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ABSTRACT 


Mixed transitional finite elements, which enable the simultane­

ous use of the three-node triangular mixed and eight-node isoparametric 

displacement finite elements, are developed to reduce the amount of 

computer storage required in the mixed finite element method. Numerical 

testing of the simultaneous use of the above mixed, mixed transitional 

and displacement finite elements are also carried out to investigate 

numerical instability, orientation problems and convergence in the 

energy sense. The examples of a plane stress cantilever subjected to 

parabolically varying end shear and a plane strain, square plate ·with a 

circular hole in the middle are analyzed and the results obtained are 

found to be in very good agreement with those reported in the litera­

ture. 

The three-element scheme above is then applied to problems in 

linear elastic fracture mechanics. The energy release rate approach 

using the direct derivative method is incorporated to compute the Mode I 

stress intensity factor K • Two plane stress isotropic rectangular1 

plates with symmetric edge cracks and a central crack, respectively, and 

a plane stress orthotropic square plate with a central crack are analy­

zed. The stress intensity factors obtained are in excellent agreement 

wi~h the available numerical results, and with significant reduction in 

computer storage requirements compared to that of the mixed finite ele­

ment method alone. 
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Mixed mode linear elastic fracture problems are also considered. 

In this case, Ishikawa's scheme of decomposing the near crack tip stress 

and displacement fields is used along with the direct derivative method 

to compute the mixed mode stress intensity factors KI and KII• The 

stress intensity factors ~ and ~I obtained for a deep cantilever with 

an edge crack subjected to end shear are within 0.62 and 3.74 percent of 

the numerical results reported in the literature. The prediction of the 

branching angles for crack extensions are examined and the criterion of 

maximum energy release rate is used along with Ishikawa' s scheme to 

calculate the angles of crack branching for a plane stress square plate 

with an oblique crack, subject to uniaxial tension. Good agreement with 

the results using the maximum stress criterion is observed. 
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CHAPTER l 

INTRODUCTION, PURPOSE AND SCOPE 


1.1 Introduction 

The finite element method is currently the most widely used 

numerical method for analyzing boundary value problems for which no 

closed form solutions exist or are extremely difficult to obtain. 

For decades the use of either displacement or equilibrium finite 

element method based on the principles of minimum potential energy and 

minimimum complimentary energy, respectively, have dominated analyses of 

problems in continuum mechanics. The mixed finite element method in 

plane elasticity, based on the Hellinger-Reissuer variational principle 

has been investigated by Oden [ 4] , Oden and Reddy [ 5] , Oden and Lee 

[6], Mirza and Olson [7] and Mirza [8]. Mirza [8] established the 

energy convergence in plane elasticity problems. A three-node triangu­

lar mixed finite element with linear stress and displacement approxima­

tions was applied to plane elasticity with improvements in accuracy and 

the energy convergence rate over the constant stress triangular dis­

placement finite element which uses the same linear displacement 

approximations. The computer storage required in the mixed finite ele­

ment method is, however, much larger than the corresponding displacement 

finite element method, in spite of the aforementioned improvements. 
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The mixed finite element method in conjunction with the energy 

release rate concepts has also been applied to stress singular problems 

with cracks by Mirza and Olson [33]. It was shown to possess an excel­

lent potential for analysis of stress singular problems in terms of 

improved convergence in energy and accuracy in stresses. However, 

again, very large computer storage is required in such analyses. 

1.2 Purpose and Scope 

In order to reduce the amount of computer storage inherent in 

the mixed finite element method, transitional mixed finite elements are 

developed in this thesis to enable the simultaneous use of the three­

node triangular mixed finite elements [7] and the eight-node isopara­

metric displacement finite elements in a single finite element domain. 

Such simultaneous use of the mixed and displacement finite elements is 

then applied to the analyses of mixed mode stress singular crack prob­

lems in linear elastic fracture mechanics with the mixed finite elements 

used in the region immediately surrounding the crack tip with a stress 

singularity and the isoparametric displacement finite element in the 

region where stresses are more regular. Stress intensity factors K and
1 

K are calculated and the angles of crack branching in mixed mode f rac­
11 

ture problems are predicted using the energy approach. 

The Hellinger~Reissner variational principle in plane elasticity 

is introduced in Chapter 2 where the formulations of mixed finite ele­

ments are discussed. Four-node triangular mixed transitional finite 

elements (uncondensed and condensed versions) are formulated in detail. 
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The condensed version also necessitates the use of a three-node triangu­

lar transitional mixed element with only stress degrees of freedom at 

two of its nodes to connect the three-node triangular mixed and the 

eight-node isoparametric finite elements. 

Numerical testings of the simultaneous use of the three-node 

triangular mixed and eight-node isoparametric displacement finite ele­

ments, connected by the mixed transitional elements are given in Chapter 

3. A solution technique for matrix equations, involving transformation 

of indefinite matrices to positive definite matrices, is also presented 

in Chapter 3. Numerical instability of the mixed finite element method 

and orientation problems of the four-node mixed transitional finite 

elements are investigated. The rates· of energy convergence of the mixed 

transitional elements are studied through analysis of a plane stress, 

square plate with parabolically varying end loads. When the mixed, 

mixed transitional and the isoparametric displacement finite elements 

are used simultaneously, the energy convergence rate is investigated by 

analyzing a plane stress cantilever subjected to a parabolically varying 

end shear; The plane strain problem of a square plate with a circular 

hole in the middle is also analyzed for stress concentrations. 

Chapters 4 and 5 are devoted to applications of the simultaneous 

use of the three types of elements mentioned above to problems in linear 

elastic fracture mechanics. A brief account of linear elastic fracture 

mechanics is presented in Chapter 4. Applications of the finite element 

method to fracture problems are also given and, in particular, the 

direct derivative energy approach [7, 381 is described in detail and 
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applied to calculate the stress intensity factor KI for mode I (opening 

mode) cracking. Three problems are analyzed and the finite element 

solutions are compared with the results available in the literature. 

The problems include an isotropic plane stress rectangular plate, first 

with symmetric edge cracks, then a central crack and an orthotropic 

plane stress square plate with a central crack. 

Mixed mode fracture problems are considered in Chapter 5. The 

energy approach of analyzing such problems is discussed and the use of 

Ishikawa's scheme [39, 40J to determine the stress intensity factors KI 

(mode I) and ~I (mode II, in plane sliding) using only a single virtual 

crack extensi0n is presented. This is then used to analyze deep canti­

levered beams with an edge crack subject to loads which caused mixed 

mode fracture. Crack branching theory due to Hellen et al., [41J is 

also presented and co111Pared with the energy approach utilizing 

Ishikawa's scheme. The calculation and prediction of the angle of crack 

branching is also attempted. Various mixed mode fracture criteria are 

examined and, in particular, the criterion of maximum energy release 

rate is adopted. Finally the criterion of maximum energy release rate, 

using results by Wang [54] together with the stress intensity factors 

calculated using Ishikawa's scheme, is used to calculate the angles of 

crack branching for a plane stress, square plate under tension with an 

oblique crack in the middle. The results are compared with those 

obtained by using the maximum stress criterion by Erdogan and Sih [48] 

and the criterion of maximum energy release rate via the approach due to 

Hellen et al., [41j. 
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Lastly, some general conclusions, limitations and suggestions 

are presented in Chapter 6. 
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CHAPTER 2 


FORMULATION OF MIXED FINITE ELEMENT AND MIXED TRANSITIONAL 


FINITE ELEMENTS 


In linear elasticity, finite elements can be formulated using 

the variational principles [l]. A finite element formulated using the 

Hellinger-Reissuer variational principle [2j based on assumed displace­

ment and stress fields is called the mixed finite element. A detailed 

derivation of the mixed transitional finite element using the Hellinger­

Reissner variational principle is presented in this chapter. The mixed 

triangular, transitional elements enable the use of the three-node mixed 

triangular elements in conjunction with the eight-node isoparametric 

displacement finite elements [9]. A brief account of triangular mixed 

and eight-node isoparametric elements is also included. 

2.1 	 Finite Element Formulation Using Hellinger-Reissuer Variational 

Principle 

The differential equations to be satisfied in linear elasticity 

include the equilibrium equations, the constitutive relationships and 

the compatibility equations which are also subjected to some boundary 

conditions [3]. Reissner [2] developed a functional which, for plane 

elasticity, takes the following form: 



- -
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(2.1.1) 


Where are the stress components;"['11' "['22' "['12 

are the strain components;ell, e22' 'Y12 

w is the complimentary energy density; 

Fl' F2 are the prescribed body forces in the x1 and 

x directions;
2 

Pl, p2 are the prescribed surface tractions in the x1 

and x directions;2 

are the displacements in the x and x direc­1 2 

tions; 

is that part of the surface where surface 

tractions are prescribed; and 

v is the volume. 

The variational theorem can be stated in the following manner 

[2]: 

"Among all states of stress and displacement which 
satisfy the boundary conditions of prescribed surface 
displacement, the actually occuring state of stress and 
displacement is determined by the variational equation 
oI = O." 
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( (2.1.2) 

Furthermore, if the kinematic strain-displacement equations of 

elasticity 

(2.1.3) 

are employed, thus assuring kinematic compatibility, the Euler equations 

at stationarity of the variational principle are the equilibrium equa­

tions, the constitutive relations and the boundary conditions. In 

fact, 

aul aw au2 aw + •••01il • ff f ((ax - aT ) o'tll + (ax - a-r )o-r22 
v 1 11 2 22 

(2.1.4) 

Since o-r , o-r , o-r , ou and ou are arbitrary variations,
11 22 12 1 2 

the aforementioned system of equations is obtained in the following 

manner: 
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-

-rij , j + Fi • 0 i ,j - 1, 2 (2.1.5) 

'! •E e: i ,j - 1, 2 (2.1.6)
ij ijk.t k.t 

-
Pi • Pi on sl i • 1, 2 (2.1. 7) 

Oden [ 4] , Oden and Reddy [ 5] , Oden and Lee l 6] and Mirza and 

Olson [ 7] studied the convergence and performance of the mixed finite 

element method in plane elasticity. It was reported in reference [ 7] 

that when the approximations for stresses and disp~ements are chosen 

independently, the following completeness criterion has to be satisfied: 

"The strains from the stress approximations should 
possess at least all the strain modes that are present 
in the strains derived from the displacement approxima­
tions, with rigid body modes precluded." 

Violation of this criterion will lead to "mechanisms", i.e. non-

stressing strain modes. This means that the strain energy of the system 

will not be definite and the matrix equations for an application will be 

singular. Such "mechanisms" cannot be removed by simply removing the 

rigid body modes. 

The convergence studies carried out in reference [7] also indi­

cated that, provided both the stresses and displacements are made con­

tinuous across interelement boundaries, the error in strain energy is 

governed by the mean square error in the stress approximations. This 

means that if the error in stresses is O(.t!), where te is the largest 
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diameter within an element, the error in strain energy is expected to be 

4 -4
O(t ) which is O(N ) for a uniform grid, where N is the number of 

e 

elements along a typical length of a finite element grid. 

2.2 Formulation of Mixed Finite Element in Plane Elasticity 

In the formulation of the element matrices, it is convenient to 

write the functional in Equation (2.1.l) using matrix notations. Thus 

T lT -T -T 
IR<!> - I LI ! !!. - 2 .!. .£ .!.] dV - I ! !!. dV - I ! !!. dS (2.2.l)' 

v v s
1 

where, for plane elasticity, 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 
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T • a 
ax1 

0 

0 a 
aXz 

a a 
ax2 axl 

c ­ (2. 2. 7)a -a 0 • 

-a y 0 

0 0 

The matrix C above is the compliance matrix. It is shown here 

in a symbolic form. For the isotropic plane stress case, a • y • l/E, 

f3 • v/E and o • E/2(1 + v), where E is the modulus of elasticity and v 

is Poisson's ratio. 

The element matrix for plane stress linear elasticity for linear 

displacements and linear stresses is given in reference [7j. As shown 

in Figure (2.1), it is a three node triangular element with u
1

, u
2

, T
11 

, 

T and T as nodal degrees of freedom. Using area coordinates, the22 12 

linear approximations for displacements and stresses can be written as 

i 
, 

- 1, 2 (2.2.8) 

i = j = 1, 2 (2.2.9) 
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where 1 , 1
2

, and 1 are the area coordinates as defined in Figure
1 3 

(2.2). 

Derivation of the element matrix for this element is similar to the 

derivation of the element matrix for the mixed transitional element to 

be presented in the next section. All relevant matrices for this ele­

ment are given in Appendix A. 

Applications of the mixed element above have been demonstrated 

by Mirza and Olson [7]. Improved accuracy of the three-node triangular 

mixed element over the constant stress triangular displacement element 

(C.S.T.), which uses the same linear displacement approximations, was 

observed. Also, the predicted strain energy convergence rate of the 

mixed element has been confirmed through applications on various exam­

ples in reference [8]. 

2.3 Mixed Transitional Finite Elements in Plane Elasticity 

The mixed finite element method has been applied to stress sin­

gular problems in plane elasticity by Mirza and Olson [33]. It was 

1
concluded that the strain energy convergence rate is at least O(N- ) and 

the numerical results from the mixed finite element analysis of a plane 

stress square plate with symmetric edge cracks, using the three-node 

triangular mixed elements, yielded a strain energy convergence rate of 

-2
nearly O(N ). Moreover, it was observed that in order to achieve the 

same accuracy as obtained with displacement elements, much fewer total 

degrees of freedom were needed in spite of more degrees of freedom per 
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node needed for the mixed finite elements. Therefore~ the mixed finite 

element method seems to have an excellent potential for numerical analy­

sis of stress singular problems. 

In spite of the improved accuracy and convergence, the use of 

mixed elements alone, when applied to stress singular problems, requires 

a much larger amount of computer storage because of the larger half-band 

widths due to increased number of degrees of freedom per node. It is 

therefore proposed to use the three-node triangular mixed elements in 

conjunction with the conventional displacement elements, with the mixed 

elements used exclusively over part of the region where the stress grad­

ients are expected to be very large. Since the energy convergence rate 

-4of the three-node triangular mixed elements is O(N ), it is desirable 

to use a displacement type element which exhibits the same energy con­

vergence rate. The eight-node isoparametric element is considered here. 

Formulation of the eight-node isoparametric element can be found in most 

text books on finite element method, e.g. Zienkiewicz [9]. 

The displacement variation along the sides of the eight-node 

isoparametric element is quadratic whereas that along the sides of the 

mixed element is linear. Moreover, the mixed element has nodal degrees 

· of freedom in both displacements and stresses whereas the eight-node 

isoparametric element has only displacements as nodal degrees of free­

dom, Figure (2. 3). Therefore, one or more types of transitional 

elements have to be developed to connect the above-mentioned two types 

of elements. 



- 14 ­

There are two possible ways of connecting the three-node triang­

ular mixed and eight-node isoparametric elements. These are illustrated 

in Figure (2.4). Since the displacement variation is quadratic along 

the sides of the eight-node isoparametric element, a triangular transi­

tional element with three corner nodes and one mid side node along one 

of its sides is used. Hence displacement compatibility along the inter­

element boundary would be guaranteed through a proper choice of 

displacement polynomials. As shown in Figure (2.4a), one option is to 

use both stress and displacement degrees of freedom at all nodes of the 

transitional element. Since the isoparametric element has only 

displacement degrees of freedom, double nodes (which have the same 

coordinates) would have to be used along the interelement boundary 

between the transitional and the isoparametric elements. Thus, equating 

only the displacements at the double nodes would ensure displacement 

continuity provided that the variation is quadratic. 

The second option (Figure (2.4b)) is to condense out the stress 

degrees of freedom at the three nodes of the transitional element which 

connect it to the isoparametric element. In this case, however, another 

type of transitional element, which is farmed by condensing out the 

stress degrees of freedom at only one node of the three-node triangular 

mixed element, also has to be used. Assemblage of the various elements 

follows the usual routines of finite element analysis. Both types of 

transitional elements will be used in investigating the energy conver­

gence rate in the next chapter. It should be pointed out here that both 

the uncondensed and condensed, transitional elements are also mixed 

formulations. 
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The use of the mixed finite elements in conjunction with the 

isoparametric displacement finite elements involves the use of 

Hellinger-Reissner mixed variational principle over the region where 

mixed elements are used and the principle of minimum potential energy in 

the region where the isoparametric displacement elements are employed, 

Figure (2.5). In the region where the mixed finite elements via 

Hellinger-Reissuer principle are used, both stresses and displacements 

are required to be continuous across the interelement boundaries for 

faster convergence [8]. Whereas in the region where the displacement 

finite elements via the principle of minimum potential energy a~e 

employed, only the displacements are required to be continuous across 

the interelement boundaries. These continuity requirements are satis- ­

fied within the two regions, respectively. The question remains as to 

what continuity requirements are needed along the common boundary of the 

two regions where the mixed variational principle is used on one side 

and the principle of minimum potential energy on the other side. For 

quadratic variation along the common boundary, displacement continuity 

is ensured by equating the displacement degrees of freedom at the common 

nodes. However, the stress continuity along the common boundary is not 

maintained. Stresses calculated on one side of the common boundary can 

be considered as the stress boundary conditions for the region on the 

other side. Stress continuity can then be attempted by introducing the 

following boundary integrals in the formulation of the finite elements 

adjacent to the common boundary: 



c 
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(2.3.1) 


MT _ I ,.,. 
(T T )u dS (2.3.2)f ns ns ss 

Where n, s are the outward normal and tangential 

directions at the common boundary 

are the normal and tangential stresses calcu­

lated for the mixed element edge; 

I I 
T T are the normal and tangential stresses calcu­nn ' ns 

lated for the isoparametric element edge; 

u ' u are the normal and tangential displacements;n s 

s is the element edge length along the common 
c 


boundary. 


These integrals imply continuity only in a weighted integral sense and 

not pointwise. It is hoped that at extremum the error, due to lack of 

stress continuity required by the mixed and mixed transitional elements 

and not required by the displacement isoparametric finite elements, will 

be minimuim. 

The incorporation of boundary integrals in expressions (2. 3.1) 

and (2.3.2) will, however, lead to very complicated element formulations 

and perhaps to no avail. Numerical results of the finite element 

analyses, using both triangular mixed and isoparametric displacement 
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elements, reveal that reasonably accurate results can be obtained 

without incorporating such integrals. It is thus expected that the 

boundary integrals for the mixed transitional and isoparametric elements 

lying alongside -the common boundary must have a cancelling effect and 

the stress values along this common boundary adjust themselves even if 

no such boundary integrals are employed. Therefore, in subsequent 

element formulations, the bounday integrals in expressions (2.3.1) and 

(2.3.2) will be deleted. 

The four-node triangular, transitional element and its shape 

functions are shown in Figure (2.6). The following approximations are. 

used for both stresses and displacements. 

i - 1, 2 (2.3.3) 

i = j = 1, 2 (2.3.4) 

Where 
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(2.3.5) 


N • L (1 - 2L ) (2.3.6)
2 2 3 

(2.3.7) 

N • 4L L (2.3.8)
4 2 3 

Equations (2.3.3) and (2.3.4) can be rewritten as 

(2.3.9) 

(2.3.10) 

Where (2.3.11) 


(2.3.12) 


(2. 3.13)N = 

-
(2.3.14)N = 
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Substitution of (2.3.9) and (2.3.10) into (2.2.1) yields 

-T ,.., -T ,..,- f F N u dV - f P N u dS (2.3.15)r -- s­
1 

,.., ,..,T ,..,TT 
where A • <u T > • 

Now for stationarity of the mixed variational principle 

aia<A> 
... o. (2.3.17)--= 0 and 

These then lead to the following element matrix equation, 

' 
0 ~ l~ {Jl N dV) T +- { \ pT N dS)T 

- 0N dVN dV ~ J 0 

(2.3.18) 

which can be rewritten as 
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0 0 
T 

a 0 bT 

0 0 0 bT T 
a 

a 0 ac -sc 0 

0 b -Sc 0Y.£. 

b a 0 0 oc 

Where N N dV
i j ,x

1 

bij • JV NiNj ,x2 
dV 

N N dV- - J i jv 

-
• f F1 Ni dV 
v 

u 

T 

-
d 

e 

0 

+ Consistent 
Load 
Vector 

(2.3.19) 

i, j - 1, 2, 3, 4 (2.3.20) 

i, j - 1, 2, 3, 4 (2.3.21) 

i, j - 1, 2, 3, 4 (2.3.22) 

i • 1, 2, 3, 4 (2.3.23) 

i - 1, 2, 3, 4 (2.3.24) 

and a, a, y and o are elements of the compliance matrix as defined 

previously. The element matrix is symmetric but in general indefinite. 

The submatrices and the element matrix are listed in Appendix B. 

The element matrix for the four-node transitional element with 

stress degrees of freedom at only one of its nodes is derived by 

2 3 4 2 3 4 2 3
condensing out , , , , , , , and •T11 i: 11 i: 11 i:22 i:22 i:22 i:12 i:12 T 12 

The resulting element matrix is given in Appendix C along with the 

element matrix for the transitional element obtained by condensing out 

4 
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the stress degrees of freedom at one node only (node 3) of the three­

node triangular mixed element. 

The linear variation in displacements and stresses along two 

edges and quadratic variation along the third edge of the four-node 

mixed transitional element suggest that the chosen polynomial may lack 

spatial isotropy. As such, some orientation problems with the transi­

tional element are anticipated. It should also be pointed out that 

because of the mixed variational formulation of the element, there are 

doubts about the proper representation of strain modes derived from the 

assumed displacement fields and the dependence of the stress modes 

possessed by the independently assumed stress fields on the strain modes 

through the constitutive equations. A numerical investigation into this 

problem is presented in the next chapter. 
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FIG, 2.1: NODE NUMBERS AND DEGREES OF FREEDOM FOR A THREE­
NODE TRIANGULAR MIXED FINITE ELEMENT, 

AREA flp23
l 	l =O I o, -3 ( x~ J x~ ) 
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FIG, 2.2: DEFINITION OF AREA COORDINATES. 
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a) THREE-NODE TRIANGULAR b) EIGHT-NODE ISOPARAMETRIC 
MIXED FINITE ELEMENT. DISPLACEMENT FINITE ELEMENT. 

2 
 1 

c) LINEAR VARIATION OF DIS­ d) QUADRATIC VARIATION OF DIS­

PLACEMENT ALONG EDGE l-3 PLACEMENT ALONG EDGE 1-8-4 
OF THE MIXED FINITE ELEMENT, OF THE ISOPARAMENT DISPLACE­

MENT FINITE ELEMENT. 

FIG, 2.3: COMPARISON OF THREE-NODE TRIANGULAR MIXED AND 
EIGHT-NODE ISOPARAMETRIC DISPLACEMENT FINITE 
ELEMENTS. 
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M.F.E. 

T.F,E. I IFIE I 


·a) SCHEME FOR UNCONDENSED TRANSITIONAL FINITE ELEMENTS. 

T.F.E. 

M.F.E. T.F.E. I.FIE 

b) SCHEME FOR CONDENSED TRANSITIONAL FINITE ELEMENTS. 

0 NODES WITH STRESS AND DISPLACEMENT DEGREES OF FREEDOM. 
• NODES WITH DISPLACEMENT DEGREES OF FREEDOM. 

M.F.E. MIXED FINITE ELEMENT. 
T.F.E. TRANSITIONAL FINITE ELEMENT. 

I IFIE I ISOPARAMETR Ic FINITE ELEMENT I 


FIG, 2,4: CONNECTION OF MIXED AND ISOPARAMETRIC DISPLACEMENT 
FINITE ELEMENTS BY MIXED TRANSITIONAL FINITE 
ELEMENTS, 
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FIG, 2,5: SIMULTANEOUS APPLICATION OF MIXED VARIATIONAL 
AND MINIMUM POTENTIAL ENERGY PRINCIPLES TO A 
SINGLE DOMAIN AND STRESSES ON THE COMMON 
BOUNDARY, 



( 

- 26 ­

u3u3 

3 1 2 


1'3 1'3 1'3 

11 22 12 


4 
U4
4 U

1 2
1 

1'4 1'4 T4 


11 22 12
U	i'.U 1 

1 2 


'Ti 'Tl 'Tl 
u2u22
11 22 12 
 1 2 


1'2 1'2 '!'2 

11 22 12 


FIG, 2.6: FOUR-NODE TRIANGULAR MIXED TRANSITIONAL FINITE 
ELEMENT AND ITS SHAPE FUNCTIONS, 
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CHAPTER 3 

NUMERICAL TESTING OF MIXED TRANSITIONAL WITH MIXED AND 


ISOPARAMETRIC FINITE ELEMENTS 


The use of triangular mixed finite elements in conjunction with 

eight-node isoparametric displacement finite elements has been proposed 

in the previous chapter. The mixed transitional finite elements, which 

connect the two types of elements above, have been formulated. Results 

of numerical tests carried out for investigating performance of the pro­

posed three or four element combination schemes are presented in this 

chapter. After presenting the solution technique adopted, numerical 

instability and orientation problems of the transitional elements are 

studied through eigenvalue analyses and applications of the proposed 

procedure to some boundary value problems for which the exact.or nearly 

exact solutions are available in the literature. The convergence of the 

mixed transitional finite elements in the energy sense, and that of the 

combined elements, is also studied and presented. Finally, the use of 

mixed transitional finite elements with mixed and isoparametric elements 

is illustrated through more elaborate examples. 

3.1 Solution Technique for the Indefinite System of Matrix Equations 

The element matrix for the mixed finite elements (Appendix A) is 

of the form, 

http:exact.or
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Ae0 

iiiXm iiiXn 


e 
s (3.1.1)(m+n)x(m+n) ­
T 

Ae -Be-nxm 	 nxn 

where m and n are the numbers of degrees of freedom in displacements and 

e 
stresses, respectively. The matrix .2. is real, symmetric and would have 

e
real eigenvalues. The submatrix ! is positive definite. It is shown 

ein Appendix B of reference [8] that if r is rank of the matrix .2_ , then 

the eigenvalue distribution is of the following type: 

(i) m positive and n negative eigenvalues if r = m + n; 

(ii) 	 (r - n) positive, (m + n - r) zero and n negative eigenvalues if 

r < m + n. 

If the completeness criterion stated in Section 2.1 is satisfied 

by the assumed displacement and stress approximations for the plane 

elasticity mixed finite elements, rank r of the element matrix in Equa­

tion (3.1.1) is equal to m + n - 3. The element matrix will then have 

(m - 3) positive, 3 zero and n negative eigenvalues where the zero 

eigenvalues correspond to the rigid body modes. Upon elimination of the 

rigid body modes, the element matrix will have both positive and nega­

tive eigenvalues and is therefore indefinite. The global matrix equa­

tions for mixed elements used in conjunction with the isoparametric 

elements will also be indefinite in general, with both positive and 

negative eigenvalues after rigid body modes have been removed. 
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Although the method of Gaussian elimination with partial pivot­

ing can be employed to solve such indefinite equations, the central 

memory storage required for the global matrix would be very large. An 

alternative scheme is proposed to help reduce the storage requirements 

and presented here. 

The global matrix equation can be written as 

S A• F (3.1.2) 

where §_ is the global matrix which is real but indefinite, A is the 

vector of unknowns which consists of both stresses and displacements, 

and ! is the consistent load vector. If the total displacement and 

stress degrees of freedom are M and N, respectively, then for a properly 

constrained body there will be M positive and N negative eigenvalues 

(+;\, 1 ' +;\, ' • • •' +.AM, - .AM+l' -\+i' ... , ;\.M+N). It can be shown [10]2 

that if .Ai is an eigenvalue of §_ associated with the eigenvector !..t_' 

i.e. 

S A = ;\, A (3.1.3)
--:i i-i 

then for any positive integer K, the following is true. 

(3.1.4) 
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metric S. Therefore·, if we premultiply the global matrix .§_ by its 

transpose, a matrix with eigenvalues equal to the squares of the corre­

T
sponding eigenvalues of .§_ is obtained and the resulting matrix .§_ .§_ will 

be positive definite, i.e. all eigenvalues are positive. From the above 

consideration, it is obvious that the indefinite global matrix equation 

can be transformed into a positive definite matrix equation by premulti­

plying both sides of Equation (3.1.2) by the transpose of s. 

(3.1.5) 

The solution to Equation (3.1.5) is the same as that of Equation (3.1.2) 

T
provided the rank of S S is the same as that of s. The solution scheme 

indicated by Equation (3.1. 5) is also refered to as the discretized 

least square method [11]. To minimize the amount of computer storage 

required, the global matrix equations are stored using the skyline tech­

nique [12] in which variable half bandwidths are used. Premultiplying a 

matrix stored using this technique by its transpose requires special 

attention to storage addressing. A computer subroutine MULTIP has been 

written to perform such manipulations and is given in the program list­

ing in Appendix E. Figure (3.1) shows a premultiplication of.§_ with.§_ 
T 

and indicates doubling of variable half bandwidths excluding the 

diagonal. It should be noted that the storage required to carry out the 

Gaussian elimination process for the 12 x 12 matrix of Figure (3.1) 

would require matrix size of 156, i.e. 
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N(3LB + 1) • 12(3 x 4 + 1) • 156 

where N • total degrees of freedom and LB • half bandwidth excluding the 

diagonal. On the other hand, the matrix size required for the positive 

definite ! T ! matrix using the skyline technique is 51, a substantially 

smaller storage requirement. 

3.2 Numerical Instability 

The uncondensed element matrix equation (2.3.19) for isotropic 

elastic properties can be written as 

0 

0 

0 

0 

T a 

0 

0 

bT 

bT 

T a 

u 

a 0 +le
E­

v 
--cE­ 0 

0 b 
v 

--cE­
l 

+-cE­ 0 T 

b a 0 0 
2(l+v) 

E c 

-


d 

e 

(3.2.1) 

0 

It should be noted that the submatrix .£ is divided by the modu­

lus of elasticity E. Usually a large value of E leads to a very large 

ratio between the largest and the smallest matrix elements, which can 

lead to ill-conditioning of the system matrix. The condensed element 

matrix equations given in Appendix C also show that, after condensation, 

in addition to having some elements of the condensed matrix dividied by 



- 32 ­

E, there are also some elements which are multiplied by E. Ratio 

between the largest and the smallest elements of the condensed matrix 

will then be much larger than that for the uncondensed matrix. There­

fore, perhaps, a more severe ill-conditioning may result for large E 

values. 

Eigenvalue analyses are performed on the triangular mixed ele­

ment, the mixed transitional elements and a combination of mixed, mixed 

transitional and eight-node isoparametric element matrices. The modulus 

of elasticity has been varied from 1.0 to 100,000,000.0. 

It is observed that for all eigenvalue analyses performed, the 

order of magnitude of the negative eigenvalues decreases as the value of 

E increases, with the first few significant figures varying slightly at 

the same time. Except for the uncondensed elements, the order of magni­

tude of the positive eigenvalues increases as the value of E increases. 

The first few significant figures of the positive eigenvalues remain 

essentially constant. Results of the eigenvalue analysis for a combina­

tion of a condensed four-node mixed transitional element, a three-node 

mixed transitional element and an isoparametric element, as shown in 

Figure (3.2), are given in Table (3.1). 

For E increasing from 1.0 to 100,000,000.0, the order of magni­

-1 -8
tude of the negative eigenvalues decreases from about 10 to 10 while 

1 +9
that of the positive eigenvalues increases from about 10 to 10 • Thus 

for large values of E, the ratio of the largest positive and negative 

17
eigenvalues is of the order 10 • Moreover, for small values of E, 
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-0.7479E-01 
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7 -0.2956E-14 
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0.3576E+04 

0.5113E+o4 

0.6801E+04 

-0.3880E-04 

-o. 1995E-04 

-0.1445E-04 

-0.1197E-04 

-0.6025E-05 

-0.5979E-05 

-0.3128E-10 

0.6096E-08 

0.2234E-04 

0.1143E+04 

0.2115E+o4 

0.3646E+04 

0.3997E+o4 

0.5565E+04 

0.6438E+o4 

0.6917E+04 

0.1043E+o5 

0.1095E+05 
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-0.8 I 80E-06 
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0.3646E+05 

0.3997E+o5 

o.5565E+05 

0.6438E+o5 

0.6917E+05 

0.1043E+o6 

0.1095E+06 

0.1399E+o6 

o. 1437E+06 

0.1702E+o6 

0.1929E+06 

0.2752E+o6 

0.3576E+06 

0.5113E+06 

0.6801E+06 

-0.1853£-05 

-0.1372E-06 

-0.6493E-06 

0.7436E-08 

0.5098E-06 

0.2736E-05 

0.4331E-05 

0.289<E-02 

0.4295E-02 

0.1428E+06 

0.2115E+o6 

0.3646E+06 

0.3997E+o6 

0.5565E+o6 

0.6438E+o6 

0.6917E+06 

0.1043E+07 

0.1095E+07 

0.1399E+o7 

O. 1437E+07 

0.1702E+o7 

0.1929E+07 

0.2752E+o7 

0.3576E+07 

0.5113E+o7 

0.6801E+07 

-0.6483E-07 

-0.326<E-07 

-0.1344E-07 

-0.1262E-07 

-0.7228E-08 

0.4704E-06 

0.6808E-05 

0.1162E-02 

0.1409E-02 

0.1428E+07 

0.2115E+07 

0.3646E+07 

0.3997E+07 

o.5565E+07 

0.6438E+o7 

0.6917E+07 

0.1043E+o8 

0.1095E+08 

0.1399E+08 

O. 1437E+08 

0.1702E+o8 

0.1929E+08 

0.2752E+o8 

0.3576E+08 

0.5113E+o8 

0.6801E+08 

-0.5891E-06 

-0.4191E-06 

-0.3260E-08 

-0.1624E-08 

-0.1334E-08 

-0.1259£-08 

-o.7228E-09 

-0.6999E-09 

0.4618E-02 

0.1428E+06 

0.2114E+08 

0.3646E+08 

0.3997E+o8 

o.5565E+08 

0.6438E+08 

0.6917E+08 w 
w 

0.1043E+09 

0.1095E+09 

0.1399E+o9 

0.1437E+09 

0.1702E+o9 

0.1929E+09 

0.2752E+09 

0.3576E+o9 

0.5113E+09 

0.6801E+09 

TABLE 3.1 Eigenvalue Analysis of a Combination of a Four-node Transitional Element, a lhree-node Transitional Element and an 

lsoparametrlc Element. 
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-14 
computer results give zero eigenvalues as of the order 10 which 

depends upon the machine accuracy, and is much smaller than the orders 

of magnitude of the positive and negative eigenvalues. As the value of 

E becomes very large, the 'zero eigenvalues' given by the computer are 

-5 -9 
of the order 10 to 10 , while the orders of magnitude of the negative 

-6 -8
eigenvalues are of the order 10 to 10 • The 'zero' and negative 

eigenvalues become much closer and numerical instability is expected as 

the 'zero' eigenvalues given by computer results are not small enough to 

be regarded as zero eigenvalues. It is to be noted that after premulti­

plication of the matrix by its own transpose as indicated in the 

previous section, the ratio of the largest pos_itive and negative eigen­

34 17
values of the resulting matrix will be 10 instead of 10 • Thus the 

solution technique adopted in the previous section will suffer from a 

further magnified numerical instability. 

One can overcome the problem of numerical instability by employ­

ing double precision arithmetic on the computer or through some improved 

iterative techniques. Since only linear elasticity problems are con­

sidered in this work, it is sufficient to perform all computer calcula­

tions with a small value for the modulus of elasticity E, say 1.0, and 

the resulting solutions can be scaled accordingly for appropriate large 

E values. Moreover, the stress results should theoretically be inde­

pendent of the E value and need not be scaled. 

In order to demonstrate the effects of numerical instability, 

consider the cantileverd beam shown in Figure (3.3). (The same canti­

lever, with slightly different support conditions, will be analyzed in 
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subsequent convergence studies.) The Poisson's ratio is O. 25 and the 

6
modulus of elasticity E is varied from 3.0 to 3.0 x 10 • Results are 

given in Table (3.2). It is oQserved that as E value increases, value 

of Tll at node 10 loses accuracy and eventually an ill-conditioned 

matrix results for very large E values using the solution technique 

described in the previous section. 

Modulus of 

Elasticity 
(E) 

Strain Energy 

(U) 

Tip Displacement 

( cST) 

Tll at 

Node 10 

3.0 
30.0 

300.0 
3,000.0 

30,000.0 
300,000.0 

3,000,000.0 
10,000,000.0 
25,000,000.0 
30,000,000.0 

.6992217735744 x 

.6992217529958 x 

.6992217599054 x 

.6992218558375 x 

.6992217225374 x 

.6991962855168 

.6961538016872 x 

.1917723486110 x 
ill conditioned 
ill conditioned 

105 

104 

10
3 

102 

10
1 

10-l 
10-1 

.34959359 
4 

x 10 
.34959358 x 103 

.34959358 x 10
2 

.34959363 x 101 

.34959349 

.34957418 x 10-2 

.3476489 x 10-2 

.92138441 x 10­3 

24.194055 
24.194054 
24.194054 
24.194033 
24.191548 
23.862192 

- 15.291709 
191.13958 

TABLE 3.2: Results for a cantilever analyzed using values of the 
-6

modulus of elasticity from 3.0 to 3.0 x 10 

3.3 	 Orientation Problem with Four-Node Mixed Transitional Finite 

Element 

The approximations for both displacements and stresses for the 

four-node mixed transitional element are given by Equations (2.3.3) and 

(2.3.4) in terms of area coordinates. However, the same approximations 

can be derived by starting with a complete quadratic polynomial with six 

arbitrary constants, i.e. 
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(3.3.1) 


i, j - 1, 2, 3 (3.3.2) 

Variations of ui and Tij along edge 1-2 of the four-node mixed 

triangular element, Figure (3.4), can be obtained by substituting 

x • m in equations (3.3.1) and (3.3.2):2 12x1 

u i ­

i "" 1, 2 (3.3.3) 

i - j - 1, 2 (3.3.4) 

where m is the slope of edge 1-2.
12 

In order to force linear variations of displacements and 

stresses along edge 1-2, the coefficient of x
2 
1 term in Equations (3.3.3) 

and (3.3.4) must vanish, i.e., 

i = 1, 2 (3.3.5) 

i = j = 1, 2 (3.3.6) 
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Similarly, for linear variations of displacements and stresses along 

edge 1-3, the following constraints result, 

i - 1, 2 (3. 3. 7) 

bij + m bij + m 2 bij • 0 i, j ... 1, 2 (3.3.8)
4 13 5 13 6 

where m is the slope of edge 1-3. Equations (3.3.5) to (3.3.8) can be
13 

1 i 1 ij ij
used to solve for a and a in terms of a4 and for b and b in terms5 6 5 6 

ij
of , respectively. The displacement and stress variations are thenb4 

given by 

u .. (3.3.9)
i 

(3.3.10) 

where 

a• (3.3.11) 

(3.3.12) 

Equation (3.3.9) is differentiated to obtain strains as follows: 
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(3.3.13) 

(3.3.14) 

Inspection of Equations (3.3.13) to (3.3.15) and Equation (3.3.10) shows 

that the strains from the stress approximations possess all of the 

strain modes that are present in the strains derived from the displace­

ment appproximations. The completeness criterion stated in Section 

(2.1) is therefore satisfied by the displacement and stress approxima­

tions given by Equations (3.3.9) and (3.3.10) and mechanisms, non 

stressing strain modes, will not be present. However, examination of 

Equation (3. 3.10) indicates that for a general state of stress, the 

stress approximations will have difficulties in satisfying the equili­

brium equations T • O, i, j • 1, 2. This is explained next. 
. ij,j 

Substitution of the stress approximations given by Equation 

(3.3.10) gives the relationships that have to be satisfied by the arbi­

trary constants for exact satisfaction of the equilibrium equations. 

For example, if the approximations for Tll and T are substituted into
12 

the equilibrium equation Tll,l + T = O, we obtain12 , 2 
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11 11 12 12b + b4 (2x1 + ax2) + b3 + b4 (ax1 + 2ax2) • 2 

11 12 11 12 11 12
+ b3 ) + (2b4 + ab4 )x + (ab4 + 2Bb4 )x • O.(b2 1 2 

(3.3.16) 

Similarly, if the approximations for T and T are substituted into
22 12 

the equation T + T = 0, the following is obtained.12 ,
1 22 , 2 

(3.3.17) 

Thus for the equilibrium equations to be satisfied at every 

point within the element, the following two sets of relationships have 

to be satisfied by the arbitrary constants in the approximations for 

stresses, Equation (3.3.10). 

11 bl2 
b2 + 3 = 0 (3.3.18) 

(3.3.19) 

(3.3.20) 

12 22
and b + b = 0 (3.3.21)

2 3 
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(3.3.22) 

(3.3.23) 

1 2 2
It is observed that for non-trivial values of b! , b! and b! , a and B 

as defined in Equations (3.3.11) and (3.3.12) have to satisfy the 

following equality. 

2
4B - a • 0 (3.3.24) 

2 
or B • a /4 (3.3.25) 

Equation (3.3.25) is satisfied only when m = m , i.e., the triangular
12 13 

transitional element degenerates into a straight line. Therefore, for 

exact satisfaction of the equilibrium equations at every point within 

11 12 22 11 12 22
the element, b4 , b4 and b4 should vanish. With b4 , and b4 equalb4 

to zero, the stress approximations given by Equation (3. 3.10) will 

reduce to linear variations of t , T and t over an element. How­
11 12 22 

ever, in finite element analyses, equilibrium equations are satisfied 

only approximately in a weighted integral sense and not pointwise. 

b11 b 12
There f ore, f or a genera1 state of . , an istress, d b22 

g ven by a
4 4 4 

finite element analysis will not be expected to vanish and the stress 

approximations will be better than just linear. Results from examples 

to be presented subsequently do show non-linear stress variations along 

side 2-4-3 of the transitional elements, thus indicating non zero values 
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Equilibrium Equations (3.3.16) and (3.3.17) also reveal that for 

lines 2x ax • 0 and ax1 + 2Sx = 0, the equilibrium equations can be1 + 2 	 2 
1

satisfied for arbitrary 	values of b! , 

11 12 22
along these two lines, b , b and b can attain non unique values.4 4 4 ' 

Again, as the equilibrium equations are satisfied only in a weighted 

integral sense and not pointwise in a finite element analysis, this is 

expected to give rise to some oscillations in stress values. 

The aforementioned oscillations of stresses are expected to 

vanish if lines, for which equilibrium equations can be satisfied with 

11 12 22 . 
non unique values of b4 , and b4 , do not exist. This condition isb4 

met when a in Equations (3.3.16) and (3.3.17) vanishes. In this case 

Equations (3.3.16) and (3.3.17) reduce to 

(3.3.26) 

(3. 3. 27) 

1
Thus for equilibrium to be satisfied anywhere within the element b! , 

12 22
and b4 should vanish provided there are no body forces.b4 

From Equation (3.3.11), a 	vanishes if 
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(3.3.28) 

for non-zero m and m • This corresponds to configurations of
12 13 

isoceles triangles shown in Figure (3.5). Apparently, there is no need 

for restrictions on the orientation of side 2-4-3. 

4
One special case for which the lines with non unique bij 's do 

not exist is when m • 0 and m is infinity, Figure (3.6). For side
12 13 

1-2, x • 0 and Equation (3.3.2) gives
2 

i, j - 1, 2 (3.3.29) 

Similarly, for side 1-3, x • 0 and 
1 

i, j .. 1, 2 (3.3.30) 

For linear i ivar at ons fo lstresses a ong de ges 1 2 - d 1 3an - , bij and bij
4 6 

vanish and stress approximations reduce to 

• 

i, j == 1, 2 (3.3.31) 

and for the equilibrium equations to be satisfied, we have 

(3.3.32) 
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(3.3.33) 

11 12 22
Thus there exist no lines along which b , b and b are undetermined

5 5 5 

when equilibrium is satisfied and stress oscillations are not expected. 

It is then postulated that oscillations of stresses will not be 

expected for four-node transitional mixed elements which satisfy either 

of the following conditions: 

1) the element sides form a triangle with m
12 

• -m
13 

, Figure 

(3.5); 

2) the element sides form a right angle triangle with the right 

angle between sides 1-2 and 1-3 and with sides 1-2 and 1-3 

parallel to the global coordinate axes, Figure (3.6). 

A rigorous mathematical justification will not be attempted. However, 

through various numerical applications of the transitional elements, 

together with the mixed and isoparametric displacement elements (to be 

presented in subsequent sections), it is found that good accuracy is 

obtained by using the orientations and shapes indicated in Figures 

(3.5) and (3.6), i.e., m = -m and m • O, m = =. For other12 13 12 13 

orientations and shapes of the transitional elements, oscillations of 

stresses over the full domain have indeed been observed. Thus numerical 

results do confirm that if no lines with non unique arbitrary constants 

ij 
exist, the four-node mixed transitional element does seem to performb4 


reasonably well. 
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It~s to be noted that by performing a patch test with the mixed 

transitional elements, constant stress state is reproduced with any 

arbitrary orientation and shape of the element. This is because only 

the constants bij in the stress approximation will attain constant 

ij
stress 	values. Consequently the problem of non unique values of b4 

does not arise. This suggests that if, within a finite element grid, 

the mixed transitional elements are located where the stress state is 

approximately constant, the mixed transitional element should work 

reasonably well even if the orientations and shapes are not in accord­

ance with those indicated in Figure (3.5) and (3.6) and stipulated in 

configurations (1) and (2) earlier. 

3.4 	 Convergence of Mixed Transitional Elements and Combinations of 

Mixed, Mixed Transitional and Isoparametric Finite Elements 

The three-node triangular mixed and the eight-node isoparametric 

displacement finite elements both have predicted energy convergence 

4rates of O(N- ). The use of the three-node triangular mixed finite 

elements and the eight-node isoparametric displacement elements 

connected by the mixed transitional elements involves using both the 

Hellirtger-Reissner principle and the principle of minimum potential 

energy in a finite element application. In order to predict the strain 

energy convergence rate in such an application, the strain energy con­

vergence rates of the mixed transitional elements are investigated 

first. 
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A square plate (plane stress) with parabolically varying end 

loads, Figure (3. 7), is analysed using only the mixed transitional 

finite elements. The analytical solution [13] is known and hence it has 

been used to study convergence in strain energy. Due to symmetry, only 

one quarter of the plate ABCD needs to be analyzed with forced boundary 

conditions u • 0 on AD and u • 0 on AB. The mixed transitional ele­
1 2 

ments are shown in Figure (3. 8). The finite element gri.ds used for 

studying the energy convergence rate for each type of mixed transitional 

finite elements are shown in Figure (3.9). Table (3.3) gives the calcu­

lated strain energies in the square plate and percentage errors. Plots 

of the errors in strain energy versus grid size are shown in Figures 

(3.lOa) to (3.lOc). 

Finite Element Grid 
2 2 2

lOEt U/(1-v )L No Error (%) 

N • 2 2.652491 5.050 
N ... 4 2.738196 1.982 
N .. 8 2. 779601 0.500 
Exact Solution 2.79357 

(a) Condensed mixed element (3-node transitional element) 

Finite Element Grid 
2 2 2

lOEt U/(1-v )L No Error (%) 

N.,. 2 2.676449 4.192 

N • 4 2.747999 1.631 
N .. 8 2.782233 0.406 
Exact Solution 2.79357 

(b) 4-node transitional element, condensed 

Finite Element Grid 
2 2 2

lOEt U/(1-v )L No Error (%) 

N = 2 

N = 4 
N .. 8 

Exact Solution 

2.709306 
2. 775975 
2.791582 
2.79357 

3.016 
0.629 
0.071 

(c) 4-node transitional element, uncondensed 

TABLE 3.3: Strain energies and percentage errors for the square plate 
with parabolically varying end loads, Figure (3.7). 
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The calculated values of strain energy seem to be in good agree­

ment with the exact value. The strain energy convergence rate for the 

three-node transitional and the condensed four-node transitional ele­

-2
ments is O(N ), Figure (3.9a and b). The numerical results for the 

uncondensed four-node transitional elements indicate the strain energy 

-4 
convergence rate of O(N ), Figure (3.lOc), which is the same as the 

strain energy convergence rate of the three-node triangular mixed and 

the eight-node isoparametric elements. The displacements and stresses 

given in Table (3.4) are also in good agreement with the analytical 

values. 

The strain energy convergence rate when the three-node triangu­

lar, the mixed transitional and the eight-node isoparametric displace­

ment elements are used together is studied next. For this purpose, the 

cantilevered beam shown in Figure (3.11) is analyzed. The analyses are 

carried out with condensed transitional elements first and repeated 

using the uncondensed transitional elements. The finite element grids 

are given in Figures (3.12) and (3.13). Comparisons of the finite ele­

ment solutions with the exact solution [8] are presented in Table (3.5). 

The computed results appear to be in good agreement with the analytical 

solution. It is observed, however, that the stresses calculated using 

the uncondensed transitional finite elements have an error of about 11% 

whereas the stresses calculated using the condensed transitional finite 

elements resulted in an error of about 2% in the vicinity of the transi­

tional elements. 



Grid 

u2 
0 

ul 
0 

T22 
A 

u 

Strain Ener!!l 

MfE T.f.E. MfE T.f.E. MfE T.F .E. MfE T.f.£. 
Size Condensed Condensed Uncondensed Condenaed Condensed Uncondansed Condensed Condens.d Uncondonsed Condensed Condensed Uncondensed 

N • 2 0.448260 0.461:5-tl2 0.4792811 -0.149604 -0.1!178762 -0.11.54211 0.821924 
•

0.9.56512 0.910185 o.2413767 o.20!1569 o.24654611 

N • 4 0.461474 0.4654755 0.47217611 -0.141383 -0.1466588 -0.1406876 o.unn •
0.912827 0.11527117 0.2491758 0.25006117 0.2526137 

N • 8 0.461414 0.46275511 0.4644919 -O.IJ9lll -0.1404195 -0.1390017 O.Ul500 •o.90056 0.881212 0.252906 0.2511832 0.2540}40 

Exact 0.4616885 -O.ll8l109 o.85909 o.2542149 
.i::i. 
........ 


Calculated fr°"' dlsplac.,,..nt fleld. 

TABLE l.41 Olsplac......nts, stresses and strain energies for tha square pl•te with parabollcally v•rylng end loads, Figure :5.7 
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Elements Mesh Strain Energy 
(U) 

Tip Displacement 

(oT) 

1: at x - 18"11 l 
at x2 • 6" 

Condensed N • 

N • 

2 
4 

0.6869276367E5 
0.7112716533E5 

3.440875E4 
3.537654E4 

30.856607 
29.361476 

Uncondensed N • 

N • 

2 
4 

0.697070443E5 
0.713329153E5 

3.491264E4 
3.548020E4 

37.323863 
26.742277 

Exact 0.714666666E5 3.553333E4 30.000000 

TABLE 3.5 	 Results for the cantilevered beam with three supports, 
Figure 3. 11. 

Errors in the calculated strain energy are presented in Table 

(3. 6) and plotted against grid size "N" in Figure (3.14). The strain 

energy convergence rate when using.the uncondensed transitional elements 

to connect the mixed and the isoparametric finite elements, is found to 

-4
be O(N ), hence maintaining the strain energy convergence rates of all 

three types of finite elements used in the analyses. When condensed 

-2
transitional elements, with energy convergence rate 	of O(N ), are used, 

-3
the strain energy convergence rate is close to O(N ). Thus, with the 

condensed transitional elements, energy convergence rate is lower. 
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Elements Mesh Error in Convergence Rate 

U(%) oT(%) 

Uncondensed N • 
N • 

2 
4 

2.462 
0.187 

1.747 
0.149 

-4 
N 

Condensed N = 2 
N ,. 4 

3.880 
0.475 

3.165 
0.441 

-3 =N 

TABLE 3.6: 	 Errors in strain energy and tip displacement for the 
cantilevered beam with three supports, Figure 3.11. 

To illustrate the shape restrictions on the uncondensed four-

node transitional element, the cantilever of Figure (3.13) is reanalyzed 

by distorting shapes of the transitional elements. Figure (3.15) shows 

plots of the extreme fibre stress along the beam axis for the different 

transitional element shapes as indicated. It is observed that when edge 

2-4-3 of the transitional elements, Figure (3.4), is parallel to one of 

the global axes and the other two sides being equal in length, thus 

forming an isoceles triangle (m = -m. ), reasonably accurate results
12 13

for the extreme fibre stresses are obtained. However, when the shapes 

of the transitional elements deviate from the condition m = -m.
13 

,
12 

large fluctuations of stresses result, especially in the vicinity of the 

transitional elements. This confirms the earlier findings that the non 

unique problem with the quadratic stress modes for non zero a condition 

does lead to oscillations of the calculated stresses. 
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3.5 Example of Plane Square Plate with a Circular Hole 

The three-node triangular mixed, mixed transitional and the 

isoparametric displacement finite elements are used to analyze the prob­

lem of a plane square plate with a circular hole in the middle, under 

uniform tension T
0

, Figure (3.16). The diameter of the hole is taken as 

one-eighth of the plate width and the plate is of unit thickness. The 

plane strain state is analyzed for both isotropic and orthotropic cases. 

Because of symmetry, only one quarter of the plate is analyzed and the 

two finite element grids used are shown in Figures (3.17) and (3.18). 

All four-node mixed transitional elements in both grids are isoceles 

triangles with right angles between sides 1-2 and 1-3. However in the 

first grid, side 2-4-3 of each transitional element is not parallel to 

any of the global axes whereas in the second grid, side 2-4-3 of each 

transitional element is kept parallel to one of the global axes. 

The calculated stresses are plotted in Figures (3.19) and (3.20) 

along with the analytical solution for an infinite plate [13, 14]. 

Results obtained with the two different grids are almost the same. In 

both cases, the finite element solutions over predict the stress concen­

tration at the circular hole. This is expected for a finite plate. 

The same problem has been analyzed by Mirza [8j using a more 

refined grid shown in Figure (3.21). In one case, only the mixed finite 

elements are used and in the other the constant stress triangular ele­

ment (CST' s). A comparison of the results obtained with the present 

analyses with that obtained using mixed elements and CST' s, respect­
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ively, is given in Table (3.7). The amount of computer storage required 

in each case, except that for the CST elements, is also indicated. In 

the present analyses the skyline storage technique has been used, while 

for the other cases the uniform half bandwidth storage scheme was used. 

It is observed that the present analyses give less accurate 

results than that obtained using mixed elements alone. This can be 

explained by the relatively coarse grids used. However, reasonably 

accurate results are obtained and the number of degrees of freedom and 

computer storage required are very much reduced. The number of degrees 

of freedom is almost halved and the storage requirement for the global 

matrix reduced from about 45000 to about 10000. Therefore, the present 

scheme of mixed and the isoparametric elements does indicate the advan­

tage in both lesser storage requirements and relative accuracy. 

Finally, it should be pointed out that the four-node mixed 

transitional element performs well when m is not equal to minus m
12 13 

(m * -m ). This is because the transitional elements are located in
12 13

a region of approximately constant stresses where the severity of the 

orientation problem is very much reduced. Thus no oscillations of 

stresses have been observed. 
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(a) ISOTROPIC 

Uncondensed 
Grid #1 

Grid #2 

Tll(C)/TO 

3.4972671 

3.5115569 

T22(B)/T0 

-0.9982387 
-0.9537004 

Storage 
~ __.,. sTs 

5615 + 10508 

5904 + 11157 

DOF 

188 

193 

NB-w 

100 

102 

Condensed 
Grid lil 
Grid #2 

3.4917262 
3.5109618 

-0.9937126 
-0.9620834 

3857 + 7187 
4131 + 7905 

161 
166 

73 
75 

Ref. [8] 
(All MIXEL) 

3.2630492 -1.0931845 43434 342 42 

CST 
(extrapolated) 

2.910 -0.878 

Infinite Plate 3.00 -1.00 

(b) ORTHOTROPIC 

Tll (C)/TO T22(B)/T0 Storage T 
.s.. ~ .s. .s.. 

DOF 
..­

NB 

Uncondensed 
Grid #1 
Grid 112 

3.2743412 
3.3049690 

-1.2010702 
-1.1193274 

5615 
5904 

+ 10508 
+ 11157 

188 
193 

100 
102 

Condensed 
Grid #1 
Grid #2 

3.2684212 
3.3038854 

-1.1925217 
-1.1291649 

3857 
4131 

+ 7187 
+ 7905 

161 
166 

73 
75 

Ref. [8] 
(All MIXEL) 

3.0852018 -1.6463486 43434 342 42 

CST 
(extrapolated) 

2.920 -0.888 

Infinite Plate 2.83 -1.75 

* Half bandwith excluding the diagonal. 

TABLE 	 3. 7: Comparison of computer storage requirements and stresses 

at the edge of the hole in a square plate under tension, 
Figure 3.16. Isotropic and Orthotropic. 
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1T,F,E, 

I. F .EI 


0 NODES WITH STRESS AND DISPLACEMENT D.O.F. 

• NODES WITH DISPLACEMENT D.O.F. 

T.F.E. 1 
- THREE-NODE TRANSITIONAL FINITE ELEMENT) CONDENSED. 

T.F.E. 2 
- FOUR-NODE TRANSITIONAL FINITE ELEMENT) CONDENSED. 

I.F.E. - ISOPARAMETRIC DISPLACEMENT FINITE ELEMENT, 

FIG. 3.2: COMBINATION OF A CONDENSED FOUR- NODE TRANSITIONAL 
ELEMENT) A THREE-NODE TRANSITIONAL ELEMENT AND AN 
ISOPARAMETRIC ELEMENT) USED TO INVESTIGATE THE 
EFFECT OF THE MAGNITUDE OF THE MODULUS OF ELASTIC­
ITY, 
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L = 48.0 

STRESS FREE 

H = 12.0 

STRESS FREEf-~~2I 4 - ~i2- x2 

PARABOLICALLY VARYING END SHEAR, P = 40K 

a) CANTILEVER WITH LOAD SYSTEM AND SUPPORT CONDITIONS, 

..b..= 24 0 ..b. = 24 0
2 ' 2 ' 

H = 12.0 

b) FINITE ELEMENT IDEALIZATION ALONG WITH BOUNDARY CONDITIONS, 

FIG, 3.3: LINEAR ELASTICITY CANTILEVER BEAM WITH FULLY FIXED 
SUPPORTS SUBJECTED TO PARABOLIC END SHEAR. 
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3 3 3 3 3 
U U 't' 1' T 

2 2 2 2 2 

3 l 2 11 22 12 

4 4 4 4 4 
U U T 1' T 

1 2 1 l 2 2 1 2 

2 u u 1' T T 
l 2 11 22 12 

l l l l l1 u u T T T 
l 2 11 22 12 

FIG. 3.4 NODE NUMBERS AND DEGREES OF FREEDOM FOR A FOUR-NODE 
TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENTJUNCONDENSED 

3 

4 2 

4 
1 

m12 

21 
a) m > 0.0 b) m < 0 I 0 

1 2 l 2 

FIG, 3,5: ISOCELES FOUR-NODE TRIANGULAR MIXED TRANSITIONAL 
FINITE ELEMENTS WITH m = -m 

1 2 1 3 I 
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m = oc 
1 3 

2 


1 

FIG. 3.6: FOUR-NODE TRIANGULAR MIXED TRANSIIIQNAL FfNITE ELEMENT 
WITH A RIGHT ANG~E BETWEEN SIDES -2 AND -5 AND WITH 
SIDES 1-2 AND l-5 PARALLEL TO THE GLOBAL COORDINATE AXES. 

LU 
LU 
0:: 
LL.L 
en 
en 
w 
0:: 
I-
en 

2 

(. 

4x )N=Nl-­

D 


A 
u

2 
= 0.0 

22 o L2 

c 

~ 
LU 

LU 

0:: 
LL. 

B LU x1LU 
0:: 
I-
en 

L 


FIG. 3.7: PLANE STRESS SQUARE PLATE WITH PARABOLICALLY VARYING 

END LOADS, 
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1 
l l 

T T T 
11 22 12 

2 
a) THREE-NODE TRANSITIONAL ELEMENT,

2 2 2 

T T T 
11 22 12 	 3 3 3 

3 T T T 
ll 22 12 

4 4 4 4 4 

4 U U T T T 
l 2 ll 22 12 

l l 

1 	 2 2 2 
u1u2 	 2 T T T 

l l l 	 ll 22 12 

T T T 
ll 22 12 b) FOUR-NODE TRANSITIONAL 	 ELEMENT, ·uNCONDENSED, 

3 

4 

u1u1 

1l 2 2 
l l l 

T T T 
11 22 12 

c) FOUR-NODE TRANSITIONAL ELEMENT, CONDENSED~ 

FIG, 3,8: TRIANGULAR MIXED TRANSITIONAL FINITE ELEMENTS USED 
FOR THE FINITE ELEMENT ANALYSIS OF THE SQUARE P~ATE 
WITH PARABOLICALLY VARYING END LOADS-FIGURE, 3,/, 
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N=2 N=4 
a.) THREE-NOIE TRANSITIONAL ELEMENTS, 

N.= 2 N=8 
b) FOUR-NODE TRANSITIONAL ELEMENTS., CONDENSED, 

N=2 

c ) FOUR-NODE TRANSITIONAL ELEMENTS., UNCONDENSED, 

• NODES WITH STRESS AND DISPLACEfvlENT DEGREES OF FREEOOM, 

o NOIES WITH DISPLACEMENT DEGREES OF FREEOOM, 

FIG, 3.9: FINITE ELEMENT GRIDS FOR THE SQUARE PLATE WITH PARABOLI CALLY 
VARYING END LOADS, 
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WITH CONDENSED MIXED TRANSITIONAL ELEMENTS,• 
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FIG, 3.18: FINITE ELEMENT GRID FOR THE SQUARE P~AITE WITH 
A CIRCULAR HOLE IN THE MIDDLE) GRID l , 
ISOTROPIC AND ORTHOTROPIC CASES. 
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FIG. 3.21: FINITE ELEMENT GRID FOR 11-IE SQUARE PL.ATE WITH A CIRCULAR 
HOLE IN 11-IE MIDDLE, REFERENCE [ 8 ] I 
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CHAPTER 4 

LINEAR ELASTIC FRACTURE MECHANICS (LEFM) BY FINITE ELEMENT METHOD 

The formulations and numerical tests of the triangular mixed and 

mixed transitional finite.elements have been carried out in the previous 

chapters. Application of the finite element method to linear elastic 

fracture mechanics (LEFM) will be presented in this chapter and, in 

particular, the use of finite element scheme for using the mixed, mixed 

transitional and isoparametric displacement finite elements in a single. 

finite element mesh. Following a brief account of linear elastic frac­

ture mechanics, various finite element approaches in determining the 

stress intensity factors are discussed. Details of the direct deriva­

tive approach are then given and the classical problems of plates with 

symmetric edge cracks and a central crack under .in-plane loads are anal­

yzed. 

4.1 Linear Elastic Fracture Mechanics (LEFM) 

Fracture or cracking of a material is the physical separation 

under severe stress conditions in the presence of a notch or crack in a 

structure. The concepts and results of LEFM have been used successfully 

to predict the strength and life of cracked structures, particularly 

when yielding of the material is confined to a very small region around 

the crack tip. A brief account of LEFM is presented here. 
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Generally speaking, there are two approaches for studying frac­

ture, the energy approach and the stress parameter approach. Griffith 

in 1920 [15, 16] proposed an energy balance argument for coplanar crack 

growth of a sharp crack. The idea behind Griffith's concept is that a 

crack will begin to propagate if the energy released during a crack 

front growth is equal to the energy required to form the new crack sur­

face. This theory, which is valid for brittle materials where the 

deformations are essentially elastic prior to onset of fracture and 

where the plastic yielding is confined to a very small region around the 

crack tip, has been the basis of determining the fracture of cracked 

bodies. Alternatively · Irwin [17], in applying Griffith's concept to 

solve fracture problems, emphasized the stress conditions in the vicin­

ity of the crack tip. In various papers [17, 18, 19], Irwin pointed 

out, mostly from a mathematical viewpoint, that in fracture mechanics 

three basic modes of crack extension can be distinguished. These are: 

a) Mode I - the opening mode where the displacement discontinuity is 

perpendicular to the plane of the crack; 

b) Mode II - the sliding mode where the displacement discontinuity is 

in the plane and parallel to the direction of the crack; 

c) Mode III - the tearing mode where the displacement discontinuity is 

in the plane of the crack but perpendicular to it. 

The three different modes of crack extension are illustrated in Figure 

(4.1). In all these cases, it is assumed that the crack is a straight 

through cut perpendicular to the plane of the material. 
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In the case of plane strain or plane stress, where the material 

contains a straight crack subject to in-plane loadings, only the first 

two modes of crack extension, Modes I and II, are relevant. For these 

cases, nonzero stress components are mathematically infinite at the 

crack tip and the stress state in the neighborhood of the crack can be 

expressed as follows (17, 20, 21], Figure (4.2): 

cos (0/2)[1 - sin (0/2) sin (30/2)] 

sin (0/2)[2 +cos (0/2) cos (30/2)] + ••• (4.1.1.a}
(2r)l/2 

K 


(Zr~l/Z cos (0/2)[1 +sin (0/2) cos (30/2)]
T22 • 

+ sin (0/2) cos (0/2) cos (30/2) + ••• (4.1.1.b)
(2r)l/2 

cos (0/2) sin (9/2) cos (39/2)] 

+ cos (9/2)[1 - sin (9/2) sin (39/2)] + ••• (4.1.1.c)
(2r)l/2 

where the non-singular stress terms have been dropped and r and 9 are 

the polar coordinates in the x1-x2 plane. KI and KII in Equations 

(4.1. la, b and c) are called the stress intensity factors and are 
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measures of the intensity of the stress singularities at the crack tip. 

~ and ~I are the symmetric and skew-symmetric components of the stress 

intensity factors and they are associated with the opening (Mode I) and 

sliding (Mode II) modes of crack extension, respectively. In general, 

the stress intensity factors are functions of the crack length, the 

geometry and the external loadings. 

The generalized Griffith-Irwin fracture theory states that under 

external loading, slow crack extension will start when the corresponding 

stress intensity factors reach their critical values. The critical 

values of KI and KII for which a crack becomes unstable and propagates 

are designated as KIC and KIIC respectively. KIC is also sometimes 

referred to as the fracture toughness. For design purposes, the criti­

cal value of a stress intensity factor is assumed to be a material prop­

erty. For a given crack configuration and principal mode of fracture, a 

theoretical stress intensity factor is computed and compared with the 

critical value of stress intensity factor for the same material. The 

critical value of stress intensity factor is determined experimentally 

for the same principal mode of fracture and the same environmental 

conditions as in the actual application. If the computed theoretical 

stress intensity factor is less than the critical value, then the crack 

will not propagate. Otherwise, crack propagation will result. Thus, 

estimation of the critical state of stress at the crack tip reduces to 

determination of the elastic stress intensity factors. 

Irwin (19] also showed that the stress intensity factors are 

related to the decrease in potential energy of the cracked system per 
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unit area of crack advance, i.e., the potential energy release rate G. 

For plane problems, the following equations hold: 

2 
(K + 1) ~ -arr (4.1.2) --aa .. 8µ

mode I 

• =!!!, • (K + 1) K_ 2 (4.1.3)
GII aa mode 2 8µ --ir 

where GI and GII are the potential energy release rates for Mode I and 

Mode II, respectively; II is the potential energy; µ is the shear modu­

lus; and the elastic constant K takes the value (3 - 4v) for plane 

strain and (3 - v)/(l + v) for plane stress where " is the Poisson's 

ratio. It should be noted that GI and GII are formally computed by 

assuming that the crack extends in a plane collinear with the original 

crack as in Mode I (which is not necessarily the actual direction of 

crack propagation under a general state of stress, with both K and KII1 

having nonzero values) and GI ~s in fact the energy release rate in 

Griffith's theory. 

From Equations (4.1.2) and (4.1.3) it is seen that the stress 

intensity factors and the energy release rates are related and the 

problem of crack instability can be addressed either in terms of stress 

intensity factors or energy release rates. Under a general state of 

loading, both KI and KII corresponding to the opening and sliding modes 

will attain nonzero values. In this chapter, discussion will be 
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restricted to those cases where the loadings are symmetric about the 

crack plane (Mode I type). Consequently, the stress state in the vicin­

ity of the crack tip is symmetric about the crack plane and can be 

adequately described by the first term in Equation (4.1.1), i.e. only 

Kiwill attain a nonzero value. Therefore, the crack will extend in an 

opening mode and only ~ and GI have to be calculated. 

4.2 	 Application of Finite Element Method in Linear Elastic Fracture 

Mechanics 

In any application of LEFM principles, the crack tip stress 

intensity factors have to be determined. A rigorous determination of 

the stress intensity factors requires an exact solution of the elasti­

city problem formulated for the cracked body. In most cases, highly 

sophisticated mathematical analysis is required and exact solutions are 

either very difficult or impossible to obtain. The stress intensity 

factors have been calculated for varying crack size and relatively 

simple-shaped plates by Paris and Sih [22]. For the more realistic 

complex shapes encountered in practice, however, numerical techniques 

are generally required and the finite element method has been success­

fully used to evaluate the stress intensity factors. 

When conventional finite elements with polynomial interpolation 

functions are used in the crack tip region, the characteristic elastic 

stress singularity can not be represented and as such indirect proce­

dures have been used. Basically there are two different approaches: 

the extrapolation of a field parameter near the crack tip using the 
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calculated displacement or stress fields, or an energy method whereby 

the potential energy release rate is calculated which is then used to 

determine the stress intensity factors using Equations (4.1.2) and 

(4.1.3). 

The extrapolation approach has been used by Chan et al. [23] in 

conjunction with constant stress triangular elements. The product of 

1/2 
r with a stress component as a function of distance r along a ray 

emanating from the crack tip is plotted and a tangential extrapolation 

of this quantity to the crack tip at r • 0 is performed from which the 

stress intensity factors can be determined using the singular stress 

solution in Equation (4.1.1). Alternatively, the extrapolation can be 

1/2
based on the product of r with a displacement. Stress intensity 

factors within five percent of the accepted values of KI are reported. 

However, such procedures require extremely fine grid refinements near 

the crack tip and could easily exhaust the storage capacity of most 

computers. Approximately 2000 degrees of freedom were used to obtain 

the five percent accuracy reported. 

The energy method of calculating the stress intensity factor K 
I 

has been used by Mowbray [24] and Hayes [25]. The energy method used in 

reference [24] is very similar to experimental compliance method. The 

same specimen was analyzed for several cracks of slightly varying length 

and the compliance was obtained as a function of crack length a. Numer­

ical differentiation of this relationship with respect to the crack 

length enables determination of GI' and KI can be calculated from 
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Equation (4.1.2). Using this method, again about five percent accuracy 

was obtained for 1000 degrees of freedom with the constant stress ele­

ments. The procedure above, however, requires a separate analysis to be 

performed for each crack configuration with slightly different crack 

length and therefore can be very costly. 

A path independent integral in plane elasticity, called the J-

integral, has been introduced by Rice [26, 27] and is defined as: 

-
J • I Wd T • cu ds (4.2.1)Y - 3x 

r 

€i.
J 

where W • I aijdeij is the strain energy density, T is the traction 
0 

vector on curve r around the crack tip in relation to a unit outward 

normal vector n, u is the displacement vector and ds is an element of 

arc-length along the curve r, Figure (4.3). It can be shown that the J-

integral is equal to the potential energy release rate for a crack 

assumed to propagate in its own plane. For mode I loading, 

3II (K + 1) 2 
J == G • (4.2.2)

I --= 8µ Kr3a 

Hence the potential energy release rate for a particular crack configur­

ation can be obtained by evaluating the·J-integral and the stress inten­

sity factor K can be determined using Equation (4.2.2) without perform­
1 

ing a second analysis for a configuration with a slightly different 

crack length. The path independence of the J-integral allows its evalu­
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ation along a contour far enough away from the crack tip where the 

finite element solution would be more representative, thus resulting in 

a better accuracy. 

A direct derivative finite element technique, based on the 

energy release rate, similar to the J-integral, was introduced by Park 

[28J. Again, a solution for only the original crack length is required 

and for constant stress triangular elements, it was shown that the 

direct derivative technique is in fact a numerical analog of the J-inte­

gral. Details of the direct derivative method are given in the next 

section where the method is applied to determine KI for linear elasti­

city problems using the mixed, mixed transitional and isoparametric 

displacement finite elements. This procedure is adopted because the 

extreme grid refinement in the crack tip region needed for the extrapo­

lation method is not required and there is no need for a second analysis 

to determine the potential energy release rate. 

Instead of using the aforementioned indirect methods to deter­

mine the stress intensity factors, special crack tip elements with 

direct incorporation of the stress singularity in the interpolation 

functions can be employed [29 to 32]. Improved accuracy is generally 

obtained by using such special elements and the stress intensity factors 

can be obtained directly from the finite element solutions. For exam­

ple, Tracey [29], using a mesh of isoceles trapezoidal special elements 

surrounding the crack tip was able to obtain five percent accuracy for 

K1 with only 248 degrees of freedom. Although the special singularity 

elements can be readily incorporated into an existing finite element 
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program, their versatility in terms of energy convergence rate, changing 

crack direction and propagation for mixed mode cracking is not clear and 

are not discussed here. 

4.3 	 Calculation of Mode I Stress Intensity Factor using Direct 

Derivative Method in Conjunction with Mixed, Mixed Transitional 

and Isoparametric Displacement Elements 

The stress intensity factor K is related to the potential
1 

energy release rate GI and for plane strain and plane stress problems 

with unit thickness, this relationship is given by 

G • 	
arr (4.3.1)--· I aa 

where a is the crack length and IT, u and K have been defined previously 

(Equation (4.1.2)). The direct derivative approach has been used by 

Park [28] and Mirza [8, 33] using constant strain triangular finite 

elements and triangular mixed finite elments, respectively. It has been 

shown by Tong and Pian [34] that in stress singular problems, the use of 

high order displacement finite elements will not be able to improve the 

energy convergence rate and the convergence in strain energy is only 
-1 

linear in plane elasticity, i.e., O(N ). However, it was shown in 

reference [33] that with mixed finite elements, the strain energy con­

-1 
vergence rate is at least O(N ) and using triangular mixed finite 

element with linear stress and displacement approximations, a strain 

-2 
energy convergence rate of O(N ) has been obtained. Also, improved 

accuracies were demonstrated for the energy release rate and K values 
I 
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with mixed finite elements. It has been pointed out in Chapter 2, how­

ever, that the use of mixed finite elements alone requires a much larger 

computer storage. Therefore it is proposed to use the mixed finite 

elements near the crack tip where there is a stress singularity and 

large stress gradients, and to use the eight-node isoparametric 

displacement finite elements in the region away from the crack tip where 

stress distribution is more regular. The isoparametric finite elements 

are connected to the mixed finite elements via the mixed transitional 

elements developed in Chapter 2. It is expected that the proposed 

scheme will reduce the computer storage required while maintaining the 

advantage of improved convergence rate over that when only the displace­

ment type finite elements are used. 

In the mixed finite element analysis, the element matrix equa­

tions (Equations (2.3.19) and (3.1.1)) are assembled using the usual 

routines of finite element analysis. The global matrix equation is 

given by: 

0 

A 
(4.3.2) 


and the potential energy can be expressed as [33]: 

1 T T T 
- u f (4.3.3)Tl_ = - <u -r > 

-~ 2 - ­

where matrices A and B are global matrices obtained by assembling the 
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e e
element matrices.! 's and! 's (see Equation (3.1.1)), f is the general­

ized load vector and u and 't' are the unknown nodal displacements and 

stresses. The potential energy release rate is obtained by differenti­

ating ~ with respect to the crack length a in the following manner: 

T 
au 

aa <-=­-- aa 

However, the first term in Equation (4.3.4) is zero because 

Equation (4.3.2) has been satisfied exactly in the finite element analy­

sis. Therefore the potential energy release rate becomes: 

(4.3.5) 

Furthermore, if the body is loaded by surface tractions applied on the 

boundary other than the crack surface, then the load vector f is inde­

pendent of the infinitesimal change in the crack length, i.e., 

ayaa .. o. Thus from Equations (4.3.1) and (4.3.S): 

-arrM • (K + 1) K 2 ,. _ l as { u-r} (4.3.6)(uT 't'T) -= aa 8µ I 2 - - aa 

where S is the master finite element matrix in Equation (4. 3. 2) and 

a.§_/aa represents the change in the master finite element matrix per unit 

crack extension. 
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A crack extension can be accommodated using the mesh shown in 

Figure (4.4) by rigidly translating all nodes on and within the contour 

r about the crack tip by a very small amount aa in the x -direction.
0 1

All other nodes remain fixed. Thus the master finite element matrix, 

which depends on individual element geometries and elastic properties, 

remain unchanged in the region interior to r and exterior to r •
0 1 

Therefore the contributions to as/aa come from only the band of elements 

between the contours r and r , Figure (4.4) and:
0 1 

anM 1 T T as T E (4.3.7)- • - <u -r >- {!!.} • -1 <u -rT> i.: 

0 

-ai}_ { !!.}
aa 2 - - aa .!. 2 - i•l aa .!. 

0 
where u and -r are the nodal variables for the nodes on r and r ; E is0 1

0
the number of elements between the contours r0 and r1; and ~i are the 

element matrices. The change in the element matrix can be calculated 

directly as: 

(4.3.8) 

where the nodal coordinates are thought of as functions of the crack 

length a. The derivatives ax /aa are then either unity or zero,1 
j 

depending on whether x
1

. is the x -coordinate of a node located on r0 or
1

J 

not. Altern.atively, a~i I aa can be approximated by a forward finite 

difference scheme as: 
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0 0 
asi := A!i • .L [so -

-i 
so ] (4.3.9) 

aa Aa Aa ~a + Aa a 

0 0
where !i is calculated for the initial crack length a; and ii the 

a a + Aa 

same matrices when the x coordinates of all of the nodes lying on r
1 0 

have been incremented by an amount Aa. Thus from Equation (4.3.7), the 

potential energy release rate can be calculated as follows. 

The master finite element matrix equations need only be solved 

once, i.e., for the initial crack length a. After obtaining this solu­

tion, the potential energy release rate can be calculated in a discrete 

manner by pre- and post-multiplying the differentiated matrices of Equa­

tion (4.3.9) with the solution vectors for the corresponding nodal vari­

ables and then summing these over all the elements between r and r ,
0 1

i.e., 

- s 0 ]-iA~ 1 a (4.3.10)
Aa 2 Aa 

e e
where ~ and .!.i are the nodal displacement and stress degrees of freedom 

th
for the nodes corresponding to the i element within the contour r0 and 

After computing Ail /Aa using Equation (4.3.10), the stress inten­
M 

sity factor K can be calculated as:1 
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J -AII 
KI = 8µ ( -~] (4.3.11) 

(K + 1) tul 

It should be pointed out that the contour r to be translated
0 

has to lie inside the body and enclose the crack tip. However, it can 

be shrunk to a single node at the crack tip so that the summation in 

Equation (4.3.10) extends over the elements adjacent to the crack tip 

only. 

A typical finite element mesh, when the direct derivative method 

is used in conjunction with the mixed, mixed transitional and isopara­

metric displacement finite elements, is shown in Figure (4. Sa). The 

change in the finite element mesh is illustrated.in Figure (4.5b). The 

crack extension is accomodated by rigidly translating all nodes on and 

within a contour r about the crack tip by a small amount Aa as
0 

explained previously. However, it should be noted that the contours r
0 

and r are kept within the region where only mixed finite elements are1 

used. The change in potential energy is again given by Equation (4.3.7) 

and can be calculated as described earlier in this section. A sub­

routine (DENERG) has been written to perform the calculations described 

above for the direct derivative method of evaluating the potential 

energy release rate. For the purpose of computer programming, it is 

convenient to classify the mixed finite elements within the contours 

roand rl into two categories; mixed elements with two nodes on contour 

r are clasg~fied as element type I and elements with only one node on
0 

contour r 
0 

are classified as element type II. Derivations of the 

changes in element matrices in Equation (4.3.9), 
0

i.e. it_ 0
Si , 

a + Aa a 

http:illustrated.in
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are presented in Appendix D for both types of mixed elements. The 

subroutine DENERG is included in the program listing in Appendix E. 

4.4 Numerical Examples 

Applications of the energy approach described in the previous 

section are presented in this section. The stress intensity factor KI 

for plates with symmetric edge cracks and a central crack under inplane 

loads are computed and compared with results available in the 

literature. Three different problems are analyzed and presented below • 

. 4.4. l 	 Isotropic Rectangular Plates with Symmetric Edge Cracks and a 

Central Crack 

Two plane strain problems, isotropic rectangular plates one with 

symmetric edge cracks and the other with a central crack are analyzed. 

The details of the two plates are shown in Figure (4. 6). Because of 

symmetry about the x and x axes, only a quarter of the plate is
1 2 

analyzed 	in each case and this is shown in Figure (4.6) as shaded areas 

along with the respective boundary conditions. The finite element mesh 

used in both problems is shown in Figure (4. 7). Mixed finite elements 

are used in the near crack tip region and only four eight-node 

isoparametric displacement finite elements are used in the region away 

from the 	 crack tip as indicated. Two four-node and four three-node 

mixed transitional (only for condensed version) elements are used to 

connect the mixed and isoparametric finite elements. It should be noted 

that the configuration of the four-node mixed transitional finite 
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elements (uncondensed) conforms with the requirements discussed in 

Section 3.3. Also indicated in Figure (4.7) are the ratios of the radii 

rr to the crack length a (O.O, 0.1, 0.2). These are used to calculate 
0 

the potential energy release rates for a crack extension of Aa in the 

finite element analyses as described in the previous section. Although 

it is sufficient to solve each problem once for the initial crack length 

a, the finite element analysis is performed every time here when the 

r 
contour r 0 (with~• O.O, 0.1, 0.2) is translated by the amount Aa • 5 

a 
-6 

x 10 a in the direction of the crack. The analyses are carried out 

first with uncondensed transitional finite elmenets (which require no 

three-node transitional elements) and then repeated with condensed 

transitional finite elements. 

The potential energy release rate, in the discretized form, can 

be expressed as 

-All
GI • ~ (4.4.1.1)Aa 

and All • rr - rr
0rr 

0 

where rr is the potential energy associated with the initial crack and
0 

IT when the crack tip has been moved by an amount Aa. The crack 
rr 

0 

intensity factor is then calculated by using Equation (4.3.11) which for 

plane strain problems reduces to the following: 
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(4.4.1.2) 


The results obtained with the uncondensed transitional elements 

are very nearly the same as those obtained with the condensed transi­

tional elements. Only the uncondensed elements results will be 

presented here. The numerical results for the plate with symmetric edge 

cracks are given in Table (4.1) and those for the plate with a central 

crack in Table (4.2). The crack stress intensity factor for the former 

is compared with nearly exact KI obtained by Bowie [35] and that for the 

plate with a central crack with KI by Bowie and Neal [36]. In both 

cases, very satisfactory results are obtained (using a reasonably crude 

grid), with the smallest percentage errors obtained for the contour r 
0 

with radius r • 0.1 a. The errors in K for the plate with symmetric
1ro 

edge cracks and that with a central edge crack are 3. 71% and 5. 74%, 

respectively. In general, the accuracy of the value of KI .calculated 

will depend on the contour r used to calculate the potential energy
0 

release rate and personal judgement and experience have to be relied 

upon to determine the best values. 
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rr 
0-a - EII 

2 -r0hbt 

l0
6

EAII- 2 -r0hbt 
- aE AII 

2 -r0hbt Aa 

KI -
-ro./a 

Error % 

o.o 
0.1 
0.2 

1.05748361 
1.05748394 
1.05748389 

1.281555 
1.609364 
1.557822 

0.256311 
0.321873 
0.311564 

1.83845 
2.05939 
2.02614 

14.04 
3.71 
5.27 

Initial 
Crack 1.05748233 EXACT KI; ref, (35] 2.13884 

TABLE 4.1: Stress intensity factors from the finite element analysis 
of the rectangular plate with symmetric edge cracks, 
Figure 4.6(a). (Mixed, Mixed Transitional and 8-node 
isoparametric finite elements.) 

rr 
0- EII- 106EAII- aE AII- KI-

-ro./a 
Error % 

a -r~hbt 2 -r0hbt -r~hbt L\a 

o.o 
0.1 
0.2 

1.0456331 
1.0456335 
1.0456334 

1.302753 
1.548342 
1.614274 

0.260551 
0.329668 
0.322855 

1.85286 
2.08418 
2.06253 

16.20 
5.74 
6.72 

Initial 
Crack 1.0456318 

-
EXACT KI; ref, (36] 2.10922 

TABLE 4.2: 	 Stress intensity factors from the finite element analysis 
of the rectangular plate with a central crack, Figure 
4.6(b). (Mixed, Mixed Transitional and 8-node isopara­
metric finite 	elements.) 

The sensitivity of the calculated values of the energy release 

rate GI to the magnitude of Aa used is also studied. It is found that 

the calculated GI values are relatively insensitive to the magnitude of 
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Aa used for these problems. In general, of course, the size of Aa will 

-6
affect accuracy of G1 • Thus the values of Aa • 5 x 10 x a used in the 

present analyses is very reasonable. 

The same problems have been analyzed by Mirza and Olson [33J 

using the mixed finite elements alone and the finite element grid used 

is shown in Figure (4.8). It was found that the results with the least 

percentage error were also obtained for the contour r with radius0 

• 0.1 a. Errors in the stress intensity fac.tors KI obtained for the 

plate with symmetric edge cracks and that with a central crack. were 

1.97% and 0.89%, respectively. A comparison of the results in reference 

[33] with that from the present analysis is given in Table (4.3). It is 

observed that the stress intensity factors KI from the present analysis 

are not as accurate because of the cruder finite element grids used. 

However, these are still very reasonably accurate. The computer storage 

requirement for the global matrix in the present analyses is reduced by 

more than 10 times which is a ·very significant improvement. Also, the 

number of elements and degrees of freedom required are reduced. The 

calculated values of KI from the present analysis can be improved by 

refining the finite element grid in the crack tip region. The storage 

requirement is still expected to be much less than that reported in 

reference [33j. Plots of normal stresses on the crack face OA (Figure 

(4.6)) are shown in Figure (4.9). The values of the peak stress 

obtained at the crack tip are about 5.2 times T • 
0 
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Author(s) Number 
of 

Elements 

Degrees 
of 

Freedom 

Storage Req'd 
for Global 

Matrix 

Accuracy 
of~ 

Error % 

Type of Element 

Mirza [8] 

Mirza [SJ 

Present 

Present 

174 

174 

52 

52 

505 

505 

190 

190 

111, 100 

111,100 

10,807 

10,807 

1.97 

0.89 

3.71 

' 

5.74 

Mixed 
triangles*, 
(Symmetric edge 
cracks). 

Mixed 
triangles*, 
(Central crack). 

Mixed 
triangles*, 
transitional. 
elements, 8-node 
isoparametric 
finite elements, 
(Symmetric edge 
cracks). 

Mixed 
triangles*, 
transitional 
elements, 8-node 
isoparametric 
finite elements, 
(Central crack). 

TABLE 4.3: Comparison of stress intensity factors from the present 
analyses and reference [33]. 
* Plane strain mixed finite elements; displacement and 

stress linear. 

Finally, it should be emphasized that the four-node mixed trans­

itional finite element configuration (shape and orientation) used satis­

fies the requirement in Section (3. 3) regarding the orientation prob­

lems. In fact, in this work, the stress fluctuations due to orientation 

problems of the four-node mixed transitional element were first observed 

when the problem of a rectangular plate with symmetric edge cracks was 

analysed, Figure (4.10). When uncondensed transitional elements, which 
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fail to comply with the requirements in Section (3.3) were used, the 

calculated stress intensity factor KI indicated an error of more than 

50%. Thus the present analysis also serves to confirm the orientation 

problems discussed previously. 

4.4.2 Orthotropic Square Plate with a Central Crack 

A square orthotropic plate (2b x 2c) with a central crack of 

length 2a as shown in Figure (4.11) is analysed for the plane stress 

state. The lines of material symmetry coincide with the x and y axes. 

Again, due to symmetry, only one quarter of the plate is analysed and 

the finite element grid used is shown in Figure (4.12). Note that due 

to the geometry of the problem, it is found convenient to use only the 

mixed finite elements. Values of KI are calculated for different ratios 

of the principal modulii of elasticity, E /E • The results are then 
x y 

compared with the numerical results obtained by Bowie and Freese [371 

through an extension of the modified mapping-collocation technique. The 

analytical solution given in [371 is characterized by two parameters, 

n and n , which are related to the material properties by the follow­
1 2

ing: 

= (E /E )1/2 (4.4.2.1)
x y 

1/2 1/2
nl + nz - 12 {CE /E ) + E /2µ - v } • (4.4.2.2)

xy x X'f yx 

In determining the stress intensity factor KI, the parameter n is kept
1 
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as unity and n2 
(• E /E ) is left as the parameter to be varied. For the2 x y 

present finite element analysis, however, all values of the material 

properties are needed. The value of the shear modulus of elasticity is 

taken to be unity in all of the analyses and for different values of n
2 
2, 

i.e. E /E , the principal Modulii (E and E ) and the Poisson's ratios 
x y x y 

are chosen so that Equation (4.4.2.2) is satisifed. Table (4.4) summar­

izes the material properties used. The potential energy release rate GI 

is calculated using the contour r0 as indicated in Figure (4.12). To 

compare with the results in [37], GI is converted to the stress inten­

sity factor KI. In the case of a crack propagating in its own plane in 

an orthotropic body, GI and KI are related by [38J: 

" + __!_2(y) 
µXIx }1/2 •+ (4.4.2.3)2 

E 
x 

A comparison of the results from the present analysis and those of Bowie 

and Freese is given in Table (4.5). It is observed that an excellent 

agreement is obtained and differences in K /K are less than 1% except
I = 

or E /E • 4.5 where the difference is 1.16%. In order to test the 
x y 

sensitivity of the finite element solutions to different values of 

material properties while keeping n and n constant, a different set of
1 2 

2 
elastic properties were used for the case = 0.7. It was found thatn2 

the values of KI calculated are almost the same as that given in Table 

(4.5). This agrees with Bowie's results that KI depends only on the two 

parameter n1and n2 given by Equations (4.4.2.1) and (4.4.2.2). 
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2 
n2 • E /E x y E x 

E y • E /ri2x 2 µxy v yx v xy 

v -raE E x y 

0.3 1.50 5.00 1.0 0.1 0.33333 

0.7 
1.0 
1.5 
4.5 

2.16667 
2.16667 
3.16667 
6.16667 

3.09523 
2.66667 
2.11111 
1.37037 

1.0 
1.0 
1. 0 
1.0 

0.23333 
0.33333 
0.33333 
0.33333 

0.33333 
0.33333 
0.22222 
0.074074 

TABLE 4.4: Material Properties used for determining the stress inten­
sity factor ~ for a centrally cracked orthotropic square 

plate. 

2 
E 
x 

n2 -­E 
y 

KI/Kao 

Bowie & Freese 

~/Kao 

Present Analysis Accuracy(% Error) 

0.3 

0.7 
1.0 
1.5 
4.5 

1.37 

1.26 
1.22 
1.18 
1.12 

1.363 

1.250 
1.213 
1.181 
1.133 

0.51 

0.79 
0.57 
0.08 
1.16 

K • ./a = 12.4 ao 

TABLE 4.5: Comparison of K /K from the present finite element analy­I ao 
sis and results by Bowie and Freese [37]. 
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MODE I MODE II MODE III 


FIG, 4.1: THREE DIFFERENT MODES OF FRACTURE, 
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CRACK 

FIG. 4.2: STRESS COMPONENTS NEAR THE CRACK TIP IN 
CARTESIAN RECTANGULAR COORDINATES. 

r(PATH OF INTEGRATION) 

CRACK 

T(TRACTIONS)-
n(UNIT OUTWARD NORMAL) 

FIG, 4,3: TYPICAL CONTOUR FOR EVALUATION OF J-INTEGRAL, 
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r 
i 

a+ti a 

FIG, 4.4: ACCOMODATION OF CRACK EXTENSION lia BY ADVANCING 
NODES ON THE PATH ro, 
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FIG, 4.5 a TYPICAL FINITE ELEMENT rvESH WITH MIXEDJMIXED TRAN­
SITIONAL AND ISOPA!WvENTRIC DISPLACEMENT TYPE 
FINITE ELEMENTS, 



- 100 ­

ACCOMODATION OF CRACK EXTENSIQN 6a BY ADVANCING 
NODES ON PATH r 

0 
IN FIGURE 4,) a, 

FIG. 4.5 b 
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22 

B 

A 

STRESS 
a.=-b FREE 

2 

T =-r 
0 

UNIT 
THICKNESS 

b =l.Q_ 
9 

h = 10 

3 


E = 1.0 


v i 0.3 ---------­

STRESS 
FREE 

B 

A 

ba=­
2 

T =T 
22 0 

..!:..= 3 
b 

~) SYMMETRIC EDGE CRACKS b) CENTRAL CRACK 

FIG. 4.6: RECTANGULAR PLATES WITH CRACKS USED FOR DETER­
MINING THE CRACK INTENSITY FACTOR K • 
THE QUARTER PLATE CONSIDERED FOR THE FINITE ELEMENT 
ANALYSIS ALONG WITH BOUNDARY CONDITIONS SHOWN AS 
SHADED AREA. 
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c B 

F 
r =O .1 a 

r =O .2 a 
0 

0 

DRAWN TO A LARGER SCALE 
TO THE RIGHT 

FIG, 4.7: FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK 
INTENSITY FACTOR K1J USED FOR BOTH SYMMETRIC EDGE 
CRACKS AND CENTRAL CRACKS, 
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c B 


0 A 
DRAWN TO A LARGER 

FIG. 4.8: FINITE ELEMENT MESH USED FOR DETERMINING THE CRACK 
INTENSITY FACTOR Kr) US.ED. FO.R BOTH .SYMMETRIC EDGE 
AND CENTRAL CRACKS_,.. REFERENCE ( 33], 
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'! '! 
22 22
-

't'o't'o 
7
7 


6 


5 


6 


5 


4 


1 


0 D 
 D AA 0 
-1-1 

4 

3 

2 

-2 -2 

a.) SYMMETRIC EDGE CRACKS b) CENTRAL CRACK 

FIG.1 4.9: NORMAL STRESS DISTRIBUTION ALONG THE EDGE OA OF 
THE RECTANGULAR PLATE WITH CRACKS-FIGURE 4.6. 
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0 

. FIG, 4.10: 

8 

7 
6 

5 

4 

3 

D 

-1 

-2 

FLUCTUATIONS OF NORMAL STRESS ALONG THE EDGE OA 
OF THE RECTANGULAR PLATE WITH SYMMETRIC EDGE 
CRACKS-FIGURE 4,6a, · 
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' 

y 

~2a-i 

~ 

"(' 
0 

x 2 c 

1'0 = 1.0 
c/b = 1.0 
a/b = 0.4 
n 

1 
= 1.0 

b = 6.0 
c = 6.0 
a = 2.4 

FIG. 4.11: ORTHOTROPIC SQUARE PLATE WITH A CENTRAL CRACK 
USED FOR DETERMINING THE STRESS INTENSITY FAC­
TOR KI I 
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FIG. 4.12: FINITE ELEMENT MESH USED FOR DETERMINING THE 
CRACK INTENSITY FACTOR FOR THE SQVAREK1PLATE WITH A CENTRAL CRACK-FIGURE 4.11. 
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CHAPTER 5 

CRACK EXTENSION UNDER COMBINED MODES 

A brief theory and applications of linear elastic fracture mech­

anics have been presented in the previous chapter. For a cracked body, 

loaded symmetrically about the crack plane (Mode I type), the crack will 

extend in a plane coincident with the original crack and it is suffi­

cient to consider only the Mode I stress intensity factor K or the 
I 

corresponding energy release rate GI. For a cracked body under general 

loading (planar), both~ and KII in Equation (4.1.1) exist and combined 

mode (Mode I and Mode II) situation results. The initial direction of 

crack extension will be different from that of the original crack plane 

and is referred to as crack branching or non-coplanar crack growth. In 

general, both KI and KII have to be calculated and fracture criteria 

have to be found in order to predict the initial direction of crack 

extension and the onset of crack growth under such combined modes. The 

determination of the stress intensity factors KI and KII by the finite 

element method using the energy release rate will be presented. Also, 

currently available fracture criteria for fracture under combined modes 

will be discussed and used to predict the direction of crack extension. 

5.1 	 Finite Element Analysis for Calculation of Stress Intensity 

Factors KI and KII Under Combined Modes 

The determination of K for a cracked body under symmetrical,
1 
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Mode I, loading has been discussed in Chapter 4. To analyze combined 

mode fracture problems, the stress intensity factors K and K have to1 11 

be determined. The extrapolation techniques and special finite elements 

with proper stress singularity embedded and reported in the previous 

chapters, could be used for such calculations. However, such procedures 

require special and much more difficult treatment of the region 

surrounding the crack tip and will not be used in this work. The energy 

approach for calculating stress intensity factors does not require 

special grid refinement in the crack tip region and has been shown to 

result in large reductions in the computer storage required. It is the 

purpose here to investigate such an energy approach. In particular, the 

direct derivative technique presented previously for the calculation of 

K for Mode I crack problems will be extended for the calculation of K
1 1 

and K for combined mode crack problems in linear elastic fracture mech­11

anics. 

s.1.1 Calculation of K and KI! using Energy Approach 
1 

The path independent J-integral introduced in Chapter 4 is equi­

valent to the potential energy release rate G calculated by assuming 

that the crack extends in a plane coincident with the original crack. 

For a cracked body under symmetric (Mode I) loading, this is indeed the 

actual direction of crack propagation and there is no contribution to 

the energy release rate due to Mode.II (~1 = 0). Therefore 

(K + 1) K 2 
J G G (S.1.1.1)= = I = 8µ I 



- 110 ­

The direct derivative technique can be used to calculate G as indicated
1 

in the previous chapter and can be determined using EquationK1 

(5.1.1.1). 

In combined mode crack problems (planar), crack extension will 

not be coplanar with the original crack plane. However, the potential 

energy release rate for an imaginary or a virtual crack extension assum­

ing coplanar crack growth, i.e. J, can always be calculated using the 

direct derivative technique. In such cases, both K and K exist and1 11 

therefore the energy release rate will have contributions from both 

Modes I and II. Equation (5.1.1.1) then takes the following form [27]: 

J • G • G + G • (K + 1) K._2 + (K + 1) KII2 (5.1.1.2)I II 8µ --1 8µ 

where G and GII are the energy release rates due to Modes I and II,
1 

respectively. Computation of G can be performed using the direct deri­

vative technique in the same manner as presented in the previous 

1 -T - T ~.2, { ~ }chapter, i.e. G • - 2 <u !J AS -::::; • However, one cannot distinguish 
"C' 

between contributions due to Modes I and II. Thus the energy release 

rate G has to be separated into the two components G1 and GII in order 

to determine the stress intensity factors KI and KI!• 

The method of separating G into GI and GI! is due to Ishikawa et 

al. [39, 40]. The cracked body is first analyzed using the finite ele­

-
ment method. The displacement and stress solutions ~' .!. near the crack 
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....I ....I ....II -II
tip are then separated into components ~ , ..!. and ~ , T for modes I 

and II, respectively. Displacements and stresses of mode I and mode II 

are symmetric and skewsymm.etric (See Equation (4.1.1)), respectively, 

-with respect to the x1 axis shown in Figure (5.1). The displacements~ 

at point P(X1, x2) can be separated in such a form that u is the sum of 
-I -II

displacements ~ due to mode I and ~ due to mode II which have been 

-expressed in terms of the displacements~ at point P(X1, X ) and the2
_1 I 

displacements~ at point P , with coordinates (X1 , - x2 ), in the 

following equations: 

-I -II 
u - u + u (5 .1. 3) 

_1 ""I....I -II 
ul + ulul ul ul - ul1 1 (5.1.4)and = 2 2.... ""I....II""I 
uz + u2Uz U2 U2 - U2 

..., I I I 

where u are the displacements of point P , and P and P always form a 
1 

pair of symmetric points about the x1 axis. Similarly, for stresses..!.' 

we have the following: 

.....r ..... 1 .....II ....,1 

•11 •11 + •11 •11 •11 - •11 

-I 
•22 

1-­2 
""I 

'22 + '22 and 
.....11 
,,.22 = 

1 
-2 •22 -

....,I 

•22 

....I ...,I .....n ""I 

'12 •12 + •12 •12 •12 - '12 

(5.1.1.5) 

. (5.1.1.6) 
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-I -I
Therefore by using the displacement and stress components, ~ , • and 

-II -II 
u , .! , and the direct derivative technique discussed earlier, the 

energy release rates GI and GII for a combined mode, planar crack prob­

lem are given by [39] 

(5.1.1.7) 

{ ~II} (5.1.1.8)-II • 
T 

It should be emphasized again that the energy release rates G 
I 

and GII are calculated by assuming that the crack extends in a plane 

coincident with the original crack, which is not necessarily the actual 

direction of the crack growth for a mixed mode type crack. With GI and 

GII given by Equations (5.1.1.7) and (5.1.1.8), the stress intensity 

factors KI and KII can be calculated using the following equations. 

(K + 1) 2
G = K (5.1.1.9)I 8µ I ' 

Thus using Equations (5.1.1.3) to (5.1.1.9) together with a solution for 

displacements and stresses from a finite element analysis, KI and KII of 

a combined mode crack can be determined through a virtual crack exten­

sion in the direction of the original crack. This has been implemented 

in the finite element program. Since only a virtual crack extension is 
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needed, 6S/6a is calculated only once. Also, in calculating G and G ,
1 11 

only the element matrices for the mixed elements within the contours r
0 

and r1 are altered (Figure (4.4)). Hence the separations of.!!. and.!. for 
I 

points P and P need only be performed for those nodes located on 

contours r and r , respectively. This numerical scheme has been imple­
0 1

mented in the subroutine 'DENERG' and will be illustrated through 

examples subsequently. The above scheme will hereafter be referred to 

as Ishikawa's scheme. 

Another energy approach that requires calculation of the poten­

tial energy release rates for two virtual crack extensions in two 

mutually orthogonal directions has been investigated by Hellen et al., 

[41, 42] and Vanderglas and Pick [43]. The path independent J-integral 

was generalized to be a vector JK by Knowles and Sternberg [44] and for 

two-dimensional problems the components are given by: 

-
J • J {wn - T~} dS (5.1.1.10)

1 1 ax1 

(5.1.1.11) 

where n1 and n2 are the direction cosines of the unit outward normal n, 

-
and W, n , T and u have been defined previously. It has also been 

mentioned in reference [42] that JK gives the energy release rates if 

the crack were to extend in the ~ directions. Thus J is the energy
1 

release rate calculated by assuming that the crack extends along axes x
1 

http:5.1.1.11
http:5.1.1.10
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and J is the energy release rate calculated assuming that the crack
2 

extends along axes x
2

, i.e. perpendicular to the direction of the crack, 

Figure (5.1). It is important to note that a continuous variation of 

stress field, as crack extension approaches zero, is assumed even when 

the crack does not extend in its own plane. Apparently this is not 

strictly correct; Hussain et al. (45] have calculated the stress field 

around the crack with a branched tip and found that by letting the 

length of the branch go to zero, the stress field near the crack tip in 

the limit does not coincide with the one for the unbranched crack. Thus 

there exist a discontinuity in the stress field when the crack does not 

extend in a coplanar manner. This will be commented upon later. 

Using the assumption of. continuity, Hellen and Blackburn [42 j 

have shown that in two-dimensional elasticity problems with combined 

mode loadings, the stress intensity factors are related to J and J by:
1 2 

(1 + V)(l + K) 2 2 
Jl • 4E (KI +KI! ) (5.1.1.12) 

- (1 + 'J)(l + K) 
(5.1.1.13)J2 • 2E ~+~I 

where v is the Poisson's Ratio, E is the modulus of elasticity and ic has 

been defined previously. Also, the energy release rate of crack exten­

sion at any angle e is given as 

G(e) = J cose + J sine (5.1.1.14)
1 2 

http:5.1.1.14
http:5.1.1.13
http:5.1.1.12
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From Equation (5.1.1.14), the maximum energy release rate occurs at 

e - arctan = arctan (5.1.1.15) 

and has the value 

The direct derivative technique can again be used to calculate: 

an 1 -T -T A_! 
- ra =- °! (u T ) - (5.1.1.17)Jl - - - Aa ~o { ~}e-o 

arr 1 -T-T A_!-- =- l (u T) - (5.1.1.18)J2 - aa - - Aae•ir/2 e•ir/2 {i} 
In Equations (5.1.1.17) and (5.1.1.18), AS/6.a e=O and AS/Aa e=ir/ 2 are 

the changes in the global matrix when the crack has extended by a small 

amount in the direction of the crack and perpendicular to the crack, 

respectively. Thus, AS/Aa has to be calculated twice. 

As mentioned above this approach assumes continuity of the 

stress field and all derivations (e.g. Equations (5.1.1.2) and 

(5.1.1.3)) are based on the stress and displacement fields of the 

cracked body before crack branching occurs. Since in the direct deriva­

http:5.1.1.18
http:5.1.1.17
http:5.1.1.18
http:5.1.1.17
http:5.1.1.15
http:5.1.1.14
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tive technique of calculating J and J (Equations (5.1.1.17) and
1 2 

(5.1.1.18)), the finite element solution~ and.! of the cracked body 

without branching is used, the stress continuity assumption is main­

tained. Therefore, J and J can be evaluated using the direct deriva­
1 2 

tive method as indicated in Equations (5.1.1.17) and (5.1.1.18) and the 

stress intensity factors K and K can then be calculated using
I II 

Equations (5.1.1.12) and (5.1.1.13). Moreover, if the direct derivative 

method is used to calculate the energy release rate for different angles 

e of crack extension, the variation of G(e) versus e will be expected to 

follow a sinusoidal variation as indicated in Equation (5.1.1.14). 

However, because of the assumed continuity of stress field, the calcu­

lated values of JK and G(a) may not be the correct values of energy 

release rates for the corresponding angle of crack extension e. 

In the finite element analysis, the virtual crack extension in 

the direction of the crack, i.e. a • O.O, can be accommodated as discus­

sed previously in Chapter 4. The modelling of the virtual crack 

extension in any other direction, i.e. e * O.O, presents some difficult­

ies. The finite element grid around the crack tip is shown in Figure 

(5.2.a). If the crack tip is used as r , i.e. rr = O.O, and the vir­
0 0 

tual crack extension for non-zero e is accommodated in the same manner 

as presented previously for e = o.o, the finite element grid after the 

virtual crack extension will be that indicated in Figure (5.2.b). Thus 

it can be observed that the deflected crack is not modelled exactly by 

just moving the crack tip by a small amount ~a in the direction under 

investigation. If the deflected crack tip is to be modelled exactly, 

http:5.1.1.14
http:5.1.1.13
http:5.1.1.12
http:5.1.1.18
http:5.1.1.17
http:5.1.1.18
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two new elements will have to be introduced as shown in Figure (5.2.c) 

and the stiffness of such elements should be added to AS/Aa when calcu­

lating G(e). However, this would introduce uncertainty in the finite 

element grid error regarding the differences between that of Figure 

(5.2.a) and (5.2.c), thus affecting the strain energy change asscociated 

with the change in crack length Aa. It is found that although the 

geometry of the original crack plus the virtual extension will not be 

modelled exactly, accomodation of the virtual crack extension as shown 

in Figure (5.2.b) usually gives better results for KI and KII than those 

obtained by using Figure (5.2.c) when using Hellen et al. 's [41] 

approach. The same problem with modelling has been pointed out by 

Hellen {42] and it is anticipated that the modelling shown in Figure 

(5.2.b) has been used in ~is works. 

The modelling of a virtual crack extension in any arbitrary 

direction using the crack tip as contour r can be performed using the
0 

Subroutine DENERG written previously for Mode I crack problems. Hence 

J and J can be calculated easily and KI and KII determined. However,
1 2 

it was observed in previous calculations of KI in Chapter 4 that the 

most accurate results are usually obtained by using the first ring of 

nodes around the crack tip as r to be moved and using the crack tip as
0 

r will give results of lesser accuracy. A closer examination of Figure
0 

(5.2.b) shows that it is difficult to extend this method of modelling to 

the case when the crack tip is not used as r0• Thus, in order to obtain 

accuracy comparable to that when the first ring of nodes is used as r ,
0

the finite element grid around the crack tip has to be more refined or 
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special elements as in reference [ 43] have to be used. On the other 

hand, when Ishikawa's scheme is used, only a virtual crack extension in 

the direction of the crack, i.e. e • O.O, is needed and the first ring 

of nodes can readily be used as r with no difficulties. In view of
0 

this advantage, Ishikawa's scheme will be used to calculate KI and KII 

and, together with the fracture criteria to be presented later, to 

predict the direction of a crack extension. 

Finally, it should be mentioned that a contour integral computa­

tion of combined mode stress intensity factors has been introduced by 

Stern, Becker and Dunham [46] and Wang, Yan and Corten [47]. The 

approach is based on Betti's reciprocal work theorem for plane elastic 

states and requires no special treatment of the finite element grid 

around the crack tip. However a path independent integral involving the 

use of an auxiliary elastic state of stresses and displacements has to 

be computed and it is found that the use of the energy release rate 

method utilizing Ishikawa's scheme is much simpler to implement in the 

present work. 

5.1.2 Numerical Examples 

To illustrate calculations of KI and KII for combined mode crack 

problems using the energy release rate concept via Ishikawa' s scheme, 

two combined mode, plane stress problems are analyzed. 

The first problem is a deep cantilevered beam subjected to end 

shear shown in Figure (5.3). The original crack length is half the 



- 119 ­

width of the plate and the modulus of elasticity and the Poisson's ratio 

are 1.0 and 0.25, respectively. The finite element grid is shown in 

Figure (5.4). Solutions for KI and KII from the finite element analyses 

are given in Table (5.1) and are compared with those obtained by Stern, 

Becker and Dunham [46] using contour integral computations for different 

contours and boundary collocation procedures. The results from a fairly 

coarse grid used are quite satisfactory and the values of KI and KII 

calculated using the first ring of nodes about the crack tip as r 
0

, i.e. 

rr • O.la, show deviations of only 0.62% and 3.74% from the collocation 
0 

method results. Thus very accurate results can be expected using the 

present energy release rate scheme and the mixed finite elements. 

K
I KII 

Contour Integral Computations [46] 34.25 
33.20 
33.42 
33.52 

4.79 

4.50 
4 •.68 
4.76 

Collocation [46] 34.0 4.55 

Present Analysis r 
ro 

.. o.o 30.38 4.06 

r 
ro 

= O.la 33.79 4.72 

TABLE 5.1: Results for KI and KII for a deep cantilevered beam 

jected to end shear, Figure 5.3. 

sub­

t 

The 

geometry is 

second problem 

essentially the 

analyzed is shown in Figure (5. 5). The 

same as that of the first problem analyzed 
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except that the plate is subjected to both end shear and tension. The 

same finite element grid shown in Figure (5.4) is used and results using 

Ishikawa's approach are given in Table (5.2) for r • 0.0 and 
ro 

= O.la. The stress intensity factors K and K calculated using
1 11 

the Hellen and Blackburn approach, i.e. Equations (5.1.1.12) and 

(5.1.1.13), are also given for comparison. As mentioned previously the 

stress intensity factors can only be calculated using the crack tip as 

r 0 , ie. rr • O.O. The stress intensity factors KI and KII are in good 
0 

agreement with those calculated using Ishikawa's approach for r • O.O 
ro 

and the deviations are 4.58% and 4.56%, respectively. Also the energy 

release rates for different assumed angles of virtual crack extension 

are calculated using the model of Figure- (5.2.b) and tabulated in Table 

(5.3). Using the values of energy release rates for e = 0° and 90° as 

J and J respectively, values of energy release rates for different
1 2 

angles of propagation are also calculated using Equation (5.1.1.14), and 

plotted in Figure (5. 6). It can be observed that the finite element 

solutions are in excellent agreement with those calculated using Equa­

tion (5.1.1.14) as expected. It should be noted that these values of 

energy release rates are not strictly correct due to the continuity 

assumption mentioned earlier. However, for small angles of crack exten­

sions, the error involved is very small. 

http:5.1.1.14
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Gr GII Kr Krr 

Ishikawa's Approach rr .. o.o 
0 

rr • O.la 
0 

1050.097 

-
1290.345 

14.243 

19.825 

34.405 

35.921 

3. 774 

4.452 

Hellen and Blackburn's 
Approach (Equation 5.1.1.12 
and 5.1.1.13) rr • o.o 

0 

JI 

1063.341 

J2 

-236.478 

Kl 

32.824 

K2 

3.602 

TABLE 5.2: Results for Kr and Krr for a deep cantilever beam subject 

to both end shear and tension, Figure 5.5. 

Energy Release Rate, G(e) 
eo 

Finite Element Solution Jl cose + J 2 sine 

0 (Jl) 1064.341 1064.341 

15 966.8689 966.8692 
30 803.5066 803.5069 
45 585.3867 585.3870 
60 327.3737 327.3739 
75 47.0506 47.0507 
90 (J2) -236.4788 -236.4788 

105 -503.8926 -503.8927 
120 -736.9670 -736.9671 
135 -919.8183 -919.8185 
150 -1039.985 -1039.9857 
165 -1089.279 -1089.279 
180 -1064.4341 -1064.4347 

TABLE 5.3: Energy release rates for different angles of crack exten­
sion for the deep cantilever beam subjected to end shear 
and tension, Figure 5.5. 
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5.2 Fracture Criteria for Prediction of Direction of Crack Extension 

A method for determining the stress intensity factors KI and KII 

by using the finite element method and Ishikawa's scheme has been pre­

sented. For combined mode crack problems, the crack extension will not 

be coplanar. Thus, in addition to calculation of the stress intensity 

factors, a fracture criterion must be established in order to analyze 

the linear elastic fracture problems with crack branching. The 

remainder of this work will deal with the prediction of the direction of 

crack extension for a cracked body under combined modes I and II. 

There are currently three fracture criteria available for analy­

zing combined mode crack problems, namely the maximum stress criterion 

[48 - 51J, the minimum strain energy density criterion [52, 53] and the 

maximum energy release rate criterion which is a generalization of 

Griffith's original energy release rate concept. These fracture cri­

teria are presented in the following subsections. 

5. 2.1 Maximum Stress Criterion 

For a general loading in a two-dimensional problem, the near 

crack tip stress field will be determined by the stress intensity 

factors KI and KII of the original crack. The maximum stress criterion 

[48] postulates that the crack will start to extend from the crack tip 

in the direction along which the tangential stress •a is a maximum and 

the shear stress •re is zero (Figure (5.7)). Thus, once K and K11 have1 
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been determined, the angle e for which the tangential stress is a maxi­
0 

mum will be given by the following relationship 

K Sin e + K (3 Cos e - 1) • 0 (5.2.1.1)
I 0 II 0 

5.2.2 Minimum Strain Energy Density Criterion 

Sih [52, 53] proposed that the governing quantity for fracture 

process is the local strain energy density at a certain critical dis­

tance from the crack tip. The minimum strain energy density criterion 

postulates that for a crack under a two-dimensional combined, stress 

field, the initial crack extension takes place in the direction e along
0 

which the strain energy density attains a stationary (minimum) value and 

reaches a certain critical value, i.e. 

!!!il>ae • o at which e • (S.2.2.1)e0 

where W(e) is the strain energy density and takes the following form: 

(5.2.2.2) 

and 
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all • .....!__ (1 + Cos S)(K - Cos &)16irµ 

Sin e 
al2 - 16irµ [2 Cos e - (K - l)J (5.2.2.3) 

16~µ [(K + 1)(1 - Cos e) + (1 +Cos e)(3 Cos 8 - l)Ja22 • 

where µ and K have been defined previously. 

Using Equations (5.2.2.1) to (5.2.2.3), the angle ea for which 

the strain energy density attains a stationary value is given by the 

relation: 

2A] • a (5.2.2.4) 

where A is used to denote the ratio K /K • Also, in order to verify
11 1

that the solution to (5.2.2.4) does correspond to a minimum, the addi­

2 2
tional condition of a W(e)/ae > a has to be checked. 

5.2.3 Maximum Energy Release Rate Criterion 

The maximum energy release rate criterion for combined mode 

crack problems is a generalization of Griffith's energy release rate 

concept [15, 16]. This criterion implies that the crack will grow in a 

direction ea for which the energy release rate G(e) is maximum. Since 
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direction of a crack extension will not be coplanar with the crack 

plane, it would be necessary to determine the energy release rate as a 

function of the direction of crack extension and then maximize it. 

It was shown previously that by assuming continuity of the 

stress field, the energy release rate for a crack extension at any angle 

a is given by Equation (5.1.1.14), i.e. G(S) • J Cos a+ J Sin a.
1 2 

However,· it has also been mentioned that such continuity cannot be 

claimed to be true. Therefore, the elasticity solution of a branched 

crack with an infinitesimal branch must first be obtained. There have 

been many attempts to solve the problem of a branched crack [45, 54 ­

62] and all of them indicate a discontinuity in the stress field as the 

crack branches. This comprises the work of : Hussain, Pu and Underwood 

[45], Wang [54], Palaniswamy and Knauss [55], Bilby et al. [56, 57J, Lo 

[58], Wu [59 - 61] and Hayashi et al., [62]. A review in this area was 

presented by Palaniswamy and Knauss [63]. Most of these analyses were 

based on the Mushelishvili potential formulation and conformal mapping 

of the branched crack geometry onto a unit circle. The solution is then 

reduced to either an infinite series expansion or integral equations. 

However, in spite of all these attempts, there are some disagreements 

reported in the literature. For example, Lo [58] showed that his 

results for the stress intensity factors for a branched crack with an 

infinitesimal branch agree with the results of Palaniswamy and Knauss 

[55] and Bilby et al., [56, 57] and are at variance with those of 

Hussain et al., [45]. It was also pointed out that the calculations for 

the maximum energy release rate, however, agree with those of the above 

authors and that of Wu [59 - 61]. Wang [54] pointed out that the analy­

http:5.1.1.14
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sis by Hussain et al., was not satisfactory and solved the problem 

again. His results contain Hussain's results as a special case but are 

again at variance with those in References [SS - S7]. It is beyond the 

scope of present numerical work to draw a conclusive statement as to 

which result is correct. However, it has been observed that for small 

angles of crack branching, the energy release rate and the stress inten­

sity factors given by all of the references quoted above are in a 

reasonably good agreement. For predicting the direction of crack growth 

using the energy release rate criterion, the expressions derived by Wang 

[541 will be used in this work. 

The problem of a singly branched crack shown in Figure (S.8) was 

solved by Wang [S4]. It was shown in reference [S4] that as the length 

of the branch r approaches zero, the stress intensity factors at the
2 

branch tip approach the following limiting values. 

-Kr - i Kr I • (a - aB) (5.2.3.l) 
l - 136 

Where 

o o y/2rr 
a = (KI - i K ) eyitl - x/rr) (5.2.3.2)

II l + y/rr 

.. .!. (e2yi * * S - 1) (C 1 + iC2) (5.2.3.3)4 

0 0 

and K and K are the stress intensity factors of a crack which does 
1 11 
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not have a branch, i.e. before crack extension, i • 1-1, a and e are the 

complex conjugates of a and e, respectively, and c* 1 and c* 2 are constants 

* * evaluated from an integral equation [54]. The values of c1 and c2 are 

given in Table (S.4) for y ranging from 0 to 90 degrees. 

y oo 50 10° 15° 20° 

* cl 1.00 1.0003 1.0010 1.0023 1.0042 

* -3 -3 -2 -2 
-c 0 4.137xl0 8.297xl0 l.2SOxlO l.678xl02 

y 25° 30° 35° 40° 45° 

* cl 1.0066 1.0095 1. 0131 1.0173 1.0222 

* 3 -2 -2 -2 -2 
-c2 2.116xl0 2.566xl0 3. 031 xlO 3.515xl0 4.022xl0 

y 50° 55° 60° 65° 70° 

* cl 1. 0279 1.0343 1.0417 1.0500 1.0591 

* -2 -2 -2 -2 -2 
-c 4.555xl0 5.118xl0 5.178xl0 6.36lxl0 7.054xl02 

y 75° 80° 85° 90° 

* cl 1. 0700 1.0821 1.0957 1.1110 

* -2 -2 -2 
-c2 7.804xl0 8.624xl0 9.524x10 0.1052 

TABLE 5.4: Values of c* 1 and c* 2 (Wang [54]). 

Using Equations (S. 2. 3.1) to (5. 2. 3. 3), the stress intensity 



- 128 ­

factors at the branch tip can also be expressed as: 

0 0 

(5.2.3.4) 
0 0 

where Fij(y) have been evaluated numerically and are tabulated in Table 

(5.5). With the values of KI and KII calculated, the energy release 

rate for the branched crack is calculated bT: 

(S.2.3.5) 

o 

f 1 • 
o 

{~ (1 + Cos 9) 
o 

- ~I • 3 Sin e} 
9 

Cos 2 
(5.2.3.6) 

o 

f 2 • 
o o 

{~Sin 9 + KII (3 Cos 
9 

9)} Cos 2 

where the superscript 0 denotes the functions and the quantities associ­

ated with the crack before branching. The crack branch configuration in 

Figure (5.8) is equivalent to the case e = -y. Thus the energy release 

rate as a function of the direction of crack extension can be calculated 

and the critical direction found by maximizing the energy release rate. 
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-
Fll(y)'Y Fl2(y) F2l(y) F22(y) 

oo o.o o.o1.0 1.0 
5 0.996376669 0.110221389 -0.045633761 0.996376669 

10 0.985501784 0.256654362 -0.090886746 0.985501784 
15 0.967367377 0.383060001 -0.135350614 0.967367378 
20 0.941967671 0.507089163 -0.178607225 0.941967671 
25 0.909303233 0.627801413 -0.220228709 0.909303233 
30 0.869402901 0.744154821 -0.259745176 0.869402901 
35 0.822369570 0.855052729 -0.296606014 0.822369.569 
40 o. 768350721 0.959157299 -0.330288315 0.768350721 
45 

-. 
0.707627245 1.055065146 -0.360189344 0.707627245 

50 0.640632778 1.141274706 -0.385678123 0.640632778 
55 0.567936288 1.216022443 -0.406171714 0.567936289 
60 0.491122705 1.280995092 -0.420303864 o.491122706 

1.324790179 -0.429702338 0.40906664865 0.409066648 
70 0.325268794 1.355572731 -0.431764605 0.325268794 
75 0.240590462 0.2405904121.368882254 -0.426909399 
80 1.3640800760.156851952 -0.415023175 0.156851952 
85 0.075980844 1.340635356 -0.396294661 0.075980843 
90 o.o o.o1.298875746 -0.371167000 

TABLE 5.5: 

5.3 Numerical Examples 

The fracture criteria for crack branching presented in the pre­

vious section are used to analyze the following examples. The stress 
0 0 

intensity factors and K11 of the unbranched crack are calculatedK1 

using the energy release rate and Ishikawa' s scheme. These are then 

used along with the fracture criteria to predi~t the direction of a 

crack extension. 

The first problem considered is the deep cantilevered beam sub­
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jected to end shear and tension as shown in Figure (5.3). The stress 
0 0 

intensity factors ~ and ~I have been calculated in Section (5.1.2) and 

that corresponding to rr • O.la are equal to 35.921 and 4.452, respect­
0 

ively. The predicted values of the direction of crack extension calcu­

lated using the fracture criteria presented previously are given in 

Table (5.6). The predicted values are in reasonably good agreement. 

The predicted angle calculated using Equation (5.1.1.15) i.e. Hellen et 

al.'s approach, is also given in Table (5.6) and is in reasonably good 

agreement with the other values. This may be because the error intro­

duced by the continuity assumption in Hellen et al. 's approach is not 

very significant for small angles of crack branching as mentioned 

before. 

Calculated Angle of 
Crack Extension 

Maximum Stress Criterion -13.7° 

Minimum Strain Energy Criterion -12.5° 

Maximum Energy Release Rate Criterion 
Wang: Equation (5.2.3.5) 
Hellen: Equation (S.l.l.15) 

-11.6° 
-13.72° 

TABLE 5.6: 	 Predicted angles of crack extension for the deep canti­
levered beam with end shear and tension, Figure S.S. 

The second problem analyzed is that of a plate with an oblique 

crack subjected to uniaxial tension •o (Figure (5.9)). The crack makes 

an angle e with the direction of loading and the direction of crack 

extension is shown as e in the figure. The plane stress plate is analy­

http:5.1.1.15
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zed for different angles of crack orientation, s. The finite element 

grid used, for S • 45°, is shown in Figure (5.10). Again, it is noted 

that the configurations of the four-node mixed transitional finite ele­

ments conform with the requirements stated in Chapter 3. Also, the grid 

in the crack tip region is considered to be relatively coarse and, 

except for a = 45°, only the crack tip can be used as r to be moved
0 

when using Ishikawa's scheme to calculate the stress intensity factors 
0 0 

and K11 for the unbranched crack. The calculated stress intensityK1 

factors are given in Table (5. 7) together with the following stress 

intensity factors for an infinite plate, i.e. 

112 2 	 112i 1 • Toa Sin S, ~II • Toa Sin S Cos S 	 (5.3.1) 

00 

KI KxI 

Infinite FiniteFiniteInfinitea 
Element Error %Element Error % PlatePlate 

0.2937 17.59.42 0.2500.0669 0.073215° 
17.lo. 50720.2925 17.0 0.43300.25030° 
20.00.60090.5372 7.4 0.5045° 0.500 
14.S0.49600.43300.7499 0.8013 6.960° 
26.l0.250 0.31531.0281 10.275° 0.9330 

TABLE 5. 7: 	 Stress intensity factors for the square plate with an 
oblique crack subjected to uniaxial tension, Figure 5.9. 

It is observed that the calculated stress intensity factors Kx 

and Kxr are not very accurate and the deviations from the infinite plate 

solution range from about 6.9% to 26.1%. This is because of the lack of 

0 

0 
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a finer grid around the crack tip. The predicted values of the angle of 

crack extension, a, calculated using Wang's equation (Equation 

(5.2.3.5)), Hellen et al.'s approach (Equation (5.1.1.15)) and the 

finite element method using different virtual crack extensions and crack 

branch model of Figure (5.2.b) are tabulated in Table (5.8) and plotted 

in Figure (5.11). Erdogan and Sih's [48] theoretical results using the 

maximum stress criterion and the stress intensity factors for an infin­

ite plate are also shown in the same figure. It can be observed that 

the predicted values of a using Wang's equation and the stress intensity 

factors calculated using Ishikawa's scheme are in very good agreement 

with that of Erdogan and Sib. Although a coarse finite elment grid has 

been used which resulted in relatively large errors in -the stress inten­

sity factors as mentioned above, the direction of crack extension can 

still be predicted fairly accurately. Results calculated using Hellen 

et al. 's approach agree well with those calculated using Wang's equation 

and the maximum stress criterion for a angles of 60° and above. For a 

below 60°, considerable divergence occurs. This is not surprising 

be.cause the continuity assumption involved in Hellen et al' s work (i.e. 

the derivation of Equation (5.1.1.15)) is not valid. Again, good agree­

ment for a larger than--60° is observed because the error due to continu­

ity assumption is not very significant when the angle of crack branching 

is relatively small. Finally, the predicted values using the virtual 

crack extension method are not satisfactory and, perhaps, can be 

improved by gri~ refinements near the crack tip. However, this is not 

feasible because of the storage limitation on the McMaster University 

CDC CYBER computer. Hence, the foregoing ana)1yses indicate that the 

direction of crack extension can be satisfactorily predicted using the 

http:5.1.1.15
http:5.1.1.15
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energy release rate expression given by Wang (Equation 5.2.3.5) with the 

stress intensity factors calculated by the direct derviatve method using 

Ishikawa's scheme and mixed finite elements. 

Angle of Crack Extension (0) 

a Wang's Formula 
Equation (5.2.3.5) 

Hellen's Formula 
Equation (5.1.1.15) 

Finite Element 
Using Virtual Crack 
Extension 

15° 

30° 
45° 
60° 
75° 

62.7 
58.2 
51.3 
41.4 
25.6 

29.3 
40.9 
44.8 
41.8 
25.2 

75.4 

59.8 
45.3 
24.9 

-17.2 

TABLE 5.8: 	 Predicted angles of crack extension for the square plate 

with an oblique crack subjected to uniform tension, Figure 
5.9. 
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x2 

l P<x1.,x2) 

I 

I 


CRACK I x1 
I 

•I p(x1_,-x2) 

FIG. 5.1: CRACK TIP COORDINATE SYSTEM, 

CRACK 

FIG, 5.2 a:: FINITE ELEMENT GRID AROUND THE CRACK TIP, 
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FIG, 5.2 o": MODELLING OF CRACK BRANCHING BY MOVING THE 
NODE AT THE CRACK TIP ONLY, 

FIG, 5.2 c.:: MODELLING OF CRACK BRANCHING BY INTRODUCING 
TWO EXTRA ELEMENTS, 
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a 

w 

w= 7.0 
L =16.0 

L/2 a = 3.5 
T 0 = 1,0 
E = 1.0 
v = 0.25 

L/2 

FIG, 5.3: DEEP CANTILEVERED BEAM SUBJECTED TO END SHEAR 
USED FOR DETERMINING THE CRACK INTENSITY 
FACTOR KI AND Kii' 
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FIG, 5.4: FINITE ELEMENT MESH USED FOR DETERMINING THE 
CRACK INTENSITY FACTORS K AND K FOR THE 
DEEP CANTILEVERED BEAM SU~JECTED 11 ro END SHEAR. 
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L/2 

L/2 

a 

w 

w= 6.0 
L =12.0 
a = 3,0 
1' 0 = 1.0 
E = 1.0 
v = 0.3 

FIG, 5.5: DEEP CANTILEVERED BEAM SUBJECTED TO BOTH TENSION 
AND END SHEAR USED FOR DETERMINING THE CRACK 
INTENSITY FACTORS K1 AND Kii' 
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FINITE ELEMENT RESULTS 6 
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CRACK 

FIG, 5,7: STRESS COMPONENTS NEAR THE CRACK TIP IN POLAR 
COORDINATES, 

MAIN CRACK 


FIG, 5,8: PROBLEM OF A BRANCHED CRACK, 
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L 

I­ L ~I 

L =20.0 
a = 1.0 
T 

0
= 1.0 

E = l,Q 
\1 = 0.25 

FIG, 5.9: 	 SQUARE PLATE WITH OBLIQUE CRACK SUBJECTED TO 
TENSILE LOADING USED FOR DETERMINING THE CRACK 
INTENSITY FACTORS K1 AND AND THE ANGLE OFK11CRACK BRANCHING 8, 
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T o· 

DETAILS SHOWN 
IN FIGURE 5.10 b 

FIG I 5 10 S' : FINITE ELEMENT MESH USED FOR DETERMINING THE CRACKI 

INTENSITY FACTOR K1 AND AND THE ANGLE OF CRACKK11 
BRANCHING FOR THE SQUARE PLATE WITH AN OBLIQUE 
CRACK SUBJECTED TO UNIAXIAL TENSION T

0 
, 
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FIG, 5.10 b : 	 DETAILS OF THE FINITE ELEMENT MESH AROUND THE 
THE CRACK TIP FOR THE SQUARE PLATE WITH AN 
OBLIQUE CRACK SUBJECTED TO UNAXIAL TENSION, 
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CHAPTER 6 


CONCLUSIONS 


Mixed transitional finite elements, which enable the use of the 

three-node triangular mixed and eight-node isoparametric displacement 

finite elements simultaneously, have been developed and tested numeri­

cally. Applications of the combination of the above three types of 

finite elements to both Mode I and mixed mode problems in linear elastic 

fracture mechanics have also been carried out. 

The mixed finite element method [7J via the Hellinger-Reissuer's 

Principle was shown to give much better results than the corresponding 

displacement finite element method via the Principle of Minimum Poten­

tial Energy. However, the mixed method requires more degrees of freedom 

than the displacement method for the same number of elements, which 

leads to a tremendous increase in the computer storage required. Mixed 

transitional finite elements have been developed in this work to enable 

the use of the mixed and displacement type finite elements in the same 

finite element grid, with the mixed finite elements used in the region 

where high stress gradients are expected due to a stress concentration 

or singularity. In particular, a four-node triangular and a three-node 

triangular mixed transitional elements have been developed to connect 

the three-node triangular mixed finite elements by Mirza and Olson [7] 

and the conventional eight-node isoparametric displacement elements. In 

general, the computer storage requirement, when using the above mixed, 
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mixed transitional and displacement finite elements in a single applica­

tion, has been found to be much less than that required when only the 

mixed finite elements are used. This is especially so if the region of 

high stress gradients influenced by a stress singularity is much smaller 

than some typical dimension of a problem to be analyzed. 

The matrix equations in plane elasticity, when the mixed finite 

elements are used, are always symmetric and indefinite. The master 

finite element matrix, when premultiplied by its own transpose, becomes 

positive definite. The matrix equations were solved using a computer 

subroutine that utilizes the skyline technique, Bathe and Wilson [12J, 

and Gaussian elimination making full use of properties of a symmetric 

positive definite matrix. 

6
Numerical tests revealed that very large values (around 10 ) of 

the modulus of elasticity E caused ill-conditioning of the matrix equa­

tion in mixed finite element applications. For linear elastic problems 

considered in this work, this problem has been avoided by using a small 

value of E (=l.O) and the solution was scaled accordingly. Orientation 

problems with the four-node transitional finite element have also been 

observed and it is found that the uncondensed, four-node transitional 

element works well provided that: 

1. the element sides form a triangle with m = -m , Figure
12 13 

(3.5); and 

2. the element sides 1-2 and 1-3 form a right angle and are paral­

lel to the global coordinate axes, Figure (3.6). 
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The strain energy convergence rate of the uncondensed transitional 

-4
finite element was found to be O(N ). For the plane stress cantilever 

subjected to a parabolic end shear stress, it was found that the energy 

-4 
convergence rate of O(N ) of both the three-node triangular mixed and 

eight-node isoparametric displacement finite elements is maintained when 

all three types of finite elements are used in the analysis. The strain 

energy convergence rate of the condensed transitional element was found 

-2 
to be O(N ) and with use of these elements, the strain energy conver­

-3 
gence rate for the above-mentioned cantilever became O(N ). 

The analysis of a plane, linear elastic, square plate with a 

circular hole in the middle, using the mixed, mixed transitional and 

displacement finite elements indicated that the computer storage 

required is about a quarter of that required when only the mixed finite 

elements are used. A reasonably good accuracy was also obtained for the 

2
stress concentration factors. A faster convergence rate (nearly O(N- )) 

has been obtained by Mirza (8] for the stress singular problem of a 

plane stress square plate with symmetric edge cracks for which the 

strain energy converges only linearly with N, even with higher order 

displacement or hybrid type finite elements, Tong and •Pian [34]. The 

use of the combination of mixed, mixed tran&itional and displacement 

finite elements in the analysis of such singular problems, using mixed 

elements in the vicinity of the singularity, is still expected to result 

in an improved convergence and accuracy. 

The direct derivative energy release rate technique was used to 

analyze two isotropic rectangular plates with symmetric edge cracks and 
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a central crack, respectively. The computer storage required was about 

one-tenth of that when only the mixed finite elements are used, with 

errors in K of about 3 to 6% only. An orthotropic square plate with a
1 

central crack has also been analyzed for different values of the ratio 

E /E • In most cases, the errors in computation of the stress intensity
x y 

factor KI were less than one percent. 

The direct derivative technique has been extended by incorporat­

ing Ishikawa's scheme to calculate stress intensity factors Kiand K
11 

for combined mode fracture problems. For the plane stress cantilever 

with an edge crack and subjected to end shear, stress intensity factors 

K and KII have been obtained with errors of 0.62% and 3.74%, respect­
1 

ively. Combined mode stress intensity factors can also be calculated 

using the direct derivative technique via Hellen et al.'s approach [41, 

42]. However, in such calculations, only the crack tip can be used as 

r in applying the direct derivative technique and relatively more
0 

refined finite element mesh is required to obtain moderately accurate 

values of ~ and KII• 

The maximum energy release rate criterion was used, together 

with the stress intensity factors calculated using Ishikawa's scheme, to 

predict direction of a crack extension for combined mode, plane elas­

ticity fracture problems. The energy release rate, as a function of the 

branch angle derived by Wang [54], was used. A square plate with an 

oblique crack has also been analyzed and the calculated directions of 

crack extensions are found to be very close to those given by Erdogan 
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and Sih [48J using the maxi1111m stress criterion. The virtual crack 

extension method can also be used to search for the direction of maximum 

energy release rate by introducing virtual extensions in different 

directions and calculating the corresponding energy release rates. 

However, this approach requires a more refined finite element grid in 

the crack tip region than the one used in the present work. Further 

investigation is not feasible because of the storage limitation on the 

CDC CYBER computer at McMaster University. 

In summary, the use of mixed transitional finite elements, which 

enable the use of the three-node triangular and eight-node isoparametric 

displacelilent finite elements in a single finite element mesh, results in 

much saving on computer storage required compared to that when only the 

mixed finite elements are used while still maintaining reasonably good 

accuracy. The stress intensity factors K and K calculated using1 11 

Ishikawa's scheme can be used along with an energy release rate expres­

sion to fairly accurately predict the direction of a crack extension; 

especially when the lack of large central memory on a computer does not 

allow the use of a very refined finite element mesh. However, some 

disagreements among the researchers exist regarding the expression for 

the energy release rate when the crack branches and are reported in the 

literature. Further investigation into this discrepancy is recommended. 

There is also a need for development of a numerical algorithm to extend 

the present investigation so that it can be applied to crack propagation 

problems. 
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APPENDIX A 

FINITE ELEMENT MATRIX FOR THE THREE-NODE TRIANGULAR MIXED ELEMENT 


WITH LINEAR DISPLACEMENT AND STR.t;SS APPROXIMATIONS 


The element matrix equation for plane linear elasticity is given 

here for linear displacement and linear stress approximations within the 

triangular element shown in Figure (2.1). The material properties are 

incorporated through the compliance matrix: 

a -a 0 


-s y 0 
 (A.l)c ­
0 0 

where a, S, y and o depend upon elasticity properties. 

The element matrix equation is of the following form: 

T bT0 0 a 0 d 
u 

T T 
0 0 0 b a e-

= (A.2)a 0 aC -sc 0 

0T0 b -SC yC 0 

b a 0 0 oc 
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...., 

or.§.!•.£· (A.3) 

where the submatrices _!, .!:?,, _£, ..!!,, .!' .!!. and..! in Equation (A.2) are given 

by: 

aiJ" = f L L dn; i - j - 1, 2, 3 (A.4) 
n i j,xl 

,.. f LL Ml; i .. j .. 1, 2, 3 (A.5)bij n i j,x2 

M•I'\.~ 

c ·-f L L dn; i .. j .. 1, 2, 3 (A.6)
ij n i j 

i - j - 1, 2, 3 (A.7) 

ei • f f L dn; i - j = 1, 2, 3 (A.8) 
n 2 i 

(A.9) 

l 2 3 l 2 3 l 2 3 T 
(A.10)T = (Tll Tll '11 '22 '22 '22 '12 '12 Tl2) 

It is simple to evaluate the submatrices _!, b, and .£• If (x , x ) are
1 2i i 

th 
the coordinates of the i node of the triangular element (Figure 

(2.1)), then the matrices .!' .!:?, and c in terms of nodal coordinates are: 



---a t 
3x3 6 

b t 
M"-6 

At 
c .. - IT 

- 152 -

2 3 3 l l 2 
x2 - x2 x2 - x

2 x2 - x2 

2 
x2 -

3 
x2 

3 
x2 -

l 
x2 

l 
x2 -

2 
X2 (A.11) 

2 3 3 l l 2 
X2 - Xz Xz - x2 x2 - x2 

3 2 l 3 2 l 
xl - xl xl - xl xl - xl 

3 
xl -

2 
xl 

l 
xl -

3 
xl 

2 
xl -

l 
xl (A.12) 

3 2 1 3 2 l 
xl - xl xl - xl xl - xl 

2 l l 

l 2 l (A.13) 

l l 2 

where A and t are the area and thickness of the triangular element, 

respectively. Since c is symmetric, the matrix of coefficients S in 

Equation (A. 3) is also symmetric as expected. The derivation of the 

load vector <dT eT> is identical to its generation in the displacement 

method. 

Next, the degrees of freedom -A are rearranged by interchanging 

the corresponding rows and columns of S such that: 

and the matrix S becomes: 
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-s 
15 x 15 -

0 0 all 0 bll 0 0 a21 0 b21 0 0 a31 0 b31 

0 0 bll all 0 0 0 b21 a21 o· 0 0 b31 a31 

hll f 11 0 al2 0 hl2 f 12 0 al3 0 hl3 f 13 0 

ill 0 0 bl2 f 12 1 12 0 0 bl3 f 13 il3 0 

gll bl2 al2 0 0 gl2 bl3 al3 0 0 gl3 

0 0 a22 0 b22 0 0 a32 0 b32 

0 0 b22 a22 0 0 0 b32 a32 

h22 f 22 0 a23 0 h23 f 23 0 

1 
22 

0 0 b23 f 23 1 
23 

0 

g22 b23 a23 0 0 g23 

s y m m e t r i c 0 0 a33 0 b33 

0 0 b33 a33 

h33 f33 0 

133 0 

g33 

(A.15) 
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where f • -ec 

!. - oc 

h = ac 


i • Y.£ 

and a, e, y and o are elements of the compliance matrix .£ in Equation 

(A.l). The corresponding entries in the load vector .e. are also inter­

changed and the modified load vector becomes: 

Equation (A.3) alters to: 

S A • P. (A.16) 

The compliance matrix in Equation (A.l) for plane stress isotropic case 

is given by: 

1
C=­E 

1 -v 0 

-v 1 0 (A.17) 

0 0 2(l+v) 

where E and v are the modulus of elasticity and the Poisson's ratio, 

respectively. For isotropic plane strain case, the compliance matrix C 

takes on the following form: 



- 155 ­

'\)...,_l 01-v 
2 

'\)l - '\) l 0 (A.18)- 1=V 


0 0 -2 


c - E 

1-v 

The compliance matrix C can also be switched to incorporate the 

orthotropic cases and the coefficients a, S, y and o can be found in 

Reference [14]. 
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APPENDIX B 


FINITE ELEMENT MATRIX FOR THE FOUR-NODE TRIANGULAR MIXED 

TRANSITIONAL ELEMENT (UNCONDENSED) 

The element matrix equation for plane linear elasticity is pre­

sented for the four-node triangular mixed finite element shown in Figure 

(2.6). The material properties are again given by the compliance matrix 

.£ in Equation (A.l) which for isotropic plane stress and plane strain 

cases are given by Equations (A.17) and (A.18). 

The element matrix equation has been given in Equation (2.3.19) 

as: 

0 0 
T 

a 0 bT 

0 0 0 bT T 
a 

a 0 ac -Sc 0 

0 b -S.£ Y.£ 0 

b a 0 0 oc 

u 	 d 

e- (B.l) 

t' 0 

or .§. A == 	 .F. (B.2) 

and the submatrices ~, .!_, _!, ~, _£, d and ~ are as defined in Equations 

(2.3.11), (2.3.12) and Equations (2.3.20) to (2.3.24). If (x , y )
1 1

i i 
th 

are the 	coordinates of the i node of the triangular element (Figure 



--- ---

--- ---
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(2.6)), the matrices!.' b and c in terms of nodal coordinates are given 

by: 

bl 

6 


bl 
IT 

a • t 
bl 
T2 

bl 
r 

al 
r 
al 
IT 

b = t 
al 
IT 

al 
b 

c = - txA 

b2 b3 -b2 b3 
rr- rr rr- + rr 

-bb2 b3 b32 

15 10 60 60 


-b -b bb32 2 3 
w- 60 10+15 

b2 4b3 -4b b
2 3


30-30 ~+IT 

a2 a3 -a2 a3 --- 12+rr12 12 


-a
a2 a3 a32 

15 10 60 60 


-a a3 -a2 a32 
w-w ur+rr 

4a -4a aa2 3 2 3 

1'0" - JO w-+rr 

l l l l 
6 2o 2o TS 

7 l 2 

90 180 45 


7 2

symmetric 90 
 45 


8 

45 


b2 b3 
-+­6 6 


b2 b3 
30+5 

b2 b3 
5+ 30 


8b2 8b3 
30+30 

a2 a3 
-+­6 6 


a2 a3 
30 +5 

a2 a3 
5+ 30 


.sa2 8a3w+w 

(B.3) 

(B.4) 

(B.5) 

where t and A are the thickness and area of the triangle, respectively; 
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ai and bi ~re defined in terms of the nodal coordinates by: 

(B.6) 

(B.7) 

The derivation of the load vector (dT eT> is identical to its 

generation in the displacement method • 

...., 
The degrees of freedom J:. are then rearranged by interchanging 

the corresponding rows and columns of S such that: 

(B.8) 

and the matrix S is shown in Equation (B.9). 
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ISi • ! • 
20 1' :o 

0 

bll "ll 0 0 

.ell -sell .ell -!!Cl2 .ell -sell a.C140 0 0 0 0 0 0 -!C..12 •u "1• 

yell 0 0 	 bl2 -9C12 i<:l2 0 0 bl] -BCll yell 0 0 bl.ti -scl4 ,cu 


8 0 0 0 0 ~c
!Cll bl2 6Cl2 bll •u !Cl) bl4 


0 0 0 0 0 0 0 


12 	 "1• I• 

•22 	 b22 •n bl2 b4.:! 

b22 •22 b32 •32 "b.:.z 4! 

"•z 

0 0 0 0 0 0 41 

(B.9)0 0 

1ym11etrlc 0 	 0 b.:.) 	 •.:.1 

... 

a, 8, 	 y and 15 are the elements of the compliance matrix in Equation 

(A. l). The corresponding entries in the load vector ~ are also inter­

changed and the modified load vector takes the following form: 

(B.10) 

The equation (B.2) alters to: 

(B.11) 
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APPENDIX C 

FINITE ELEMENT MATRIX EQUATIONS FOR CONDENSED MIXED TRANSITIONAL 

FINITE ELEMENTS 

The element matrix equations for the four-node triangular mixed 

transitional element with the stress degrees of freedom at nodes 2, 3, 

and 4 elminated through static condensation (Figure (3.8c)) and that for 

the three-node mixed element with the stress degrees of freedom at node 

3 condensed out (Figure (3.8a)) are presented. 

For the condensed four-node, triangular transitional element, 

the element matrix equation after condensation is given by: 

1 
ul 

2 
ul 

1 y s-M- N .!. PT p _g_ 0 R d30 - (132 - ay) -o- (132 - ay) ul 

4 
ul 

1 
ul 

2 
ul 

a.!. N M 0 R Q = e30 ­t (82 - ay) ul 

4 
Symmetric ul 

7 7 1 
- -Aa IT AS 0 1" 1112 

- 7 1
IT Ay 0 1"22 

7 1 
- -A& 1"1212 

(C. l) 

0 
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where 

2 
-120b3 . 

M • 1 
- "3bOA 

symmetric -120b~ 

(C.2) 


-120a3 
2 

2symmetric -120a2 

(C.3) 
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,-60b a 
: 1 2 

-60b a
1 3 

·-120b
3
a

3
-60b

3
a

2 

j+60b
2

a
3 

i 
; -120b3a3+60a3b2 -120b2a2+60b2a3 t240b3a3+240b

2
a2 

I 
i 

(C.4) 


(C.5) 


(C.6) 


The vectors d and e are the same as the consistent load vectors for the 

uncondensed elements; t and A are the thickness and area of the triang­

ular element, respectively; ai and bi are defined by: 

3 2 
al = xl - x 1 

a2 
1 = x1 

3 
- xl (C. 7) 

a3 == 
2 

xl 
1 

- xl 
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2 3 = x - xbl 2 2 


3 1 
 (C.8)b2 - x - x22 


1 2 

b3 - X2 - X2• 

th
where x and x are the coordinates of the i corner node; and a, S,

1 2
i i 

y and o are elements of the compliance matrix C (Equation (A.l)) given 

by: 

a -s 0 


-s y 0 
 (C.9)c ­
0 0 

For the three-node mixed element with the s'tress degrees of 

freedom at node 3 condensed out, the element matrix equation is given 

by: 



y ...,T.... S 
2 E.~ 2

6(ya-t3 )A 6(ya-a )A 

1 ...,T.... 1 a a+m + m 

a 
2

6(ya-S, )A 

1+ 6M' 

t 

symmetric 

..... 

where a = <al 
a2 a3> 

.... 
b = (b b2 b3>- l 

~l a2 a3 
a = 

al a2 a3 
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-T­
~.!. 

1 -T 1 -T 0i 2.!?. 12a...;r.... 
a b 

-T.... 
.!. .!. 

1 -T 1 -T 0 12a 12.!?. 
-T""
b b 

-aAr ~ Mr 1

24 13 "2413 

01 1.. 

A[3 lJ 0~z 1 3 

#[: ~ 

1 
ul 

2 
ul 

3 
ul 

1 
uz 

2 
Uz 

3 
Uz 

1 
't'll 

2
't'll 

1 
't'22 

2 
't'22 

1 
't'l2 

2 
't' 12 

(C.10) 

(C.11) 

(C.12) 

(C.13) 

d 

e-


0 
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(C.14)
b ­

The vectors d and e and the constants t, A, a , b , a, 6, y and o have 
i i 


been defined previously. 
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APPENDIX D 


DIRECT DERIVATIVE METHOD OF CALCULATING ENERGY RELEASE RATE 

The potential energy release rate has been given in Equation 

(4.3.10) as: 

- s 0 ]
-i {~}a 

0 
where ITM is the potential energy; t.a is the change in crack length; E 

is the number of elements between contours r and r between which the
0 1 

element matrices are altered; .!t0 
is the element matrix calculated for 

a 
0

the initial crack length a; ,!1 when the crack length has been 
a+t.a 

incremented by an amount t.a; and u
e 

and ..!i 
e 

are the nodal displacement
1 

th 
and stress degrees of freedom for the nodes corresponding to the i 

element within the contours r and r • The calculation of [SO - s0 ]0 1 -ia+t.a -ia 

for the three-node triangular mixed element is given below. 

The three-node mixed finite elements between rO and r l (Figure 

(0.1)) can be classified into two types depending on their orientations 

with respect to r • The first type (type I) has two nodes located on
0

contour r0 , while the second type (type II) has only one node located on 
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contour ro. The change in element matrices for both types of elements, 

0 0 
i.e. 	l!i - !i ], are considered separately. 

a+Aa a 

The element matrix for the three-node triangular mixed finite 

element is given in Appendix A as: 

T bT0 0 a 0 

TbT0 0 0 a 


a 0 aC -BC 0 
 (D.1)s ­ -
0 b -S.£ yC 0 


b a 0 0 oc 


2 3 3 1 1 2 
x·x2 - x2 x2 - x2 - x22 

2 3 3 1 1 2t 
(D.2)a•6 X2 - X2 X2 - x2 X2 - X2 

2 3 3 1 1 2 
x2 - x2 x2 - x2 x2 - x2 

3 2 1 3 2 1 
xl - xl xl - xl xl - xl 


t 
 3 2 1 3 2 1 
(D.3)b = ­ xl - xl xl - x1 xl - xl6 

3 2 l 3 2 l 
xl - xl xl - xl xl - xl 

2 1 1 

-t x A 
1 2 1 (D.4)c ""' 12 

l l 2 
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The constants a, a, y, o in Equation (D.l) are elements of the 

compliance matrix C in Equation (A.l); x , x are the coordinates of1 2
i i 

th
the i node of the triangular element; and t and A are the thickness 

and area of the triangular element, respectively, and A is given by: 

(D.5) 

In general, the increment in the crack length Aa can be oriented 

in a direction other than the directions of the coordinate axes. There­

fore, both the x and x coordinates of nodes located on contour r will
1 2 0 

change and the increments in the x and x coordinates are denoted by
1 2 

Ax1 and Ax2, respectively. For the first type of element (type 1), only 
l 

nodes 1 and 2 are located on r • = Axi = 0 and from 
0 

Equations (D.2) to (D.3): 

Aa1 1--6 

2I lI 11 21 
- Ax -AxAx2 Ax22 2 


2I lI 11 21 

(D.6)- AxAx2 Ax2 Ax22 

2I lI lI 2I 
Ax2 -Ax2 Ax2 -Ax2 
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2I lI 2I lI 
-Ax	

1 6xl 6xl - 6x1 

2I lI 2I lI-1AbI ­ (D. 7)-Ax 6xl 6xl 6xl6 1 

I2I lI 2I 
-Ax Ax	 - 6xl6xl1 1 1 

2 1 1 
I

-M. 1 2 l (D.8)·-12 

1 1 2 

where the superscript I denotes the quantities associated with element 

I I I I I 
type I; A,! , Ak and Ac are the changes in the submatrices a , k and 

.£
I 

, respectively, due to a crack increment A&; and M.
I 

is given by: 

(D.9) 

I I I
With Aa , Ab and Ac given by Equations (D.6) to (D.8), the change in 

the element matrix for element type I due to a crack increment Aa is 

given by: 
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0 0 
IT 

6a. 0 
T 

AbI 

0 0 0 
T 

AbI 
IT 

Aa 

[SO 
-i6a.+a 

_ SO ]I 
-i a 

= AaI 0 aACI I
-SAC 0 D.10) 

0 
I

Ab 
I 

-SA.£ 
I 

yA.£ 0 

AbI Aa
I 

0 0 <5ACI 

For the second type of element (type II), only node 1 is located 

II II rI 11 
on ro. Therefore Ax1

2 • Ax2
2 = tix3 • tix

3 • 0 and from Equations1 2 

(D.2) to (D.3): 

AaII • .!. 
- 6 

--6 
1AbII 

II
II -M 

Ac = 12 

0 

0 

0 

1
II 

-Ax
2 

1
11 

-Ax
2 

1
II 

-Ax
2 

1II 
6x2 

1
11 

6x2 

II 
Axl 

2 

(D.11) 

0 

0 

0 

1II 
-Ax

1 

1
II 

-Ax
1 

II 
-Ax1 

1 

1II 
&ltl 

1II 
&ltl 

II 
Axl 

1 

(D.12) 

2 1 1 

1 2 1 (D.13) 

1 1 2 
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where the superscript II denotes quantities associated with element type 

II
II. In this case liA is given by: 

(D.14) 

The change in the element matrix for element type II due to a crack 

increment 6a is then given by: 

0 0 MII 
T 

0 6bII 
T 

0 0 0 
T 

6bII IIT 
6a 

0 
[Si

6a+a 
- 0 ]IIs-i a 

- II
6a 

0 

0 

6b
II 

a6CII 

-86C
11 

II
-86C 

II
y6C 

0 

0 

6bII 6a
II 

0 0 MCII 

(D.15) 
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3 

-~ 
I '-. ./r

/ '"'<' 1 

I I ' ......._ 
I '-, 

........ 
 .............. <r
........ 0 
....... 


a) TYPE I ELEMENT 

3 

I 
I 

I 
I 

--- --- --- -'- -.. --- -- .......
- 1 

b) TYPE II 	ELEMENT 

FIG, D.l: 	 TYPICAL TYPE I AND TYPE II ELEMENTS BETWEEN 

CONTOURS r AND r 
~ 1 I 
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APPENDIX E 


PROGRAM LISTINGS 




- 174 ­



- 175 ­

CALL ~IXElfS,AA,BA 1CA,),V~AT,8T,AR,CPLN,IS,THICKl

CALL MIXBON(X,Y,S,tl,A~,GN,THlCK,IB,IGR,IS,NVEM,PX,PY>

CAll SETUP(A,B,MOIA,S,lJ,NVEM,FL> 


o CONTINUE 
95 If (NE~TR.EC.Ol GC T010 

OC 96 IEL=1,NEMTR
CALL FREAOI<x,v,1s,re,LJ,NHO",NVE~)

CALL M!XTRAN(S,AA,eA,CA~X1Y,AT18T,AR,CPLN IS,lHICKl
CALL ~lXBCNtx,v,s,FL,OR,GR,TH1CK,I8,IGR,ls,NVEH,PX,PY> 
C~ll SETUP(A,8,MCIA,S,LJ,NVE~,fL)
CCNTINUE 

1C IF<NET.EQ.0) GO TC 12 
00 11 IEL:1,NET

CALL FREAOI<x,v,IS IB,tJ,NNOT.~VET>

CALL TRANEL<S,AA,el,cA,X,V,AT18T,AR,CPLN,IS,THICK>
CALL MIX80N(X,Y,S,fl,AR,GR,TH1CK,I8,IGR,!S,NVET,PX,PY)
CALL SETUP(A,8,HOIA,S,LJ,NVET,fl}

11 CONTINUE 
12 IFCNEI.EQ.O> GO TC 13 

DO 1'+ IEL=1,NEI
CALL fREAOl(X,Y,IS,IB,tJ,NNGI,NVEil

CALL ISOPAP<x,v,s,ft,v,o~AN,ANS,ANT,TH!CK,GR,IS,IGRl

CALL ISOBON(FL,X,Y.,AN,lN~,ANT,THICl<,IS,IB,IEL.,PX,PY)

CALL SETUF(A,e,HOIA,S,lJ,NVEI~FL>


14 COt>.TlNUE
13 !F<NENEW.EC.Ot GO TO 777 

00 888 IEL=1,NENEW
CALL FREAO!(),Y,IS,IB,LJ,NNOM,NVEHl

aae CO~Tit<UE 

777 COf\TI~UE 


RE"INC 3 

wRITE(3) <A<Il,I=1,NVAl,<B<I>,I=1,NNETl
CALL ~ULTIP(A,BB,0,MHT,HOIAiNNET,LBANO,IX ,NV8) 
W~ITE(6,5) NPR08,NNET,LBANu,NV8

REl!IND 4 
~R!TEC4l (A(!),!=1,NVEl

Rf WINO 3 

REA0(3) CA<!l,!=1,NVA) ,(8(!),!=1,NNET>

CALL MULT(A,e,ee,~~ET,JX ,MHT,1,NNET>

RE"I'NO 4 

~EAOt4> CACil,I=1,NVB> 

~~'~NEOISOL(A,BB,~DIA,~NET,NVe,1, 


~lft<~~PA~~l~~=~~lt~~~!~L,NNOO,NVA~>
IFCNE!.EQ.Ol GO TC 30
WR!TECE.,15)
IFtNEI.EQ.0) GO TC 30 
~RITEtE,15> 

IffNE~.EC.O> GO TC 85 


CO 16 !=11NE1"

CALL FREAu!(X.,Y,IS,IB,LJ,NNOM,NVEH>

if CONTINUE 
85 IF<NE~TR.EQ.Q) GC TO 17 

g~LCEf~E!o~1~!~.rs,re,LJ,NNOM,NVE~>
86 CCNTI~UE 

http:IFCNE!.EQ.Ol
http:F<NENEW.EC.Ot
http:NE~TR.EC.Ol
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17 Tf <MET.EQ.0) GO TC 18 
DO 29 I=1,NET
CALL fREAOICX,Y,IS,!B,tJ,NNOT,~VET>


2i? COJ\TINUE 

1e CONTINUE 

~§ 1 I~<iEt~l.NEI 
CALL fREAD1<X 1 Y,IS,IB,tJ,NNOI,NVE1>
CO 20 J=1,NVE!
IKl<=LJ(J) 
lf(!K~l 21,22,21 

2~ U<J>=0.00 
GO TO 20 

21 U<J>-=ee<IK10 
2 C C0 t\ T I NU E 

WR!TE(E,23) IEL 

CALL SIGISC{X,Y,v,o,u.~N,ANS,ANT,MT,NSl 


1~ CONTINUE 

3C RE"!NC 3 

~EAO ( 3 l ( A <1 > , I= 1 , NV A> , ( 8 ( ! ) , I.: 1, " NET )

STENER=O.O 


31 §~E~lR~sf~~~~!a(Il•BS<I>
STENER=STENER/2.0
WRITE<E,32l STENER 
NE=NE~+NE~TR+NET+NEI 
FIE=4eO•ATAN(1.0l
CALL OENFRG(P!E,X,Y,CPLN,TH!CK,BB,U,FL,S,NVEM,NHAT,LJ, 
11X1AA,eA,CA,AT,eT,~E.~CIA> 

. \o\RJ. TE <6, gg6)

1 fORMAT< ..1•,5x,•••• f!N!TE ELE~ENT SOLUTION TO PLANE ELASTICITY PRO 


1ELEM USING •,11,sx,- MIXEO,TRANSITIONAL ANO ISOPARAMETRIC ELE
21"'E:?<TS•••",//l


2 fOR~ATt515 1 2f10.0l 

4 f0Rf'!Al{4!SJ 
~ FOFMAT<l,5),uPROBLEM NC.",!5,10X,"TOTAL U~KNOWNS",!5,1/,SX,"BA~DWI 
1CTH",!~,iQX,"MATRIX SI2E",I8,/l 

~ ~8~Clll,~i~:~~OOULUS CF ELASTICITY IN x :•,f1s.1,1ax,"ANUXY =-, 
lf8.4,/,5x,-~OCULUS Of ELASTICITY !N y =",f1s •• ,1ox,"A~UYX =-,
~fa.4,1,sx,"SHEAR ~OOULUS !N X-Y :•,f1s.2,1ox, ANUZY : tF8.4,//l

1: fOFMATt/l,SX."STRESSES IN ISOPARA~ETRIC ELEMENTSu,//)
2~ FO~~Ai(/,sx,········· STRESSES IN ELEMENT NUHBER•,rs,•••••••••")
2• FO~~AT(//,~X,"N" gx,•ft•,12x,"xx•,12x,•vv",8X,"RAD!US",gx,"THETA",6

1x,"S!G~A-xx-,Ex,iSIGHA-YY",EX,"SIGMA-XY",//) 
2~ FORMATC//,3~X,"••••• PLANE STRESS CASE •••••",//)
2f FOFMATt//,35X,"••••• PLANE STRAIN CASE •••••",//)
27 fOFMATt//,5X,"NUMeER CF STRESS CALCULATIONS IN T-DIR£CTION = MT =" 
1,rs,11,sx,"NU~BER OF STRESS CALCULATICNS IN S-OIRECTICN = NS :",!5
2,11,sx,•IGR = ",I~ 9 1SX,.THICKNESS = a,F10.?,15X,"CENSITY = ",f10.S 
"!;' 111 

32 FO~MAT(/!,5X,•srRAIN ENERGY IN THE SYSTEM= •,E20.13,//1 
ggc fOFHATt//,~),••••••••••• ENO ••••••••••",/)

STCP
ENC 

http:fOR~ATt51512f10.0l
http:FIE=4eO�ATAN(1.0l
http:U<J>=0.00
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/> SUBROUTINE ARRANG<StA,B C CPLN M N>
DIMENSION Sf20,1),A 4,1J,~(4,1f,t<4,1) 
CI~ENSlON CFL~(3,3) 
·oc 3 1:1,M
II:S•<I-1> 
I1=!!+1 
12=!!+ 2
I3=II+3 
!4:::!1+4 
!"5=!!+5 
OC 4 J=1,N
JJ=S•(J-1l
J1:::JJ+1 
J2=JJ+2 
J3=JJ+3 
J4=JJ+4 
JS:::JJ+S 
S <I1,J3) =A(J,Il 
s <I 1, J s1 = e <J, I>
S<I2,J4>=e<J,I>
S<I2,J5):A(J,I)
${!3,J1>=A<I 9 J)

S<I3,JJl:::C(I,J>•CFlNt1,1>
Stl3,J4>=CC!,J)•CFLNC1,2l
S(I4,J2l-=EHI,J>

S(!4,J3l=CCI,J>•CFLN(2,1l
S<I4,J4l=C(!,J>•CFLN(2,2l
S<IS,J1l=8tI,Jl
S(IS,J2>-=A<I,Jl

S(!5,JSl=C<I,J>•CFLN(3,3l
CCNT!,.UE
CCNTINUE 
RE TUR~ 
E~O 

http:CCNT!,.UE
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'\ 

~, SUBROUTINE COLSOltA,V,HAXA,NN,NWK,KKKl
c PFCGRtlM 
c TC SOLVE FINITE ELEMENT STATIC EQUILIBRIUM ECUATIONS IN CORE, USING 
c FFCGRAP' 
c TC SOLVE FINITE ELEMENT STATIC EQU!LIB~IU~ EQUATIONS IN CCRE, USING 
c CC~PACTEO STORAGE ANC COLUMN REnUCTICN SCHEME 
c It.PUT VARIABLES 
c ACNWK): STIFFNESS MtlTRIX STORED IN CCMPACTEO FORM 
c VC~Nl : RIGHT-HA~O-SIDE LCAO VECTOR 
c AtN~K} = STIFFNESS MATRIX STORED IN CCMPACTEO FORM 
c V(~N) : RIGHT-PA~O-SIOE LCAO VECTOR 
c M~XA(NNM) : VECTOR CC~TAI~ING AOO~ESSES OF DIAGONAL ELEMENTS OF 
c STIFFNESS MATRIX IN A 
c ~~ : ~UH8ER Of EQUATIONS
c ~~K : NU~EER Cf ELEMENTS EELOW SKYLINE Of MATRIX 
c Ntd•1 = NN + 1 
c l<l<l< = INPUT Ft.AG 
c EC.1 TRIANGULAF!ZATICN OF STIFFNESS MATRIX 
c EC. 2 REOUCTIC~ ANO E~CK-SUBSTITUTION Of LOAD VECTOR 
c OLlPUT 
c A(~~Kl : C ANO L - F•CTO~S Of STIFFNESS MATRIX 
c VC~Nl = O!SPLACE~ENT VECTCR 
c T~IS FRCGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON CDC EQUIPMENT 
c A~C OCU8LE PRECISION ARIT~METIC ON IBH OR UNIVAC MACHINES. ACTIVATE, 
c CEACTIVATE OR ADJUST ABOVE CARO FOR SINGLE O~ DOUBLE PRECISION 
c AFITHt'El!C

DIMENSION A(1),V(1),HAXA(1)
mnot-=NN+1 

c FEFFORM L•O•L(T) FACTCRI2ATION CF STIFFNESS MATRIX 
!F{~KK-2l40,1so,1~0

40 DC 140 N=1,NN
KN=MAXA(h)
l<l=KN+1 
KU=MAXA(f\+1) - 1 
Kt'=KU - Kl 
IF(KHl110,~o,so 

50 K=N-K·H
IC:O 
Kt T=KU 
nc ao J:1,KH
IC=IC +·1 
Kl T=Kl T - 1
Kl:MAXA (10
NO=HAXA(K+1l - KI - 1 

60 ~~~~¥~Sirr. iB~ 
C=O. 
OC 70 l=1,1<K 

70 C=C+A(KI+Ll•AC~LT+l)
A(KlT):A(KlTl - C 

80 K=K+1 
GO K-=N 

8= o. 
DC 100 KK=KL,KU 
K=l< - 1 
Kl:::t'AXA(l<) 

C= A ( KK l I Afl< I> 
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8= 8 + C•A <t<lO 
100 AfKIO=C 

A ( KN J: A ( KN) - 8 
110 IF tA<KN>>120,120,140
120 	 W~ITEC6,2000) N,A(KN)

STOP 
140 	 CCNTINUE 
C REDUCE RIGHT-HANO-SIDE LC~O VECTOR
150 	 nc 180 N=1,NN 

Kt=MAXAOO + 1 
KU=MAXACN+1) - 1 
!FCKU-Kll1e0,1E0,160 

160 	 t<=N 
C=O. 
OC 170 KK=Kl,KU
K=K 	 - 1 

17'() 	 C=C+A { KK) •V (10
V<N>=V<N> - C 

180 CCNTINUE 
c e~c~-suesrtTUTE 

QC 200 N=1,NN
K=MAXACN)

20tl 	 V CN>==V CN) IA 00 
IF CNN.E0.1l RETURN 
N=NN
DC 230 	L=2,NN
Kl-=MAXAOd + 1 
KU=~AXA(N+1> - 1 

ff (KU-Kl>2~0,210,210


210 	 K=N 
OC 220 K!<==Kt,KU 
K:K 	- 1 

220 	 V<K>-=V<Kl-A(KK)4V(N)
230 	 N=N-1 

RETURN 
2000 	 FCRMAT(//,sx.,•srcP-STlFFNESS MATRIX IS NOT POSITIVE DEFINITE .. ,//.,

1SX, .. NONPOSITIVE PIVOT fOR EOUATioN•,15,11.,sx.,•prvcr -:•,£20.12> 
E~O 

0 	 SUBROUTINE COLHT(~HT.,~VEL.,LJl

DIMENSION f'IHT <1> ,LJ( 1 > 

LS=10000000 
OC 100 	 !=1,NVEl
If<LJ(!)) 110,100,110

110 	 !FCLJCI>-LS> 120,100,100
120 	 L~=LJ(I>
100 	 CCNT INUE 

OC 200 I-=1~NV£l 
I I=LJ (I>
IF<II.EO.Ol GO TC 200 

Hf=II-LS

IFCME.GT.MHT<I!l) MHT<II>=HE 

200 	 CCNTINUE 
RETURTli 
E~O 

http:IF<II.EO.Ol
http:�,�20.12
http:CNN.E0.1l
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S\ StJBROUTI NE EL OAT A(ICC, LJ, MHT, XXt YV, X, Y, NE ,NVAM, NVA I, NNOOEL, NVEL, 
1IXlDIMENSION ICOttl ,tJ(1l,HHT(1l,XX(1),YY(1),X(1),Y(1l,IX(1) 

Wf;!TE(6,4)
NV=NVAM 
!f (NNCOEL.E0.8)
NNN=NNOOEL +2 

NV:NVJI 

DC 1 1=1.,Nt
REAIHS,2) (ICO(J) ,J=1,NNNl 
!S=ICOtN?YN-1)
te=ICO(NNNl 
OC 3 J=1, NNOOEL 
J1=tJ-1l •NV
J2=NVAM•t!CO(J)-1}
XX (Jl:X <ICC (J) l 
YY CJJ=Y<ICC<J» 

3 
OC 3 K=1,NV
LJ(K+Ji>=IXCJ2+Kl 

~~~\E1~~~1t~~1l~~i~J~~~1,NNN>
W~!TE(1) ()X(J),J:t,NNOOEL>,<YYCJ>,J=1,NNOOElltIS,IB,(lJCJl,J=t,N 

1VELl 
1 
2 
4 

s 
1 

CCNT!tiUE 
FCRtUT ( 10!3)
FORHAT(/l,sx.-ELEMENT•,3x,9NOOE
IS AMO r0•,1n
FCRMAT(5Xt!5,8X,1CI4>
RETURN 

NUMBERs•,2x,-LAST TWO COLUMNS ARE 

ENO 

71 SUBROUTINE FREADI<x,v,rs,IA,LJ,NNCO,NVEL)
Clt"ENSION X(1),Y(1).,LJ (1)
RE'°' 0 C 1l (X ( J), J=1, NNOO)., <Y<J) , J= 1, NNOO > , IS., IS., (LJ ( J l , J.::1, NV'.:L l 
i;e:TUR N 
ENC 
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~ SUEROUTINE ISOPAR(X,Y,~T 1 FL,B,C,AN,ANS,ANT,H,GR,IS,IGR> 
CI~ENSION X(1),Y(1l,ST(2u,1),Fl(1),8(3,1l,0(3,1ltAN(1l,ANS{1),

LA NT (1 ) W<3 ) , XI ( 3) AK ( 1 E , 16) , C ( 3, 1 f:) , A J ( 2 , 2 > , A I ( 2, 2)
DATA ~io.s~S5S555!5555E,0.88888888888889,0.5555555S555S5E/
DATA x11-o.114sq6eeq2414s,o.o,o.1145ge66924148/
IF<IS.EQ.Ol GO TO 1000 
CALL P~ESET<STi20,1El
CALL Pf<ESET<e,,'lt1f:l 
CAll FSET<Fl,16)
CO 2f: I=1, 3 
00 27 J:::i,3
S=)(!{l) 

T=X!(J)

CALL SHAPE(AN,ANS,ANT,~,T,IGR)

CALL e~ATR)((ANS,ANT,x.~,8,AJ,AI,OETl

CALL ~ULT1(Q,8,AK,C,3,16,3) 


http:IF<IS.EQ.Ol
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:~ SUBROUTINE LAYOUT(X,v,xx.YY,ICO,!X,LJ,NEM,NEMTR,NET,NEI,NNOO,~VAH 
1,HVAI,NNO",NNOT,NNOt,NVEH,NVET,NVE!,NHAT,NNET,~HT,NENEWt

DIMENSION )((1) ,Y(1),)()(1),YY{1} ,1coc10>,IX(1) ,LJ(1),MtH(1)
REW!NC 1 
REAOC5,1l NEM,HE~TR,NET,NE!,NNOO,NVAM,NVAl,NNOM,NNOT,NNOI 
WRITE(6,2)NEM,NEMTR,NET,NE1,NNOO,NVA~tNVAI,NNOM,NNOT,~NOl 

c 
c c 
c c 
c 
c 
c 
c 
c 
c c 
c c 
c c 
c 

14 

13 

15 

12 

~EAO(S,777>NENEW
777 fOf'MAT(!St 

~RITEC6,888lNENEW
888 FOR~AT(//,5)(,•No. Cf NEW ELEMENTS 

NVEtl=NVAt! ·~tNOH 
NVET=NVA,.,•f\NOT 
NVEI=NVAI•~NC! 

~E~=NUMBER Of ~IXEO FINITE ELEMENTS 
~EMT~=NU~BER CF HIXEO-TRANSITIONAL 

NET;NUH8E~ Of TRANSITIONAL ELEMENTS 
NEI=NUM8ER Of !SOPARA~ETRIC ELEMENTS 
N~CO=TOTAl NOCES 
~'A~=CEGREES Of FREECCM 
N~A!=CEGREES OF FREEDOM 
NVAM=CEGREES Of FREECCH 
N~AI=CEGREES OF fREEQCM 
~CTE TR~~SITICNAL ELEM. 
N~C~=XC OF NODES PER ~.F.E. 

FER 
PER 

NODE 
NOOE 

FOR 
fOR 

PER 
PER 

NODE 
NOOE 

FOR 
FOR 

~AS THE SAHE 

= -,rs,11> 

FINITE ELEMENTS 

N~Cl=NO• CF NCOES PER ISCFARAMETRIC ELEH. 

N~Cl=NO OF NODES PER TRAN~ITIONAL ELE~. 

N~E~=NVA~~NNOM o.o.F./M.F.E. 

~\El=~VA~•NNOT o.o.F./T.F.E. 

~vE!=~VAI4 NNOI o.o.f.II.F.E. 

N~CO=lOT.Al NO. OF NODES. 


C~ll NOOATA(X,Y,IX,NNCO,NVAM>
Nt':AT=NNOD•NV.AM 
NllET=O 
DC 12 I=1, N~AT 
IF <IX(!) -1> 13, 14, 15 
N'NET=NNET+1 
I;.- (1) =NNET 
GC TO 12 
IX<Il=O 
GC TO 12 . 1I I=I-13 · .
I-X<I>=IX<II> ., : 
CCNTif\UE 
W~ITE(1) (lX(l),!=1,N~ATl 

~f: ~~rl¥l~01t~NET 

(8 NOOE QUADS> 

~IXEO ELEMENTS 
ISOPARA~ETRIC ELEM. 
~IXEO ELEMENTS 
ISOPARAMETRIC ELEM. 
o.o.F. PER NOOE AS M.F.E.s. 

http:Nt':AT=NNOD�NV.AM
http:N~CO=lOT.Al
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!f(NE~.EO.O> G8 TO 2S
CALL ELOATACIC ,LJ,~Hl,XX,YY,X,Y,NEM,NVAM,NVAI,NNOM,NVEH,IX> 

25 If<~E~TR.EC.O> GC T01€ . 
C~ll ELOAT~<ICO,LJ,HHT,XX,YY,X,Y,NEHTR,NVAM,NVAI,NNOM,NVEM,IXl 

16 IF<NET.EQ.O> GO TO 17
citt ELOATA<ICO,LJ,HHT,XX,YY,x,v,NET,NVAM,NVAI,NNOT,NVET,IX> 

17 If<NEJ.EQ.Ol GO TO 18
CALL ELDAT~ <ICO,LJ,~~T,xx,vv,x,Y,NEI,NVA~,NVAI,NNOI,NVEI,IX> 

1e IFCNENEW.EQ.Ol GO TO 1~
CALL ELOATAtICO,LJ,HHT,xx,vv,x,Y,NENEW,NVAM,NVAt,NNOH,NVEM,IX> 

1~ COl-iTINUE 
1 f'CRMAT UO!S> 
2 FCRMAT(/1,sx,•No. OF ~IXEO f.E.=·,1s,sx,•No. OF MIXED-TRANS. F.E.

1=·,rs,sx,•Nc. Of TRANSITIONAL F.E.=",Is,1,sx,-NO. OF ISOPARAHETRIC 
2 F.E.=",I51Sx,·roTAL NC. OF NOOES=",IS,1,sx,"NC. OF o.o.F. PER NOD 
3E FOK ~.F.t. AND M.T.f .E. AND T.F.E.=",I5%5X,"
4NO. Of o.o.F. PER NOOE FOR ISOPAR.F.E.~",1s,1,sx,-No. OF NODES PER 
s M.F.E.="iI~,SX~"~C. Of NODES PER T.F.E.~·,rs,sx,"NO. Of NOGES PER
€ ISOFARA.~.E. : ,IS,//)

RETURN 
E~D 

(/ SUBROUTINE ~lXBON()(,Y,~1fl 7 AR,GR,HIIB,IGR,ISJNVEL,PX,PV) 
t!~ENS10N Xt1>,Y<1>,S<2u,11,fl(1),PX(1),PY(1
IF <IS.EQ.Ol GO TC 1000
CAtl PSET<FL,NVEL)
IF <IGR.EQ.01 GO TO 11
GRAV = -AR•H•GR/3.00
fl(2) .:GRAV 
fl(?).:: GRAV 

fl(12l =GRAV 

IF<N~EL.EQ.15) GO TO 11 
FL(7):GRAV/2.0
fl(12l=fl(7)
fl(17>=GRAV

11 IF<lB.EQ.Q) GO TO 1000 
XL =SORT(((Xf2)-X(1)>••2l+((Y{2)-Y(1))••2))
Xl=XL•t-t 
If Cle.EQ.2) GO TC 12 
~EA 0 ( 5, 5) P)( (1) , PY (1) , F X ( 2) , PY ( 2) , PX ( 3 ) , PY ( 3 l 
~R!TEC6,6lPX<1>lPY(1),FX(2J,PY<2l,PX(3l,PY(3)

E FORMAT(//,SX,EF 0.2l 

~ril~~~tl~lt~r=i~:ss:~~i~~:~~tiJ~~~:ss 
fL(6)=fL(6)+XL•(2.co•P)(2)+ PX(3))/6.00
fL(7):fL(7)+Xt•t2.00•PY(2J+PY(3))/6.DO
wR!TE<6,7) (fl<IIl ,II=1,1S> 

1 FOFMAT(//,SX,SF10.2,1,~x,sF10.2,1,sx,sF10.2>
fO TO 1000 


1~ REA0(5,2) UK1,UK2,VK1l'K2

S(1,1l=S<1,1l+XL•((UK /4.00)+(UK2/12.00)) 
S ( 1 t 6 l =S ( 1 , E) +XL• ( (UK 1112 • 0 0 l +UK 2112 • 0 0 l 
S(€,1>-=S(1,€>
S(E,6):$(6,E)+Xl•((UK1/12.00)+(UK2/4.DOll
sc2,21:S(2,2l+XL•(tVK1/4.00)+(VK2/12.00))
S(2,7>=S<2,7l+XL•((VK1112.00)+(VK2/12.00))
S(7,2l=S<2,7'
S(7,7l=S<7,7J+XL•<<VK1/12.DO>+tVK2/4.00>> 

~ fOi:;MAT(4f15.0> 
~.. fORMATf6F10.0l100 ~ PETURN 

ENC 

http:fORMATf6F10.0l
http:S(7,7l=S<7,7J+XL�<<VK1/12.DO>+tVK2/4.00
http:S(2,7>=S<2,7l+XL�((VK1112.00)+(VK2/12.00
http:sc2,21:S(2,2l+XL�(tVK1/4.00)+(VK2/12.00
http:4.00)+(UK2/12.00
http:fL(7):fL(7)+Xt�t2.00�PY(2J+PY(3))/6.DO
http:PX(3))/6.00
http:IF<N~EL.EQ.15
http:AR�H�GR/3.00
http:IGR.EQ.01
http:IS.EQ.Ol
http:IFCNENEW.EQ.Ol
http:If<NEJ.EQ.Ol
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IL) 	 SUBROUTI~E ~UlT0,88,E,NN,MO!A,M1H,1'41,H2> 
OT~ENS!ON A(1),88(1),EC1),HOIAC1),HHT(1)
DC 20 !=1,NN 

20 	 BC!>=O.O
OC 1 I-=1,NN 
J1=I-<MOIA<I+1l-~O!A(J)-1l
J:2=I+MHT<I> 
IFCJ1.LE.O> J1=1 
IFCJ2.GT.NN> J2=NN
AA=O.O 
I~<J2.LT.~t.OR.J1.GT.~2> GO TO 10 co 	 3 J=J1,J2 
Mt=~D!A(j+1)-MQIA<J>-1
MC=J-! 
IF<MO.GT.~Cl GO TO 3 

1~<Mo>210,21s,21s 


210 	 HJ=t"lH A(I>
MC-=-'40 
GC TO 21E 

215 	 HJ:f"IOIA(J}
216 	 K=MJ+f'!O

AA-=AA+AO<) •BfHJ> 
3 	 CCNTINUE 
10 	 BCil=.AA 
1 	 CCNT!NUE

RETURN 
E'ND 

B) SUB~OUTINE MULTIPCA,E0,B,MHT,MOIA,NN,MK,IX,NVB>
DI MENS ! 0 N A ( 1 ) , B 8 ( 1 l , E ( 1 l , t"H T ( 1 l , M 0 I A { 1 ) , I X C 1 ) 
REWINC 2 
DC 1 J=1,NN
Mt-'=0
Jth:J+1 
MP=t'IC:+J-1 
!F(~P.GT.NN) ~P=NN 
DC 3 I==Jti,l'P
MC=HOIA<I+1>-HOIACI>-1 

3 

MC=!-J 
!f(~O.GT.~C> GO 
t'!H=I-J
CCNTINUE 

TC 3 

1 ~HT(Jl=MH
DC i+ J=i,NN 
J~=J-<MDIA(J+1)-~01A(Jl)
Mt"=O 
OC 5 I=1,J
MC=I+t'IHTCil 
!f(MH.Eg.1lGO TO 5 
IFCMC.Lt.J~> GO TO 5 
MH::: 1 
!)((J)=J-I 
CC NTitlUE 
CCNTINlJE 
DC 6 J=1,N~ 
J~=~D!A(J+1)-MOIA<J> 
M1=J-JM+1 
OC 7 I=1,NN 

7 BE<Il=O.O
DC 8 I:t,Jt'
MC=l'IDIA<Jl+I-1
Mt+=J+1-! 

http:BCil=.AA
http:IFCJ2.GT.NN
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8 	 B801H)=A (t'ICJ
MP=J+MHTfJ)
Jt'1:J+1 
OC q l=JtH,MP
MC=M01AfI+1)-MOIACI>-1
MD=I-J 
!Ft~O.GT.~Cl GO TC g
MH=MOIA<Il+I-J 

g 	 e~~f!~~~~Hl 
~i<~~!l~!oYH1:1 
!F(~2.GT.NNlH2=NN

CALL MULT(A,ee,B,NN,~CIA,MHT,M1,M2) 

W~ITf(2) (0(1),!:1,NN>


6 	 CONTINUE 
N~N=NN+1 


\i!RITE<2> <~OIACil ,I=1,~NNl

REWINC 2 

CALL OIAADCC~DlA~!X,N~,MK,NV8l 


W1<1 TE <E, 4 0 >NV~ 
40 	 FORMATC/1,sx,·NvB :•,r2ol

CALL PSETtA,ll(V8J
DC 10 J=1,NN 
RfAO {2) (8(1),!=1,NN) 
J~=MD!A(J+il-HOIA(J)
DC 11 !=1,JM
MC=MO!A(J+1>-I
t1J{=J-JM+I

11 	 AfMC)=Bc.-1-n
10 	 CCNT!~UE 


REAOC2l <IX<I>,I=1,NN~>

RETURN 
E~O 

19 suePOUTINE ~ULT1cx,v,s,Z,H1,M2,H3) 
c 
c t'UlT!PlIES THE MATRICES Y (TRANSPOSEl • X • Y • 
c 

Cit'ENSION )((t'1,1) ,yp11,1> ,Z013,1) ,so12,1> 
CO 1 I=1,M1
00 2 K=1,~2 
)C:X: 0 • 00 
co 3 J= 1, t'l 1 


3 ~X=XX+X(!,J)•Y(J,~l 

2 ZCI,K>=XX 

1 	 COtH!NUE 

00 4 I=1,tt2
CO 5 K::I,t-2 

'ltX= O. 00 

00 6 J=1, Mi 


E xX=X~+Y(J,!l~Z(J,K)

SC!,Kl=XX 


c sn1I>=XX

k 	 COllf!~UE 


~ETURN 

ENO 
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00 10 J=1,l\N 
REAC (2} <B<I>,I=1,NNl 
J~=MO!A<J+1)-MOill<Jl
DC 11 !=1,Jtl
MC-=MOI A ( J+ 1> -I 
Mf-'=J-JM+I 

11 A 01C l=B OIH)
10 CCNT!~UE 

REAOC2l (!X(I>,I=1,NNJO
RETURN . 
Etm 

1~) SU8ROUTit<E O!AAOO<MOI.O!HHT,NNET,,.K,NVA)
DIMENSION t'O!A(1),t1HT( )
NN=NNET+1 
DC 20 1=1,NN 

20 MCIACll=fl
Mt!ll(1l=1
MCIA<2>=2
HK=O 
If fNNET.EQ.1l GO TO 100 
OC 10 !=2, lOiET 
!F(MHTCil.GT.MK) ~~=M~T<Il 

1U MOIA(!+1>=~0!ACll+MHl(Il+1
10 {) Ml<=t1K+1

NVA=MCIA<NN>-MO!At1l 
Rf TUJ;N
El¢0 

~i SUEROUTINE ~IXEL<S,A,e,c,x,v,AT,81,AR,CPLN,IS,H)
O!MENSION S(20i1> JAC4,1) ,8(4,1.l ,Cf4,1l,Xt1> ,Y(i) ,AT(1) ,BTf1)
C!~ENS10N CPLN(j,~
If <IS.EQ.Ol RETURN 
C~ll PRESET<s~20,1sl 
CALL PRESET CA,4,3l
CALL PRESET (8,4,3)
CALL PRESET <C,4,3)
ATC1l=<Xt3l-X(2)l/6.CC
AT(2)=(X(1)-X(3))/6.00
AT(3)=(X(2)-Xf1l)/6.0C
AT<1>=CY(2)-Y(3))/6.DC
8T(2)=(Y(3l-YC1))/6.0Q
BTC3):(Y(1)-Yf2))/6.0C 
AR:(~(1}•Y(2)+X(2)•Y(3)+X(3)•Y{1)-Y(1}•Xt2l-Y(21•XC3l-V(3J•X(1)l/

1 2.00 
DC 1 I=t,3
DC 2 J=l,3
A(!,Jl=BlCJ>•H
B<I,Jl=Al!Jl•H

CCI,JJ:-AP•H/12.00
IF <l.EQ.J> c<r,J>=2.co•ccr,J>

2 CCNTI~UE 
1 CCNTINUE 

CALL ARRANG <S,A,e,c,cFLN,3,3)
RETUPN 
END 

http:CCI,JJ:-AP�H/12.00
http:BTC3):(Y(1)-Yf2))/6.0C
http:8T(2)=(Y(3l-YC1))/6.0Q
http:AT<1>=CY(2)-Y(3))/6.DC
http:AT(3)=(X(2)-Xf1l)/6.0C
http:AT(2)=(X(1)-X(3))/6.00
http:ATC1l=<Xt3l-X(2)l/6.CC
http:IS.EQ.Ol
http:F(MHTCil.GT.MK
http:fNNET.EQ.1l
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2 
1 

3 
4 

100 

110 

210 

21'5 
216 

220 
200 

SUBROUTINE NOOATA (X,Y,IX,NN,NVAR)
DIMENSION Xt1l,Y(1),!X(1l
WFITE(6,1l
DC 2 1=11NN 
I2=NV~R•1 
! 1=I2-NVAR+1 
~f_Af)(~,3l X(!),Y(Il,ClX(J),J=I1,~I2~)'-=-~· 
WJ;ITE<6,4ll,XfI> ,Yfil, (!X(J) ,J=I1,I2> 
CCNTI~UE 
FCRtUT (/1,4x, ..NOtE.. ' 7 )f '·x-coRo··, 6X '·v-co~o-' 8X' "U ", 3X' "V"' 3X' ·rxx

1 ",1J,•1vv•,1x,•rxv•,11>
fCRMATC2f1U.0,6I3l 
FORHATC1X,I5,5X,F20.g,2x,F~o.g,sx,6I4l
RETURN 
EfiiD 

1c'.>\ sueROUTINE PRESET(A,H,hl
Clt'ENSION A(M,1)
CO 1 !=1,M 

00 2 J=1, N 


2 A(I,Jl=O.OO
1 CONTINUE 

~ETURN 
ENC 

~1 sueROUTINE PSET(A,M)
CifiENSION A(1)
00 1 1.::1, M 

1 A<l>=0.00 
f't:TURN 
ENC 


20) Sl!8ROUT!NE SETUPO,B,t'DIA,S,LJ,NVEL,FL>

DIMENSION Af1>,BC1l,MCIA(1),${20,1),LJ(1),Fl(1)
oc 2on I=1,NVEL
LJR=LJ CI) 

§~lJ~~~a~ES~t~~tl~~
nc 220 J::I,NVE:l
LJC=LJ(J)
If(LJCl 22n,220,110
IJ=LJF-LJC 
IFCIJ) 210,21s,21s
HJ=t'!OIA<LJC> 
IJ=-!J
GC TC 21E 
MJ=MOIA(LJ~)

Kl<=MJ+IJ 
A<KK>=A(KKl+S{I,JJ 
CCNTI~UE 
CCNTif\UE 
RETURf.i 
ENO 

http:A<l>=0.00
http:A(I,Jl=O.OO
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1~ SUBROUT!NE S!GISQ(),V,e,o,u,AN,ANS,ANT,H,N)
t!t'ENS10N )(1) ,Y(1),B(~i.1>,0(3l1) 1 U{1) ,AN(1) ,ANS(1l ,ANTC1),

1ST~A!l-4(3) ,STRESSC3l ,AJ (c,21 ,AI 21 ;:::)
CALL PPESET(0,3,1E) ­
AA=N-1 
ea=M-1 
00 50 J=1,N 
CC=J-1 
s=-1.oo+cc•2.001AA 
DO 51 1=1,t-4
t0=!-1 
T=-1.00+00•2.001ee 
CALL SHAPE<AN,ANS,ANT,s,T,1)
CALL Bt'ATRX(ANS,ANT,X,'f,B,AJ,AI,OETl
)}(: 0. 00 
'fY=O.OO 
00 4 K=1,8 
)(X=XX+X 00 •ANO:> 

~ YY=YY+Y(K>•AN(K) 
) X= X X +1 • E - 8
FATIO='fY/))(
THETA=ATAN<RAT!Q)•1so.ro13.141sg2e 
~ACIUS=SQRT(XX•XX+YY•YY> 
DO S 1<=11, 3 
zz~o.oo 
ro 6 L= 1, 1 E 

E ZZ=ZZ+B.(K,Ll•Utl> 
s: STFAHHKl=7Z 

CO 7 K=1,3 
zz=o.on 
co 8 l=1, 3 

e ZZ=ZZ+C(K,Ll•STRA!N(L)
7 ST~ESSCK>=ZZ

WRITE<E,52) J,I,XX,YV,FAD!US,THETA,<STRESS<K>,K=1,3) 
~1 CONTINUE 
SO COf\TINUE 

~ETURN 
52 FOFMAT<2I10,7E14.5l

ENC 

http:FOFMAT<2I10,7E14.5l
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2 

1 


sueROUTINE ~IXTRAN(S,A,s,c,x,v,AT,eT,AP,CPLN,IS,H> 

0 I MENS I 0 N ~ ( 2 0 t 1) JA ( 4 , 1) , B C 4, 1 ) , C ( 4, 1 ) , X ( 1) , Y ( 1) , AT { 1 > , BT ( 1 > 

OI~E~SlON C~LNf j,~

WRITE H: ,34i;) 0 CI> 1 I.::1, 3), CY <I), I:1, 3) 
FORMAT(// 9 2(/,5X,jft5.~,/))

IFCIS.EQ.O> RETURN 
CALL PRESET(S,20,15)
CAtl PRESET (A,4,3)
CAll FRESET (8,4,3)
CALL PRESET <C14)3>
AT(1J=(X(3)-)((d
AT C2).::(X(1)-X(3))

AT(3):(XC2l-X(1))

BT(1):(Y(2)-Y(3))

8T(2).::(Y(3l-YC1>>

AT{3):(Y(1)-Y(2)} 

A~=(X(1)•Yt2l+X(2)•Y(3)+X(3)•Y(1l-Y(1)•X(2l-Y(2)•X(3)-Y(3)•X{1))/ 

1 2.00 
COt=CCCPLNCt,1>•CFlNC2,2>-CFLN(1,2l••2>•AR•6.0l
E1=H•CFLNC2,2l/ODO 
f2:H/CCPL~(3,3)•AR•6.0) 
E3=-H•CPLNC1,2l/OCC
E4=E1•CPLN(1,1>fCFlN<2,2>

CALL TRANAC (A,8T,8T)
CALL TRANAC (E,AT,ATl
CALL TRANAr 1c.5T.AT) 

http:1c.5T.AT
http:COt=CCCPLNCt,1>�CFlNC2,2>-CFLN(1,2l��2>�AR�6.0l
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20 
10 

2 
1 

3 

4 

6 
5 

SUBROUT!~E TRANAC<C e,AJ
DIMENSION CCt+,1) ,eel> ,A(1)
DC 1 1=1,3
DC 2 J=1,3 

2 C (!, J) =8 <I)• A ( J) 
1 CCNTINUE 

Rf TUR~ 
ENO 
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c c c 
c 
c c 

c 
c 
c c 
c c 
c c 
c 

c 

c 
c 
c 

?l sue~OUTINE nENERG(P!E,),Y,CPLN,THICK,B,u,v,s,NVEL,NMAT,LJ, 
11X,AA,eA,CA,AT,BT,NE,~rIA) 
CI~ENSION s<20,11,xt1l,Y(1),8(1) ,U(1),V(1),LJ(1),IX(1),AA(4,1), 
1EA(4,1>,CAC4~1>,ATC1>,ET(1),IEC26l,MOIA(1),CPLNC3,3) 
OI~ENSlON EET(500),SY~EBC500l1ASY~88<500),UN1(20l,UN2(20), 
1VN1<2Cl,VN2(20) 1 NCOE1(~6),NODE2C3E>,NOOET<36)

wR'ITECE,2001
200 fO~~AT(//,5X,•••••••••••••••••••••••••••••••••••••••••••••",//) 
NT!F=~UMEER Of ELEMENTS AFOUNO CRACK TIP 
ClEN=CRACK LENGTH 
FACTOR--CHANGE IN CRACK LENGTHCOELAJ~FACTCR•CtEN 

N~i=NC. Of DIRECTION FOR ~HICH ENERGY RELEASE RATE IS TO BE CALC. 

~(C~TR=NU~BER CF CONTOURS TO BE ~OVEO 

~EA0(5,21)~TIP,CLEN,FACTOR,~N1,NCCNTR
21 fORMAT<IS,f20.10,e20.1c,2rs1

PI=2.oo•PIEINTIP 
PI=PI/4.00 

CELA=f~CTOR 4 CLEN 
~R!TE<E,22lDELA,NTIP.NN1

22 FORMAT(/1SX,"CRACK lEMfTH :•,F20.10,sx,"NO. OF OIVISIC~s=·,rs.sx,
1·NM1 =·,rs> 


NCOE=NO. CF ~COES WHCSE DISPLACEMENTS ARE TO BE SEPARATED INTO 

Sl~~ETRICAL ANC ANT!~YHMETRICAL PARTS 

NC OEN= 

A~~LE=ORIENTATION OF CRACK TIP w.R.r. Gl00Al X-AXIS 
NCCE1=NOCE NC. ON SICE 1 CF CRACK 
NCCE2=NOOE NC. ON SlOE 2 Cf CRACK 
Kll<2== INPUT=1 IfENERGY IOELEASE !UTE FOR MOOE 1 AN02 ARE NEEDED 

=O 	 OTHERWISE 
REA0(5,23)K1K2 

2~ 	 FOi;MAT <IS> 
WR!TE<E.231lK1K2 

231 FOFMAT(t,sx.·x1~2 =·,1!,/)
REA0(5,24l ANGLE 

2h fO~MAT(F20.10l
kRITE<6,25lANGLE

2! 	FO~MAT(/,~X,NCRACK TIP IS A1n,F20.10,sx,·oeGREES TO THE X-AXISM) 
~NGLE:2.00•FIE•ANGLE/3EO.OO 

!F(K1K2eNE.1> GO TO 401 
REAC<5.2f.lNCOE,NOOEN

2E f0R~AT<21S> 

91 	 ~§~~~f~;:i~:22~~lC~~~I!,5X,•NOOEN : 0 ,IS,/)
READ (5,27> (NOOET<IK> ,D<=1.NODE)
FEAOP5,27l (~00E1 (!K) ,Il<::1,NOOEN) 
~EAO(S,27) (t\ODE2<IKl ,IK-=1,NOOEN>

27 FORMAT(2(24!3))
\icR!TE (€,<32> (NODETCIKl, IK=1,N00El 
wR!TE <E.g2} tNOOE1 (!Kl, !K=1,NOOEN)
;.RITE <6.<32> <NCOE2<IKl, IK:1,NOOEN> 


gc fO~MAT(5X,/l,10(/,5X.1CI5l) 


eEFCRE OECOMPCSING INTO SlMHETRICAL AND ANTISYMMETRICAL FARTS,CARRY
CUT TRANSFOR~ATION FRCM GLOBAL TO X"-Y• AXIS AT CRACK TIP 

http:NGLE:2.00�FIE�ANGLE/3EO.OO
http:OIVISIC~s=�,rs.sx
http:PI=PI/4.00


c 
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ro €02 IKK=1,NOOEN 
~S1=NOOE 1 ( IKtO 
KS2=NOOE 2 t! I< Kl 
NT1=<NS1-1l•S+1 
t. T 2= (NS 2-1> • 5+ 1 
?\U1=~T1+1 
l\'U2=NT2+1 
t<01=NU1+1 
tiE1=N01+1
NF1=NE1+1 
t\02=NU2+1 
~E2=ttD2+1 
NF2=NE2+1 
tJ1=0.0 
V1=0.0 
U2=0. 0 
V2=0.0 
!~(!)(NT1>·~E.O>U1=8ET<IX(NT1>>
1FC!X(NU1l.NE.OlV1=eETC!X(NU1)l
IF<IX<NT2l.NE.O>U2=8ET<IX<NT2l> 
!F<IX<NU2).NE.O)V2=EETCIX(NU2)l
TX1=88T(1XCN01))
TY1=8BT ( !X <~E1>)
TXY1=BBl(lXCNF1)l
TX2=8BT<I>ICN02l>
TY2=BBT<IXtt.E2>> 
TXY2=BBTC1X(NF2>>
SYMU=<U1+U2l/2.CO 
SY~V1=tV1-V2>12.oo 
SYMV2=tv2-v1112.oo 

http:SYMV2=tv2-v1112.oo
http:SY~V1=tV1-V2>12.oo
http:SYMU=<U1+U2l/2.CO
http:TY2=BBT<IXtt.E2
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c 
c c 
c c 
c 

2~ 

2~ 

3C NO .",26I3,/) 
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31 	 fO~MAT(//,Sx,·ccNTOU~ No.•,13,2x,•etEH TYPES",26!3,/} 
~LPHA=O.O 
CO E03 !=1,NN1
IT=I-1 
~LPHA=PI•FLCATCil> 
CXB=CELA•cos<ALFBA) 
OY8=0.0-0ELA•SIN(ALP~Al
CX=OXB•ccstANGLEl-OYE•SIN<ANGLE) 
CY=D)B•SI~CANGLEJ+DYE•COS(ANGLE> 

~RITEC6,32>DXiOY,ALF~A 


3~ FORMAT(//,5X, OISPL. IN x DI~ECTION =",f1s.a,1,sx,

1 •orsFL. IN y DI~ECTICN .::",F1!.8,/,SX,"ALPHA =",F15.6,/)

REli'INC 1 
~EA0(1) <IX (f"M) ,~t11=1,NM.l!T)
!M=O.O 
l:::?fNG=O.O 
OENG1-=0.0 
OE~G2=0. O 

t:O 102 Il=1,NJJ
IEL-=IE<IL> 

1 ~ () IM=!M+1 
PEAD(!) ()((Jl ,J=1,3)' (Y(J) ,J=1,3) ,rs,IB, (LJ(J) ,J=1,NVEL> 
IFtI~.EQ.IEl> GC TO 103 

GO TC 130 


1 0 :! !S.:: 1 
I8=t40IA<Ill 

1f <IB.EQ.2J GO TO 10~ 

~R=(Y(2)-Y(i))•OX+(X(1l-X(2ll•OY

AR=AR/2.00
!F<IEL.GT.NE) GO TO 14C 
X(11=0X
Xt2l=OX 
X(3)::0.00
Y(1>=CY 

Y(2l'=OY 

'1'(~)=0.00 
GO TC 105 

140 	 X{1l=X(1)+0X
Y(1)::V(1)+0Y
X<2>=X <2> +ex 
Y(2l=Y!2l+OY
GO TO 10S 

10 J. 	 AR~(Y(2)-Y(3})•QX+(X(3l-X<2>l•OY
AR=AR/2.00 
If<IEL.GT.~E> GO TO 141
X(1l=OX

)((2)=0.00

)((3l=n.oo
Y(1l=OY
Yf2);t).OO
Y(3)-::0.00
GO TO 105 

141 	 )((1).:)((1) +[l)(
't'(1).:Y(1)+!JV 

10~ 	IF<I.E0.1.ANO.!EL.GT.NEl GO TO 102 
IftI.EQ.NN1.ANO.IEl.GT.NEl GO TO 102 

CALL ~IXEL2<S,AA,8A,CA,X,Y,AT,8T,AR,CPLN,IS,THICK) 


http:Y(3)-::0.00
http:Yf2);t).OO
http:AR=AR/2.00
http:1'(~)=0.00
http:X(3)::0.00
http:F<IEL.GT.NE
http:AR=AR/2.00
http:IB.EQ.2J


If(AtPHA.NE.0.0) GO 
IF(K1K2.NE.1) GC TO 
CO 604 J=1.NVEL 
!t<l<=LJ(Jl
IFfIKK>308,309,308 

30~ 	 UNi(j):O.CO
UN.2(J):Q.OO 
GO TO 604

30e 	 UN1(J):SY~BB<IKK) 
UN2(J)=~SYMeB<IKKl

604 	 CONTINUE 
00 605 K=1.,NVEL
XEN1=0. 0 
XEN2=0.0 
00 606 J=1.,NVEl 
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10 801 
eo1 

XEN1=XEN1+S(K,J)•UN1(J)
60€ 	 XEN2=XEN2+S(K,J)•UN2(J)

VN1 (Kl =XEtfi 
VN2 00 =XEN2 

eO~ 	 CONTINUE 
XEN1=0.00 
>tEN 2= 0. 0 0
00 607 t(:t,~VEl

)EN1=XEh1+(VN1(1<)•UN1(Kl)l2·00 

XEN2=XEN2+CVN2(~)•UN2(K)l/2.00 

607 	 CONTINUE 
OENG1=0ENG1+XEN1 
CENG2=DENG2+XEN2 
CEMG=OE~G1+0ENG2
1;0 TO 	 102 

8 0 1 	 CONTINUE no 107 J=1,NVEL
l1<K:LJ(J)
IF<IKK> 1oa.,1og,1oa

10<! 	 U(Jl=0.00
GO TO 	 107 

1oe 	U<J>=e<IKK)
10 7 	 COtHINUE 

CO 110 K=1,l{VEL
xEN=0.00 
00 111 J=1,NVEL

111 	 XE"=XE~+S(K,J)•U(J) 
11C 	 V<lO=XEN

XE1'11=0.00 
CO 112 K=1,NVEL

112 	XE~=XE~+(VfKl•U<Kl/2.DCl
OENG=OE NG +XEN 

102 	CO~TINlJE 
OE~G=OE NG/ OEL.4 
IF<ALPHA.NE.0.0) 60 TO 802 

!F<K1K~.NE.1l GO TO 802 

OEXG1=0ENG1/0ELA 
CE~G2=DENG2/0ElA 
~RITEC6,33lIJ,OENG1,0E~G2

3! FO~MAT(//,sx,-cONTCUR ~o. -,13.,1,5x,-"ODE 1 ENERGY RELEASE ~ATE=·.,
1E20.10,1,5x,·MoOE 2 ENERGY RELEASE RATE=".,E20.10,/) 

80~ CONTlNUE 
WR!TE<E,34lIJ,DENG

3~ FO~~AT(/t,sx., CONTOUR ~o.·,13,~x,-sTRAIN ENERGY RELEASE RATE =·,
1E20.10,ll 

60~ 	 CONTINUE 
121 	COliTINUE 

f;ETURN 

EMC 


http:RATE=".,E20.10
http:F<K1K~.NE.1l
http:XE1'11=0.00
http:xEN=0.00
http:U(Jl=0.00
http:XEN2=XEN2+CVN2(~)�UN2(K)l/2.00
http:XEN1=0.00
http:UN.2(J):Q.OO
http:UNi(j):O.CO
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12 


2 
1 

1000 

SUEROUTINE TRANAB(A,BTl 
CI~ENSION At4 1 1li8T(1)
A(1,1):8T(1l/t.Ou
AC1,2>=<8T(2)-RTt3l)/12.00
A<1,3l=-A(1,2)
A(1,4l=<BT(2l+8T(3ll1E.OO
A(2,1l=8T(1)/12.00 
A(2,2>=<BT<2l-1.s~eT<3))/15.00
AC2,3>=-<8T(2l+BTC3ll/EO.OO
AC2,4l=<BT(2l+6.00•BT(!))/30.00
AC!,1):A(2 1 1) 
Af~12l=AC2,~l
A(3,3>=<-1.5•0TC2l+8T(!J)/15.00 
A{~,4>=C6.00•BT(2)+8T{!))/30.DO
A(4 1 1l=A<1,1l 
A(4,2>=<Bi<2>-4.0Q•8T(~))/30.00
A(4,3):(-4.QO•BTC2l+BT(3))/3U.CO
AC4,4)=8.QO•<BT(2)+8T(2)J/30.00 
~ETURN 
ENC 

http:AC4,4)=8.QO�<BT(2)+8T(2)J/30.00
http:A(4,3):(-4.QO�BTC2l+BT(3))/3U.CO
http:A(4,2>=<Bi<2>-4.0Q�8T(~))/30.00
http:A{~,4>=C6.00�BT(2)+8T{!))/30.DO
http:A(3,3>=<-1.5�0TC2l+8T(!J)/15.00
http:AC2,4l=<BT(2l+6.00�BT(!))/30.00
http:AC2,3>=-<8T(2l+BTC3ll/EO.OO
http:A(2,2>=<BT<2l-1.s~eT<3))/15.00
http:A(2,1l=8T(1)/12.00
http:A(1,4l=<BT(2l+8T(3ll1E.OO
http:AC1,2>=<8T(2)-RTt3l)/12.00
http:A(1,1):8T(1l/t.Ou
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