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ABSTRACT 


This study focuses on developing a new online recursive numerical algorithm for a 

coupled nonlinear inverse heat conduction-microstructure problem. This algorithm is 

essential in identifying, designing and controlling many industrial applications such as 

the quenching process for heat treating of materials, chemical vapor deposition and 

industrial baking. In order to develop the above algorithm, a systematic four stage 

research plan has been conducted. 

The first and second stages were devoted to thoroughly reviewing the existing 

inverse heat conduction techniques. Unlike most inverse heat conduction solution 

methods that are batch form techniques, the online input estimation algorithm can be used 

for controlling the process in real time. Therefore, in the first stage, the effect of different 

parameters of the online input estimation algorithm on the estimate bias has been 

investigated. These parameters are the stabilizing parameter, the measurement errors 

standard deviation, the temporal step size, the spatial step size, the location of the 

thermocouple as well as the initial assumption of the state error covariance and error 

covariance of the input estimate. Furthermore, three different discretization schemes; 

namely: explicit, implicit and Crank-Nicholson have been employed in the input 

estimation algorithm to evaluate their effect on the algorithm performance. 

The effect of changing the stabilizing parameter has been investigated using three 

different forms of boundary conditions covering most practical boundary heat flux 

conditions. These cases are: square, triangular and mixed function heat fluxes. The most 

important finding of this investigation is that a robust range of the stabilizing parameter 
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has been found which achieves the desired trade-off between the filter tracking ability 

and its sensitivity to measurement errors. For the three considered cases, it has been 

found that there is a common optimal value of the stabilizing parameter at which the 

estimate bias is minimal. This finding is important for practical applications since this 

parameter is usually unknown. Therefore, this study provides a needed guidance for 

assuming this parameter. 

In stage three of this study, a new, more efficient direct numerical algorithm has 

been developed to predict the thermal and microstructure fields during quenching of steel 

rods. The present algorithm solves the full nonlinear heat conduction equation using a 

central finite-difference scheme coupled with a fourth-order Runge-Kutta nonlinear 

solver. Numerical results obtained using the present algorithm have been validated using 

experimental data and numerical results available in the literature. In addition to its 

accurate predictions, the present algorithm does not require iterations; hence, it is 

computationally more efficient than previous numerical algorithms. 

The work performed in stage four of this research focused on developing and 

applying an inverse algorithm to estimate the surface temperatures and surface heat flux 

of a steel cylinder during the quenching process. The conventional online input 

estimation algorithm has been modified and used for the first time to handle this coupled 

nonlinear problem. The nonlinearity of the problem has been treated explicitly which 

resulted in a non-iterative algorithm suitable for real-time control of the quenching 

process. The obtained results have been validated using experimental data and numerical 

results obtained by solving the direct problem using the direct solver developed in stage 

IV 



three of this work. These results showed that the algorithm is efficiently reconstructing 

the shape of the convective surface heat flux . 
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1.1 Introduction 

The Inverse Heat Conduction Problem (IHCP) involves the estimation of a boundary heat 

flux, heat source history, or convective heat transfer coefficient by using interior transient 

temperature measurements in a solid object. The theory and application of inverse heat 

conduction problems have been significantly developed over the past few decades. IHCP 

has important applications in various branches of science and engineering. For example, 

aerodynamic heating of space vehicles occurs during re-entry in the atmosphere and 

information on the surface temperature of the thermal shield is required. This information 

cannot be directly obtained with temperature sensors placed directly on the surface due to 

environmental obstacles. Therefore, temperature sensors are embedded inside the body. 

The surface temperatures are estimated by using inverse analysis. Inverse analysis can 

also be used to estimate the thermophysical properties of the shield during operation at 

high temperatures [1] . Another important application where inverse heat conduction 

analysis can play an important role is in the nuclear industry [2]. IHCP can be used to 

estimate the critical heat flux of the fuel sheath as well as the prediction of the inner wall 

temperature of nuclear reactors. Other examples of IHCP are the determination of 

quenching heat transfer coefficients under very rapid transient conditions [3) , the 

prediction of temperature or heat flux at the workpiece interface of machine cutting [ 4 ], 

manufacturing process control and the cooling control of electronic components [ 5). 

Calculation of the temperature distribution within a solid body using thermal 

conditions at the boundary is a direct problem. In contrast, the estimation of heat flux at 

the boundary using temperature measurements taken within the body is an inverse 
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problem. In the cause and effect context, the direct problem is the determination of the 

effects or consequences from known causes while the inverse problem is the estimation 

of the causes of the desired or observed effects . In many situations, the direct 

measurement of the cause is not practical and one is forced to estimate the cause from the 

observation of the effect. 

Inverse heat conduction problems are mathematically ill-posed problems because 

they do not have solutions that are continuously dependent on the input data. This is in 

contrast to direct problems, which are well-posed. Hadamard [6] in 1923 introduced the 

concept of well-posed problems. The idea of Hadamard is that a mathematical problem is 

well-posed if its solution exists and is stable and unique. In other words, the solution 

should continuously depend on the input data and any small perturbation in the input data 

should only cause a small change in the solution. In contrast, in an ill-posed problem a 

small disturbance in the input could lead to a large error in the solution. 

The physical reason for the ill-posedness of the inverse heat estimation problem is 

that variations in the surface conditions of a solid body are lagged and damped toward the 

interior because of the diffusive nature of the heat conduction. As a consequence, large 

variations in the thermal conditions at the boundary have to be estimated from small 

changes in the measurements . Furthermore, error and noise in the measurements can 

mistakenly lead to large fluctuations in the estimated boundary thermal conditions. As 

such, special techniques are required to obtain stable solutions for ill-posed problems. 

Numerous methods have been developed to solve inverse heat conduction 

problems [7]. The exact matching method is one of the earliest reported methods . 
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Shumakov in 1957 and Stolz in 1960 developed two models to analytically solve the 

problem of transient heat conduction by using the exact matching technique [8,9]. In the 

Stolz's model, the boundary heat flux is estimated sequentially using one temperature 

sensor as well as one time step. The results of this method are very sensitive to 

measurement error especially when the time step is small due to the lag and damping 

effect resulted from the diffusive nature of the heat conduction process. This flaw makes 

this method not practically feasible. The sequential function specification method of Beck 

[1 O] overcame the limitations of Stolz's method by using future information available in 

a number of future temperature measurements to minimize the prediction error in the 

least squares procedure. 

Tikhonov [11] introduced a regularization technique to solve IHCPs by modifying 

the objective function in the least squares procedure. In this method, the objective 

function includes two terms; the first term is representing the prediction error while the 

second term includes a regularization parameter used to overcome the ill-posedness and 

controls the unphysical fluctuation in the estimates and hence enhancing the stability of 

the solution. The thermal boundary conditions are determined by solving IHCP as a 

whole time domain solution in which all of the heat flux components are simultaneously 

estimated for all times . The space marching algorithm is another solution method by 

which the spatial domain is divided into a direct region for which all boundary conditions 

are known, and an inverse region for which the boundary conditions are only partially 

known. Starting from the easily obtained solution in the direct region, it estimates the 

thermal field in the inverse region by using the finite differencing technique [ 12]. 
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Most of the above methods are batch form algorithms and they require a complete 

data set before the computation begins. However, in many situations, it is necessary to 

carry out the estimation in real time. Some examples are: the vulcanization of complex 

rubber moldings, real time monitoring of nuclear reactor [13] and the baking of ceramic 

wafers for annealing, oxidation and chemical vapor deposition [ 14]. In these cases, the 

heat flux imposed on the boundary determines the temperature distribution in the system 

therefore; accurate determination of the heat flux is a crucial step in the operation of the 

process. This boundary heat flux may need to be adjusted and updated frequently during 

the process, so a real time sequential algorithm has to be adapted where initial a prior 

estimation is continually updated based on current experimental measurements. A 

detailed literature review about the inverse heat conduction solution techniques will be 

given in section 1.3 of this chapter. 

1.2 Inverse Heat Conduction Problem Formulization 

Let n represents a bounded domain in R0
, that is occupied by a material having the 

following thermophysical properties: p is the density, CP is the heat capacity, and K is the 

thermal conductivity. Assume that the domain has the four boundaries n N, n E, n s and 

Ow, where the boundaries QE, Os and Ow have known thermal boundary conditions 

while the boundary condition of n N is an unknown heat flux, as shown in Figure 1.1. 
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unknown heat flux , 
qN=? 

known heat 
flux, qs 

.QEOw 
known TE 

known Tw 

Figure 1.1 Schematic of the inverse heat conduction problem (IHCP). 

Some temperature measurements are known at M points within the domain. The 

objective of the inverse heat conduction analysis is to estimate the unknown boundary 

condition, qN. The governing equation of the heat transfer process in this domain is the 

transient heat conduction equation given by: 

ar 
pCP at= \I· (K'iJT), in D., for t > o (1.1) 

(1.2) 

T(x,t) = Tw, onD.w, for t > 0 (1.3) 

aT(x, t) 
K an = q 5 , onf!.5 1 for t > 0 (1.4) 
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ar(x, t) 
K an = qN (unknown), on 0.N, for t > 0 (1.5) 

T(x, 0) = T0 (x), in fl, for t > 0 (1.6) 

Y(xi,t1) = T(xi,t1), in fl, fori = 1,2,3,······ ··,M and j = 1,2,3,.. ·····,Nt (1.7) 

where N1 is the number of time steps. 

Generally, inverse problems are solved by minimizing an objective function with 

some regularization techniques used in the estimation procedure, as will be clarified in 

the literature review, next section. With some statistical assumptions, the objective 

function, S, that provides minimum variance estimates is the ordinary least squares norm 

[ 1], defined as the sum of squared residuals as 

J=Nt 

i=M 


2 
= L {Y(xi, t1) - T(xi, t1)} (1.8) 

i=l 

J=l 


where Y and f are the vectors containing the measured and estimated temperatures 

respectively, and the superscript T indicates the transpose of the vector. The estimated 

temperatures are obtained from the solution of the direct problem with estimates for the 

unknown heat flux at the surface. 
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1.3 Literature Review 

As previously stated, the inverse heat conduction problems are ill-posed problems where 

their solutions are unstable and sometimes not unique. Therefore, in order to solve 

IHCPs, some sorts of regularization are required. The regularization, in this context, is a 

mathematical treatment by which an ill-posed problem is converted into a well-posed 

problem where its solution is unique and very close to the solution of the original ill­

posed problem. This solution is stable and more robust since a small change in the input 

data due to measurements errors does not cause a large variation in the solution [7]. 

Based on the method of regularizing the inverse heat conduction problem, 

solution methods can be classified into three main categories [ 15]. The first category is 

based on the direct inverse methods; the second is based on the dynamic observers while 

the third is based on the optimization solution methods. The solution of the direct inverse 

methods is based on formulating a linear relationship between heat flux and temperatures. 

The dynamic observer based methods apply the optimal control theory to the inverse heat 

conduction problem. The prominent characteristic of this category is that these methods 

allow for online estimation. The inverse heat conduction problems are transformed into 

optimization problems in the third category. 

1.3.1 Direct Inverse Methods 

The standard compact form of the linear IHCP can be represented by the following 

matrix form equation; T=X q, where X is the sensitivity coefficient matrix , which 

describes the relationship between the response of the estimated temperature, T, and any 
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change in the boundary heat flux, q. The direct inverse operation cannot be directly 

applied to the above equation to estimate q since the sensitivity matrix, X, is singular 

[15]. Many regularization techniques have been developed and used to overcome the ill­

posedness of these methods. The most widely used in the literature are the Tikhonov 

regularization and the future times . 

Tikhonov [16] developed a whole time domain regularization method based on 

the modified objective function and sensitivity matrix relationship of the direct heat 

conduction equation. Tikhonov 's idea is to add a term to the objective function that 

reduces or eliminates undesirable oscillations in the estimation results. He introduced 

three types of regularization, namely, zeroth-order, first-order and second-order 

regularization. For example, the modified objective function of Tikhonov whole domain 

zeroth-order regularization is: 

I I 

S(q) =I (Yi - TJ 2 +aI q( (1.9) 
i =l i=l 

Where q; is the unknown boundary heat flux that needs to be estimated by the inverse 

analysis at time t;, Y is the temperature measurement, Tis the estimated temperature, a is 

the regularization parameter, and I is the number of time steps. The second term in 

equation (1.9) is the whole domain zeroth-order regularization term. A proper value of 

the regularization parameter, a, should be carefully selected to improve the stability of 

the solution. Tikhonov recommended that a be selected in such a way that the minimum 

value of the objective function and the sum of squares of the measurement errors are 
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equal [ 16] . More details about a proper choice of Tikhonov regularization parameter can 

be found in [1,2,7,15,16]. 

Beck [2] used future time steps to regularize the IHCP and estimate boundary heat 

fluxes in many applications [7] . The information of future temperatures is used in a 

smoother algorithm to enhance the stability of the solution by reducing the sensitivity to 

the measurement errors . If the number of future measurements is r, the modified 

objective function of this method is; 

r 

2S(qM) =I (YM+i-1 - TM+i-1) (1.10) 
i=l 

If the value of r is set to unity, the method is simplified into Stolz method of exact 

matching [9]. Beck's method is known as the sequential function specification method. It 

is so called because its solution depends on the shape of the initial assumption of the 

function being estimated. Constant and linear heat flux functional forms [2] have been 

used. Although the solution at each time step uses a number of future temperature 

measurements, only one component of the boundary heat flux is estimated corresponding 

to the current time step. This feature makes it possible to use a very small time step. 

However, using a number of future time steps limits this method to batch form 

estimation. This method can be used for both linear and nonlinear IHCPs. 

The ill-posedness of the above sensitivity matrix of the IHCP has been dealt with 

by applying the singular value decomposition method [ 17, 18]. In this method the 

sensitivity matrix is decomposed into three matrices as follows. 
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X =UL.VT (1.11) 

Where U E Rn x n and V E Rn x n are orthogonal matrices and L. E Rn x n is a diagonal 

matrix with nonnegative diagonal elements such that L.1 ~ L. 2 ~ L. 3 ~ · · · .. •· · ··· ~ 

L.min (n,n) ~ 0. The smallest positive singular values of matrix L. make the minimum 

norm solution of the inverse heat conduction problems very sensitive to measurement 

errors. Therefore, these smallest singular values of matrix X should be truncated and 

removed in order to enhance the solution stability. The truncation index can be selected 

by applying the discrepancy principle [18] . 

Low-pass filters have also been employed to solve inverse heat conduction 

problems. Blum and Marquardt [19] solved the IHCPs by mapping it into the z domain. 

While Luttich et al. [20] used s-domain transform to solve IHCPs. The low-pass filter 

techniques and the singular value decomposition are similar in handling the ill-posedness 

ofIHCP in the sense that both methods filter out the high frequency signals. 

1. 3.2 Optimization Based Methods 

In this category of IHCP solution techniques, optimization is also employed to solve 

IHCP, among which the steepest descent method [16], the Conjugate Gradient Method 

(CGM) [1 , 15], the Newton-Raphson and the quasi Newton methods have been explored. 

The objective function usually used in this category is the ordinary least squares 

norm. It is given by the following form for multiple sensors (N): 
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N tr 
S(qM) = L J {Ym (t) - T(Xmeas , t)}2 dt (1.12) 

m=l t=O 

where Ym is the measurement, T is the predicted measurement and t1 is the duration of the 

experiment. The above objective function is minimized under a constraint specified by 

the direct problem that is part of the solution procedure. 

Steepest descent method is the most basic gradient method. The idea of this 

method is to move downwards on the objective function along the direction of the highest 

variation (gradient), in order to locate its minimum value. The use of the gradient 

direction in this method is not very efficient since the steepest descent method starts with 

large variations in the objective function, but as the minimum value is almost reached, the 

convergence rate becomes very slow. 

The conjugate gradient method improves the convergence rate of the steepest 

descent method by choosing directions of descent usmg linear combination of the 

gradient direction with directions of descent of previous iterations [1, 15, 21-25]. Both 

the steepest descent and the conjugate gradient methods use the same procedure for the 

evaluation of the search step size. Due to its excellent search algorithm, CGM has been 

extensively used for solving IHCPs. The conjugate gradient method with adjoint problem 

has been used for parameter and function estimation problems [26-32]. If a priori 

information is available about the unknown variable, the problem can be solved as a 

parameter estimation problem. On the other hand, if there is no a priori information of the 

unknown variable then the problem is solved as a function estimation problem. 
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Employing the CGM to solve IHCPs requires solving the following subproblems: 

the direct problem, the inverse problem, the sensitivity problem, the adjoint problem, the 

gradient equation, the iterative procedure and the stopping criterion. The solution is 

usually obtained through an optimal searching. While the steepest descent and conjugate 

gradient methods use gradients of the objective function in their iterative procedures, the 

Newton-Raphson method also uses information of the second derivative, Hessian matrix, 

of the objective function in order to minimize the objective function and to achieve a 

faster convergence rate with more computational cost due to the complexity of the 

computation. In quasi Newton methods, the Hessian matrix appearing in the Newton­

Raphson method is approximated in such a way that it does not involve the second 

derivatives. The approximation of the Hessian matrix is based on the first derivatives. As 

a result, the quasi Newton method has a slower convergence rate than the Newton­

Raphson method; however, it is computationally faster (33]. Calculating the gradient is 

more computationally expensive than calculating the function value, and calculating the 

Hessian matrix is more computationally expensive than calculating the gradient. 

However, the optimization technique that does not involve the Hessian matrix usually 

requires many more iterations, and is often faster. 

1.3.3 Observer Based Methods 

Many types of observer structures have been used in solving IHCP including Beck's 

sequential observer [3 ,34] , state and disturbance (35] , and Kalman filter observer (36]. 

An important characteristic in this category is that it allows for online estimation. This 
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kind of estimation is also called digital filter estimation algorithm [3]. The concept of an 

observer based method can be clarified as follows [35] : 

Consider a discrete-time system where the state of the system (Tk) is governed by 

the following process equation: 

(1.13) 

where Tk + 1 is an estimate of the real state of the system based on the information from 


the previous state h A is the state transition matrix from time k to k + 1, B is the input 


matrix and qk is a known input vector. 


The measurement equation is: 


(1.14) 

An observer, is a dynamical system that provides an estimate of the state of the 

system, Tk+ l, based on the input, q k, and the output measurements zk. This can be 

achieved by copying the dynamics of the system and incorporating a feedback from the 

difference between the system output and the output generated using the estimates of the 

state. That is : 

(1.15) 
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The term Kr(zk - zk) in equation (1.15) is a feedback that indicates the error of the 

estimate. Therefore, the gain coefficient K1 must be selected in such a way that the above 

equation is stable and the estimation errors tend to zero. 

With Beck's sequential observer it is first necessary to determine filter 

coefficients K1 which requires using one of the inverse solution techniques such as 

sequential and whole domain procedures. After determining the filter coefficients, the 

filter algorithm can be used efficiently for online analysis. 

The state and disturbance observer has been used for the first time to solve IHCPs 

by Marquardt and Amacher in 1990 [35] . The most important strengths of this approach 

are the insensitivity to measurement noise and the ease of implementation. The 

shortcomings of this method are the unavoidable phase lag and its deficiency in 

reproducing abruptly changing in the unknown boundary heat flux. 

The Kalman filter design technique [36] is used to obtain a Kalman type observer 

[3 7]. The unknown parameters are combined with the original state vector as new 

variables to form a new set of state equations. The Kalman filter technique is then used to 

solve this new set of equations and predict the state parameters. 

There are various thermal problems that have been solved by applying an adaptive 

filter solution methods such as the Kalman filter . The solution of these problems is based 

on the optimal control theory. The main task in the simulation of a thermal system is the 

determination of its state vector and some unknown parameters from incomplete 

information. Temperature is the state vector in a thermal system and boundary conditions, 

thermal properties and shape of boundaries are examples of the state parameter that can 

15 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

be identified by simulation of a thermal system. The following section provides an 

overview of using Kalman filter as an estimator in parameter estimation algorithms of 

heat transfer problems. 

1.4 Kalman Filter 

Kalman filter is a statistical estimator that belongs to a class of algorithms known as 

Bayesian filtering algorithms. It solves inverse problems using statistical inversion theory 

and assuming that the state vector, initial estimate and its error covariance are Gaussian 

random variables. In the statistical inversion theory, the ill-posed inverse problem is 

converted into a well-posed problem by recasting the problem in a larger space of 

probability distribution employing Bayesian inference [38-42] . The solution of the 

converted problem is not a single estimate, however, it is a probability distribution known 

as a posterior distribution from which a single estimate can be obtained by employing 

some stochastic probabilistic estimators such as the Kalman filter. 

The deterministic techniques of solving IHCPs, such as those mentioned in the 

preceding sections, assume that the mathematical models (governing equations) are 

perfectly representing the physical phenomena. Furthermore, the measurement errors are 

characterized in terms of their norms in these techniques. These norms are usually 

assumed as real numbers. There are also some uncontrolled input disturbances to the 

system that are not considered in the IHCPs deterministic methods. However, in the 

numerical solutions, the mathematical models must be discretized, which introduces a 

new source of error. Also, in practice, the norm of the measurements error is usually a 
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random variable with a specified mean. Therefore, the deterministic solutions of IHCPs 

that give single estimates of the unknown variables do not rigorously consider the 

stochastic nature of the model and measurement uncertainties . Hence, they are not as 

reliable as the probabilistic methods in solving ill-posed inverse problems. The 

probabilistic approaches provide a complete characterization of both the model noise as 

well as the measurements noise . Furthermore, the probabilistic methods are able to better 

quantify the uncertanaities of the estimates by computing their statistical moments. 

Kalman filter was derived by Kalman [36] in 1960 as an optimal linear estimator. 

It recursively estimates the state of a linear dynamic system as a conditional mean using 

some measurements . These measurements are linearly related to the state of the system 

and are corrupted by uncorrelated Gaussian white noise of zero mean. Kalman filter 

optimality is based on the fact that the mean squared error of the estimates is minimized. 

This filter has been used in numerous applications [ 43-48]. It was first applied for 

parameter estimation of an inverse heat conduction problem by Scarpa and Milano [ 49] 

in 1991. The thermal diffusivity as well as the error resulting from the uncertainty in the 

thermocouple locations were identified by introducing some noise in the transient 

temperature measurements . The state vector was augmented with the estimated 

parameters to form a new set of state equations. The Kalman filter technique was used to 

solve this new set of equations and to predict the state parameters. This parameter 

estimation approach is called a joint estimation. It is worth mentioning that there was a 

previous attempt to use Kalman filter for a parameter estimation problem by Simbrirskii 

in 1976 [50]. Simbrirskii estimated temperature dependent thermal conductivity without 
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considering the uncertainty in the sensors locations. In contrast to the joint estimation, the 

dual estimation represents a decoupled type of approach where two separate estimators 

are used to estimate the state vector and the unknown parameters. For example the online 

input dual estimation approach developed by Tuan et al. [ 51]. 

Tuan et al. [ 51] proposed a recursive online estimation method to solve two­

dimensional linear inverse heat conduction problems. They combine the Kalman filter 

technique and the Recursive Least Squares Estimator (RLSE) [52]. In this method, the 

Kalman filter generates the residual innovation sequence, followed by the use of a real 

time recursive least squares method to predict the value of the parameters employing the 

generated innovation sequence. They used the algorithm to estimate two separate 

unknown heat fluxes on two different boundaries in real time. The algorithm is simple in 

concept and computationally efficient. 

If the system model or measurement model is nonlinear, the standard Kalman 

filter cannot be directly applied. However, it can be extended to handle nonlinear 

systems. There are two main approaches by which the standard Kalman filter can be 

extended for nonlinear problems. The first approach is called the perturbation Kalman 

Filter (PKF) in which the state space model is linearized around a nominal trajectory by 

using Taylor series expansion [43). The second approach is called the Extended Kalman 

Filter (EKF) in which the state space model is linearized around the most recent time 

estimates [53). PKF is faster since the real time implementation parameters such as the 

state transition matrices and the filter gains are not functions of the estimates and do not 
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need to be updated at each iteration. However, it is less robust against nonlinear 

approximation errors than the EKF. 

The review paper of Sorenson [ 54] demonstrated the developments in the method 

of least-squares estimation from its first derivation by Gauss to the new form of Kalman. 

Sorenson noticed that Kalman filter with its easy implementation on a digital computer 

can be regarded as an efficient computational solution of the least squares method. In 

addition, Sorenson noted that Kalman filter can be applied with significant success to 

nonlinear systems. 

Jang et al. [55] applied two different approaches for online estimation of 

nonlinear chemical process problems. The first approach was based on the extended 

Kalman filter while the second approach applied nonlinear optimization methods to 

minimize the error in the estimate. The results of this study showed that the extended 

Kalman filter is sensitive to several factors such as the initial guess of the state variables, 

the statistics of the input and measurements noise, and the degree of nonlinearity of the 

system. 

Scarpa and Milano [56] used a Kalman smoothing technique to estimate time 

dependent surface heat flux at one boundary of a one-dimensional system using 

measurements of temperature profile at an interior location within a solid slab. They used 

future temperature measurements to smooth the estimation. Therefore, their algorithm is 

only applicable for offline estimations. 

Employing different discretization techniques, the online input estimation 

algorithm of Tuan et al. [51 ], has been subsequently applied for solving different 
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problems including estimating the contact conductance during metal casting, interface 

conductance between periodically contacting surfaces, and solidification [57-62]. 

Ji and Jang experimentally evaluated the application of Kalman filter for inverse 

heat conduction problems [63]. The heat flux was augmented in the temperature state 

vector and both are estimated simultaneously. The results of this investigation showed a 

good agreement with the experimental results . 

Cartesegna et al. [ 64] applied an inverse technique to estimate the thermophysical 

and mass transfer properties of a porous insulating material under transient thermal 

conditions. The Kalman filter was used as a parameter estimator in this study. Results 

showed that Kalman filter could be an interesting approach for estimating the global 

transport performance of porous materials in the presence of moisture. 

Daoas and Radhouani [65] applied an extended version of the Kalman filter to 

estimate time-dependent surface heat flux in a one-dimensional nonlinear IHCP using 

experimental temperature measurements. They used the extended Kalman filter with a 

number of future measurements as a smoothing technique. The proposed method is an 

offline technique for the estimation of surface temperatures and surface heat flux . Their 

results showed that this algorithm is capable of handling the time lag and measurement 

errors if the number of future temperature measurements is carefully chosen. 

Wang et al. [66] developed an online adaptive-weighting input estimation 

algorithm to solve nonlinear heat conduction problems . The nonlinearity resulted from 

the thermophysical properties being temperature dependent. This algorithm incorporates 

an extended Kalman filter with the real time recursive least squares estimator to estimate 
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a time varying unknown heat source in a one-dimensional transient problem. This study 

showed that the extended Kalman filter can be efficiently used for handling nonlinear 

inverse heat conduction problems. This algorithm has been modified later by Chen and 

Cheng to handle a highly nonlinear thermal system [67]. 

Milano et al. [68] surveyed ten years worth of research in implementing inverse 

algorithms to estimate thermophysical properties from dynamic experiments. Those 

algorithms were based on the parameter estimation theory by using Kalman filtering 

technique. They concluded from this review that the use of statistical algorithms like 

Kalman filter in the parameter estimation can be considered as the most reliable and 

comprehensive approach. 

1.5 Research Objectives 

Based on the presented literature review of the general methods used to solve inverse heat 

conduction problems, it is clear that the first and second groups of methods are batch 

form algorithms which cannot be used for online estimations. Moreover, the whole time 

domain Tikhonov regularization method has one clear disadvantage that is if the inverse 

solution is carried out over a long period of time, the matrix dimension and the 

computational cost will be increased accordingly. The disadvantage of the conjugate 

gradient method is that it is incapable of uniform convergence of the approximation 

because gradients approach zero value during the final time step. 

In industrial applications, some parameters or boundary heat flux must be 

determined and adjusted online rather than in batch form. Thus batch form algorithms 
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cannot be used for those applications. In contrast, the discrete Kalman filter algorithm 

can be readily implemented for online real time analysis. Furthermore, the discrete 

Kalman filter approach is much more computationally efficient than other methods [3]. 

This online algorithm does not require accumulating the measurements after they are 

processed. Therefore, the required capacity of the computational equipment is 

significantly reduced using the recursive estimation method since every new output of 

Kalman filter only requires the previous output and the current observed data. In addition, 

Kalman filter outperforms the other methods particularly in treating noisy measurements 

since it belongs to stochastic type estimators as previously mentioned. 

It can be easily concluded from the Kalman filter literature review that the 

research in the field of parameter and input estimation using Kalman filter has been 

geared toward signal processing rather than thermal engineering. However, previous 

work has been done by different researchers using Kalman filter as an estimator to solve 

IHCPs [45-53]. The first time the Kalman filter was applied to solve IHCPs was in 1991 

[ 45]. Since then this technique has been used mostly for solving the thermal field of 

linear inverse heat conduction problems [ 49-51 ,56-63,65-67]. However, there are many 

industrial processes such as thermal processing of metals where the thermal field is 

coupled with the microstructure field. The main objective of this work is to develop a 

new real-time recursive algorithm that is capable of handling coupled thermal­

microstructure fields to estimate the transient thermal boundary conditions of nonlinear 

inverse heat conduction problems using the observer based theory of Kalman filter. The 

algorithm should be able to handle measurement errors efficiently and tracking the time 
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varying surface heat flux and surface temperature robustly and adaptively. In order to 

achieve this task, a systematic four stage research plan was devised. The details of the 

four stages are as follows: 

Stage 1: The online dual input estimation algorithm has been derived and developed by 

Tuan et al. [51]. As indicated in the literature review, it is very efficient online technique 

to solve IHCP. However, some important issues require further investigation as discussed 

below. In this stage, an online input estimation algorithm using Kalman filter and real 

time recursive least square method has been coded to solve a one-dimensional linear 

inverse heat conduction problem. The main objectives of this stage of the research work 

were: 

1. 	 Develop a full understanding of the performance of the dual online input estimation 

algorithm developed by Tuan et al. [51). This would primarily include understanding 

the effect of the tuning parameters of the algorithm, namely, the stabilizing parameter 

of the Kalman filter Q and the forgetting factor of the least squares algorithm y on the 

accuracy of the estimates. A thorough understanding of these issues would help in 

developing this algorithm for more complicated and coupled applications such as 

steel quenching. 

2. 	 Examine the influence of spatial and temporal discretizations of the heat conduction 

equation, the location of the temperature sensor, and the measurement noise level and 

its covariant matrix R on the quality of the estimate. 

3. 	 Another issue that needed to be addressed in this work is the effect of the initial value 

of the state estimate covariance errors matrix P in the Kalman filter algorithm and the 

23 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

value of the input (heat flux) estimate error covariance matrix Pb in the recursive least 

squares algorithm. In all his work, Tuan et al. [51 ,57-62,66,67] has assigned very 

large values for these two matrices. He assigned 1010 for P and 108 for Pb which 

causes the estimator to ignore the few initial estimates [ 51] . 

Stage 2: Kalman filter has been extensively investigated since its derivation by Kalman 

in 1960 [3 6] and a number of alternative Kalman filtering algorithms have been proposed 

which are theoretically equivalent or close to the original formulation [59]. However, all 

previous investigations using the online input estimation techniques for heat transfer 

applications have been based on employing only the continuous time conventional 

Kalman filter [51,57-62,66,67] . The implicit Kalman filter is an alternative filter which 

could be used to incorporate various desirable features including enhancing numerical 

stability and computational accuracy or reducing computational requirements. 

Depending on the discretization scheme used for the heat conduction problem, 

different types of Kalman filter can be obtained. Using an explicit scheme leads to an 

explicit Kalman filter. With an explicit scheme a smaller time step is often needed to 

improve the accuracy of the algorithm or to provide good stability, very small time steps, 

however, are not always recommended in inverse heat conduction problems due to its 

diffusive nature [3] . This issue associated with the use of explicit Kalman filter for 

solving inverse heat conduction problems has been addressed in the second stage of this 

study. 
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In this stage of the research work, the implicit, explicit, and Crank-Nicholson 

Kalman filters have been applied to the problem of inverse heat conduction to investigate 

their ability in improving the estimate of the boundary heat flux. 

The implicit Kalman filter takes the following form: 

The process equation: 

A1 (k)T(k + 1) = A2 (k)T(k) + D[q(k) + w(k)] (1.16) 

where T is the state vector of dimensional n, q(k) is the input vector, w(k) is the process 

stochastic disturbance, A 1(k) and A2(k) are known matrices from which the state 

transition matrix can be estimated, D(k) is the input transition matrix, and k= 1, 2, .... .. is 

the discrete time index. 

The measurement equation: 

z(k + 1) = H(k + l)T(k + 1) + v(k + 1) (1.17) 

where z(k + 1) is the measurements vector, H(k + 1) is the measurement matrix and 

v(k + 1) is the measurement noise vector. 

If matrix A 1 has rank less than n then the above system is often called descriptor 

or singular system. The traditional discrete dynamic system is a special case of Equation 

(1.16) when A1=1. If A1 is non singular for all k, then the implicit system can be 

formulated as an explicit form and the traditional Kalman filter can be applied to obtain 

the minimum variance state estimate of Equation (1.16). The main objectives of this stage 

of the research work were: 
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1. 	 Investigate the numerical stability of the online input estimation algorithm usmg 

different discretization schemes including implicit, explicit and Crank-Nicholson 

schemes. 

2. 	 Study the effect of using implicit, Crank-Nicholson, and explicit Kalman filter on the 

performance of the online input estimation algorithm. 

Stage 3: The last two stages of this study were devoted to investigate the feasibility of 

modifying the online input estimation algorithm to handle coupled inverse heat 

conduction-microstructure problems, namely, steel quenching processes. 

Quenching is an important process in industrial heat treatment operations m 

which the temperature of the part is reduced to a desired value using a liquid jet, gas jet, 

or immersion in a liquid bath. Quenching in steel is even more important due to phase 

transformations that take place. During a phase transformation, heat is generated which 

influences the thermal field of the steel. The phase transformation in steel is dependent on 

the thermal field developed during quenching. Therefore different types of steel 

microstructures can be obtained depending on the cooling rate. 

Deformation, thermal and residual stresses, and surface hardness of steel are 

strongly related to the microstructure and the phases presented inside the material. Thus, 

the phase transformation in steel during quenching should be efficiently controlled in 

order to produce steel with a certain set of mechanical properties. This can be achieved 

effectively by controlling the quenching process. Traditionally quenching conditions are 

determined by experimental work which does not provide information about the 

microstructure during the process and only gives the final microstructure. This way of 
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obtaining quenching conditions can lead to non-optimal material properties and some 

associated financial consequences to the industry [ 69]. 

There are two main scenarios in numerical modeling of heat treatment of steel by 

quenching. The first scenario is related to the situation where quenching conditions are 

known and the goal is to compute the produced microstructure, surface hardness, residual 

stresses and distortions. The second scenario considers the situation where the quenching 

conditions need to be estimated to produce a desired microstructure in order to achieve a 

certain set of mechanical properties. 

The former case is addressed by solving a direct heat transfer problem using the 

given boundary conditions to calculate the thermal field and the corresponding 

microstructure, surface hardness, and distribution ofresidual stresses inside the steel. The 

latter case is addressed by using transient temperatures (cooling rate) corresponding to 

the required microstructure as input to an inverse heat conduction algorithm in order to 

estimate the required convective heat transfer coefficient that provides the required 

cooling rate. In both types of problems: direct and inverse, the phase transformation 

model must be coupled with the thermal field model to simultaneously evaluate the 

thermal field as well as the microstructure field inside the part. 

The same microstructure model that is used for direct problems will be used for 

inverse problems. Therefore, the direct problem with the microstructure model is solved 

first in stage three of the present work to check the validity and reliability of the used 

microstructure model. In addition, solving a direct problem of steel quenching would 

provide a thorough understanding and validation of the phase transformation model. 
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Moreover, results of the direct problem will be used as input to the inverse solver, which 

was carried out in stage four of this study. 

Stage 4: The final goal of this work was to develop a new inverse algorithm to simulate 

the heat treatment process of steel quenching. This algorithm was based on combining the 

online input estimation methodology with steel microstructure models . Achieving this 

task would provide a tool for online controlling the process of steel quenching which, in 

tum, would lead to large savings in both efforts and cost of achieving optimal material 

properties. 

1.6 Thesis outline 

This thesis consists of six chapters. Chapter 1 introduces the concept of inverse heat 

conduction problems with its general formulation. It also provides detailed literature 

review of different solution techniques that have been used for solving inverse heat 

conduction problems. This review includes the application of Kalman filter for thermal 

systems. This chapter is concluded with research objectives and thesis outline. 

Chapter 2 presents the historical development of the online input estimation algorithm 

and its application in tracking and navigation applications and its modification by Tuan et 

al. [ 51] for inverse heat conduction problems. This chapter includes the mathematical 

derivation of Kalman filter and its modification as part of the online input estimation 

algorithm. 

Chapter 3 consists of two publications. The first publication is a paper published in the 

Journal of Physics: Conference Series in 2008. The paper reports a parametric study of 
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the effect of some important parameters that affect the performance of the online input 

estimation algorithm in its application for inverse heat conduction problems. Special 

attention has been given to the modeling error used as the stabilizing parameter in the 

algorithm. The second part of this chapter is a conference publication devoted to 

investigating the effect of using different types of Kalman filter, resulted from employing 

different discretization techniques, on the performance of the online input estimation 

algorithm. This publication was presented in the 15th Annual Conference of the CFD 

Society of Canada, Toronto, Ontario, May 27-31, 2007. 

Chapter 4 is a journal paper published in the Journal ofASTMInternational, Vol. 5, Issue 

10, 2008. This paper reports a new algorithm for the prediction of the thermal and 

microstructure fields of a steel rod during quenching. The full nonlinear heat conduction 

equation in the cylindrical coordinates was used in this investigation. The nonlinearity of 

the problem was handled by employing implicit linearization which led to a very efficient 

and accurate algorithm. No iterations were needed and hence, the computational time was 

reduced significantly. 

Chapter 5 is a journal paper that has been accepted for publication in the Journal of 

Numerical Heat Transfer/B. The paper introduces a modified version of the online input 

estimation algorithm for a coupled problem of steel quenching. Since its derivation by 

Tuan et al. in 1996 [ 51], the online input estimation algorithm has been only used for 

solving the thermal field of many inverse heat conduction problems. In this work, the 

feasibility of applying this algorithm for a coupled heat conduction/microstructure 
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problem has been investigated and validated. The outcome of this work showed the 

reliability of this algorithm in handling such problems. 


The sixth chapter of this thesis summarizes the significant research contributions as well 


as some recommendations for future research work. 
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2.1 Introduction 

The input estimation methodology was first derived by Chan et al. in 1978 to estimate 

acceleration input vector of maneuvering targets such as aircrafts [ 1]. It consists of a 

conventional Kalman filter, a statistical detector and an acceleration input least squares 

estimator. The scheme at each time step uses a sliding window that contains a number of 

measurements to estimate the target acceleration where its norm is then compared against 

a specific threshold in a statistical detection process. If the norm is more than the 

threshold, the estimated acceleration is used to correct the Kalman filter state and 

covariance estimates. This batch form algorithm was modified later by Bolger in 1987 by 

formulating it in a recursive form [2]. The recursive formulation of Bolger had been 

revised by Hou and Shaanxi in 1989 by using the correct form of Kalman filter equations 

[3]. The results of the above investigations showed that this algorithm can be effectively 

tracking maneuvering targets. 

The online form of input estimation algorithm has been derived for inverse heat 

conduction applications by Tuan et al. in 1996 [ 4]. The new algorithm was used to solve 

a two-dimensional linear inverse heat conduction problem. This method, input 

estimation, is based on using the conventional Kalman filtering approach combined with 

the real time recursive least squares algorithm (RLSE) to estimate the two input unknown 

heat fluxes on two different boundaries. 

Tuan et al. modified the batch form input estimation algorithm of Chan et al. [1] 

to an online recursive form for real time estimating of a time varying unknown input by 

using a fading memory scalar known as the forgetting factor, y. This parameter can also 
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be used to control the input gain of recursive least squares estimation in order to give the 

acceptable trade-off between the filter tracking ability, filter response, and its sensitivity 

to measurement errors, filtering capability. Tuan et al. firstly used this factor as a constant 

tunable parameter varying between 0 and 1 [ 4]. This approach was modified later by 

Tuan et al. [5]. In the new approach the constant forgetting factor is replaced by an 

adaptive weighting forgetting factor y(k) by taking it as a function of residual innovation, 

the difference between the actual and predicted measurements, at each time step. The 

results showed that this approach is reliable in tracking unknown boundary heat flux and 

efficiently handled the noisy measurements. 

The online input estimation algorithm has been applied to different applications 

including estimating contact conductance during metal casting, estimating interface 

conductance between periodically contacting surfaces, and solidification employing 

different discretization techniques [ 4-19]. This approach involves the application of 

residual innovation sequence produced by the Kalman filter, and followed by the use of 

real time least squares method to predict the value of the parameters (unknown boundary 

heat fluxes) . The next section provides an overview of the derivation of the Kalman filter 

equations as well as the real time recursive least squares estimator. 

2.2 Derivation of Kalman filter equations 


Kalman filter is a set of mathematical equations that recursively compute the state, 


T(k + 1 ), of a linear dynamical system at time k + I from the previous state estimate, 

T(k), at time k and the new measurement, z(k + 1 ). It first predicts a state of a system 
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using the previous estimate and the process dynamic of the system. Then it corrects 

(update) this prediction after receiving a feedback from the system in the form of noisy 

measurements . The prediction-correction process of Kalman filter can be represented by 

the schematic diagram shown in Figure 2.1. Since it is recursive, Kalman filter needs 

only the previous estimate and current measurement in order to estimate the new state of 

the system. This is a very important feature of Kalman filter which makes it very 

attractive for online implementation. Thus, the most important feature is that the 

unknown is of a real time estimate followed by a measurement that is taken at the current 

time. 

+f "'\ f "" Prediction Correction 
(Time update) (Measurement update) 

\.. ./ \...+ 

Figure 2.1 Schematic diagram of the prediction-correction nature of the Kalman filter. 

Consider a discrete time state space representation of a linear form of heat 

conduction process described by the following two equations: 

Process Equation: 

T(k + 1) = A(k)T(k) + D(k)[q(k) + w(k)] (2.1) 
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Measurement Equation: 

z(k + 1) = H(k + l)T(k + 1) + v(k + 1) (2.2) 

where T(k) and T(k + 1) are respectively the temperature state vectors of the system at 

time k and k + 1, A(k) is the state transition matrix, D(k) is the input matrix, q(k) is the 

input represented by the boundary heat flux, z(k + 1) is the measurement vector at time 

k + 1, H(k + 1) is the measurement matrix, w(k) is the process noise and v(k) is the 

measurement noise. Both the process noise and the measurement noise are assumed to be 

zero mean uncorrelated Gaussian and white noise sequences with covariance Q(k) and 

R(k) respectively given by: 

Q(k) if n = k 
E[w(k)w7 (n)] = (2.3)

{ 0 if n * k 

R(k) if n = k 
E[v(k)v7 (n)] = (2.4)

{ 
if n * k0 

Moreover, the process noise w(k) is uncorrelated with the measurement noise v(k) , that 

IS, 

E[w(k)v7 (n)] = 0 for all k and n (2.5) 
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Assuming that there is an initial estimate of the process T(k) at time k. This 

estimate is based on all the previous information about the process before time k. Also, 

assuming that the error associated with this estimate is given by: 

e(k) = T(k) - f(k) (2.6) 

where T(k) is the true state of the system and f(k) is the predicted state. Therefore, the 

state prediction covariance, also known as error covariance matrix, is defined by: 

P(k) = E[e(k)eT(k)] = {[r(k) - f(k)][T(k) -f(k)f} (2.7) 

The state prediction is obtained by applying the operator of expectation 

conditioned on the sequence of measurements available at time k, defined by the vector 

zk.This estimation is called the conditional mean given by: 

E[T(k + 1/k)Jzk] = E{{A(k)T(k) + D(k)[q(k) + w(k)]IZk}} (2.8) 

Since the process noise w(k) is Gaussian white noise of zero mean, the above 

equation becomes : 

f(k + 1/k) = A(k)T(k/k) + D(k)q(k) (2.9) 

The prediction error is obtained from subtracting Equation 2.9 from Equation 

(2.1) as follows: 


e(k + 1/k) = T(k + 1) - T(k + 1/k) (2.10) 
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Substituting Equations 2.1 and 2.9 in Equation 2.10, yields 

e(k + 1/k) = A(k)[T(k) - T(k + 1/k) + D(k)w(k) (2.11) 

The state prediction error covariance is found by applying the operator of 

expectation conditioned on i' on the above equation 

P(k + 1/k) = E[e(k + 1/k)er (k + 1/k) IZk] (2.12) 

P(k + 1/k) = A(k)P(k/k)Ar(k) + D(k)Q(k)Dr(k) (2.13) 

Similarly, the predicted measurement is obtained by finding the expected value of 

the measurement equation, Equation 2.2, conditioned on i' 

z(k + 1/k) = E[z(k + 1)1Zk) (2.14) 

z(k + 1/k) = E[H(k + l)T(k + 1) + v(k + 1)1Zk) 

z(k + 1/k) = H(k + l)T(k + 1/k) (2.15) 

Subtracting Equation 2.15 from Equation 2.2 yields the measurement prediction 

error: 

z(k + 1/k) = z(k + 1) - i(k + 1/k) 


z(k + 1/k) = H(k + l)e(k + 1/k) + v(k + 1) (2.16) 


45 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

Note that z is also known as the innovation residual. 

Thus, the measurement prediction covariance is given by: 

S(k + 1) = E[z(k + 1/k)zT (k + 1/k)IZk] 

S(k + 1) = H(k + l)P(k + 1/k)Hr(k + 1) + R(k + 1) (2.17) 

Kalman' s idea is that the new information in the measurement can be used to 

improve the prior estimation. He updated the prior estimation to obtain the posterior 

estimation by using a linear relationship between the predicted estimate and the new 

measurement as follows, 

f(k + 1/k + 1) = f(k + 1/k) + K(k + l)[z(k + 1) - i(k + 1/k)] (2.18) 

where K(k + 1) is Kalman gain works as a weighting matrix between the predicted state 

and the measurement. It is worth mentioning that T(k + 1/k) and T(k + 1/k + 1) are 

respectively the predicted and corrected estimates for the same time step (k + 1) [20). 

Using Equations 2.15 and 2.16, the above equation can be written as: 

f(k + 1/k + 1) = f(k + 1/k) + K(k + l)z(k + 1) (2.19) 

The updated error covariance matrix of the updated state at time k + 1 can be 

obtained by 
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P(k + 1/k + 1) 


= E [{r(k + 1) - f'(k + 1/k + 1)}{T(k + 1) - f'(k + 1/k + 1)flzk] (2.20) 


Substituting Equations 2.2, 2.15, and 2.19 in Equation 2.20, yield: 

P(k + 1/k + 1) = E[{e(k + 1/k) - K(k + l)[H(k + l)T(k + 1) + v(k + 1) ­

H(k + l)T(k + 1/k)]}{e(k + 1/k) - K(k + l)[H(k + l)T(k + 1) + 

v(k + 1) - H(k + l)T(k + 1/k)Jf1zk] (2.21) 

Note that the prediction error, e(k +1 I k), is uncorrelated to the measurement noise, 

v(k + 1). 

By performing the above expectation in Equation 2.21, the following general 

expression for the updated error covariance (posterior covariance) can be obtained: 

P(k + 1/k + 1) = [I - K(k + l)H(k + l)]P(k + 1/k)[l - K(k + l)H(k + l)]r + 

K(k + l)R(K + l)Kr (k + 1) (2.22) 

P(k + 1/k + 1) = 


P(k + 1/k) - K(k + l)H(k + l)P(k + 1/k) - P(k + 1/k)Hr(k + l)Kr(k + 1) + 


K(k + l)[H(k + l)P(k + 1/k)Hr(k + 1) + R(k + l)]KT(k + 1) (2.23) 


This expression for the updated error covanance is a function of any gam 

K(k + 1 ), and the goal now is to find the optimal Kalman gain that minimizes the updated 
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covariance matrix. The optimal Kalman filter can be obtained by applying the minimum 

mean square error criterion. This can be done by differentiating Equation 2.23 with 

respect to K(k + 1) and equating it to zero and finding the optimal Kalman filter gain. The 

resulting optimal Kalman filter is given by: 

K(k + 1) = P(k + l/k)Hr(k + l)S-1 (k + 1) (2.24) 

Substituting Equation 2.24 in Equation 2.23 yields the following expressions for 

the updated error covariance matrix : 

P(k + l/k + 1) = P(k + l/k)Hr (k + l)S-1 (k + l)H(k + l)P(k + l/k) 

P(k + l/k + 1) = P(k + l/k) - K(k + l)S(k + l)Kr (k + 1) 

P(k + l/k + 1) = [I - K(k + l)H(k + l)]P(k + l/k) (2.25) 

The above Kalman filter equations are classified into two main groups (21] . The 

first group is called the time update equations by which the state of the system and the 

error covariance matrix are predicted for the next time step. The second group is called 

the measurement update equations by which the predicted estimates of the first group are 

corrected by using the new information contained in the new measurement. The previous 

two groups along with the Kalman gain can be summarized below: 

Time update equations 

A priori state prediction 
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T(k + l/k) = A(k)T(k/k) + D(k)q(k) (2.26) 

A priori state-error covariance matrix 

P(k + l/k) = A(k)P(k/k)Ar(k) + D(k)Q(k)Dr(k) (2.27) 

Kalman gain 

K(k + 1) = P(k + l/k)Hr(k + l)S- 1 (k + 1) (2.28) 

Measurements update equations 

State prediction update 

f(k + l/k + 1) = f(k + l/k) + K(k + l)z(k + 1) (2.29) 

A posteriori (update) state-error covariance matrix 


P(k + l/k + 1) = [I - K(k + l)H(k + l)]P(k + l/k) (2.30) 


2.3 Derivation of the real time recursive least squares estimator 

The recursive least square estimator is developed based on using two Kalman filters in 

the Kalman filter estimator. These two Kalman filters generate two different innovation 

residuals. The first innovation residual is the observed innovation sequence that is 

produced by the mismatched Kalman filter assuming no boundary heat flux [3). The 

second innovation residual, known as a hypothetical innovation sequence, is produced by 

the hypothetical Kalman filter assuming known boundary heat flux. 
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The idea behind employing two Kalman filters is to formulate a linear regression 

relationship between the observed innovation residual of the mismatched Kalman filter 

and the hypothetical innovation residual of the hypothetical Kalman filter as a function of 

the unknown boundary heat flux. This relationship can be considered as a measurement 

equation for the unknown boundary heat flux, the input, where the recursive least squares 

estimation technique can be used to estimate the unknown input. The derivation of this 

measurement equation is given in chapter five for the steel quenching process and for the 

sake of brevity will not be repeated here. 

Having given the mathematical derivation of the Kalman filter and the real time 

recursive least squares estimator that constitute the online input estimation algorithm. The 

next chapter will present parametric study for the applicability of the online input 

estimation algorithm for the one dimensional inverse heat conduction problem 

considering different functions of boundary heat flux. 
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NUMERICAL STUDY OF THE MODELING ERROR IN THE 
ONLINE INPUT ESTIMATION ALGORITHM USED FOR 
IN VERSE HEAT CONDUCTION PROBLEMS (IHCPS) 

CHAPTER3 
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Chapter Three Preface 

This work has been previously published in: 

Ali, S. K., Hamed, M. S. and Lightstone, M.F., Numerical study of the modeling 

error in the online input estimation algorithm used for inverse heat conduction 

problems (IHCPs), Journal of Physics: Conf. Ser. 135 012004, 2008 . 

The whole article is the first part of this chapter. 

Ali , S. K. , Lightstone, M. F. and Hamed, M. S., Parametric Study of Input 

estimation Algorithm Used for Inverse Heat Conduction Problems, presented in 

the 15th Annual Conference of the CFD Society of Canada, Ontario, Canada, 

May 27-31 , 2007. 

Part of this article is the supplementary material for this chapter. 
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Numerical study of the modeling error in the online input estimation 

algorithm used for inverse heat conduction problems (IHCPs) 

Abstract 

A numerical investigation has been conducted to study the effect of modeling error in the 

state equation on the performance of the online input estimation algorithm in its 

application to the inverse heat conduction problems. This modeling error is used as a 

tuning parameter known as the stabilizing parameter in the online input estimation 

algorithm of the inverse heat conduction problems. Three different cases which cover 

most forms of the boundary heat flux functions have been considered. These cases are: 

square wave, triangular wave and mixed wave heat fluxes. The investigation has been 

carried for a one dimensional inverse heat conduction problem. Temperature 

measurements required for the inverse algorithm were generated by using a numerical 

solution of the direct heat c.onduction problem employing the three boundary heat flux 

functions . The most important finding of this investigation is that a robust range of the 

stabilizing parameter has been found which achieves the desired trade-off between the 

filter tracking ability and its sensitivity to measurement errors. For all three considered 

cases, it has been found that there is a common optimal value of the stabilizing parameter 

at which the estimate bias is minimal. This finding is very important for practical 

applications since this parameter is unknown practically and this study provides a needed 

guidance for assuming this parameter. The effect of changing other important parameters 
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in the online input estimation algorithm on its performance has also been studied in this 

investigation. 

3.1 Introduction 

Online input estimation algorithm of the inverse heat conduction problems was derived 

and developed by Tuan et al. [1]. This algorithm has been used for solving many 

problems of one and two dimensional linear inverse heat conduction problems [ 1-3] . It 

employs two estimators. The first estimator is the Kalman filter by which the temperature 

state vector is estimated and used to generate the residual innovations. The residual 

innovations are the difference between the measured temperatures and the estimated 

temperatures. The second estimator is the real time recursive least squares by which the 

boundary heat flux is estimated using a linear regression relationship between the residual 

innovations and the unknown boundary heat flux. The most important feature of this 

algorithm is the real time estimation since it can be applied to the control of industrial 

processes. 

There are two tuning parameters in this algorithm. The first one is the modeling 

error, known as the stabilizing parameter, Q, in the Kalman filter estimator, while the 

second one is the "forgetting factor", y, in the real time least squares estimator. Values of 

Q and y affect the performance of the input estimation algorithm because they influence 

the trade-off between the filter tracking ability and its sensitivity to measurement errors. 

Tuan et al. [2] provided an efficient relationship for the calculation of the forgetting 
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factor as a ratio of the standard deviation of measurement errors and the residual 

innovation at each time step. 

Therefore, the stabilizing parameter, Q, becomes the only tuning parameter that 

can be used to provide the desired trade-off. A large value of Q results in a fast response 

filter at the cost of large sensitivity to measurement error which leads to undesired 

fluctuations in the heat flux estimates. While a small value might lead to a very slow 

response filter. 

The main objective of this study is to investigate the effect of changing the 

stabilizing parameter Q on the performance of the online input estimation algorithm. This 

stabilizing parameter is representing all sources of errors in the model, including: the 

error due to the dynamical representation of temperature; the error due to the parameters 

representation and the error due to the discretization of the heat equation. However, these 

errors are not practically known and therefore a quantifying study of this parameter is 

essential for designing Kalman filter as part of an online input estimation algorithm. 

The optimality of Kalman filter requires that the system should be completely 

observable. Therefore, the observability of the considered problem has been investigated 

as well. This is important for the present analysis because the study was intended to 

investigate the effect of changing only the stabilizing parameter Q on the performance of 

the algorithm. The performance of the algorithm is measured by the estimate bias of the 

input (heat flux) given by [ 4]: 
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(3.1) 


where qk and Efk are the dimensionless exact and estimated heat flux respectively, and n 

is the total number of time steps. 

To the authors' knowledge, there has been no study in the literature investigating 

the effect of the stabilizing parameter on the performance of the online input estimation 

algorithm. Other important parameters requiring systematic assessment of their effect 

include: the standard deviation of measurement error, time step size, spatial step size, 

location of the thermocouples, initial assumption of the state estimate error covariance 

matrix in the Kalman filter estimator, P, as well as the input (heat flux) estimate error 

covariance matrix in the recursive least squares estimator, Pb,. Thus, the present study 

includes investigating the effects of the above parameters on the estimate bias of the 

online input estimation algorithm. 

3.2 Problem Description 

The considered problem is one dimensional geometry shown in Figure 3 .1. It is initially 

at a uniform temperature and then subjected to a transient heat flux on one side while 

insulated on the other side where the thermocouple is placed. 

The governmg equation of this problem is the one-dimensional, linear, heat 

conduction equation: 
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q(t) • x Z(Xmeas' f)~ -t 
1 ~ L ·1 

Figure 3.1 One-dimensional linear inverse heat conduction problem. 

0 ~ x ~ L, t > 0 (3.2) 

The boundary conditions are given by Equations 3.3 and 3.4 

ar 
q(O, t) = -k ax t>O (3.3) 

ar 
-=0 x = L, t > 0 (3.4)ax 

The initial condition is 


T(x, O) = T0 O~x~L (3.5) 


Temperature measurements at x=L, are given by: 

z(L, t) = T(L, t) + v(t) t>O (3.6) 

where v(t) is the measurement errors assumed to be a zero mean Gaussian white noise. 
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The following parameters have been used to make the above equations m 

dimensionless form: 

T-T0 x at k * q
T*(x*, t *) = /k , x* =I, t * = £2 ' a=- q =- (3.7)

qoL pc' qo 

where q0 is a nominal value of the surface heat flux , p is the density, c is the specific 

heat, k is the thermal conductivity, (J. is the thermal diffusivity and t * is the dimensionless 

time. After omitting the asterisk (*) for notational convenience, the above equations 

become: 

ar a 2T 
2 

0 :::; x :::; 1, t > 0 (3.8) 
at ax

ar 
q(O, t) = - ax t>O (3.9) 

ar 
-=0 x = 1, t>O (3.10)
ax 

z(l, t) = T(l, t) + v(t) t > 0 (3.11) 

The spatial derivative of the above heat conduction Equation 3.8 has been 

discretized by using an explicit central finite difference scheme with a spatial step size Lix 

to obtain the continuous time state space model [ 1] : 

(3 .12) 
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where T is (N x 1) temperature state vector, w(t) is the process noise assumed to be 

Gaussian white noise of zero mean and independent of the measurement noise v(t), a 1 is 

(N x N) coefficient matrix and b1 is an (N x 1) input coefficient matrix. For the present 

problem a 1 and b1 are given by the following equations: 

-2 2 0 0 0 0 
1 -2 1 0 0 0 
0 1 -2 1 0 0 

1 
Gi= &2 (3.13) 

0 1 -2 1 0 
0 0 1 -2 1 
0 0 0 2 -2 

- 2 T 
- - [1 0 0 0 ... ... ... ... ... ... O] (3.14)b1 !::,.x 

Equation 3 .12 is then discretized over time with a time step tit to get the discrete time 

state space model that is needed for implementing the Kalman filter. The resulted discrete 

time state space model is: 

T(k + 1) =A T(k) + D [q(k) + w(k)] (3.15) 


and the measurement equation becomes: 


z(l, k) = T(l, k) +v(k) (3.16) 
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The operators A and D are the state transition matrix and the input matrix, respectively. 

These two operators are given by [3]: 

A = exp(a1L'.1t) (3.17) 

(k+l )M 

D= J exp[a1 (k+1)M-r]b1dr (3.18) 
kM 

The variance of the process noise input vector, w(k), and the measurement noise 

vector, v(t) , are given by E{w(k)wr(j)} = Q8kj and E{v(t) vr(j)} = R8kj = (]' 2 8kj , 

respectively. The superscript T refers to the matrix transpose, <5 is the Kronecker delta 

function . The parameter Q is the model error covariance matrix which attempts to 

compensate any mismatches in the model. It is assumed to be diagonal, and in the present 

problem is (lx 1) matrix used as a stabilizing parameter. The operator R is the 

measurement noise covariance matrix and cr is the standard deviation of the measurement 

error. Note that the values of R depend on the accuracy of the measurement sensor. 

3.3 Online Input Estimation Algorithm 

The online input estimation algorithm consists of two estimators. The Kalman filter 

estimator and the real time recursive least squares estimator. The Kalman filter estimator 

employs two Kalman filters. The first one called the hypothetical filter assuming a known 

boundary heat flux (the input vector) while the second filter is called the mismatch filter 
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assuming zero boundary heat flux. A relationship between the actual innovation residual 

of the first filter (the hypothetical Kalman filter) and the theoretical innovation residual of 

the second filter (the mismatch Kalman filter) is formulated as a function of the boundary 

heat flux . Then the real time recursive least squares estimator estimates the boundary heat 

flux that best fits that relationship applying the concept of Minimum Mean Squared Error 

Estimate (MMSE). The detailed derivation of this algorithm has been presented m 

sections 2.2 and 2.3. The following is a summary of the equations of each estimator: 

Kalman filter equations 

State prediction 


T(k/k - 1) = AT(k - l/k - 1) (3.19) 


State covariance prediction 


P(k/k - 1) =A P(k - l/k - 1) AT+ DQDT (3 .20) 

Innovation covariance 

s(k) = H P(k/k - 1) HT+ R (3.21) 

Filter gain 

K(k) = P(k/k - 1) HT s-1 (k) (3.22) 

Update state covariance 

P(k/k) = [/ - K(k)H] P(k/k - 1) (3.23) 
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Innovation 

z(k) = z(Xmeas I k) - H T(k/k ­ 1) (3.24) 

Update state estimate 

T(k/k) = T(k/k ­ 1) + K(k) z(k) 

Recursive least squares equations 

First sensitivity matrix 

(3.25) 

C(k) = H [A M(k ­ 1) +I] D (3.26) 

Second sensitivity matrix 

M(k) = [I ­ K(k)H][A M(k ­ 1) +I] (3.27) 

Gain 

(3.28) 

Error covariance of the input estimate 

Pb(k) = [I - Kb(k)C(k)] y- 1Pb(k) (3.29) 

Input estimation 

q(k) = q(k - 1) + Kb(k) * [z(k) - C(k)q(k - 1)] (3.30) 

where Tis the temperature state vector, A is the state transition matrix given by Equation 

3 .17, D is the input matrix given by Equation 3 .18, His the measurement matrix given by 
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[O 0 0 . . . . . . 1] for the considered problem where only one thermocouple is used at the 

insulated boundary, y is a scalar called the "forgetting factor" which works as a weighting 

factor in the recursive least square estimator. In the present study, y, is given by [2]: 

I z(k) :s; CTI 
y(k) = {~ (3.31)I z(k) >CTI

lz(k)I 

where CJ is the standard deviation of the measurement error (the square root of R), z(k) is 

the innovation (residual) obtained from Kalman filter by Equation 3.24. 

3.4 Simulation Cases 

An example similar to that presented by Tuan et al. [3] has been used in the present 

study. The problem uses a linear one dimensional geometry and the sensor is located at 

the insulated boundary, figure 1. The domain is initially at a uniform temperature and a 

transient heat flux is applied at x=O. Transient temperature "measurements" are taken at 

x=L by solving the direct heat conduction problem. Then these temperatures are 

corrupted by Gaussian white noise to simulate the actual temperature measurements. 

These transient temperature measurements are then used as an input to the inverse 

problem. 

Three different cases have been used to investigate the effects of changing the 

modeling error, Q, on the estimate bias, B, of the online input estimation algorithm. The 

first case is a square wave boundary heat flux given by: 
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0:::; t:::; 1.05 

q(O, t) = rn 1.05:::; t:::; 2.1 (3.32) 
2.1:::; t:::; 3.2 

The second case is a triangular wave heat flux given by: 

0 0$t$1 
2*(t-1) 1:::; t:::; 1.5 

(3.33)q (0' t) = - 20 * ( t - 2) 1.5:::; t:::; 2{ 
2:::; t:::; 3.2 

The third case is a mixed wave heat flux consists of sinusoidal, square, and triangular 

waves given by: 

0 .5 * (1 + sint) 0 $ t $ 3.2 
0 3.2 $ t $ 4.2 
1 4.2 $ t $ 5.2 
0 5.2 $ t $ 6 
0.5 * (t ­ 6) 6$t$8 

q(O, t) = -0.5 * (t ­ 10) 8$t$10 (3.34) 
0 10 $ t $ 10.5 
1 .10.S $ t $ 11.5 
0 11.5 $ t $12.8 
0.5 * (1 + sint) 12.8 $ t $ 15.6 
0 15.6 $ t $ 16.S 

3.5 Problem Observability 

The observability is a tool that can be used to investigate the internal state of a system by 

employing any information about the system input and output. The system is assumed to 

be completely observable if the rank of the observable matrix is equal to the rank of the 

state vector of the system. That is : 
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Rank[Hr, (H Af, (H A2 f, ............... ,(H AN-lf] = N (3.35) 


In order to check the observability of the considered problem, the spatial domain 

of the considered problem has been discretized into 11 nodes so that the state vector of 

the problem is (1 lxl) and the state transition matrix A is (1 lxl l) . A single thermocouple 

was used, so the measurement matrix His (lxll). After evaluating the state transition 

matrix A, using Equation 2.17, and the measurement matrix H, the observability matrix 

was determined and its rank was calculated and was equal to the dimension of the state 

vector N. Therefore, the considered problem was found completely observable. It is 

worth noting that the observability of the problem can be also checked by spectral 

decomposition of the observability matrix. 

3.6 Results and Discussion 

For the three cases, the square wave, the triangular wave and the mixed wave heat fluxes , 

the effect of changing the stabilizing parameter for the range of (0.0001 to 100) has been 

investigated. The results are shown in Figure 3.2. This figure indicates that there is a 

common robust range of the stabilizing parameter that gives a good estimate of the time 

varying boundary heat flux . 

For the three cases the same value of the stabilizing parameter (Q=0.01) gives a 

minimum value of the estimate bias as shown in Figure 3.3 . In practice the value of the 

stabilizing parameter is usually unknown. Therefore the above value of stabilizing 
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parameter could be used for most functions of one dimensional boundary heat flux that 

need to be estimated by online inverse input estimation methodology. 

2 

0.5 

---+-Square wave heat flux 
__..._Triangular wave heat flux 
--­ Mixed wave heat flux 

0 -+-~~~~~~~~~~~~~~~~~~~~~~~~ 

0.0001 0.001 0.01 0.1 1 10 100 
Q (stabilizing parameter) 

Figure 3.2 The effect of the stabilizing parameter Q on the estimate bias (time step 


M=0.005 and R= lE-6) . 
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---+-Square wave heat flux 
__..._Triangular wave heat flux 
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0_001 0_01 0. 1 

Q (stabilizing parameter) 

Figure 3.3 The effect of the stabilizing parameter Q on the estimate bias for the robust 

range. 
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Figures 3.4y 3.5 and 3.6 show the estimated heat flux for the full simulation time 

for the robust range of the stabilizing parameter for the three considered cases. It can be 

seen from line 4 that with a stabilizing parameter (Q=0.1) larger than its optimal value, 

the algorithm responds faster to the time varying heat flux but with a large sensitivity to 

the measurement error as indicated by the oscillations in the estimates. In contrast, with a 

smaller value of Q (0.001), the oscillations in the estimates are suppressed but the 

algorithm responds slower and the tracking time lag is large, line 2. Figure 3.7 and line 3 

in Figures 3.4 and 3.5 represent the estimated heat flux corresponding to the optimal 

value of the stabilizing parameter (Q = 0.01) that gives a minimum estimate bias. It is 

clear that the estimated heat flux has been improved with this value of Q where the 

oscillations and the tracking time lag are both decreased. 

-1: qExact 
2: q,Q=0.001 

"""'*"""3: q,Q=0.01 
·········4: q,Q=0.1 

q 

•.. 

3 2 


0.5 1 1.5 2 2.5 3 3.5 
t (timensionless tiITE) 

Figure 3.4 The effect of the stabilizing parameter (Q) within the robust range on the 

square wave estimated heat flux (Lit=0.005 and R= lE-6). 
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q 
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0.5 1 1.5 2 25 

-1: qExact 
2: q, Q::().001 

-­3 : q, Q::().01 
.........4: q, Q=().1 

3 3.5 
t (dirmnsionless tirm) 

Figure 3.5 The effect of the stabilizing parameter (Q) within the robust range on the 

triangular wave estimated heat flux (.M=0.005 and R= IE-6). 
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Figure 3.6 The effect of the stabilizing parameter (Q) within the robust range on the 

mixed wave estimated heat flux (.M=0.005 and R= IE-6). 
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Figure 3.7 A comparison between the exact heat flux and the estimated one with the 

optimal value of Q (~t=0 .005 and R= lE-6). 

The effect of the spatial step size, '1.x, and the time step size, ~t, on the estimate 

bias, B, for the case of square wave heat flux is shown in Figure 3.8. As seen from this 

figure, the estimate bias of the input estimation algorithm is not affected by the spatial 

step size. The effect of time step size on the estimate bias has been investigated for the 

same stabilizing parameter (Q=O.O 1 ). The result showed that there is a specific time step 

that gives a minimum estimate bias. However, the same stabilizing parameter satisfies a 

minimum estimate bias for different time steps. Note that the dimensionless time used in 

the present study is also known as a dimensionless Fourier number, Equation 3.7. 
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Figure 3. 8 The effect of the temporal and the special discretizations on the estimate bias 

(Q=O.Oland ~t=0 .005) for the square wave heat flux. 

The curve represents the relationship between the standard deviation of the 

measurement error, <7, and the estimate bias, B, shown in Figure 3.9 indicates that the 

estimate bias increases as the standard deviation of the measurement errors increased. 

The effect of the thermocouple location on the estimate bias is also shown in Figure 3.9. 

As expected, better estimates are obtained as the thermocouple moves closer to the active 

boundary. 
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Figure 3.9 The effect of the thermocouple location and the measurement error standard 

deviation (cr) on the estimate bias (Q=O.Oland ~t=0.005) for the square wave heat flux 

Finally, the initial values that are assumed for both the state estimate error 

covanance matrix in the Kalman filter estimator, P, and the heat flux estimate error 

covariance matrix in the recursive least squares estimator, Pb, have been investigated. In 

all his work, Tuan et al. (1-3] assigned very large values for them: 1010 for P and 108 for 

Pb and he recommends that the filter will ignore the first few estimates. In this work it is 

found that there is no effect of these assumptions on the estimator performance at later 

times. However, large values increase the convergence time to the steady state condition 

when the state covariance matrix coincides with its prediction leading to an optimal value 

for the filter gain, K(k), Equation 3.22. Moreover, large values cause the algorithm 
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estimates to violate the physical law of energy conservation. Therefore, these values can 

be reasonably assumed based on the prior information of the initial conditions of the 

given problem. 

3. 7 Conclusions 

In this study, three different simulation examples have been used to study the effect of 

changing the modeling error in the state equation on the estimate bias of the online input 

estimation algorithm in its application to the one dimensional inverse heat conduction 

problems. The results showed that there is a common robust range for stabilizing 

parameter (modeling error) that can be used to estimate efficiently various cases of the 

unknown input boundary heat flux in one-dimensional IHCPs. 

The results of the square wave example showed that there is an optimal time step 

that gives a minimum estimate bias. Also, the algorithm performance is not very sensitive 

to the spatial step size used in discretizing the heat conduction equation. The 

thermocouple should be located very close to the unknown heat flux to enhance the 

estimate. Finally reasonable values for both P and Pb are recommended. These values 

can be assumed based on the prior information of the initial conditions of the given 

problem. 
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3.10 Supplementary Material 

In order to apply a Kalman filter to the inverse heat conduction problems, the heat 

conduction equation should be converted into the state space representation. Two main 

approaches can be used. 

In the first approach, the only spatial derivative of the heat conduction equation is 

discretized using a central finite difference scheme to get the Continuous Time State 

Space Model (CTSSM), Equation 3.12. Then, the continuous time state space heat 

equation is integrated with respect to time to obtain the discrete time state space model, 
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Equation 3.15 , which is required for applying the Kalman filter. This approach has been 

used in the previous article of this chapter. 

In the second approach the discrete time state space model of the heat equation is 

obtained directly by discretizing both time and spatial derivatives. Three different 

discretizing schemes have been used to see their effect on the performance of the input 

estimation algorithm. These schemes are explicit, implicit and Crank-Nicholson. 

The resulted discrete time state space model of the heat equation using the explicit 

scheme, where the spatial derivative is discretized at n time level, is: 

T(k + 1) = a2T(k) + b2 [q(k) + w(k)] (3 .36) 

Here the state transition matrix A= a 1 and the input matrix D= b2 and the time step L1t is 

embedded in both a 1 and b2. 

The discrete time state space model of the heat equation usmg the implicit 

scheme, where the spatial derivative is discretized at n+ 1 time level, is: 

a3T(k + 1) = T(k) + b3 [q(k) + w(k)] (3.37) 

Then 


T(k + 1) = a 3 -l T(k) + a3 - l b3 [q(k) + w(k)] (3.38) 


So, here the state transition matrix A= a3-
1 and the input matrix D= a/ b3 . 

Finally, the Crank-Nicholson finite difference discretization scheme has been 

used to obtain the discrete time state space model of the heat equation and the resulted 

equation is : 
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(3.39) 


(3.40) 

where the state transition matrix A= a/ a5 and the input matrix D= a/ b4 . 

The above four cases that include, the continuous time state space model 

(CTSSM), explicit, implicit and Crank-Nicholson schemes have been applied to the 

problem of one dimensional inverse heat conduction problem described in the first part of 

this chapter employing the square wave boundary heat flux introduced previously. 

Table 3.1 shows the results of this investigation. For the first approach (CTSSM), the 

explicit and the Crank-Nicholson schemes the estimate bias is 0.2442 while it is 0.234 7 

for the implicit scheme. Since the estimate bias is almost same for the above approaches 

thus there is a very slight effect for the use of these different approaches on the estimate 

bias of the input estimation algorithm of the linear inverse heat conduction problems. 

However, the first approach (CTSSM), implicit and Crank-Nicholson are preferable than 

the explicit scheme because they are unconditionally stable. Furthermore, the CTSSM is 

almost 38% faster than the other methods where their executing times are almost the 

same. 
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Approach Estimate Bias Stability Executing time 

CTSSM 0.2442 Unconditionally stable Faster (38% less) 

Explicit scheme 0.2442 Conditionally stable Almost 

Same executing 

time 

Implicit scheme 0.2432 Unconditionally stable 

Crank-Nicholson 0.2442 Unconditionally stable 

Table 3 .1 The results of using different discretization schemes. 
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AN EFFICIENT NUMERICAL ALGORITHM FOR THE 
PREDICTION OF THERMAL AND MICROSTRUCTURE 
FIELDS DURING QUENCHING OF STEEL RODS 

CHAPTER4 
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Chapter Four Preface 
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for the Prediction of Thermal and Microstructure Fields during Quenching of 

Steel Rods, Journal of ASTM International, Vol. 5, Issue 10, 2008. 

Permission has been granted by the publisher to include this material in this thesis. 
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An Efficient Numerical Algorithm for the Prediction of Thermal and 

Microstructure Fields during Quenching of Steel Rods 

Abstract 

This paper presents a new, more efficient numerical algorithm that has been developed to 

predict thermal and microstructure fields during quenching of steel rods . The present 

algorithm solves the full nonlinear heat conduction equation using a central finite­

difference scheme coupled with a fourth-order Runge-Kutta nonlinear solver. Numerical 

results, obtained using the present algorithm, have been validated using experimental data 

and numerical results available in the literature. In addition to its accurate predictions, the 

present algorithm does not require iteration; hence, it is computationally more efficient 

than previous numerical algorithms. 

Keywords 

Steels quenching, phase transformation, heat treatment, numerical algorithm 

Nomenclature 

A Temperature dependent coefficient, Equation 4.18 

B Temperature dependent coefficient, Equation 4.18 

CP = Specific heat 

F = Volume fraction 

H = Enthalpy 

h = Heat transfer coefficient 
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k = Thermal conductivity 

Nr = total number of spatial nodal points 

Q= Latent heat of the phase transformation 

qout = Heat flux at the rod's surface 

R = Outer radius of the rod 

r = Radius of the rod 

T = Temperature 

t = Time 

Greek Symbols 

aM = Koistinen and Marburger coefficient, Equation 4.24 

p = Density 

r1 = Phase transformation starting time 

rs = Phase transformation ending tome 

Subscripts 

a = Austenite 

M = Martensite 

m = Any phase 

p = Pearlite 
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4.1 Introduction 

Quenching is an essential heat treating process for achieving high levels of hardness and 

toughness in metal components . Quenching is also a sensitive process that sometimes 

results in significant distortion and cracking problems. Our ability to predict and, 

hopefully, to limit unwanted levels of distortion, cracking, and residual stresses depends, 

to a large extent, on accurate predictions of thermal and microstructure fields during 

quenching. 

Quenching of steel is even more complex due to phase transformation that occurs 

during the quenching process. During the phase transformation process, latent heat is 

released which alters the thermal field of the steel. The phase transformation in steel 

depends on the thermal field developed during quenching. Therefore, different types of 

steel microstructures can be obtained by using different quenching cooling rates . 

Modeling of the thermal field and the accompanying phase transformation and 

mechanical properties has attracted a lot of attention of many researchers [ 1-9). Two 

types of modeling have been used. In the first type, the evolution of the microstructure is 

uncoupled from the thermal field. The disadvantage of this model is that it provides little 

information about the actual microstructure [ 1,2). In the second type of modeling, the 

microstructure evolution is coupled with the thermal field [5-9). This modeling technique 

is preferred by many researchers since it provides detailed information about phase 

transformation and its evolution with respect to the developed thermal field. 

Inoue and Tanaka [5] used the finite element method to simulate the temperature 

history, the microstructure, and the residual stresses of a 0.43 % carbon steel circular 
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cylinder quenched by water. The thermal expansion coefficient was used to model the 

microstructure transformation during quenching. Therefore, the microstructure phase 

transformation was uncoupled from the temperature and stress fields calculations in this 

model. The drawback of this model is that many simplifications were assumed to 

determine the microstructure of the quenched part. These simplifications reduce the 

information that can be obtained from this model about the microstructure. In addition to 

that, the heat generation due to phase transformation was neglected in this investigation. 

Subsequently, the above model has been modified and improved over 20 years by 

Inoue et al. [6 ,7]. They proposed and implemented the metallo-thermomechanical theory 

to develop a finite element code known as HEARTS. In this code the phase 

transformation calculations were coupled to the thermal and stress fields calculations. 

This code was used to simulate the quenching process of two- and three- dimensional 

engineering problems. 

Fernandes et al. [8] developed a mathematical model coupling the evolution of 

phase transformation with the temperature field during quenching of a 1080 carbon steel 

cylinder. The diffusional transformation has been divided into incubation and growth 

periods which were treated separately. The incubation period was treated by using the 

Scheil's additivity principle [3] , while the growth period was modeled by applying the 

Johnson-Mehl-Avrami formula [1,2]. The diffusionless transformation was modeled by 

using the Koistinen and Marburger law [ 4] . The temperature field was calculated by 

solving the heat conduction equation using an implicit finite-difference algorithm. The 
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heat generated due to phase transformation appears in the heat equation as a heat source 

term. Numerical results of this study were in good agreement with the experimental data. 

Denis et al. [ 10] presented a mathematical model for predicting the phase 

transformations of a 1042 carbon steel cylinder during rapid heating and cooling. The 

model was used to describe the kinetics of austenization during heating, the austenite 

carbon content and grain size at the end of heating, and the kinetics of the transformations 

during cooling. The rule of additivity along with Johnson-Mehl-Avrami model was used 

for the microstructure transformation calculations. This model has been applied to a 

cylindrical specimen that was subjected to high thermal gradients. The comparison with 

the experimental data showed that this model was good in describing the heating process. 

However, there was deviation between the numerical results and the experimental data 

during the cooling process. 

Wang et al. [11] used a two-dimensional finite element algorithm to simulate 

quenching of 1080 carbon steel cylinders undergoing nonisothermal transformations and 

exposed to a temperature dependent convective heat transfer coefficient at the boundary. 

Temperature dependent thermophysical properties were used. The model was also 

applied to simulate quenching of a 2024 aluminum component. This algorithm has been 

validated later against the experimental data published by the same authors [12]. The 

transient temperatures predicted by the numerical simulation were in good agreement 

with the corresponding measurements. 

Woodard et al. [13] used a finite element algorithm to analyze the temperature 

and the microstructure of 1080 carbon steel cylinders during quenching. The finite 
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element procedure was very similar to that used by Wang et al. [ 11]. However, this 

investigation was focused on investigating the effect of including heat generation due to 

phase transformation on the thermal field and on the microstructure of the quenched 

parts . The model was applied to predict the temperature and microstructure distributions 

as well as the hardness of 1080 steel cylinders quenched using three different quenchants, 

water and two synthetic polymers. The results indicated the importance of including the 

effect of heat generation on the predicted microstructures. 

Hornberg [14] developed a mathematical model to simulate the Jominy end­

quench test used in constructing continuous cooling curves. This model uses Scheil ' s 

additivity rule with the Johnson-Mehl-Avrami equation for modeling the diffusional 

transformation while it replaces the Koistinen-Marburger formula with a rate law 

procedure. This martensitic rate law takes into account the irreversibility of the 

diffusionless process. However, the martensitic rate law was computationally expensive. 

The model was applied for plain carbon steel C1080 and ClOO. The numerical results 

showed that the Johnson-Mehl-A vrami equation describes well the austenite to pearlite 

transformation after the incubation period. 

Recently Kang and Im [15] developed a three-dimensional finite element 

algorithm to predict the volume fraction of multi phases generated during quenching of a 

1080 carbon steel cylinder. This algorithm was also used to simulate quenching of low 

carbon steel mechanical parts such as differential bevel gear and cam lobe. In this model, 

the generation of latent heat due to phase transformation has been considered. The 

additivity rule and the Johnson-Mehl-Avrami equation have been applied for the 
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diffusional transformation while Koistinen and Marburger's equation has been used for 

the martensitic diffusionless transformation. The validity and reliability of the numerical 

results of the thermal and phase transformation fields were compared with the 

experimental data of Wang et al. [12]. 

To the best of the authors' knowledge, all previous work in the literature treated 

the nonlinearity of the problem by using explicit linearization where a linear form of the 

heat equation is used. The dependency of the thermophysical properties on the 

temperature were handled by explicit linearization with an iterative solution procedure. In 

contrast, the present methodology has adapted a new nonlinear solution technique by 

using a complete nonlinear form of the heat conduction equation. The complete equation 

is solved using a fourth-order Runge-Kutta nonlinear solution technique coupled with a 

central finite difference scheme. The thermophysical properties are taken as a function of 

the current temperature that is being solved. This approach removes the need for 

iterations; hence, it is more efficient computationally. The present algorithm has been 

applied and tested to simulate the quenching problem of an infinite 1080 carbon steel rod. 

4.2 Computational Model 

In order to numerically calculate the deformation, residual stresses, and surface hardness 

during quenching of a heat treated part, the thermal field and the microstructure of all 

present phases must be determined first. 

The algorithm of simulating a quenching process consists of the following three 

major elements: first, calculation of the thermal field given the convective heat transfer 
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coefficient, second, calculation of the microstructure distribution by using data from the 

Time-Temperature-Transformation (TTT) diagram of the material and, finally, 

calculation of the mechanical properties of the processed part including: deformation, 

residual stresses, and surface hardness. It is worth noting here that the first two steps are 

coupled through heat generation arising from the microstructure chemistry (latent heat of 

formation). 

In the present study only the first two steps are considered. The thermal field is 

obtained by solving the nonlinear heat conduction equation using a fourth-order Runge-

Kutta method. The Johnson-Mehl-Avrami equation has been used to model the 

diffusional transformation [1], while the diffusionless transformation has been modeled 

by employing the Koistinen and Marburger's equation [4]. The details of the 

computational procedure will be given in the next section. 

q0 ut(R, t) = h(T - Tro) 

ii ti iii ii it 

Q(r, t) 

T(r,O) = T0 

- Cf) 

qout(R, t) 

Figure 4.1 One-dimensional quenching problem. 
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4.2.1 The Thermal Field Model 

Consider an infinite rod initially at a uniform temperature T 0 as shown in Figure 4.1. This 

rod is quenched by exposing it to a coolant at a temperature Too. 

The mathematical model governing the thermal field inside the infinite rod is the 

following one-dimensional nonlinear heat conduction equation: 

ar 1 a ( ar) .
p(T)Cp(T)at =:;: ar k(T)r ar + Q(r, t) (4.1) 

where p (T) is the density, CP (T) is the specific heat, k (T) is the thermal conductivity 

and Q(r, t) is the latent heat generated due to the phase transformation. 

The infinite rod is subjected to the following set of boundary and initial 

conditions: 

Atr=O 

_ar_co_,_t) = 
0 (4.2)

ar 

Atr=R 

ar 
q0ur(R,t) = -k(T) ar = h(T(R,t)-Tcxi) (4.3) 

T(r,O) =To (4.4) 

Q(r,0) = 0 (4.5) 
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where R is the outer radius of the rod, h is a known heat transfer coefficient, and T(R, t) is 

the temperature at the rod surface. 

After spatial differentiation, the temperature time derivative in Equation 4.1 can 

be written as follows: 

ar k(T) a2r 1 k(T) ar ak(T) 1 {ar}2 

at= p(T)Cp(T) ar2 + p(T)Cp(T) r ar + ar p(T)Cp(T) ar 

Q(r, t)
+---- (4.6)

p(T)Cp(T) 

R ~1 

Figure 4.2 The computational domain and the uniformly spaced nodal points. 

Using central finite difference approximations to discretize the spatial derivatives, 

Equation 4.6 can be written as follows: 
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aT(i, t) = k(T) {Ti+l - 2Ti + T1-1J + k(T) ~{Ti+l - ri-1} 
at p(T)CP (T) !ir2 p(T)Cp (T) ri 2/ir 

2 . 
1 ak(T) {Ti+l - T1_1J Q(i, t) 

for i+ p(T)Cp(T) ar 2tir + p(T)Cp(T) 

= 1,2, ···,Nr (4.7) 

where Nr is the total number of spatial nodal points shown in Figure 4.2, and /).r is radial 

step size. 

Applying the boundary condition, Equation 4.2, at the center of the rod (i=l) in 

Equation 4. 7 yields: 

aT(l, t) = 2k(T) {T2 - T1} + Q(l, t) 
(4.8)

at p(T)CP (T) fir2 p(T)CP (T) 

Equation 4.7 at the last node (the node at the surface i=Nr) becomes: 

aT(Nr, t) = k(T) {TNr+l - 2TNr + TNr-1} + k(T) ~{TNr+l - TNr-1} 
at p(T)CP (T) !ir2 p(T)Cp (T) rNr 2/ir 

2 •
+ 1 ak(T) {TNr+l - TNr-1} + Q(Nr, t) 

(4.9) 
p (T) cP (T) ar 2tir p (T) cP (T) 

Discretizing the boundary condition at the surface of the rod (i=Nr) using a 

central finite expression yields: 
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(4.10) 


Substituting Equation 4.10 in Equation 4.9 yields: 

aT(Nr, t) 2k(T) {TNr-1 - TNT} 2qout 1 1 qout 
at = p(T)Cp (T) !!,,r2 + p(T)CP (T) !!,,r - rNr p(T)CP (T) 

2 .
1 Q(Nr, t)ak(T) {qout} 

(4.11)+ p(T)CP (T) ifI' k(T) + p(T)CP (T) 

The system of equations, Equations 4.7, 4.8 and 4.11 is solved using the fourth-order 

Runge-Kutta nonlinear solver method [16]. 

The thermophysical properties in the above equations were treated as a function 

of both the temperature and the volume fraction of the present phases because the 

microstructure of the quenched steel is composed of various phases depending on the 

thermal field. Therefore, the mixture rule was adapted to calculate the thermophysical 

properties of the material, where any property (P) at any point inside the solid is assumed 

to be a linear combination of the corresponding property of each phase multiplied by the 

volume fraction of that phase, as given by the following equation: 

n 

P(Fm, T) = I Pm (T)Fm ( 4.12) 
m 
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where P could be any property such as the density, the specific heat, or the thermal 

conductivity, n is the number of the present phases, and Fm is the volume fraction of the 

mth phase. 

The heat generation during phase transformation is calculated by the following 

equation: 

(4.13) 


where f)..Hm (T) is the temperature dependent enthalpy change due to the phase 

transformation. Depending on the type of phase transformation, this enthalpy change can 

be calculated for 1080 carbon steel from the following equations: 

1. For austenite to pearlite transformation [13, 15]: 

f)..Ha-p U /m3) = 1.56 X 109 - 1.5 X 106 T (4.14) 

or 

f)..Ha-pU /m3 
) = (953 + 0.409T - 0.0012T2 ) x 106 ( 4.15) 

2. For austenite to martensite transformation [13]: 

(4.16) 
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4.2.2 The Phase Transformation Model 

There are two main types of transformation that could occur during steel quenching. The 

first one is a diffusional transformation while the second one is a diffusionless 

transformation. The transformation from austenite to pearlite is an example of the first 

type. This transformation takes place in two stages: the first stage is the nucleation 

process, also known as the incubation period, while the second stage is the growth 

process. The nucleation stage is modeled using the Scheil's additivity rule where the 

cooling rate is divided into isothermal intervals corresponding to the number of time 

steps on the Time-Temperature-Transformation (TTT) diagram shown in Figure 4.3. For 

each time step}, (lit/rs) is calculated and summed: 

(4.17) 


When this summation equals one, the incubation period is considered complete [ 15]. The 

quantity TsJ is the transformation starting time taken from the TTT diagram which 

depends on the temperature. 

The growth stage of the diffusional transformation is modeled by using the 

following Johnson-Mehl-Avrami equation [15]: 

Fm (t) = 1 - exp(-A(T) x t/CT)] (4.18) 

where Fm (t) is the volume fraction of phase m, A(T) and B(T) are temperature 

dependent parameters which can be calculated from the isothermal TTT diagram, t1 is the 
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transformation time representing the time elapsed from the beginning of the diffusional 

transformation. 

Austenizing Temperature 

L(Mj/Tsj) 
j=l 

Fr= 0.995 

Log Time 

Figure 4.3 Schematic representation of the scheil's additivity principle and the calculation 

of the temperature dependant parameters A(T) and B(T) from TTT diagram. 

The above equation is developed primarily for isothermal transformation. 

However, it is proven that it can be used efficiently for nonisothermal transformations if 
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the two parameters A (T) and B(T) are updated at each time step [8-15]. These 

parameters can be updated for the austenite to pearlite transformation using the TTT 

diagram. 

The two C-curves on the TTT diagram, Figure 4.3, represent the start and the end 

of the diffusional transformation (austenite to pearlite). The first curve on the right is 

assumed to be at pearlite volume fraction equals to 0.005, Fs, while the second curve 

corresponds to pearlite volume fraction, F1, equals to 0.995. At each time step, the 

starting time of diffusional transformation, rs (T), and the ending time r1 (T) are taken 

from the TTT diagram. 

Using the above values ofFs and Ff, Equation 4.18 becomes: 

F5 = 0.005 = 1 - exp(-A(T) * r/CT)) (4.19) 

Ft= 0.995 = 1 - exp(-A(T) * r/CT)) (4.20) 

The above two equations are solved at each time step for the two parameters 

A(T) and B(T) and the solution is given by the following two equations: 

ln{ln(0.995)} - ln{ln (0.005)}
B(T) = ---------­ (4.21)

ln{r5(T)}- ln{r1(T)} 

A(T) = - ln(0.995) r ;B(T) (4.22) 

The transformation time lj in Equation 4.18 is calculated from the following 

equation: 
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l } 1/B(T) 

ln u-1){ 1- F. 
(4.23)0 = l10 + A(T)

[ 

where FJ/.-l) is the volume fraction of the mth phase present at the previous time step, 

j-1, and 11; is the current time step. 

The diffusionless transformation of austenite to martensite is only function of 

temperature. This transformation is calculated using the following Koistinen-Marburger 

formula [15]: 

(4.24) 


where FM (T) is the volume fraction of the martensite, Fm is the volume fraction of the 

other phases, aM is the Koistinen and Marburger coefficient and it is equal to l. lxl0-2 

K 1 for 1080 carbon steel, TMS is the martensitic transformation start temperature. Since 

pearlite, ferrite, and bainite cannot be transferred to martensite, the equation is therefore 

multiplied by(l - Lm Fm)· 

4.3 Structure of the Numerical Algorithm 

The structure of the present numerical algorithm is shown in Fig. 4.4. The algorithm is 

initialized by entering the following input data: the initial conditions, the physical 

98 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

geometry, and data taken from the isothermal Time-Temperature-Transformation (TTT) 

diagram of the material. The thermal field is then calculated using a fourth order Runge­

Kutta nonlinear solver. For each time step, the temperature time derivative (slopes) is 

calculated at four locations in time (16]. Then the temperature is calculated as a weighted 

average of the temperatures estimated based on the calculated slopes of the previous step. 

After calculating the thermal field, calculation of the microstructure 

transformations starts by applying the additivity rule, Equation 4.17, incorporating the 

data from the TTT diagram to calculate the nucleation period. Once the nucleation period 

is completed, the growth transformation is calculated by using the Johnson-Mehl-A vrami 

equation, Equation 4.18. In this study only the austenite to pearlite transformation is 

considered and is assumed to only take place above the nose of the TTT diagram (11]. 

The temperature of each node is compared with the martensitic transformation 

starting temperature (T Ms), Figure 4.3, and if it is smaller, the martensite volume fraction 

is calculated using the Koistinen-Marburger formula, Equation 4.24. 

In the previous works (8-15], at each time step the thermal field calculations are 

carried out assuming no heat generation due to the phase transformation primarily. At the 

same time step, upon completing the microstructure calculation and if there is heat 

generation due to the phase transformation, this heat generation is added to the heat 

equation and the calculation of the thermal field is repeated along with the microstructure 

calculation. This iterative solution procedure continues until a specific convergence 

criterion is satisfied. Furthermore, the nonlinearity due to the thermophysical properties 

being temperature dependant is handled by explicit linearization. These thermophysical 
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properties are calculated based on the temperatures of the previous time step and then 

updated at each iteration level until convergence is achieved. 

Start 

Input Data 
- Initial condition, To 
- Boundary condition, h and T"" 
- Physical geometry of the part 
- Data from the Isothermal TTT diagram of considered material 
- Temperature dependent thermophysical properties 

Thermal Field Model 
Calculating the thermal field by solving the fully nonlinear form 
of the heat equation, Eqn 4.7, using a 4th order Runge-Kutta 
nonlinear solver. 

Microstructure Model 
- Nucleation period, additivity method, Eqn 4.17 
- Growth Period, Eqn 4.18 
- Heat generation ofphase transformation, Eqn 4. 13 

Yes 

No 

End 

Figure 4.4 Simplified flow chart of the computational procedure of the present algorithm. 
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The computational procedure of the previous models is very time consuming, for 

example, the model developed by Kang and Im [15] was applied to simulate the same 

problem considered in this study. In his study, Kang modeled only 1/12 of the physical 

geometry of the problem in order to reduce the computational time. This may indicate 

that the analysis time was an issue in his model. In contrast, the present model handles 

the nonlinearity of the thermophysical properties by considering them as functions of the 

temperature being solved as well as using a fourth-order Runge-Kutta nonlinear solver. In 

addition to that, the heat generation of the phase transformation is handled in the present 

model explicitly, where it is calculated at the end of each time step from the 

microstructure calculations, and then used in the heat equation to calculate the thermal 

field of the next time step. This procedure eliminates the need for the iterative procedure 

adapted by the previous models, and hence the computational time of the present model 

is reduced significantly. For example, the solution of the entire physical geometry of the 

case study was obtained by using a personal computer with a Pentium 4 processor and 2 

GB RAM. The computational time on this computer was only 30 seconds. Note that 

attention has been given to ensure that the current results are both time step size and 

spatial step size independent. 
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Figure 4.5 TTT diagram for Plain Carbon 1080 Steel [13]. 

4.4 Case Study of Infinite 1080 Carbon Steel Rod 

The present model has been validated by simulating a quenching problem of an infinitely 

long 1080 plain carbon steel rod. The TTT diagram of this material is shown in 

Figure 4.5. This problem had been experimentally and numerically investigated by many 

researchers [11-13,15). The rod is initially kept at the austenizing temperature of 850 °C 

and then quenched in 22.5 °C water. Three thermocouples were imbedded in the rod at 

three different locations. The first thermocouple is at the surface (point A in Figure 4.6); 

second thermocouple is at point B at a distance of 1.27 mm from the surface and the third 

thermocouple is at the centre of the rod (point 0). The rod's dimensions are shown in 

Figure 4.6. The variation of the heat transfer coefficient with the quenched rod surface 

temperature used in the present study taken from Ref [13) is shown in Figure 4.7. The 
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dependency of the thermophysical properties on the temperature of the 1080 carbon steel 

is shown in Figure 4.8 [13]. 

-
QI 
~ 
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I 
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_i 

I 

38.l mm
1. 

Figure 4.6 Dimensions of the case study part. 
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Figure 4.7 The variation ofheat transfer coefficient with temperature used in the case 

study. 
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Figure 4.8 Thermophysical properties ofplain carbon 1080 steel [13]. 
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4.5 Results and Discussion 

The present algorithm has been used to solve the case study problem described in the 

previous section. The numerical results have been compared with the experimental data 

in Ref [12] as well as the available numerical results reported in Refs [11,13,15]. 

Figure 4.9 shows a comparison between the predicted and experimental 

temperature transient for two different locations in the quenched steel rod. Also shown 

are predictions for the same problem from Wang et al. [11] and Kang and Im [15]. As 

seen from this figure, improved predictions are obtained with the new method. For 

example, the rise in the temperature at the centre of the cylinder due to phase 

transformation heat release is exactly predicted by the present algorithm. For clarity, 

Figure 4.10 shows the current predictions and the experimental data. This figure shows 

that the experimental data were predicted excellently by the present algorithm. 

I 

- - - - - ~ - - - - - ­
- - ' Preseri AlgaithmTerrp. at the cen1er 
- Exp. Terrp. at the center, [12) 

• • • •' WulJ (2D FEM) t-llnaical Terrp. at the certer, [11] 
- I • Kang (30 F81.1) tbrerical T1!n1J. at the center, [15) 
• • • Presert Algaittvn Terrp. at the surface 
- Exp. Terrp. at the suface, [12) 
"'"' Kang(3DF81.1) tbrerical T1!n1J. atthesuface, [15) 

I 
I 
I I I 

- ,- - - - - - - - !- - - - - - - -1- - - - - - - -1- - - - - - - ­
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time(sec) 

Figure 4.9 A comparison between the transient temperatures of different numerical 

algorithms and the experimental data reported in [12]. 
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Figure 4.10 A comparison between the temperature profile at the rod center predicted by 

the present algorithm and the experimental data reported in [12]. 

Figure 4.11 shows a comparison between the volume fraction of austenite, 

pearlite and martensite of the quenched 1080 carbon steel rod predicted by the three 

previous numerical algorithms and the present algorithm. The results of the present 

algorithm are between the other numerical results and showing the same trend. 

Figure 4.12 shows the pearlite volume fraction of three different locations along 

the radius of the cylinder. It is clear that there is no austenite to pearlite transformation at 

the surface of the rod due to the rapid cooling and only martensitic transformation 

occurred. Partial austenite to pearlite transformation took place at a deeper location from 

the surface (r=12.03 mm), while a complete transformation occurred at a point closer to 
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the centre (r=4.0lmm) where the rod microstructure is totally pearlite. These results are 

in a good qualitative agreement with the expected distribution. 
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Figure 4.11 A comparison between the microstructure distributions predicted by the 

previous algorithms [11, 13 and 15] and the present algorithm. 

Figure 4.13 shows the evolution of the three considered phases ( austenite, pearlite 

and martensite) at a point inside the rod (r=12.03 mm) with time. The variation of 

composition as a function of time is significant and as such thermophysical properties 

must incorporate the mixture law. 
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Figure 4.12 The volume fraction ofpearlite at three different locations inside the rod as a 

function of time. 

The effect of including the heat generation due to phase transformation has been 

investigated in this study and the results are shown in Figure 4.14. The results are also 

compared with the results of the previous investigation of Woodard [13]. It is clear that 

heat generation due to phase transformation has a very significant impact on the 

microstructure of the quenched steel rod. If the heat generation is neglected, the volume 

fraction of the pearlite at the centre varied from 100% to 32%; while the volume fraction 

of the martensite changed from 0% to 58% at the same location. This significant 

difference in the predicted microstructure may result into wrong prediction of the 
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expected distortion, thermal and residual stresses, as well as the expected hardness 

distribution within the part. 
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Figure 4.13 Variation of the volume fraction ofAustenite, Pearlite and martensite at 

r=l2.03 mm with time 

Figure 4.15 gives a comparison between the temperature profile at the rod center 

predicted by the present study and that predicted by Woodard et al. [ 13] for the case of no 

heat generation. This figure shows that the numerical solution is unable to capture the rise 

in the temperature due to the phase transformation at the centre of the rod when the heat 

generation due to phase transformation is neglected. Although the microstructure 

calculations showed that there is a phase transformation at the center, yet its effect on the 
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thermal field is suppressed by neglecting the heat generation term. This figure also shows 

that the experimental data have been overestimated by Woodard's algorithm [13). 

10.i=--~b_+_dt~-~.d~:tit"~~~l_~d~-~-~-~+l:-~-~-~-1L~-~-~-~-:~-~-~-_ 
Q002 0.004 0.006 0112 

0.2 

I 
I 

Figure 4.14 A comparison between the microstructure distributions of different numerical 

algorithms presenting the effect of heat generation. 

Most of the previous numerical algorithms [8-15) have neglected the non-linear 

term, (1/pCp) (ak/aT){aT;ar}2 
, in the heat equation, Equation 4.6. Neglecting this 

term is a result of employing an explicit linearization method to handle the nonlinearity 

of the thermophysical properties (being temperature dependent). In contrast, the present 

algorithm handles the quenching problem without any linearization and hence the effect 

of the above nonlinear term has been investigated using the present algorithm. 
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Figure 4.16 shows a comparison between the predicted temperature profile using 

the present algorithm with the experimental temperatures for two cases. The first case 

considers the nonlinear term and results in very good agreement with the experimental 

data. In the second case, where the nonlinear term has been neglected, the predicted 

temperatures deviated from the experimental data. Furthermore, without the nonlinear 

term, the algorithm is not able to accurately predict the rise in the rod temperature that 

resulted from the heat released during phase transformation. 
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Figure 4.15 A comparison between the temperature profile at the rod center predicted by 

the present algorithm and those predicted by Woodard while neglecting the effect ofheat 

generation. 
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A comparison between different numerical results when the nonlinear term is 

neglected with experimental data is shown in Figure 4.17. This figure shows that the 

results of the present algorithm coincide with that of Wang et al. [12] in the first 15 

seconds. However, the rise in temperature at the center of the rod due to pearletic 

transformation predicted by the present algorithm took place before that of Wang. The 

above discussion indicates that the nonlinear term has a significant impact on the results 

of the present algorithm. 
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Figure 4.16 The effect of the nonlinear term on the thermal field of the quenched steel 

rod. 
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Figure 4.17 A comparison between the temperature profiles predicted by different 

numerical algorithms with experimental data when the nonlinear term is neglected. 

4.6 Summary and Conclusions 

A new numerical algorithm has been proposed to solve the thermal and microstructure 

fields during the quenching of an infinite 1080 carbon steel rod. The algorithm solves the 

full nonlinear form of the heat conduction equation. Contrary to previous models 

where a linear form of the heat conduction equation was solved using a linear solver 

employing an iterative procedure, in the present work, the nonlinear heat equation was 

solved using a 4th order Runge-Kutta nonlinear solver. No linearization was needed as the 
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thermophysical properties were taken as function of the current temperature that is being 

solved. Furthermore, no iteration is required during the solution of the thermal and 

microstructure fields. The results of the proposed algorithm showed improved predictions 

over the previous models. Since iteration is not required, the algorithm is 

computationally more efficient. 
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4.9 Supplementary Material 

This part comprises another case study that includes a comparison of numerical 

simulation of the pearlite volume fraction distribution obtained by the present algorithm 

with the experimental data of Fernandes et al. [8]. It involves cooling of a plain-carbon 

1080 steel cylinder of diameter 4 mm and length of 20 mm at a cooling rate of 8 K/s. 

This cooling process has been simulated by the present algorithm and the obtained 

results are shown in Figures 4.18 and 4.19. Figure 4.18 shows a comparison between the 

temperature profile at the center of the cylinder with the experimental temperatures. 
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Figure 4.18 A comparison between the temperature profiles predicted by the numerical 

algorithm with the experimental data of Fernandes et al. [8]. 

Although there is some deviation between the numerical and experimental results before 

the starting of the phase transformation, the temperature rise due to the pearletic phase 

transformation has been accurately predicted. 

Figure 4.19 shows a good agreement between the numerical results of the pearlite 

volume fraction and the experimental data reported in [8]. This indicates that the 

microstructure model is reliable in predicting steel microstructure distribution during 

quenching. 
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Figure 4.19 A comparison between the pearlite volume fraction predicted by the 

numerical algorithm with the experimental data of Fernandes et al. [8]. 
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Chapter Five Preface 

This work has been submitted to the Journal of Numerical Heat Transfer/ Part B. 

Ali, S. K., Hamed, M. S., and Lightstone, M. F., A Modified Online Input 

Estimation Algorithm for Inverse Modeling of Steel Quenching, Submitted to the 

Journal ofNumerical Heat Transfer/ B. 
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A Modified Online Input Estimation Algorithm for Inverse Modeling of 

Steel Quenching 

Abstract 

The surface temperatures and surface heat flux of a 1080 steel cylinder during quenching 

process are estimated by the application of inverse heat transfer analysis. The 

conventional online input estimation algorithm has been modified and used for the first 

time to handle this coupled nonlinear problem. The nonlinearity of the problem is treated 

explicitly which results in a non-iterative algorithm suitable for real time controlling of 

steel quenching process. The obtained results have been validated using experimental 

data and numerical results obtained by solving the direct problem. Results showed that 

the algorithm could efficiently estimate the convective heat transfer coefficient. 

Nomenclature 

a1 state coefficient matrix 

A state transition matrix 

Ar temperature dependent coefficient 

b1 input coefficient matrix 

B second sensitivity matrix 

Br temperature dependent coefficient 

CJ coefficient matrix of heat generation 

first sensitivity matrix 
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cp specific heat 

D input matrix 

F input matrix ofheat generation 

F1 pearlite finishing volume fraction 

Fm volume fraction of phase m 

F's pearlite starting volume fraction 

h heat transfer coefficient 

H measurement matrix 

I identity matrix 

k discretized time index 

K Kalman gain 

Kb input gain 

M first sensitivity matrix 

n heat flux onset time 

Nr total number of spatial nodal points 

p state error covariance matrix 

Pb input estimate error covariance matrix 

Pr any material property 

q boundary heat flux (input vector) 

Q modeling error covariance 

QB latent heat of phase transformation 

r radius of the cylinder 
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Tmeas measurement location 

R measurement error covariance 

Ra outer radius 

s innovation covariance 

t time 

T temperature (state vector) 

Ta initial temperature 

Trxo temperature of the quenchant 

w modeling noise vector 

z measurement vector 

z innovation sequence 

Greek Symbols 

aM Koistinen and Marburger coefficient 

y forgetting factor 

0 Kronecker delta function 

Ar radial step size 

At temporal step size (sampling interval) 

K thermal conductivity 

v measurement noise vector 

p density 
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(J standard deviation 

r:1 Phase transformation ending time 

rs Phase transformation starting time 

Subscripts 

a Austenite 

M Martensite 

m Any phase 

p Pearlite 

spatial index 

j temporal index 

Superscripts 

/\ 	 estimated 

mismatched Kalman filter estimate * 

T 	 transpose of matrix 
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5.1 Introduction 

Inverse heat conduction problems (IHCPs) are concerned with the estimation of thermal 

conditions at the boundary of a body using some internal transient temperature 

measurements. These problems occur in many industrial applications. They are ill-posed 

problems because their solutions are unstable and not unique [1, 2]. Therefore, some 

regularization techniques are required to overcome this ill-posedness and obtain a stable 

and unique solution. 

There are many methods in the literature that have been used to solve IHCPs 

employing different regularization techniques. For example, the function specification 

method of Beck uses a number of future temperatures [2], Tikhonov regularization 

method uses zero, first- and second-order regularization parameters [3], while Alifanov 

iterative method uses the number of iterations as a stopping criterion to stabilize the 

solution [4]. Most of these computationally expensive solution methods are batch form 

techniques where the whole data of internal transient temperatures must be available 

before starting the solution. In contrast, with the online input estimation algorithm, the 

unknown boundary heat flux can be estimated in real time at each time step once the 

measurement is made available. This algorithm was developed by Tuan et al. [5] and has 

been successfully applied for many inverse heat conduction applications [ 6-23]. The real 

time estimation feature of this algorithm is very important in many industrial processes 

where the boundary heat fluxes and the convective heat transfer coefficients need to be 

estimated, adjusted and updated frequently during the process such as steel quenching. 
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In the steel quenching process, the surface heat flux determines the temperature 

distribution and cooling rates inside the quenched part. These cooling rates directly 

influence the steel microstructure. The quenching conditions applied at the boundary are 

conventionally obtained by an extensive empirical work [24]. Ultimately, these 

conditions are used to provide the optimal microstructure and mechanical properties that 

avoid deformation, distortion and cracking. Nevertheless, this way of obtaining the 

quenching conditions is very expensive and it does not provide detailed information 

about thermal and microstructure fields during the quenching process. As a result, 

millions of dollars are lost every year in unsatisfactory steel quenching processes [24]. 

There is thus a need to develop an online algorithm to control the cooling rates m 

quenching processes by real-time adjusting and updating the surface heat flux. 

The first application of the inverse solution to steel quenching was in 1992 by 

Hernandez-Morales et al. [25]. The sequential function specification method of Beck [2] 

using future temperature measurements was used to estimate laboratory controlled 

quenching conditions of flat stainless steel samples quenched by water. This algorithm 

was subsequently modified for quenching of carbon steel cylinders by air. Only the 

thermal field was calculated and no attention was given to the microstructure field in this 

investigation. 

Archambault and Azim [26] used the space marching inverse solution technique 

to estimate the transient surface temperature and boundary heat flux for aluminum and 

steel quenching. In this method the spatial domain is divided into a direct region for 

which all boundary conditions are known, and an inverse region for which the boundary 
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conditions are partially known. The implicit finite-difference method is used first to 

estimate the thermal field in the direct region and the solution is then marched into the 

inverse region where both the thermal field and the boundary heat flux are calculated. 

Although this method was applied for steel quenching, it did not consider heat of phase 

transformation. 

The above inverse method was subsequently applied by Archambault et al. [27] 

for steel quenching where the heat generation due to phase transformation was 

considered. The numerical results showed that this method is very sensitive to spatial and 

temporal step sizes. Furthermore, the effect of measurement errors on the numerical 

results was not investigated. 

Smith [28] developed an optimization based inverse approach to calculate the 

surface heat transfer coefficients using experimental cooling curves. The algorithm was 

applied to simulate the quenching of automotive steel components in molten salts in an 

industrial heat-treatment process. The applicability of the computed results was 

investigated by simulating quenching of helical transmission gear. The finite-element 

method was used to discretize the problem domain and the solution is based on adjusting 

the cooling curves until the measured temperatures are matched by using an 

unconstrained optimization method. Since this method is an iterative solution technique, 

this algorithm is relatively computationally expensive. 

Heming et al. [29, 30] developed an inverse method to estimate the convective 

heat transfer coefficient for a steel cylinder undergoing phase transformation during high 

pressure gas quenching as well as liquid quenching. This algorithm was based on 
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optimizing the cost function, the difference between the calculated and the measured 

temperatures, with respect to the convective heat transfer coefficient. The finite­

difference scheme was used to discretize the heat equation and explicit linearization 

technique was adapted to solve the nonlinear heat equation using an iterative linear 

solver. The results provided some insights about the relationship between the convective 

heat transfer coefficient and the surface temperature. Similar to the previous technique, 

this optimization method is iterative solver and hence is relatively computationally 

expensive. 

Recently Azim et al. [31] used two inverse methods to estimate the surface heat 

flux of a solid steel cylinder during heat treatment. The methods used are the space 

marching method [26] and the function specification method [l]. Two sets of 

experiments were conducted to validate the numerical results for two different cases. The 

first case was a superficial heat treatment applied to XC42 (steel C1045) to induce 

martensitic transformation while in the second case a homogenous quenching was 

applied to XC80 (steel C1080) to induce pearletic transformation. For pearletic 

transformation, the results were affected by the impact of the internal stresses on the 

transformation kinetics. Also, both methods showed instability in the calculation of the 

surface heat flux. However, the stability of the function specification method was 

improved by using some future temperature measurements. The stability of the space 

marching technique was enhanced by reducing the time step. Nevertheless, it was found 

that using relatively small time steps caused an inaccurate description of the rapid 

macrostructure phase transformation. 
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Based on the above literature review, it appears that the applicability of inverse 

analysis to solve steel quenching with phase transformation problems is relatively new. 

As described above, three solution techniques have been used: space marching, function 

specification and optimization-based solution techniques. The space marching technique 

is proven to be unstable [26]. Function specification solution method is also unstable 

unless some future temperatures are incorporated [31], and therefore it cannot be used for 

online identification. The optimization-based solution method is a batch form technique 

however it is computationally expensive. An alternative approach is the online input 

estimator which consists of two estimators: the Kalman Filter estimator and the real-time 

recursive least squares estimator. The Kalman filter is an online recursive statistical 

estimator which can better represent the stochastic nature of the experimental 

measurements. It also provides some information about the quality of the estimate as well 

as its performance at each time step. Furthermore, it has been successfully used in solving 

inverse problems for different applications [6-19]. However, in all previous work, the 

online input estimation has dealt with the thermal field only. Furthermore, to the authors' 

best knowledge, there has been no work in the literature to date about using the Kalman 

filter for solving coupled inverse heat conduction problems such as steel quenching 

process where the thermal field is coupled with the microstructure field through the heat 

generation due to phase transformation. 

Thus, the main objective of this work is to investigate the feasibility of using an 

online input estimation algorithm for the coupled inverse heat conduction problem of 

steel quenching. The success in developing such an algorithm can lead to efficiently 
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controlling the process of steel quenching. This algorithm incorporates a steel 

microstructure model with the online input estimation algorithm in order to obtain a new 

computational algorithm that is capable of predicting quenching conditions for which a 

desired steel microstructure can be achieved. 

5.2 Problem Formulation 

Steel quenching process is a coupled problem that can be solved by either a direct solver 

[32-36] or an inverse solver [25-31]. In the former the convective heat transfer coefficient 

or equivalent boundary conditions must be known beforehand. In the latter the convective 

heat transfer coefficient is part of the solution where it can be adjusted in real time to 

obtain the desired mechanical properties. The solution of the direct problem of steel 

quenching starts with the calculation of the thermal field given the convective heat 

transfer coefficient and the microstructure distribution of steel phases are then calculated 

using the calculated thermal field by incorporating the data from the Time-Temperature­

Transformation (TTT) diagram of the material [34]. In the inverse problem, which is the 

focus of the present work, the thermal field along with the heat transfer coefficient of the 

quenching process are estimated using the online input estimation algorithm given some 

transient temperature measurements. The obtained thermal field is used by the 

microstructure model to calculate the volume fraction of the steel phases using the data 

from the TTT diagram. 
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5.2.1 Thermal Field Model 

Consider an infinitely long cylinder of diameter 2R0 , initially at a uniform temperature T 0 

as shown in Figure 5.1. The cylinder is quenched by exposing its surface to a coolant at a 

temperature Too· The governing equation of this problem is the one-dimensional heat 

conduction equation in cylindrical coordinates given by: 

lll ll ll llll llllll 

Q9 (r,t) ~ 

-·-·--·- -·" --·-·--·--·--·---·--·-·--·-·-·-·-~~~-----·­

T(r, O) = T0 
----~· 00 

!!!!!!!!!!!!!!!!! 


Figure 5.1 One-dimensional quenching problem 

ar a2r K(T) ar . 
p(T)Cp(T) -a = K(T)-a2 +--a + Q9 (r,t) (5.1)

t r r r 
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where p (T) is the density, CP (T) is the specific heat, K(T) is the thermal conductivity 

and Q (r, t) is the latent heat generated due to phase transformation. 9 

The cylinder is subjected to the following set of boundary and initial conditions: 

Atr=O 

_aT_(_O,_t) = O 
(5.2)

ar 

Atr =Ro 

ar 
q(R0 , t) = -K(T) ar = h(t) (T(R 0 , t) - Tc,o) (5.3) 

T(r,O) =To (5.4) 

(5.5) 


Temperature measurements at r=rmeas are given by: 

z(rmeas, t) = T(rmeas, t) + v(t) t>O (5.6) 

Where R0 is the outer radius of the cylinder, h(t) is an unknown heat transfer coefficient 


that needs to be estimated by the developed algorithm, T(R0 , t) is the temperature at the 


cylinder surface, and v (t) is the measurement errors assumed to be zero mean Gaussian 


white noise. 


Using central finite-difference approximations to discretize the spatial derivatives, 


Equation 5.1 can be written as follows: 


132 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

ar(i, t) = K(T) fTi+1 - 2ri + ri-1} + K(T) .!_fTi+i - ri-1} 
at p(T)Cp(T)l !1r2 p(T)Cp(T) ril 2!1r 


QB (i, t)

+---­ for i = 1,2, ............ , Nr (5.7)


p(T)Cp(T) 

Equation 5.7 can be rearranged in the following form: 

for i 

= 1,2,··· ,Nr (5.8) 

where Nr is the total number of spatial nodal points shown in Figure 5 .2, and !ir is the 


radial step size. 


Applying the boundary condition, Equation 5.2, at the center of the cylinder (i=l) in 


Equation 5.8 yields: 


aT(1, t) 2K(T) 1 2K(T) 1 QB (1, t) 
(5.9)at = p(T)Cp(T)!ir2Tz - p(T)Cp(T)t:ir2 T1 + p(T)Cp(T) 

133 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

Figure 5.2 The computational domain and the uniformly spaced nodal points. 

Discretizing the boundary condition at the surface of the cylinder (i=Nr) using a 

central finite-difference expression yields: 

(5.10) 


Substituting Equation 5 .10 in Equation 5.8 yields: 

aT(Nr, t) 2K(T) 1 2K(T) 1 
at = p(T)Cp(T)flr2 TNr-l - p(T)Cp(T)flr2 TNT 

Q (Nr, t)2 { 1 1 } 9+---­ (5.11)
- p(T)CP (T) flr + 2rNr q p(T)Cp(T) 

134 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

Equations 5.8, 5.9 and 5.11 can be rearranged in the following compact forms: 

for i = 1 (5.12) 

for i 

= 2,···,Nr-1 (5.13) 

aT(Nr, t) . . 
at = CNrNr-1 TNr-1 + CNrNr TNT+ Cqq + CQ(Nr) Qg(Nr, t) for i = Nr (5.14) 

where 

2K(T) 1C.. 
!!-

1 
- p(T)Cp(T) tir 2 2r,tir ' ~1= p (T)Cp (T) tir2 ' 11+1 - p(T)Cp(T) tir2 +
_ K(T) {-1 __l_} C _ K(T) { 1 

1c - 2 {1 + 1 } 
q - p(T)Cp(T) !:ir 2TNr p(T)Cp(T) 

The microstructure of the quenched steel is composed of vanous phases 

depending on the thermal field. Therefore, the thermophysical properties in the above 

equations were determined by using the mixture rule [34]. In this rule, the thermophysical 

properties of the material are considered to be a function of both temperature and volume 

fraction of the present phases, where any property (Pr) at any point inside the solid is 

assumed to be a linear combination of the corresponding property of each phase 

multiplied by the volume fraction of that phase, as given by the following equation [34]: 
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nph 

Pr(Fm,T) = LPrm(T)Fm (5.15) 
m 

where Pr is any property such as density, specific heat, or thermal conductivity, nph is the 

number of present phases and Fm is the volume fraction of the mth phase. 

In order to calculate the heat generation resulted from the transformation of 

austenite to pearlite and martensite, the following equation can be used [35]: 

(5.16) 


where !:!.Hm (T) is the temperature dependent enthalpy change due to the phase 

transformation. Depending on the type of phase transformation, this enthalpy change can 

be calculated for 1080 carbon steel using the following equations: 

1) For austenite to pearlite transformation [34, 35]:­

!:!.Ha-p U/m3) = 1.56 X 109 - 1.5 X 106 T (5.17) 

or 

!:!.Ha-p U/m3 ) = (953 + 0.409T - 0.0012T2 ) x 106 (5.18) 

2) For austenite to martensite transformation [34]:­
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(5.19) 

From Equations 5 .12, 5 .13, and 5 .14 and considering the fictitious process noise 

inputs [37], the continuous time state equation of steel quenching process can be written 

in the following form: 

(5.20) 


where T is the (Nr x 1) temperature state vector, w(t) is the process noise, which is 

assumed to be Gaussian white noise of zero mean and independent of the measurement 

noise v(t), a1(T) is (Nr x Nr) coefficient matrix, b1(T) is an (Nr x 1) input coefficient 

matrix, and c1 (T) is (Nr x 1) coefficient matrix related to the heat generation of the phase 

transformation. The matrices a1(T), b1 (T), and c1 (T) are given by the following 

equations: 

ai(T) 

C11 C12 0 0 0 ............ 0 0 

cii-1 cii Cii+l 0 0 ............ 0 0 
0 cii-1 cii cii+l 0 ............ 0 0 
0 ............ 

(5.21) 

0 ............ 0 cii-1 cii Cii+l 0 

0 ............ 0 0 cii-1 cii Cu+1 


0 ............ 0 0 0 
 CNrNr-1 CNrNr 
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b1(T) = [0 0 0 0 ... ... .. . .. . ... ... ... .. . . 0 Cq t (5.22) 

T 
... ... ... ... ... ... CQ(Nr - 1) CQ (Nr)] (5.23) 

Equation 5.20 is integrated over time with a time step M to obtain the discrete time state 

equation: 

T(k + 1) = A(k) T(k) + D(k) [q(k) + w(k)] + F(k) Q9 (k) (5.24) 

and accordingly the measurement equation, Equation 5.6, becomes: 

(5.25) 

The operators A(k), D(k), and F(k) are the state transition matrix, the input matrix, and the 

input matrix of heat generation, respectively. These three operators are given by [23]: 

A(k) = exp(a1(T)Lit) (5.26) 

(k+l)M 

D(k) = f exp[a1 (T)(k + l)Lit-T] b1 (T)dr (5.27) 
kM 

(k+l)M 

F(k) = f exp[a1(T)(k + l)Lit-T] C1(T)dT (5.28) 
kM 
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The variance of the process noise input vector, w(k), and the measurement noise 

vector, v(k), are given by E{w(k)wr(j)} = Qokj and E{v(k) vT(j)} = Rokj = u2okj, 

respectively. The parameter Q is the model error covariance matrix, <5 is the Kronecker 

delta function. The operator R is the measurement noise covariance matrix and cr is the 

standard deviation of the measurement error. 

5.2.1.1 Online input estimation algorithm for Steel Quenching Process 

Online input estimation algorithm of steel quenching consists of two estimators. The first 

estimator is the Kalman filter by which the thermal field (temperature state vector) is 

estimated given some internal transient temperature measurements. The thermal field is 

used to generate the residual innovations which are defined as the difference between the 

measured temperatures and the predicted temperatures. The second estimator is the real 

time recursive least squares estimator by which the boundary heat flux is estimated using 

a linear regression relationship between the residual innovations and the unknown 

boundary heat flux. 

The Kalman filter estimator employs two Kalman filters. The first Kalman filter 

assumes zero input (heat flux) while the second Kalman filter assumes known input (heat 

flux). The first Kalman filter is called the mismatched Kalman filter while the second one 

is called the hypothetical Kalman filter [38]. 

Let: 

T*(k) =the state estimate of the mismatched Kalman filter 

T(k) =the state estimate of the hypothetical Kalman filter. 
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Using Equation 5.24 for the mismatched Kalman filter (zero input), the state prediction 

equation becomes: 

T*(k + 1/k) = A(k) T*(k/k) + F(k) Q (k) (5.29)9 

Since the last term, F(k) Q (k), is a deterministic sequence, it does not have any effect 9 

on the prediction error. Thus, the prediction error covariance matrix is: 

P*(k + 1/k) = A(k) P*(k/k) A(k)T + D(k) QD(k)T (5.30) 

The updated estimate [39] is: 

T*(k + 1/k + 1) 

= [I - K(k + 1)H(k + 1)] T*(k + 1/k) + K(k + 1)z(k + 1) (5.31) 

The updated estimate error covariance matrix is: 

P*(k + 1/k + 1) = [I - K(k + 1) H(K + 1)] P*(k + 1/k) (5.32) 

Substituting Equation 5.29 in Equation 5.31 and replacing the index k + 1 by k yields: 

T*(k/k) = [I - K(k)H(k)][A(k) T*(k/k) + F(k) Q (k)] + K(k)z(k) (5.33)9 

Using Equation 5.24 for the hypothetical Kalman filter (known input), the prediction 

equation becomes: 
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T(k + 1/k) = A(k) T(k/k) + D(k) q(k) + F(k) Q9 (k) (5.34) 

The prediction error covariance matrix is the same as that of the mismatched Kalman 


filter, Equation 5.30, since q is also a deterministic sequence. 


The updated estimate [39] is: 


f(k + 1/k + 1) 

= [I - K(k + l)H(k + 1)] T(k + 1/k) + K(k + 1) z(k + 1) (5.35) 

If the index (k + 1) is replaced by (k), Equation 5.35 becomes: 

f(k/k) = [I - K(k)H(k)] T(k/k - 1) + K(k) z(k) (5.36) 

Substituting Equation 5.34 in Equation 5.36 yields: 

f(k/k) =[I- K(k)H(k)](A(k)f(k/k) + D(k)q(k) + F(T)Q (k)]
9 

+ K(k) z(k) (5.37) 

Assuming that the input heat flux (q(k)) is applied at k = n and that it is constant for an 

interval n < k :::; L 

At 

k =n, q(k -1) = 0 (5.38) 
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and 

T(k) = T*(k) at k:::; n 	 (5.39) 

Let 


jj,f'(k + 1/k + 1) = f(k + 1/k + 1) - f*(k + 1/k + 1) (5.40) 


Substituting Equations 5.33 and 5.37 in Equation 5.40 yields: 

jj,f(k + 1/k + 1) = 	 [I - K(k + l)H(k + l)]{A(k)[ T(k + 1/k + 1) ­

T*(k + 1/k + 1)] + D(k) q} (5.41) 

jj,f(k + 1/k + 1) 

=[I - K(k + l)H(k + l)J{A(k)jj,f(k/k) + D(k) q} (5.42) 

Since q is applied at k = n, therefore fork= n, jj,T(n/n) = 0 as can be also concluded 

from Equation 5.39. 

jj,f'(k + 1/k + 1) 

fork 5 n 
(5.43)

= {u0

- K(k + l)H(k + l)]{A(k)jj,f(k/k) + D(k) q} for k > n 

If recursively, substituting in Equation 5.43 for the index k+l by k=n, n+l, n+2, n+3, 

......... ,n+L and assuming that jj,f(k/k) = M(k) D(k) q, the following recursive 

equation can be obtained for the sensitivity matrix M(k) [40, 41]: 
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M(k/k) 

if k ~n 
(5.44)

= {~ - K(k)H(k)]{A(k - l)M(k - 1) +I} if k > n 

The residual innovation sequence for the mismatched Kalman filter is given by: 

z(k + 1) = z(k + 1) - H(k + 1) T*(k + 1/k) (5.45) 

z*(k + 1) = z(k + 1) - H(k + 1) [A(k) T*(k/k) + F(k) Q (k)] (5.46)9 

and for the hypothetical Kalman filter is given by: 

z(k + 1) = z(k + 1) - H(k + 1) [A(k) T(k/k) + D q + F(k) Q (k)] (5.47)9 

Subtracting Equation 5.47 in Equation 5.46 yields: 

z*(k + 1) = z(k + 1) + H(k + 1) [A(k)M(k) + I]D(k) q (5.48) 

this can be written as: 

z*(k + 1) 

z(k + 1) if k ~ n 
(5.49){- z(k + 1) +H(k + 1) [A(k)M(k) + I]D(k) q n<k ~n+L 

-* {z(k) if k ~ n 
(5.50)z (k) = z(k) + C(k) q n<k ~n+L 
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where C(k) is the sensitivity matrix given by: 

C(k) = H(k) [A(k - 1)M(k - 1) + l]D(k) (5.51) 

Equation 5.50 can be considered as a measurement equation for the boundary heat flux q 

where the recursive least squares parameter estimation procedure can be applied to 

estimate the parameter q. The details of this procedure can be found in [5]. The final 

equations of the Kalman filter as well as those of the real time recursive least squares 

estimator are given below: 

Kalman filter equations 

State prediction 


T(k + 1/k) = A(k)T(k/k) +F(k) Q (k) (5.52)
9 

State covariance prediction 

P(k + 1/k) = A(k) P(k/k) A(k)T + D(k)Q D(k)T (5.53) 

Innovation covariance 

s(k + 1) = H P(k + 1/k) HT+ R (5.54) 

Filter gain 

K(k + 1) = P(k + 1/k) HT s-1(k + 1) (5.55) 

Update state covariance 
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P(k + l/k + 1) =[I ­

Innovation 

K(k + l)H] P(k + l/k) (5.56) 

z(k + 1) = z(xxmeas I k + 1) ­ H T(k + l/k) (5.57) 

Update state estimate 

T(k + l/k + 1) = T(k + 1/k) + K(k + 1) z(k + 1) 

Recursive least squares equations 

First sensitivity matrix 

(5.58) 

C(k + 1) =H [A(k) M(k) +I] D(k) 

Second sensitivity matrix 

(5.59) 

M(k + 1) =[I - K(k + l)H][A(k) M(k) +I] 

Gain 

(S.60) 

Kb (k + 1) = y­1 Pb (k)Cr (k + 1) 

* [C(k + l)y-1 Pb (k) er (k + 1) + s(k + l)]-1 (5.61) 

Error covariance of the input estimate 

(5.62) 
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Input estimation 

q(k + 1) = q(k) +Kb (k + 1) * [z(k + 1) - C(k + 1) q(k)] (5.63) 

where H is the measurement matrix, Kb is the input gain, and y is a scalar called the 

"forgetting factor" which works as a weighting factor in the recursive least square 

estimator. 

The calculated thermal field is then corrected using the estimated heat flux since it 

is primarily calculated using the mismatched Kalman filter assuming zero boundary heat 

flux. The thermal field is corrected by using the following equation [ 41): 

TcorrCk + 1/k + 1) = T(k + 1/k + 1) +M(k + 1) * D(k) * q(k + 1) (5.64) 

5.2.2 Microstructure Model 

The phase transformation during steel quenching can be classified into: (1) diffusional 

transformation such as austenite to pearlite transformation and (2) diffusionless 

transformation such as austenite to martensite transformation. The former depends on 

temperature and time while the latter depends on the temperature only. 

Two periods are involved in the diffusional transformation. The first period is 

called the incubation period, also known as nucleation period. The transformation in this 

period is estimated by using the Scheil's additivity method. In this method, the cooling 

curve on the Time-Temperature-Transformation (TTT) diagram, see Figure 5.3, is 
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Fr= 0.995 

Austenizing Temperature 

_L(Mj/Tsj) 
j=l 

Log Time 

Figure 5.3 Schematic representation of the scheil's additivity principle and the calculation 

of the of the Temperature dependant parameters AT(T) and BT(T) from TTT diagram. 

divided into a series of small isothermal intervals corresponding to the number of time 

steps and connected by unit step temperature changes. The quantity (!it/rs1) is calculated 
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at each time step j, where 119 is time step size and Tsj is the incubation time or the 

transformation starting time taken from the TTT diagram based on the temperature. The 

incubation period of the diffusional transformation is completed when the following 

summation reaches one: 

L(Ll;/rsj) = 1 (5.65) 
j 

The second period of the diffusional transformation is called the growth period. 

The volume fraction of the transformed phase in this period is estimated by using the 

following Johnson-Mehl-Avrami (JMA) equation [35]: 

(5.66) 


where Fm (t) is the volume fraction of phase m, Ar(T) and Br(T) are temperature 

dependent parameters which can be calculated from the isothermal ITT diagram, t.J is the 

transformation time representing the time elapsed from the beginning of the diffusional 

transformation and can also be considered as the current time excluding the incubation 

time. t.J is given by: 

l } 1/Br(T) 

ln U-1){ 1 - F: 
(5.67)0 = Lltj + Ar(D 

1 
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Where F./r!.-l) is the volume fraction of the m1
h phase present at the previous time step, 

j-1, and ll.tj is the current time step. 

The JMA equation was mainly derived and applied for isothermal transformation. 

However, it has been used successfully for many nonisothermal transformations [32-36] 

by updating the two parameters Ar(T) and Br(T) at each time step using the following 

equations [36]: 

ln{ln(F1)}- ln{ln (Fs)} 
Br(T) = { } (5.68)

ln{r5 (T)} - ln r1(T) 

(5.69) 


Where F5 and F1 are the starting and the finishing volume fractions of the austenite 

to pearlite diffusional transformation represented by the two C-curves on the TTT 

diagram, Figure 5.3. The pearlite volume fractions on the first and second curves are 

assumed to be 0.005 and 0.995 respectively. The quantities rs(T) and r1(T) are the 

starting and ending time of the diffusional transformation, respectively, taken from the 

TTT diagram at each time step. 

For the martensitic diffusionless transformation, the volume fraction of the 

generated martensite is function of temperature only and can be estimated by the 

following Koistinen-Marburger equation [36]: 

(5.70) 
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where FM(T) is the volume fraction of the martensite, aM is the Koistinen and Marburger 

coefficient and it is equal to 1.lxl0-2 K 1 for 1080 carbon steel, TMs is the martensitic 

transformation start temperature. Since pearlite, ferrite, and bainite cannot be transformed 

to martensite, the above equation should be multiplied by (1 - Lm Fm) as follows: 

(5.71) 


5.3 Computational Procedure 

The procedure of the present algorithm is shown in Figure 5.4. The computation is 

initialized by entering the following data: the initial conditions, the physical geometry, 

and data taken from the isothermal Time-Temperature-Transformation (TTT) diagram of 

the material. 

Firstly, the thermal field is calculated using the Kalman filter, Equation 5.58. 

Secondly, the real time recursive least squares estimator is used to estimate the boundary 

heat flux, Equation 5.63. The thermal field is then corrected using Equation 5.64. Finally, 

the convective heat transfer coefficient of the quenching process is estimated using 

Newton's law of cooling, Equation 5.3. 

After calculating the thermal field, the calculation of the microstructure 

transformations starts by employing the additivity rule, Equation 5.65, incorporating the 

data from the TTT diagram to calculate the incubation period. Once the incubation period 

is completed, the growth transformation is calculated by using the Johnson-Mehl-A vrami 
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Start 

Input Data 
- Initial condition, T 0 

- Physical geometry of the part 
- Data from the isothermal TTT diagram of considered material 
- Temnerature denendent thermonhvsical nronerties 

Kalman Filter Estimator 
Estimating the thermal field 

using Eqs. (5.52-5.58) 

New 

Measurement 


Real Time Recursive Least Squares Estimator 

Estimating the boundary heat flux using 


Eqs. (5.59-5.63) 


fhermophysical Properties 

Updating 


rpdating the thermophysical 

properties using Figure 5.6 


Thermal Field Correction 
Correcting the thermal field 

using Eq. (5.64) 

Convective Heat Transfer Coefficient 

of Quenching Process 


Estimating h using Newton's law of 

cooling Eq. (5.3) 


Microstructure Model 
- Incubation period, additivity method, Eq. (5.65) 
- Growth Period, Eq. (5.66) 
- Heat generation of phase transformation. Eq. (5.16) 

Yes 

End 

Figure 5.4 Simplified flow chart of the computational procedure of the present inverse 

algorithm. 
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equation, Equation 5.66. In this study only the austenite to pearlite transformation is 

considered and is assumed to only take place above the nose of the TTT diagram [32]. 

The temperature of each node is compared with the martensitic transformation 

starting temperature (T Ms) and if it is smaller, the martensite volume fraction is calculated 

using the Koistinen-Marburger equation, Equation 5.71. 

In the previous works [27, 31], where the heat generation due to phase 

transformation was considered, the thermal field calculation at each time step are carried 

out assuming no heat generation primarily. At the same time step, upon completing the 

microstructure calculation and if there is heat generation due to phase transformation, this 

heat generation is added to the heat equation and the calculation of the thermal field is 

repeated along with the microstructure calculation. This iterative solution procedure 

continues until a specific convergence criterion is satisfied. The computational procedure 

of the previous algorithms is therefore very time consuming and cannot be implemented 

for real time estimation. In contrast, the heat generation of the phase transformation is 

handled in the present algorithm explicitly, where it is calculated at the end of each time 

step from the microstructure calculations, and then used in the heat equation to calculate 

the thermal field of the next time step. 

The quenching process is a highly nonlinear problem due to the thermophysical 

properties being temperature dependant. This nonlinearity is treated in the present work 

by explicit linearization. Thermophysical properties of the present time step are 

calculated based on temperatures of the previous time step. At the end of each time step 

the thermophysical properties are updated in order to use them in the next time step. This 
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procedure eliminates the need for the iterative procedure adapted by the previous models, 

and hence the computational time of the present algorithm is reduced significantly. This 

feature makes this computational procedure very suitable for real time controlling of steel 

quenching process. 

-0 
0 

Cl).... 
::1 
ca -
.... 
Cl) 
a. 
E 
Cl) 

I-

lime (secood) 

Figure 5.5 TTT diagram for Plain Carbon 1080 Steel. 
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5.4 Case Study 

The above procedure has been applied to simulate the quenching process of infinitely 

long plain-Carbon 1080 steel cylinder of radius 19.05 mm. The TTT diagram of this 

material is shown in Figure 5.5. The direct solution of this quenching problem had been 

experimentally and numerically investigated by many researchers [32-36]. These 

experimental and the numerical results will be used to validate the predictions of the 

present work. Three thermocouples have been used and are located at the surface, close to 

the surface and at the centre of the cylinder. The dependency of the thermophysical 

properties on the temperature of 1080 carbon steel is shown in Figure 5.6 [34]. 

The cylinder is initially kept at the austenizing temperature of 850 °C and then 

quenched in 22.5 °C water. The direct problem (where the heat transfer coefficient is 

known) of this steel quenching process is first solved using a fourth order Runge-Kutta 

nonlinear solver [36] to generate transient temperatures at a distance of 1 mm below the 

surface. Then these temperatures are corrupted by Gaussian white noise of zero mean to 

simulate the actual temperature measurements. These transient temperature 

measurements are then used as an input to the inverse algorithm. 
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Figure 5.6 The variation ofthermophysical properties with temperature used in the case 

study 
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5.5 Results and Discussion 

The online input estimation algorithm coupled with the steel microstructure model has 

been used to solve the quenching problem of a 1080 carbon steel cylinder described in 

the previous section. The present results have been compared with the direct solution of 

the same problem solved by a fourth order Runge-Kutta method [36]. They are also 

compared with the experimental data reported in [33], as well as the available numerical 

results reported in [32, 34, 35]. 

The physical domain of the problem is discretized into 20 equally spaced nodes. 

Thus, the coefficient matrices a1, b1, and c1 are given by 20 x 20, 20 x 1 and 20 x 1, 

respectively. The measurement matrix H 1s 1 x 20 given by 

[O 0 0 0 ... ... ... ... ... 0 0 1 O] for the considered problem where the thermocouple 

is located at i=Nr-1. 

The optimality of the Kalman filter depends on the exact knowledge of the 

process noise covariance matrix Q in the process model, Equation 5.53, and the 

measurement error covariance matrix R, Equation 5.54. This operator R is usually given 

based on the accuracy of the temperature measurements. For the present problem, the 

standard deviation of the measurement error is assumed equal to 0.001 while the Kalman 

filter stabilizing parameter, Q, is equal to 9.5x1014 [18, 19]. The forgetting factory in the 

recursive least square estimator is taken equal to 0.85. The state error covariance matrix 

in the Kalman filter is initialized with P(O/O) = diag[105 ], while the error covariance 

of the estimated input vector, Pb (0/0), in the real time recursive least squares estimator is 

initialized with 1022 
. The sensitivity matrix in Equation 5.59 is initialized with M(O)=O. 
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Figure 5.7 A comparison between the exact and the estimated convective heat transfer 

coefficient of steel quenching process. 

For the purpose of comparison, the simulation time of the present problem was 

chosen equal to 100 second to match that reported in [32-36]. The time step size 

!it = O.OSs and the spatial step size !l.r = 0.001m. The impact of the grid spacing and 

time step on the numerical solution is also studied. 

Figure 5.7 shows a comparison between the exact and the reconstructed heat 

transfer coefficient by the online input estimation algorithm. The shape of the heat 

transfer coefficient is quite well reproduced especially the peak value at the early stage of 

the steel quenching process. Therefore, this figure indicates that the present model can be 

used efficiently to estimate the heat transfer coefficient of steel quenching process. 
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Figure 5.8 A comparison between (a) the temperature profile predicted by the present 

algorithm and the experimental data reported in [33], and (b) the transient temperatures of 

the Kalman filter, different direct numerical algorithms and the experimental data 

reported in [33]. 
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Figure 5.8a shows a comparison between the inversely estimated and the 

experimental temperatures at two different locations in the quenched steel cylinder. Also 

shown are the experimental temperatures used as an input for the online input estimation 

algorithm and its prediction by the Kalman filter. This figure shows a very good 

agreement between the estimated and the experimental temperatures especially at the 

center where the rise in the temperature due to phase transformation heat release 1s 

excellently estimated by the present algorithm. 

Figure 5.8b displays a comparison between the inversely predicted temperatures 

and the experimental temperatures, [33], as well as other numerical predictions of the 

direct problem of the same case study [32, 34, 35, 36]. As seen from this figure, the 

Kalman filter gives excellent results at the center while there are some fluctuations in 

temperature predictions at the surface. These fluctuations are expected in any inverse 

solver due to the measurement errors. However, these fluctuations are removed at the 

center because of the damping effect resulted from the diffusive nature of the heat 

conduction process [2]. 
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Figure 5.9 A comparison between (a) the pearlite volume fraction (b) the martensite 

volume fraction and ( c) the retained austenite volume fraction predicted by the previous 

direct solution algorithms [32,34,35,36] and the present inverse algorithm. 

Figure 5.9 shows a comparison between the volume fraction of pearlite, 

martensite, and austenite of the quenched 1080 carbon steel cylinder predicted by the 

inverse solver and the prev10us four direct numerical algorithms at the end of the 
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simulation time, respectively. The results of the inverse solution are between the other 

direct numerical results and showing the same trend. However, as previously discussed, 

the advantage of the inverse solution is that the convective heat transfer coefficient is part 

of the solution while in the direct solution algorithms it must previously be known. It is 

worth noting here that the volume fraction of the retained austenite has not been reported 

in Woodard et al. [34]. 

Comparison between the pearlite volume fraction calculated by the present 

algorithm and that calculated by a fourth order Runge-Kutta method with time at two 

locations in the cylinder, (r = 19.04 mm and r = 4.01 mm) is shown in Figure 5.10. This 

figure shows very good results of the present inverse algorithm comparing to the direct 

solver. 
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Figure 5.10 A comparison between the inverse solver pearlite volume fraction and that of 

the direct solver with time for two locations. 
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However, Figure 5.11 shows there is a difference between the phases volume 

fraction calculated from the inverse and direct solvers. The reason for this difference can 

be explained by using Figures 5.12 and 5.13. 
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Figure 5 .11 A comparison between the inverse solver volume fraction of different phases 

and these of the direct solver. 

Figure 5.12 shows variation of the pearlite volume fraction at four locations in the 

cylinder with time. As previously shown, at r=4.01 mm, the agreement between the 

inverse and direct solver is excellent because the entire steel microstructure at this point 

is pearlite. The cooling curve at this point crosses the right C-curve on the TTT diagram 

where the pearlite volume fraction is one, as shown in Figure 5.13. 
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Figure 5.12 A comparison between the inverse solver pearlite volume fraction and that of 

the direct solver with time for four locations. 

Similarly, the agreement at the surface is good where there is not any pearletic 

transformation and only martensitic transformation took place. The cooling curve at this 

point does not cross the left C-curve on the TTT diagram, Figure 5.13. 

The difference appears in the intermediate points (from r = 8 mm tor= 14 mm), 

Figure 5.11, due to the pearletic partial transformation as well as the small difference in 

the cooling curves at the same points estimated by the inverse and direct solvers. This 

small difference in the temperature distribution of the inverse and direct solvers causes 

this noticeable difference in the pearlite volume fraction due to the exponential nature of 
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the pearlite microstructure model. This may be the reason for the wide discrepancy in the 

pearlite volume fractions estimated by different researchers [32-36], shown in Figure 9a. 
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Figure 5.13 Schematic representation of the cooling curves for four locations inside the 

quenched cylinder on the TTT diagram. 

In order to study the effect of temporal and spatial discretization as well as the 

measurement error on the performance of the present algorithm, the estimate bias is used 

as a performance measure of the algorithm. This estimate bias is calculated by using the 

following equation [23]: 

. [ 1 nr ( ~ )z]l/2
Bias = nr Lk=l hk - hk (5.72) 
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where hk and hk are the exact and estimated convective heat transfer coefficients, 

respectively, and nr is the total number of the time steps. This measure of the bias 

includes the effect of both the model errors and the temperature errors. 

The performance of the present algorithm is not affected by the spatial step size as 

can be seen from Figure 5.14a. The effect of the temporal step size on the algorithm 

performance is shown in Figure 5.14b. As previously concluded in [22], there is a 

specific time step size that gives the minimum estimate bias. This time step size satisfies 

the trade-off between the deterministic bias and the sensitivity to the measurement error 

[42]. 
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Figure 5.14 Variation of the Estimate Bias with (a) the spatial step size, (b) the time step 

size, and ( c) the measurement error standard deviation 
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Figure 5.14c shows the effect of the measurement error on the estimate bias of the 

present algorithm. As seen from the figure, the algorithm is not sensitive to the change in 

the measurement error when the standard deviation of the measurement error is less than 

or equal to 0.01. However, as expected, above this value the estimate bias increases when 

the measurement error increases. 

Finally, it is worth mentioning that the total computational time to solve this case 

study was about 95 seconds using a personal computer with a Pentium 4 processor and 2 

GB RAM. The computational time is less than the measuring time period used in the 

direct problem (100 seconds). This indicates the strength of the computational efficiency 

of this algorithm which makes it very suitable for real-time controlling of steel quenching 

processes. 

5.6 Conclusion 

A new computational algorithm has been developed for real-time control of the process 

of steel quenching. The algorithm combines an online input estimation algorithm with a 

steel microstructure model to solve the nonlinear inverse heat conduction problem of 

steel quenching. The nonlinearity of the problem is treated explicitly where the 

thermophysical properties are calculated and updated at the end of each time step. Also, 

the heat generation due to phase transformation is handled in the present work explicitly 

where it is calculated at the end of each time step from the microstructure calculations, 

and then used in the heat equation to calculate the thermal field of the next time step. This 

way of handling the nonlinearity and the heat generation resulted in a more efficient 
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algorithm where no iterations were required without a large degradation in the accuracy 

of the estimation. This feature makes the present algorithm very suitable for real-time 

control of steel quenching processes. 

5.7 Acknowledgments 

This work is supported and funded by the Natural Sciences and Engineering Research 

Council of Canada (NSERC), the Centre for Materials and Manufacturing/Ontario 

Centres of Excellence (OCE-CMM), and the OCE-McMaster Thermal Processing 

Consortium. 

5.8 References 

1. Blanc, G., Beck, J. V., and Raynaud, M., Solution of the Inverse Heat Conduction 

Problem witha Time-Variable Number of Future Temperatures, Numerical Heat Transfer 

B, vol. 32, pp. 437-451, 1997. 

2. Beck, J. V. , Blackwell, B., and Clair, C. R. St., Inverse heat conduction-III Posed 

Problems, New York, John Wiley, 1985. 

3. Tikhonov, AN, and Arsenin, VY. ,Solution ofILL-Posed problems, Washington DC., 

John Wiley, 1977. 

4. Alifanov, 0. M., Inverse Heat Transfer Problem, New York, Springer-Verlag, 1994. 

5. Taun, P. C., Ji, C. C., Fong, L. W., and Huang, W. T., An Input Estimation Approach 

to On-line Two-Dimensional Inverse Heat Conduction Problem, Numerical Heat Transfer 

B, vol. 29, pp. 345-363, 1996. 

168 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

6. Tuan, P. C., Lee, S. H., and Hou, W. T.,An Efficient On-line Thermal Input Estimation 

Method Using Kalman Filter and recursive Least Square Algorithm, Inverse Problems in 

Engineering, vol. 5, pp. 309-333, 1997. 

7. Ji, C. C., Tuan, P. C., and Jang, H. Y., A Recursive Least-Squares Algorithm for On­

Line 1-D Inverse Heat Conduction Estimation, International Journal of Heat and Mass 

Transfer, vol. 40, no. 9, pp. 2081-2096, 1997. 

8. Tuan, P. C., and Hou, W. T., Adaptive Robust Weighting Input Estimation Method For 

the 1-D Inverse Heat Conduction Problem, Numerical heat Transfer B, vol. 34, pp. 439­

456, 1998. 

9. Tuan, P. C., and Ju, M. C., The Validation of the Robust Input Estimation Approach to 

Two-Dimensional Inverse Heat Conduction Problems, Numerical Heat Transfer B, vol. 

37,pp.247-265,2000. 

10. Cheng, T. C., Adaptive Weighting Input Estimation Method To Contact Conductance 

During Metal Casting Problem, Numerical Heat Transfer B, vol. 39, pp. 405-419, 2001. 

11. Tuan P. C., and Chen, T. C., Inverse Problem Of Estimating Interface Conductance 

Between Periodically Contacting Surface Using the Weighting Input Estimation Method, 

Numerical Heat Transfer B, vol. 41, pp. 477-492, 2002. 

12. Chen T. C., and Tuan, P. C., Input Estimation Method Including Finite-Element 

Scheme for Solving Inverse Heat Conduction Problems, Numerical Heat Transfer B, vol. 

47,pp.277-290,2005. 

169 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

13. Jang, H. Y., Tuan, P. C., Chen, T. C., and Chen, T. S., Input estimation Method 

Combined With the Finite-Element Scheme to Solve IHCP Hollow-Cylinder Inverse 

Heat Conduction Problem, Numerical Heat Transfer A, vol. 50, 263-280, 2006. 

14. Ji C. C., and Jang, H. Y., Experimental Investigation in Inverse Heat Conduction 

Problem, Numertical Heat Transfer A, vol. 34, 75-91, 1998. 

15. Tuan P. C., and Ju, M. C., Adaptive Weighting Input Estimation Algorithm for One 

Dimensional Cylindrical Inverse Heat Conduction Problems, Proc. Natl. Sci. Counc. 

ROC (A), Vol. 25, No. 3, pp. 163-171, 2001. 

16. Tuan, P. C., and Fong, L. W., An IMM Tracking Algorithm with Input Estimation, 

International Journal of System Science, vol. 27, no. 7, 629-639, 1996. 

17. Lee, W. S., Ko, Y. H., and Ji, C. C., A Study of an Inverse Method for the Estimation 

oflmpulseive Heat Flux, Journal of the Franklin Institute,vol 337, 661-671, 2000. 

18. Wang, H. M., Chen, T. C., Tuan, P. C., and Den, S. G., Adaptive-Weighting Input­

Estimation Approach to Nonlinear Inverse Heat-Conduction Problems, Journal of 

Thermophysics and Heat Transfer, vol. 19, no. 2, 209-216, 2005. 

19. Chen, T. C., Cheng, C. H., Jang, H. Y., and Tuan, P. C.,Using Input Estimation to 

Estimate Heat Source in Nonlinear Heat Conduction Problem, Journal of Thermophysics 

and Heat Transfer, vol. 21, no. 1, 166-172, 2007. 

20. Chen, T. C., Liu, C. C., Jang, H. Y., and Tuan, P. C., Inverse Estimation of Heat Flux 

and Temperature in Multi-Layer Run Barrel, International Journal of Heat and Mass 

Transfer, vol. 50, pp. 2060-2068, 2007. 

170 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

21. Cheng, T. C., and Liu, C. C., Inverse Estimation of Time-varied Heat Flux and 

Temperature on 2-D Gun Barrel using Input Estimation Method with Finite-element 

Scheme, Defence Science Journal, vol. 58, pp. 57-76, January 2008. 

22. Ali, S. K., Lightstone, M. F., and Hamed, M. S., Parametric Study oflnput estimation 

Algorithm Used for Inverse Heat Conduction Problems, 15th Annual Conference of the 

CFD Society of Canada, Ontario, Canada, May 27-31, 2007. 

23. Ali, S. K., Hamed, M. S., and Lightstone, M. F., Numerical study of the modeling 

error in the online input estimation algorithm used for inverse heat conduction problems 

(IHCPs), Journal of Physics: Conf. Ser. 135 012004, 2008. 

24. Shuhui, M., Aparna, S. V., Makiko, T., and Darrell, K. R., Quenching-Understanding, 

Controlling and Optimizing the Process, Proceeding of the Fourth International 

Conference on Quenching and Control of Distortion, 20-23 may, Beijing, 2003. 

25. Hernandez-Morales, B., Brimacombe, J. K., and Hawbolt, E. B., Application of 

Inverse Techniques to Determine Heat-Transfer Coefficients in Heat-Treating 

Operations, Journal of Materials Engineering and Performance, vol. 1, pp. 763-771,1992. 

26. Archambault, P., and Azim, A., Inverse resolution of the Heat Transfer Equation: 

Application to Steel and aluminum Alloy quenching, Journal of Materials Engineering 

and Performance, vol. 4, no. 6, pp. 730-736, 1995. 

27. Archambault, P., Denis, S., and Azim, A., Inverse Resolution of the Heat transfer 

equation with Internal heat source: application to the quenching of steels with Phase 

Transformation, Journal of Materials engineering and Performance, vol. 6, pp. 240-246, 

1997. 

171 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

28. Smith, D. E., Optimization-Based inverse Heat Transfer Analysis or salt Quenching 

of Automotive Components, International Journal of Vehicle Design, vol. 25, nos 112, 

Special Issue, 2001. 

29. Heming, C., Xieqing, H., and Jiabin, X., Comparison of Surface Heat-Transfer 

Coefficients Between Various Diameter Cylinders During Rapid Cooling, Journal of 

Materials Processing and Technology, vol. 138, pp. 399-402, 2003. 

30. Heming, C., Xieqing, H., and Jiabin, X., Determination of Surface Heat Transfer 

Coefficients of Steel Cylinder With Phase Transformation During Gas Quenching With 

High Pressure, Computational Materials Science, vol. 29, pp. 453-458, 2004. 

31. Azim, A., Archambault, P., Denis, S., and Rhamin, H., Experimental Validation of 

Inverse Heat Conduction Method: Quenching of steels XC42 and XC80, The European 

Physical journal applied Physics, vol. 34, pp. 243-251, 2006. 

32. Wang, K. F., Chandrasekar, S., and Yang, H. Y. Y., An Efficient 2D Finite Element 

Procedure for the Quenching Analysis with Phase Transformation, Journal of engineering 

for Industry, vol. 115, pp. 124-138, 1993. 

33. Wang, K. F., Chandrasekar, S., and Yang, H. Y. Y., Experimental and Computational 

Study of the Quenching of Carbon Steel, Journal of Manufacturing Science and 

Engineering, vol. 119, pp. 257-265, 1997. 

34. Woodard, P.R., Chandrasekar, S., and Yang, H. T. Y., Analysis of Temperature and 

Microstructure in Quenching of Steel Cylinders, Metallurgical and Materials transaction 

B, vol. 30 B, pp. 815-822, 1999. 

172 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

35. Kang, H. K., and Im, Y. T., Three-Dimensional Finite Element Analysis of the 

Quenching Process of Plain-Carbon Steel with Phase Transformation, Metallurgical and 

Materials transaction A, vol. 36 A, pp. 2315-2325, 2005. 

36. Ali, S. K., Hamed, M. S., and Lightstone, M. F., An Efficient Numerical Algorithm 

for the Prediction of Thermal and Microstructure Fields during Quenching of Steel Rods, 

Journal of ASTM International, vol. 5, no. 10, 2008. 

37. Jazwinski, H., Stochastic Processes and Filtering Theory, New York, Academic 

Press, 1970. 

38. Shalom, Y. B., Li, X. R., and Kirubarajan, T., Estimation with Applications to 

Tracking and Navigation: Theory Algorithms and Software, John Wiley, New York, 

2001. 

39. Haykin, S., Kalman Filtering and Neural Networks, John Wiley, 2001. 

40. Bogler, P. L., Tracking a Maneuvering Target Using Input Estimation, IEEE 

Transactions on Aerospace and Electronic Systems, vols. AES-23, no. 3, May, 1987. 

41. Hou, M., and Shaanxi, X., Comments on Tracking a Maneuvering Target Using Input 

Estimation, IEEE Transactions on aerospace and Electronic Systems, vols. AES-25, no. 

2, March 1989. 

42. Raynaud, M., and Beck, J. V., Methodology for Comparison of Inverse Heat 

Conduction Methods, Transaction of ASME, vol. 110, pp. 30-37, February, 1988. 

173 




PhD Thesis - Salam K. Ali McMaster University - Mechanical Engineering 

RESEARCH CONTRIBUTIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

CHAPTER6 




PhD Thesis - Salam K. Ali McMaster University- Mechanical Engineering 

6.1 Research Contributions 

There are many industrial processes that require their thermal boundary conditions to be 

controlled in real time. One important application is the steel quenching process. The 

quenching process of steel is mainly used to improve the mechanical properties of steel 

by controlled cooling without changing part dimensions. Thus, the cooling process 

should be controlled in such a way that the desired mechanical properties can be 

achieved. 

There have been financial consequences in the industry every year caused by non­

optimal material properties resulting from uncontrolled quenching. The reason for these 

financial consequences is that the conditions of the quenching process are obtained by 

using extensive experimental work that does not provide detailed information about the 

steel microstructure during the process. 

Addressing this need, an online inverse coupled heat conduction/microstructure 

algorithm has been developed in this study to simulate steel quenching process and 

estimate, adjust, and update the convective heat transfer coefficient in real time in order 

to achieve the desired steel microstructure that leads to optimal material properties. 

The developed real-time estimation algorithm is capable of handling the coupled 

problem of steel quenching. The development of the algorithm involved a four-stage 

plan. 

In stage one, a thorough literature review has been performed to explore most of 

the inverse heat conduction solution techniques. Inverse heat solution methods have been 

classified into three categories, namely; the direct inverse category, optimization based 
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category and the observer based category. Unlike the first and second categories, the 

solution methods of the third category are derived based on the optimal control theory 

using the dynamic observer concept which provides the possibility of real time 

estimating, identifying, and controlling of different industrial processes. 

Of many available dynamic observers, the Kalman filter dynamic observer has 

been chosen to be used in this work as a part of the online input estimation algorithm due 

to its stochastic structure as well as its capacity in treating noisy measurements 

efficiently. Kalman filter also provides a quantitative measure of the estimate at each time 

step and most importantly its recursive nature makes it very suitable for real time 

estimation. This feature enhanced the computational efficiency and reduced the required 

computer memory. 

Although, the online input estimation algorithm has been successfully applied for 

many industrial applications, it has not been yet used for a coupled problem such as steel 

quenching and has only been used for solving thermal field in pure inverse heat 

conduction problems. In order to modify this algorithm for steels quenching problem, the 

effect of many important parameters on the algorithm performance had to be 

systematically investigated and understood. Such investigation has not been carried out 

before. 

The parametric study has been carried out for a one-dimensional inverse heat 

conduction problem in Cartesian coordinates employing different forms (functions) of 

boundary heat fluxes that cover most of the industrial boundary heat flux shapes. Many 

important parameters have been considered including, spatial step size, temporal step 
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size, temperature sensor location, stabilizing parameter, measurement noise level, initial 

state error covariance matrix in the Kalman filter and input error covariance matrix in the 

recursive least squares estimator. Another important investigation that has also not been 

carried out before is the use of different types of Kalman filters with the online input 

estimation algorithm. Four different types of Kalman filters have been implemented and 

tested. These types are the conventional continuous time state Kalman filter, implicit 

Kalman filter, Crank-Nicholson Kalman filter, and the explicit Kalman filter. In this 

investigation, both numerical stability and computational time of the algorithm have been 

investigated. The most significant observation of the conducted investigations in stage 

one and two of this study can be summarized as follows: 

1. A robust range of the stabilizing parameter has been obtained for the transient heat 

flux considered. 

2. There is an optimal time step that gives a minimum estimate bias. 

3. There is no effect for the spatial step size on the performance of the filter. 

4. The thermocouple should be located as close as possible to the active boundary to 

reduce the estimate bias. 

5. 	Reasonable values for both P and Pb have been determined and recommended. 

These values can be assumed based on the prior information of the initial 

conditions of a given problem. 

6. 	it was found that the implicit and Crank-Nicholson schemes are better than the 

explicit scheme due to their stability. 
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The heuristic study of the effect of changing the stabilizing parameter on the 

algorithm performance gave a general guide on how to design an optimal Kalman filter 

for particular problems of similar applications. 

The contribution of the third stage of this work is developing a new, very efficient 

algorithm for simulating the direct problem of steel quenching. Previous researchers have 

mostly focused on solving the direct problem of steel quenching employing the linear 

form of the heat conduction equation and an iterative linear solver. The nonlinearity of 

the problem resulted from the thermophysical properties being temperature dependent 

was treated by explicit linearization. The computational time was an issue in these types 

of solvers. 

Conversely, the proposed algorithm employed the full nonlinear form of the heat 

conduction equation in cylindrical coordinates. In addition, the thermophysical properties 

of the quenching problem in this algorithm were treated as a function of temperature. The 

full nonlinear heat conduction equation was solved by using a fourth order Runge-Kutta 

nonlinear solver. 

Considering the full nonlinear heat conduction equation m simulating the 

quenching problem as well as the way of handling the nonlinearity of the thermophysical 

properties, the present direct algorithm is more computationally efficient algorithm that 

does not require any iteration. Furthermore, the comparison of the results of the proposed 

algorithm with the experimental data as well as with numerical results of previous 

investigations showed the improved performance and predictions obtained by the present 

algorithm. 
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The most profound contribution of this research is the work conducted in stage 

four where an online input estimation algorithm has been successfully developed for the 

first time to simulate a coupled heat conduction/microstructure problem of steel 

quenching. This algorithm can be used to control steel quenching process in order to 

produce optimal mechanical properties. 

The nonlinearity of the thermophysical properties of steel quenching was treated 

explicitly. They have been updated at the end of each time step. The modeling error 

resulted from this type of linearization has been accounted for by changing the scale of 

the stabilizing parameter in the process equation of Kalman filter. This parameter also 

account for all sources of error in the model, which shows the advantage of using a 

stochastic estimator. 

The technique used to handle the nonlinearity in the modified online input 

estimation algorithm did not require any iteration and thus the algorithm is very suitable 

for real-time control of steel quenching processes. 

Finally, the two main aspects of steel quenching process have been successfully 

addressed by this study. The first aspect concerned with solving the direct problem of 

steel quenching has been addressed by the work conducted in stage three. The second 

aspect concerned with solving the inverse problem of steel quenching which has been 

addressed by the work conducted in stage four. It is worth noting that this is the first time 

that the above two aspects have been considered in the same study. The algorithms 

developed in this study provide an integral tool that can be used to optimize steel 
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quenching processes. This tool can also be used to replace the traditional experimental 

way of obtaining the right quenching conditions. 

6.2 Recommendations for Future Work 

Considering the available information in the literature and the insight gained from this 

research, the following recommendations are proposed for future work: 

1. 	 The present algorithms can be extended to tackle two and three dimensional 

geometries. 

2. 	 The other aspect of numerical simulation of quenching process is to predict the 

deformation, residual stresses, and hardness. The present algorithms did not 

consider this aspect. Therefore, an important recommendation for future work is 

to extend the present algorithm to include these important mechanical behaviors 

of the quenched parts. 

3. 	 Applying the developed algorithms for cases where there is more than one 

diffusional transformation such as transformation from austenite to ferrite and 

bainite. These phase transformations can be treated similar to the way adapted in 

the present research for diffusional transformation of austenite to pearlite. 

Although, the proposed algorithms have accounted for these types of 

transformations, they have not been examined with all possible diffusional 

transformations and they have been only validated against available experimental 

data that involves only austenite to pearlite transformation. 
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4. 	 Investigate the applicability of the present algorithm for the whole heat treating 

cycle including the heating process. 

5. 	 Apply the present algorithm for quenching of materials that have no phase 

transformations such as aluminum. 

6. 	 The proposed algorithms can be applied to situations where steel is quenched by 

gas. This case is very interesting since many industrial quenching processes use 

gases for cooling and hence it could be a focus for future work. 

7. 	 In deriving the online input estimation algorithm the input (unknown boundary 

heat flux) has been assumed constant over a moving slide time window to obtain 

the measurement equation for the input in terms of the biased innovation sequence 

(mismatched innovation) for the real time recursive least squares estimator. It 

would be interesting to investigate the effect of other assumptions such as linear 

function form. 

8. 	 Finally, the developed algorithm is an efficient online algorithm that could 

potentially be used to control steel quenching process to obtain a desired steel 

microstructure. However, the application and implementation of this algorithm for 

such a purpose is a subject of future work. 
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