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INTRODUCTION

The concept of variety (i.e. equational class) of algebras
of a given type was first introduced in 1935 by Garrett Birkhoff [3].
In his paper, he has shown that a class of algebras of a given type
forms a variety if and only if it is closed under the formation
of homomorphic images, subalgebras and direct products. In the
same paper, he has also shown that, if one ignores the foundation
problems which in any case can be easily circumvented, the varieties
of algebras of a given type form a complete lattice under class

inclusion,

Recently there has been much interest in investigating the
properties of this lattice for algebras of a given type, and, if

possible, giving a completé description of this lattice.

The former problem.has been dealt with more successfully than
the latter. For example, the lattice of varieties of lattices
has been extensively studied by several authors. Results in this
area may be found in K. A. Baker [1], G. Gratzer [14], B. Jbnsson

(8], [19] and ®. McKenzie [21],[22].

However, up to the present, the only complete descriptions
of (non-trivial) lattices of varisties of algebras of a given type
are the lattice of wrieties of algebras with one unary operation,

the lattice of varieties of idempotent semigroups, and the lattice



of varieties of commutative monoids given by E. Jacob-R. Schwabauer

{17], J. A. Gerhard [10), [11] and T. J. Head {16], respectively.

In this thesis, we investigate the lattice of varieties of
distributive pseudo-complemented lattices and give a complete
description of this lattice which turns out to be a chain of type
® + 1. Further, each variety in the lattice is completely deter-
mined by an equation in addition to those equations characterizing
distributive pseudo-complemented lattices. An outline of the thesis,

by sections, follows:

Section 1: We show that the class of all distributive

pseudo-complemented lattices is equational (i.e. a variety).

Section 2: The equation (En) is introduced and a characteri-~
zation of the class (En)* of diétributive pseudo-complemented
léttices which satisfy the equation (En) is given. This charac-
terization is a generalization of L. Nachbin's result for Boolean
algebras (L. Nachbin [20]) and the results for Stone algebras

obtained by G. Gritzer-E, T. Schmidt [12] and J. C. Varlet [24].

Section 3: In this section, we construct a subdirectly
irreducible DP-algebra (i.e. distributive pseudo-complemented
lattice regarded as an algebra) B from a given Boolean algebra B.

The classes Zfsn, r}Zn} 8fn are introduced and it is shown that
* = = = P
(En) Bn ? n gn

Section 4: We show that the class of all DP-algebras is

generated by its finite members. Moreover, a complete description



of the lattice is given. We also show, as a corollary of the
above result, that -ﬁn(nyo) are exactly the finite subdirectly

irreducible DP-algebras.

Section 5: Two characterizations of generalizations of

relative Stone algebras are given.



Section 1

Distributive Pseudo-complemented Lattices

In this section, we shall show that the class of all

distributive pseudo-complemented lattices is equational.

A pseudo-complemented lattice is a lattice L with zero
element O such that for each element a2 €1 there exists an element
a*e L so that, for all xelL, aAx = 0 if and only if x<€a*. It
is evident that for each element a of a pseudo-complemented lattice
L, the element a* is uniquely determined by a€ L. Thus * can be

regarded as a unary operation on L.

Pseudo-complemented lattices form an extensively studied class
of lattices and have been explored in detail by J. C. Varlet [25].
However, in his paper, the most interesting results require at least

the assumption of modularity, sometimes distributivity.

Examples of distributive pseudo-complemented lattices are
Boolean lattices, the lattice of all open subsets of a topological
space, the lattice of all ideals of a distributive lattice with
zero, the lattice of all congruence relations of an arbitrary

lattice and the Lindenbaum algebra of intuitivistic logic.

It is obvious that every pseudo-complemented lattice contains

the unit, viz. 0*. It therefore follows that every pseudo-complemented



lattice L can be regarded as an algebra (L; (V,A, *, 0, 1)) of the
type (2, 2, 1, 0, 0). 1In this paper, we are interested only

in distributive pseudo-complemented lattices. For simplicity,

we call such a lattice, reéarded as an algébra, a DP-algebra.

Thus, a DP-algebra is an algebra (L; (V, A, *, 0, 1)) of the

type (2, 2, 1, 0, O) such that (L; (v, A, O, 1)) is a distri-
butive lattice with zero (the smallest element) O and unit (the

largest element) 1, and * is the pseudo-complementation.

The following proposition lists some fundamental proper-~

ties of pseudo-complemented lattices:

Proposition 1. Let (L; (V, A, *, 0, 1)) be a pseudo-

complemented lattice. Then, for all a, b€L, we have

(i) o* =1
(ii) apa* = 0
(ii.i) agb=rb*< a*
(iv) aga**, i.e. aVMa** = a**
(v) a*** = a*
(vi) aAb = 0&a Ab** = 0
(vii) (aADb)** = g**A b**

(viii) (avb)* = a*A b*.
Proof: (i)—(iv) follow immediately from the definiticn.

(v). By (iv), aga**, hence a***g a* by (iii). Also,

a*< a*** by (iv). Thus a*** = a*,

{(vi). Clearly, aAb** = 0=>2Ab = 0. Assume aAb = O.



Then a £ b* and hence b**g a*, i.e. aAb** = 0.

(vii). Clearly, (aAb)**< a**A b**. By applying (vi)
repeatedly, we have aAbA(aAb)* = O=Ya**A b**A (aAb)* = O

= a**A b**< (aAb)**. Consequently, (aAb)** = a**A b**,

(viii). It is obvious that (avb)*g a*A b*., It remains
to show that a*A b*g (avb)*. But this follows from the following

observation:
(avb)*y a*Ab*&=y (av b)**< (a* Ab*)*
&> aybg (a*A b*)*
&> a, b<(a*A b*)*

&> aA(a*Ab*) = 0.= bA(a*A b*).

Remark: The dual of (viii) is not true in general. For
example, let R be the real line (with usual topology) and cﬁ the
lattice of all open subsets of R. Consider A ={xeR’ x< O} and

B = { xeR|x>o} . Then

(AAB)* = g* = IC 4 = R

A*y B* = ICAVICB = B¥A = R - {0}
and hence

(ANB)* # A*v B*,

6
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The following theorem shows that the class of all DP-algebras

is equational.

THEOREM 1. An algebra (A; (V, A, *, 0, 1)) of the type
(2, 2, 1, 0, 0) is a DP-algebra iff (A; (V,A, 0, 1)) is a distri-
butive lattice with zero O and unit 1 and satisfies the following
equations:
(i) aAha* =0
(ii) ava** = a**
(iii) (ayb)* = a* A b*
(iv) (aAb)** = a**A\ b**

(v) 0* = 1.
In particular, the class of all DP-algebras is equational.

Proof: Proposition 1 shows that DP-algebras satisfy the
conditions. Assume conversely that (i) - (v) are satisfied in a
distributive lattice A with zero O and unit 1. We have to show
that, for all a, x€ A, aAx = O iff xg<a*. Clearly, by (i),

x<a* implies aAx = 0. Assume now that aAx = 0, then we have

X & x** (by (ii))
= X*¥*A 1l
= xX**AO* (oy (v))

x**A (a*A a**)* (vy (i))

x**A (avar)** (by (4iii))

(xA(ava*r))** (by (iv))

((xna) Vv (xaa*))** (by distributivity)



= (xANax)** (since aAx = 0)

= X*¥*A arrr (by (iv))

= X**A a* (since a* = a*** by (ii) and (iii))
£ a*,

Remark: R. Balbes and A. Horn [2] have shown that an

algebra (A; (A, *, 0)) of the type (2, 1, 0) is a pseudo-complemented

semi-lattice iff it satisfies the following equations:

(1)
(i1)
(iii)
(iv)
(v)
(vi)

(vii)

aAb = bAa

afN(bAc) = (aAb)Ac
afNa = a

OAa =0

afn(anb)* = a Ab*

aANO* = a

In particular, the class of all DP-algebras is equational.



Section 2

A Characterization of the classes (Eq_)_*

For DP-algebras we consider the following equations (nz1):

n
. * * *
(En) (xll\.../\xn) V\/(xl/\...l\x:,L A...Axn) = 1.

i=1

It is evident that for n = 1, the equation (En) becomes

(B

* * ok
1) X*y x** = 1.

The problem of characterizing the class of DP-algebras
satisfying the equation (El) was firét raised by M. H. Stone;
since then several solutions have been offered - the first was
given by G. Gratzer-E.T. Schmidt (127 who named this class of DP-
algebras Stone algebras. Later solutions were given by J. C. Varlet
[24], O. Frink [9], G. Gratzer [13] and G. Bruns [5]. Other results
concerning Stone algebras may be found in R. Balbes-A. Horn [2],

C. C. Chen-G. Gratzer [6], [7], T. P. Speed (23] and J. C. Varlet [25].

We see immediately that bP-algebras satisfying the equations
(En) (n»1) are generalizations of Stone algebras. For each
nz1l, we denote by (En)* the class of all DP-algebras which
satisfy the equation (En). In the following theorem, a character-

ization of the variety (En)* is given which turns out to be a
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generalization of L. Nachbin's result for Boolean algebras
(L. Nachbin [20)) and the results for Stone algebras obtained

by G. Gritzer-E. T. Schmidt [12] and J. C. Varlet (24].

THIOREM 2. For a DP-algebra A, the following two condi-

tions are equivalent (n>1):

(1) Ae(B )*.
n
(2) every prime filter in A is contained in at most n

distinct maximal (proper) filters.
To prove theorem 2, we need the following:

LEMMA 1. (M. H. Stone), Let L be a distributive lattice,
F a filter and I an ideal in L such that FNAI = @g. Then there

7.

exists a prime filter P2T such that PNI

i)

@ and Q a filter in L} .

1

Proof: Let(Afz { Q‘FEQ, QNI

Then (A— is inductive and hence there is a maximal element P € (A‘ .

BEvidently, P2F and PNI = #. It remains to show that
P is prime, i.e. avbeP=>a€P or b€é€P, In fact, if a¢P and
b¢ P, then PcPv[a,>] and pcrvib,—~>] ([a,—7 = {XGL‘ asx} ).
By maximality of P, we have (PV[a,—] JNI £ ¢, (Pv[b,—=>1 0T # 4.
We claim that there exists py€ P such that pll\ ael. Indeed, if
pAa%I for all p €P, then, since xz»pAa for all xePV[a, —>],
where p &P, we have xgﬁI. Consequently (PV [a,~>] )NT = @, a
contradiction. Similarly, there exists p,€ P such that Ps A bel,
Put p = Py A paeP, then a Ap €l and b Apel and hence (avb)Ap =

(aAap) V(b Ap) € PNI, contradicting the fact that PATI = &.
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Proof of theorem 2: (1) =>(2). Assume that (2) is not

true. Then there would exist a prime filter P and n + 1 distinct

maximal (proper) filters M., ..., M

1’ nel containing P. By distri-
butivity and maximality, we have, for i =1, 2, ..., n + 1,

() v.d¢m,. Takea.e (\ M, =M, (i=1,2, ..., n). Then a e M,
I - S B

(i=1,2, veeyn; 3=1,2, soe, n +1; i #3)e We claim that

* , _ 3 :
a;* € M. Indeed, ai¢ M, and hence M, V [ai, 1] = A vy the
maximality of Mi. Thus O = xA ay for some xe”Mi, it follows then \

* 4 * * M.
that x¢< ai , i.e. ay EMi. Now al/\ .../\ane Mn+1' al/\ .../\ai[\...[\ane.fl

AN v

e [ o,
(i =1, 2, «.., n), hence (al,\

* * Y
...I\an) ¢P and (alf\.../\ai /\.../\an)

n
¢P(i =1, 2, ..., n). Since P is prime, it follows that( A ai) * v
’ i=1
n
V (al/\ .../\ai*/\ .../\an)*ép. But 1€P, thus the equation
i=1

(En) is not satisfied.

(2) =>(1). Assume that the DP-algebra A does not satisfy

the equation (En). Then there would exist a., ..., a €A such that

1’
n * n
c = ( A a.) v \/ (a;Aeeo Aa.*A ... Na_)*< 1. By Stone's
il ¥ gt * n

lemma, there exists a prime filter P such that cgf—P. Put

n
bn+1 = /\ ai
i=1

b, = agAecs Nag*A e Nay (i =1, 2, «ve, n)
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and consider the filters Fj = Pv[bj, 17 (=1, 2, «ovy n + 1),
Fori #j (i, =1, 2, eee, n + 1), we have bieﬁFj, for otherwise

we would have O

It

biA bjeFj and hence there would exist peP such

that pl\bj =0, i.e. psbj’“, thus c € P, a contradiction. It follows
that Fi(i =1, 2, ++so, n + 1) are proper filters. Moreover, we have
F,VF =& (84354, 3 =1, 2 «oey n+ 1) by the definition of

F.. Let M, be a maximal (proper) filter containing Fy (i = 1,2,e0.,n+1),
Then My, ..., M, aren +1 distinct maximal (proper) filters

containing P, thus (2) is not satisfied.



Section 3

The classes ?8 y "Pn and Q n_and the

relationship between them

In this section, we construct a subdirectly irreducible
DP-algebra B from a given Boolean algebra B by adjoining a new
unit 1 to B. The classes Bn’ rPn and ;n are introduced

and we show that
* . - -
(B )* = Bn = Pn = gn (nz1).

We recall that a Boolean algebra ia an algebra
(B; (V,A, Y 0, e)) of the type (2, 2, 1, 0, O) such that
(B; (V, A, 0, e)) is a distributive lattice with zero element O
and unit e, and ' is the complementation, i.e. for each a€B,
we have aAa' = 0, ava' =e, Put B = BU {1}, where x<1 for all
XGB, and define
x', if 0 # x € B;
x* = 1, if x = 03

O’ if X = 1-
We have the following:

13



Proposition 2. (B; (V,A, *, 0, 1)) is a subdirectly

irreducible DP-algebra and is called the DP-algebra obtained from

the Boolean algebra B by adjoining a new unit 1.

Proof: It is obvious that (B; (V,A, 0, 1)) is a distri-

butive lattice with zero O and unit 1.

We claim that * is the pseudo-complementation on B, i.e.
for all a, xeB, aAx = 0 &> x<a*., It is trivial if a = O or
a = 1. Assume that O<a<e, then a Ax = O&Hxga' = a*, Conse-

quently, (B; (V, A, *, 0, 1)) is a DP-algebra.

It remains to show that (B; (V, A, *, 0, 1)) is subdirectly
irreducible. Ve shall prove this by showing that there is a least
congrusnce relation ©>A, where A = {(x, x) l xeg} . To do this,

av{a, ), (e, 1}

let us consider the binary relation @O
on B, where A = { (x, x)‘ xe'ﬁ}and e is the unit of the Boolean
algebra B. It is evident that eo is a (DP-algebra) congruence
relation. We claim that 90539 for all congruences & Z A on B.
Indeed, let © be a congruence relation on B such that ©€>A. Then
x © y for some x, yeB with x # y. To show that GO_C_G, it suffices
to show that e & 1. It is trivial if either x or y is 1. If
neither x nor y is 1, then x, ye€B and hence we havé XVy* 8 e

and x*Vy © e. We assert that either xvy* or x*v y is not e, for
otherwise we would have x = xAe = x A(x*Vy) = xAy and y = yAe =

yA(xvy*) = yAx and hence x = y, a contradiction. Consequently,

a © e for some a €B with a # e. It then follows that a**6 e**,

14
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i.e. 2 ® 1 and thus e & 1. (Note that a** = a for all a ¢B with

O0<a<e, and that e** = 1).

Let B_ (n30) be the 2"-element Boolean algebras, and
En the DP-—algebrés obtained from Bn by adjoining a new unit 1.
Then En are all finite subdirectly irredtzg:ible DP-algebras. They
play a very significant role in characterizing the varieties
(En)* as well as in the description of the lattice of varieties of
DP-algebras. Some of the diagrams of §n are given in

Figure 1.

To give a characterization of the variety (En)* in terms of

Bn we need the following:

LEMMA 2. Let A be a DP-algebra, P a prime filter in A,
Mys oee, Mo (n0) all distinct maximal (proper) filters properly

containing P, and let a,, ..., a be the atoms of B (n20).

l’
Define the mapping ?? : A ->§n by

1, s if x eP;
?(X)z{ V{a | xem}, if x¢p.

Then @ is a DP-algebra homomorphism (i.e. ¢ prpreserves all the

operations on A) of A onto En.

Proof: (1) @(xVy) = @ (x) V¢ (y).

It is trivial if ?) (xvy) = 1. If SD(va)Se,

then xvyeﬁP and hence
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? (x) VvV <f(y)

1

(V{ai\ xeMi} )V(V{ajl yeMj} )

i

V{ai| xeP;li or yeMi}
=V{a] x.vyeMi}

= ¢ (xvy).

(@ P&ay) = @ A Py

If one of the x, y is an element of P, say xePCMi, then
px) A (P(y) = @) =V{ai{ yéMi}
=V{ai| xAyeMi}

= P (xAy).

If neither x nor y is an element of P, then

H

¢x) A Py) (\:{{ai[xeMi})A(\J{{ajlyeMj})

i

i\/j{ a; A ajl xeMi and y(—Mj}

1t

\i/{ai‘ XAyeMi}

1l

‘f (xAy).

17



(3) @) =0and P(1) =1 by definition of P .
) Px*) = Px)*.

If xeP, then x*tf.Mi for all i =1, 2, ..., n, and hence
P(x*) =0 = T(x)*. If X¢Mi for all 1 =1, 2, ..., n, then
x*€ P for otherwise we would have p¢x* for all peP, i.e. pAX # O
for all p eP, and hence the filter PV [x, 1] would be proper.
But then every maximal (proper) filter M2Pv[x, 1] would be

different from all Mi (i =1, 2, ..., n), a contradiction. It

1

follows that ?’(x*) =1 P {x)*. Finally, assume that xeMi - P
for some i, 1€i< B, Since the pseudo-complementation in —B.n of
an element y satisfying O<y<e is the complement of y in the

Boolean algebra Bn = [o, e] , and since this is the join of all

atoms not contained in y, we have

@G

(V{ai! X eMi} )*

Vi{a| x¢m,}

Vieg| xren]

[i]

P (x*).
(5) @ is onto.
If n = 0, then P is a maximal (proper) filter in A and ¢

is, in fact, a DP-algebra homomorphism of A onto §O'
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Assume n »0. We have to show that for each a e—ﬁn, there
exists an element x €A such that ?(x) = a., It is trivial if
a=0ora=1 Ifa =e, then pick X, €M, - P (i =1, 2, «e., n)

n
and put x = \/ x;+ Clearly, xefP and xeM, for all i =1, 2, ..., n.
i=1
It follows that P (x) = \/ {o,| xen. } =e. Finally, if
O<a<e, then there exist 2y, ay (i, 3 =1, 2, «oe, n3 i £ 3)
such that a_.< a and a.ia. For all i such th=t a.é a, we have
J 1 i
i . icl | aLg - M,
evidently m {Mjl ajs a} Sﬁ Mi Pick yeﬂ{MJ ‘ aJ a} M:L

for all i such that ai{l a, and put x = /\ {y. \ ai$ a} . Then

CF(X) = V{aj‘xeMj} = V{ajlaj'éa} = a.

The following theorem gives another characterization of

the variety (En)*.
THECREM 3. Let A be a DP-algebra. Then the following two
conditions are eqguivalent (n3»1):

(1) Aé(En)*

(2) A is isomorphic with a subdirect product of copies of

Proof: (1)=>(2). Let a, beA with a #Z b. We have to
show that there exists a DP-algebra homomorphism ?7 of A onto
Ek (0<k<n) such that ?(a) £ Sv(b). We can assume, without

loss of generality, that ai‘o. By Stone's lemma, there exists a



prime filter P such that a €P and b%l% By theorem 2, there exist

at most n distinct maximal filters containing P. Let Ml’ ooy Mk

(0O<k<n) be all distinct maximal filters properly containing P.
Lemma 2 then implies that there exists a DP-algebra homomorphism

@ of A onto 'ﬁk such that @ (a) # ¢ (b).

(2) =»(1). It is trivial that Eb satisfies the equation

(En) (nz1). Moreover, since each gn (n>1) has exactly n distinct

maximal filters, viz. the principal filters generated by atoms of

Bn' we see immediately, by theorem 2, that B ceey .B.n all satisfy

1’
the equation (En). Consequently, A é(En)*.

Notationg:

®.,
B

the class of all one-element DP-algebras;

o = HSP <§n) = the variety of DP-algebras generated

by §n (nz0);

&

the class of all finite DP-algebras;

33 ® = the variety of all DP-algebras;

the class of all DP-algebras A such that every

7

20

prime filter in A is contained in at most n distinct

maximal (proper) filters (nzl);

o]
it

the class of all DP-algebras A such that every
(proper) prime ideal in A contains at most n

distinct minimal prime ideals (nzl).
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We see immediately that 53C)is the variety of all Boolean

algebras while 33].18 the variety of all Stone algebras.
As an immediate consequence of theorems 2 and 3, we have
the following:

Corollary 1. For nz1l, we have

¥ - B .
(En) - IE n n
Proof: (E )* = 1? is the content of theorem 2.
s n n

Since o? Bl’

P v * - *
from theorem 3 that (E.n) < Bn' On the other hand, Eng(En)

seey B_ are all subalgebras of B_, it follows
n n

by virtue of the fact that B € (B )*. Thus (E)* = P8 .

The following theorem gives another characterization of the
variety (B_)*.
n

THEOREM 4. Let L be a distributive lattice with O and 1.

Then the following three conditions are equivalent (nzl):

(1) every prime filter in L is contained in at most n distinct
maximal (proper) filters.

(2) every (proper) prime ideal in L contains at most n
distinct minimal prime ideals.

(3) L is the lattice-theoretical join of any n + 1 distinct

minimal prime ideals in L.

Proof: (1)4=>(2). Trivial.



(2) = (3). If not, then there would exist n + 1 distinct
n+l
minimal prime ideals Ql, ooy Qn+l such that \/ Qi(:L. It follows
i=1

from Stone's lemma that there exists a prime filter P disjoint from

n+l

Y Q;- Clearly, L-P is a (proper) prime ideal containing Q>
1=

QE' ooy Qn+1’ a contradiction.

(3) =»(2). 1If not, then there would exist a (proper)
prime ideal I containing n + 1 distinct minimal prime ideals
n+l
Ql’ Qa,..., Qn+l' But then we have \/ Qi <€ ICL, contradicting
i=1

(3).

Combining the results of theorems 2, 3, and 4, and corollary

we have the following:

THEOREM 5. Let A be a DP-algebra. Then the following

.

conditions are equivalent (nz1):

(1) Ae(E )
(2) A € zsn

(3)A€°Fn
(A)Aegn

(5) A is the lattice-theoretical join of any n + 1

distinct minimal prime ideals in A,

22
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Section &

The lattice

We shall show in this section that the variety {8
of all DP-algebras is generated by its finite members. Furthermore,
a complete description of the lattice of varieties of DP-algebras
is given, viz. a chain of type A& + 1. As a first result in this

respect, we have the following:

THEOREM 6. P _,C B ,< ZBlc... cbgnc Bmlc... C B

("c " means proper inclusion).

Proof: It is evident that B—lc BO < Bl' For nz1l,

we have, clearly, Bn - @m_l. It remains to show that
B n 4 B nel But this follows immediately from the fact that
Bn+l (3 Bn+l contains a prime filter {l} which is contained in

exactly n + 1 distinct maximal filters.

LEMMA 3. Let A be a DP-algebra, s cees € (m2>1) elements

of A satisfying the conditions:
ei/\ej =0 (i, 3 =121,2, eoe, myi# 3

e.** = e; (i =1, 2, eau, m).

Put S ={ A ea*1J§{1, 2, e, m}} U {( A éa*)*lJ£{1,2,...,m}}

oa€J a€ed
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L
and T = { xl\/...yxnl xie S, 1$isn} . Then T is the subalgebra
of A generated by { €y eees em} .
In particular, T is finite.
Proof: It is clear that S is closed under *.

We claim that S is closed under A . To do this, it suffices

to show that

( /\ et )n (A e"‘)E—Sdnd

l BGJZ

(/\ e*) (/\ eB*)éS

€
oceJ B J2

where Jl, J2 are arbitrary subsets of {1, 2y eeey m} . Indeed,

we have

N
Q
-~
o®
R
*
N
>
—
>
<,
o®
©w
»
N
fi
~
s
Q
~—r
>
-
o®
™
N

]
P



2>

and

(N e )A(A o) (Y, W) A (Vo)

aed) Bed, Bed,

* X

(( B eJ, QBD

n

* %

( \ {ehep|aedy, 8 GJZ})

i)

(\/{ ale\J )H
(A o)

oed f\J
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Evidently, O, 1€T and {el, ooey em} € S&T. Moreover, T is
closed under V by the definition of T, and T is closed under

A by distributivity. Finally, T is closed under * since
¥ * * C
(xlv...vxn) = X YA e A €SET.

Hence T is a subalgebra of A containing {el, ey em} , and T is

evidently the subalgebra generated by {el, cosy em} .

With the aid of lemma 3, we are now in a position to prove

the following:

THEOREM 7. Let E be a variety (equational class) of
- - <
DP-algebras. If é $ ZBn (nz-1), then Bn+l“ € .

Proof: If n = -1, then ﬁ contains a non-trivial DP-algebra
A by virtue of the fact that 6 $ B 1 But then A contains

B, as a subalgebra and hence BO < ﬁ .

I.f E $ BO’ then there exists a DP-algebra A € E which is
not Boolean. Hence there exists an element a€ A such that aya*< 1.
It then follows that{O. ava*, 1} is a subalgebra of A isomorphic

with El' Hence BIS E .

Now assume that nz 1l and take A€ ﬁ - B ' By corollary 1,

there exist 81y oo, B € A such that

n * n ~
(i{\l ai) Y, \/ (al/\.../\ai*/\.../\an)*<l.

i=1
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Put

- * *x _ * % : * * %
ey = (al/\.../\a:.L /\.../\an) = a) /\.../\a:.L /\.../\an

(i =1, 2, ..., n)

* %

n n
n1 (A 2) = Ay
i=1 i=1

Clearly, eiAej =0(i, j=1,2, vee, n+1;1i# 3) and ei** = e

(i =1, 2, ..., n +1). By lemma 3, the subalgebra B generated
by { €1 ooy en+l} is finite.  For 1€£i<n, we have

* = P .* s o0 * .** * P *)* $
e, (al/\ Nag*A A an) >a.** so that (el A Ae, )

*

n‘ * n * %
- — a% * *)x
(i/«\l ai**) —(i/—\l ai> = e} , « Moreover, (e1 AeeeNesNeooAe *)* =

e;*. Ue claim that Bé(En)*. In fact, put x; = e,* (i =1, 2, ..., n),
we have

* *

n n n n
(/\x) v\/(xl/\.../\x.*/\...l\x )*:(/\ ei*)V\/(el*A...AeiA...Ae x)*
i=1 Y i=n 1 n i=1 i=1 n

n
* *
€ % V inei

*

n n
=(i/=\l ai) v 1\=/1 (alA...l\ai*A.../\an)*

< 1.

By theorem 2, there exists a natural number k»n + 1 and a prime

filter P in B which is properly contained in exactly k distinct
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maximal (proper) filters in B. Hence Eke 6 by lemma 2, and there-
fore Bn+l L, 2 kg é by theorem 6.

The following theorem shows that the class of all

DP-algebras is generated by its finite members.
THEOREM 8. B = H S P(W ).

Proof: We have to show that every equation which does not
hold in some DP-algebra A does not hold in some finite DP-algebra B.
Let @;(V) be an algebra of the type T of DP-algebras, absolutely
freely generated by some countable set V, let p, q € @c(V) and assume
that the equation (v, g) does not hold in some DP-algebra A, i.e.
there is a homomorphism ? : @t(V) —> A such that @ (p) # ' (q).
There exists a finite sequence of finite sets Fog Fls ...an
such that Fog V., D, qQFn and for each i =1, 2, ..., n and each
aGFi, one of the following holds:

(a) there exist b, ¢ €F, , such that a = bvc or a = bAc;

(b) there exists beF, . such that a = b*

(c) a=0ora=1.
Define M = @ (FIU { @ (a)|aer }U{o, 1,} . Let B be the
sublattice (not sub-DP-algebra) of A generated by M. Then B as a
finite distributive lattice is pseudo-complemented, and hence can
be regarded as a DP-algebra. Furthermore, since the-pseudo—complement
of every element x € 7 Uﬁg belongs to M, the pseudo—complement‘of

every element x e?)(Fn) is the same in both A and B. Now let
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Y/ : %;(V)-—-—)B be a homomorphism extending ¢ |FO. We shall
show by induction on i that \[/[Fi = <p|Fi for all i =0, 1, ..., n.
It is trivial for i = 0. Assume that it is true for i - 1 (iz1l).
Take aeFi. We have to show that \ll(a) = 50 (a). It is trivial

ifa=0o0ra=1. If a=>bvc, where b, ceFi 10 then

Pa) =@ (bve) = @) V,9c) = Y (1) V,¥(e) = ¥ (o) V¥ (c) =fbv c)=Y(a)

Similarly, cf.('a) = Y (a) for a = bAc, where b, ceF, Finally,

1
if a = b* for some beF, ., then P(a) = P(b*) = P(b)* =
Y (o)* = Y (b*) = P (a). It follows, in particular, that

‘P(p) = ¢(p) # P (q) = YJ (q), i.e. the equation (p, q) does not

hold in B.

LEMMA L, 2800 =\/{Zﬁn|n = -1, 0, 1, } . (\ is the

Jjoin in the lattice of varieties of DP-algebras).

Proof: Let A be a finite DP-algebra. UWe are going to show
that A € 2Bn for some integer n%»-1. It then follows, by theorem 8,
that B =\/{Bn\n =-1, 0, 1, ...} . Tt is trivial if A ¢ 28_1
or A € BO' Assume that A is a non-trivial finite DP-algebra which
is not Boolean. Then A has finitely many maximal (proper) filters
and hence A € "Fn = B n for some nZ1 by theorems 2 and 5. This

completes the proof of the lemma.
Now we are in a position to prove the following:

THEORE}E_Q. The chain of theorem 6 is the whole lattice of



30
varieties of DP-algebras.

Proof: et ﬁ be an arbitrary variety of DP-algebras, we

are going to show that either é = BCD or é: B n for some
integer n»-1. In fact, we have either E 2 Bn for all

n=-1, 0, 1, ..., in which case ﬁ EV{Bn\n = -1, 0, 1, ...}
= B ®’ i.e. ﬁ = B o °F else there exists a largest n such

that &ng ﬁ . But then we have Bn = € ,‘ for otherwise

we wbould have ﬁ 3’5 Bn and hence, by theorem 7, Bn+l§ ﬁ .

This contradicts the choice of n.



Figure 2:

n+
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(R 2§§l = the variety of all Stone algebras.

the variety of all Boolean algebras.

The lattice5



The following corollary shows that the DP-algebras En (nzO)‘

are exactiy the finite subdirectly irreducible DP-algebras.

Corollary 2. The DP-algebras En (n»0) are exactly the finite

subdirectly irreducible members of Bm.

Proof: By proposition 2, En (nz0) are all subdirectly

irreducible. It remains to show that every finite subdirectly
irreducible DP-algebra I is isomorphic with some En (nz0). In

fact, there is a natural number n such that I'ﬁn \S lL‘{‘T§n+1‘

(|4} = the cardinality of A). Put & =H S P (). IrL¢ B
C . g X
then & il = ot by theorem 7. In particular, Bn»fle HS P (L).

By corollary 3.4, B. Jénsson [18], En €H S(L). This is impossible.

+1
Thus we have o{ - Bn’ and hence L€l S(En). Consequently,

—B. .
n

L

IR

Remark: H. Lakser has shown that every subdirectly irre-

ducible DP-algebra is of the form E, where B is a Boolean algebra.

Hence B are exactly the subdirectly irreducible members of 5300.
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Section 5 )

Generalizations of relative Stone algebras

A lattice L is said to be a relative Stone algebra if every
closed interval in L is a Stone algebra; (G. Gratzer-E. T. Schmidt [12]).
In their paper [12] , G. Gratzer and E. T. Schmidt have shown that
a distributive lattice L in which evéry closed interval (as a
sublattice) is pseudo-complemented is a relative Stone algebra iff

one of the following two equivalent conditions holds:

(1) for any pair of incomparable prime ideals P and Q in
L’ pVQ = Lo

(2) §2 is not a lattice homomorphic image of L.

In this section, we shall prove two theorems which turn out

to be generalizations of the result mentioned above.

THEOREM 10. Let L be a distributive lattice in which every
closed interval (as a sublattice) is pseudo-complemented. Then

the following two conditions are equivalent:

(1) every closed interval [a, b} in L satisfies the equation

(B ), i.e.'[a, b] € (En)*.

n
n+l
(2)L=:\v/ Qi for any n + 1 pairwise incomparable prime ideals
i=1 ’
Ql’ **y Q’l’H-l in L.

Proof: (1)=2(2). If not, there would exist n + 1
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pairwise incomparable prime ideals Ql, QZ' see, Qn+l such that
n+l
AV Q CL. For each i, 1€i<n + 1, we have
i=]1
+
#1i
l
n+l
for otherwise we would have Q; 2 A Q. for some i (1<ign + 1)
b
J=1
n+l n+l
and hence Qi = Qi V /\ J /\ le Q ). Since Qi, Qj are incom-
JA #i
j=1 1

parable, in Qj> Qi. Hence Qi is A -reducible, contradicting the
n+l ' :

fact that Q; is prime. Take b, € AN Q. - Q i=1,2, veoy, n+1),
JAL
j=1

and put Ci:-bVo--vb Vbi+choovb (izl, 2, e ey n+1)o

1 i-1 n+l
: - n+l n+l
Now consider the closed interval I —[ A cl, a vy \/ Ci] '
i=1 i=1

n+1
where aelL - \/ Q- Clearly, c;€I for alli =1, 2, ..., n + 1,

and hence c;*e T exist (i =1, 2, ..., n + 1) by hypothesis. It
is evident that Cj¢ Qi for all j # i, for otherwise we would have
bis cje Q. and hence b_.e Q., contradicting the cho:'.lce of bi' Since
Q is prime, we have JQ ¢Q In particular, i/}l cié Qn+1'

i ies * e R NP J. .
But then jg cjéQi implies s ¢Qi, and hence cl/\ Acl A /\cné C“l


http:Qispri.me
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*

Consequently,( Ci) € Q (cl/\ coe A ci* Aeco A cn)* € Qi

1

n+1?

L >

(i =1, 2, ..., n) (since for a prime ideal Q, x¢Q => X Ax* =

0€eQ =» x*€ Q). We have therefore

n+l n * n n+l
av\/ ci:—-( A Ci)v\/ (cl/\.../\ci*/\.../\cn)*ev Q‘i
i=1 i=1 i=l i=1
n+l
by (1). Hence a e \/ Q; which ecentradicts the choice of a.
i=1

(2) => (1). If not, there would exist a closed interval
[_a, b] in L such that there are n + 1 distinct minimal prime ideals
n+l

Ql (i =1, 2, «oo, n +1) in[a, b) with V QJ'_{ [a, b] by theorem k.
i=1

The mapping ¢ : L —>[a, b] defined by ?(x) = (xva)Ab is
clearly an epimorphism. Put Qi = ?-l [Q:'L] (i=1,2, soe, n+1).
Then each Qi is clearly a prime ideal in L. Moreover, Ql’ .y Qn+1
are pairwise incomparable, because Q. € Qj (i # j) would imply

Q]!_ = ?EQJ < ?[Qj'] = Q:j’ and hence Qi = Q‘fj', a contradiction.

n+l
By (2), we have L = \/ Q. It follows immediately that [e, v] =
vq

n+l n+l

n+l
er1] = e[ v o] = vV ¢[e] = V 9. This is a contradiction.
i=1 * i=1 o

THEOREM 11. Let L be a distributive lattice in which every
closed interval (as a sublattice) is pseudo-complemented. Then the

following two conditions are eguivalent:



(1) every closed interval Ca, b] in L satisfies the equation
(En), i.e. [a, b] € (En)*-

(2) §n+l is not a lattice homomorphic image of L.

Proof: (1)=>(2). 1If not, then §n+1 would be a lattice

homomorphic image of 1.. Let SD: L -—)uﬁm be the (lattice)

-1

epimorphism and a reey & the atoms of §n+ Now consider the

1’ n+1 1’
principal ideals Q) = o, ai*'] (i =1, 2, +.., n + 1), then they
P . _ . . - TS R
are pairwise incomparable prime ideals of Bn+l' Put Qi = @ [Qi-_} s
then Ql,..., Qn+l are n + 1 pairwise incomparable prime ideals in L.

n+l
By theorem 10, we have L = in Q- This implies B . =@ (L] =

n+l "~ n+l n+l
v ?9[ Qi] = \/ Qi But this is impossible since \/ QJ{ =
i=1 i=1 i=1
(2) = (1). 1If not, then there would exist n + 1 pairwise
) ’ n+l
incomparable prime ideals Ql, ooy Qn+l such that \/ Qi< L. By

i

=1
: n+l

Stone's lemma, there would exist a prime ideal R 2 Qi. Consider
i=1

the family G consisting of the following subsets of L:

n+l
L-R R-U q, 0 - U Q (=1, 2, oo m+ 1),
i=1 JAL
U Vg, - U
(Q.NQq.) - Qy oee, Q. - Q, (1€i.€n + 15 i, all
i J KA k j=1 :Lj KA | k J 3
k#j J distinct)
n+l

y e O 0y

i=1
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g is clearly a partition of L and hence induces an equivalence
relation © on L. We claim that © is a lattice congruence relation

on L. This follows from the following observations:

n+l n+l
(i) xel - R, yeR-U Q=rxvyeL - R, xAy€R - U Q-
i=l - i=1

(11)xeL—R,yer\Q U QB,¢#J§I={1, ...,n+l-}
weJ Be I-J -

=> xVvye¢l - R, XAyE (\ Qa- U QB
o€d . BpelI-J

n+l n+l

(1i1) xer - U o, ve N o, = U o, gficr=sxvyer- U q,
j=1 aed BETI-J i=1

xAyé(\Q UQ

oaed Bel-Jd B
(1v)x€n U QB,yér\ Q - U Qb,g%Jl, Je1
oceJl BéI-—Jl YeJ2 E)el-J2
N q V) Qg if 3N, £ 8
x&d NJ, BeI-—J nJg
1 2
=$);yy €
n+1
U Y 1fJf\J = ¢.
i=l
X,\y e . (\ Q’(I - U QB
aéJlUJa BeI-JlUJZ
n+l n+l

(v) ye(\ Qs and yehe Fo=> xvyeh, xAye N Q-
1=1 i=1



Evidently, L/0 = 'B'n

L, a contradiction,

+).,, hence B
n

+1

is a lattice homomorphic image of
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