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IN'J~RODUCTION 

The concept of variety (i.e. equational class) of algebras 

of a given type was first introduced in 1935 by Garrett Birkhoff [3]. 

In his paper, he has shown that a class of algebras of a given type 

forms a variety if and only if it is closed under the formation 

of homomorphic images, subalgebras and direct products. In the 

same paper, he has also shown that, if one ignores the foundation 

problems which in any case can be easily circumvented, the varieties 

of algebras of a given type form a complete lattice under class 

inclusion. 

Recently there has been much interest in investigating the 

properties of this lattice for algebras of a given type, and, if 

possible, giving a complete description of this lattice. 

The former problem has been dealt with more successfully than 

the latter. For example, the lattice of varieties of lattices 

has been extensively studied by several authors. Results in this 

area may be found in K. A. Baker [l], G. Gratzer [14], B. J6nsson 

(18], [19] and R. McKenzie [21J, [22J. 

However, up to the present, the only complete descriptions 

of (non-trivial) lattices of varieties of algebras of a given type 

are the lattice of ~rieties of algebras with one unary operation, 

the lattice of varieties of idempotent semigroups, and the lattice 
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of varieties of commutative monoids given by E. Jacob-R. Schwabauer 

(17], J. A. Gerhard [10], [li] _and T. J. Head (16], respectively. 

In this thesis, we investigate the lattice of varieties of 

distributive pseudo-complemented lattices and give a complete 

description of this lattice which turns out to be a chain of type 

~ + 1. Further, each variety in the lattice is completely deter­

mined by an equation in addition to those equations characterizing 

distributive pseudo-complemented lattices. An outline of the thesis, 

by sections, follows: 

Section 1: We show that the class of all distributive 

pseudo-complemented lattices is equational (i.e. a variety). 

Section 2: The equation (E ) is introduced and a characteri­
n 

zation of the class (E )* of distributive pseudo-complemented
n 

lattices which satisfy the equation (E ) is given. This charac­
n 

terization is a generalization of L. Nachbin's result for Boolean 

algebras (L. Nachbin [20]) and the results for Stone algebras 

obtained by G. Gratzer-E. T. Schmidt (12] and J. C. Varlet [24]. 

Secti?n 3: In this section, we construct a subdirectly 

irreducible DP-algebra (Le. distributive pseudo-complemented 

lattice regarded as an algebra) ~ from a given Boolean algebra B. 

The classes (53n' 1< n' ~ n are introduced and it is shown that 

(En)*= (Bn = 1< n = d-n· 

Section 4: We show that the class of all DP-algebras is 

generated by its finite members. Moreover, a complete description 



of the lattice is given. We also show, as a corollary of the 

above result, that B (n ~O) are exactly the finite subdirectly 
n 

irreducible DP-algebras. 

Section 5: '11wo characterizations of generalizations of 

relative Stone algebras are given. 
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Section 1 

Distributive Pseudo-complemented Lattices 

In this section, we shall show that the class of all 

distributive pseudo-complemented lattices is equational. 

A pseudo-complemented lattice is a lattice L with zero 

element 0 such that for each element a EL there exists an element 

a*E L so that, for all x EL, a f\ x = 0 if and only if x~ a*. It 

is evident that for each element a of a pseudo-complemented lattice 

L, the element a* is uniquely determined by a EL. Thus * can be 

regarded as a unary operation on L. 

Pseudo-complemented lattices form an extensively stud5_ed class 

of lattices and have been explored in detail by J. C. Varlet [25]. 

However, in his paper, the most interesting results require at least 

the assumption of modularity, sometimes distributivity. 

Examples of distributive pseudo-complemented latti6es are 

Boolean lattices, the lattice of all open subsets of a topological 

space, the lattice of all ideals of a distributive lattice with 

zero, the lattice of all congruence relations of an arbitrary 

lattice and the Lindenbaum algebra of intuitivistic logic. 

It is obvious that every pseudo-complemented lattice contains 

the unit, viz. O*. It therefore follows that every pseudo-complemented 
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lattice L can be regarded as an algebra (L; (V, /\, *, O, 1)) of the 

type (2, 2, 1, 0, 0). In this paper, we are interested only 

in distributive pseudo-complemented lattices. For simplicity, 

we call such a lattice, regarded as an algebra, a DP-algebra. 

Thus, a DP-algebra is an algebra (L; ( V , /\, *, O, 1)) of the 

type (2, 2, 1, O, 0) such that (L; ( V, /\, 0, 1)) is a distri­

butive lattice with zero (the smallest element) 0 and unit (the 

largest element) 1, and * is the pseudo-complementation. 

The following proposition lists some fundamental proper­

ties of pseudo-complemented lattices: 

Proposition 1. Let (L; ( V, /\, *, O, 1)) be a pseudo-

complemented lattice. Then, for all a, b EL, we have 

(i) 0* = 1 

(ii) af\ a* = 0 

(ii.i) a~ b ~b*~ a* 

(iv) a'a**, i.e. a Va** = a** 

(v) a*** = a* 

(vi) a Ab = O~a Ab** = 0 

(vii) (a/\b)** = a**/\ b** 

(viii) (av b) * = a*/\b*. 

Proof: (i)-(iv) follow immediately from the definition. 

(v). By (iv), a~ a** 1 hence a***~ a* by (iii). Also, 

a*E a*** by (iv). Thus a*** = a*. 

(vi). Clearly, a /\ b* * = 0 ~ o. f\ b = O. Assume a/\ b = O. 
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'l'hen a~ b* and hence b**~ a*, i.e. a/\ b** = O. 

(vii). Clearly, (a Ab)**~ a**A b":*. By applying (vi) 

repeatedly, we have aA b A (a/\ b)* = O~a**A b**/\ (a Ab)* = 0 

-=9-a**/\ b**~ (a/\b)**. Consequently, (a Ab)**= a**A b**. 

(viii). It is obvious that (a Vb)*~ a*/\ b*. It remains 

to show that a*/\ b*~ (a Vb)*. But this follows from the following 

observation: 

(a Vb)*~ a* I\ b*~ (a Vb)**~ (a* I\ b*) * 

~ avb~ (a*/\ b*)* 

~a, b~(a*/\b*)* 

~a/\. (a*/\ b*) 0 - b I\ (a* J\ b*). 

Remark: The dual of (viii) is not true in general. For 

example, let _R be the real line (with usual topology) and cf... the 

lattice of all open subsets of R. Consider A = { x f R J x <0} and 

B= { x ER 1 x > 0} • Then 

(A/\ B) * =¢* = IC ¢ = R 


A*V B* = ICAV ICB = B'•lA = R - {o} 


and hence 

(A f\ B) * f. A* V B*. 
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The following theorem shows that the claBs of all DP-algebras 

is equational. 

THEOREM 1. An algebra (A; ( V , /\ , *, o, 1)) of the type 

(2, 2, 1, O, 0) is a DP-algebra iff (A; ( V, f\, O, 1)) is a distri­

butive lattice with zero 0 and unit 1 and satisfies the following 

equations: 

(i) aAa* = 0 

(ii) a Va** = a** 

(iii) (avb)* ==a*/\ b* 

(iv) (aAb)** =a**/\ b** 

(v) 0* = 1. 

In particular, the class of all DP-algebras is equational. 

Proof: Proposition 1 shows that DP-algebras satisfy the 

conditions. Assume conversely that (i) - (v) are satisfied in a 

distributive lattice A with zero 0 and unit 1. We have to show 

that, for all ai x EA, a/\ x = 0 iff x ~a*. Clearly, by (i), 

x ~a* implies a Ax = O. Assume now that a f\ x = 0, then we have 

x~x** (by (ii)) 

= x* * /\ 1 

= x** /\ O* (by (v)) 

= x** /\ (a*/\ a**)* (by (i)) 

= x**A (a Va*)** (by (iii)) 

= (x f\ (a Va*))** (by (iv)) 

= UxJ\a) V (x/\a*))** (by distributivity) 
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= (x/\a*)** (since a/\ x = 0) 


= x* * /\ a*** (by (iv)) 


= x**A a* (since a* - a*** by (ii) and (iii)) 


~a*. 

Remark: R. Balbes and A. Horn [21 have shown that an 

algebra (A; (A, *, 0)) of the type (2, 1, 0) is a pseudo-complemented 

semi-lattice iff it satisfies the following equations: 

(i) a/\b=bAa 

(H) af\(bf\c) = (a/\ b) /\ c 

(iii) a A a = a 

(iv) 0 /\a = 0 

(v) al\(af\b)* a/\ b* 

(vi) a AO* = a 

(vii) 0** = o. 

In particular, the class of all DP-algebras is equational. 



Section 2 

A Characterization of the classes (E )* 
~~~~--~~~~~~~~~~~~--n~ 

For DP-algebras we consider the following equations (n ~l): 

n 

(E ) Cx A ••• /\ xn) * V V ( x /\ • • • /\ x . * f\ • • • A x ) * = 1. 
n 1 1 i n 


i=l 


It is evident that for n = 1, the equation (E ) becomes 
n 

The problem of characterizing the class of DP-algebras 

satisfying the equation (El) was first raised by M. H. Stone; 

since then several solutions have been offered - the first was 

given by G. Gratzer-E.T. Schmidt [12] who named this class of DP-

algebras Stone algebras. Later solutions were given by J .. c. Varlet 

[24], O. Frink [9], G. Gratzer (131 and G. Bruns [5]. Other results 

concerning Stone algebras may be found in R. Balbes-A. Horn [ 2], 

C. c. Chen-G. Gratzer [6], (7], T. PQ Speed [23] and J. C. Varlet (25]. 

We see immediately that DP-algebras satisfying the equations 

(E ) (n ?l) are generalizations of Stone algebras. For each 
n 

n~l, we denote by (E )*the class of all DP-algebras which 
n 

satisfy the equation (E ). In the following theorem, a character­
n 

ization of the variety (E )* is given which turns out to be a 
n 

9 
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generalization of L. Nachbin's result for Boolean algebras 

(L. Nachbin [20]) and the results for Stone algebras obtained 

by G. Gr&tzer-E. T. Schmidt [12] and J. C. Varlet [24]. 

THZOREM 2. For a DP-algebra A, the following two condi­

tions are equivalent (n~l): 

(1) A E-(E: )*.
n 

(2) every prime filter in A is contained in at most n 

distinct maximal (proper) filters. 

To prove theorem 2, we need the following: 

LEMMA 1. (M. H. Stone). Let L be a distributive lattice, 

F a filter and I an ideal in L such that F(\ I = ¢. Then there 

exists a prime filter P:? F such that PA I = ¢. 

Proof: Let o4- == { Q. \ F~Q, Qf\I = ¢and Q. a filter in L} • 

Then cA- is inductive and hence there is a maximal element PE v4 . 
Evidently, P ~ F and P ()I = ¢. It remains to show that 

P is prime, i.e. a Vb~ P ~a E: P or b t: P. In fact, if a f P and 

bf P, then PCPV (a,~J and PCPV[b,~] ((a,-!)-] = { xE-L\ a.~x} ) .. 

By maximality of P, we have (P V [a, 4-J )()I f ¢, (P V [b, 4-J )/\I /. ¢. 

We claim that there exists p e- P suc:1 that p A a E 1. Indeed, if'
1 1 

pAaf-I for all pE-P, then, since X'lpAa for all xE-PV[a,-)-], 

where p E-P, we have x f I. Consequently (P V [a,-?J )(\I = ¢, a 

contradiction. Similarly, there exists p E: P such that p f\ b EI.
2 2 

Put p = p f\ Pz E P, then a A p €I and b f\ p E I and hence (av b) A p = 
1 

(a A p) V (b Ap) E Prt I, contradicting the fact that Pf\ I = ¢. 
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Proof of theorem 2: (1) :::;.. (2). Assume that (2) is not 


true. Then there would exist a prime filter P and n + 1 distinct 


maximal (proper) filters M1 , ••• , M containing P. By distri­
n+1 


butivity and maximality, we have, for i = 1, 2, ••• , n + 1, 

. i ·/ ' 

() M.JM.• Take a. E (\ M . - M. ( i = 1, 2, ••• , n) • Then a.EM.J=f ). ljfi l jfi J l J 

(i = 1, 2, ••• , n; j = 1, 2, ••• , n + l; i f. j). We claim that 


a.*e M.• Indeed, a.J.M. and hence M.V [a., 1] =A by the

l 1 l~ l l l 

-
maximality of M.. Thus 0 =x A a. for some x E M., it follows then 

l l l 

that x ~ a . * , i. e • a . * E M . • Now a A • • • I\ a E: M 
1

, a A ••• /\ a~ " ,, • • /\ a ~ Mi 
i i i 1 n n+ 1 i n · 

~) p ,~~ (' i; '< .( 

(i = 1, 2, ... , n), hence (a /\ ••• Aan)*4P and (a f\ ••• /\ai*/\ ••• /\an.)*
1 1 

n 
4P(i = 1, 2, ••. , n). Since Pis prime, it follows that(/\ a.)* v 

i=l l 


n 

V Ca A •.• f\a.*A .... /\a )*f P. But lEP, thus the equation 
. 1 1 n 

1=1 

(E ) is not satisfied. 
n 

(~) ====}(l). Assume that the DP-algebra A does not satisfy 


the equation (En). Then there would exj.st a1 , ••• , anE A such that 


n * n 

c ( /\ a. ) V V ( a A • • • A a. * /\ • • . I\ a ) *< 1. By Stone ' s


1·11. ·1 i nl.= l.= 

lemma, there exists a prime filter P such that cf P. Put 

n 
b

n+l = /\ a. 

i=l l 


b . = a A • • • /\ a . *(\ ••• {\ a ( j_ l, 2, ••. , n)
i 1 i n 
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and consider the filters F. = PV[b ., l] (j = 1, 2, ••.• , n + 1).
J J 

For if. j (i, j = 1, 2, ••• , n + 1), we have b. f F., for otherwise 
l. J 

we would have 0 = b. A. b . t F . and hence there would exist p E: P such 
l. J J 

that p A. b. = O, i.e. p ~ b. *, thus c E P, a contradiction. It follows 
J J 

that F.(i = 1, 2, ••• , n + 1) are proper filters. Moreover1 we have 
l. 

F.V F. =A (if. j; i, j = 1, 2, ••• , n + 1) by the definition of 
l. J 

F .• Let M. be a maximal (proper) filter containing F. (i = 1,2, ••• ,n+l).
1 l 1 

Then M
1

, ... ' M
n+l 

are n + 1 distinct maximal (proper) filters 

containing P, thus (2) is not satisfied. 



Section 3 

The classes ~n-'_!J?_n and 1-n and the 

relationship between them 

In this section, we construct a subdirectly irreducible 

DP-algebra ~ from a given Boolean algebra B by adjoining a new 

unit 1 to B. The classes ~n' 1< n and /n are introduced 

and we show that 

(E )* = 'b = dn (n91).
n = ~n f' n () 

We recall 	tha.t a Boolean algebra ia an algebra 

(B; (V, /\, . , o, e)) of the t~1pe (2, 2, 1, o, 0) such that 


(B; ( v ' /\' o, e)) is a distributive lattice with zero element 0 


and unit e, and ' is the complementation, i.e. for each a EB, 


we have a/\a' = O, a Va'= e. Put B == BU{l}, where x<l for all 


{ 
x EB, and define 


x' if 0 I XEB;

' 

x* = 	 1, if x = O; 

o, if x = 1. 

We have the following: 

13 
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Proposition 2. (B; (V,/\, *, O, 1)) is a subdirectly 

irreducible DP-algebra and is called the DP-algebra obtained from 

the Boolean algebra B by adjoining a new unit 1. 

Proo:f: It is obvious that (B; ( V , /\, O, 1)) is a distri­

butive lattice with zero 0 and unit 1. 

We claim that * is the pseudo-complementation on B, i.e. 

for all a, x E B, a A x = 0 ~ x ~a* • It is trivial if a :::: 0 or 

a = 1. Assume that 0< a ~e, then a /\x = 0 ~x~a' = a*. Conse­

quently, (B; ( V, /\, *, O, 1)) is a DP-algebra. 

It remains to show that (B; ( V, A, *, O, 1)) is subdirectly 

irreducible. We shall prove this by showing that there is a least 

congruence relation e >11, where b. ={ ( x, x) I x EB} . To do this, 

let us consider the binary relation eo =av {c1, e), (e, l)} 

on B, where b = { ( x, x) \ x E: B} and e is the unit of the Boolean 

algebra B. It is evident that e is a (DP-algebra) congruence
0 

relation. We claim that eo~e for all congruences e I /l on B. 

Indeed, let e be a congruence relation on B such that B>~. Then 

x e y for some x, y E- B with x I- y. To show that eo~ e, it suffices 

to show that e e 1. It is trivial if either x or y is 1. If 

neither x nor y is 1, then x, y € B and hence we have x Vy* e e 

and x*Vy e e. \fo assert that either xvy* or x*Vy is note, for 

otherwise we would have x = x I\ e = x A(x* Vy) = x Ay and y = y A e = 

y A (x Vy*) = y f\ x and hence x = y, a contradiction. Consequently, 

a e e for some a EB with a I e. It then follows that a* "·e e* *, 
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i.e. a e 1 and thus e e 1. (Note that a** = a for all a ~B with 

0 ~ a < e , and that e ** = 1) • 

n
Let B (n~O) be the 2 -element Boolean algebras, and 

n 

B the DP-algebras obtained from B by adjoining a new unit 1. 
n n 

Then B are all finite subdirectly irreducible DP-algebras. They
n 

play a very significant role in characterizing the varieties 

(E )* as well as in the description of the lattice of varieties of n 

DP-algebras. Some of the diagrams of B are given in 
n 

Figura 1. 

To give a characterization of the variety (E )* in terms of 
n 

B we need the following:
n 

I.EMMA 2. Let A be a DP-algebra, P a prime filter in A, 

M1 , ••• , Mn (n:VO) all distinct maximal (proper) filters properly 

containing P, and let a , be the atoms of B (n ~O).
1 n 

Define the mapping A -4- B byr= n 

if x E P;f 1, 

<f (x) = l V { ai I x E MJ , if x f P. 

Then Cf is a DP-algebra homomorphism (i.e. T preserves all the 

operations on A) of A onto B • 
n 

Proof: (1) r<xVy) = <f (x) v r (y). 

It is trivial if 'f (xvy) = 1. If cp<xvy)~e, 

then x v y f P and hence 



• • • 
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·l 1 

e 

0 ·o 
0 

0 
 0 

The B (n ~O).
n 

0 

B 
n 

Figure 1: 
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=V{a.J xvyEM.}
l. . l. 

= r (xvy). 

(2) r (x A y) = 'f (x) /\ Cf (y). 


If one of the x, y is an element of P, say xe-PcM., then 

1. 

=V{ ai I x /\ y ti\} 

:: r (x/\y). 

If neither x nor y is an element of P, then 

Cf (x) A r {y) = cy {ai I x e- Mi} ) A(~ { aj ' y EMj} ) 
1. J 

= V { a . /\ a . I x c M. and y E- M . } 
. . l J 1 Jl,J 

= V{a.\ xAyEM.}
• 1. 1. 
l 

= r (x/\y). 
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(3) <f (0) = 0 and cp (1) = 1 by definition of r 
Cf(x*) = CfCx)*. 

If x €- P 1 then x* f M. for all i = 1, 2, ••• , n, and hence 
l 

<f(x*) .=: 0::: r<x)*. If XfMi for all i = 1, 2, ••• , n, then 

x* E P for otherwise we would have p ~ x* for all p E- P, i.e. p Ax I 0 

for all p E:P, and hence the filter P V [x, l] would be proper. 

But then every maximal (proper) filter M2PV [x, l] would be 

different from all M. (i = 1, 2~ ••• , n), a contradiction. It 
l 

follows that r(x*) = 1 = <f (x)*. Finally, assume that x E: M. - P 
1 

for some i, l~ i~ n. Since the pseudo-complementation in B of 
n 

an element y satisfying 0 < y ~ e is the complement of y in the 

Boolean algebra B = [o, e], and since this is the join of all 
n 

atoms not contained in y, we have 

= T <x*). 

(5) Cf is onto. 

If n = O, then P is a maximal (proper) filter in A and f 

is, in fact, a DP-algebra homomorphism of A onto B' •
0 
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Assume n / O. We have to show that for each a E-B , there 
n 

exists an element x c= A such that 'f (x) = a. It is trivial if 

a= 0 or a= 1. If a= e, then pick x. EM. - P (i = 1, 2, •.• , n)
J. J. 

n 
and put x = v x .• Clearly, x f P and x E- Mi for all i = 1, 2, ••• , n. 

1
i=l 

It follows that pCx) = V {ad xE.-Mi} = e. Finally, if 

O<a<e, then there exist a., a. (i, j = 1, 2, ••• , n; if j)
1 J 

such that a.~ a and ai4a. For all i such th~Jt ai4, a, we have 
J 

evidently (\ { Mj ( a.~ a} M.• Pick YE(\{Mjlaj~a} - M. 
J . ~ J. 1 

for all i such that ai1; a, and put x Then= /\ {Yi\ ait a} • 

The following theorem gives another characterization of 

the variety (E )*.
n 

Tm~OREM 3. Let A be a DP-algebra. Then the following two 

conditions are equivalent (n ~ 1): 

(1) AE(E )*
n 

(2) A is isomorphic with a subdirect product of copies of 

B • ... ' n 

Proof: (1) ~ (2). Let a, b EA with a f b. We have to 

show that there exists a DP-algebra homomorphism Cf of A onto 

Bk (O ~ k ~ n) such that C(J(a) /. <f(b). We can assume, without 

loss of generality, that a~b. By Stone's lemma, there exists a 
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prime filter P such that a EP and bf P. By theorem 2, there exist 

at most n distinct maximal filters containing P. Let M1 , ••• , Mk 

(0 ~ k::; n) be all distinct maximal filters properly containing P. 

Lemma 2 then implies that there exists a DP-algebra homomorphism 

of A onto Bk such that Cf (a) I <f (b). 

(2) ~ (1). It is trivial that B satisfies the equation
0 

(E ) (n ~l). Moreover, since each B (n 91) has exactly n distinct 
n n 

maximal filters, viz. the principal filters generated by atoms of 

Bn, we see immediately, by theorem 2, that B1 , ••• , Bn all satisfy 

the equation (E ). Consequently, A E(E )*.
n n 

Notations: 

b3 _1 ::: the class of all one-element DP-algebras; 

(en= HSP (B
n
) = the variety of DP-algebras generated 

by B (n ~ O);
n 

'° - the class of all finite DP-algebras·,W F ­

~ (J..) co - the variety of all DP-algebras;-

ti:::> - the class of all DP-algebras A such that everyf' n ­

prime filter in A is contained in at most n distinct 

maximal (proper) filters ( n ? 1) ; 

d - the class of all DP-algebras .A such that every0 n ­

(proper) prime ideal in A contains at most n 

distinct minimal prime ideals (n ?1). 
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We see immediately that (j3 
0 

is the variety of all Boolean 

algebras while 03 is the variety of all Stone algebras.
1 

~s an immediate consequence of theorems 2 and 3, we have 

the following: 

Corollary 1. For n ~ 1, we have 

Proof: (E )* - t1;) is the content of theorem 2. n - I' n 

... ' B are all subalgebras of B , it follows 
n n 

from theorem 3 that (:E~ ) * C )0 • On the other hand, ')Q C (E ) * 
n - <Pn Wn- n 

by virtue of the fact that B E (E ) *. Thus (E ) * = lB . 
n n n n 

The following theorem gives another characterization of the 

variety (E )*.
n 

THEOREM 4. Let L be a distributive lattice with 0 and 1. 

Then the following three conditions are equivalent (n ~1): 

(1) every prime filter in 1 is contained in at most n distinct 

maximal (proper) filters. 

(2) every (proper) prime ideal in 1 contains at most n 

distinct minimal prime ideals. 

(3) L is the lattice-theoretical join of any n + 1 distinct 

minimal prime id~als in L. 

Proof: (1) ~ (2). TriviaL 
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(2) 	=::::r(3). If not, then there would exist n + ·1 distinct 
n+l 

minimal prime ideals Q
1 

, ••• , Qn+l such that 	V Q. CL. It follows 
i=l 

1 

from Stone's lemma that there exists a prime filter P disjoint from 

n+l 
v Q 

]. 
•• Clearly, 1-P is a (proper) prime ideal containing Q

1
, 

i=l 
' Q , a contradiction.Q2' ... n+1

(3) =='?(2). If not, then there would exist a (proper) 

prime ideal I containing n + 1 distinct minimal prime ideals 

n+l 
But then we have Q. S IC L, contradictingv 

l.
i=l 

(3). 

Combining the results of theorems 2, 3, and 4, and corollary 1, 

we have the following: 

THEOREM 5. Let A be a DP-algebra. ,.J.1l1en the following 

conditions are equivalent (n~l) : 

(1) A E (E ) * 
n 

(2) A E (.6 
n 

(3) A E ~n 
(4) A ~ 

'/ n 

(5) A is the lattice-theoretical join of any n + 1 

distinct minimal prime ideals in A. 



Section 4 

The lattice 

We sha11 show in this section that the variety {Eco 

of all DP-algebras is generated by its finite members. Furthermore, 

a complete description of the lattice of varieties of DP-algebras 

is given, viz. a chain of type ~ + 1. As a first result in this 

respect, we have the following: 

THEOREM 6. 

("c" means proper inclusion). 

Proof: It is evident that '03_ C (53 C (S
1

. For n?-1,
1 0 

we have, clearly, '")Q C "'° It remains to show that
V.J n - ~n+l • 


~ f ~ But this follows immediately from the fact that
u::> n CFJ n+l • 


B € b contains a prime filter { 1} which is contained in
n+l (.,0 n+l 


exactly n + 1 distinct maximal filters. 


LEMMA 3. Let A be a DP-algebra, e (m ?l) elementsel' • .. ' m 


of A satisfying the conditions: 


e.f\e.:: 0 (i, j = 1, 2, ••• , m; if j);
1 J 

e.** = e. (i = 1., 2, ••• , m).
1 1 

, Put S :: { /\ e * \ JS { 1, 2, •.. , m}} V {< /\ ecr*)*I Jf{l,2, ••. ,mJ}
a.£ J a a. E J 

23 




.. 24 


and T = { x1 V •.• Vxn ( xi E S, l' i ~ n} Then T is the subalgebra 

of A generated by { el' ... , em} • 

In particular, T is finite. 

Proof: It is clear that S is closed under * 

We claim that S is closed under A . To do this, it suffices 

to show that 

where J 
1 

, J are arbitrary subsets of { 1, 2, ••. , m}. Indeed,
2 

we have 

* * * ** 
= ( VJ ea) A ( SJ ef3) 

a.e 1 ..., 2 
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* 
- ( (\ e *).
- j3(J -J 13 


2 1 


and 

= (Vh,Aeril"o1,P"JJ) ** 


** 

:: 
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Evidently, 0, lt-T and { e
1 

, •.• , enJ ~ SST. Moreover, Tis 

closed under ·y by the definition of T, and T is closed under 

/\ by distributivity. Finally, T is clo~ed under * since 

Hence T is a subalgobra of A containing ~ e , .... , em} , and T is
1

evidently the subalgebra generated by { e , •.. , em} • 
1

With the aid of lemma 3, we are now in a position to prove 

the following: 

THJi~OREM 7. Let ~ be a variety (equational class) of 

DP-algebras.. If R, $ ~ n (n ~-1), then ~ n+l~ (€ • 

Proof: If n = -1, then {i contains a non-trivial DP-algebra 

A by virtue of the fact that ~ $ (e_ • But then A contains
1 

B as a subalgebra and hence ()3 S ~ •
0 0 

If (i $ l6 0 , then there exists a DP-algebra A E (<, which is 

not Boolean. Hence there exists an element a EA such that a Va*< 1. 

It then follows that { 0 1 av a*, 1} is a subalgebra of A isomorphic 

with B
1 

• Hence {l3 
1 
~ ({, 

Now assume that n~ 1 and take AE ~ - (13 n" By corollary 1, 

there exist a
1

, ••• , an E. A such that 

n * n 

( /\ a . ) V V ( a /\ • • • A a . * f\ ••• /\ a ) *< 1.


1 1i=l i=l J. n 
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Put 

e . = ( a 1 A • • • /\ a . * f\ • • • /\ a ) * * = a ** /\ • • • /\. a . * /\ • • • Aa ** 
i l n 1 i n 

(i = 1, 2, ••. , n) 

** n 
= /\ a.**• 

i=l l 

Clearly, e . /\ e . = 0 (i, j = 1, 2, • • • ' n + l; i I j) and e.** = e. 
l J l l 

e
n+l 

(i = 1, 2, ••• , n + 1). By lemma 3, the subalgebra B generated 


by { e1 , ••• , en+l} is finite.· For l~i~n, we have 


ei* = (a1 A ••• f\ai*f\ ... A an)*~ai*"' so that (e *A ••• f\en*)* ~ 
1

n * n *** 
( /\ a.**) = ( /\ a. ) - e* Moreover, (e * /\ ••• /\ e. /\ ••• A e *)* = - n+l • 1. i ni=l l i=l l 

e.
l. 

* • We claim that B 1(E )*. In fact, put x. = e.* (i = 1, 2, ... ' n)'n l l. 

we have 

n * n n * n 
( /\ x . ) V V ( x1 /\ • • • /\ x . * /\ • • • /\ x ) * = ( /\ e i * ) V V ( e *A • • • /\ e . f\ • • • f\ e * ) * 

1 1 1i=l 1 i=l n i=l i=l n 

n 


~ e~+l V ;{lei* 


n n* 
=(I\ a.) v v ( a /\ • • • A a . *A • • • /\ a ) * 1 i ni=l l i=l 

< 1. 

By theorem 2, there exists a natural number k ~ n + 1 and a prime 

filter P in B which is properly contained in exactly k distinct 
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maximal (proper) filters in B. Hence Bk E ~ by lemma 2, and there­

fore £B n+l f £6 k ~ fZ by theorem 6. 

The following theorem shows that the class of all 

DP-algebras is generated by its finite members. 

THEOREM 8. 


Proof: We have to show that every equation which does not 

hold in some DP-algebra A does not hold in some finite DP-aleebra B. 

Let ~(V) be an algebra of the type 7: of DP-algebras, absolutely 
-c' 

freely generated by some countable set V, let p, q E f/f_(V) and assume 
't 

that the equation (p, q) does not hold in some DP-algebra A, i.e. 

there is a homomorphism 'f : ~ (V) ~A such that Cf (p) I Cf (q) • 

There exists a finite sequence of finite sets F s F1 S ... ~ F n 0 

such that F0~ V1 p. q E F n and for each i = l, 2, ••• , n and each 

a E F. , one of the following holds: 
1 

(a) there exist , b, c E F. l such that a = bVc or a = b "c;
l­

(b) there exists b E F. such that a = b* 
1-1 

(c) a = 0 or a = 1. 

sublattice (not sub-DP-algebra) of A generated by M. Then B as a 

finite distributive lattice is pseudo-complemented, and hence can 

be regarded as a DP-algebra. Furthermore, since the pseudo-complement 

of every element x E 'f (Fn) belongs to M, the pseudo-complement of 

every element x E:- ?' (F'n) is the same in both A and B. Now let 
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Y1 : ~(V) ~ B be a homomorphism extending r IFo·. We shall 

show by induction on i that '/JI Fi = 'f IFi for all i = O, 1, ••• , n. 

It is trivial for i = O. Assume that it is true for i - 1 (i~l). 

Take a E- Fi. We have to show that 'f (a) = 'f (a). It is trivial 

if a= 0ora=1. If a= bvc, where b, cEF. , then 
1-1 

1 (a) = Cf (b V c ) = Cf (b ) VA 'f (c ) = 'fl (b) VA '/' ( c ) = 'f (b) VB '/f (c ) = 'f(b v c ) =f (a) 

Similarly, <f (a) = 'f (a) for a = b Ac, where b, c E- Fi-l • Finally, 

if a = b* for some b E Fi-l' then 'f (a) = <p (b*) = f (b)* = 

'/' (b) * = '/' ( b*) = 1/1 (a). It follows, in p3rticular, that 

'f Cp) = r (p) I Cf Cq) = 'f Cq) l i.e. the equation (p, q) does not 

hold in B. 

LEMMA 4. (}3 =V { {B n In = -1, 0, 1, ••• } ( V is the
00 

join in the lattice of varieties of DP-algebras). 

Proof: Let A be a finite DP-algebra. We are going to show 

that A E ~ for some integer n ~ -1. It then follows, by theorem 8,n 

that {aco = V {03n\n = -1, 0, 1, •••} • It is trivial if A E (8_
1 

or A E. (S 0 . Assume that A is a non-trivial finite DP-algebra which 

is not Boolean. Then A has finitely many maximal (proper) filters 

and hence A E 'F n = '28 n for some n? 1 by theorems 2 and 5. This 

completes the proof of the lemma. 

Now we are in a position to prove the following: 

THEOHEM 9. The chain of theorem 6 is the whole lattice of 
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varieties of DP-algebras. 

Proof: Let R, be an arbitrary variety of DP-algebras, we 

are going to show that either fl = ?J3 or R, = a3 n for some 
00 

integer n 9-1. In fact, we have either fl 2 CB for all 
n 

n = -1, o, 1, ••• , in which case ~ 2 V { ~ n \ n = -1, o, 1, •.•} 

= {l3 , i.e. ~ = '°?)3 , or else there exists a largest n such 
00 00 

that 28 n ~ ~ • But then we have ~ n ::: ({. , for otherwise 

we would have ff, $ £6 n and hence, by theorem 7, (B n+l ~ (i. . 
This contradicts the choice of n. 
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• 

• 

• 


~n+l 

(Sn 
• 

• 

• 

(B 1 = the variety of all Stone algebras. 

lJ3 0 = the variety of all Boolean algebras. 

CB_1 

Figure 2: The lattice. 



The following corollary shows that the DP-algebras B (n 9- 0)
n 

are exactly the fitiite subdirectly irredu~ible DP-algebras. 

Corollary 2. The DP-algebras B (n 9 0) are exactly the finite ...., n 

subdirectly irreducible members of 26 . ro 

Proof: By proposition 2, Bn (n ~ 0) are all subdirectly 

irreducible. It remains to show that every finite subdirectly 

irreducible DP-algebra I1 is isomorphic with some B (n ~O). In 
n 

fact, there is a natural number n such that l'Bn \~ lL\< \ Bn+l l 

(\A\ = the cardinality of A). Put a!_ = H S P (L). If~$ 2Bn , 
then ~ C ." by theorem 7. In particular, B E H S P (IJ).

c.P n+l - d...- n+1
1By corollary 3.1+, B. J6nsson [18], B e H S(L). l1his is impossible.

1n+ 

Thus we have cf.. s; (:'B n, and hence LE H S (En). Consequently, 

L r-/ B . 
n 

Remark: ll. Lakser has shown.that every subdirectly irre­

ducible DP-algebra is of the form B, where B is a Boolean algebra. 

Hence B are exactly the subJ.irectJy irreducible members of (B • 
00 



Generalizations of relative Stone algebras 

A lattice L is said to be a relative Stone algebra if every 

closed interval in Lis a Stone algebra. (G. Gratzer-E. T. Schmidt [12]). 

In their paper (12] , G. Gratzer and E. T. Schmidt have shown that 

a distributive lattice L in which every closed interval (as a 

sublattice) is pseudo-complemented is a relative Stone algebra iff 

one of the following two equivalent conditions holds: 

(1) for any pair of incomparable prime ideals P and Q in 

L, P VQ = L. 

(2) B'2 is not a lattice homomorphic image of L. 

In this section, we shall prove two theorems which turn out 

to be generalizations of the result mentioned above. 

THEOREM 10. Let L be a distributive lattice in which every 

closed interval (as a sublattice) is pseudo-complemented. Then 

the following two conditions are equivalent: 

(1) every closed interval [a, b] in L satisfies the equation 

(E ) i.e. [a, b] c (E )*.n' n
n+l 

(2)L~V Q. for any n + 1 pairwise incomparable prime ideals 
i=l l 

•.. , Q l in L.
n+ 

Proof: (1) ~(2). If not, there would exist n + 1 
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pairwise incomparable prime ideals Q
1

, Q
2

, ... , Q such that 
n+1 

n+l 
For each i. l~i~n + 1, we bave 

i=l 
n+l 
I\ Q. - Q. I ¢ 
• ..L· J 	 l.Jrl 

j=l 


n+l 
for otherwise we would have Q. ::> A Q. for some i (l~ i =' n + 1)i-

j/i J 

j=l 

n+l n+l 
and hence Q. = Ql.. v /\ Q. = /\ ( Ql.v QJ.). Since Q., Q. are incom­

1 Jl. 	
j/i J j/i 

j=l j=l 


parable, Q.V Q.>Q .• Hence Q. is /\-reducible, contradicting the 
1 1 1J n+l 

fact that Q. is prime. Take b. E /\ Q. - Q. (i = 1, 2, ••• , n + 1), 
l. 	 1. ·1· J l.J l. 

j=l 

and put c. = bl v ... v b. 1 v b. 1 v .•. v b 1 (i = 1, 2, ••• 1 n + 1).
l. 	 1- 1+ n+ 

n+l[ n+l 
Now consider the closed interval I = /\ a v vCi' Ci J'i=l i=l 

n+l 
where a E- L - V Q.• Clearly, c.€ I for all i = 1, 2, ••• , n + 1,

l.i:::l l. 

and hence c.*E I exist (i = 1, 2, ••• , n + 1) by hypothesis. It 
1 

is evident that c.f Q. for all j Ii, for otherwise we would have 
J l. 

b. ~ c. E- Q. and hence bi E- Qi, contradicting the choice of bi. Since 
l. J i n 

Q ispri.me, we have /\c.fQ.. In particular,/\ c.fQ • 
1 	 1 1j/i J 	 i=l n+ 

But then /\. c . f Q. implies c. *~ Q.. , and hence c /\ ..• A c. * /\ ••. /\ c n 4Q.•'f.. J 1. 1. :L 	 1 l .. . J..J 1. 

1 

http:Qispri.me
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n * 
Consequently, ( /\ c;) E Qn+l' (c1 A ••• /\ c. * /\ ••• f\ c )* E Q.

i=l ..... 	 1 n 1 

(i = 1, 2, •.• , n) (since for a prime ideal Q, x f Q ~ x /\ x* ­

0 E- Q ~ x* E Q). We have therefore 

n+l n * n n+l 
a V V c. = ( /\ c.) V V (c1 /\ ••• /\ c. * /\ ••• f\ c ) * f: V Q.

1 1 	 1 1 
i=l i=l i=l 	 n i=l 

n+l 
by (1). Hence a E- V Q. which contradicts the choice of a .. 

i=l l 

(2) ~ (1). If ·not, there would exist a closed interval 

[a, 	b] in L such that there are n + 1 distinct minimal prime ideals 
n+l 

Q! (i = 1, 2, ••• , n + 1) in [a, b] with V Q! <[a, b] by theorem 4. 
1 i=l 1 

The mapping Cf : L -~ (a, b] defined by 'f' (x) = (x Va) Ab is 

clearly an epimorphisrn. Put Qi = Cf-l [ Q:i_l (i = 1, 2, ••• , n + 1). 

Then each Qi is clearly a prime ideal in L. Moreover, Q1 , ... , Qn+l 

are pairwise -incomparable, because Qi~ Qj ( i I j) would imply 

Q! = 9' [Q .1 ~ f [ QJ.1 = Q'., and hence Q! = Q'., a contradiction. 
1 1	 J 1 J 

n+l 
By (2), we have L = V Qi. It follows immediately that [a, b] = 

i=l 

Q!. This is a contradiction. 
l 

THEOREM 11. Let L be a distributive lattice in which every 

closed interval (as a sublattice) is pseudo-complemented. Then the 

following two conditions are equivalent: 

1' [L J 



(1) every closed interval [a, b] in L satisfies the equation 

(E ) , i.e. [a, bJ E (E ) *. 
n 	 n 

(2) B
n+1 is not a lattice homomorphic image of L. 

Proof: (1) ~ (2). If hot, th~n B would be a lattice 
n+1 

homomorphic image of L. Let (/) : L --=J- B be the (lattice)
I n+1 

epimorphism and a , ... ' a the atoms of B 
1 

. Now consider the
1 n+l n+ 

principal ideals Qj_ = [o, ai*] (i = 1, 2, ••• , n + 1), then they 

are pairwise incomparable prime ideals of Bn+l • Put Qi = cp-l [ Qj_] 

then Q
1

, ... , are n + 1 pairwise incomparable prime ideals in L.Qn+l 
n+l 

By theorem 10, we have L = v Q.• This implies B = 9J (L] = 
l 	 n+li=l 

n+l n+l n+l 
= v Qj_· But this is impossible since v Q! =v 

i=l i=l i=l 
l 

(2) 	~(l). If not, then there would exist n + 1 pairwise 
n+l 

incomparable prime ideals Q
1

, ••• , Qn+l such that V Qi< L. By 
i=l 
n+l 

Stone's 	lemma, there would exist a prime ideal R 2 \/ Q.• Consider 
i=l l 

the family ~ consisting of the following 	subsets of L: 

n+l 

L - R, R - V Q. , Q. - V Q . ( i = 1, 2, ... , n + 1), 


i=l l 
1 jfi J 


t 
( Q · () Q . ) - U Qk, • • • , (\ Q. - U Qk, ( 1 ~ i j ~ n + 1 ; i . all 

l J k/i j =l l j kfi . J 
kfj ~ distinct) 

n+l 

' .... ('\ Q.• 


i.::.:l J. 



37 

~ is clearly a partition of L and hence induces an equivalence 

relation 9 on L. 	 We claim that 9 is a lattice congruence relation 

on L. This follows from the following observations: 

n+l 	 n+l 
(i) xE':L - R, y~R-U Q.:::::?xvye-L - R, xAyER - U Q•• 

1 	 1
i=l 	 i=l 

(ii) 	XEL -R, y€ (\ Q V Qp , ¢ f. J ~ I -- { 1, .•. , n + 1 } 

a.EJ a. [3 e I-J 


:::::} x Vy <; L - R, 	 x A. y E (\ Qa. - u Q 
a. E J [3 E: I-J 	 [3 

n+l 	 n+l 
(iii) 	x E R - V Qi, Y E fl Q u Qf3' ¢ I J ~ I ===? x v y € R - u Q. ' 

i=l a. E J o: [3 ~ I-J i=l 
1 

xAy € (\ Q - u Qf3.a 
a. E J [3 E I-J 

(iv) x E {) Q -
"a. 

a E Jl 

x/\y 	E . (\ Q - U Q 

a E J 1 V J 2 a f3 E. I -J1 V J 2 p 


n+J. 	 n+l 
( v) x E (\ Qi, and y E A€ ~ ~ x V y E A, x A y E (\ Q.• 

i=l i=l 1 



Evidently, L/e ~Bn+l, hence B is a lattice homomorphic image of 
n+l 

L, a contradiction. 
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