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ABSTRACT 

The long-time controversy of the Coutchiching problem has 

been solved at least in the map area. The general stratigraphic se­

quence is that the thick greenstones of the Keewatin series overlie the 

thick fine sediments of the Coutchiching series with the Shoal Lake 

conglomerate and local greenstones belonging to the upper part of the 

C outchiching. 

Mathematical equations are derived to represent the con­

tours of X/d, Y /d, and Z/d for constant-volume ellipsoids with three 

principal axes of X >Y > Z and a nominal diameter of d. These contours 

are useful in the determination of the special coaxially deformed pebbles 

which yield data for calculation of the axial ratios of both the strain 

ellipsoid and the original pebble. 

Final pebble fabric resulting from coaxial superposition of 

the tectonic strain ellipsoid upon the originally ellipsoidal pebbles is 

illustrated on an orientation plot, which facilitates the simultaneous 

determination of the strain ratio and the original pebble orientation and 

shape. The complex relationships of orientation and shape among the 

original undeformed ellipse, the tectonic strain ellipse, and the final 

xv 



deformed ellipse, are shown by both mathematical equations and a 

graphical expression. 

From extractable pebbles resulting from deformation of 

original, randomly-oriented pebbles, adequate equations can be sought 

to determine the strain ellipsoid and the original pebble shape. For 

unextractable pebbles, Ramsay's (1967, p. 209-211) technique is found 

to be unsuitable for determining the original shape of deformed pebbles 

in the case of originally random fabric. 

Pebbles in the Shoal Lake conglomerate of Archean age show 

distinct deformation. The strain ellipsoid and the original shape of the 

deformed pebbles in the map area are calculated from the coordinates of 

coaxially deformed pebbles on the logarithmic deformation plot. The 

deformation path of the deformed pebbles has a slope of a calculated 

K-value of 2. 74 and so the strain ellipsoid belongs to the flattening 

type, which is conformable with the regionally poor development of 

mineral lineation in the strongly-foliated rocks. 

The calculated original shape is equant for the granitic 

pebbles and oblate for the quartzose pebbles; the volcanic pebbles have 

their original shape between equant and oblate. The average shortening 

strain of the volcanic pebbles is 60%, the quartzose pebbles, 37%, and the 

xvi 



granitic pebbles, 7%. Most of the granitic and volcanic pebbles lie i n the 

size range of cobbles with some of the former reaching the boulder si z e , 

whereas the quartzose pebbles generally are smaller than 1 00 mm. 

Selective cross-veins are found to have developed mainly in 

extensional fractures of the less-deformed granitic pebbles. Quartz is 

the major constituent mineral of the veins and is likely to have grown 

the columnar grain shape in pace with the dilation of fracture, because 

some of the columnar quartz grains show crystallographic continuity 

aero s s the vein from side to ·side. Double elliptical girdles of quartz c ­

axes around the direction of the principal tectonic shortening are re­

ported for the first time in coaxially deformed quartzite pebbles. 

The only plausible explanation for the duetile deformation 

of the granitic pebbles under the P-T conditions of low-grade metamor­

phism is the hypothesis of a very low strain rate, which probably is 

-15 -16 -1
of the order of 10 to 10 sec if 2 to 10 m. y. is assumed to be 

the duration of the deformation episode. 

xvii 



CHAPTER I 

INTRODUCTION 

Strain is a quantitative measure of the amount of deformation. 

Determination of strain in deformed rocks is a difficult undertaking for 

geologists. The difficulty stems primarily from the fact that both 

original features and fabrics of deformed rocks in which strain is to be 

determined are commonly unknown. 

Deformed fossils can be a good tool for the strain calcula­

tion, because their original features may be known precisely. However, 

occurrences of deformed fossils having easily measurable shapes in 

three-dimensional space are very limited. This is not a possible 

technique in the Precambrian rocks, such as those investigated by the 

writer, because recognizable fossils are absent. 

Deformed pebbles and ooids have been used in many places 

for the determination of strain. Both elements were assumed to have 

been originally spherical in shape before deformation, an assumption 

whose validity is now open to question. 
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The first geological application of the strain concept was 

made by Sorby (1853) who studied the deformed reduction spots in the 

Cambrian slates of North Wales. He concluded that the spots have been 

compressed along a line perpendicular to the cleavage plane. A couple 

of years later, Haughton (1856) was the first to compute the ratios of 

three principal strains by comparing deformed brachiopods to undeform­

ed ones, assuming that two principal strains lay in the cleavage plane 

with one of them parallel to the intersection of cleavage and bedding. 

Cloos ( 194 7) gives a very good review of all the earlier 

work on deformed objects. He himself computed the magnitudes of 

principal strains from distorted ooids in the Paleozoic limestones on 

the western side · of the Appalachian fold belt. However, his otherwise 

valuable results now need a modified interpretation, in which his original 

assumptions that ooids had no volume changes and were originally 

spherical before tectonic deformation, may not be valid. 

Flinn (1956), in his study of the deformed pebbles of the 

Funzie conglomerate in northeastern Shetland, presented a graph, 

later called the deformation plot (Flinn, 1962), in which he plotted the 

ratio Y/Z against the ratio X/Y, where X)Y)Z are the ·principal axes 

· of an ellipsoidal pebble. This method was originally employed by Zingg 

(1935, p. 54) for describing the shape of pebbles in sedimentary rocks. 
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Flinn also showed the contours of X/d, Y/d, and Z/d inthe plot, where 

d is the diameter of the equivalent sphere with the same volume as the 

ellipsoidal pebbles. Although these contours have not received attentio n 

since then, they turn out to be very useful in the strain analysis developed 

in Chapter VI of this thesis. 

More than 110 years after Sorby ( 185 3) studied the deformed 

reduction spots, Ramsay ( 19 67) was the fir st to point out the effect of 

original shape and original fabric of objects on their finite strained state. 

Ramsay also presented a graphical method of determining the ·tectonic 

strain ratio and the original shape of the deformed objects. Though some 

problems exist in his descriptions, there is no doubt that his work i s 

the most stimulating and most valuable reference thus far published 

in this field of study. 

Assuming that rock behaves as a viscous fluid during de­

formation and that deformation is caused by pure shear or simple shear, 

Gay (1968) developed some mathematical equations to demonstrate the 

relationships among original shape, original orientation, final shape, 

and final orientation of deformed ellipses according to different strains. 

He also showed that the viscosity ratio (competence difference) between 

pebble and matrix under conditions of different pebble concentration in 

the rock, plays a prime role in relating tectonic strain to both the final 

shape and the final orientation of deformed pebbles. Though the assump­



4 

tions involved are open to question, the general relationship may be 

useful. Gay's (1969) subsequent work, however, is misleading and 

confused in many respects. Beginning from the determination of 

vector mean orientation of pebbles, Gay plotted the mean cleavage 

plane (this means that cleavage planes are not all parallel to one 

another) on a stereogram, and then plotted the angles of rake of the 

major pebble axes in that plane (op. cit., p. 381). The vector mean 

orientation thus obtained will be in great ertor if the major axes are 

measured on a plane which makes .an angle (say, greater than 10°) 

with the mean cle~vage plane. Secondly, Gay mixed up the measured 

lengths of extracted-pebble axes with those made on planar sections. 

Therefore, some of the calculated standard deviations do not make any 

sense. Thirdly, the technique described by Ramsay ( 1967, pp. 209-211) 

was used improperly to compute the initial pebble shape by Gay (see 

pp.96-lOZ of this thesis for details). In addition, Gay's (1969, p. 383) 

Equations (Za) and (Zb)_ unfortunately, are wrong; they should be 

j ~l /~z = ·( (X/Y) . (X/Y) . J 1 /Z ( l -1)
max min 

l /Z
and X. [ (X/Y) · 11 max 

( 1-Z)Y. =· (X/Y) . 
1 min 



5 

but not 

(X/Y) (X /Y) . (Gay's (1969) Eq. (Za))
max min 

X./Y. = (X/Y) I (X/Y) . (Gay's (1969) Eq. ( Zb)) 
i i max min 

where X) Y) Z are the lengths of the three principal axes of a deformed 

pebble, a subscript !_refers to that of an initial pebble; Al) AZ )A
3 

are the principal quadratic elongations of strain. Moreover, it should 

be noted that Eqs. (1-1) and (1-2) exist only if the initial pebbles had a 

planar fabric with all their XiYi planes parallel to the ,j Al AZ plane, 

and also if~ Al tA
2 

) (X/Yi). Given the former condition occurs, the 

latter does not always hold, because the range of rake over 90
0 

, as 

shown in Gay's Figures 3A and 3D, is good evidence to indicate that 

(X/Yi) ),/Al /A (see Chapter V, pp. 67- 69 in particular, of.this thesis)
2 

at some localities, where (X/Y) . = (X./Y.)/~A /A2 .
min i i 1 

Consequently, the equations to determine the strain ratio and the 

initial pebble shape in the case of JAl /A ((Xi/Yi), should be
2 


= [(X /Y)max .] l I 2 

( 1 -3)

(X /Y) .
min 

2 
and X./Y. = ( (X/Y) . (X/Y) . J l/ ( 1-4)

i i max min 

if the X. -axis of the initial pebbles had a random orientation on sections 
i . 

parallel to the ~A1A2 plane and all the XiYi planes. The above argument 
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is based on the assumptions that Gay had obtained all the axial ratios 

from extracted individual pebbles and that all the pebbles had an 

identical initial shape. Otherwise, the above relationships will be­

come more complex and even indeterminate (see pp. 96-102). The 

initial pebble shapes calculated by Gay from those false equations prob­

ably are all wrong. Fourthly, Gay's equation 4 was given to calculate 

the viscosity ratio between pebble and conglomerate, which is based 

on the assumption that a deformed pebble had its , axes parallel to the 

strain axes during deformation. If the measurements of the deformed 

pebbles were made on a section parallel to, say, the J~l ~3 plane, then 

those deformed pebble ellipses aligned parallel to the st)."ain axes on that 

section would predominantly contain only one principal axis of the initial 

pebbles because of the original orientation. Therefore, most axial ratios 

of the initial pebble ellipses calculated from that section are not the real 

ones. By using any of the apparent axial ratios to compute the viscosity 

ratios, the errors are likely to be very large. 

Equations derived by Dunnet (1969) enabled him to determine 

simultaneously the initial elliptical form and the "magnitude" and 

orientation of the finite strain from the final elliptical ratio and orientation 

of deformed particles. However, these equations must be applied with 

great caution. They will be discussed later (pp. 51-5 2). 
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From the above brief review of previous work on ellipsoidal 

particles, we can summarize the major problems involved in the study 

of deformed pebbles, which may include: 

(1) the shape, orientation, and size of deformed pebbles; 

( 2) the deformation path which deformed pebbles have taken; 

(3) the volume change of pebbles; 

(4) the original pebble shape and orientation before deformation; 

(5) the finite strain ellipsoid and strain magnitude; 

(6) the ductility difference between pebble and matrix as well as 

between pebbles of different lithologies; 

( 7) the strain rate of deformation. 

As outlined above, some of these problems have been 

partially solved, but most solutions are not entirely satisfactory. The 

purpose of this study is to explore possible methods to solve these 

problems without dubious assumptions or at least to determine systemati­

cally the minimum number of assumptions required to make the solutions 

acceptable. 

The Archean Shoal Lake conglomerate, which occurs between 

Mine Centre and Flanders, Ontario (Figure 1), was chosen for this study 

of pebble deformation. Scattered exposures on the roadcuts along 

Ontario Highway 11 provide excellent outcrops for measurement of de­

formed pebbles. 
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Field work was first carried out in August, 1968. A two­

week general rec~nnaissance of the regional geology in the map area 

suggested to the writer that the conventional method could not be applied 

to the study of the deformed pebbles there, because among all the out­

crops observed there were only two foliation planes on which distinguish­

able pebbles can be measured and only one cross-section which is 

perpendicular (±5°) to the mineral lineation. The disappointing sections 

compelled the writer to derive most of the mathematical equations de ­

veloped in this thesis during the academic year 1968-1969. 

The second field season was started in early July, 1969. 

Nearly five weeks were spent in the field. More than half of this time 

was used in geological mapping, since the gross structure of the con­

glomerate bed is not correctly shown in any of the previously published 

geological maps (Lawson, 1888; Lawson, 1913; Merritt, 1934) covering 

the map area . . 



CHAPTER II 

GEOLOGICAL SETTING 

The rocks exposed in the map area are of Archean age. 

They are believed to have been subjected to a low-grade regional 

metamorphism about 2. 75 b. y. ago (Hart and Davis, 1969). Many 

sedimentary structures are still preserved in arenaceous rocks; 

pillowed lavas and vesicular texture on top of lava flows_ are still re­

cognizable. For geological mapping in the field, the terms arenite 

and greenstone have been widely used. Arenites refer to all the arena­

ceous rocks which under the microscope may turn out to be quartzite, 

biotite schist, sericite schist, or calcite schist; whereas greenstones 

refer to all the greenish rocks which may be petrographically chlorite 

schist, hornblende schist, tremolite schist, or their mixture. 

1. STRATIGRAPHIC SEQUENCE 

Lawson (1888, see particularly pp. 21 -22, p. 1OS, and p. 139), 

in mapping the geology of the Rainy Lake region, designated the arenite 

and slate in the southernmost part of the present map area (Plate 1) as 

10 




PLATE 1 

GEOLOGIC MAP OF THE SEINE RIVER AREA, ONTARIO 
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the Coutchic.hing series. This series lies unconformably beneath the 

· Keewatin series, which includes the greenstones and the conglomerates 

on Shoal Lake. The oldest division of the Archean complex considered 

by Lawson is the Laurentian orthogneisses, upon which the Coutchiching 

and the Keewatin rocks were originally deposited. 

In 19 04 a visit to the area "along one line of section at the 

east end of Shoal Lake" was made by a special international committee 

composed of members of the Canadian and the United States geological 

surveys (see Van Hise et al. , 19 05). The committee concluded that 

"The Coutchiching schists form the highest formation. These are a 

series of highly micaceous schists graduating downward into green 

hornblende and chloritic schists, here mapped by Lawson as Keewatin, 

which pass into a conglomerate known as the Shoal Lake conglomerate. 

This conglomerate lies upon an area of green schists and granites known 

as the Bad Vermilion granites ". Unfortunately, this is exactly the 

reverse of the sequence as it is understood now (see Figure 2). 

Lawson's (1913) re-study of the area affirmed his earlier 

convictions about the relative positions of the Keewatin and the Coutchiching 

rocks. He retained the name Coutchiching for the rocks of the pre­

Keewatin series and applied a new term Seine to those of the "younger 

post-Keewatin" series including the Shoal Lake conglomerate. In 
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addition to the mistake of assigning the Shoal Lake conglomerate to 

the post-Keewatin, Lawson regarded the foliated rocks of the "Seine" 

series as deposited on a basement of granitic rocks which are not folia­

ted near Shoal Lake. 

After having mapped the Archean metamorphosed sediment­

ary rocks extending from Rainy Lake eastwards .for about 240 kilometers 

to the vicinity of Lac des Mille Lacs, Merritt (1934) concluded that the 

sedimentary belt in the southern part of that area, equivalent to Lawson's 

Coutchiching series, appears to lie unconformably on the Keewatin series . 

Consequently he put the rocks of Lawson's Coutchiching series together 

with the Shoal Lake conglomerate into the "Seine" series. The conglome­

rate, according to Merritt, lies unconformably on the Laurentian rocks 

which in turn are intrusive into the Keewatin greenstones. Again, this 

is the reverse of the sequence as it is presently realized (Figure 2). 

The latest investigation carried out by the present writer has 

uncovered a great deal of new field data, previously overlooked or 

previously inaccessible, which warrant a new interpretation concerning 

the structural relations of the sediments with the adjoining formations. 

Because of the absence of fossiliferous strata and the scarcity of reliable 

horizon markers, the geological structures have been determined by 

means of field tracing of the stratigraphic horizons and the use of minor 
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structural criteria including cross -lamination, graded bedding, load­

cast, vesicular texture on top of lava flow, and foliation refraction on 

bedding ·(Plates 2-5 (A)). The general stratigraphic sequence, then, is 

that the thick greenstones overlie the thick fine sediments (arenite, 

slate, etc.) with conglomerate lying in between (Figure 2). In places, 

such as the western portion of the map area, greensfones alSo lie be­

neath arenite, a fact that has unfortunately misled Me.rritt and the 

international committee mentioned above to regard Lawson's C outchiching 

and the Shoal Lake conglomerate as lying on the Keewatin greenstones. 

Locally, conglomerat~, arenite, and greenstone may be interbedded with­

out any recognized break, although one single small-scale local un­

conformity (Plate 5(B)) has been observed. In the whole area, no 

basement has been found. Thus, in the map area, we may retain the 

term "Keewatin series" for the thick greenstones ·lying on the thick meta­

sediments, but redefine the Coutchiching to include all the rocks under­

lying the Keewatin. The Coutchiching series thus defined includes Lawson's 

Coutchiching as well as the Shoal Lake conglomerate and the greenstones 

on Shoal Lake. 

All these rocks probably were first folded ·and then subjected 

to a low-grade regional metamorphism. During metamorphism, the 

pebbles in the Shoal Lake conglomerate were deformed, and penetrative 



Plate 2 

(A) 	·cross-lamination in medium- to coarse-grained arenites. 

Here, one coset consists of more than 5 single sets 

of cross-lamination, all showing a consistent flow 

direction. The section is parallel to the general 

trough direction of cross-lamination but is roughly 

perpendicular to the truncating surface. Note that 

some of the foreset laminations are inclined at 

angles greater than 35° to the truncating surface, 

due to tectonic deformation. 

(B) Cross-section of trough cross-lamination. 
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(A) 


( 8) 




Plate 3 

(A) 	Load casts beneath arenite beds. The underlying 

turbidites show repetition of graded bed followed by 

paralle1 lamination. 

(B) 	Normally graded bedding in the arenite on top of a 

conglomerate bed. 
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Plate 4 

(A) Pillowed lavas preserved in greenstones. Top on the left-hand side. 

(B) 	Vesicular texture on top of lava flow indicating stratigraphic way-up 

to the right-hand side. Note that the foliation is not parallel to the 

bedding here. 
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Plate 5 

(A) Foliation refraction on bedding. 

(B) 	Local unconformity. Laminated greenstone lies on 

locally-deformed siltstone beds. A piece of siltstone 

was squeezed into the overlying greenstone, probably 

due to extreme loading. 
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foliation and mineral lineation were formed in all the rocks. The 

detrital Coutchiching zircons are believed by the present writer to 

have been derived from an older sialic source, just like the granitic 

pebbles in the Shoal Lake conglomerate. Therefore, the zircon age 

of 2. 75 b. y. (Hart. and Davis, 1969) from the Coutchiching rocks, which 

is indistinguishable in age from that of the Laurentian intrusive rocks 

(not exposed in the map area), probably was the result of metamorphic 

resetting. All the foliated rocks in the map area were subsequently 

intruded by the anorthosite and granite on Bad Vermilion Lake (see 

Plate 1 ). Both later intrusive rocks show no penetrative foliation and 

give a whole-rock Rb-Sr isochron age of 2. 52 b. y. (Hart and Davis, 

19 69). 

2. SHOAL LAKE CONGLOMERATE 

The Shoal Lake conglomerate consists of numerous conglome­

rate beds with thicknesses varying from 40 centimeters up to more than 

10 meters. Stratigraphically above each conglomerate bed lies a bed of 

arenite, or slate, or greenstone of varying thickness, each of which 

has composition similar to that of the matrix in the underlying con­

glomerate bed. The arenite commonly shows normally graded bedding, 

but in a few places reversed graded bedding was also observed. Slate, 

greenstone, and conglomerate, on the other hand, do not show appreci­

able graded bedding. However, slate and greenstone may locally show 
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content grading with pebbles being more abundant towards their 

bases. 

Only one outcrop (locality No. 55 0, Figure 1) has been 

observed to show cross-lamination in the intercalated arenite within 

the conglomerate sequence, although cross-lamination is very common 

in the arenite beds stratigraphically beneath the Shoal Lake conglome­

rate. 

The above features might suggest that the conglomerate beds 

are products of resedimentation*, similar to the mass movements which 

result from disturbance by overloading, earthquakes, and hydraulic 

pressures (Dott, 1963). If this is true, then the conglomerate beds 

should be called "paraconglomerate", although the predominant constitu­

ent of well-rounded pebbles of different lithology, mostly showing intact 

framework, may.favor the term "polymictic conglomerate" (Pettijohn, 

195 7, pp. 254-255 ). The fine sediment beds lying on each conglomerate 

bed were probably deposited from suspended materials accompanying 

the mass movement of pebble clasts. 

>:c This view seem·s· to be generally true for all Archean elastic sedi­

ments coarser than pebble size (4-64 mm), found in the Canadian Shield 

(R. G. Walker, 1970, personal communication). 
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At any one outcrop, it is very difficult to determine the 

lithology Of all pebbles, and also it is hard to distinguish those strongly­

deformed pebbles from the matrix with the same color. So measure­

ment of pebble content in the rock was hindered and only those pebbles 

distinguishable in the field were studied. Generally, the most abundant 

pebbles came from volcanic rocks, followed by granitic and quartzose 

rocks, respectively. Hence, in the field only those pebbles belonging 

to the above three rock types were measured. Volcanic pebbles may 

have compositions ranging from rhyolite to andesite; many pebbles 

of slate and silty quartzite also were mistakenly included in this cate­

gory . . Granitic pebbles refer to various plutonic rocks from alkaline 

granite to quartz diorite; whereas quartzose pebbles may be vein 

quartz, chert, or those derived from previous quartzite or quartz-rich 

sandstone. 

3. GEOLOGICAL STRUCTURE 

Mapping has revealed a number of folds; among them 

only the largest one, here called the Seine River anticline, is of in­

terest in this study, because of the 34 outcrops where pebble measure­

ments were made, only two are not within this anticline. 
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Refolding appears to have occurred in the central-west 

portion of the area (presumably caused by the plutonic intrusions on Bad 

Vermilion Lake) after the rocks had been foliated. Except for this part 

of the map area, penetrative foliation shows consistent orientation 

throughout the area. It strikes east-northeasterly and dips nearly 

vertically, and approximately parallels the axial traces of major folds 

(Plate 1). 

Mineral lineations, however, are not so regularly oriented 

and are not so prominent, although they are always found lying on 

the foliation plane. Starting at Shoal Lake, mineral lineations plunge 

to the southeast at moderate angles; then they become increasingly 

steeper (i.e. , change clockwise on the foliation plane which dips 

steeply to the south-southeast) at the east end of the Lake, from where 

mineral lineations begin to plunge southwesterly with angles of decreas­

ing order moving eastwards along the Seine River. Near the Seine 

River Bridge, mineral lineations are nearly horizontal, but they soon 

plunge southeasterly towards the east. On the other side, along Highway 

11 where measurements of pebbles were made, most mineral lineations 

plunge moderately to the east-northeast on steeply-dipping foliation 

planes except in the vicinity of the Seine River Bridge where mineral 

lineations are found to be parallel to the fold axis of the Seine River 

anticline, which is nearly horizontal there. 
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Penetrative foliations commonly intersect the bedding at 

angles smaller than 1 0 
0 

. The north limb of the Seine River antic line 

dips to the north at angles about five degrees less than that of foliation 

whereas the south limb stands almost vertically or dips steeply to the 

south. Hence, the attitude of bedding with respect to that of foliation 

is useful in determining the fold structure. 

Because the axial traces of major folds are parallel to 

the penetrative foliation, and the fold axes are parallel to the mineral 

lineations as well as the maximum elongation of deformed pebbles, it is 

considered that buckling was prior to the major flow deformation which 

might have caused the further closing-up of the buckled beds to form 

tight folds. 

4. PALEOCURRENT DIRECTION 

It has been noted before (p. 21) that there is ·abundant 

cross-lamination p~eserved in the arenite beds stratigraphically be­

neath the Shoai Lake conglomerate, though these arenites, petrographical­

ly, might be better called schists of various components (p. 10). The 

cross-lamination commonly forms a scooplike plunging-trough structure 

with a tangential basal contact (Plate 2). It may be called trough cross-

lamination. 
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There seems to be no doubt that cross-lamination is an 

excellent criterion for identifying flow directions and stratigraphic 

sequence, although it gives no guidance concerning depositional environ­

ment. The cross-lamination observed at any one outcrop in the map 

area commonly has a consistent flow pattern, even though one coset 

might consist of five or more single sets of cross-lamination on a 

section parallel to the general trough direction but normal to the trun­

cating surface. The consistency of flow pattern in a thick vertical 

sequence possibly indicates the downslope direction~ 

As the sedimentary rocks in the map area have been folded, 

the paleocurrent directions measured in the field must be rotated with 

respect to the corresponding fold axis in order to ascertain their original 

attitude. Unfortunately, only the plunge angle of the Seine River anti­

cline in the vicinity of the Seine River Bridge, is known. It follows that 

the original attitude of most paleocurrent directions in the map area 

cannot be determined with certainty. However, the hinge zone on the 

southern side of the anticline extends broadly along the Seine River, 

where most bedding is nearly horizontal and so needs no rot a tion to 

show the original attitude. A total of 9 trough directions of cross­

lamination measured in the hinge zone is shown in Figure 3. Yet 

because the cross-lamination has been subjected to a tectonic strain, 

the trough directions must have been distorted also . The distortion 
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of trough direction is believed to be similar to the change in the longest­

axis orientation of ductile pebble during homogeneous deformation, 

which will be discussed in some detail in Chapter V of this thesis. Here 

we can only conclude that at the time of the deposition of the Archean 

arenites in the map area, the paleocurrent generally flowed towards the 

present south or southwest. In fact, no cross-lamination indicating an 

apparent paleocurrent direction in the clockwise azimuthal range of 

340° -080°, has ever been observed in the hinge zone o_f the Seine River 

anticline. 



CHAPTER III 

DE FORMATION PLOT 

The tectonic strain considered throughout this thesis, is the 

constant-volume irrotational finite homogeneous strain belonging to the 

type of flow, either plastic or viscous, beyond the elastic limit of the 

rocks. 

The finite homogeneous strain which a rock has suffered 

is most conveniently represented by the shape and orientation of the 

deformation ellipsoid - an ellipsoid resulting from deformation of an 

originally spherical portion of the rock being deformed (Flinn, 19 62, 

p. 386). 

In the study of pebble deformation, because the original 

pebble shape generally is not spherical, the final deformed pebble will 

not necessarily be the same in shape as the strain ellipsoid. Thus the 

symbols to represent different ellipsoids should be clarified as follows 

before further discussion is given: 

28 
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X, Y, Z 	 Principal axes of an unspecified ellipsoid, where X >Y >z . 

Principal axes of a final deformed (or strained) pebble , where 

Principal axes 	of the tectonic strain ellipsoid, where 

Xt)Yt )Zt; assuming that Xt is parallel to mineral linea­

tion, zt is perpendicular to foliation, and yt lies on foliation 

plane but is normal to mineral lineation (Donath, 19 63, p. 95; 

Ramsay, 1967, p. 436). 

X , Y , Z : Principal axes of an original undeformed (or unstrained)
0 0 0 

pebble, where 	X )Y >Z . 
0 0 0 

X', Z' Major and minor axes, respectively, of the exposed ellipse 

(or X", Z") of a final deformed pebble on section 1 (or 2). 

Since usually only the final shape of deformed pebbles can be 

measured, it is adequate to plot their axial ratios bf = Y/Zf against 

af = X/Yf in a graphical plot so that different points in the plot represent 

different shapes of ellipsoid. Such a plot is called the deformation plot 

(Flinn, 1962, p. 386), whose ordinate and abscissa have an origin of 

unity and are of the same scale. 

l. DEFORMATION PATH 

When a rock is being deformed, an original sphere within it 

changes progressively through a series of ellipsoids varying increasingly 
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in eccentricity until the deformation ceases at a given finite strain. 

The locus on the deformation plot of the ellipsoids o.f such continuous l y 

varying shape is called the deformation path (Flinn, 1962, p. 388). 

Ramsay (1964; 1967, pp. 322-332) gives various equations to represent 

the states of finite strain of progressive deformation, in which the simple st 

deformation path has an equation of a = b K (where a = X I Y and 
t t t t t 

b t = Y t I Zt; K is a constant, referring to the same path) on the deformation 

plot under conditions of constant irrotational stress and constant. plastic 

proportionality factor. 

. K 
It is clear from the equation a = b that 

t t 

K = (ln a )/(ln b) (3-1 )
t t 

where 1n a = 1n X - 1n Y = 2(£: -E ) 
t t t x y 

and lnb = lnY - lnZ = 2([ -E );
t t t y z 

E , £ , and E are the true strains of the three principal semiaxes 
x y z 

of the tectonic strain ellipsoid (Ramsay, 1967, pp. 52-53). Moreover, 

as will be shown in Chapter V, in the case of coaxial deformation of 

x f 11 x t 11 x 0 and y f 11 yt 11 y 0 (see p. 6 6 ) , 

a =a a (5-19)
f t 0 

where a is the axial ratio X /Y . 
0 0 0 
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Hence, 

ln a = ln a + ln a ( 3 -ZA)
f t 0 

or 

1n a = 1n af - 1n a (3 - 3 A)
t 0 

Similarly, in the case of coaxial deformation of Yf 11 Y 11 Y andt . 0 

l n bf = 1n b + 1n b (3-ZB)
t 0 

or 

ln b = ln b - ln b ( 3 -3B)
t f 0 

where b is the axial ratio Y I Z . 
0 0 0 

Substituting Equations (3-3A&B) in Equation (3-1), we have 

(3-4) 

From the simple relationship shown by Equation (3-4), it is, therefore, 

more convenient to construct a logarithmic deformation plot, using 

logarithmic axial-ratios as coordinates. In such a plot, the simplest 

deformation paths become straight lines for all possible K-values. 

If the original shape is known, it can be plotted as point I ( l n b , 1 n a }
0 0 

in Figure 4. Then the simple st deformation path is the straight line 

connecting point I and the final deformed shape shown by point F ( 1 n bf, 

ln af). The slope of this straight line in the logarithmic deformation 



Figure 4. Example of the logarithmic deformation plot, showing the relationship 

of the original ellipsoid (I), the final deformed ellipsoid (F), the tectonic 

strain ratios, and the simplest deformation path (line IF) with a slope of 

K = (1 n at) I (l n b t), in an irrotational coaxial deformation. 
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plot is simply the K-value computed from Equation (3-4). It must be 

noted again that the straight path in the above case holds only if the 

successive strain increments are added coaxially with respect to the 

originally ellipsoidal pebble (i.e. X II X , etc.) and if -the ratios of the 
t 0 . . . . 

strain increments (i.e. dE I dE and dE I dE } remain constant 
x y y z 

throughout th~ deformation; otherwise, the deformation path can have 

any kind of route between points I and F. 

In nature, it is virtually impossible to trace the deformation 

path correctly ·from geological strain, since the latter simply shows 

the final state Of strained objects and gives no clue about the path the 

strained objects have ever taken to reach the final stage~ However, . 

deformed rocks in an area commonly show different strains in different 

components or at different parts. Therefore, a collection of strain qata 

might reveal a trend of different strains similar to a deformation path, 

though the finite strain of each component or that at different parts might 

have taken a completely different path to arrive at its, final state . . 

If there are no better data available, this trend of different strains 

sometimes may be. envisaged as a deformation path. 
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2. CONTOURS OF X/d, Y/d, AND Z/d 

It was noted on page 3 that Flinn (1956) showed the contour s 

of X/d, Y/d, and Z/d in the deformation plot, where dis the diame ter 

of an equivalent sphere with the same volume as a final deformed pebble 

which has an ellipsoidal shape with three principal axes of Xf) Yf) Zf. 

Under certain circumstances, these contours can be used in determina­

tion of the original shape of deformed pebbles and the tectonic strain 

ellipsoid as will be discussed in Chapter VI. 

The Z/d contours can be represented by the following 

equation (see Appendix A): 

ln af = -2 ln bf - 3 ln (Z/d) (3-5) 

This is a straight line with a slope of -2 in the logarithmic deformation 

plot (Figure 5), indicating that all the Z/d contours are parallel to one 

-1 0
another and make an angle of tan (-2) = 116 . 5 with the 1n bf axis. 

By definition, d) Zf, so l·n (Z/d) always is negative and the intersection 

of a Z/d contour with the 1n af axis always has a positive 1n af value, 

i.e., (-3 ln (Z/d))) 0. 

The equation representing the X/d contours (see Appendix A ) 

is: 

1 3 
ln a = (3 -6)2 ln bf+ 2f 



Figure 	5. Contours of X/d, Y/d, and Z/d in a logq.r.ithmic 

deformation plot. Solid lines, Z/d contours; dashed 

lines, X / d contours (contours of X/d ) 9. 0 are not 

shown); dotted lines, Y/d contours (for simplicity, 

only 1.5, 1. 0, and 0. 7 contours are shown). 
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Again, they are all straight lines with an identical slope of -~ in the 

logarithmic deformation plot. These contours make an angle of 

tan-l (- ~ ) = 153. 5° with the 1 n bf axis (Figure 5). Since 

Xf) d, ~ ln (X/d) must be positive. 

The Y/d contours are represented by the .following equation 

(see Appendix A): 

( 3..;. 7) 

Clearly, the straight contours have a constant slope of 1, parallel to the 

deformation path of K = (ln a) /(ln bt) = 1, suggesting that any deforma­
t . 

tion field (Ram.say, .1967, p. 141) parallel to the Y/d ·contours belongs 

to the deformation of plain · strain. In the same case, if Yf)d, 

ln (Y/d)) 0, then ln bf) ln af (check Equation (3-7)), the Y/d contours 

fall in the deformation field of the flattening type, implying that the 

originally ellipsoidal shape falls in this field; whereas if Y f ( d, 

ln (Y/d) ( 0, then ln af) ln bf (check Equation (3-7)), and the Yf/d 

contours lie in the field of the constriction type, indicating that the 

originally ellipsoidal shape lies on this side. When Yf = d, 1 n (Y / d) 

= 0, so ln af = in bf; i.e. , the Y / d contour is identical with the 

diagonal of the deformation plot and the original shape may be either 

· 2 
a perfect sphere .or an ellipsoid with axial relationship of X Z = y

0 0 0 
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3. VOLUME CHANGE 

Confusion of relating deformation field to volume change 

during deformation may possibly be caused by Ramsay's (1967, p. 162) 

explanation of his Figure 4-27 and also by his statement that "the 

prevalence of 'flattening type' (l)K)O) strain ellipsoids in slates may 

be explained by loss of volume during deformation, and not necessarily 

by actual expansion along the intermediate axis of the strain ellipsoid" 

(op. cit., p. 186). The reasons are given below: 

(1) The shape of a deformation field is not represented by 

the 	line of the equation af = bf(l +~)at all (where~ is the unit volume 

. -1 
change), because the latter always makes an angle of tan ( 1 + 6) with 

the bf-axis and passes through the imaginary origin af = bf= 0 

(Figure 6), a feature not pointed out by Ramsay; whereas the shape of 

deformation field can be of any kind depending upon the shape and orienta­

tion of the originally ellipsoidal object as well as the .shape and orientation 

of the finite strain ellipsoid. 

(2) The line of the equation af = bf(l + 6) simply shows the 

boundary along which the intermediate axis of a final ellipsoid, resulting 

from a homogeneously volume-reduced deformation of an original sphere, 

has been expanded from the reduced diameter due to volume reduction 

to reach a length equal to the original diameter of the sphere, by a 



Figure 	6. Homogeneously volume-reduced deformation of an originally 

spherical particle with a diameter of unit length_!. The deformation 

path has a K-value of 0. 5. ~ is the unit volume change (negative 

value for reduction). 
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flattening-type deformation. For example, an original sphere, with a 

diameter of unit length.!_, is subjected to a volume-reduced homogeneous 

deformation of the type K = 0. 5. Suppose the unit volume change is ~' 

then the volume-reduced sphere (shown by point I in Figure 6) with a 

diameter shorter than.!_ will be deformed into continuously-varying 

ellipsoids along the deformation path K = 0. 5 during progressive ir ­

rotational deformation. The deformation path inter sects the line of the 

equation af = bil + ~) at point Q (Figure 6). If the final deformed 

ellipsoid falls in the field between points I and Q, then Y f <.!_; 

if the final ellipsoid is situated at point Q, then Y f = .!_. When the de­

formation intensifies further, the final deformed ellipsoid will reach 

beyond the point. Q, then Y f ) .!_. 

Obviously, the problem of volume change during deformation 

has not been solved completely, and still needs further investigations. 



CHAPTER IV 

MATHEMATICAL DETERMINATION OF AN ELLIPSOID FROM ITS 

TWO CROSS-SECTIONS 

Usually, determination of the shape of an ellipsoid relies 

heavily upon measurements of principal axes in principal planes. 

However, principal planes may not be obtained very often, especially 

when one studies deformed pebbles in the field where individual pebbles 

cannot be extracted from the rocks. 

In order to cope with this problem, the writer has developed 

a mathematical method to determine the shape of an ellipsoid from any 

two cross-sections provided that the directions of three principal axes 

are known. The theory of the method is simple, which involves tr ans ­

lation and rotation of two plane-ellipses to a three-dimensional space. 

For simplicity, let us first examine only one of the two cross­

sections of the ellipsoid to be sought. The cross-section is an ellipse in 

shape (two circular sections of an ellipsoid are special ellipses with equal 

axes), which cart be expressed in the x' z' plane of a cartesian x'y'z' ­

coordinate system, with the ellipse center coincident with the origin of 

40 
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the system. By translation and rotation, the ellipse of the x'y' z' 

system can be expressed in a new xyz-system referred to the directions 

of the principal axes of the ellipsoid to be sought. The general equation 

of the translation is shown in a matrix form as 

x x' + h' 

(4-1)y = y' + k' 

z z' + l' 

where "I} 2 is the direction cosine of the x' -axis with respect to the 

y-axis, while "{3 represents the direction cosine of the z' -axis with
1 

respect to the x-axis {notice the order of the subscript numbers, i.e. 

1, 2, 3 refer to x, y, z, respectively; first number for that of the cross-

sectional ellipse and second number for that of the ellipsoid being sought), 

etc.; {h', k', l') are the coordinates of the center of the cross-sectional 

ellipse in the xyz-system (Figure 7). 

The general equation of the ellipsoid to be sought in the xyz ­

system is 

(4-2) 


where A)B)C are the lengths of three principal semiaxes (the use of 

A, B, C here instead of customary a, b, c avoids confusion with the 

symbols a= X/Y and b = Y/Z). Substituting Equation (4-1) in Equation 

(4-2), we get 



Figure 	7. Relationship between an ellipsoid and it~ cr<?ss­

sectional ellipse. (A), the ellipse expressed in an 

x'y'z'-system with its center coincident with the origin 

(point o') and its major and minor axes parallel to the 

x' and 	z' axes, respectively. This ellipse center has 

coordinate-s (h', k', l') in an xyz-system which refers 

to the principal directions of the ellipsoid. (B), angle 

relationship between the major and minor axes of the 

cross-sectional ellipse and the principal directions of 

the ellipsoid. Note that cos 0} 2 = '(lZ' etc. 
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2 
('(' (x' + h') + '(' (y' + k') + 'Y' (z' + l'))

11 . 21 31 

2 
A 

. 2 
('(' (x' + h') + 'Y' (y' + k') + 'Y' (z' + l'))

12 22 32+ ~~~~~~~~~-~--~~~~~~~~ 
B2 

2 
('(' (x' + h') + 'Y' (y' + k') + 'Y' (z' + l'))+ 13 23 33 

- 1 (4-3)
2 

c 

Under any circumstances the solution of this equation is time-consuming 

2 
and tedious; but by setting D to represent all the terms containing h' , 

2 
l' , h'k', .· kil', or l'h', and E to represent all the terms containing 

one of h', k', l' and one of x', y', z', Equation (4-3) will become simpler 

as 

22 2 2 2 2 2 2 

B C ('(ii x' + 'Yz1 y' + 'Y'.31 z' + 2 ('Yl 1 'Yz1 x' y' + 


2('(' 'Y' x'y' + '(' '(' y'z' + '(' -y' z'x'))
12 22 22 32 32 12 

2 2 ,2 2 2 2 2 2 
+A B ('( x' + -y' y' + 'Y' z' + 2(-y' 'Y' x'y'

13 23 33 13 23 

2 2 2+ -Y' -y' y'z' + 'Y' 'Y' z'x')) + D + E =A B c (4-4)
23 33 33 13 
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Suppose the cross-sectional ellipse intersects the x'y'z'­

axes in four points (m', 0, 0), (-m', 0, 0), (0, 0, n'), and (0, 0, -n'), 

then if we substitute the coordinates (m', 0, 0) and (-m', 0, 0), res­

pectively, in Equation (4-4), we will get, by adding the two equations 

first and then dividing them by 2, 

22 2 2 22 2 2 2 2 2 2 
B C '{' m + C A 'I' ....rn' + A B '{' m' + D = (4-5)

11 l~ 13 

Similarly, for points (0, 0, n') and (0, 0, -n'}, we have 

22 2 2 2 2 2 2 2 2 2 2 2 22 
B C '{' n' + C A '{' n' + A B '{' n' + D = A B C (4-6)

31 32 33 

Equating Equations (4-5) and (4-6), we obtain 

22 2 2 2 2 2 2 2 2 
1 2 1 2)B C ('{ ' m' - '{ 1 n' ) + C A ('{ ' m' '132 n-11 31 12 

2 2 2 ,2 ,2 2 
+A B ('{l - '1 n' } = 0 (4- 7}

3 m 33 

It is interesting to note that all the terms containing h', k', 

or l' are eliminated in the above equation, indicating that the position of 

the cross-section center with respect to the ellipsoid center is not 

important in this method. It follows that only the shape and orientation 

of the elliptical eras s -section are significant. In Appen.dix B, it is shown 

that any parallel planes cut through an ellipsoid, have elliptical cross-

sections with an identical axial ratio. 
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Because m' and n' are the semimajor and semiminor axes, 

respectively, of the cross -sectional ellipse, their axial ratio can be 

expressed by R' = m' /n'. Thus, Equation (4-7) reduces to a simpler 

form as 

2 2 2 2+ A B ('(' RI , 2) = 0 (4-8)- '( 3313 

Now let us set 

R'2
s1 ='('11 

2 
- '( 31 

2 

2 2 ,2= '(' RITl - '( 3212 

2 2 2 
= '(' RIu1 - '13313 

Then Equation (4-8) becomes 

2 2 2 2 2 2 
B C s + C A Tl + A B U l = 0 (4-9)

1 

The above equation is derived from one cross-section only. Similarly, 

from another cross-section based on the x"z" plane of an x"y"z"­

system, we can obtain 

2 2 2 2 2 2 
B C s + C A T +A B U = 0 (4-10)

2 2 2 



46 

where 

2 2 2 
S = 'I" R" - 'I"2 11 31 

2 . 2 2 
T ='I" R" - 'I"2 12 32 

2 2 
U = "" R"2 1 13 

in which R" is the axial ratio of the second cross-sectional ellipse, while 

'13 represents the direction cosine of the z"-axis of the x"y"z" ­
1 

system with respect to the x-axis of the xyz-system (notice the order 

of the subscrip_t numbers), etc. 

Solving the simultaneous equations (4-9) arid (4-10), we get 

AZ s2u1 - s1u2 

2 
B 

= 
TlU2 - T2Ul 

(4-llA) 

and 

2 SlT2 - S2TlB = (4-llB)
c2 SZUl - slu2 

Adopting Flinn's 0962) terminology of axial ratios of deformation ellipsoid, 

we have 

a= 

Hence, 

(4-l 2A) 
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and 

1/2 

(4-12B) 

Recovering the corresponding substitutions, we obtain 

2 2 2 2 2 2 2 2 2 2 2 2 
('Y If R II -'Y II )("'. ' R I -'Y I ) - ( 'Y I R I - 'Y I )(y11 R II - '{II )11 31 13 33 11 31 13 33 

a= 
2 2 2 · 2 2 2 2 2 2 2 2 2[ H'Y 11 R 11 -'1 11('Y' R' -'Y' )-('Y" R" -'Y" H'Y' R' -'Y' )12 32 13 33 12 32 13 33 

(4-13A) 

and 

2 2 2 2 2 2 2 2 2 2 2 2 ] 1/2
('Y' R' -'Y' H'Y" R" -'Y" )-('Y" R" -'{" H'Y' R' -'Y' )11 31 12 32 11 31 12 32 

b = 
2 2 2 2 2 2 2 2 2 2 2 2[ ('Y" R" -'Y" )('Y' R' -'Y' )-('Y' R' -'Y' )('1 11 R" -'Y" )11 31 13 33 11 . 31 13 33 

(4-13B) 

Equations (4-13) can be used for determining the axial 

ratios of a final deformed ellipsoid resulting from deformation. of an 

originally spherical object, from any two cross-sections of the final 

ellipsoid, providing the directions of principal axes of the ellipsoid are 

known. If the original shape was ellipsoidal but with a random fabric, 

then the directions of the three principal axes of the strain ellipsoid 

can be taken as those of the representative final deformed ellipsoid, and 
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so Equations (4-13) can also be applied to determine the final shape of 

the representative ellipsoid frotn any two cross-sections. 

Sometimes, the directions of maximum tectonic elongation 

and shortening are known, but only apparent strain ratios can be obtained 

on exposed sections which are not parallel to any principal plane of the 

finite strain ellipsoid . In such a case, we can simply use Equations 

(4-13) to determine the shape of the strain ellipsoid, if.there are two 

non-parallel sections available, on each of which an apparent strain 

ratio can be obtained. 



CHAPTER V 

DETERMINATION OF THE ORIGINAL ORIENTATION 


OF DEFORMED PEBBLES ON IDENTICAL AND PARALLEL 


PRINCIPAL PLANES 


1. PEBBLE FABRICS IN SEDIMENTARY DEPOSITS 

Because the final shape and orientation of deformed pebbles 

depend in part on the original orientation of the pebbles before deforma­

tion, it is necessary to know the general fabric of pebbles in sedimentary 

deposits. Commonly, the variation in original fabric reflects differences 

in the dynamics of the transport medium and the depositional environments. 

Johansson (1965) has reviewed this field of study with extensive biblio­

graphies on the fabrics of different sedimentary deposits. He concludes 

that "the preferred orientation of most particle sizes, transported in 

contact with a frictional substratum, is usually transverse to the direc­

tion of transport. Particles immersed in the transporting medium, 

such as glacier ice, gravitating mass, etc., tend to align themselves 

parallel with the direction of movement, owing to the shearing stress 

of the moving medium '' Regarding pebble inclination, Johansson 

49 
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0 
shows in his Table 1 that an upstream inclination of less than 30 

seems to be the common rule for pebbles deposited in a running-water 

environment or those in gravitational deposits. 

Recently, in a series of studies on mass movement, 

Lindsay (1966, 1968, and Lindsay et al., 1970) found that the shortest-

axis fabrics "developed by mudflows have vertical modes ". He noted 

that 11 settling of the clasts under gravity after the flow has come to 

rest probably leads to a strengthening of the C (the shortest) axis 

fabric, as c lasts would tend to reorient themselves with their plane 

of maximum projection normal to the force of gravity ". 

In the map area, the medium-grained arenite beds beneath 

the Shoal Lake conglomerate contain abundant eras s-lamination and 

are considered to have been deposited in an environment of running 

water, in which occasional isolated small pebbles, such as those of 

locality 280 near the Seine River Bridge, are found to sit in sands 

(a frictional bottom) and so their longest axes (X ) probably lay
0 

perpendicular to the paleocurrent direction. 

On the other hand, the majority of the Shoal Lake conglome­

rate beds in the map area are regarded as the product of resedimenta­

tion (pp. 20-21) - a kind of gravitational deposit; the shortest axes (Z ) 

of their pebbles are likely to have originally stood vertically in the nearly 

0 
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horizontal beds, similar to the clast fabric in mudflow described by 

Lindsay (1968). 

2. MATHEMATICAL RELATIONSHIP BETWEEN THE 

ORIGINAL 	AND THE FINAL ORIENTATIONS OF DEFORMED 


PEBBLES 


Mathematical equations derived to determine the Xf­

orientations of the final deformed pebbles with respect to the principal 

axes of the tectonic strain ellipsoid were first developed by Gay (1968, 

pp. 219-223). However, all the deformations considered belong 

strictly to those "of inhomogeneous materials by simple and pure shear" 

(op. cit. , p. 211). In other words, the deformations are of two ­

dimensional type only. These equations must be applied with caution 

to natural situations which are not two-dimensional. 

For a . general deformation not necessarily caused by simple 

or pure shear, Dunnet (1969) has successfully derived equations to 

"relate the final elliptical ratio and orientation of particles to their 

initial form and the magnitude and orientation of the finite ... strain " 

However, it should be noted that the concentration of shape plots within 

a pair of initial-ratio contours (~. cit., Figure 7-9) does not represent 

the real population (frequency) of the initial-axial-ratio range in the case 
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of originally random fabric, because the majority of initial axial ratios 

on any section are of the apparent ones (see pp. 92- 96); only the maximum 

cross-section of the initial ellipsoid is correctly shown on the outermost 

curve (see pp. 77-79). 

In this study, the present writer has derived mathematical 

equations and developed a graphical expression to determine the complex 

relationship of orientation and shape among the original undeformed 

ellipsoid, the tectonic strain ellipsoid, and the final deformed ellipsoid. 

In order to obtain the real populations of the orientation and shape 

concerned, one has to find a final planar fabric on an exposed section 

parallel to a principal plane of the strain ellipsoid, on which the real 

(not the apparent) orientation and shape of the deformedpebbles can be 

measured and a suspected originally planar fabric may be detected. 

Such a section is extremelyrare in nature. But for geologic purposes, 

complete coincidence of an exposed section and a final planar fabric 

may not be necessary; a deviation of ±5° is tolerated in this studr:c. 

Thus, a favorable section for measurement can be found, even though 

it is not the best possible plane. 

):c A pebble with its longest axis making an angle of 0° -30° to the move­

' ment direction, is called "strictly parallel" (paralleles stricts) by 

C ailleux and Tricart (19 65, p. 7). 
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In an orientation analysis of deformed pebbles, it is most 

convenient to establish a reference xyz -coordinate system with axes 

parallel to the three principal axes (X )Y >Z ), respectively, of the 
t t t 

tectonic strain ellipsoid. The strain ellipsoid in this system is: 

2 2 2 
/A. + z /A. 1 (5 -1)x /A.tx + y = ty tz 

or 
2 2 2

}...' x + }...' y + }...' z = 1 (5-2) 
~x ty tz 

where A.tx) A.ty) A.tz are the principal quadratic extensions (Ramsay, 

2 2 
1967, p. 52; Nadai, 1950, p. 118), equivalent to (X/2) ) (Y/2) ) 

2
(Zt/2) in this study; A.' ( }...' <}...' are the reciprocal quadratic

tx ty tz 

extensions (Ramsay, 1967, p. 126), i.e., A.' = 1 /A.tx, A.' = 1 /A. ,
tx ty ty 

In nature, the most common of all the possible coincidences 

of principal planes among the original undeformed pebble, the tee tonic 

strain ellipsoid, and the final deformed pebble probably is X Y 11 
0 0 

In such a case, the X Y plane of the original pebble
0 0 

in an xy-coordinate system with axes paralle1 to the x and y di rec ­
0 0 

tions is given by 

-2 2 -2 2 . 
x I (X I 2) + y I (Y I 2) = 1 

0 0 

which is reduced to 

-2 -2
}...' x + }...' y = 1 (5-3)

ol o2 
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Equation (5-3) can be revised into a matrix equation as 

A.' 0
ol 

(5-4)l [:J-16 A.' o2 

With reference to an x'y' -system with coordinate axes taken parallel to 

the principal strain directions, the above equation should be transformed 

to 

J[
cos8 sin8 l [ A.' 01 0 l[ x' y' -sin0 cosa 0 }..' o2 

c.o s a -sina l [ x' l ­1 
[ s1n8 cos8 y' 

where e is the angle between the XO and xt directions, or between the 

coordinate axes xandx' (Figure 8(A)). Equation (5-5) can be expressed 

in a simple form as 

0 
( x' y' (5 -6) 

'{I 

oy 
l [ :: ] - IA.' 



Figure 8. Homogeneous deformation of an X Y ellipse in a coordinate 
0 0 

system with axes taken parallel to the principal strain directions. 

(A), before deformation; a · reference circle has a radius of r. 

(B), after deformation; the r ·eference circle becomes an ellipse 

'th (, >1 I 2 d (, )1I2 . . . d . .
wi r "- an r "- as its sem1maJor an sem1m1nor 

tx ty 


axes, respectively. 


,, 
..,,:r. 



(A) 


U1 

U1 




56 

2 . 2A_ Iwhere = A.' 01 cos a + A.' 02s1n a ox 


. 2 2 

A.' = A. 1 . sin a + A.' 

02
cos a 

oy ol 

'f I = (A. 1 -A. 1 )sin9cos9
0 02 01 

Now let us subject this X Y ellipse to a homogeneous de­
o 0 

I 

formation, an irrotational strain with principal axes parallel to the x' 

and y' axes and with principal reciprocal quadratic extensions of 

A.' tx and A.' ty (Figure 8(B)). The transformation equations can be 

expressed in a simple vector notation as 

x'~ A.tx 

-[:1 y'~ A. 
ty 

or x ,J A_ I 
txx'1 ­

A_ Iy' y ~ ty 

which can be rewritten as 

I A.' 0x' x
'V tx 

= 
0 J-A.,­ y (5 - 7) y' 

ty 
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Substituting Equation (5- 7) in Equation (5-6), we have 

J-x.,- 0 )---;::­[.)~ 0 txox 
- 1y[ x 1 0 .j-x.,­ 0 J-x.,­ [:J0 J~ oy ty. ty 

or 

xA.' A.' ~A.' A.' • -y'tx OX tx ty o 
=l(x y J 

'A, I y~A.' A.' -y' A.'tx ty• 0 ty oy 

which can be expressed in a simple form as 

A, I "I x
f x f 

- 1 (5-8)( x y J [ l
A. I y"If f y 

where 

A, I = 'A, I 'A, I = x.• (A.' cos 
2 

0 + A.' sin
2

9) (5 -9a)
f x tx ox tx o1 02 

. 2 2'A, I = A, I \ 1 (5-9b)= X.'ty (A.' ol sin 9 + A.' o2. cos 9)f y ty oy 

= I A.' A.' • -y' =~A.' A.' . (A.' -A.' ) sin0cos9 (5-9c)"If ~ tx ty o tx ty o2 ol · 

Equation (5-8) with its elements shown in Equations (5-9), is a matrix 

equation of the final deformed pebble on the X f Y f plane in terms of the 

principal tectonic strains and the shape and orierttation of the original 

undeformed pebble, all with reference to the coordinate system with 

axes taken parallel to the principal strain directions. 
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Letting J and J be the first and the second strain invariants
1 2 

of the final strained XfYf ellipse, respectively {Ramsay, 1967, pp. 81-82), 

we have (see also Figure 8{B)) 

J 1 = AI + AI = 1 I (Xf I 2) 
2 

+ 1 I {yf I 2) 
2 

{ 5 -1 0)
fx fy 

J = \' \' -y'2 = 1 I {{X / 2) 
2 

{y / 2) 
2 
·) (5-11)

2 fx fy f 

Because 

1 

Equation (5 -10) becomes 

(X I 2) 
2 

= {af 
2 

+ 1 ) I {A' + \' f ) (5-12)
f f x y 

Because 

1 

Equation (5-11) becomes 

(5-13) 
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Since Equation (5-8} is the equation of an ellipse, the discriminant 

2 

A.' y' must be greater than zero, i.e. {A.' A.'£ - y'f) >0.

fx f fx y 

y' A.'
f f y 

2 2 1 /2

Moreover, because {X/2) ) 0 and af) 0, it follows that {A.'fxA.'fy-y'f} 

can only be positive {see Equation {5-13}}. 

Equating Equations {5 -12} and (5-13} ~ we obtain 

{5-14) 


Substituting Equations {5-9} in Equation {5 -14) and dividing by 


2 2 2 

A.'txA.' ol (note that A.'ty/A.'tx = (X/2) /(Y/2) = a ,t and 


2 2 2

AI 2 I AI 1 = (X I 2) I {y I 2} = a }, we get


0 0 0 . 0 0 

2 2 2 2 2 2 2 
 J
af (cos e + ao sin 9} +at (sin 9 + ao cos 9}( 


2 · [2 2 2 2 2 2 2 

= (af + 1} a {cos e+a sin 9}( sin 9+a cos 9}

t 0 0 

2 2 2 2 2 J 1 /2
- a . {a - 1} sin 9 cos 9 

t 0 

which, upon simplification, becomes 

By transforming terms, we obtain 

2 
cos 9 {5-15} 
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Multiplying by 2 and then subtracting 1 from both sides of Equation (5-15), 

we find 

~ ~\ 2f.j 2 2 
2 ~ a\ ( a £ + 1 ) - af( a + 1)(a + 1 ) 

t 0 t 0
cos29 = (5-16) 

If the angle between the xf and xt directions is designated 

as 0 in the case of coaxial deformation of XfYff IXtYt 11X Y , we can 
0 0 

follow similar approach to obtain 

which can be changed into 

2 2 2 
a (a + 1)(a f + 1 ) - 2 a af( a + 1 ) 

0 t t 0 (5 -1 7)~:~cos 20 = 

>:' This is the same equation as the one having been developed by 

Dunnet (1969, Equation 16), except that he has a needless wrong "+" 

sign between the two terms in the numerator. 
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It must be noted here that by definition (Ramsay, 19 67, 

pp. 52-53), the true strain (E) recording the change of length is: 

1E =ln "A. l/ 2 = 	 ln X., where X. is the quadratic elongation. Hence,
2 . 

2£ E 	 . 1/2 
e = "A. or e 	 = X. • In Equations (5-16) and (5-17), only a 

t 

can be expressed in terms of true strain because a = X I Y 
t t t 


112
= 2 "A. / 2 i /Z = e Ex /e Ey. All the others cannot. Unfortunately,
tx ty . 

confusions about the true strain frequently can be found in many papers, 

if the definition is not modified. 

3. 	DEFORMATION OF ELLIPSES WITH VARIOUS 

ORIENTATIONS 

Utilizing Equations (5-16) and (5-1 7), we can demonstrate 

how an original ellipse being homogeneously deformed, changes its 

orientation and shape during strain history. 

First, suppose we have seven ellipses with an identical 

shape (say, a =X /Y = 1. 6) but different orientations. The 0 
0 0 0 

. 0 0 0 0 0 0 0
angles of these seven ellipses are 0 , 15 , 30 , 45 , 60 , 75 , and 90 . 

Secondly, subject these ellipses to a tectonic strain with 

axial ratio (at) increasing progressively from 1. 0 to 2. 0, passing 

through, say, 1. 2, 1.4, 1. 6, and 1.8. 
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Thirdly, substitute the known data 8, a , and a in Equation
0 t 

(5-16) to obtain the_a ratios. 
1 

Finally, substitute a , at, and af in Equation (5-17) to get
0 

the corresponding r/J angles. 

The above processes can be done easily by the computer 

all at once. The results are plotted in Figures 9 -11 using the af r ~tio 

as ordinate and the r/J angle as abscissa. This kind of plot is here called 

the orientation plot. 

Some characteristics of the deformed ellipses during pro­

gressive deformation are outlined below: 

( 1) The ellipse with 8 = 0° keeps its orientation paralle 1 to 

the X -axis of the tectonic strain ellipse throughout the deformation. 
t 

In addition, the final axial ratio of this ellipse, af, is a product of a 
0 

and at. This relationship can be derived by the following mathematical 


method: 


Since 8 = 0
0 

, cos 28 = 1; 


so Equation (5-16) becomes, upon simplifying: 


2 2 . 2 
a 

0 
ataf - (a 

0 
at + l)af + a 

0 
at = 0 

or 

I 
(a a+ - .- ) af + 1 = 0 

o t a at 
0 



Figure 	9. Orientation plot of deformed ellipses during 

progressive deformation (a = 1. 40).
t 

(A), unstrained original ellipses with various 

orientations. (B), when a = 1. 40, the reference 
t 

circle (dotted) becomes an ellipse with axial ratio of 1. 40. 

Solid curve, iso strain curve; broken lines, orientation 

curves; shaded ellipses, deformed ellipses. 
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Figure 	10. Orientation plot of deformed ellipses during 

progressive deformation (at= 1. 60). See Figure 9 

for explanation. 
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Figure 11. Orientation plot of deformed ellipses during 

progressive deformation (a = 2. 00}. Dotted lines,
t 

isostrain curves of at equal to 1. 2, 1. 4, 1. 6, and 

1. 8; heavy line, isostrain curve of a = 2. 00. 
t 

For 

the re st, see Figure 9. 
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hence 

. ( 1(a · - a a ) a - -- = 0 (5-18 )
f o t . f a a 

0 t 

Because a ) 1, at ~ 1, and af ~ 1,. it follows that 
0 

Therefore, from Equation (5-18), we know 

a - a a = 0
f 0 t 

(5-19) 

Substituting Equation (5-19) in Equation (5-1 7) yields 

2 2 2 2 2 
a (a t + 1)(a a + 1 ) - 2 a a t (a + 1 ) 

0 0 t 0 0 
cos 20 = 

2 4 
a a 

0 t 
2 2 2 

+ a oat+ at+ 1 
2 2 

- 2 a a 
0 t 

- 2 2 
at 

- 2 4 2 2 2 
a a 

0 t 
- a a 

0 t 
- at+ 1 

= l 

So 20 = 0° or 360° 

or 0 = 0° or 180° 

In pebble orientation, 0 = 180° is the same as 0 = o 
0

. 
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(2) The ellipse with 9 = 90
0 

first maintains its orientation 

normal to the X -axis but gradually reduces its eccentricity until it 
t . 


becomes a circular shape when a = a , and then it progressively in­. t 0 . 


creases the eccentricity but always parallels the X -axis, i.e., 0 = 0°. 

. t 


Mathematical foundation of these relationships is shown below: 


Since 0 = 90°, cos 29 = -1, so Equation (5-16) becomes 

Dividing by a a , 
0 t 

. SO 

If a - a I a = 0, then af = a I a when a ) a ( 5 -2 0)
f 0 t 0 t 0 t 

If a ·- a I a = 0, then af = a I a when a >a (5-21)
f t 0 t 0 t 0 

If a = a , then af = a I a = a I a = 1t 0 0 t t 0 

Substituting a = afa from Equation (5-20) in Equation (5-1 7) yields
0 . t 

cos20=-l 


so 2 0 = 1 8 0 ° , or 0 = 9 0 ° when a ( a . 

t 0 
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Substituting at= afao from Equation (5-21) in Equation (5-17) yields 

cos 20 :::; l 

so 20 = 0° or 360° 

or 0 = 0° or 1 8 0 °, when a ) a . 
t 0 

(3) All the ellipses having original orientations between 

0 0 0 0 e = 45 and 0 = 90 (e.g.' the ellipses with 0-angles of _60 and 75 

in Figure 11) become less eccentric at early stage of deformation and 

change their orientations with increasing rate towards the direction of 

the maximum tectonic elongation (X ) . When the long axes of the de ­
t 

formed ellipses pass through 0 = 45°, the ellipses become more and 

more eccentric but change their orientations at a dee reasing rate. The 

curves showing these paths are here called the orientation curves, which 

are symmetric about the vertical axis 0 = 45° in Figure 11. 

(4) All the ellipses having initial orientations 0 ~ 45° 

(e.g., the ellipses with 0-angles of 15° and 30° in Figures 9-11) 

simply become more and more eccentric and change their orientations 

towards the X -axis during strain history. They follow the same orienta­
t 

tion curves of those ellipses with original high angles equal to (90° - 8) 

but advance further. 
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(5) Theoretically, all the ellipses having initial orientations 

e I o approach closer and closer to the direction of the principal 

tectonic elongation as strain increases; they become parallel to the xt ­

axis only after having been deformed to an infinitely large strain. 

(6) The curves showing equal tectonic strain ratio are 

here called the isostrain curves. The isostrain curve becomes steeper 

and steeper as strain increases until a = a when the maximum '/J
t 0 

0
angle among all the deformed ellipses changes instantly from 9 0 to 

45°. Wherever a ) a , the isostrain curve has a pear-like closed form
t 0 . 

which increases its elongation as strain intensifies. 

(7) The isostrain curves can be used to determine the 

fluctuation (Cloos, 1947, pp. 861-862) of deformed ellipsoids. The 

range of fluctuation in the orientation of deformed ellipses on a section 

parallel to the identical principal plane, can be determined readily from 

the maximum 20 of the isostrain curve. When at ) a , the fluctuation 
0 

·. 0 0 
range is always less than 90 , because max. 0 ( 45 . If a (a , max. 

t 0 

0 = 90° the fluc .tuation range is theoretically 180°, though the individual 
. ' 

ellipses have considerably changed their orientations towards the Xt ­

axis. Thus, a simple rule can be set up here that wherever the fluctua­

tion range (maximum 2'/J) is greater than 90°, i.e., max. 0)45°, at 

must be smaller than a . 
0 
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(8) Both orientation curve and isostrain curve in an orienta­

tion plot are symmetrical with respect to the X -axis, because cos 29 = 
t 

cos (-29) 	and cos 20 = cos (-20). 

4. 	CONCEPT OF MEAN ORIENTATION O:f 

ELLISOIDAL PEBBLES 

Figure 12 shows some orientation plots of the deformed 

pebbles in the map area in order to demonstrate the general fabric in 

three dimensional space. Figure l Z(A) is an orientation plot made from 

the data measured on a section parallel to the common Zf-direction 

(see Plate 6(A)) of the flattened pebbles but oblique to the mineral 

lineation. One sees in this diagram that the majority of the quartzose 

pebbles lie between the bedding trace and the foliation trace; whereas 

most of the granitic pebbles lie around the bedding trace with a wide 

range of fluctuation greater than 120
0 

. In Figure l 2(B) which is ob­

tained from the data measured on a section normal to the mineral 

lineation -~-a section equivalent to some authors' "YZ plane" -------, 

where the bedding is parallel to the foliation plane, both the volcanic 

and granitic pebbles have preferred orientation parallel to the bedding-

foliation trace. Figure l Z(C) shows an orientation plot of the deformed 

pebbles measured on a foliation plane which subparallels the local bedding 

at locality 144. In this diagram, the deformed volcanic ·pebbles have an 



Figure 	12. General feature of the final pebble-fabrics in the map area. 

Dots, granitic pebbles; crosses, quartzose pebbles; triangles, 

volcanic pebbles . . (A), a fabric of deformed pebbles on a section 

parallel to the common Zf-direction. (B), a pebble-fabric on a 

section normal to the mineral lineation. (C), an orientation 

plot on a foliation /bedding plane. 
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Plate 6 

(A) 	Dextral kink band developed in rocks containing already 

deformed pebbles. Note that the minor axes of the 

exposed ellipses of most deformed pebbles are 

parallel to one another and are normal to the folia­

tion trace. 

(B) 	Three-dimensional view of the deformed pebbles; 

The more deformed ones commonly parallel the 

foliation trace on any section. Pebbles are difficult 

to recognize on the foliation plane. 
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(A) 


( B) 
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asymmetric distribution in the orientation plot, indicating that, before 

deformation, _the_pebbles must have had some preferred orientation 

pattern. On the other hand, the granitic pebbles do not show any ap­

preciable preferred orientation, probably due to only eight counts. 

Together with the evidence that pebbles are not so flattened 

in shape at the fold hinge as in fold limbs, the general final pebble­

fabric represented by those shown in Figure 12 suggests that the majority 

·of the original pebbles,regardless of the lithology, might have lain flat 

on the bedding plane although the range of fluctuation' around the bedding 

might have been very large. The orientation plot on a .foliation-bedding 

plane even indicates an original preferred orientation within the bedding 

plane (Figure 12(C)). Unfortunately, only one ·outcrop ~ould be measured 

to give this kind of information in the ,map area. 

In view of the asymmetric distribution ·of el~ipse plots in 

the orientation plot of Figure l 2(C), we come to the que_stion: what is 

the mean orientation of these ellipses? 

Imitating- the pebble fabrics observed in the map area, suppose 

we have ten eHips.oids lying flat with their maxin;ium cross-sections (the 

XfYf planes) parailel to one another on the foliation p~ane. Suppose 

these ellipsoids have equal intermediate axes (Yf) of one ~:ur>;it length and 

.equal shortest axes (Zf) of 0. 125 unit leng~h, but their Xf~axes vary 
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· from 2. 00 to 1. 10 unit length with an interval of 0. 10 unit length and 

their orientations from 0 = 0° to .0 = 9 0° with 10° intervals as shown on 

the common XfYf plane in Figure 13. Hence, t~e axial ratios bf= 
I 

Yf/Zf are all 8. 00, but af = X/Yf range from 2. 00 to 1. 10 with an 


average of 1. 55. 


Now, if we cut each of these ellipsoids in an infinite 

number of orientations but always containing the Zf-axis, we will have 

an infinite number of elliptical cross-sections of each ellipsoid, all have 

the same short axes but different long axes. In one orientation, let us 

measure all the long axes of the ten ellipses and average them. Each 

average of the iong axes in one orientation is then drawn through a 

common center, point 0, with its two ends plotted as two points (see 

the lower left-hand-side diagram of Figure 13). The infinite points thus 

obtained form a · nearly perfect ellipse on the XfY f plane, whose major 

axis has a 0-angle of 30. 5
0 

. 

Conventional statistical treatment of orientation data would 

lead one to use the vector mean orientation of the XI-axes, which is 

0 = 45° in this c~se. The large difference clearly is caused by the 

fact that in conventional treatment a nearly circular ellipse has an 

importance in expressing qrientation equal to that of~ strongly eccentric 

one on a common plane. In order to reduce this difference, the present 

writer employs a more realistic mean for analysis of the orientation 



Figure 	13. Determination of the mean Xf-orientation of deformed pebbles. 

All the Z £-axes are perpendicular to the plane of the diagram. 

Lm' mineral lineation; Lb, boudinage axis. See the text for 

explanation. 
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data using (R - 1)•weighted vector expression, where' -R is the axial 

ratio of an individual ellipse involved. The weighting· factor (R - 1) 

means that a sphere, with R = 1 in any orientation, does not have any 

value in expressing orientation, while a more eccentric ellipsoid has a 

higher value than a less eccentric one has. 

The (R - 1)-weighted vector mean orientation of the above 

ten ellipsoids is 0 = 29. 5°, which is very close to 0 = 30. 5° obtained 

from infinite cuttings. Therefore, it is felt that the weight (R - 1) 

is well suited to the orientation analysis of this study. 

On a cross-section through a rock which contains a number 

of ellipsoids, an ellipse which has its axial ratio equal to the arithmetic 

mean (see p. 81) of those of the individual exposed ellipses and which 

has its major axis parallel to the (R - 1)-weighted vector mean orienta­

tion of the individual major axes, is called the representative ellipse 

on that section. 

5. SIMULTANEOUS DETERMINATION OF THE TECTONIC 

STRAIN 	RATIO AN:O THE ORIGINAL ORIENTATION AND SHAPE OF 

DEFORMED PEBBLES 

The final fabric of volcanic pebbles shown in Figure 12(C) 

is obtained from a plane parallel to all the individual X£Yf planes and 
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the 	local foliation-bedding plane. 

bedding. Therefore, it is very likely that all the Z axes had11 0 

been perpendicular to the bedding before the homogeneous deformation 

commenced. If we assume that the tectonic strain ratio (not magnitude) 

is all the same for pebbles of identical lithology at one single outcrop, 

then the sprea.d of the ellipse plots in the orientation plot of Figure 

l 2(C) could result from different original shapes and orientations. 

It has been remarked (p. 70) that the isostrain curve in an 

orientation plot is symmetrical with respect to the direction of the X ­
. 	 t 

axis (0 = 0°). Therefore, when we_construct an isostrain curve in an 

orientation plot, it is helpful to reflect those ellipse plots with negative 

0-angles to the side of positive 0-angles. This improves the definition 

of the field of points. Figure 14 is redrawn from Figure l 2(C) but with 

reflected ellipse-plots shown as crosses. 

Connecting the outer-most dots and/or crosses on the upper 

right-hand side of the orientation plot in Figure 14 would form the 

possible highest-a · isostrain curve, while connecting the innermost dots 
0 

and/or crosses on the left-hand side would form the possible lowest-a 
. 	 0 

isostrain curve. It is important to keep in mind that the constructed iso­

strain curves must maintain the general trend of the scattered ellipse ­

plots. Occasionally, a remote ellipse-plot may appear it1 an orienta­

tion plot, but by judging the general trend, we can probably ignore it 



Figure 14. Construction of the bounding isostrain curves from the 

final pebble-fabric of Figure 12(C). 
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for the momen~ when we construct the curve, though this is quite 

subjective. 

In our example, the outer curve intersects the axes '/J 

= 0° and 0 = 90° at points af = 2. 35 a.nd af = 1. 24, respectively (Figure 

14). Solving the following simultaneous equations (see Equations (5-19) 

and (5-20)): 

a a = 2. 35 
0 t 

{. a I at = l . 24 
0 

we obtain at= 1. 38 and a = 1. 70. On the other hand, the inner curve 
0 

inter sects the axis 0 = 0° at two points af( = o) = 1. 77 and
9 0

af(S = 0) = 1. 23. Similarly, solving the simultaneous equations
90

(see Equations (5-19) and (5-21 ): 

a a = 1. 77 
0 t . 


{ a I a = 1. 23 

t 0 

we get a = 1. 48 and a = 1 . . 20.
t - 0 

Although we have already assumed that at is all the same 

in this case, the .calculated ones still have a range of I. 48 - 1. 38 = 0. 10. 

Let us take their average a = 1. 43 and compute Equations (5 -16) and 
t 

(5-17) by feeding the a -ratios from 1. 10 to 2. 10 with 0. 10 intervals and 
0 

the .possible corresponding af-ratios. The resultant data are shown in 

Figure 15 which is based on the same orientation plot 9£ Figure l 2(C). 



Figure 	15. Expanded diagram showing the complex relationship among 

a , af, e, and 0, from the final pebble-fabric of locality 144. 
0 

The frequencies of the original axial ratios and orientations 

are shown in inset diagrams. Solid curves, isostrain curves 

(all are a = 1.43) with various a shown as nwnbers. 
t 	 0 
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The upper inset diagram of Figure 15 shows the frequency of the 

original axial ratios collected from the main diagram; whereas the 

.lower inset presents the frequency of the original X . -orientations 
. . . · 0 

with reference to the mineral lineation (9 = 0°). The Caf - 1 )­

weighted vect :or mean Xf - orientation is 0 ~ 14°; ~hile· the 

(a - 1)~weighted ve~tor mean X · - orientation calculated from the 
0 . ' 0 

lower inset diagram is 9 ·= 29°. 

It is obvious from Figures 11 and 15 that the axial ratios 

af and a , respectively, have by no means any simple normal or 
0 

logarithmic distribution . . These can also be seen from the complex 

relationship among af , a , a , 0 , and 0 in Equations .(5-16) and 
t 0 

(5-17). Further investigation on the statistical means of a and af 
. 0 

is urgently ne~ded. At this stage, we can use temporarily the arithmetic 

mean for lack of a better method. The average axialratios in Figure 

15 are af = 1. 74 .and a = 1. 42. On the other hand, if we locate a point
0 

with e : 14° and 9 = Z9° (point H) in Figure 15, we get af = 1. 9 0 and 

a = 1. 45. S~:tp~isingly ··enough, the two a -ratios happen to be nearly
0 0 

equal. 



CHAPTER VI 


DETERMINATION OF THE STRAIN ELLIPSOID AND THE 


ORIGINAL SHAPE OF DEFORMED PEBBLES 


If the original pebbles are spherical in shape, i.e . , 

a =b =I, then the axial ratios of the pebbles after homogeneous
0 0 

deformation will be the same as those of the tectonic strain ellipsoid, 

If the principal planes of the final pebbles 

cannot be observed in the field or the sawed sections containing de­

formed ooids (or the like) are not the principal planes, we can use 

Equations (4-13) to compute the axial ratios af and bf by measuring 

the orientations and the apparent axial ratios of the exposed ellipses 

on two cross-sections. The angles between the principal axes of the 

exposed ellipses and those of the tectonic strain ellipsoid can be ob­

tained by means of stereographic projection. 

If the original pebbles are not spherical in shape, i.e . , 

a # I and/or b -f 1, as are most cases in nature, then the final 
0 0 

deformed pebbles can have an infinite number of different shapes with 

82 
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all possible fabrics depending upon the original fabric of the 

pebbles before ·deformation and the shape and orientation of the 

tectonic strain ellipsoid. The discussions which follow will describe 

the most practical ways of determining the strain ellipsoid and the 

originally ellipsoidal shape of deformed pebbles. 

1. EXTRACTABLE INDIVIDUAL PEBBLES 

The best way to study deformed pebbles is to extract them 

entirely from their matrix. Wherever extraction of deformed pebbles 

is possible, the strain ratios and the original pebble shape can be 

determined if the following conditions are met. 

Original Pebbles with Random Fabric 

If the originally ellipsoidal pebbles, having an identical 

shape with axial ratios of a =X /Y and b = Y /Z , and being 
. . 0 0 0 0 0 0 ' 

randomly oriented, are deformed homogeneously by a tectonic strain 

with axial ratios of a =X /y and b = Y /z , we will obtain the final 
. t t t t t t 

deformed pebbles with a large number of different axial ·ratios 

af =X/Yf and ..bf = Y/Zf, depending upon how the tectonic strain 

ellipsoid is superimposed on the original pebbles. 

Suppose we reach a region where an almost infinite number 

of final deformed pebbles show that the orientation fluctuation of pebble 
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ellipses on any section parallel to a principal plane of the tectonic 

strain ellipsoid, is always less than 90° (this restriction means that 

any axial rati~ of the strain ellipsoid, be it at or bt, is always greater 

than any axial ratio of the original pebble, including a b · =X /Z ) . 
0 0 0 0 

If the axial ratios af and bf of these final pebbles are pl tted in a 

deformation plot, there will be six limiting ellipsoids bounding a 

hexagon-like deformation field>:< (notice the curved lines in Figure 

16{A)), within which all t~e possible shapes of the final pebbles fall. 

These six ellipsoids result from special coaxial superpositions of the 

tectonic strain ellipsoid upon the original pebbles, and are shown (clock­

wise in Figure 16) as follows: 

(1 ) bf = b b and af = a a (6-1)
t 0 t 0 


when xtx >y y >ztz 

0 t 0 0 

(2) bf= b a b ·. (maximum bf) and af = a /a . (6-2)
t 0 0 t 0 

when x y >y x >ztz 
t 0 t 0 0 

(3) bf= b a and af = a /a b (minimum af) (6-3)
t 0 t 0 0 


whenX tzo) YtXo) zty

0 

>!< This deformation field becomes a double-isosceles-trapezoid with a 

common base when ln af and ln bf are plotted in a logarithmic deforma­

tion plot (Figure 16(C)). 



Figure 	16. Deformation field of .extractable deformed 

pebbles in the case of originally random orientation. 

(A), hexagon-like deformation field of the final pebbles 

resulting from deformation of original randomly-

oriented pebbles. See the text for the restriction of 

this graph and the six bounding ellipsoids. (B), only 

three corners, Nos. 1, 2, and 3, of the hexagonal 

deformation field are shown up, indicating b <a and 
t 0 

(C), the deformation field of (A) becomes a 

double -isoseles-trapezoid with a common base (line 1-4) 

in a logarithmic deformation plot. The shape of the 

double-isoseles-trapezoitl is dependent on the values 

of a and b . 
0 	 0 
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(4) 	bf =b I a and af = a /b (6-4)
t 	 0 t 0 

when X Z ) Y Y ) Z X 
t 	 0 t 0 t 0 

(5) 	bf = b I a b (minimum bf) and af = a b (6-5)
t 	 0 0 ' t 0 


when X Y ) Y Z ) Z X 

' 	 t 0 t 0 t 0 

(6) 	bf = b /b and af = a a b (maximum af) (6-6)
t 	 0 t 0 0 


when X X ) YtZ ) Z Y 

t 	 0 0 t 0 

Clearly, if we simply draw two vertical and two horizontal 

lines to touch such a hexagonal deformation field in the deformation 

plot, we can obtain the maxima and the minima of the axial ratios 

af and bf (these can be also obtained directly from the measured data, 

though). The coordinates of the maxima and the minima, in turn, yield 

totally eight separate equations in terms of the four unknown variables 

a , b , a , and h . Any three of the maxima and the minima are 
0 0 t t 

sufficient to solve the problems. 

If the orientation fluctuation on sections parallel to one or 

more principal planes of the strain ellipsoid exceeds 90°, then the hexa­

gonal deformation field will be shifted towards and "swallowed" by the 

axes a f = 1 or I and bf .= 1 . For instance, if an infinite number of ex­

tracted, final, deformed pebbles which are known to have had an 
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originally random fabric, show only three corners, Nos. 1, 2, and 3, 

of the hexagonal deformation field (Figure 16(B)), then one can be sure 

that Equations (6-4) - (6-6) do not hold true. In other words, there must 

be bt <b and b (a , and the orientation fluctuation on sections parallel
0 t 0 

0 
to the YtZt plane must exceed 90 . 

In some cases, only two angles of the hexagonal deformation 

field appear and their coordinates do not permit a solution of the unknown 

variables. We must find a third coaxially deformed pebble other than 

the two at the two angles, and measure its orientation as we 11 as its 

axial ratios. Then we shall be able to solve the problem using addition­

al two equations derived from the third coaxially deformed pebble. 

Original Pebbles with a Planar Fabric 

Commonly, pebbles in a conglomerate bed have an original 

planar fabric with their shortest axes (Z ) subperpendicular to the bedding 
0 ' 

plane (pp. 50-51). In strongly deformed rocks, we frequently observe 

that foliation is parallel to or lies close to bedding (Ramsay, 1967, 

p. 218). In such a case, Zt is parallel to Z and the special coaxial 
0 

superpositions are given by 

( 1) X X ) Y Y ) Z Z which result in a final, coaxially deformed 
t 0 t 0 t 0 


pebble with axial ratios 


(6-7) 
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(2) (X Y : Y X ) ) Z Z which has two possibilities:
t 0 t 0 t 0 

a) If X Y <Y X , a <a , then 
t 0 t 0 .t 0 


bf = a b b and a = a I a 

t t 0 f 0 t (6-8a) 

b) If X Y ) Y . X , a ) a , then 
t 0 t 0 t 0 

bf = b a b and af = a I a (6-8b)
t 0 0 t 0 

If the line connecting the origin and the shape plot of a 

final deformed pel:>ble in a logarithmic deformation plot is called the 

apparent deformation path (cf. Figure 4), then its slope, K', can be 

expressed as K' = (ln af)/(ln bf). Assuming the original pebbles were 

of the same shape, the coaxially deformed pebble of tl~e above Case l 

(Equations (6- 7)) has a maximum K' value among all the possible final 

deformed pebbles; whereas that of Case 2b (Equations (6-8b)) has a 

minimum K' value. In ·the case of a ( a , the minimum K' valuet 0 . 

is zero. All the other possible final pebbles will fall in the linear 

field between the above two K' extremities (Figure 17), which is 

parallel to the Z/d contour discussed in Chapter III, because the unit 

length reductions in the shortest axes of the deformed pebbles, 

2 E , are all equal to one another for the same lithology. Note 
z 

that in the logarithmic deformation plots of Figure 1 7, both the apparent 

deformation paths and the deformation fields are straight lines. 



Figure 	l 7. Deformation field of extractable deformed pebbles in the 

case of coaxial superposition of Z 11 Z 11 Z . Heavy lines,
f t 0 


deformation field. (A) and (B) , a ) a . (C) and (D),

t 0 


a(a.

t 0 

,/· 
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If the pebbles have different ductilities, then the deforma­

tion field will become a broad band instead of a single line. In the case 

of at ) a , the most ductile pebbles should fall in the line between 
0 

points 1 and 2 of Figure 18; the coaxially deformed pebble of point 1 

has a maximum K' value among the most ductile pebbles and an overall 

maximum af ratio, while that of point 2 has a minimum K' value among 

the most ductile pebbles and an overall maximum bf ratio. Similarly, 

points l' and 2' bound the deformation field of the least ductile pebbles 

(Figure 18); the former has an overall minimum bf ratio, while the 

latter has an overall minimum K' value and an overall minimum af 

ratio. 

In the case of the coaxial deformation of Xt f I X , we have 
0 

a deformation field parallel to the X/d contours (Figure 19; cf. Figure 

5). The two special coaxial superpositions are: 

( 1) X X ) Y Y ) Z Z where 
t 0 t 0 t 0 


b = b b and a = a a 

f t 0 f t 0 (6-9) 

( 2) XX ) (Y Z :Z Y ) which has two possibilities:
t 0 t 0 t 0 


a) If ytz <zty ' b <b ' then

0 0 t 0 

(6-1 Oa) 



Figure 	18. Deformation field of extractable deformed pebbles with 

different ductilities in the case of Zf 11 Z t 11 Z • All the 
0 

other conditions are the same as those of Figure 17(B). 
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b) If YtZ ) Z Y , b ) b , then 
0 t 0 t 0 

(6-1 Ob) 

The coaxially deformed pebble of the above Case 1 

(Equations (6-9)) has a minimum K' value among all the possible de­

formed shapes, while that of Case 2b (Equations (6-1 Ob)) has a maximum 

K' value. In the case of bt <b , the maximum K' value is infinite 
0 

(Figure 19). 

From the nature of Equations (6-7)-( 6-10); we can only 

obtain a and at in the case of Zf 11Zt11 Z and only obtain b and bt in 
0 0 0 

the case of X f 11Xt11X . it follows that we must have some knowledge
0 

of the original, ellipsoidal shape, otherwise the strain ellipsoid is not 

determinable (Ramsay, 1967, p. 219). 

2. UNEXTRACTABLE PEBBLES 

Concept of Average Axial Ratio 

Average axial ratios obtained from extracted individual 

pebbles have unfortunately been mixed up with the average of the axial 

ratios of unextractable pebbles measured on certain cross-sections 

by many authors before. In fact, unextractable pebbies measured on a 

cross-section of an outcrop usually contain a large number of apparent 



Figure 19. Deformation field of extractable deformed pebbles 

in the case of coaxial deformation of xf 11xt11 XO. 

Heavy lines, deformation field. (A) and (B), bt) b . 
0 

(C) and(D), b <b. 
t 0 
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axial ratios. Hence, their average axial ratios, ;f and/orb£ , will not 

be the same as those of the extracted individual pebbles. 

The example of ten ellipsoids given in Chapter V (pp. 73 _76) 

is now used for showing the difference between average axial ratio ob­

tained from extracted pebbles and that from measurements on some 

specific cross -sections (Table 1). Sections AA 1 and BB 1 in Figure 13 

are parallel to the XtZt and Ytzt planes, respectively. They are easily 

mistaken as the XfZf and Yfzf planes. The large error derived from the 

measurements on sections AA' and BB' can readily be seen in Table 1. 

The average axial ratio of unextractable pebbles obtained 

on a section of an outcrop can be equal to that of extracted individual 

pebbles only when the section is perpendicular to the same principal axis 

of all the final. deformed pebbles. Such measurements, however, are 

commonly impossible because it is rare for there to be no axial fluctua­

tion in a deformed pebble-fabric. In the map area, only two outcrops of 

deformed pebbles belong to this category. One is that .shown in Figure 

12(C), where the individual axial .ratios, af' are the real ones, because 

all the measurements are made on a plane normal to their shortest axes 

Zf; the other is locality 280 near the Seine River Bridge, where one of 

the two sections measured is a foliation plane which is perpendicular 

to the Zf axis of all the flattened pebbles right at the hinge. of the Seine 

River anticline. 



Table 1. Comparison of average axial ratios 

Sections measured in Figure 13 
Avera_g_e axial ratios 

a I b 

Individual principal planes of the extracted 

pebbles 

Principal planes PP' and QQ' of the representative 

ellipsoid 

Cross-sections AA' and BB' parallel to the X Z 
t t 

and YtZt planes, respectively 

1. 55 

1. 35 

1. 17 

8.00 

8.78 

9.53 

--D 
01 
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Original Pebbles with Random Orientations 

Ramsay (1967, pp. 209-211) introduces a technique to isolate 

the tectonic strains and the original pebble shape from the final shape 

and orientation of deformed pebbles. However, this technique must be 

applied with caution, or mistakes can easily arise. Though the present 

writer agrees that "by using this method on three mutually perpendicular 

sections through a rock which contains deformed particles that were 

initially ellipsoidal and variably oriented, it is possible to isolate 

the tectonic strains in each section" (op. cit.), yet the original pebble 

shape remains unsolved. Discussion of this problem follows. 

Let us first assume that all the original pebbles had an 

identical ellipsoidal shape with three principal axes X ) Y ) Z and 
0 0 0 

their axial ratios X /Y = a , Y /Z = b , and X /Z = a b . Because 
0 0 0 0 0 0 0 0 00 

of the originally random orientation, any section through the undeformed 

rock will show elliptical cross-sections with axial ratios ranging from 

1. 0 (the circular section through an ellipsoid) passing through all possible 

apparent axial ratios, R' (including the real axial ratios a and b ) , 
0 0 0 

to a b (Figure 20(A)). Now, subject these original pebbles to a homo­
o 0 

geneous deformation having a strain ellipsoid with three principal axes 

atbt. Any unspecified true axial ratio is designated as R which may be 



Figure 	20. Orientation plots on sections parallel to a principal 

plane of the tectonic strain ellipsoid in the case of original 

randomly .... oriented pebbles. (A), original fabric before 

deformation. (B), final deformed pebble-fabric in the 

case of 20 = 180°. (C), final deformed pebble-
max. 

fabric .in the case of 20 _ 
max. 

( 9 0°. (D), final deformed 

pebble-fabric in the special case of 20 = 
0

90 .. 
max. 
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either ~or ~or ab, whereas any apparent axial ratio is represented 

by R'; the subscripts ~' t, .!_refer to that of the original pebble, the 

strain ellipsoid, and the final deformed pebble, respectively. 0 and 0 

are the angles b~tween the major axis of the strain ellipse and the major 

axis of the exposed ellipse of an original pebble and a final deformed 

pebble, respectively, on a plane. Hence, on a section through the rock 

paralle1 to the X t Y t plane, the axial ratios of the elliptical cross ­

sections of the deformed pebbles will range from the maximum Rf, 

which can be either 

max. af = a a b (6-11)
t 0 0 

or max. afbf = a a b (6-12)
t 0 0 

for xtx > ( z Y > ) Ytz , if bt < b ,
0 t 0 0 . 0 

to the minimum Rf' which may be either 

min. R ' = 1 . O>:c if a ( a b or 20 ) 9 0 ° ( Figure 2 0( B))
f t o o max. 

where 20 is the orientation fluctuation range of the deformed pebble
max. 

ellipses on that section (p. 69), or 

(6-13) 


>:c Min. Rf = 1. 0 is a special case when R is equal to R which may be 
t 0 

a , b , or a b . In the case of R = a b , 20 = 90° (Figure 20(D)).
o o o o t o o max. .· 
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for X Z ) Y X ( ) Z Y ) , if 2 r/J <90° or a ) a b (Figure 2 CX C ) ) . 
t o t o t o max. t o o 

Note that in the case of 2r/J = 180° (a b ) a (seep. 69)), among
max. o o t . 

all the final pebble ellipses with 0 = 90° (Figure 20(B)), the maximum 

Rf( r/J = o) in that orientation may be either
9 0

(6-14) 


for YtX ) X Z ( ) Z Y ) , if atbt) b , or 
0 t 0 t 0 0 

(6-15) 


for y x > ( z y > ) xtz , if b >a b . 
to to o o tt 

Similarly, on a section parallel to the YtZt plane, we shall 

have axial ratios of the final deformed pebble ellipses ranging from the 

maximum Rf, which may be either 

max. bf= b a b (6-16)
' t 0 0 

or max. afbf = b a b ( 6-1 7)
t 0 0 

for Y X ( >X Y ) ) ztz , if a <a ,
to to o to 

to the minimum Rf, which may be either 

min. Rf' ~ 1. O>:c if b < a b or 20 ) 90° (Figure 20(B))
t o o max. 

>:c See footnote on previous page. 



100 


or min. bf = b I a b (6-18)
t 0 0 

for (X Y ) ) Y Z ) ZtX if b ) a b or 20 ( 90° (Figu.re 20(C)).
t o t o o t o o max. 

In the case of 20max. = 180° (Figure 20(B)), the maximum Rf( = 0)
0 90

in the orientation 0 = 9 0° may be either 

(6-19) 


or 

for (XtY ) ) ZtX ) YtZ , if atb ) a ,
0 0 0 t 0 

(6-20) 

for ZtX ) (XtY ) ) YtZ , if a b <a . 
0 0 0 t t 0 

Finally, on a section parallel to the XtZt plane, we shall 

have the maximum Rf which is 

max. afbf. = ab a b (6-21)
t t 0 0 

and the minimum Rf, which may be either 

min. R 1 = 1. O>:c if ab ( a b or 20 ) 90° .(Figure 20(B)),
f t t o o max. 

or min. R = ab /a b if ab ) a b or 20 < 90° (Figure 20(C)).
f t t o o t t o o max. 

The latter has three possibilities as follows: 

>:c See footnote on previous page. 
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(6-22) 

for X Z ( ) Y Y ) ) Z X , if a ) b · and b ) a ;
to to to to to 

b) min. af = ab /a b (6-23) 
. t t 0 0 

for xtz >z x ( >y y ) , if a >bt;
0 t 0 t 0 0 

c) min. bf= ab /a b (6-24)
t t 0 0 

for (Y Y ) ) XtZ ) ZtX , if b ) at.t 0 0 0 0 

In the case of 20max. = 180° (Figure 20(B)), the maximum Rf( 0= 0o)9

in the orientation '/J = 90° may be either 

(6-25) 

for ZtX ) (YtY ) ) X Z , if a ) b and b >at,
o o to o t o 

or (6-26) 

or (6-27) 

for (Y Y ) ) ZtX ) X Z , if b ) a . 
to o to to 

Of all the above possibilities which may be encountered 

on the sections parallel to the three principal planes of the tectonic 

strain ellipsoid, we can be certain of Equation (6-21) only and pos­

sibly Equations (6-13) and (6-16), or Equations (6-11) and (6-18), 
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provided that the fluctuation range (20 ) on the section parallel to 
max. 

the X Y or Y Z plane , respectively, is smaller than 90° (Equation. t t t t . . 

(6-22) also holds, if 20 ( 90° occurs on both sections}. Moreover, 
max. 

even if all these equations are known, we can only obtain at, bt, and 

ab . In fact, by looking over Equations (6-11)-(6-27), it is impossible
0 0 

to separate a and b . So the original pebble shape cannot be deter-
o 0 

mined. 

If the original pebbles were variably oriented and had dif­

ferent shapes with various axial ratios a and b , then their maximum 
0 0 

axial ratio (R . ( )) before deformation can be shown as 
o max. 

a ·b ~ R = (a b )
o(max. ) o(max.) - o(max.) o o max. 

All the possible maxima and minima of Rf or R£ in Equations (6-11 )­

(6-27) remain true except that every factor a b in these equations 
0 0 

should be substituted by R ( ). It follows, similarly, that we can 
o max. 

at most solve the variables at, bt, and R ( ) only.o max. · 

Original Pebbles with a Planar Fabric 

If the deformed pebbles are not ex.tractable in the case of an 

originally planar fabric, it is best, though usually difficult, to find in the 

field the special superposition of a principal plane of the tectonic strain 

ellipsoid upon that of the original pebbles showing planar fabric. 
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For instance, if we can measure the deformed pebble ellipses on a 

section parallel to the plane X Y 11 X Y f IX Y which is perpendicular
ff tt 00 . 

to the shortest axes zf 11zt11 z , we shall be able to determine 
0 

simultaneously the tectonic strain ratio and the original shape and 

orientation of the deformed pebbles on that plane, as has been discussed 

in detail in Chapter V. However, this solution yields only a and a , 
. 0 t 

similar to the result given on page 92 in the case of extractable pebbles. 

Deformed Pebbles with Unknown Final Fabric on the Foliation Plane 

The mathematical method developed in Chapte·r IV can be 

used to determine the final shape of deformed pebbles only if the final 

fabric is known. Unfortunately, in the map area, not only are the 

pebbles unextractahle, but also the pebbles are rarely exposed on the 

foliation plane - a clear-cut section parallel to the XfYf plane of most 

deformed pebbles (Plate 6(B)); or the pebble lithology and margin are 

scarcely distinguis.hable on that plane, because there is always some 

matrix glued firmly on the surface of pebbles. In other words, the final 

pebble orientation of any lithology on section parallel to the general 

XfYf plane at any outcrop, except that shown in Figure l2(C) and that 

of locality 280, is indeterminate. 
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(A) Construction of the Imaginary Ellipsoid: 

Under such adverse circumstances as stated above, we 

construct an imaginary ellipsoid to represent the deformed pebbles 

at each outcrop, from two representative ellipses obtained on two 

cross-sections of an outcrop, using Equations (4-13). The principal 

axes of a constructed ellipsoid are designated as Xfc' Y fc, and Zfc 

which are taken parallel to Xt' Yt' and Zt' respectively. For easier 

explanation, we use the same example 0£ Figure 13 to demonstrate how 

the constructed elUpsoids are formed and how large the errors involved 

may be (Figure 21 ). 

The representative ellipse on the common XfYf plane of the 

ten ellipsoids in Figure 13 is shown a.e dashed lines in Figure 21. Its 

Xf - axis (the (a.£ _. 1)-weighted vector mean X("orientation of the ten 

ellipses) makes an angle 0£ '¢ = 30° with the direction of the Xt -axis 

(principal tectonic elongation), Thia representative orientation of 

pebbles of the same lithology is an unknown parameter in practical 

cases, because the £ina.1 pebble fa.bric tJf a. ·particular lithology on a 

section parallel to most of the x Y planes is generally unknown.
1 1 

However, an approximate position o! th~ representative orientation of 

all pebbles 0£ unknown lithology can be eatimated from the vague outlines 

of the ma.trix... glued pebbles lying ott th~ foliation plane. For instance, 



Figure 	21. Construction of imaginary ellipsoids from one of 

sections AA', DD' and one of sections CC', BB', 

- 0
when 0 = 30 . Solid curves, constructed ellipsoids; 


dashed curves, the representative ellipsoid. 


zf 11 zt, perpendicular to the plane of the diagram. 
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there should be no difficulty finding that the representative orientation 

of the ten ellipses in Figure 13 lies between o 0 
and 45° with the X ­. t 

direction. In this case, the next step is to find a section between 

sections DD' and A.N. in Figure 13, which intersects the mineral linea­

tion-the assumed X -direction-at an angle between 0° and 20°. 
t 

Roughly normal to this section, we try to find another section between 

sections CC' and BB' in Figure 13, which makes an angle with the Xt ­

direction between -70° and -9 0° (angle measured clockwise with 

respect to the X -direction is positive). At least one of the two 
t 

sections should parallel the Zf-axes which are all subparallel to one 

another, because the average length of the Zf-axes may be used to 

calculate the average size of the deformed pebbles at each outcrop after 

their final axial ratios are obtained (see Chapter VII). 

If the estimated, representative orientation is greater than 

45° to the Xt-direction, then the first section to be chosen should make 

an angle between 70° and 9 0° with the mineral lineation (Figure 22), 

00while the second one intersects the Xt -direction at an angle between 

0
and -20 . 

The above selection of cross-sections is taken in an attempt 

to minimize the error derived from the construction of the imaginary 

ellipsoid. 



Figure 	22. Construction of imaginary ellipsoids from one of sections 

AA', DD' and one of sections CC', BB', when 0 = 60°. . See 

Figure 21 for explanation. 
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Now suppose at one outcrop where the final pebble fabric 

is the same as the one shown in Figure 13, we find two sections DD' 

and CC' which parallel the common Zf-direction and intersect the 

mineral lineation on the foliation plane at angles of 20° and - 70°, 

respectively (Figure 2l(D)). On section DD', the average apparent 

axial ratio is R' = (X'/Z') = 11. 72; whereas R" =(X"/Z") =8.85 
av. , av. 


on section CC 1 • The twelve angles concerned are shown below: 


Section DD' Section CC' 

0' = 20° 0" = -70° 
11 11 

0' = 70° 0" = 160° 
12 12 

0 = 90° 0" = 90° 
13 13 


01 
 = 90° 0'' = 90° 
31 31

001
' = 9 o 0" = 90° 

32 32 
00 000' = 0" = 33 33 

where 0} 3 is the angle between the (R 1 - 1)-weighted vector mean 

X' -orientation on section DD' and the Zt-direction, while 0'} 
3 

is the 

angle between 'the (R" -1 )-weighted vector mean X" -orientation on 

· section CC' and the Z -direction (note the order of the subscript
' t 


numbers; see p. 41 ), etc. Applying all the above known data in 


Equation.a (4-13), we obtain 

afc =xfc/Y!c = 1.45 

and bf· = YI I z f = s . s s 
c ' c ' c 
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Similarly, we can use the same method to construct another imaginary 

ellipsoid if another set of sections is available. Table 2 shows the pos ­

sible range of af and b which may be obtained from the same final 
c f c 

pebble fabric by different sets of cross -sections. 

In the case of 0 ) 45°, i.e., the representative Xf­

direction makes a high angle with the X -direction, the constructed 
t 

ellipsoid will be perpendicular to the strain ellipsoid on the xfy f 

plane (Figure 22). Because of the definition that X 11 X and 
f c t 

Yfc I( Yt' afc(°0> 45 o) will be less than 1. 0 and equal to 1 /afc(90o _ °0)' 

while bfc(0 >45 0) will be equal to afc( 90o _ °0) . bfc(90o _ 0), where 

afc( 90o _ 0) and bfc( 90o _ °0) are the afc and bfc, respectively, of an 

ellipsoid which has the same shape as the one with 0) 45° but has its 

X' -orientation at a low angle of (90° - 0) with the Xt -direction. 

Except for 0 = 0° or 0 = 90°, all the axial ratios of the 

constructed ellipsoids will be in error to a certain extent. Maximum 

....- 0 
error occurs when 0 = 45 . A representative ellipsoid, which has the 

same shape as that of Figure 13 but with 0 =45°, is shown in Figure 23. 

Table 3 lists the possible maximum deviations of af and bf which may. c . c 

be derived from the construction of the imaginary ellipsoid when the 

final deformed pebbles have a representative ellipsoid with unknown 

X - orientation on the XY plane but of the same shape as that in Figure 13. 
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I 

Table 2. Axial ratios of the imaginary ellipsoids 

constructed from different sections on Figure 21 

Sections measured 

AA' and BB' 1. 1 7 9.53 0. 15·7 2. 254 0. 211 

AA' and CC' . 1. 28 8.64 0.247 2.156 0.219 

BB' and DD' 1. 27 9.53 0.239 2.254 0.205 

CC' and DD' 1. 45 8.57 0.372 2. 148 0.211 

The representativeellipsoidhas af= 1.35, bf= 8.78, and 

Z/d = 0. 213. 



Fig·ure 	23. Construction of imaginary ellipsoids from one of 

sections AA', DD' and one of sections CC', BB', when 

0 = 45°. See Figure 21 for explanation. 
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Table 3. Axial ratios of the imaginary 

ellipsoids constructed from different 

sections on Figure 23 

Sections measured ln b 
fc (Z/d)fc 

AA' and BB' 1. 00 10.37 0.000 2.339 0. 210 

AA' and CC' 1. 13 9.19 0.122 2.218 0.219 

BB' and DD' 1. 10 l 0. 37 0. 095 2.339 0. 204 

CC' and DD' 1. 29 9. 09 0. 2$5 2.207 0.211 

The representative ellipsoid has af = 1. 35, bf= 8. 78, and Z/d = 0. 213. 



113 

Using Equations {4-13), the constructed axial ratios afc 

and bfc of the deformed pebbles in the map area have been calculated. 

The resultant data are presented in Table 4-6. The constructed 

imaginary ellipsoid of the same pebble lithoiogy at each locality is 

plotted as a point in the logarithmic deformation plot shown in Figure 

24. The {Z/d)fc ratio of each shape plot is computed from the corres­

ponding ln af and ln bf {Tables 4-6) using Equation (3-5). It can be 
· c c 

seen in Figure 24 that the variation in average shape of the final pebbles 

of the same lithology at different localities is unrelated to geographical 

position {cf. Figure 1). 

The range of {Z /d)fc ratio for the volcanic pebbles is from 

0. 314 to 0. 211; for the quartzose pebbles is from 0. 425 to 0. 324; 

and for the granitic pebbles is from 0. 720 to 0. 553. The circumscribing 

polygons representing the possible deformation fields of the three major 

pebble lithologies in the fold limbs, are all roughly parallel to the Z/d 

contour {cf. Figure 5), suggesting that most pebbles probably were 

originally lying flat on the bedding plane and were deformed under a 

condition such that Z paralleled Z . This can be also inferred from 
t 0 

the final fabrics shown in Figure 12. 
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Table 4 . Axial ratios and Z/d ratios. of the 

constructed ellipsoids of the deformed granitic pebbles 

Locality Number of measurements 
a b In a In bfc (Z/d)fcnumber Section I Section 2 fc. f c fc 

264 I2 25 1. 2I . 2, 2I 0. 191 0. 793 0.553 

265 20 12 1. 21 l, 87 0.191 0.626 0.618 

266 38 29 1.47 1. 82 0.385 0.599 0. 590 

267 21 24 1. 14 1. 89 0. I 31 0.637 0.626 

268 I3 24 0. 87 2.03 -0. 139 o. 708 0. 653 

272 23 27 0.89 1. 84 -0. 11 7 0.610 o. 692 

273 15 14 0.85 2. 12 -0.163 0.751 0. 640 

274 23 19 0.72 2.30 -0.329 0. 833' 0. 640 

277 IO 10 1. 07 1. 81 0.068 0. 593 9.658 

278 20 14 0.9I 1. 84 -0. 094 0.610 0.687 

279 26 17 0.85 1. 98 -0. 163 0.683 0.669 

509 I6 16 1. 12 1. 56 o. l I 3 0.445 0. 7I6 

286 14 1 I 1. 1 7 1. 92 0. 157 0.652 0.614 

287 5 I3 1. 11 1. 83 o. 104 0.604 0. 646 

289 9 23 0.9I 1. 75 -0.094 0.560 0. 711 

292 9 7 1. 05 1. 92 0.049 0.652 0.637 

293 10 4 1. 14 1. 88 0.131 0.631 0.628 

294 11 4 1. 52 1. 84 0.419 0.610 o. 579 

296 15 10 1. 39 1. 57 0.329 0.45I 0.663 

297 11 18 1. 00 2.00 0.000 0.693 0.630 

299 23 8 1. 07 1. 68 0.068 0.519 0. 692 

300 18 I5 1. 06 1. 85 0. 058 0.615 0.651 

303 30 5 1. 24 1. 47 0.215 0.385 0. 720 

304 10 18 0.94 1. 69 -0.062 0. 525 0.720 

321 19 14 1. 16 1. 84 0.148 0.610 0.634 

413 19 8 1. 50 1. 67 0. 405 0.513 o. 621 
305>:< 8 9 l. 01 1. 62 0.010 0.482 

':c Not in fold limb. Aver~ge (Z/d)fc = 0.652 
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Table 5. Axial ratios and Z /d ratios 

of the constructed ellipsoids of the 

deformed quartzose pebbles 

Locality Number of measurements 
bfc ln afc ln bfc (Z/d)fcafcnumber Section 1 Section 2 

261 12 8 1. 68 4.16 0.519 1. 426 0.325 

263 17 . 6 1. 53 4.38 0. 425 1. 477 0.324 

264 10 18 0.83 4.57 -0. 186 1. 520 0.386 

265 25 12 1. 04 3.54 0. 039 1. 264 0.425 

266 34 13 1. 20 4.85 0. 182 . 1. 579 0.328 

268 8 18 1. 11 4.52 0. 104 1. 509 0. 353 

272 19 27 1. 43 3. 07 0.358 1. 122 0.420 

273 7 12 1. 62 3.13 0.482 1. 141 0.398 

274 21 16 0. 97 4.94 -0.030 1. 597 0.348 

277 7 10 1. 21 4.07 0. 191 1. 404 0.368 

278 8 6 1. 01 4. 11 0. 010 1. 413 0.388 

279 12 15 1. 44 4. 05 0. 365 1. 399 0.349 

284 10 10 1. 59 4.00 0. 464 1.386 0. 340 

287 5 8 1. 08 3.67 0.077 1. 300 0.410 

289 10 10 0.91 4.27 -0. 094 1. 452 0.392 
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Table 6. Axial ratios and Z /d ratios 

of the constructed ellipsoids of the 

deformed volcanic pebbles 

Locality Number of measurements 
bfc ln afc ln bfc (Z/d)fcNumber Section 1 Section 2 afc 

266 17 14 1. 31 6.64 0.270 1. 893 0.259 

509 14 17 1. 38 6. 76 0.322 1. 911 o. 251 

290 15 14 1. 20 6.42 o. 182 I. 859 0.272 

292 10 10 1. 03 5.59 0. 030 1. 721 0.314 

293 15 5 1. 20 5.46 0. 182 1. 697 0.303 

294 30 8 1. 18 5.51 0. 166 1. 707 0.303 

296 12 15 1. 33 5. 01 0.285 1. 611 0.311 

297 11 18 1. 04 8. 61 0.039 2. 153 0.235 

299 17 13 1. 26 7.85 0.231 2.061 0.234 

300 19 14 1. 67 7.96 0.513 2.074 0.211 

304 12 20 1. 13 6. 06 0. 122 1. 802 0.289 

321 15 9 1. 97 4. 71 0.678 1. 550 0.284 

362 16 19 1. 07 7. 16 0.068 1. 969 0.263 

305 ):( 17 19 2.12 3.99 0. 751 1.384 


28 o):( 11 8 3.33 3.06 1. 203 1. 118 


):< N:>t in fold limb . 



Figure 	24. · Logarithmic deformation plot of the imaginary ellipsoids 

constructed from the deformed pebbles in the Seine River 

area, Ontario. Localities 280 and 305 are situated in the 

fold hinge zones. G, Q, and V refer to the granitic (dots), 

quartzo_ae (crosses), and volcanic pebbles {triangles), 

respectively. 
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(B) Computation for a , b , and a , b : 
0 0 t t 

Locality 280 (Figure 1) is situated at the hinge of the Seine 

River anticline near the Seine River Bridge where the bedding is parallel 

to the mineral lineation but is normal to the foliation plane. Abundant 

cross-lamination in the arenites overlying and underlying the scattered 

volcanic pebbles of locality 280 indicates that the paleocurrent flowed 

towards the present south-southeast and is roughly normal to the fold 

axis as well as the mineral lineation (X -direction). It has been noted 
t 

that under conditions of running water, the preferred X -orientation of 
0 

most pebbles, as transported in contact with a frictional substratum 

such as the medium-grained sands of locality 280, is transverse td the 

current direction (p. 5 0). Therefore, it seems reasonable to assume 

that the X -axes of the original pebbles were statistically normal to 
0 

the paleocurrent direction and that the original pebbles, which are 

scattered without contacting one another, lay flat on the bedding. It 

Because one of the measured sections at locality 28 0 

was made on the foliation plane, and also because of the special co­

axial superposition of strain ellipsoid upon the original pebbles, theo­

retically there should not be any error induced from construction of 

the representative ellipsoid. Since Xtl IX , Ytl jz , and ztjlY at 
0 0 0 

locality 28 0, the shape plot of the representative ellipsoid, point 
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280V(l. 118, 1. 203} in Figure 25, should be one of the two extremities 

of the deformation field parallel to the X/d contour (see Figure 19}. 

In Figure 24 (see also Tables 4-6}, point 297V(2. 153, 0. 039) 

has an overall maximum bf ratio. Its K' value is 

K z V =. ( 1 n a ?V} I (1 n b ?V} = 0. 0 3 9 I 2. 15 3 = 0. O 1 8 
9 7 29 29 

The apparent deformation path (p. 88} passing through point 297V is. then 

represented by 

ln af = 0. 018 ln bf (6-28} 

On the other hand, point 300V has the lowest (Z /d}fc ratio and so is 

considered to have been subjected to a maximum compressional strain 

in the Zt -direction among the volcanic pebbles of all the localities in 

the fold limbs. When a flow fold with a minor buckling component is 

developed, maximum shortening strain normal to the axial plane usually 

occurs at the fold hinge; because the fold limbs rotate more or less 

during folding, the incremental shortening strains in the fold limbs are 

not coaxially added as at the fold hinge. The maximum compressional 

strain in the fold limbs, as represented by the lowest (Z/d)fc ratio at 

locality 300, is therefore taken to compare with that of locality 280 at 

the fa ld hinge .· 



Figure 	25. Determination of the tectonic strain ellipsoid and the original 

pebble shape on the logarithmic deformation plot of the final de­

formed pebbles in the map area. See the text for explanation. 
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Pas sing through point 28 OV in Figure 25, draw a line AB 

parallel to the X/d contour (see Figures 5 and 19). Line AB can 

be shown as 

1 
ln a - 1. 203 - - ( ln bf = 1. 118)

f 2 


1 

or ln a = - - ln bf+ 1. 762 (6-29)

f 2 

Passing through point 300V(2. 074, 0. 513), draw a line CD parallel to 

the Z / d contour (see Figures 5 and 1 7; see also the line between points 

1 and 2 of Figure 18). Line CD is given by 

ln af - 0.513 = - 2 (ln bf - 2. 074) 

or lnaf = - 2 lnbf+ 4.661 (6-30) 

Solving simultaneous equations (6-29) and (6-30), we get 

ln af = 0. 795 and ln bf= 1. 933. Coordinates (1. 933, 0. 795) shown by 

the intersection point V in Figure 25, represent the ;final ellipsoid of 
n1 

volcanic pebble with the same tectonic strain as those of localities 28 0 

and 300, but resulting from coaxial superpositions of X , Y , Z on X , 
. t t t 0 

Y , Z respectively. Similarly, from Equations (6-28) and (6-30), we 
0 0 

obtain ln af = 0. 041 and ln bf = 2. 310. Point V. with coordinates 
l 

(2. 310, 0. 041) in Figure 25 is assumed to represent the final ellipsoid 

of volcanic pebble having the same tectonic strain ratios as those of 

localities 280 and 300, but resulting from coaxial deformation of 
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true; the error involved depends on how far the shape plot with an 

overall maximum bf ratio (point 297V in this case) is discrete from 

point 2 of Figure 18, and also on the deformation path (the true K value 

(see p. 30)). 

Let us say that the volcanic pebbles of localities 280 and 300 

have a strain ellipsoid with axial ratios a and b , and that the 
tvm tvm 

axial ratios of their original pebble shape are a and b . Then, from 
ov ov 

the coordinates of points 28 OV, V , and V., we have six separate 
m 1 

equations (see Equations (6-lOb), (6-7) or (6-9), and (6-8b), respectively) 

as follows: 

ln a + ln b + ln a = 1. 203 (6-31) 
ov ov tvrn 

ln b - ln b = 1. 118 (6-32)
tvm ov 

ln a + ln a = 0. 795 (6-33) 
ov tvm 

ln b + ln b = 1. 933 (6-34) 
ov tvm 

ln a ln a = 0. 041 (6-35)
tvm ov 

ln a + ln b + ln b = 2.310 (6-36)
ov ov tvm 



123 

Solving these equations, we obtain 

0.418 or a = 1. 52ln atvm = tvm 


{
 {ln b = 1. 525 b = 4. 60 
tvm tvm 

0.377 or 1. 46and { ln a 0 v = 

ln b = 0. 408 1. 5 0 
ov 

Plot the coordinates (0.408, 0. 377) as point V (ln b . , ln a ) in 
0 ov ov 

Figure 25, which represents the original shape of the volcanic pebbles 

at localities 280 and 300. The slope (K) of the simplest deformation 

path between points V and V in the case of irrotational strain 
o m 

(see Equation (3 -1 )) is 

K = (ln a )/(ln b ) = 0. 274 
tvm tvm 

Hence, the simplest deformation path of these volcanic pebbles can 

be represented by the following equation: 

1n a f - 0. 3 7 7 = 0. 2 7 4 ( 1 n bf - 0. 4 08) 

or ln af = 0. 274 ln bf+ 0. 265 (6-3 7) 

Now.let us assume that the average original pebble shape of the 

same lithology at one outcrop is identical with that of another outcrop, 

but that the tectonic strain may differ at different places and is solely 

responsible for the variation in the final (Z/d) ratios. Among volcanic 
fc 
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pebbles of all the localities in Figures 24 and 25, point 292V(l. 721, 0. 030} 

has a highest (Z/d)fc r atio (see also Table 6) and thus has a least strain 

in the Z[direction. The Z/d contour (see p. 34} passing through point 

292V is given by 

1 n a£ 	- 0. 03 0 = -2 (1 n b £ - 1. 7 21) 

or 	 (6-38} 

Substituting Equation (6-38) in Equation (6-37), we get ln bf= 1. 410 

and ln af = 0. 652. Coordinates (1. 410, 0. 652) are shown by inter­

section point V ( ln b , ln a ) in Figure 25. The finite strain ratios 
n vn vn 

between points V and V are then 
o n 

ln a ln a = 0. 275ln atvn = vn ov 


{ 

ln b = ln b 1n b = 1. 002 

tvn vn ov 

or 	 a - 1. 32 

b tvn = 
{ 2. 72 

tvn 

Here 	we find that the average axial ratio a = 1. 46 of the 
ov 

original volcanic pebbles as calculated from the logarithmic deformation 

plot is surprisingly close to the average axial ratio a = 1. 42 as computed
0 

p. 81). Furthermore, the tectonic strain ratio a = 1. 43±0 . 05 (p. 79)
t 
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obtained from the special plane mentioned above at locality 144 

(Figure 1), is correctly within the range between a = 1. 32 and 
tvn 

a = 1. 52 as computed from the logarithmic deformation plot.
tvm 

These coincident results through different approaches suggest that 

either all the assumptions involved are quite valid or some of the 

errors happen to oppose one another. 

For the granitic and quartzose pebbles, the calculations of 

a , b , a , and bt are shown in Appendix C to avoid the tedious repetition
0 0 t 

of mathematical presentation. The calculated axial ratios of their original 

shape are a = 1. 43 and b = 1. 42 for the granitic pebbles; a = 1. 40 
og og . oq 

and b 
oq 

= 1. 86 for the quartzose pebbles. These original shapes are 

plotted as G ( 0. 351, 
0 

0. 361) and Q ( 0. 621, 
0 

0. 339) in the logarithmic 

deformation plot (Figure 25) for the granitic and quartzose pebbles, 

respective1y. 

According to Zingg's (1935) shape classification, the original 

pebble shape was equant for the granitic pebbles; oblate for the quartzose 

pebbles; and the original volcanic pebbles lay between equant and oblate 

shape (Figure 25). 



CHAPTER VII 

PEBBLE SIZE 

There are several methods which we can employ to 

calculate the "size" of final deformed pebbles. If a number of pebbles, 

~' can be extracted at one outcrop, their average nominal diameter, 

d, will be given by 

i=n 

- 1 1

d=­ d. - -- ( 7 -1) 

n 1 n 

i= 1 i= 1 


If the deformed pebbles are not extractable by means of 

ordinary method, we must know the final fabric and compute the axial 

ratios af and bf using Equations (4-13), if condition favors, before 

proceeding the calculation of pebble size. 

By definition in a single pebble, 

so 

( 7-2) 

126 
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Infinite cross-sections through a flattened pebble parallel to its Zf 

axis, will have a maximum length of Zf and a minimum one of zero 

with an average slightly greater than Z/2 in the Zf direction. 

Similarly, on a section parallel to the common Zf-direction through 

a rock containing an infinite number of flattened pebbles in the case 

of coaxial deformation of Z f j j Zt 11Z , the average length of the apparent
0 

Zf-axes, Z£, will be slightly greater than one half of the average Zf­

axis, Zf, of all the individual pebbles. In the map area, pebbles 

which have Z.f axes less than 5. 0 mm were not measured. By approxima­

tion, we may say: 

z1 1 
(Zf+S.Omm)

f 2 

or 2 ( Z f - 2. 5 mm) ( 7-3) 

Substituting Equation (7-3) in Equation (7-2), we have an equation to 

determine the approximate average pebble size of the same lithology 

at each locality in the map area as: 

(7-4) 

Because the imaginary ellipsoid constructed from the 

exposed pebble ellipses at each locality does not have the same shape 

and volume as those of the representative ellipsoid except for those co­
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axially deformed ones, it follows that there must be a certain unknown 

error in computing pebble size under such circumstances. To see how 

great the error may be, we use the axial ratios afc and bfc of the 

imaginary ellipsoid constructed from sections BB' and DD' in Figure 

23(C), which shows the greatest deviation in our example {Table 3). 

s b . ( b 2) 1I3u stituting afc = 1.10 and bfc = 10. 37 in the factor af £ of 

Equation (7-4), we get 

2 1 I 3 1 I 3 
(a b ) = (118. 29) =4 91

fc fc · 

Substituting in the same factor with the axial ratios af = 1. 35 and 

bf= 8. 78 of the representative ellipsoid whose principal planes XZ 

and YZ are the sections PP' and QQ', respectively (Figure 23(C)), we 

obtain 

Hence, the error involved in calculation of pebble size from the con­

structed ellipsoid through sections BB' and DD' of Figure 23 ~ is 

4. 91 - 4. 70 
x 1 00% = 4. 46% 

4.70 
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It is considered from the above example that the error of 

pebble size induced by the construction of imaginary ellipsoid is unlikely 

to be too large. The pebble size of different lithologies at different 

localities in the map area is calculated using Equation (7 -4) and is 

listed in Tables 7-9. Figure 26 shows the pebble sizes of all the 

localities within the Seine River anticline - the main structure of the 

area - plotted against their spatial distribution which is projected in a 

direction parallel to the bedding trace upon a reference -line MF obliquely 

across the fold. Some conclusions of the pebble size can be drawn from 

this diagram together with field observations: 

1) The pebble size of the granitic pebbles increases 

stratigraphically upwards in the north limb. 

2) Within a single conglomerate bed, pebble size increases 

towards where the thickness of the bed is greatest. 

3) The granitic pebbles are generally larger than the volcanic 

pebbles, both lie in the size range of cobbles with some of the former 

reaching the boulder size; whereas the quartzose pebbles are the smallest 

among the three major pebble lithologies and are mostly within the range 

of 40-100 mm. 

4) Pebbles in the north limb are commonly bigger than their 

counterparts in the south limb. 
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Table 7. Calculated size of 

the granitic pebbles 

2 2 1/3 -,b2Loc(;llity number af bf afbf {afbf) Z/mm) d(mm)
£ 

264 1. 21 2.21 4.88 5.90 1. 81 31. 8 106. 1 

265 1. 21 1. 87 3. 50 4.24 1. 62 29.6 87.8 

266 1. 47 1. 82 3.31 4.87 1. 70 51. 3 165. 9 

267 1. 14 1. 89 3. 57 4.07 I 1. 60 45.9 138.9 

268 0.87 2.03 4.12 3.58 l .' 53 41. 8 120.3 

272 0.89 1. 84 3 . 39 3.02 1. 44 43.8 118. 9 

273 0.85 2.12 4.49 3.82 I 1. 56 26. 0 104. 5 

274 0.72 2. 30 5. 29 3.81 1. 56 52. 9 157.2 

277 1. 07 1. 81 3.28 3.51 1. 52 49.5 142.9 

278 o. 91 1. 84 3.39 3. 08 1. 45 29. 6 78.6 

279 0.85 1. 98 3. 92 3.33 1. 49 48.3 136.5 

509 1. 12 1. 56 2. 43 2. 72 1. 40 35.2 91. 6 

286 1. 1 7 1. 92 3. 69 4.32 1. 63 24.6 72.0 

287 1. 11 1. 83 3.35 3.72 1. 55 25.9 72.5 

289 0.91 1. 75 3.06 2. 78 1. 41 46.4 123.8 

292 1. 05 1. 92 3. 69 3.87 1. 57 42. 9 126.9 

293 1. 14 1. 88 3. 53 4.02 1. 59 34.0 100.2 

294 1. 52 1. 84 3.39 5.15 1. 73 49.3 161. 9 

296 1. 39 1. 57 2.46 3. 42 1. 51 68.9 200.5 

297 1. 00 2.00 4.00 4.00 1. 59 80. 9 249.3 

299 1. 07 1. 68 2.82 3.02 1. 44 92.2 258.3 

300 1. 06 1. 85 3.42 3.62 1. 54 83.7 250. 1 

303 1. 24 1. 47 2.16 2.68 1. 39 81. 9 220. 7 

304 0.94 1. 69 2.86 2.69 1. 39 94.6 256. 0 

321 1. 16 1. 84 3.39 3.93 1. 5.8 28.8 83.1 

413 1. 50 1. 67 2.79 4. 19 1. 61 61. 4 189.7 
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Table 8. Calculated size of 

the quartzose pebbles 

Locality number af bf 
b2 

f 
2 

afbf 
( b 2)1/3 
af f Z_f(mm) d(mm) 

261 1. 68 4. 16 1 7. 31 29. 08 3. 08 6.9 27.2 

263 1. 53 4.38 19.19 29. 35 3.08 19. 6 105. 3 

264 0.83 4. 57 20. 88 17.33 2.59 13. 3 55.9 

265 1. 04 3.54 12.53 13. 03 2.35 15.0 58.8 

266 l. 20 4.85 23.52 28.22 3. 04 14.5 73.0 

268 1. 11 4.52 20. 43 22.68 2.83 9.6 40. 2 

272 1. 43 3.07 9.42 13.47 2.38 13.4 51. 9 

273 1. 62 3. 13 9.80 15.88 2.51 12. 4 49.7 

274 0. 97 4.94 24.40 23.67 2.87 19.6 98.2 

277 1. 21 4.07 16. 56 20. 04 2.72 19.5 92. 5 

278 1. 01 4. 11 16. 89 17. 06 2. 57 20.6 93.0 

279 1. 44 4. 05 16. 40 23. 62 2.87 12.8 59. 1 

284 1. 59 4.00 16.00 25.44 2. 94 13. 1 62.3 

287 1. 08 3.67 13.47 14.55 2.44 12.6 49.3 

289 0.91 4.27 18.23 16.59 2.55 14.4 60. 7 
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Table 9. Calculated size of 

the volcanic pebbles 

Locality number 

266 

280 

509 

290 

292 

293 

362 

294 

296 

297 

299 

300 

304 

321 

af 

1. 31 

3.33 

1. 38 

1. 20 

1. 03 

1. 20 

1. 07 

1. 18 

1. 33 

1. 04 

1. 26 

l . ·67 

1. 13 

1. 97 

bf 

6.64 

3.06 

6.76 

6. 42 

5.59 

5.46 

7.16 

5.51 

5. 01 

8.61 

7.85 

7. 96 

6.06 

4. 71 

b2 
f 

44. 09 

45.70 

41. 22 

31. 25 

29.81 

51. 27 

30.36 

25. 10 

74. 13 

61. 62 

63.36 

36. 72 

22. 18 

2 
afbf 

57. 76 

63. 07 

49.46 

32. 19 

35.77 

54.86 

35.82 

33.38 

77. 10 

77.64 

105. 81 

41. 49 

43. 69 

. 

( b 2)1/3 
af f · 

3. 87 . 

3.98 

3.67 

3. 18 

3.29 

3. 80 

3.30 

3.22 

4.26 

4.27 

4.73 

3. 46 

3.52 

Z.f(mm) 

18.5 

9.9 

37.0 

21. 5 

30. 4 

16.0 

19.9 

21. 6 

1 7. 4 

16.7 

18.8 

29.9 

11. 8 

d(mm) 

123.8 

10. 7~:~ 

58.9 

253.2 

120.8 

183.6 

102.6 

114.8 

123.0 

126.9 

121. 3 

154.2 

189.6 

65.5 

* Calculated from d = Yf ;/a/bf 



Figure 	26. Pebble size versus spatial distribution. All the localities 

are projected in a direction parallel to the bedding trace (see the 

broken arrow in the upper diagram), upon a reference line MF 

obliquely across the fold. Dots, granitic pebbles; crosses, 

quartzose pebbles; triangles, volcanic pebbles. 
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5) Within the domain of the antiCline, buckling is seen to 

have developed at places where the pebbles are the smallest. In fact, 

no rocks in the hinge zone except those at locality 280 can be called 

conglomerate. This might imply an early local uplift which occurred 

at the deposition site during the resedimentation of the Shoal Lake 

conglomerate. 



CHAPTER VIII 

PEBBLE DUCTILITY 

Based on a previous assumption that the average original 

shape of the deformed pebbles of the same lithology at one outcrop is 

identical with that of another outcrop (pp. 123-124), the variation in the 

Z/d ratio of the same lithology must be attributed to some other 

factors than the original shape, such as ductility difference of the same 

rock type, local stress variation, or the construction of imaginary 

ellipsoid, etc. 

Local stress variation is always an unknown parameter. 

Its effect is assumed to be very small and is being ignored for simplicity. 

The effect of the construction of imaginary ellipsoid probably is not 

very great, because the maximum error in the Z/d ratio as calculated 

from the most deviated datum tabulated on Table 3 is 

0. 21 3 - 0. 2 04 
x 100% = 4% 

0.213 
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Therefore, it may be assumed that only ductility difference was respon­

sible for the variation in the Z /d ratio . By comparing the tectonic 
f 

strain in the common Zf-direction of the deformed pebbles, we can 

obtain the ductility ratio of different pebbles, provided that the shorten­

ing strain developed homogeneously throughout the pebbles during 

deformation (p. 28). 

In the case of the coaxial deformation of Z f 11 Zt 11Z , the 
0 

shortening strain is calculated using the following equation: 

(Z /d) - (Z/d)
0 

x 100% = strain (%) in the Z -direction (8-1)
(Z /d) 0 

0 

where the Z Id ratio can be computed from the following equation which 
0 

is similar to Equation (3-5): 

1 n ( Z Id) = - ( 1 n a + 2 1 n b ) I 3 
0 0 0 

or Z Id = exp ( - ( 1 n a + 2 1 n b ) I 3) (8-2) 
0 0 0 

Substituting the original axial ratios of the deformed pebbles (pp. 123 

-1 25) in Equation (8-2), we obtain the Z /d ratio for the volcanic 
0 

pebbles 0. 672, for the quartzose pebbles 0. 591, and for the granitic 

pebbles 0. 702. It is interesting to note that the original, undeformed 

Z /d ratio of the granitic pebbles is smaller than the final, deformed 
0 
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(Z/d)fc ratio at localities 303, 304, 509, and 289 (see Table 4), 

indicating that the granitic pebbles of these localities probably were 

subjected to little or even no deformation. For this reason, the shorten­

ing strain of the granitic pebbles at these localities is set as zero 

(Table 10). 

The computed shortening strains in the common Zf­

direction of the deformed pebbles in the map area are listed on Table 

l 0, with the locality numbers given in sequence from east to west. 

Except for the eastern part of the area (Nos. 261-268) where the strains 

are generally higher than those to the west, the variation in shortening 

strain does not reveal any systematic gradient with respect to geographi­

cal position. The average shortening strain of the granitic pebbles is 

calculated directly from the average (Z /d) ratio on Table 4 and the 
fc 

Z /d ratio of 0. 702, using Equation (8-1). This is because the strains 
0 

of the granitic pebbles are set to zero on Table 10 for certain localities 

mentioned above, and so the average of individual strains has been 

altered. 

Comparing the average shortening strains of the three 

major pebble lithologies, we get their ductility ratio as follows: 

Volcanic pebble : quartzose pebble granitic pebble 


=8.4:5.3: 1.0 




138 Table 10. Shortening strain of the deformed pebbles 

in the Seine River area 

Locality Shortening strain, % 
Number Granitic Pebbles Quartzose Pebbles Volcanic Pebbles 

261 45.0 

263 45.2 

264 21. 2 34.7 

265 12.0 28. 1 

266 16.0 44.5 61. 5 

267 10. 8 

268 7.0 40. 3 

272 1. 4 28.9 

273 8.8 32.7 

274 8.8 41. 1 

277 6. 3 37.7 

278 2. 1 34 . 3 

279 4.7 40. 9 

509 0.0 62 . 6 

284 42. 5 

286 12. 5 

287 8 . 0 30.6 

289 0. 0 33. 7 

290 59 .5 

292 9.3 53.3 

293 10. 5 54.9 

294 1 7. 5 54.9 

296 5.6 53.7 

362 60 . 9 

297 10.3 65.0 

299 1. 4 65 . 2 

300 7. 3 68.6 

303 0.0 

304 0. 0 57.0 

321 9.7 57.7 

413 11. 5 

Average (7. 4)>:c 37.3 59.6 

>:• Calculated directly from the average (Z /d)fc ratio of the granitic 
pebbles (Table 4). 
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It should be noted that this ductility ratio should not be taken as a 

standard value for use in other areas, because it is dependent upon 

the particular P-T conditions and strain rate which prevailed in the 

map area; these can hardly be the same elsewhere. 

It is worth mentioning here that on any section appro­

ximately parallel to the common Zf-direction, the foliation density 

of matrix is highest when the exposed major axis (X') of an enclosed 

granitic pebble is normal to the foliation trace, but it is less intense 

for situations where the X' axis o.f the same pebble lithology is 

nearly parallel to the foliation trace. On the other hand, rarely have 

volcanic pebbles with their X' axis at a high angle to the foliation trace 

been observed. In general, volcanic pebbles iie parallel to the foliation 

plane unless they are folded around a bigger but less deformed pebble. 

Moreover, there is little change in foliation density between a volcanic 

pebble and its surrounding matrix. The strain gradient along a line 

through a volcanic pebble and its surrounding matrix probably is 

approximately zero. This implies that the volcanic pebble and matrix 

must be of similar ductility. 



CHAPTER IX 

SELECTIVE VEINING IN PEBBLES 

One of the most interesting features connected with the 

deformed pebbles in the map area is the occurrence of cross-veins 

in certain pebbles. In general, veins are rarely developed in the 

pebbles on the south limb of the Seine River anticline, but on the 

north limb about three or four out of every ten granitic pebbles contain 

one or more veins·. Veins also are observed in some quartzite pebbles, 

but such occurrences are not common. It is clear in the field that less 

deformed pebbles have a better development of veins than more deformed 

ones. For instance, the slate and volcanic pebbles which show the 

strongest deformation among all kinds of pebbles, commonly are 

devoid of any veinlet. Furthermore, the matrix, which has suffered 

at least the same deformation as volcanic pebbles, contains no veins 

similar to those in pebbles, although one vein (among more than 200 

counts) i.n a granitic pebble was observed to extend into the matrix 

(Plate 7(A)). 
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Plate 7 

(A) One 	vein in a granitic pebble extends into the matrix. 

(B) 	Offset along the shear-fracture trace, which usually is 

straight and smooth. 
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(A) 


( B ) 
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The walls of veins are distinguished into two types of 

fracture, viz. extensional fracture and shear fracture. Extensional 

fractures are those with irregular and rough contact between vein and 

host pebble, wher.eas the walls of a shear fracture are straight and 

smooth. Moreover, a shear fracture commonly shows offset along the 

fracture trace (Plate 7(B)), while the trace of an extensional fracture 

usually lies closeOto the direction of maximum tectonic shortening 

(Plate 8(A)). By comparison, veins of the shear-fracture type are rare. 

Plate 8(B) shows that a transverse vein of the extensional-fracture type 

is cut off by an oblique vein of the shear -fracture type. They might 

have developed in response to the same stress system but with the shear 

fracture growing subsequently to the extensional fracture. 

Veins have never been observed in any transverse granitic 

pebble which has an exposed major axis (X') at a high angle to the 

foliation trace and has an apparent axial ratio, X' I Z', equal to 1. 5 or 

more. This might indicate that rupture of granitic pebble is conditional 

upon the original X -orientation relative to the tectonic strain axes. 
0 

1. VEIN ORIENTATION 

Wherever a section of any orientation is cut through a rock 

containing a number of pebbles with veins of the extensional-fracture 

type, most of the veins appear to align subperpendicular to or make a 

high angle with the foliation trace. 



Plate 8 

(A) 	Veins of the extensional-fracture type commonly lie 

perpendicular to the foliation trace. 

(B) 	A transverse vein of the extensional-fracture type is 

cut off by an oblique vein of the shear -fracture 

type. 
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(A) 


( B) 
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A nicely exposed section at locality 297 containing eight 

granitic pebbles with veins of the extensional-fracture type, is demon­

strated in Figure 27. The less deformed pebbles (Nos. 4-8) maintain 

their elongation roughly parallel to the bedding trace, · whereas the more 

deformed ones (Nos. 1-3) are nearly parallel to the foliation trace 

(Figure 27, (A) and (B)). 

In Figure 27(B), the apparent axial ratio (X' /Z') of the 

deformed pebbles is plotted against both the orientation of the vein 

trace and the X' -direction of the corresponding pebbles. If we assume 

that the least principal stress axis is parallel to the mineral lineation 

and that the greatest principal stress axis is normal to the penetrative 

foliation plane, then we would expect that extensional fractures, if any, 

occur normal to the mineral lineation, considered statistically. In 

Figure 27(B), however, all the vein traces lie on the right-hand side 

of the trace of a plane normal to the mineral lineation. This might 

imply a reorientation of the forces which produced the finite foliation 

and mineral lineation in the rocks after the development of extensional 

fractures had completed. 

In Figure 27(C), the X' /Z' ratio of the same pebbles is 

plotted against the angle a between the X' ~direction and the vein trace. 

The distribution has a negative slope; i.e., the more deformed pebbles 



Figure 27. Orientation of eight pebbles with veins of the extensional­

fracture type at locality 29 7. See the text for explanation. 
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show a smaller a-angle (cf . the two dashed lines in Ramsay's (1967, 

p. 9 2) Figure 3-30), with an exception that any one pebble (not in this 

diagram), which had its three principal axes parallel to those of the 

tectonic strain ellipsoid and which had its vein perpendicular to the 

Xt-axis, would have maintained a= 90° regardless of the deformation 

intensity. 

2. CRYSTALLOGRAPHIC FABRICS OF QUARTZ 

In order to get rid of the effect of original orientation on 

the final pebble fabric, only those pebbles which show special coaxial 

superpositions of xf 11 xt' .: y f I j y t ' and zf 11 zt' are subjected to 

petrofabric analysis of quartz in both vein and host pebble. 

Under the microscope, the constituent minerals of vein 

in deformed pebble of any lithology are mainly quartz with a small 

amount of calcite. These minerals form rod-like, columnar grains 

(Plate 9(A)), which are roughly parallel to the external mineral linea­

tion surrounding the pebble. The cross-sections of these columnar 

grains generally show elliptical to irregular form (Plate 9(B)). The 

columnar grains and/or their aggregates commonly reach from side to 

side of the vein. . Some of the quartz grains are found to have grown 

in crystallographical continuity across the vein from either a pure 



Plate 9 

(A) 	Vein quartz shows rod-like columnar form on sections 

parallel to the direction of principal tectonic elonga­

tion. Crossed polarizers. 

(B) 	Vein quartz shows irregular to crude elliptical form on 

sections perpendicular to the direction of. principal 

tectonic elongation. Crossed polarizers. 
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(A) 1 mm 


1 mm 
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quartz or a quartz pseudomorph of plagioc lase in the host pebble 

(Plate 1 O(A)). 

The optical orientations of quartz in both vein and pebble 

itself were determined with a universal stage in an attempt to investigate 

the geometric relationship between mesoscopic structu.res and quartz 

crystallographic fabrics. Lower hemisphere equal-area plots of quartz 

c -axis orientations are shown on Figure 28. 

The c -axes of the constituent quartz in vein No. V8B show 

a very weak preferred orientation which seems to show a partial 

small-circle girdle at an angle of approximately 45° to the Xt-axis 

the direction of maximum tectonic elongation. In another vein, No. 

V8A, of the same pebble, the quartz c-axes may be envisaged as show­

ing composite small-circle girdles at angles of 45
0 

and 65
0 

to the Xt­

axis and the Z .;,axis, respectively, although only 52 crystals can be 
t 

measured in the thin section of that vein. In a third thin section made 

from sample No. Vl7B which does not show visible columnar form of 

the constituent minerals in the vein, the quartz optical fabric is a 

very broad small-circle girdle (20° -70°)' around the Zt-axis. But the 

0
relic of the partial girdle around the Xt-axis at an angle of about 5 2 

can be detected only with uncertainty. 

In the pebble itself, quartz axial fabrics show interesting 

features which have never been reported before. Plate 1 O(B) shows 



Plate 10 

(A) 	Plagioclase of host pebble (on the left-hand side) is 

partly replaced by vein quartz which shows crystal­

lographical continuity from the quartz pseudomorph 

of plagioclase to non-cleavage quartz. Crossed 

polarizers. 

(B) 	Petrofabric of a quartzite pebble on section subparallel 

to the XtZt plane. Most individual quartz grains are 

elongated and parallel to the Xt-direction (E-W line 

of the photograph). Crossed polarizers. 
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(A) 


( B) 1 mm 




Figure 	28. Quartz c-axis fabrics. 

V8B, 176 grains in vein; contours, 3. 4%, 2. 3%, 

l.lo/oper lo/oarea. 

V8A, 52 grains in vein. 

Vl 7B, 25 0 grains in vein; contours, 2% and 0. 8% 

per 1% area. 

Pl3A and Pl3B, 200 grains per section in pebble; 

contours, 3% and 1% per 1% area. 

Pl4, 200 grains in pebble; contours, 3%, 2%, 1% 

per 1% area. 
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the petrofabric of a quartzite pebble from locality 304. Here the 

quartz c-axes form double elliptical girdles (though_incomplete) 

around the Z -axis {Figure 28, Pl3A). On the Y Z plane the c -axis 
t t t 

girdles make angles of 30° and 60° to the x -ax.is, whereas on the . . t . 

0 0
XtZt plane the angles are 16 and 38 . On another section, Pl3B, 

which is cut at right angle to section Pl3A in the same specimen, 

quartz c-axes roughly show double partial girdles of elliptical shape 

around the Zt -axis, but they are less clear than those of Pl 3A. On 

the XtZt plane of section Pl3B, the double girdles make angles of 

25° and 55° to the Zt -ax.is; while on the Ytzt plane the .angles are 

0 0
30 and 60 , same as those of Pl 3A. Section Pl4 is made from a 

quartzite pebble at locality 279 where the mineral lineations were 

hardly recognized on strongly foliated rock, and so the tectonic strain 

ellipsoid there is considered as close to the pancake · type of 

The microfabric of the quartz c-ax.es seems to show 

double girdles with a symmetry similar to that of the postulated strain 

ellipsoid. The double girdles make angles of 30° and 60° around the 

zt -axis. 

3. INTERPRETATION 

It is considered that the development of veins in the less 

deformed pebbles (mainly granitic) was synchronous with a simultaneous 

deformation and metamorphism, proceeding by fracturing, followed by 
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simultaneous pull-apart of the pebble portions and emplacement of vein 

by a process of diffusion of soluble quartz from the immediate neigh­

bourhood into the embryonic fractures. 

The content of granitic pebbles in the Shoal Lake conglomerate 

commonly does not exceed 15%. Rarely are the granitic pebbles observed 

in contact with each other. The brittle failure which has occurred in 

this small volume fraction of dispersed granitic pebbles can be st be 

explained on the basis of Drucker' s (1966, pp. 891-893) analysis (see 

a 1 so R e c tor , l 9 7 0, pp. 135 -1 3 7) . 

At a certain early st age of the deformation which probably 

was caused by a regional compressive stress system, all the conglome­

rates became ductile except for the dispersed granitic pebbles. 

Perhaps rigid-body rotation, if any, of the granitic pebbles occurred 

at this stage. With a continued application of compressive stress, the 

granitic pebbles remained elastic and deformed much less than the 

already ductile matrix and other constituents of the conglomerate. 

So the granitic pebbles did not expand laterally as much as the surround­

ing materials. The movement of these ductile materials probably was 

under conditions such that a moderate to high intergranular cohesion 

was maintained between the moving materials and the granitic pebbles 

(Stauffer, 1970, p. 504). This generated a tensile stress on the granitic 
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pebbles, which was balanced by a compressional stress in the ductile 

materials. The tensile stress might exceed the tensile strength of the 

granitic pebbles at some advanced stage of the deformation, resulting 

in extensional fracturing of the pebbles. Due to the continued movement 

of ductile materials, the less-deformed granitic pebbles must have 

carried more than their share of the compressional load. At a certain 

further advanced stage when some of the granitic pebbles became a bit 

ductile, the greatest shearing stress of the same stress system might 

exceed the cohesive shearing strength of the granitic pebbles, resulting 

in shear fracturing. The extensional fractures probably were originally 

normal to the least principal stress axis in a statistical sense. But a 

later, slightly reoriented, stress system caused the homogeneous de­

formation of all the pebbles and produced the finite penetrative folia­

tion and mineral lineation in the rocks. 

During the deformation, the already ruptured pebbles were 

pulled apart by the continued tensile stress. However, it seems unlikely 

that the fractures had ever been devoid of material, because commonly 

the columnar quartz grains extend in crystallographic continuity from 

wall to wall of the fracture, which might suggest that the crystallizing 

quartz grew in step with the dilation of the fracture. This is also an 

interpretation which has long been held by many other authors (Ramberg, 

1961; Ca:t"stens, 1966; Roberts, 1969). 
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The optical orientation of vein quartz probably was deter­

mined by the chance orientation of the first nuclei which formed on the 

wall of fracture, but the direction of fast growth kept pace with the 

dilation, might have slightly favored the direction at 45° to the c-axis, 

as that revealed in section VSB of Figure 28. The resultant fabric of 

quartz c-axes would belong to the cigar-type of X » Y = .Z, similar to 

the columnar form of the individual quartz grain. The orientation of 

quartz c-axes discussed above is assumed to have grown freely under 

a "pressure shelter" within the fracture of a then plastically undeformed, 

but already ruptured, pebble. 

If the host pebble was deformed to a certain extent, the 

pressure shelter within the fracture walls of the host pebble would not 

have been strong enough to protect completely the vein quartz from 

suffering strain, and the final fabric of quartz c -axes would have been 

a mixture of fast-growth orientation and strain geometry. In the map 

area, the deformation path has a slope of K = 0. 274 (p. 123), so the 

strain ellipsoid is of the flattening type (Xt) Y t )) Zt). Locally strain 

ellipsoid of the ?ancake type (Xt = Yt)) Zt' or K = 0. 0) may be ex­

pected. Vein quartz affected by a pancake-type deformation would 

probably form composite fabric as that shown in section V8A of 
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Figure 28; i.e., a small-circle girdle around the Xt-axis and another 

around the Z -axis. 
t 

If the host pebble was severely deformed, the pressure 

shelter would be completely useless. Then the micro fabric of quartz 

c-axes in the vein would have shown a symmetry roughly similar to 

that of the deformed pebble in the case of coaxial deformation (see 

section Vl 7B of Figure 28). And the development of columnar forms 

of the constituent minerals in the vein would also be impossible. 

Discussion of recrystallization mechanisms of quartz 

seems to be presently speculative. However, regardless of the actual 

deformati,on mechanism, the quartz axial fab:ric of deformed pebbles 

seems to show a consistent symmetry which can be compared to that 

of the tectonic strain ellipsoid detected frorn. mesoscopic structures 

such as coaxially deformed pebble, foliation, mineral lineation, etc. 

Where the mesoscopic structures show a strain ellipsoid of the pancake 

type (Xt =Y?> Zt, or Xt))Zt), the quartz c-axes of deformed pebbles 

would likely form double small-circle girdles around the Zt -axis 

the direction of maximum tectonic shortening (see section Pl4 of 

Figure ZS). As the elongation in the Xt-axis of the tectonic strain 

ellipsoid develops; i.e., the strain ellipsoid becomes the flattening 

type (Xt) Yt » Zt, or Xt»> Zt), the double girdles of quartz c-axes 
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around the Zt -axis would become elliptical in shape with its minor axis 

lying in the X Z plane (sections Pl3A and Pl3B of Figure 28).
t t 



CHAPTER X · 

CONCLUSION 

Previous controversies of the Coutchiching problem arose 

mainly from different judgements by various workers of the rocks 

exposed along the shore of Shoal Lake. In this study the present 

writer has uncovered numerous new field data, mostly previously 

overlooked or previously inaccessible, which warrant a new inter­

pretation of the stratigraphic sequence. The term Coutchiching series 

may be retained for those sedimentary rocks and local greenstones 

within them, which underlie the thick sequence of greenstones known 

as the Keewatin series. The local greenstones within the Coutchiching 

series thus defined, previously have been regarded as Keewatin and so 

the relative position between the Coutchiching and the Keewatin often 

has been confused. 

Several improved methods of analyzing deformed pebbles 

are introduced, which under certain circumstances enable one to deter­

mine the tectonic strain ellipsoid and the original orientation and shape 

of deformed pebbles, from the final pebble-fabric. To determine the 

157 
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original orientation and shape of deformed pebbles, it is necessary to 

have some ideas of the general fabric of the undeformed conglome ­

rate. If the original pebbles had a random orientation and the final 

deformed pebbles are extractable, then we can determine the original 

pebble shape and the tectonic strain eliipsoid from certain coaxially 

deformed pebbles. On the other hand, if the extractable, final, 

deformed pebbles had an original planar fabric, we may be able to 

determine the original shape and orientation of the deformed pebbles 

by finding two sections at one outcrop, one parallel and the other per­

pendicular, to the. original p1anar fabric. If either of these two sections 

is not parallel to two principal strain axes, we can use the method 

developed in Chapter IV of this thesis to determine the tectonic strain 

ellipsoid from two apparent strain-axial-ratios computed from the 

measurements of deformed pebbles on these two sections. In the case 

of unextractable deformed pebbles, determination of both the final shape 

and the original shape and orientation of the deformed pebbles, as well 

as their tectonic strain ellipsoid, requires some mental acrobatics. 

The procedure given in Chapter VI of this thesis presents an approxima­

tion method to solve this difficult problem. The result has turned out to 

be quite conformable with what has been calculated from a special section 

on which coaxially deformed pebbles were measured. 
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In the map area, the tectonic strain ellipsoid belongs to 

the flattening type. with three principal axes of X ) Y >> Z , where 
t . t t 

the (ln (X/Yt))/(ln (Y/Zt)) ratio, K, has a calculated value of 

0. 274. Except for the eastern part of the area where the strains 

generally are greater than those to the west, the variations in shorten­

ing strain and average shape of the final deformed pebbles of the same 

lithology at different localities are found to have no systematic change 

with respect to their geographical position. 

Assuming that pebbles of a single lithology have an identical, 

average, original shape at different localities and that local variation 

of the stresses responsible for the pebble deformation is negligible, 

the variation in the final orientation and shape of the deformed pebbles 

is attributed to the controls of original orientation before plastic de­

formation and ductility difference. By comparing the average shape 

of the final deformed pebbles at one outcrop with their calculated original 

shape in the common direction of coaxial superposition of the strain 

ellipsoid upon the pebbles, we can compute the strain percentages of 

the deformed pebbles in that particular direction. Furthermore, varia­

tion in strain in the same direction with respect to different pebble litholo­

gies provides the contrast of ductility between different rock types for 

the conditions under which deformation took place. 



160 

Selective cross-veins in the granitic pebbles are found to 

have developed mainly in extensional fractures and partly in shear 

fractures with continuous dilation accompanying crystallization of 

vein minerals after fracturing. The vein quartz of columnar form 

probably grew in pace with the dilation of fracture through a process 

of diffusion of soluble quartz supplied from the immediate neighbour­

hood of the fractured pebble. In the case of the nearly pancake-type 

deformation (Xt = Y t »Zt) at some localities of the map area, .double 

small-circle girdles of the quartz c-axes around the direction of maximum 

tectonic shortening at angles of 30° and 60° are reported for the first 

time in deformedquartzite pebbles. The double girdles shrink in the 

X Z plane as the elongation in the X -direction develops.
t t t 


Griggs et al. (1960) have shown that at 5-kilobar confining 


pressure and 500°C temperature, granitic rock remains elastic up to 

a differential longitudinal stress of more than 10 kilobars. In other 

words, the maximum pressure required to deform permanently a grani­

tic rock under such a condition must exceed 15 kilobars. In the map 

area, the predominant mineral assemblage of quartz-albite-chlorite 

can hardly be assigned to a grade higher than the middle greenschist 

facies (Turner and Verhoogen, 1960, pp. 533-537). In fact, no garnet 

or any mineral assemblage indicating a higher grade than the biotite 

zone has been observed. So it is assumed that 400°C and 5 kilobars 
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are the temperature and pressure maxima* (Turner and Verhoogen, 

1960, p. 534) having prevailed in the map area. Considering the result 

of Griggs et al. , we cannot expect the granitic pebbles to be deformed 

plastically in the laboratory under conditions of 5-kilobar pressure 

0
and 400 C temperature. It follows that the only plausible explanation 

for the ductile deformation of the granitic pebbles is a very low strain 

rate. If we assume the episode of deformation accompanying a regional 

metamorphism to be the order of 2 to 10 million years in length (Sutton, 

1965, p. 42), then the strain rate for the volcanic pebbles of average 

4
60% shortening is (1 to 0. 2)xl O-l /sec.; for the quartzose pebbles of 

15 
average 37% shortening is (6 to 1. 2)xl 0- /sec.; and for the granitic 

pebbles of average 7% shortening is ( 1 to 0. 2)xl 0-l SI sec. 

In view of the fact that both pebble size and gross thickness 

of the conglomerate beds are much greater in the north limb of the 

Seine River anticline than those in the south limb, and that the cross-

lamination preserved in the arenites underlying the conglomerate se­

quence indicates a regional flow direction of the paleocurrents towards 

the present south, a northern source of the Archean sediments in the map 

area can be inferred. Moreover, the appearance of both turbidites and 

>:C Here the maximum pressure refers to the load pressure augmented 

by an increment of tectonic overpressure (Turner, 1968, p. 60). 
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subsequent thick conglomerate beds after a prolonged period of the depo­

sition of the thick Coutchiching fine-grained sediments, might imply 

some uplifting movements in the source area to the north and subsidence 

at the deposition site. These movements probably were the first signs 

of the orogeny occurring around the time of 2. 75 b. y. ago; during the 

orogeny, both the Coutchiching and the Keewatin rocks in the map area 

were first folded ·and the pebbles in the conglomerate beds were then de­

formed by subsequent, continuous compression. 
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APPENDIX 

A. Derivation of Equations Representing the Contours of 

By definition (seep. 34), we have 

which can be transformed into the following relationships: 

d 
-1 = (X . y Z ) -1 I 3 


f f f 


-3 -1 
or (A-1)d = (Xf yf Zf) 

Multiplying by x:, Y:, and z:, respectively, with both sides of Equation 

(A-1), we get 

3 . 
(X/d) = Xf /(Xfyf Zf) (A-2)

3 

3 . 3 
(A-3)(Y/d) = yf /(Xf YfZf) 

and 3 3 
(Z/d) = zf /(XfYfZf) (A-4) 

From Equation (A-2), 

2 2 . 3 

Xf /Yf = (Z/Yf)(X/d) 


2 -1 3 
or af =bf (X/d) 
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so 2 ln af = -ln bf+ 3 ln (X/d) 

i 3 xf 
(3-6)or ln af = - 2 	 ln bf+ 2 ln d 

From Equation (A'!'"3), 

so 	 (3-7) ' 

From Equation (A-4), 

so 	 (3-5) 

B. 	Proof of Identical Shape for Parallel Cross-Sections 

through an Ellipsoid 

First of all, let us establish an xyz-coordinate system 

with one axis, say, the z-axis, perpendicular to the parallel sections. 

The general equation of an ellipsoid in this system is 
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2 2 	 2 
Ax +By + Cz + 	Dxy + Eyz + Fzx + Gx 

+Hy+ Kz + L = 0 	 (B-1) 

Suppose we 	have two sections cut through this ellipsoid: 

z =M (B-2) 

z =N (B-3) 

Substituting Equations (B-2) and (B-3), respectively, in Equation (B-1 ), 

we obtain 

2 . 	 2 . . 
Ax + Dxy + By + (G+FM)x +(H+EM)y + 


2

(L+CM +KM) = 0 	 (B-4) 

2 . 	 2 . 
and Ax + Dxy + 	By + (G+FN )x + (H+EN)y + 

2
(L+CN +KN) = 0 (B-5) 

These are two general equations of the second degree, which represent 

the two elliptical eras s - sections of the ellipsoid in the xy-coordinate 

system. 

In order to reduce the general equations to .the standard 

form of ellipses, we can fir st rotate the coordinate axes to remove the 

xy-term and seccmd, complete the squares of the transformed equations. 

Let the rotation angle between the x-axis and the new x' -axis be 0 so that 

the angle between the x' -axis and the y-axis is (9 0° -0) but not (9 o 0 
+0) 

and that 
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tan 28 	 = D/(A-B) (B-6) 

s 2 2 1 /2
Set tan 0 = - and ( Q + S ) =R

Q 

where S can be any value. 

Hence sin 0 =S/R 

cos 0 = Q/R 

tan 20 = Z tan 0 = 2 S/Qand 
2	 2 2 

l-tan e l-S /a

2 2
or tan 28 = 2QS/(Q -S ) (B-7) 

The equations of the transformation, thus; become 

1 
x = - (Qx' - Sy')

R 
(B-8) 

1 
y =R (Sx' + Qy') 

From Equations ,(B-6) and (B-7), we know 

D = ZQS(A-B) (B-9) 
02-SZ 

Substituting Equations (B-8) and (B-9) in Equations (B-4) and (B-5), 

respectively, we obtain 

2 2 
A'x' + 	B'y' + G' x' + H' y' + L' = 0 (B-10)

1 	 1 1 

2 	 z 
A'x' + B'y' + G' x' + H' y' + L' = 0 	 (B-11)

2 	 z 2 
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where 

(A-B) J 

1
B' 	 (A-B) J -	 R2 

and so on. 

Equations (B-10) and (B-11) represent the two elliptical 

cross-sections of the ellipsoid with reference to the new x'y' -system, 

in which there is ·no x'y' -term indicating that the principal axes of the 

ellipses are parallel to the new coordinate axes. On completing the 

squares in Equations (B-10) and (B-11), we get 

2 	 2 
A'(x'+V ) + B'(y'+W ) = U l 1 	 . 1 


2 2

and A'(x'+V ) + B'(y'+W ) = U z2 . 2 

which can be reduced to the standard form as 

2 	 2 
(x'+Vl) (y'+W 1) 

+ = 1 	 (B-12) 
u	 /A' U l /B'1 
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. 2 2
and (x'+ V ) (y'+W 2)2

+ = 1 (B -13)
U /A' U /B'

2 2 

The above two equations represent the two elliptical cross-sections of 

the ellipsoid in the standard form. Both have the same axial ratio of 

( B' IA I ) 1 I 2. 

In a special case, such as the parallel sections perpendicular 

to' one axis, say, the C-semiaxis, of an ellipsoid with three principal 

axes of 2A) 2B) 2C, the equation in the standard form of this ellipsoid 

is 

= 1 

The cross-section by the plane z = M (any section perpendicular to the 

C ".'"semiaxis) is the ellipse 

2 
x 

which can be r ,educed to the standard form as 

2 2 
x y+ = 12 t 2 2 . 2 2 

A (1-M /C ) B ( 1-M /C ) 

whose axial ratio, A( 1 -M2 /C 2) 1I2 A , is equal to that 
= BB(l-M2 /C2)1 /2 

of the two principal axes parallel to this section. 
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C. Calculation of a , b , .a , and b 
0 0 t t 

for the Granitic and Quartzose Pebbles 

Unlike the volcanic pebbles, the granitic and quartzose 

pbbbles were not observed at fold hinges. Coaxially deformed pebbles, 

which can be found in fold limbs, belong to the coaxial superposition of 

zf 11zt11 z	 • n follows that there will not be enough simultaneous 
0 

equations which can be used to solve the problem (pp. 87-92 and p.103). 

Therefore, let us assume that the granitic and quartzose pebbles have 

undergone the same deformation path (actually the same K-value) as the 

volcanic pebbles within the same stress system. The deformation path, 

line V V in Figure 25, of the volcanic pebbles has a slope of K=O. 274 
o m 

and can be represented by 

In af = 0. 274 In bf+ 0. 265 	 (6-3 7) 

(I) 	Granitic Pebbles 

In Figure 25, let us draw two lines parallel to line V V 
o m 

and touching the circumscribing polygon of the granitic pebbles. One 

line which passes through point 4I 3G and almost coincides with line 

V V , is simply represented by line V V • The other line which om · om 

passes through point 274G(O. 833, -0. 329) can be shown as 
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ln af - (-0. 329) = 0. 274(ln bf - 0. 833) 

or ln af = 0. 274 ln bf - 0. 557 (C -1) 

On th_e other hand, draw two lines parallel to the Zf/d 

contours and touching the same polygon at points 264G and 303G. The 

line passing through point 264G(O. 793, 0.191) is given by 

ln af - 0.191 = -2 (ln bf - 0. 793) (C-2) 

where -2 is the slope of any Z/d contour in a logarithmic deformation 

plot (see pp. 34- 35}. Equation (C-2) can be written as 

ln af = - 2 ln bf+ 1. 777 (C-3) 

The line passing through point 303G(O. 385, 0. 215) is 

1 n a f - 0. 215 = -2 ( 1 n bf - 0. 3 8 5) 

or ln af = - 2 1 n bf+ 0. 985 (C-4) 

Solving the simultaneous Equations ( 6 - 37) and (C -3), we 

get ln bf= 0. 665 and ln af = 0. 447. Coordinates (0. 665, 0. 447) are 

plotted as point G in Figure 25. Similarly, solving the simultaneous 
m 

Equations (C-1) and (C-3), we obtain ln bf= 1. 026 and ln af = 0. 275. 

Coordinates (1. 026, -0. 275} are plotted as point G.. Hence the line of 
·. . 1 

Equation (C-3) represent the lowest Z/d contour of the granitic pebbles, 

which has suffered the highest shortening strain among all the granitic 
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pebbles. And point G is assumed to represent the final deformed 
m . 

ellipsoid r~sulting from coaxial superposition of Xtll X and Ytll Y , 
0 0 

whereas point G. represents the one from coaxial superposition of 
1 

From the coordinates of points G and G. together with 
m 1 

K = 0. 274, we have five separate equations (see Equations (6-7) and 

(6-8b)) as follows: 

( 1 n a + 1n a = 0. 44 7 (C-5)
( og tgm

G 
m 

( 1 n b + 1n bt = 0. 6 65 (C-6) 
og gm 

(ln a - ln a = -0. 275 (C-7) 
( . tgm ogG. 

1 
(ln a + ln b + ln b = 1. 026 (C-8) 

og . og tgm 

In a 
K = tgm = 0. 2 7 4 (C-9)

In btgm 

Solving the above equations, we can get 

(ln a = 0. 086 
( tgm 

( I n bt = 0. 3 14 
gm 

and ( 1 n a = 0. 3 61 
( . og 

(In b = 0. 351 
og 
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or 	 (a = 1.43 
( og 


(b = 1. 42 

og 

(II) 	Quartzose Pebbles 

Using the same approach to calculate the axial ratios a , 
0 

b , a , and bt, we draw two lines parallel to line V V and touching
o t 	 o m 

the circumscribing polygon of the quartzose pebbles in Figure 25. One 

line passing through point 273Q(l. 141, 0. 482) is represented by 

ln af - 0. 482 = 0. 274 (In bf - 1. I41) 

or In af = 0. 274 In bf+ 0. 169 (C -I 0) 

The other line :which passes the point 2640(1. 520, -0. 186), is given by 

ln af - (-0. 	186) = 0. 274 (ln bf - 1. 520) 

or ln af = 0. 274 ln bf - 0. 602 (C -11) 

On the other hand, we draw two lines to parallel the Z/d contour and 

to touch the same polygon at points 263Q and 265Q. The line passing 

through point 263Q( 1. 4 77, 0. 425) is 

ln af - 0.425 =-2 (ln bf - 1.477) 

or 1n af = - 2 1 ti bf+ 3. 379 (C-12) 
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The line passing through point 26SQ(l. 264, 0. 039) is 

1 n a f - 0. 03 9 = -2 ( 1 n b I - 1. 264) 

or In a =-2 I n b + 2. 5 6 7 (C -13)
f f 

From simultaneous Equations (C-IO) and (C-I2), we get ln bf= 1. 412 

and In af = 0. 556. Coordinates (I. 412, 0. 556) are then plotted as point 

Q in Figure 25~ Solving simultaneous Equations (C-10) and (C-I3),
m 

we obtain In bf= 1. 055 and In af = 0. 458. Point Q (Figure 25) repre­
n 

sents the coordinates (1. 055, 0.458). Similarly, from Equations (C-II) 

and (C-I3), we have ln bf= 1. 394 and ln-.af = -0. 220. Coordinates 

(I. 394, -0. 220) are shown by point Q.. Here, the line of Equation
J 

(C-I2) represents the lowest Z/d contour (the highest shortening strain) 

while that of Equation (C-13) the highest Z/d contour (the lowest shorten­

ing strain) of all the quartzose pebbles. And points Q and Q are 
m n 

as s um.e d to represent the final ellipsoids resulting from coaxial super­

position of Xt 11 X and Yt 11 Y , whereas point Qj from coaxial super­
0 0 

position of X 11 Y · and Y 11 X . 
t 0 t 0 

From K = 0. 274 and the coordinates of points Q and Q., we 
n J 

have the following equations (see Equations (6-7) and (6-8b)): 
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(ln a + ln at = 0.458 (C-14)
( oq qnQ 

n 
( 1 n b + 1n bt = 1. 05 5 (C -15) 

oq qn 

(ln a - ln a = -0. 220 (C -1 6)
( tqn oq

Q. 

J 
 ( 1 n a + 1n b + 1n b = 1. 394 (C -1 7) 

oq oq tqn 

ln a 
K = tqn = 0. 274 (C -18)

ln b 
tqn 

Subtracting Equation (C-17) with Equation (C-15), we get 

lna = 0.339 
oq 

From Equation (C-14), we have 

1 n at = 0. 45 8 - 1 n a = 0. 11 9 
qn oq 


ln a

Thus tqn = 0. 119

ln b = = 0. 434 
tqn 0.274 0.274 

From Equation (C-15), we obtain 

lnb = 1.055 - lnb 
oq tqn 


= 0. 621 


So a = 1. 40 and b = 1. 86. 
oq oq 
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