,885	NS 13 38 96	,,(86)	A1),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.202	•F(•F1)	•3A54	G .158	R125	I , ,5	SA25	I (G F 1) 5 9	2) + 55	A1	NS E/	{ 1	.)	,
		CA CA CA		N ON ON		IP T	E R) 1	(A (((D	N 4 •	A S S	NS , A A K	N	A N T 9 C 9	IT X 3	, S , 1	,,6	T B	, I , A 3)	G	R]	ĂI	,	DE	T)																		

E CONTINUE 27 26 RETURN 1000 SUBROUTINE LAYOUT(X,Y,XX,YY,ICO,IX,LJ,NEM,NEMTR,NET,NEI,NNOD,NVAM 1,NVAI,NNOM,NNOT,NNOI,NVEM,NVET,NVEI,NMAT,NNET,MHT,NENEW) DIMENSION X(1),Y(1),XX(1),YY(1),ICO(10),IX(1),LJ(1),MHT(1) (0) REWINE 1 READ(5,1) NEM, NEMTR, NET, NEI, NNOD, NVAM, NVAI, NNOM, NNOT, NNOI WRITE(6,2) NEM, NEMTR, NET, NEI, NNOD, NVAM, NVAI, NNOM, NNOT, NNOI READ(5,777) NENEW 777 FORMAT(I5) WRITE(6,888) NENEW 888 FORMAT(//,5X, "NO. OF NEW ELEMENTS = ",I5,//) NVEM=NVAM*NNOM NVET=NVAM*NNOM NVET=NVAM*NNOT NVEI=NVAI*NCI NEMTR=NUMBER OF MIXED FINITE ELEMENTS NEMTR=NUMBER OF MIXED-TRANSITIONAL FINITE ELEMENTS NET=NUMBER OF TRANSITIONAL ELEMENTS NET=NUMBER OF ISOPARAMETRIC ELEMENTS (8 NODE QUADS) NNCD=TOTAL NODES REWIND -1 NET-NUMBER NET=NUMBER NET=NUMBER OF NET=NUMBER OF NET=NUMBER NET NODÊS S OF NNCD=TOTAL NODES NVAM=CEGREES OF FREEDOM PER NODE FOR MIXE NVAI=CEGREES OF FREEDOM PER NODE FOR ISOP NVAM=DEGREES OF FREEDOM PER NODE FOR MIXE NVAI=CEGREES OF FREEDOM PER NODE FOR ISOP NCTE TRANSITIONAL ELEM. PAS THE SAME D.O NNCM=NC OF NODES PER M.F.E. NNCI=NO. OF NODES PER M.F.E. MIXED ELEMENTS ISOPARAMETRIC ELEM. MIXED ELEMENTS ISOPARAMETRIC ELEM. D.O.F. PER NODE AS M.F.E.S. NNCT=NO OF NGDES PER ISCFARAMETRIC ELE NVEM=NVAM*NNOM D.O.F./M.F.E. NVET=NVAM*NNOT D.O.F./M.F.E. NVET=NVAM*NNOI D.O.F./I.F.E. NVEI=NVAI*NNOI D.O.F./I.F.E. NNCD=TOTAL NO. OF NODES. CALL NODATA(X,Y,IX,NNCD,NVAM) NMAT=NNOD*NVAM NNET=0 DC 12 I=1,NMAT IF(IX(I) -1) 13,14,15 NNET=NNET+1 14 IX(I)=NNET GC TO 12 IX(I)=0 13 GC TO 12 15 IX(I)=IX(II) CCNTINUE WRITE(1) (IX(I 12 (IX(I), I=1, NPAT)DC 20 I=1, NNET MHT(I)=0 26

```
DET=H*DET

DO 3 K=1,16

DO 4 L=1,16

4 ST(K,L)=ST(K,L)+(H(I)*H(J)*AK(K,L)*DET)

3 CONTINUE

IF(IGR.EQ.D) GO TC 27

DET=GR*DET

DO 5 K=1,8

L=2*K

5 FL(L)=FL(L)+(DET*W(I)*H(J)*AN(K))

27 CONTINUE

26 CONTINUE

DC RETURN
```

25 16 17

12

11

IF (NEM.EQ.Q) GO TO 25 CALL ELDATA (ICO, LJ, MHT, XX, YY, X, Y, NEM, NVAM, NVA I, NNOM, NVEM, IX) IF (NEMTR.EG.D) GC TO16 CALL ELDATA (ICO,LJ,MHT,XX,YY,X,Y,NEMTR,NVAM,NVAI,NNOM,NVEM,IX) IF (NEFIX, EG.O., LJ, MHT, XX, YY, X, Y, NEFIX, NYAH, NYAH, NYAF, NYAH, NYAF, NYAH, NYAF, NYAH, NYAF, 18 IF (NENEW.EQ.0) GO TO 19 CALL ELDATA(ICO,LJ, MHT, XX, YY, X, Y, NENEW, NVAM, NVAI, NNOM, NVEM, IX) 19 CONTINUE FCRMAT(1015) FCRMAT(//,5X,"NO. OF MIXED F.E.=",15,5X,"NO. OF MIXED-TRANS. F.E. 1=",15,5X,"NC. OF TRANSITIONAL F.E.=",15,/,5X,"NO. OF ISOPARAMETRIC 2 F.E.=",15,5X,"TOTAL NC. OF NODES=",15,/,5X,"NO. OF D.O.F. PER NOD 3E FOR M.F.E. AND M.T.F.E. AND T.F.E.=",15,5X," 4NO. OF D.O.F. PER NODE FOR ISOPAR.F.E.=",15,/,5X,"NO. OF NODES PER 5 M.F.E.=",15,5X,"NC. OF NODES PER T.F.E.=",15,5X,"NO. OF NODES PER 6 ISOPARA.F.E. = ,15,//) RETURN

SUBROUTINE MIXBON(X,Y,S,FL,AR,GR,H,IB,IGR,IS,NVEL,PX,PY) CIMENSION X(1),Y(1),S(20,1),FL(1),PX(1),PY(1) IF (IS.EQ.D) GO TC 1000 CALL PSET(FL,NVEL) IF (IGR.EQ.D) GO TO 11 GRAV = -AR*H*GR/3.D0 FL(2) = GRAV FL(7) = GRAV FL(7) = GRAV FL(7) = GRAV FL(12) =GRAV IF(NVEL.EG.15) GO TO 11 FL(7)=GRAV/2.0 FL(12)=FL(7) FL(17)=GRAV IF(IB.EQ.0) GO TO 1000 XL =SORT(((X(2)-X(1))**2)+((Y(2)-Y(1))**2)) XL=XL*H IF (IB.EQ.2) GO TC 12 READ(5,5) PX(1),PY(1),FX(2),PY(2),PX(3),PY(2) KRITE(6,6)PX(1),PY(1),FX(2),PY(2),PX(3),PY(2) FORMAT(//,5X,6F10.2) FL(1)=FL(1)+XL*(2.D0*PX(2)+PX(1))/6.D0 11 2) GO TC 12 PX(1), PY(1), FX(2), PY(2), PX(3), PY(3) PX(1), PY(1), FX(2), PY(2), PX(3), PY(3) 5X, 6F10.2)

E FORMAT(//, 5X, 6F10.2) FL(1) =FL(1) +XL*(2.D0*PX(2)+PX(1))/6.D0 FL(2) =FL(2) +XL*(2.D0*PY(2)+PY(1))/6.D0 FL(6) =FL(6) +XL*(2.D0*PY(2)+PY(3))/6.D0 FL(7) =FL(7) +XL*(2.D0*PY(2)+PY(3))/6.D0 WRITE(6,7)(FL(II).II=1,15) 7 FOFMAT(//.5X,5F10.2./,5X,5F10.2)/ GO TO 1000 12 READ(5.2) UK1.UK2,VK1.VK2 S(1,1) =S(1,1) +XL*((UK1/4.D0)+(UK2/12.D0)) S(1,6) =S(1,6) +XL*((UK1/12.D0)+(UK2/12.D0)) S(6.6) =S(6.6) +XL*((UK1/12.D0)+(UK2/12.D0)) S(2,2) =S(2.2) +XL*((VK1/12.D0)+(VK2/12.D0)) S(2,7) =S(2.7) +XL*((VK1/12.D0)+(VK2/12.D0)) S(7.2) =S(2.7) S(7.7) =S(7.7) +XL*((VK1/12.D0)+(VK2/4.D0)) 2 FOFMAT(4F15.0) FOFMAT(4F15.0) FOFMAT(6F10.0)

100Č ENC

SUBROUTINE MULT(A, BB, E, NN, MDIA, MHT, M1, H2) 11.) DIMENSION A(1), BB(1), E(1), MDIA(1), MHT(1) DC 20 I=1, NN B(I)=0.0 D0 1 I=1,NN J1=I-(MDIA(I+1)-MDIA(I)-1) J2=I+MHT(I) IF (J1.LE.0) J1=1 IF (J2.GT.NN) J2=NN AA=0.0 IF(J2.LT.M1.OR.J1.GT.M2) GO TO 10 DO 3 J=J1,J2 MC=MDIA(J+1)-MDIA(J)-1 MC=J-I IF(MD.GT.MC) GO TO 3 IF(MD)210,215,215 MJ=MDIA(I) 210 MC=-MO GC TO 216 MJ=MDIA(J) K=MJ+MD $\overline{A} A = \overline{A} A + \overline{A} (K) + BB (J)$ CCNTINUE B(I)=AA CCNTINUE RETURN END SUBROUTINE MULTIP(A, EB, B, MHT, MOIA, NN, MK, IX, NVB) DIMENSION A(1), BB(1), E(1), MHT(1), MDIA(1), IX(1) REWIND 2 DC 1 J=1, NN B) MH = 0MP=U JM=J+1 MP=MK+J-1 IF(MP.GT.NN) MP=NN DC 3 I=JM,MP MC=MDIA(I+1)-MDIA(I)-1 MD=I-J IF(MD.GT.MC) GO TC 3 MH=I-J CCNTINUE MHT(J)=MH DC 4 J=1,NN JM=J-(MDIA(J+1)-MDIA(J)) MH=0 DC 5 I=1.J MC=I+MHT(I) IF (MH.EQ.1) GO TO 5 IF (MC.LE.JM) GO TO 5 $\frac{MH=1}{I \times (J) = J - I}$ CONTINUE 54 DC 6 J=1,NN JM=MDIA(J+1)-MDIA(J) M1=J-JM+1 DC 7 I=1,NN BE(I)=0.0 DC 8 I=1,JM 7 $\begin{array}{l} MC = MDIA(J) + I - 1 \\ MH = J + 1 - I \end{array}$

20

BE(MH)=A(MC) MP=J+MHT(J) JM1=J+1 DC 9 I=JM1.MP MC=MDIA(I+1)-MDIA(I)-1 MD=I-J IF(MD.GT.MC) GC TC 9 MH=MDIA(I)+I-J BE(I)=A(MH) CCNTINUE M2=MHT(J)+J IF(M1.LE.0)M1=1 IF(M2.GT.NN)M2=NN CALL MULT(A.EB.B.NN, MCIA.MHT.M1,M2) WRITE(2) (B(I),I=1,NN) CCNTINUE NNN=NN+1 WRITE(2) (MDIA(I),I=1,NNN) REWINC 2 CALL DIAADC(MDIA,IX.NN,MK,NVB) WRITE(6,40)NVB FORMAT(//.5X.NVB = .I20) CALL PSET(A,NVB) DC 10 J=1,NN READ (2) (B(I),I=1,NN) JM=MDTA(J+1)-MDIA(J)

- 185 -

WRITE(6,40)NVE WRITE(6,40)NVE 40 FORMAT(//,5X, "NVB =" CALL PSET(A,NVB) DC 10 J=1,NN READ (2) (B(I),I=1,NN) JM=MDIA(J+1)-MDIA(J) DC 11 I=1,JM MC=MDIA(J+1)-I MH=J-JM+I A(MC)=B(MH) CCNTINUE READ(2) (IX(I),I=1,NNN)

RETURN

CCC

	MULT	IPLI	EES	THE	MATE	ICE	S Y	(TR	ANSPO	SE)	≭ . χ
	CIME DO 1 DO 2	NSI(I=1 K=1	DN) L,M	(₩1,	,1),1	(M1	,1),	Z (M 3	,1), S	(M2)	,1)
3	XX=0 00 3 XX=X	• D0 J= X+X	1.M: (I,.	-) * Y	(J,K)	l					
21	Z(I. CONT DO 4	K)=) INUE I=	XX I,Mi	2							
	DO 5 XX=0 DO 6	• 00 J=	L, Mi L, Mi	-							
£	S(I,	X+T K)=)	XX,	L) * Z	(J 9 K)						
54	S(K CONT RETU END	I)=) INUI RN	XX E								

* Y

.

SUBROUTINE MULT1(X,Y,S,Z,M1,M2,M3)

8

9

6

14)

DO 10 J=1,NN READ (2) (B(I),I=1,NN) JM=MDIA(J+1)-MDIA(J) DC 11 I=1,JM MC=MDIA(J+1)-I MH=J-JM+IA(MC)=B(MH) CONTINUE READ(2) RETURN END (IX(I),I=1,NNN) is) SUBROUTINE DIAADD (MDIA, MHT, NNET, MK, NVA) DIMENSION MDIA(1), MHT(1) NN=NNET+1 DC 20 I=1,NN MCIA(I)=0 MCIA(1)=1 MCIA(2)=2 MK=0 IF(NNET.EQ.1) GO TO 100 DC 10 I=2.NNET IF(MHT(I).GT.NK) MK=MHT(I) MDIA(I+1)=MDIA(I)+MHT(I)+1 MK=MK+1 NVA=MDIA(NN)-MDIA(1) RETURN W) SUEROUTINE MIXEL(S.A.B.C.X.Y.AT.BT.AR.CPLN, IS, H) DIMENSION S(20,1), A(4,1), B(4,1), C(4,1), X(1), Y(1), AT(1), BT(1) DIMENSION CPLN(3,3) IF(IS.EQ.0) RETURN CALL PRESET(S,20,15) CALL PRESET (A,4,3) CALL PRESET (B,4,3) CALL PRESET (0,4,3) CALL PRESET (0,4,3) AT(1)=(X(3)-X(2))/6.00 AT(2)=(X(1)-X(3))/6.00 AT(3)=(X(2)-X(1))/6.00 BT(1)=(Y(2)-Y(3))/6.00 BT(2)=(Y(3)-Y(1))/6.DC BT(3)=(Y(1)-Y(2))/6.DC AR=(X(1)*Y(2)+X(2)*Y(3)+X(3)*Y(1)-Y(1)*X(2)-Y(2)*X(3)-Y(3)*X(1))/ 1 2.00 DC 1 DC 2 DC 1 I=1,3 DC 2 J=1,3 A(I,J)=BT(J)*H B(I,J)=AT(J)*H C(I,J)=-AR*H/12.D0 IF (I.EQ.J) C(I,J)=2.C0*C(I,J) CCNTINUE CCNTINUE CALL ARRANG (S.A.P.C.CELN.3.7) CALL ARRANG (S,A,E,C,CFLN,3,3) RETURN END

11

10 100

20

SUBROUTINE NODATA (X, Y, IX, NN, NVAR) DIMENSION X(1),Y(1),IX(1) WF ITE (6,1) DC 2 I=1,NN I2=NVAR*I I1=I2-NVAR+1 READ(5,3) X(I),Y(I),(IX(J),J=I1,I2) WF ITE (6,4)I,X(I),Y(I),(IX(J),J=I1,I2) CCNTINUE FCRMAT(//,4X,"NOTE",7X,"X-CORD",6X,"Y-CORD",8X,"U",3X,"V",3X,"TXX ",1X,"TYY",1X,"TXY",//) FCRMAT(2F10.0,6I3) FCRMAT(1X,I5,5X,F20.9,2X,F20.9,5X,6I4) RETURN END 17) 1 END SUBROUTINE PRESET(A,M,N) DIMENSION A(M,1) CO 1 I=1,M DO 2 J=1,N A(I,J)=0.D0 CONTINUE FETURN ist 2 1 ENC . (4) SUBROUTINE PSET(A,M) DIMENSION A(1) DO 1 I=1,M 1 A(I)=0.D0 RETURN ENC 20) SUBROUTINE SETUP(A,B,MDIA,S,LJ,NVEL,FL) DIMENSION A(1),B(1),MCIA(1),S(20,1),LJ(1),FL(1) DC 200 I=1,NVEL LJR=LJ(I) IF(LJR) 200,200,100 B(LJR)=B(LJR)+FL(I) DC 220 J=I,NVEL LJC=LJ(J) 100 IF(LJC) 220,220,110 IJ=LJR-LJC IF(IJ) 210,215,215 MJ=MDIA(LJC) 110 210 HJ=HDIA(LJC) IJ=-IJ GC TG 216 MJ=MDIA(LJR) KK=MJ+IJ A(KK)=A(KK)+S(I,J) CCNTINUE 215 216 220 CCNTINUE RETURN END

21

SUEROUTINE SHAPE(AN, ANS, ANT, S, T, N) DIMENSION AN(1), ANS(1), ANT(1) IF(N.EG.0) GO TO 1 AN(1) =- (1.00-S) * (1.00-T) * (1.00+S+T)/4.00 211 $\begin{array}{l} AN(2) = -(1 \cdot D0 + S) \neq (1 \cdot D0 - T) \neq (1 \cdot D0 - S + T) / 4 \cdot D0 \\ AN(1) = -(1 \cdot D0 - S) \neq (1 \cdot D0 - T) \neq (1 \cdot D0 + S + T) / 4 \cdot D0 \\ \end{array}$ $AN(1) = -(1 \cdot UU - S) + (1 \cdot UU - T) + (1 \cdot DU + S + T) / 4 \cdot DU$ $AN(2) = -(1 \cdot DU + S) + (1 \cdot DU - T) + (1 \cdot DU - S + T) / 4 \cdot DU$ $AN(3) = -(1 \cdot DU + S) + (1 \cdot DU + T) + (1 \cdot DU - S - T) / 4 \cdot DU$ $AN(4) = -(1 \cdot DU - S) + (1 \cdot DU + T) + (1 \cdot DU + S - T) / 4 \cdot DU$ $AN(5) = (1 \cdot DU - S + S) + (1 \cdot DU + T) / 2 \cdot DU$ $AN(6) = (1 \cdot DU - T + T) + (1 \cdot DU + S) / 2 \cdot DU$ $AN(6) = (1 \cdot DU - S + S) + (1 \cdot DU + T) / 2 \cdot DU$ $AN(7) = (1 \cdot DU - S + S) + (1 \cdot DU + T) / 2 \cdot DU$ AN(8) = $(1 \cdot D0 - T + T) + (1 \cdot D0 - S) / 2 \cdot D0$ 1 ANS(1) = $(1 \cdot D0 - T) + (2 \cdot D0 + S + T) / 4 \cdot D0$ ANS $(2) = (1 \cdot D0 - T) + (2 \cdot D0 + S - T) / 4 \cdot D0$ ANS $(3) = (1 \cdot D0 + T) + (2 \cdot D0 + S + T) / 4 \cdot D0$ ANS $(3) = (1 \cdot D0 + T) * (2 \cdot D0 * S + T) / 4 \cdot D0$ ANS $(4) = (1 \cdot D0 + T) * (2 \cdot D0 * S - T) / 4 \cdot D0$ ANS $(5) = -S*(1 \cdot D0 - T)$ ANS $(6) = (1 \cdot D0 - T*T) / 2 \cdot D0$ ANS $(7) = -S*(1 \cdot D0 + T)$ ANS $(8) = -(1 \cdot D0 - T*T) / 2 \cdot D0$ ANT $(1) = (1 \cdot D0 - S) * (S + 2 \cdot D0 * T) / 4 \cdot D0$ ANT $(2) = (1 \cdot D0 + S) * (2 \cdot D0 * T - S) / 4 \cdot D0$ ANT $(3) = (1 \cdot D0 - S) * (2 \cdot D0 * T + S) / 4 \cdot D0$ ANT $(4) = (1 \cdot D0 - S) * (2 \cdot D0 * T - S) / 4 \cdot D0$ ANT $(5) = -(1 \cdot D0 - S) * (2 \cdot D0 * T - S) / 4 \cdot D0$ ANT(5)=-(1.00-S*S)/2.00 ANT(6)=-T*(1.00+S) ANT(7)=(1.00-S*S)/2.00 ANT(8)=-T*(1.00-S) RETURN SUBROUTINE SIGISO(X,Y,E,D,U,AN,ANS,ANT,M,N) DIMENSION X(1),Y(1),B(3,1),D(3,1),U(1),AN(1),ANS(1),ANT(1), 1STFAIN(3),STRESS(3),AJ(2,2),AI(2,2) 221 CALL PRESET(8,3,16) AA=N-1 EB=M-1 DO 50 J=1,N CC=J-1 S=-1.00+CC*2.00/AA D0 51 I=1,M D0=I-1 T=-1.00+00*2.00/8E CALL SHAPE (AN, ANS, ANT, S, T, 1) CALL BMATRX (ANS, ANT, X, Y, B, AJ, AI, DET) XX=0.00 ÝY=0.00 DO 4 K=1,8 XX=XX+X(K) * AN(K) 4 YY=YY+Y(K) * AN(K) XX=XX+1.E-8 RATIO=YY/XX THETA=ATAN(RATIO) #180.00/3.1415926 $\begin{array}{c} \overrightarrow{\mathsf{RACIUS}} = \overrightarrow{\mathsf{SQRT}} \left(\overrightarrow{\mathsf{X}} \overrightarrow{\mathsf{X}} \overrightarrow{\mathsf{X}} \overrightarrow{\mathsf{Y}} \overrightarrow{\mathsf{Y}} \overrightarrow{\mathsf{Y}} \overrightarrow{\mathsf{Y}} \overrightarrow{\mathsf{Y}} \overrightarrow{\mathsf{Y}} \end{array}\right) \\ \overrightarrow{\mathsf{DO}} \quad 5 \quad \overrightarrow{\mathsf{K}} = \cancel{1}, 3 \end{array}$ ZZ=0.D0 C0 6 L=1,16 ZZ=ZZ+8(K,L)+U(L) SIFAIN(K)=ZZ DO 7 K=1,3 ZZ=0.00 22-0:00 DO_8 L=1,3 ZZ=ZZ+C(K,L)*STRAIN(L) STRESS(K)=ZZ WRITE(6,52) J,I,XX,YY, CONTINUE J, I, XX, YY, FADIUS, THETA, (STRESS(K), K=1, 3) 51 50 CONTINUE FETURN 52 FORMAT(2110,7E14.5) ENC

2) SUERCUTINE TRANEL(S,A, DIMENSION S(20,1),A(4 CIMENSION CFLN(3,3) IF (IS.EG.0) GC TO 10 CALL PRESET (S,20,20) CALL PRESET (A,4,4) CALL PRESET (B,4,4) CALL PRESET (B,4,4) TRANEL (S,A,E,C,X,Y,AT,BT,AR,CPLN, IS,H) S(20,1),A(4,1),B(4,1),C(4,1),X(1),Y(1),AT(1),BT(1) 1000 PRESET (0,4,4) ĊAŨŨ AT(1) = X(3) - X(2) AT(2) = X(1) - X(3) AT(3) = X(2) - X(1)BT (1)=Y(2)-Y(3) BT (2)=Y(3)-Y(1) BT (3)=Y(1)-Y(2) AR=(X(1) *Y(2) +X(2) *Y(3) +X(3) *Y(1) -Y(1) *X(2) -Y(2) *X(3) -Y(3) *X(1))/ 2.D0 1 EA=H/(360.0*AR) EA=H/(360.0*AR) E1=CPLN(2,2)/(CPLN(1,1)*CPLN(2,2)-CPLN(1,2)**2) E2=1.00/CPLN(3,3) E3=-CPLN(1,2)/(CPLN(1,1)*CPLN(2,2)-CPLN(1,2)**2) E4=CPLN(1,1)*E1/CPLN(2,2) CALL TRANAB(A,BT,BT,EA) CALL TRANAB(A,BT,BT,EA) CALL TRANAB(B,AT-AT-FA) CALL TRANAE (A, BT, BT, EA) CALL TRANAE (E, AT, AT, EA) CALL TRANAE (C, BT, AT, EA) DO 1 I=1,4 I1=(I-1)*5+1 I2=I1+1 DC 2 J=1,4 J1=(J-1)*5+1 J2=J1+1 S(I1-11)=E1*A(T-1)+E2*B J1=(J-1)*5+1 J2=J1+1 S(I1,J1)=E1*A(I,J)+E2*B(I,J) S(I1,J2)=E3*C(I,J)+E2*C(I,J) S(I2,J2)=E4*B(I,J)+E2*C(I,J) CCNTINUE EA=H/360.0 CALL TRANCC(A,B,AT,BT,EA) DC 3 I=1,4 I1=(I-1)*5+1 S(I1,3)=A(I,1) S(3,I1)=A(I,1) S(5,I1)=B(I,1) CALL TRANCC(A,B,ET,AT,EA) DC 4 I=1,4 I1=(I-1)*5+2 S(I1,4)=A(I,1) S(4,I1)=B(I,1) S(3,3)=CPLN(1,1)*TERM1 S(4,4)=CPLN(2,2)*TERM1 S(4,3)=S(3,4) S(5,5)=CPLN(3,3)*TERM1 RETURN 1000

3

4

	24)		BM 11(122)	ON12 3112			E			A JAB+ BAA	N4 (B((()	A)))))))))	(8**)***	C(BA + ABB		,,))2)))	AA -)+	• 6 + 1 6 3		0	¥ 20 ¥ ¥)(1))	* 1)* 8 *	A (# A ()	3A(33)(3)	5) -3	0	• (} ≠	A	(3)	÷.	3 (21		+6	0	• 0)*	A	[3) 4	Ł	
			1223333	3) 4) 1) 2)		30 -1 21 -8 21	2			(* 444	24((()(123))	8)***	(* 889		- 2)))	8)-+-	• - 61 31	75 50 0.	*	A 0 + + ;		3) (1 (2	* 2)))	B) * # [(2 *B 3 (3 () (223	3))))	-3	6	0.	, 0)+	¥≠ A∃	4 ((3	3) * * E	• 8 8 ((2) 2)	2)) 1	+6	0	• [)¥	Δ (12) 4	L	
		18(2 C(C(C(1*8()34443	4) 1) 2) 4)		-1252	20.0		• 0 • A • A • A	¥ A { A	A ()	(2) 1) 2)) *8 *	*) 8 8	B (23) (2))+6+	+(1)	5020	• • •	0 0 0 0	₩ # # <u>/</u> / /	\ (3) \ (217 2)* 	*B (2 *B	(())	31 31 -1 31	- 2 +	6 0 1	0 2()*)*	¥ / 01	(3 (3	3) * *{ 3)	·9 3 ((2 31 8	2)) (2	2)	+.	24	ŧÛ	. () *	Δ ([3])
		C C C C C C C C C C C C C C C C C C C	4 1 2 NT D				2440	0.	• 0 I •	* J	A }	(2	2)	¥	8((2	.)	+ 1	60	•	0 '	¥ /	4 (3) "	*B	(21)	6	0.	. 0	₹ ,	A (2) 1	*9		3)	•								
	4	SDI1234121234	BM , , , , , , , , TD	0N))))))) US======N			E 555+555+				N(1)121 121 121		COMPANIE MEME		, E	1	Δ)	T ;		Ţ	1)	T	(.1	L)																						
2	6 4 5	BIMIRFAAAAATTTTTTTTR.CC=====AAA SUDUROICCCAAAABBBA201234CCC 1 DEEEE	RMETM(LLLL((((((=D=HH-ELLL 0ENEAILLLL23123(0(+/H1LLL	UNS(TS)))))X (C(**	IIO VERRRR()))))))) IIIIIIIIIIIIIIIIIIIIIIIIII		CESOBERESTANSIN (S((CAAA			TD((5E,ABC(((((+)/)))ABC	R 31XT2 99 231312X # D# // 99 *	AL, , , , , , , , , , , , , , , , , , ,	(% IFN1333) L * CL , , .	SA =1 5))) + N 6 NBAA			B1),) 2 2	+)		X ((,4 ; I ; L !	+ Y (A)	T • • • • • • • • • • • • • • • • • • •	• E (1 1 1) - 2)	-Y		1) 1)	• • • · · · · · · · · · · · · · · · · ·	X	PL (1) (2) R =	N)) -		2		A	T (3)	.)	, ∣	B T		1) *×		1)).	

2 1

DC 10 I=1,3 I1=(I-1)*5+1 I2=I1+1 DC 20 J=1,3 J1=(J-1)*5+1 J2=J1+1 S(I1,J1)=E1*A(I,J)+E2*B(I,J) S(I1,J1)=E3*C(J,I)+E2*C(J,I) S(I2,J1)=E3*C(J,I)+E2*C(I,J) S(I2,J2)=E4*B(I,J)+E2*A(I,J) CCNTINUE DC 1 I=1,3 DC 2 J=1,3 A(I,J)=BT(J)*H/12.0 B(I,J)=AR*H/(12.0D0)*0.50D0 IF(I.EG.J) C(I,J)=C(I,J)*3.0D0 CCNTINUE CCNTINUE 20 CCNTINUE CCNTINUE DC 3 I=1,3 I1=(I-1)*5+1 S(I1,3)=A(1,I) S(3,I1)=S(I1,3) S(I1,5)=B(1,I) S(5,I1)=S(I1,5) S(I1,8)=S(I1,3) S(8,I1)=S(I1,8) S(I1,10)=S(I1,5) S(10,I1)=S(I1,5) S(10,I1)=S(I1,10) DC 4 I=1,3 I1=(I-1)*5+2 S(I1,4)=B(1,I) D0 4 I=1,3 I1=(I-1)*5+2 S(I1,4)=B(1,I) S(4,I1)=S(I1,4) S(5,I1)=A(1,I) S(I1,5)=S(5,I1) S(I1,5)=S(I1,4) S(9,I1)=S(I1,9) S(I1,10)=S(I1,9) S(10,I1)=S(I1,10) DC 5 I=1,2 I1=(I-1)*5+3 J2=(J-1)*5+3 J2=(J-1)*5+4 S(I1,J1)=C(I,J)*CFLN(1,1) S(J2,I1)=S(I1,J2) CCNTINUE DC 7 I=1,2 I1=(I-1)*5+4 I2=I1+1 DC 8 J=1,2 J1=(J-1)*5+4 I2=I1+1 S(I1,J1)=C(I,J)*CFLN(2,2) S(I2,J2)=C(I,J)*CFLN(3,3) CCNTINUE RETURN FND 8 RETURN 1000 27

SUBROUTINE TRANAC(C, E, A) DIMENSION C(4,1), E(1), A(1) DC 1 I=1,3 DC 2 J=1,3 C(I,J)=B(I)*A(J) CCNTINUE RETURN RETURN END

- 191 -

21

4

65

7

3

21

SUBROUTINE DENERG(PIE, X, Y, CPLN, THICK, B, U, V, S, NVEL, NMAT, LJ, 1IX, AA, BA, CA, AT, BT, NE, MDIA) CIMENSION S(20,1), X(1), Y(1), B(1), U(1), V(1), LJ(1), IX(1), AA(4,1), 1EA(4,1), CA(4,1), AT(1), ET(1), IE(26), MDIA(1), CPLN(3,3) DIMENSION BBT(500), SYMEB(500), ASYMBB(500), UN1(20), UN2(20), 1VN1(20), VN2(20), NCDE1(36), NGDE2(36), NODET(36) WRITE(6,200) CONFORMAT(//, 5X, THEFTER AFOUND CRACK TIP CIENECRACK LENGTH 28 200 0000000 CLEN=CRACK LENGTH FACTOR--CHANGE IN CRACK LENGTH(DELA)=FACTOR*CLEN NN1=NC. OF DIRECTION FOR WHICH ENERGY RELEASE RATE IS TO BE CALC. NCCNTR=NUMBER OF CONTOURS TO BE MOVED READ(5,21)NTIF,CLEN,FACTOR,NN1,NCCNTR FORMAT(I5,F20.10,E20.10,2I5) PI=2.00*PIE/NTIP PI=PI/4.00 CELA=FACTOR*CLEN WRITE(6,22)DELA,NTIP,NN1 FORMAT(/,5X,"CRACK LENGTH =",F20.10,5X,"NO. OF DIVISIONS=",I5,5X, 1"NN1 =",I5) 21 22 NCDE=NO. OF NODES WHOSE DISPLACEMENTS ARE TO BE SEPARATED INTO SYMETRICAL AND ANTISYMMETRICAL PARTS NCDEN= ANGLE=ORIENTATION OF CRACK TIP W.R.T. GLOBAL X-AXIS NCCE1=NOCE NC. ON SIDE 1 CF CRACK NCCE2=NODE NO. ON SIDE 2 CF CRACK K1K2== INPUT=1 IFENERGY FELEASE RATE FOR MODE 1 AND2 ARE NEEDED K1K2== INPUT=1 IFENERGY FELEASE RATE FOR MODE 1 AND2 ARE NEEDED =0 OTHERWISE READ(5,23)K1K2 23 FORMAT(I5) WRITE(6,231)K1K2 231 FORMAT(/,5X,"K1K2 =",I5,/) READ(5,24) ANGLE 24 FORMAT(F20.10) WRITE(6,25)ANGLE 25 FORMAT(/,5X,"CRACK TIP IS AT",F20.10,5X,"DEGREES TO THE X-AXIS") ANGLE=2.D0*FIE*ANGLE/3E0.D0 231 С IF (K1K2.NE.1) GO TO 401 READ(5.26)NODE,NODEN FORMAT(215) 26 FURMAT(215) kRITE(6,91)NODE, NCDEN FORMAT(/,5X, "NODE =", I5,5X, "NODEN =", I5,/) READ(5,27)(NODET(IK), IK=1,NODE) FEAD(5,27)(NODE1(IK), IK=1,NODEN) FORMAT(2(24I3)) wRITE(6,92)(NODET(IK), IK=1,NODE) HETTE(6,92)(NODET(IK), IK=1,NODE) G 1 27 WRITE(6,92)(NODE1(IK),IK=1,NODEN) WRITE(6,92)(NCDE2(IK),IK=1,NODEN) 92 FORMAT(5X,//,10(/,5X,10I5)) C č BEFORE DECOMPOSING INTO SYMMETRICAL AND ANTISYMMETRICAL PARTS, CARRY CUT TRANSFORMATION FROM GLOBAL TO X"-Y" AXIS AT CRACK TIP

- 192 -

	D0==== 12== 13== 15== 161== A2=	6511345 · ·	1N-++++DD	K D +	=1 E T 1		N 0 <	DE							3																
	CO= SI=(IF() IF() IF() TY=	CSIXXXX E	SN(11111) ()(1111)	A 41313X	NG	LLNNNN4)		0) 0) 0)	A A B E	1= 2= 81 81	=8 =8 f(() [] []	IX IX X X (((I I	I13 13 13))))))))) = A = A	12	+ C	00	+ A - A	2*	S	I		•					
601	EBT EBT EBT CON	=8 (I (I T T	(I X(X(NU	XIIIE	(1 4) 5) 6)	(6)):):)	X* X* T \	+C +S /-	0' 1' T)	*C *S X)	0 I	+T +T S I	Υ Υ * {	*S *C C0	13 01 +1	FC CX	I O Y	+2 -2 + (•	00 00 07	*1 *1 CC		γ* γ* 5Ι	S1 S1 \$2	[* [*])			
SEPA	RATE	8	BT	•	IN	T	9	S١	۲۲	M	ET	R	IC	A1	L	A	٩D	j	A N	T	IS	Y٢	M	ET	R	[C	AL		PA	RT	S
	CNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6=====================================	200NNTTUDEUDE0000	IEE12+++++++	K12-11111111		1KK**	N())))))))))))))))))))))))))))))))))))		El	N																				
	IFFF(()11Y22YMM	IIII==1==2UVV	(() (BBBBBBBC) = -		1122II(II(+12))))XXIXXIU-	X () X ()		····11F22F2/					ET ET ET		IX IX IX			1122)))))))))												

- 193 -

С

CCC

	ASYMU2 ASYMU2 ASYMU2 SYMTX2 ASYMTX2 ASYMTY2 ASYMTY2 ASYMTY22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMTX22 SMT2	(V1+Y- =(U2++ (U2++1-+ (-)- (-)- (-)- (-)- (-)- (-)- (-)- (-	2)/2.00 U2)/2.0 U2)/2.0 TX2)/2.0 ASMTX1/2 ASMTX1/2 ASMTY1/2 SMTX1/2 SMTX1/2 1+TX12	0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 0	
	IX110 IX10 IX10	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	SYYMBBE SYYMBBE SYYMBBE SYYMBBE SSYYMBE SSY SSY SSY SSY SSY SSY SSY SSY SSY SS	<pre>I1) =SYMU*CO-SYMV1*SI I2) =SYMU*SI+SYMV1*CO I3) =SYMU*CO-SYMV2*SI I4) =SYMU*SI+SYMV2*CO (I1) =ASYMU1*CO-ASYMV*SI (I2) =ASYMU1*CO-ASYMV*SI (I2) =ASYMU2*CO-ASYMV*SI (I4) =ASYMU2*CO-ASYMV*CO MTX*CO*CO+SYMTY*SI*SI-2.DO*SMTXY1*SI*CO MTX*SI*SI+SYMTY*CO*CO+2.DO*SMTXY1*SI*CO YMT>-SYMTY)*SI*CO+SMTXY1*(CO*CO-SI*SI) MTX*CO*CO+SYMTY*SI*SI-2.DO*SMTXY2*SI*CO YMT>-SYMTY)*SI*CO+SMTXY2*(CO*CO-SI*SI) MTX*SI*SI+SYMTY*CO*CO+2.DO*SMTXY2*SI*CO YMT>-SYMTY)*SI*CO+SMTXY2*(CO*CO-SI*SI) SMT>1*CO*CO+ASMTY1*SI*SI-2.DO*ASMTXY*SI*CO SMT>1*SI*SI+ASMTY1*CO*CO+2.DO*ASMTXY*SI*CO SMT>1*SI*SI+ASMTY1*CO*CO+2.DO*ASMTXY*SI*CO SMT>1*SI*SI+ASMTY1*CO*CO+2.DO*ASMTXY*SI*CO SMT>1*SI*SI+ASMTY1*CO*CO+2.DO*ASMTXY*SI*C SMT>1*SI*SI+ASMTY1*CO*CO+2.DO*ASMTXY*SI*C ASMTX1-ASMTX2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*CO*CO+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C SMT>2*SI*SI+ASMTY2*SI*SI-2.DO*ASMTXY*SI*C</pre>	0 0 0
401 95	CONTINUE RTTE(6, WRITE(6, WRITE(6, FORMAT(5)	95)(A 95)(S 95)(A X,//,	(IK),I YM88(I SYM88(20(/,5)	K=1,400) K),IK=1,400) IK),IK=1,400) X,5E16.5))	
NJ. CCI IE= MD:	J=NC• OF TOUR MCV ELEMENT [A=ELEMEN	ELEME ED NG. C IT TYP	NTS WH	OSE STIFFNESS ARE ALTERED WITHIN THE SPEC Ents within the specific contour moved Tifier	IFIC
28	DO 121 I READ(5 FORMAT READ(5 READ(5) FORMAT	J=1,N (215) (29)((29)(ICONTR IJJ IE(I) MDIA(I	I=1,NJJ)),I=1,NJJ)	
38	WRITE(WRITE(FORMAT	6,30)	ÍJ,(IE IJ,(MD	(I) $_{1}$ =1,NJJ) IA(I) $_{1}$ =1,NJJ) IA(I) $_{1}$ =1,NJJ) IA(I) $_{1}$ =1,NJJ)	

- 194 -

31 FORMAT(//,5X, "CONTOUR NO.", I3, 2X, "ELEM TYPES", 2613, /) ALPHA=0.0 DO 603 I=1,NN1 II=I-1ALPHA=PI*FLCAT(II) DXB=CELA*COS(ALPHA) DYB=0.0-DELA*SIN(ALPHA) DX=DXB*COS(ANGLE)-DYE*SIN(ANGLE) DY=DXB*SIN(ANGLE)+DYE*COS(ANGLE) WRITE(6,32)DX,DY,ALPHA FORMAT(//,5X, DISPL. IN X DIRECTION =".F15.8,/,5X, "DISPL. IN Y DIRECTION =".F15.8,/,5X,"ALPHA =".F15.6,/) 32 REWIND READ(1)(IX(MM),MM=1,NMAT) IM=0.0 DENG=0.0 DENG1=0.0 DENG2=0.0 CO 102 IL=1,NJJ IEL=IE(IL) IM=IM+1 130 READ(1)(X(J),J=1,3),(Y(J),J=1,3),IS,IB,(LJ(J),J=1,NVEL)
IF(IM.EQ.IEL) GC TO 103
CO TC 130 103 1S=1 IB=MDIA(IL) IF(IB.EQ.2) GO TO 104 AR=(Y(2)-Y(1))*DX+(X(1)-X(2))*DY AR=AR/2.DO IF(IEL.GT.NE) GO TO 140 $\dot{x}(1) = \bar{D}\dot{x}$ $\dot{x}(2) = D\dot{x}$ X(3)=0.D0 Y(1)=DY Y(2)=DY Y(3)=0.00 GO TO 105 X(1)=X(1)+DX 140 Y(1) = Y(1) + DYX(2) = X(2) + DX//2/=/(2)+UX
//2)=Y(2)+DY
GO TO 105
104 AR=(Y(2)-Y(3))*DX+(X(3)-X(2))*DY
AR=AR/2.D0
IF(IEL.GT.NE) GO TO 141
X(1)=DX
//2)=0 $x(2) = 0 \cdot 00$ $x(3) = 0 \cdot 00$ Y(1)=DY Y(2)=0.D0 Y(3)=0.00 GO TO 105 X(1)=X(1)+DX 141 Y(1)=Y(1)+DY IF (I.EG.1.AND.IEL.GT.NE) GO TO 102 IF (I.EG.NN1.AND.IEL.GT.NE) GO TO 102 CALL MIXEL2(S,AA,BA,CA,X,Y,AT,BT,AR,CPLN,IS,THICK) 105

IF(ALPHA.NE.0.0) GO TO 801 IF(K1K2.NE.1) GC TO 801 DO 604 J=1,NVEL IKK=LJ(J) IF(IKK)308,309,308 UN1(J)=0.00 UN2(J)=0.00 GO TO 604 UN1(J)=SYMBB(IKK) 309 308 UN2(J)=ASYMEB(IKK) CONTINUE 604 DO 605 K=1,NVEL XEN1=0.0 XEN2=0.0 D0 606 J=1, *VEL XEN1=XEN1+S(K,J)*UN1(J) XEN2=XEN2+S(K,J)*UN2(J) 608 VN1(K) = XEN1VN2(K) = XEN2605 CONTINUE XEN1=0.D0 XEN2=0.00 D0 607 K=1,NVEL XEN1=XEN1+(VN1(K)*UN1(K))/2.00 XEN2=XEN2+(VN2(K)*UN2(K))/2.00 CONTINUE DENG1=DENG1+XEN1 CENG2=DENG2+XEN2 607 CENGEDENG1+DENG2 GO TO 102 CONTINUE DO 107 J=1,NVEL IKK=LJ(J) IF(IKK) 108,109,108 801 109 U(J)=0.D0 G0 T0 107 U(J)=B(IKK) CONTINUE 108 CO 110 K=1,NVEL XEN=0.00 DO 111 J=1,NVEL XEN=XEN+S(K,J)*U(J) 111 110 V(K)=XEN XÈN=0.00 DO 112 K=1.NVEL 112 XEN=XEN+(V(K)*U(K)/2.DC) DENGEDENG +XEN 102 CONTINUE U2 CONTINUE DENG=DENG/DELA IF (ALPHA.NE.D.D) GO TO 802 IF (K1K2.NE.1) GO TO 802 DENG1=DENG1/DELA DENG2=DENG2/DELA WRITE (6,33) IJ, DENG1, DENG2 33 FOFMAT(//,5X, "CONTCUR NO. ",I3,/,5X, "MODE 1 ENERGY RELEASE RATE=", 1E20.10,/,5X, "MODE 2 ENERGY RELEASE RATE=",E20.10,/) 02 CONTINUE WPITE (6.34) I.1.DENG 802 WRITE(6,34)IJ,DENG 34 FOFMAT(//,5X, CONTOUR NO.",I3,5X, "STRAIN ENERGY RELEASE RATE =", 1E20.10./) CONTINUE 603 CONTINUE 121 RETURN END

SUBROUTINE TRANEL (S, A, B, C, X, Y, AT, BT, AR, E, ANU, XN, G, IS, H) DIMENSION S(20,1), A(4,1), B(4,1), C(4,1), X(1), Y(1), AT(1), BT(1) IF (IS.EG.0) GO TO 1000 CALL PRESET (S,20,20) CALL PRESET (A,4,4) CALL PRESET (B,4,4) CALL PRESET (C,4,4) AT(1)=X(3)-X(2) AT(2)=X(1)-X(3) BT(1)=Y(2)-Y(3) BT(1)=Y(2)-Y(3) BT(2)=Y(1)-Y(2) DC 12 I=1,3 BT(I)=H*BT(I) AT(I)=H*AT(I) ĂŢ(Ī)=H¥ĂŢ(Ī) AR=(X(1) *Y(2) +X(2) *Y(3) +X(3) *Y(1) -Y(1) *X(2) -Y(2) *X(3) -Y(3) *X(1))/ 12 2.00 EE=-AR+H/E 1 EE=-AR*H/E C(1,1)=EE/6.D0 C(1,2)=EE/20.D0 C(1,3)=C(1,2) C(1,4)=EE/15.D0 C(2,2)=7.D0*EE/90.D0 C(2,3)=-EE/180.D0 C(2,4)=2.D0*EE/45.D0 C(3,3)=C(2,2) C(3,4)=C(2,4) C(4,4)=8.D0*EE/45.D0 D0 1 I=1,4 C(4,4)=8.D0*EE/45.D0 D0 2 J=I,4 C(J,I)=C(I,J) CONTINUE CALLTRANAB(A,BT) CALLTRANAB(A, BT) CALL TRANAB(B, AT) CALL ARRANG(S, A, E, C, ANU, XN, G, 4, 4) RETURN 1000 SUEROUTINE TRANAB(A,BT) CIMENSION A(4,1), ET(1) A(1,1)=BT(1)/6.D0 A(1,2)=(BT(2)-BT(3))/12.D0 A(1,3)=-A(1,2) A(1,4)=(BT(2)+BT(3))/6.D0 A(2,1)=BT(1)/12.D0 A(2,2)=(BT(2)-1)=TT(3))/4 A(2,1)=BT(1)/12.D0 A(2,2)=(BT(2)-1.5*BT(3))/15.D0 A(2,3)=-(BT(2)+BT(3))/60.D0 A(2,4)=(BT(2)+6.D0*BT(3))/30.D0 A(3,1)=A(2,1) A(3,2)=A(2,3) A(3,3)=(-1.5*BT(2)+BT(3))/15.D0 A(3,4)=(6.D0*BT(2)+BT(3))/30.D0 A(4,1)=A(1,1) A(4,2)=(BT(2)-4.D0*BT(3))/30.D0 A(4,3)=(-4.D0*BT(2)+BT(3))/30.D0 A(4,4)=8.D0*(BT(2)+BT(3))/30.D0 A(4,4)=8.D0*(BT(2)+BT(3))/30.D0 RETURN END END

- 197 -

BIBLIOGRAPHY

- Pian, T.H.H., and Tong, P., "Basis of Finite Element Methods for Solid Continua", International Journal for Numerical Methods in Engineering, Vol. 1, 1969, pp. 3-28.
- [2] Reissner, E., "On a Variational Theorem in Elasticity", Journal of Mathematics and Physics, Vol. 29, 1950, pp. 90-95.
- [3] Sokolinkoff, I.S., Mathematical Theory of Elasticity, McGraw Hill, 1956.
- [4] Oden, J.T., "Some Contribution to the Mathematical Theory of Mixed Finite Element Approximations", Theory and Practice in Finite Element Analysis (Eds. Y. Yamada and R.H. Gallagher), University of Tokyo Press, 1973.
- [5] Oden, J.T., and Reddy, J.N., "On Mixed Finite Element Approximations", SIAM Journal of Numerical Analysis, Vol. 13, 1976, p. 392.
- [6] Oden, J.T., and Lee, J.K., "Theory of Mixed and Hybrid Finite Element Approximations in Linear Elasticity", Proceedings, IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Marseilles, France, Sept. 1975.
- [7] Mirza, F.A., and Olson, M.D., "The Mixed Finite Element Method in Plane Elasticity", International Journal for Numerical Methods in Engineering, Vol. 15, 1980, pp. 273-289.
- [8] Mirza, F.A., "Convergence of Mixed Methods in Continuum Mechanics and Finite Element Analysis", Ph.D. Thesis, University of British Columbia, 1977.
- [9] Zienkiewicz, O.C., The Finite Element Method in Engineering Science, McGraw Hill, London, 1971.
- [10] Bradley, G.L., A Primer of Linear Algebra, Prentice-Hall, New Jersey, 1975.
- [11] Kanarachos, A., "Ritz-Galerkin and least squares finite element methods for incompressible viscous flow", Department of Mechanical Engineering, Ruhr University, Bochum, Germany, 1979.
- [12] Bathe, J.K., and Wilson, E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976.
- [13] Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, 3rd Edition, McGraw Hill, New York, 1970.
- [14] Savin, G.N., Stress Concentration Around Holes, Pergamon Press, 1961.
- [15] Griffith, A.A., Phil. Trans. Royal Society, A221, 1921, pp. 163.
- [16] Griffith, A.A., Proc. 1st Int. Congr. Applied Mech., Delft, 1924, p. 65.
- [17] Irwin, G.R., "Fracture", Encylcopedia of Physics, Vol. 6, Springer, pp. 551-590.
- [18] Irwin, G.R., "Relation of Crack-Toughness Measurements to Practical Applications", AWS-ASME Meeting, Cleveland, Ohio, 1962.
- [19] Irwin, G.R., "Fracture Mechanics", Structural Mechanics, Pergamon Press, New York, New York, 1960, pp. 557-592.
- [20] Sih, G.C., and Liebowitz, H., "Mathematical Fundamental of Fracture", Academic Press, New York, 1968, p. 67.

- [21] Williams, M-L., "On the Stress Distribution at the Base of a Stationary Crack", Journal of Applied Mechanics, Vol. 24, 1957, pp. 109-114.
- [22] Paris, D.C., and Sih, G.C., "Fracture Toughness Testing and Its Application", ASTM Special Technical Publication, No. 381, Philadelphia, Pa., 1965, pp. 30-81.
- [23] Chan, S.K., Tuba, I.S., and Wilson, W.K., "On the Finite Element Method In Linear Fracture Mechanics", Engineering Fracture Mechanics, Vol. 2, 1970, pp. 1-17.
- [24] Mowbray, D.F., "A Note on the Finite Element Method in Linear Fracture Mechanics", Engineering Fracture Mechanics, Vol. 2, 1970, pp. 173-176.
- [25] Hayes, D.J., "A Practical Formulation for Determining Stress Intensity Factors for Cracked Bodies", International Journal of Fracture Mechanics, Vol. 8, 1972, pp. 157-165.
- [26] Rice, J.R., "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks", Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
- [27] Rice, J.R., "Mathematical Analysis in the Mechanics of Fracture", An Advanced Treatise, Vol. 2 (ed. Liebowitz, H.), Academic Press, 1968, pp. 191-311.
- [28] Park, D.M., "A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors", International Journal of Fracture, Vol. 10, 1974, pp. 487-501.
- [29] Tracey, D.M., "Finite Element for Determination of Crack Tip Stress Intensity Factors", Engineering Fracture Mechanics, Vol. 3, 1972, pp. 255-267.

- [30] Byskov, E., "The Calculation of Stress Intensity Factors using the Finite Element Method with Cracked Elements", International Journal of Fracture Mechanics, Vol. 6, 1970, pp. 159-167.
- [31] Pian, T.H.H., Tong, P. and Luk, C.H., "Elastic Crack Analysis by a Finite Hybrid Method", 3rd Air Force Conf. Matrix Meth. Struct. Mech., Dayton, Ohio, 1971.
- [32] Alturi, S.N., Kobayashi, A.S., and Nakagaki, M., "Fracture Mechanics Application of an Assumed Displacement Hybrid Finite Element Procedure", AIAA Journal, Vol. 13, No. 6, 1975, pp. 734-739.
- [33] Mirza, F.A., and Olson, M.D., "Energy convergence and Evaluation of Stress Intensity Factor K_I for Stress Singular Problems by Mixed Finite Element Method", International Journal of Fracture, Vol. 14, 1978, pp. 555.
- [34] Tong, P., and Pian, T.H.H., "On the Convergence of the Finite Element Method for Problems with Singularity", International Journal of Solids and Structures, Vol. 9, 1973, pp. 313-321.
- [35] Bowie, O.L., "Rectangular Tensile sheet with Symmetric Edge Crack", Journal of Applied Mechanics, Vol. 31, 1964, pp. 208-212.
- [36] Bowie, O.L., and Neal, D.M., "A Note on the Central Crack in a Uniformly Stressed Strip", Engineering Fracture Mechanics, Vol. 2, 1970, pp. 181-182.
- [37] Bowie, O.L., and Freese, C.E., "Central Crack in Plane Orthotropic Rectangular Sheet", International Journal of Fracture Mechanics, Vol. 8, No. 1, March, 1972, pp. 49-58.

- [38] Sih, G.C., and Liebowitz, H., "Mathematical Theories of Brittle Fracture", An Advanced Teatise, Vol. 2, (ed. Liebowitz, H.), Academic Press, 1968, pp. 68-188.
- [39] Ishikawa, H., "A Finite Element Analysis of Stress Intensity Factor for Combined Tensile and Shear Loading by only a Virtual Crack Extension", International Journal of Fracture, Vol. 16, 1980, pp. 243-245.
- [40] Ishikawa, H., Kitagawa, H., and Okamura, H., "J Integral of a Mixed Mode Crack and Its Application", Proceedings of Third International Conference on Mechanical Behaviour of Materials, University of Cambridge, Vol. 3, 1979, pp. 447-455.
- [41] Hellen, T.K., and Blackburn, W.S., "The Calculation of Stress Intensity Factors for Combined Tensile and Shear Loading", International Journal of Fracture, Vol. 11, No. 4, 1975, pp. 605-617.
- [42] Hellen, T.K., "On the Method of Virtual Extensions", International Journal for Numerical Methods in Engineering, Vol. 9, 1975, pp. 187-207.
- [43] Vanderglas, M.L. and Pick, R.J., "On Virtual Crack Extension Methods for Combined Tensile and Shear Loadings", Fracture 1977, ICF4, Waterloo, Canada, Vol. 3, 1977, pp. 501-506.
- [44] Knowles, J.K., and Sternberg, E., "On a Class of Conservation Laws in Linearised and Finite Elastostatics", Arch. Rat. Mech. Anal., Vol. 44, 1972, pp. 187-211.

- [45] Hussain, M.A., Pu, S.L., and Underwood, J., "Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II", Fracture Analysis, ASTM STP 560, American Society for Testing and Material, 1974, pp. 2-28.
- [46] Stern, M., Becker, E.B., and Dunham, R.S., "A Contour Integral Computation of Mixed-Mode Stress Intensity Factors", International Journal of Fracture, Vol. 12, No. 3, 1976, pp. 359-368.
- [47] Wang, S.S., Yan, J.F., and Corten, H.T., "A Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids using Conservation Laws of Elasticity", International Journal of Fracture, Vol. 16, No. 3, 1980, pp. 247-259.
- [48] Erdogan, F., and Sih, G.C., "On the Crack Extension in Plates Under Plane Loading and Transverse Shear", Journal of Basic Engineering, Vol. 85, D, 1963, pp. 519-527.
- [49] Williams, J.G., and Ewing, P.D., "Fracture under Complex Stress
 The Angle Crack Problem", International Journal of Fracture Mechanics, Vol. 8, No. 4, 1972, pp. 441-446.
- [50] Sih, G.C., and Kipp, M.E., Discussion on "Fracture under Complex Stress - The Angle Crack Problem", International Journal of Fracture, Vol. 10, No. 2, 1974, pp. 261-265.
- [51] Finnie, I., and Saith, A., "A Note on the Angle Crack Problem and the Directional Stability of Cracks", International Journal of Fracture, Vol. 9, 1973, pp. 484-486.
- [52] Sih, G.C., "Strain-Energy-Density Factor applied to Mixed Mode Crack Problems", International Journal of Fracture, Vol. 10, No. 3, 1974, pp. 305-321.

- [53] Sih, G.C., "Applications of the Strain-Energy-Density Theory to Fundamental Problems in Fracture Mechanics", presented at the 10th Annual Meeting of the Society of Engineering Science, Raleigh, North Carolina, November, 1973.
- [54] Wang, T.C., "Fracture Criteria for Combined Mode Crack", Fracture, 1977, ICF4, Waterloo, Canada, Vol. 4, 1977, pp. 135-154.
- [55] Palaniswamy, K., and Knauss, W.G., "Propagation of a Crack under General In-Plane Loading", International Journal of Fracture Mechanics, Vol. 8, 1972, pp. 114-117.
- [56] Bilby, B.A., Cardew, G.E., and Howard, I.C., "Stress Intensity Factors at the Tips of Kinked and Forked Cracks", Fracture 1977, ICF4, Waterloo, Canada, Vol. 3, 1977, pp. 197-200.
- [57] Bilby, B.A. and Cardew, G.E., "The Crack with a Kinked Tip", International Journal of Fracture, Vol. 11, 1975, pp. 708-712.
- [58] Lo, K.K., "Analysis of Branched Crack", Journal of Applied Mechanics, Vol. 45, 1978, pp. 797-802.
- [59] Wu, C.H., "Elasticity Problem of a Slender Z-Crack", Journal of Elasticity, Vol. 8, No. 2, 1978, pp. 183-205.
- [60] Wu, C.H., "Maximum-Energy-Release-Rate Criterion Applied to a Tension-Compression Specimen with Cracks", Journal of Elasticity, Vol. 8, No. 3, 1978, pp. 235-257.
- [61] Wu, C.H., "Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion", Journal of Applied Mechanics, Vol. 45, 1978, pp. 553-558.

- [62] Hayashi, K., and Nemat-Nasser, S., "Energy Release Rate and Crack Kinking", International Journal of Solids and Structures, Vol. 17, 1981, pp. 107-114.
- [63] Palaniswamy, K., and Knauss, W.G., in "Mechanics Today", Vol. 4,edited by S. Namat-Nasser, Pergamon Press, 1978, pp. 87-130.