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Abstract

An important research area in modern astrophysics is understanding how molecular

clouds form stars and star clusters. These rich clusters within molecular clouds are

the dominant mode of star formation in our galaxy, but we know very little about

these areas of space due to incomplete observational data. The MYStIX (Massive

Young Star-Forming Complex Study in Infrared and X-Ray) project was started to

create a detailed catalogue of these regions and the rich star clusters embedded within

them. Once the observational data was available, the evolution of these clusters could

be investigated in more detail. Current cluster simulations investigate the stars in

detail but usually ignore the gas entirely which can be inaccurate, especially in gas

mass dominated clusters. We use AMUSE (Astrophysical Multi-purpose Software

Environment) to model embedded young clusters with stars and gas, similar to those

found by the MYStIX project, and track their evolution over the first few million

years of their lifespan while allowing the stars and gas to interact. We are particularly

interested in non-spheroidal subclusters and how they can evolve into the spherical

structures that we see today.
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Chapter 1

Introduction

For my part I know nothing with any certainty

but the sight of the stars makes me dream.

— Vincent van Gogh

In this thesis, we are studying the evolution of very young, dense star clusters

during their early stages when they are still embedded in their natal gas. In particular,

we are looking at how the shape of these clusters can change quickly over time at this

stage.

In this chapter, we will describe the observations that influenced and motivated

the creation of this project as well as what questions arose from this data.
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1.1 Observations of Young Star Clusters

1.1.1 Studies of Young Stellar Clusters

In recent years, the study of star formation has been advanced in molecular clouds

(regions of molecular gas and dust with masses ranging from 103 to 107 solar masses,

often with substructure of voids, filaments and clumps), with millimeter and infrared

studies of nearby clouds to accurately view the stages of star formation from grav-

itational collapse to protostars (Burkert, 2002; Fukui, 2002). These nearby clouds

mainly form stars of intermediate mass (between 0.8 and 10 solar masses) to cool

brown dwarfs (between 13 and 80 Jupiter masses).

While this field has progressed, the understanding of star formation within massive

star forming regions (MSFRs) has remained relatively rudimentary. This is especially

important with regards to rich star clusters, as they are thought to be a main, possibly

dominant, mode of star formation within our galaxy (Allen et al., 2007).

Some of the outstanding questions include:

• What are the essential conditions for rich cluster formation and how do those

conditions can arise?

• Do all stars within a cluster form at the same time or is star formation active

for a more prolonged period (multiple Myrs)? How would this affect the gas

within the young cluster?

• What are possible causes of mass segregation? Mass segregation is a process
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by which the higher mass stars of a cluster lose velocity and move toward the

centre of the cluster, which will be discussed in more detail in Section 2.2;

• Are larger rich clusters formed from the mergers of smaller clusters? This is

supported by a more advanced stage of mass segregation observed in a cluster

than is expected from its age and relaxation time (Fujii et al., 2012), but this

apparent inconsistency could also be caused by an initial mass segregation in

the system (McMillan et al., 2007);

• What does the detailed structure of rich clusters look like? Are they the

smoothed distributions most commonly used to model them, or is there a com-

plex substructure underneath?

These issues, among others, could be better resolved if there existed a more com-

plete and detailed data set on these MSFRs and rich clusters. Even though their

existence has been known for many years, only the closest of the rich clusters (Orion

Nebula Cluster) even has a full Initial Mass Function (a function that describes the

initial distribution of masses in a population of stars, see Section 2.6 for further de-

tails) determined (Pflamm-Altenburg and Kroupa, 2006), with many clusters having

only incomplete censuses.

There are technical reasons behind this lack of data, it was not a lack of motivation.

Emission from heated dust and gas, overcrowding from the field stars (there can exist

a hundred times more field stars in the area of interest than cluster members), and

spatial obscuration from the molecular cloud itself were all difficulties encountered

when trying to study rich clusters. This resulted in a restricted sample of mostly

3
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partially obscured OB stars (hot, massive stars that emit mainly in the ultraviolet

range, burning bright and quickly and so easily to see than smaller, dimmer stars), or

young stars with protoplanetary disks that would give off excess infrared radiation.

Surveys would completely miss young, disk-free, low-mass to intermediate-mass stars

that usually dominate the populations of young clusters (Feigelson et al., 2013).

The Spitzer Young Cluster survey used the mid-infrared range to identify 2548

young stellar objects in 36 nearby star-forming clusters and groups, including embed-

ded clusters, but was unable to characterize (identify or include in spatial distribution

and surface density analysis) any diskless stars or stars without an excess of infrared

(Gutermuth et al., 2009).

Since these problems mainly plagued optical and infrared studies, the use of X-

Ray telescopes (such as the Chandra X-Ray Observatory) can be used to differentiate

young stars within a cluster at distances up to 4 kpc (Feigelson, 2010). This can be

supplemented by optical and infrared observations to ensure that all sources remain

Galactic and there is no contamination by extra galactic sources.

1.1.2 MYStIX

The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYS-

tIX) (Feigelson et al., 2013) is a study, based at Pennsylvania State University, that

combines a variety of surveys into a more complete census. The wavelengths used

include the optical band for OB stars, infrared bands for young stars with proto-

planetary disks and X-ray bands for both OB stars and young, disk-free, low-mass

4



Master’s Thesis - Jessica McCloskey McMaster University - Physics and Astronomy

and intermediate-mass stars. Beyond just the stars, once the data was cleaned of

contamination from non-cluster sources, the diffuse plasma from OB stars and the

remnants of supernovae were also visible in the X-ray bands.

The data used by MYStIX include:

• archival X-ray data from NASA’s Chandra X-ray Observatory;

• near-infrared data from the United Kingdom InfraRed Telescope (UKIRT);

• near-infrared data from the Two Micron All Sky Survey (2MASS);

• and mid-infrared data from NASA’s Spitzer Space Telescope.

The purpose of MYStIX was to create a census of cluster members, with as uni-

form an analysis procedure as possible, reducing incompleteness and selection biases,

and using more than one classification method to ensure objective selection of sources.

Although there exist past studies on most of the individual local MSFR’s, it is diffi-

cult to compare these findings, as they all used different methodologies and datasets

that could sometimes contradict and disallow valid comparisons. While MYStIX’s

collection of clusters is diverse and without a well-defined characteristic to refine the

sample, its consistent methodologies and compatible datasets allow for collection-wide

investigation of their properties.

The study produced a census with 31,784 identified MYStIX Probable Complex

Members (MPCMs, stellar members of the MSFRs) within the 20 MSFRs targeted

by the surveys (Broos et al., 2013). This makes MYStIX the largest survey of rich

star forming regions to date.

5
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The project aimed to investigate:

• single-wavelength analysis of X-ray, near-infrared and mid-infrared data;

• matching X-ray and infrared sources;

• classification of X-ray sources;

• a new stellar age estimator and star formation histories of MSFRs;

• new OB stars;

• and spatial clustering of MPCM stars.

It is this last item which forms the basis for this thesis.

1.1.3 Spatial Clustering

Both the star formation process and dynamical evolution of a cluster can have an

effect on the spatial distribution of its stars. If, as suggested by Elmegreen (2000),

star formation happens within a crossing time (the time required for a star in a clus-

ter travelling at the average velocity, to cross the cluster), then the distribution of

the stars would be similar to the structure of the initial cloud. If conversely, as sug-

gested by Tan et al. (2006) and Howard et al. (2014), there is gradual star formation

throughout a cluster’s lifetime, then a smoother stellar density map will emerge. So,

investigating the structure of rich star clusters is important to understanding their

creation and evolution.

6



Master’s Thesis - Jessica McCloskey McMaster University - Physics and Astronomy

There are multiple difficulties associated with determining and comparing the

structure of clusters. Different clusters that have undergone different processes can

produce similar properties (the merging of two subclusters can appear as a young sin-

gle cluster due to their different relaxation mechanisms (Allison et al., 2009); various

methods of gas removal may produce similar results (Moeckel and Bate, 2010)), so

more than one evolutionary path must always be considered. There are difficulties in

determining exactly which stars are cluster members and which are merely surround-

ing field stars (Pfalzner et al., 2012), so densities beyond just the stellar distribution

(such as the molecular clouds) must be investigated and reasonable boundaries must

be determined. The sheer number of morphologies and properties that are all plau-

sible for star clusters can make it difficult to reasonably compare a random sample

such as the MYStIX sample, so a large amount of information must be available to

compare different regions quantitatively.

Another area of discussion is how to properly characterize the stellar densities of

these clusters. While the Plummer sphere (a density law describing observations of

globular clusters, with a near-constant-density core, for more information see Section

2.6) is widely used as a model for the distribution of stars, some have noted that

for clusters like Orion Nebula Cluster, NGC 6611, W 40, and Tr 15, a King profile

(another density law to describe clusters, but with a parameter that changes the form

of the profile allowing for extended envelopes if desired) might suit them better, with

their higher ratios of half-mass radius to core radius (Pfalzner et al., 2012).

However, no matter what smooth distribution would be most ideal, it remains

that young clusters may not have had enough time to fully dynamically relax into

7
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one of these profiles though two-body interactions and that the presence of molecular

gas could change the gravitational potential enough to affect the stellar distribution.

It can also be seen that for many of the cluster regions, there are smaller groups of

stars either surrounding the main cluster or as subclusters within the main cluster.

When looked at uniformly, the MYStIX sample displayed a variety of types of

substructure: sometimes dominated by a single monolithic cluster, sometimes a dom-

inant cluster with substructure, sometimes several clusters, and sometimes a dominant

cluster with secondary subclusters (Kuhn et al., 2014). To identify the subclusters

in the raw data, a method of cluster analysis had to be chosen. Kuhn et al. (2014)

decided upon a parametric method that involved assuming that the populations were

made up of subclusters with elliptical surface-density distributions, and that the mix-

ture model is the sum of these densities. The properties of these subclusters were

determined by maximum-likelihood estimation.

In this parametric method, the models of the young clusters were based on equi-

librium configurations of self-gravitating stars in the form of isothermal ellipsoids

(Chandrasekhar, 1942). The density profile of an isothermal sphere can be approxi-

mated by using the Hubble model:

Σ(r) =
Σ0

1 + (r/rc)2
(1.1)

where Σ(r) is the surface density at a distance r from the cluster centre, Σ0 is the

central surface density, and rc is the core radius. We can also find the central volume

8
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density using the central surface density:

ρ0 =
Σ0

2rc
(1.2)

and the number of stars N projected within r can be expressed as:

N(< r) = πr2
cΣ0 ln(1 + r2/r2

c ) (1.3)

In order to use this to model an ellipical shape, as very few clusters are perfectly

spherical (indeed, the Orion Nebula cluster has an ellipticity of ε ' 0.3), the Hubble

density profile must be ‘stretched’ to include two new parameters: the ellipticity

ε = (a − b)/a (where a and b are the semi-major and semi-minor axes respectively)

and the ellipse orientation φ.

Σell(r; Σ0, r0, rc, φ, ε) = Σ0

[
1 +


(

(1− ε)−1/2 0

0 (1− ε)1/2

)
R̂(φ)(r− r0)


2/

r2
c

]−1

(1.4)

where R̂(φ) rotates the vector r− r0 ≡ (x− x0, y − y0) by angle φ.

The study identified 142 subclusters within 17 of the MYStIX MSFRs, and Kuhn

et al. (2014) gives the celestial coordinates for the cluster centre, semi major and semi

minor axes of the core ellipse, ellipticity, orientation, and the total number of stars

in the ellipse four times the size of the core.

Figure 1.1 shows the distribution of cluster core radii. This is fit by a lognormal

9
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distribution with a mean of 0.17 pc, with 68% of the core radii between 0.06 and 0.45

pc. The edges of this distribution are not well constrained, as the smallest values are

for very sparse clusters without a proper core, and the largest values are for broad

stellar overdensities that do not form distinct subclusters. So, a bias may be present

in the data, as the clusters with the largest MYStIX distance have larger radii, as in

the overdensities of these regions, distinct subclusters might appear to have merged

to create larger artificial subclusters. However, even with those tails discarded, the

most common size of cluster is consistent for all MYStIX distances.

Figure 1.2 is a plot of the cluster core radii against the absorption along line of

sight, for X-ray energy median energy (ME) (right) and J - H (left). The X-ray energy

ME can be used as a measure of absorption, as it corresponds reliably with the log of

the line-of-sight column density (Getman et al., 2010). A negative correlation can be

seen in both these plots, emphasizing that the more embedded clusters are smaller,

with subclusters with a median ME > 2.5 keV rarely having a core radius above 0.2

pc. Previous studies have shown that embedded clusters lose their gas as they age

(Lada and Lada, 2003; Leisawitz et al., 1989), so this negative relation can also be

used to show a positive size-age relation, indicating that clusters, or at least their

cores, expand as they age.

Figure 1.3 (left) shows a histogram of the ellipticities of the MYStIX clusters,

indicating a range in ellipticities from 0 to ∼ 0.8, with a preference toward lower

ellipticities. It can also be seen in the right side of the figure that a cluster’s ellipticity

does not depend on its core radius. Previous studies have shown that a molecular

cloud with a high ellipticity is highly susceptible to instability due to gravitational

10
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Figure 1.1: Histogram of cluster core radii for all subclusters (white) and embedded
clusters (grey). (Kuhn et al. (2014) ©AAS. Reproduced with permission)

11
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fragmentation (Burkert and Hartmann, 2004). This is not contradicted in this study,

as MYStIX clusters with the highest ellipticities may not be for distinct subclusters,

but be part of a larger complex that include unclustered stars, falsely inflating their

ellipticity values.

While there is a large variety in the subcluster structure amongst the sample, it

is possible to divide them into four general classes.

Simple Isolated Cluster Structure. As its name suggests, this is the simplest

of the classes, with the cluster dominated by a single ellipsoid model. Perhaps

because of this simplicity, these clusters are also generally the most dynamically

relaxed clusters. And although this more advanced relaxation might suggest older

clusters, it was found that the regions of this class were not always the oldest,

some still experiencing star formation. In Figure 1.4 we can see examples of this

class that include the Flame Nebula (slightly elongated in the direction of the

filamentary cloud), W 40 (round), and the principal clusters in the Trifid Nebula.

Core-Halo Structure. This class consists of clusters that seem unimodal, but do

not fit the single ellipsoid model due to an excess of stars at the centre (or lack of

stars near the edges). A better fit for these clusters is to use two ellipsoids, one

at the centre of the cluster to model the core and one surrounding it to model

the halo. In Figure 1.5, we can see examples of this class that include the Orion

Nebula Cluster, RCW 36, and RCW 38 (which looks different than the others

due to its core being off-centre from its halo).

Clumpy Structure. Not all the MYStIX regions were easily fit by discrete ellipsoids

12
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Figure 1.2: Relation of cluster core radii to absorption along line of sight for median
J - H mag (left) and median X-ray median energy in the 0.5-0.8 keV band (right)
(Kuhn et al. (2014) ©AAS. Reproduced with permission)

Figure 1.3: Left: Histogram of cluster ellipticities for all subclusters (white) and
embedded clusters (grey). Right: Scatter plot of subcluster core radii vs. ellipticity.
(Kuhn et al. (2014) ©AAS. Reproduced with permission)

13
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Figure 1.4: Smoothed projected stellar density maps with colour bar in units of
observed stars pc−2 for Simple Isolated Cluster Structure. Upper left: Trifid, upper
right: Flame Nebula, lower left: W 40 (Kuhn et al. (2014) ©AAS. Reproduced with
permission)

14
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Figure 1.5: Smoothed projected stellar density maps with colour bar in units of ob-
served stars pc−2 for Core-Halo Structure. Upper left: Orion Nebula, upper right:
RCW 36, lower left: RCW 38 (Kuhn et al. (2014) ©AAS. Reproduced with permis-
sion)

15
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because of the clumpy nature of their structure. They might have a dominant

central subcluster, but a significant portion of the stars lie outside these bounds

in secondary subclusters. In Figure 1.6, we can see examples in M 17, the Lagoon

Nebula and the Eagle Nebula.

Linear chains of clusters. This class consists of regions where subclusters are

arranged generally along a line. The stars are separated along this line, broken

up into subclusters as opposed to being in a continuous distribution. Although it

would seem obvious that the subclusters would be oriented so that they would be

elongated along the long axis of the filament, this is not always the case though it

is more common than the alternative. Of note is the fact that the young stars in

the region are very evenly distributed amongst the subclusters, with no subcluster

containing more than 20% of the MPCMs within 5 core radii. In Figure 1.7, we

can see examples of this class in NGC 2264, NGC 1892, NGC 6334, and DR 21,

which are all embedded within molecular clumps.

16
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Figure 1.6: Smoothed projected stellar density maps with colour bar in units of
observed stars pc−2 for Clumpy Structure. Upper left: M 17, upper right: Eagle
Nebula, lower left: Lagoon Nebula. (Kuhn et al. (2014) ©AAS. Reproduced with
permission)

17
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Figure 1.7: Smoothed projected stellar density maps with colour bar in units of
observed stars pc−2 for Linear chains of clusters. Upper left: DR 21, upper right:
NGC 1893, lower left: NGC 2264. (Kuhn et al. (2014) ©AAS. Reproduced with
permission)

18
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1.2 Motivation

Now that we have these observations, we can ask some interesting questions about

the early evolution of star clusters.

• How do these young embedded clusters evolve, with their high ellipticity and

large fraction of gas mass?

• Is the lack of older elliptical clusters due to evolution or dissipation of the young

clusters?

• How does the presence of this gas affect the clusters, and how might this affect

how we look at gas expulsion?

In this thesis, we will be primarily be focussing on the ellipticities of the MYStIX

clusters, investigating through computer simulations if these highly elliptical clusters

can evolve into the spherical older clusters we normally see.

We will also be working with embedded clusters, keeping the gas in the simulation

for the full duration, not immediately expelling it through a large injection of energy

(as seen in Bastian and Goodwin (2006)) or initializing our simulation without gas

entirely (as seen in Pfalzner et al. (2012)).
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Chapter 2

Computational Methods

2.1 Introduction

In this section, we describe the computational methods used within this thesis as

well as some of the physics behind the interactions of both stars and gas.

We outline the basics of stellar dynamics, tree codes, and SPH codes as well as

the specific codes used in this research - hermite0, BH Tree and GADGET-2. We also

present a description of the Bridge and AMUSE codes and frameworks. Section 2.1

is largely a summary of the stellar dynamics introduction from Binney and Tremaine

(2008), and Section 2.2 draws heavily from Pfalzner and Gibbon (1996).
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2.2 Stellar Dynamics

Stellar dynamics describes the gravitational interactions of point mass particles in

a system. These N-body systems can be on the scale of open clusters (102−103 stars)

to globular clusters (104− 105 stars) to galaxies (1012 stars). On an even larger scale,

instead of representing stars, the discrete particles can represent galaxies to describe

the interactions of galaxies within a cluster.

Within a N-body system, gravity is the only truly important force, and in most

cases, Newton’s approximations are valid (except for in situations like near the event

horizon of a black hole, where general relativity is required). This means that the

general equations of motions are as follows,

ṙi = vi (2.1a)

v̇i = −G
N∑

j=1, 6=i

mj
ri − rj
|ri − rj|3

(2.1b)

An isolated system (i.e. without outside forces or interaction) must conserve

energy and have a balance of kinetic and potential energy. If a system had no kinetic

energy (i.e. no independent movement of particles), then it would collapse in on

itself, so for a system to remain in equilibrium, it must have both potential and kinetic

energy. There are two main ways the kinetic energy is stored: 1) ordered, i.e. rotation

of a disk in a spiral galaxy and 2) random, pressure supported, i.e. elliptical galaxy

or star cluster. As we are looking at stellar clusters, pressure-supported systems are

of far more interest.
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In an N-body system, the most basic process in the system is the acceleration

of each star as a result of its gravitational interaction with every other star in the

system.

If we follow a subject star on its orbit around a cluster and it passes another star

along its trajectory at a distance b (also termed the distance of closest approach)

and we compare the subject star’s initial trajectory to its new trajectory after being

exposed to the field star, we will find a difference in its velocity δv, where we assume

that |δv|/v � 1 and that the field star is stationary. To determine δv we must first

look at the force caused by gravity that is perpendicular to the motion of the star,

taking t=0 as the instant the stars are b distance apart as in Figure 2.1.

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)3/2

=
Gm2

b2

[
1 +

(
vt

b

)2]−3/2
(2.2)

And since we know from Newton’s Laws that mv̇ = F, then we can also say that

δv =
1

m

∫ inf

− inf

dtF⊥ =
Gm2

b2

∫ inf

− inf

dt

[1 + (vt/b)2]−3/2

=
2Gm

bv

(2.3)

This perturbation is not a significant one on its own, and though the subject star

is travelling through a large number of field stars and thus experiences a large number

of interactions, since the stars are randomly situated, the average δv will still be close
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to zero. However, the mean-square change does not go to zero and after one crossing

of the system, where δn is the number of encounters the subject star undergoes from

b to b+ db,

∑
δv2 ' δv2δn =

(
2Gm

bv

)2
2N

R2
b db (2.4a)

∆v2 =

∫ bmax

bmin

∑
δv2 ' 8N

(
Gm

Rv

)2

ln
bmax
bmin

(2.4b)

This means that the mean-square velocity will increase from its original value as

a function of the number of encounters it undergoes, which can also be related to the

time. The typical speed of a star at the edge of the system can be defined as

v2 ≈ GNm

R
(2.5)

And if we use this equation to replace R in equation (2.4b),

∆v2

v2
≈

8 ln bmax

bmin

N
(2.6)

For every crossing of the cluster, the star’s velocity v will change by ∆v2, so we can

find the number of crossings necessary to produce (∆v2) = v2 using

nrelax '
N

8 ln bmax

bmin

(2.7)

From these equations, we can get the stellar dynamical relaxation time, which

24



Master’s Thesis - Jessica McCloskey McMaster University - Physics and Astronomy

is the time required for the cumulative encounters to modify the velocity of the

subject star by approximately its initial value. It can be defined as trelax = nrelaxtcross

where tcross = R/v is the crossing time, or the time needed for a single star to cross

the entire system. If we assume that the system is near equilibrium, then taking

bmax

bmin
≈ Rv2/Gm, due to our assumption of straight-line trajectories and also the

homogeneous distribution of field stars,

trelax =
0.1N

lnN

R

v
=

0.1N

lnN
tcross (2.8)

These interactions between subject and field stars cause a diffusion of velocity

separate from the average acceleration from the mass distribution of the system. This

is called two-body relaxation, since it is based on the cumulative two-body interactions

the subject star experiences.

There are two main types of dynamical systems in an astrophysical context: colli-

sional and collisionless. Systems where trelax � tcross are called collisionless, because

the essentially smooth gravitational potential dominates the orbits of the particles

in the system. Other systems where local perturbations in the gravitational forces

dominate the orbits are called collisional, due to the large angle scattering these per-

turbations can cause. Generally, collisional systems are smaller and denser, than

collisionless systems. It is possible for the stars to physically collide, but this happens

rarely and only in the most dense stellar system. In this thesis, our star clusters

were collisional, as the relaxation time was not orders of magnitude larger than the

crossing time (indeed, the code we use, hermite0 discussed in section 2.2.1 is suited
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best to collisional systems (Pelupessy et al., 2013)).

We can also define the evaporation time, tevap, or the time required for a significant

number of stars to leave the system. Generally, tevap ≈ 100 trelax for isolated systems.

For systems like globular clusters, this timescale is on the order of 200 billion years if

the cluster is in isolation, and can be significantly shorter if the cluster is in the tidal

field of a galaxy.

Another important factor to consider in stellar dynamics is equipartition, where

in an encounter, an object with higher kinetic energy will lose energy to an object

with lower kinetic energy, leaving them with equal energy. And since kinetic energy

is proportional to the square of the speed multiplied by the mass, a small object must

have a higher velocity than a large object to have the same kinetic energy. In a typical

stellar cluster, there will be stars of varying masses; so if a larger and a smaller star

have an encounter, the larger star will end up with a lower velocity than the smaller

star. This leads to the smaller stars in a cluster moving to higher orbits and drifting

to the edges of the cluster, while the larger mass stars move to lower orbits and stay

closer to the centre. This separation of different masses of stars is known as mass

segregation.

In the core of a cluster, the stars will have higher velocities and as these stars

undergo equipartition, this loss of kinetic energy will cause them and other heavy

stars to sink further toward the centre of the cluster. The limit of this process is

called core collapse, though it is often halted or even reversed by the injection of

energy that comes from interactions with binary stars. If there are three stars in a
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system, labeled i = 1, 2, 3, and the first two stars create a binary, then that binary’s

kinetic energy can be labeled Kb and its internal energy Eb < 0 and the third star’s

kinetic energy is K
′
3. Since energy must be conserved,

Kb + Eb +K
′

3 = K1 +K2 +K3 (2.9a)

Kb +K
′

3 > K1 +K2 +K3 (2.9b)

The kinetic energy stored in the centre of mass of the binary and the third star is

larger than the kinetic energy of the initial system. This means that the formation

of binary stars is actually a heat source for the cluster. This addition of energy is

enough to halt the process of core collapse, as all clusters possess binaries, and even

if these binaries are not primordial, the core collapse process creates them.
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Figure 2.1: The subject star approaching a field star. The trajectory is approximated
using a straight line, with the distance of closest approach b, the distance r, and the
perpendicular force F⊥. (Binney and Tremaine (2008) Reprinted with the permission
of Princeton University Press.)
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2.2.1 Hermite0

An N-body code must contain at least three separate parts: initial conditions,

integrator, and data analysis. In this section we will be discussing one particular in-

tegrator, the Hermite scheme. Since direct summation of the acceleration of particles

in a system ends up taking O(N2) time, where N is the number of particles, and this

ends up being very costly if performed at every integration step, there needed to be

a faster way to calculate these values.

The code hermite0 is based on a modification of the leapfrog method (Hockney

and Eastwood, 1988), where the positions and velocities are calculated on alternating

half-timesteps.

r1 = r0 + v1/2∆t (2.10a)

v3/2 = v1/2 + a1∆t (2.10b)

While this scheme is simple and easy to code, it is not always accurate enough and the

constant timesteps were impractical considering the time length some applications

needed. Additionally, since many applications involve situations where only a few

particles are being influenced by nearby particles, so their timesteps need to be short,

but at the same time, the vast majority of the particles are not moving or interacting.

So with a constant timestep, the whole system needs to be evaluated all the time,

which is inefficient considering that much of the system remains the same between

timesteps. These repeated unnecessary calculations also lead to a possible build up

of numerical errors.
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For convenience, a ‘flattened’ version of the above equations can be used, having

all variables defined at the same moment in time,

r1 = r0 + v1/2∆t+
1

2
a0(∆t)2 (2.11a)

v1 = v0 +
1

2
(a0 + a1)∆t (2.11b)

where, given r0, v0, a0, one would first calculate r1, then the acceleration, and then v1

using a predictor step v1p = v0 + a0∆t and then a correcting step v1c = v1p + 1
2
(a1 −

a0)∆t.

At first glance, it might seem easy to develop a time-dependent timestep, merely

changing the value of ∆t depending on the needs of the system (smaller timesteps

when particles are closely interacting, longer timesteps when only distant interactions

are present), but this method can break down very quickly. The main problem is

that it destroys time symmetry, which is important to the leapfrog method as it is a

symplectic integrator, an integrator for which area conservation is important. When

the timestep is changed, the leapfrog cannot accurately approximate the solutions of

the differential equations and the truncation error is increased, so the scheme must

be altered to accommodate a variable timestep.

The modified leapfrog scheme preserves time symmetry and does not directly

impact the calculation of force (Hut et al., 1995). Written implicitly, it becomes

ξ1 = f(ξ0,∆t) (2.12a)

∆t =
1

2
[h(ξ0) + h(ξ1)] (2.12b)
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where ξ = (r, v) and the function f is equation (2.11) and h is the timestep criterion.

It should be noted that despite the use of a1 in the calculation of v1 in equation

(2.11a), that does not actually create an ξ1 dependence in equation (2.12a), since

a1 may be determined directly from r0 and v0. These equations are then solved

simultaneously at every time step for every particle. h(ξ0) is the timestep estimation

function, which can be varied according to the application. An example of a timestep

proportional to the free-fall times (Pelupessy et al., 2012) is, taking η = 0.01 as a

constant:

∆tij = η

√
rij
aij

(2.13a)

∆t = mini

(
∆tij

(1− 1
2

d∆tij
dt

)

)
(2.13b)

This method is originally a second-order scheme, which is not always sufficient

for all applications with exceedingly long time or length scales. So there is a fourth-

order generalization as well, where this modified leapfrog is attached to the Hermite

algorithm (Makino, 1991) to create the scheme used in hermite0 :

r1 = r0 +
1

2
(v1 + v0)∆t− 1

10
(a1 − a0)(∆t)2 +

1

120
(j1 − j0)(∆t)3 (2.14a)

v1 = v0 +
1

2
(a1 + a0)∆t− 1

12
(j1 − j0)(∆t)2 (2.14b)

where j = da/dt is defined as the jerk and is calculated directly by differentiating the
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acceleration. Using this instead of equation (2.11), the fourth-order scheme becomes

ξ1 = g(ξ0, ξ1,∆t) (2.15a)

∆t =
1

2
[h(ξ0) + h(ξ1)] (2.15b)

In Figure 2.2, it can be seen that when using a time-symmetric variable timestep

scheme, the build up of error over the same application and timescale is negligible

when compared to a non-time-symmetric variable timestep scheme as described after

equation (2.11).
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Figure 2.2: A comparison of errors for symmetrized and unsymmetrized integration of
a Kepler ellipse. Top: The bottom line shows the drift in energy (through the stability
of the orbit) when using the Predict Evaluate Correct (PEC) method of Hermite. The
middle line shows the PEC method but with an additional force calculation at the
end of every timestep, which provides some improvement. The top line shows the
symmetrized scheme outlined in this section, which lead to an improvement of a
factor of ≥ 16. Middle: The same three lines show the drift in the time of passage
for the model. Bottom: An enlargement of the middle figure, showing how drastic
the difference between the integration methods. (Hut et al. (1995), reproduced with
permission)
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2.3 Tree Codes

As we saw earlier, in order to determine a single star’s trajectory while travelling

through an N-body star system, one must calculate its gravitational encounters with

every star it encounters (which includes every other star in the system). This can be

a costly computation for a code, requiring O(N2) operations, an unattractive value

with high N.

To overcome this computational limit, in the 1980’s (Appel, 1985; Porter, 1985),

hierarchical schemes were developed that relied on the fact that a particle interacts

most strongly with its closest neighbours, and so less detailed information is needed

for the more distant interactions. An ideal way would be to calculate each of the near-

est neighbours individually, then group together sections of the more distant particles

for less calculation. These schemes promised N logN scaling for their computational

time, however their lists of interactions and data structures would become too com-

plicated and tangled over time as complicated measures were needed to reconnect

the groups of nearest neighbours at every timestep, which destroyed the timescaling.

Also, the tree itself would become more of an arbitrary structure as time went on

and particles changes positions, and so the errors would compound or be impossible

to calculate.
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2.3.1 Barnes-Hut Tree

In 1986, (Barnes and Hut, 1986) developed a scheme that overcame this tangling

problem by rebuilding the tree from scratch at every timestep, allowing the nearest

neighbours and groupings to be re-evaluated every time. This allowed the N logN

scaling to be rigorously proven to be true.

Take an N-body system where the particles are randomly distributed throughout

a cube volume called the ‘root cell’. In a method known as oct-tree, the Barnes-Hut

tree code (BH Tree) divides the 3D space into eight cells along the halfway point of

each axis. Then, if a box contains more than one particle, it is called a ‘twig’ node

and once again divided into eight cells. This process continues until every particle

is in its own cell, called ‘leaf’ nodes. The process is illustrated in Figure 2.3. This

does not actually divide the space into a grid, but is used to keep track of how the

particles are related to one another, as in Figure 2.4.

This is the current method of dividing the cells. In their original paper (Barnes

and Hut, 1986), they actually placed the particles one by one into the root cell. Every

time a new particle was introduced, if it was placed into a cell with an existing particle,

the cell would divide into eight cells. This was modified for numerical reasons, as the

newer method allows for the tree to calculate force contributions at the same time,

as opposed to having to do so in a separate process (Hernquist, 1988).

It can be useful to estimate how many divisions will be necessary to go from the

root cell to a leaf node. This can be estimated using the average cell size containing
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Figure 2.3: A 2D representation of the division of the root cell after particles are
added. (Pfalzner and Gibbon (1996), reprinted with the permission of Cambridge
University Press.)
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one or more particles. If the total volume of the root cell is V, then the average

volume of a particle-containing cell would be V/N and the average length of the cell

would be V 1/3/2. This gives us,

(
1

N

)1/3

=

(
1

2

)x
(2.16)

where x is the number of divisions necessary. This can easily be solved,

x = log2N
1/3 =

1

2 log 2
logN ' logN (2.17)

This means that it takes approximately O(logN) divisions to reach a certain

leaf, and since there exist N particles, it would require O(N logN) calculations to

construct the tree, as promised.

During this process, properties of each leaf are stored using an identifier, which

leads to the position, mass, etc. in a data structure. Upon construction, each twig

node will also store properties like centre of mass, total mass, and other things needed

for force calculations. The total mass is simply calculated by

mparent =
∑
i

mi(daughters) (2.18)

And the centre of mass of the node,

rparent =

∑
imiri∑
imi

(2.19)
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This concludes the main construction of the tree, which takes O(logN) time and

is repeated at every timestep to keep the data structures updated and untangled.

The tree is now used in calculating the force, which also requires computational time

of O(logN). For the closer particles, the force will be calculated directly, while for

more distant particles, the force will be calculated for larger cells which would contain

multiple particles.

To begin, we must first determine what constitutes a nearest neighbour and what

constitutes a distant particle to be grouped in a larger cell. Barnes and Hut (1986)

developed the ‘s/d’ criterion, which still holds well against more modern alternatives

such as Multipole Acceptability criterion (Salmon et al., 1994). In this method, for

each particle, the size of a node s is compared to the distance from the particle d

which is calculated by using the centre of mass for the node. If the condition

s/d ≤ θ (2.20)

is met, where θ is some fixed tolerance parameter, then the force contribution of the

node (no matter how many particles it contains) is added to the particle. If the

condition is not met, then the node is divided into its daughter cells and the process

continues until the condition is met or a leaf is encountered.

The use of different values for θ can greatly change both the accuracy and com-

putation time for the force calculations. If θ = 0, then it is equivalent to individually

calculating every particle interaction and defeats the purpose of the hierarchical tree,

and would in fact be longer than direct calculation as time would be wasted on the con-
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Figure 2.4: The relationship between the division of the root cell and the branch-
ing tree structure. (Pfalzner and Gibbon (1996), reprinted with the permission of
Cambridge University Press.)

Figure 2.5: A 2D representation of the ‘s/d’ criterion, where the particle is on the
left and the node in question is on the right.
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struction of the tree. The other extreme, taking θ →∞, would lead to an inaccurate

model, with interactions only occurring between particles and large pseudo-particles,

even at very close distances. In most cases, choosing a θ between 0.1 and 1.0 is a

reasonable choice (Barnes and Hut, 1986).

If θ is a nonzero number, than the time needed to complete the force calculations

this way on a single particle is O(logN), and with N particles, the total time required

is O(N logN) (Hernquist, 1988).

While tree codes are remarkably efficient, they do introduce approximations, espe-

cially for more distant particles. If a user desires the highest accuracy at the expense

of computational time, the direct n-body method is still preferable, as it does not

introduce any approximations into the solution for the equations of motion (though

adaptive timesteps are often used, as they both limit errors and reduce computational

time as discussed in Section 2.2.1).

2.4 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) was developed to simulate fluid flows

in a way that was robust and accurate. It does this by using an interpolation method

that can express a function as its values on a set of points or particles (Lucy, 1977).

It is not mesh or grid based, but instead a Lagrangian method in that the coordinates

move with the particles themselves and the mass is discretized (Monaghan, 1992).

The particles have a distance over which their properties are ‘smoothed’, termed
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the smoothing length or h. What this means physically is that all the particle’s

relevant information and properties are included within that kernel. To begin, it

is easiest to assume that the kernel is Gaussian in one dimension when trying to

physically analyze a function, but many different kernels have been created (Gingold

and Monaghan, 1982).

The integral interpolant for a function A(r) is as follows

AI(r) =

∫
A(r′)W (r− r′, h)dr′ (2.21)

where W is a kernel function with the two properties

∫
W (r− r′, h)dr′ = 1 (2.22a)

lim
n→0

W (r− r′, h) = δ(r− r′) (2.22b)

This interpolant can be approximated with

AS(r) =
∑
b

mb
Ab
pb
W (|r− rb|, h) (2.23)

where for the particle b, rb is the position, mb is the mass, and ρb is the density.

For example, the density function can be written as

ρa(r) =
∑
b

mb
ρb
ρb
W (|r− rb|, h) =

∑
b

mbW (|r− rb|, h) (2.24)
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which allows the density function of the system to be estimated just by using the

masses and positions of the particles. Another example (Springel, 2010) is finding

the local velocity divergence:

∇ · v =
∑
b

mbvb · ∇W (|r− rb|, h) (2.25)

However a more accurate estimate may be taken by using the identity ρ(∇ · v) =

[∇ · (ρv) − v · ∇ρ] and then computing the kernel for both parts of the right-hand

side and then calculating their difference, giving:

ρa(∇ · v)a =
∑
b

(vb − va) · ∇aW (|ra − rb|, h) (2.26)

which also has the advantage of going to zero when all particles have the same velocity.

Moving forward, the particular kernel of interest is the kernel based on spline

functions (Monaghan and Lattanzio, 1985).

W (r, h) =
σ

hν



1− 3
2
q2 + 3

4
q3 : 0 6 q < 1,

1
4
(2− q)3 : 1 6 q < 2,

0 : otherwise

(2.27)

where ν is the number of dimensions and σ is the normalization constant that changes

with dimension, giving 2
3
, 10

7π
and 1

π
.

The advantages of this particular kernel (which is used in GADGET-2, discussed

in the next section) are that it has compact support, which means that it equals zero
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when r > 2h and so only covers a finite volume and thus the particle only interacts

with the closest of its neighbours; and its second derivative is continuous, which

means that the particle disorder is limited and so the errors from approximations can

be kept low.

In addition,quantities such as momentum (linear and angular) and total energy

are conserved. It is also possible to have adaptive smoothing lengths, where in dense

regions, h decreases to create high resolution, and then in low-density regions, h

increases to optimize the coverage.

2.4.1 GADGET-2

GADGET-2 is a cosmological simulation code that uses both the previously dis-

cussed SPH code to calculate the gas dynamics and tree code to compute the gravi-

tational forces (Springel, 2005). Though the code was designed for large cosmological

simulations, it also can be used for models of isolated systems, especially when used

in conjunction with a direct summation code that calculates the gravitational dy-

namics of the stars in a smaller system (in our case, hermite0 ) while the SPH portion

of GADGET-2 models the hydrodynamics of the gas and an integrator like Bridge

(discussed in Section 2.4) allows the two parts to communicate. While GADGET-2

can model both stars and gas at the same time, in a smaller, isolated system, it is

more ideal to model the parts separately with different processes in parallel.

The gas is modeled using collisionless dynamics that can be described using the

43



Master’s Thesis - Jessica McCloskey McMaster University - Physics and Astronomy

Hamiltonian

H =
∑
i

p2
i

2mia(t)2
+

1

2

∑
ij

mimjϕ(xi − xj)

at
(2.28)

where H = H(p1, ...,pN ,x1, ...,xN , t). In this equation, xi are coordinate vectors, and

pi = a2miẋi are the canonical momenta. ϕ(x) is the interaction potential, where G is

the gravitational constant and ρ is the local density, and gives us Poisson’s equation:

∇2ϕ(x) = 4πGρ(x) (2.29)

The spline function as described in the previous section is also used with some

numerical changes,

W (r, h) =
8

πh3



1− 6

(
r

h

)2

+ 6

(
r

h

)3

: 0 6
r

h
<

1

2
,

2

(
1− r

h

)3

:
1

2
6
r

h
< 1,

0 :
r

h
> 1.

(2.30)

Note that in this case, the kernel goes to zero at h, as opposed to the more typical

2h. This was done for consistency with previous work and has no consequence on the

results.

For the hydrodynamics, the formulation of SPH used in GADGET-2 conserves

both energy and entropy, regardless of using fixed or adaptive smoothing lengths.

44



Master’s Thesis - Jessica McCloskey McMaster University - Physics and Astronomy

The adaptive smoothing lengths hi are defined as to always contain a fixed mass

4π

3
h3
i ρi = Nsphm̄ (2.31)

where Nsph is the typical number of nearest smoothing neighbours and m̄ is the

average mass of a particle, which is not necessarily a constant, though the total mass

contained within the smoothing length is constant.

This gives the equations of motions for the particles

dυi
dt

= −
N∑
j=1

mj

[
fi
Pi
ρ2
i

∇iW (|ri − rj|, hi) + fj
Pj
ρ2
j

∇iW (|ri − rj|, hj)
]

(2.32)

where the coefficients are

fi =

(
1 +

hi
3ρi

∂ρi
∂hi

)−1

(2.33)

and the particle pressures are Pi = Aiρ
γ
i where A is entropy and γ is the adiabatic

index or ratio of specific heats (Springel and Hernquist, 2002). This completely

describes the fluid dynamics of a system, provided that it does not experience any

shocks or external sources of heat.

To properly model any shocks experienced, the system needs an artificial viscosity,

which uses a viscous force:

dvi
dt

∣∣∣∣
visc

= −
N∑
j=1

mjΠij∇iW̄ij (2.34)
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where Πij ≥ 0 is only non-zero when particles approach each other in physical space.

We can define an equation for the viscosity:

Πij = −α
2

(ci + cj − 3wij)wij
ρij

(2.35)

where α is a parameter that modifies the strength of the viscosity, ci is the speed of

sound for a particle, wij = vij · rij/|rij| the relative velocity of two particles projected

onto their separation vector, and ρij is the mean density (Monaghan, 1997). The

artificial viscosity of a single particle is dependent on the relative velocities of the

surrounding particles and is meant to keep adjacent particles from getting too close

to one another (Johnson, 1996). In the equations of motion, the viscosity acts like an

excess pressure, P ' (1/2)ρ2
ijΠij on the particles.

2.5 Bridge

When an system is being modelled that includes one component that needs short

timesteps for high accuracy and another component that needs longer timesteps due

to a large number of particles, communicating between those components and treating

the system as a whole can be difficult. To help solve this, Fujii et al. (2007) developed

the Bridge scheme (Realistic Interactions in Dense Galactic Environments), a direct-

tree hybrid N-body algorithm.

In the Bridge scheme, the interactions within a star cluster are calculated using

a direct and Hermite scheme, leading to high accuracy and short timesteps. The
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interactions between the cluster and its environment (be that the galaxy as a whole

or gas clouds) are calculated using a tree algorithm as described in section 2.2. In

order to combine these two approaches, Bridge uses a modified version of the Mixed

Variable Sympletic (MVS) method (Wisdom and Holman, 1991), which was originally

used to model long-term planetary interactions.

In the new hybrid method, the Hamiltonian of the system is split into two parts:

Hα, the potential energy for all gas-gas particle or gas-cluster particle gravitational

interactions; and Hβ, the total kinetic energy and the potential energy for cluster-

cluster particle gravitational interactions.

H = Hα +Hβ (2.36a)

Hα = −
NG∑
i<j

GmG,imG,j

rij
−

NG∑
i=1

NSC∑
j=1

GmG,imSC,j

rij
(2.36b)

Hβ = −
NG∑
i=1

p2
G,i

2mG,i

+

NSC∑
i=1

p2
SC,i

2mSC,i

−
NSC∑
i<j

GmSC,imSC,j

rij
(2.36c)

where NG is the number of particles in the gas and NSC is the number of particles in

the star cluster.

Looking at

df

dt
= {f,H} (2.37)
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we can define differential operators α and β as αf := {f,Hα} to get the solution

f(t) = etαf(0) (2.38)

Using the Hamiltonian in equation (2.36) with the MVS algorithm, we then get

for the time evolution,

f ′(t+ ∆t) = e
1
2

∆tαe∆tβe
1
2

∆tαf(t) (2.39)

Since this Hamiltonian cannot be solved analytically (unlike the original MVS,

which used analytically solvable Keplerian motion), higher-order integrators must

instead be used. For the star cluster particle interactions, a Hermite scheme is used,

where the subscripts 0, 1
2

and 1 indicate fractions of timesteps (i.e. t, t + 1
2
∆t and

t+ ∆t), and a{G→SC,0} represents the acceleration from the gravitational interactions

of all gas particles on the star cluster particles.

v
′

SC,0 = vSC,0 +
1

2
∆t a{G→SC,0} (2.40a)

xSC,0 → (Hermite Scheme)→ xSC,1 (2.40b)

v
′

SC,0 → (Hermite Scheme)→ v
′

SC,1 (2.40c)

vSC,0 = v
′

SC +
1

2
∆t a{G→SC,1} (2.40d)

For the gas particle interactions, a more simplistic leapfrog method is used, which

lacks the high accuracy but is a much faster integrator, which is preferable for the
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much larger number of particles within this component. In the following, a{All→G,0}

represents the acceleration from the gravitational interactions of all the particles in

the system on the gas particles.

vG, 1
2

= vG,0 +
1

2
∆t a{All→G,0} (2.41a)

xG,1 = xG,0 + ∆t vG, 1
2

(2.41b)

vG,1 = vG, 1
2

+
1

2
∆t a{All→G,1} (2.41c)

These separate methods are then combined with a tree at certain intervals to

create the Bridge scheme. At time t0, a tree is constructed to calculate a{G→SC,0}

and a{All→G,0}. In the construction of the tree, two masses were given at every node,

one for gas particle masses and one for total mass. This allows for one tree to be

used in calculating all the accelerations. Then the velocities of both the star cluster

and gas are given a ‘kick’ using equations (2.40a) and (2.41a) respectively. The po-

sitions and velocities of the star cluster are then updated using the Hermite scheme

(equations (2.40b) and (2.40c)) while the gas determines the positions using equation

(2.41b). Another tree is then constructed at t 1
2

to once again calculate the acceler-

ations a{G→SC,1} and a{All→G,1}. Finally, both the star cluster and gas velocities are

given another kick using equations (2.40d) and (2.41c) to their final velocity for the

total timestep.
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2.6 AMUSE

When running an astrophysical simulation, one often needs to use more than one

code to properly model the system’s components, but these codes were each designed

with a main problem in mind and so do not necessarily cooperate with each other or

sometimes even work outside their native domain. So the open-source Astrophysical

Multi-purpose Software Environment (AMUSE) was developed to provide a single

interface and simple access to multiple established codes, allowing for simulations

that use many different types of physics at once (Pelupessy et al., 2013).

As can be seen in Figure 2.6, the framework of AMUSE consists of three main

parts: the Python user script, the Python and C/Fortran interface, and the C/C++/

Fortran community code base. The user script is written directly by the user, and

indicates the initial conditions, which codes to use, and possibly data analysis such

as Matplotlib or Gnuplot. The interface layer then takes this information and com-

municates it (as well as units and an abstract data model) in the proper way to the

community code, which runs the actual physics involved.

The interface of a community code essentially imports the code as a remote li-

brary using a remote function call protocol based on Message Passing Interface (MPI).

This allows for a built-in parallelism and separation of memory space. The benefits of

built-in parallelism over parallelism being added later is that it is possible for features

added to the code at later dates to destroy the artificial parallelism. The separation of

memory space is incredibly useful because without the MPI, having multiple commu-

nity codes all using the same memory reservoir made it nearly impossible to initiate
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Figure 2.6: Framework of AMUSE. On the left side is the user script (AMUSE
simulation script˝) and the interface, with arrows showing the direction of information
flow. On the right side is the community code (code˝) as well as its interface that
connects to the Python code using MPI. This shows how the interface is not a single
script, but an amalgamation of different modules that communicate between the user
script and the community code. (Pelupessy et al. (2013), reproduced with permission
ESO.)
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more than one code at a time. Using MPI turns each of the community codes into

its own executable, allowing it to take up its own memory space, and so the global

memory problem disappears.

A drawback of this interface method is that since there is no global memory reser-

voir, it is not as straightforward to share simulation data between multiple codes.

This means that the interface must be carefully designed so that all the proper in-

formation can be passed between codes, but not too much data as would slow down

the process too much. Although, even in the simple direct-link scenario, connecting

a C and a Fortran code has its own problems (using multiple f2c (a program for con-

verting Fortran 77 to C), f2py (a Python package for converting Fortran 77/90/95 to

Python) or SWIG (a tool for converting C into various computing languages) codes

to translate between languages) that still make the MPI scheme more appropriate.

When one community code or more is initiated, the interface is started separately

and waits for a message from the user script. It then relays this information to the

proper community code, executes the required subroutine and sends back any results.

The community code continues to run its loops until told to stop.

Another important part of AMUSE is its ability to keep track of different unit

systems within the same simulation. It forces the user to identify exactly which

system of units to use for all the quantities and has several converters to change

between different systems. This allows for the interface to automatically convert all

the data into the proper system for each community code and then convert back for

the results. It also allows for codes that have under-specific units (i.e. N-body codes
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using G = 1) to be paired with unit-specific codes with little problem.

In order to simplify book-keeping, a specific kind of data model is also used, called

particle sets. A particle is an object with multiple properties such as mass, position,

velocity, etc., as well as an identification number. The data of a particle set is kept

in the Python memory space of the interface and are then copied directly into the

community codes upon initiation. These sets can then be updated by synchronizing

the Python memory set with the community code set though the use of a defined

channel.

A common problem when running multiple codes is the differing work-flows (not

timesteps, but the process in which the code evolves the model). For example, a grav-

itational dynamics code needs to add and remove particles and track these changes

for its calculations. However, a tree code needs to reconstruct its entire tree before

any gravitational forces can be calculated. It would be inefficient to ask the dynamics

code to rebuild the tree every time a particle is added or to ask the tree code to

update with an add-particle method each time. The solution AMUSE uses is to flag

the state of the code and then only update the tree once all particles have been added

or removed. It keeps track of the state each code is in and only allowing access to the

code and data when possible, therefore minimizing both errors and wasted compu-

tational time. In practice, codes of a similar type (i.e. all gravitational codes) have

a similar work-flow, so there is little trouble in pairing them. However, when codes

of different types are paired, like a gravitational code with an SPH code, a more

complex approach is needed. AMUSE uses the Bridge integrator discussed in the

previous section to evolve the model while taking into account the differing timesteps
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of the two codes.

AMUSE includes several modules that make setting up the initial conditions of

systems very simple such as N-body particle generators (Plummer and King models)

and initial mass functions (Salpeter, Scalo and Kroupa).

The Plummer model is a density law developed to describe observations of globular

clusters (Plummer, 1911), where using M as the total mass of the cluster, a as the

Plummer radius (a scaling parameter that identifies the radius of the cluster core,

where the surface density drops to half its central value, through the relation rc =

a
√√

2− 1), the density profile is given by:

ρ(r) =

(
3M

4πa3

)(
1 +

r2

a2

) 5
2

(2.42)

and, using G as the gravitational constant, the potential is given by:

Φ(r) = − GM√
r2 + a2

(2.43)

An initial mass function (IMF) describes the distribution of masses in a population

of stars. It is usually given as a series of power laws, which give the number of stars

ξ(m)dm that have a mass within a certain rangem+∆m is proportional tom−α, where

α is a dimensionless constant. In the Salpeter IMF (Salpeter, 1955), an α = 2.35 is

taken, to give a function of:

ξ(m)dm = ξ0

(
m

Msun

−2.35
(

∆m

Msun

))
(2.44)
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2.7 Summary

In this chapter, we have outlined the basics of stellar dynamics, in particular, we

have discussed various timescales and their effect on dynamical systems, as well as

equipartition of energy and core collapse. We looked at hermite0 and how its scheme

is a faster and more accurate modification of the well known leap-frog method. We

have also discussed tree codes and SPH codes as well as the specific codes used in

this research. Tree codes are an evolution of direct N-body codes, designed to shorten

the amount of computing time necessary to calculate the gravitational forces with-

out losing accuracy. BHTree does this by constructing an oct-tree at every timestep

to identify nearest neighbours and further particles whose contributions can be ap-

proximated as a group. SPH codes were developed to simulate fluids using an in-

terpolation method. It uses particles whose properties are included within a defined

kernel. GADGET-2 is an SPH code that uses the spline kernel and an adaptive

smoothing length in modeling gas dynamics. We have also looked at how the Bridge

integrator works to combine a gravitational dynamics code with an SPH code in a

computationally efficient manner. We have outlined the framework of AMUSE and

how it can implement multiple established codes at once, even ones written in differ-

ent computing languages, in a single simulation without much inconvenience to the

user.
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Chapter 3

Method and Results

The Milky Way is nothing else but a mass of

innumerable stars planted together in clusters.

— Galileo Galilei

3.1 Introduction

In this chapter, we will present the details of the simulations we ran to investigate

how these young embedded clusters evolve, with their high ellipticity and large frac-

tion of gas mass; if the lack of older elliptical clusters is due to evolution or dissipation

of the young clusters; and how the presence of this gas affects the clusters, and how

this might affect how we look at gas expulsion.
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3.2 Model Initial Conditions

In this thesis, we present the results of 6 models of small star clusters embedded

in their molecular gas cloud. The properties of each model are given in Table 3.1.

Table 3.1: Initial Conditions
Model e Stellar Mass Gas Mass fgas Nstar Ngas

A 0 66M� 66M� 50% 200 100K

B 0.66 66M� 66M� 50% 200 100K

C 0.87 66M� 66M� 50% 200 100K

D 0 66M� 200M� 75% 200 100K

E 0.66 66M� 200M� 75% 200 100K

F 0.87 66M� 200M� 75% 200 100K

We chose to base our cluster on a Plummer sphere, as it is a well known density

profile used to describe observations of known clusters. We also used a Salpeter

initial mass function to describe the distribution of masses in our population of stars.

Although a Salpeter IMF could theoretically produce a massive star (M > 100M�),

such a star would have drastic effects on its surroundings due to its large mass as

well as production of ionizing radiation, stellar wind, and jets and outflows. Such

a massive star does not exist in the MYStIX data (Feigelson, 2010), so a maximum

mass was introduced to the IMF of mmax = 10M�. We chose a total star mass of

66M�, and kept the distribution of masses identical for every run. However, for the

gas mass, we first defined the gas mass fraction as:

fgas =
Mgas

Mtotal

(3.1)

and also expressed this value as a percentage for ease of use. We varied this gas mass
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fraction in a range 0.50 ≤ fgas ≤ 0.75, as we wanted to also investigate the effect of

gas mass on the dynamics, since the observed clusters were embedded clusters with

varying amounts of gas.

We used 200 star particles, to keep with the scale of MYStIX observations. Al-

though many known open clusters have many more stars (on the order of 1000 stars),

the young clusters in MYStIX are generally small and as the eventual purpose of this

project is to simulate actual MYStIX clusters, it is more useful to create models of

their approximate size to observe more general results. We used 100,000 gas particles

because the evolution of this system took a reasonably short time without the use of

a supercomputer and we were able to produce several simulations efficiently. We used

an rscale of 0.5 pc, which gives a half-mass radius of 0.4 pc, to give similar cluster

sizes as seen in the MYStIX data.

The positions and velocities of the stars were randomly calculated such that the

kinetic and potential energies were 0.25 and −0.5 in N-body units (a unit system

used for N-body simulations where the base units are chosen so that the gravitational

constant, G, is normalized), respectively. This however can easily be modified to fit

a velocity dispersion profile or accurate location data if needed. For the gas, the

particles have an initial velocity of zero, so all its initial energy is potential. In later

study, we are interested to investigate how giving the gas energy - through randomized

velocity, rotational velocity, or as if the gas was along a filamentary structure - could

affect the model. Having a non-zero velocity for the gas would likely change how the

gas behaves, especially initially, as a non-zero velocity would prevent the gas from

immediately in-falling toward the centre of the cluster.
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Since the main parameter we wanted to investigate was the eccentricity of the

cluster, we chose to look at e = 0.0, 0.66, 0.87. This provided us with a range of

values that could be seen in the MYStIX data while also giving a large enough spread

between values that the differences between them could easily be seen. This ellipticity

was created by compressing the existing Plummer sphere for both the stars and gas

particles along the desired axis. The cluster could be made spherical, oblate or prolate.

For this thesis, we chose to create an oblate spheroid, where one axis (we chose the

z axis) is shorter than the other two. The alternative is a prolate spheroid, with

one axis longer than the other two. We believe that similar results would come from

using a prolate spheroid, as the furthest ends of the longer axis are still only as far as

the edge of the oblate equator, and would in fact experience more gravitational force

toward the core, since the core would be more dense than any of the surrounding

space (as opposed to the oblate spheroid, where the furthest edges have forces pulling

them in more tangential directions due to its shape). To calculate the eccentricity

of an ellipse (or, in three dimensions, a spheroid), one needs the lengths of the semi

major axis (or equatorial axis for an oblate spheroid), a, and the length of the semi

minor axis (or polar axis), c, where a ≥ c:

e =

√
1− c2

a2
(3.2)

The various units were tracked and managed by AMUSE, with conversions be-

tween units occurring whenever a community code was invoked. A conversion function

was created using the total mass of the system and the rscale length. This means that
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the model had to be scaled properly, which was done using AMUSE’s scaletostandard

command. This allowed both the gas and star Plummer spheres to be combined into

a single simulation.

Once the initial cluster was generated, we allowed it to evolve in AMUSE for 5

Myr. This was longer than the relaxation time of the stars, which is ∼ 4 Myr, allowing

for dynamical stability to possibly be achieved and for meaningful conclusions to be

drawn. This time frame also allows for multiple gas crossing times, which is ∼ 1.5

Myr, allowing the gas to interact and evolve even further than the stars, which was

expected due to the difference in particle sizes between the stars and gas. From these

timescales, we would expect the stars to change from their elliptical system at a much

slower rate than the gas particles.

The data of both the stars and gas’ properties was stored at every timestep of

approximately 8000 years (this time varies with the gas fraction, as that changes the

total mass of the system which has an effect on N-body time, the units with which

the code counts time). From these data, a snapshot of both the gas density map and

star positions was made every 0.25 Myr to observe the general movements of both

the gas and stars.

We do not expect an event like core collapse to occur, as the timescale of the

simulation is not long enough to truly allow the core to condense to this extent.

We also do not have binary stars in this initial creation of the cluster, nor did any

form during the course of the runs of our models, but the possibility does remain of

binary systems forming of their own accord during the simulation time especially if
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the models are allowed to run for longer periods of time.

3.3 Models

We consider six models with the varying parameters as shown in Table 3.1. We run

each of the three eccentricities with two different gas mass fractions (and therefore

two different total system masses). Of the most interest are the two models with

the largest eccentricity, as these differ the most from any other dynamical study of

embedded star clusters.

We then used the R package 1 developed by Kuhn et al. (2014) to determine the

ellipticity of the cluster. The coordinates of the particles use meters or parsecs as

units, easily convertible from one to the other. These, together with the distance from

a similar MYStIX cluster as this model’s initial parameters were loosely based on an

existing MYStIX cluster DR-21, could be used to convert the cartesian coordinates

of the model into RA and Dec coordinates to match the observational data. Feeding

these new coordinates into the R package, we could output an ellipticity based on

the stellar density. This ensures that we used the same method devised to determine

ellipticities of the MYStIX project.

1R is a programming language and software environment specifically designed for statistical
analysis and computing. Packages can be developed for specific projects and then easily imported
into the environment. More information is available at www.r-project.org
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3.4 Results

In this section, we present the results of the simulations described in Section 3.3.

First we analyse the results of simulations with a gas mass fraction of 50%, then

investigate the ramifications of a larger gas cloud by analysing the simulation with

a gas mass fraction of 75%. Finally, we discuss how these results compare with the

findings of the MYStIX project.

3.4.1 50% gas mass

In Figure 3.1, we have the snapshots taken of the XZ plane for the model with a

gas mass fraction of 50% at various timesteps. The length and width of the snapshot

is 3.0 parsec to have a view of most of the gas cloud. In these plots, the blue points

are stars with M < 0.9M�, green points have 0.9 M� < M < 2.5M� and red points

have 2.5M� < M < 10M�. Also shown is the gas density plot in the copper colour

scheme, with the log density displayed on the side in units of cm−3.

In panel 3.1a), we have pictured the model in its initial state, as a modified

Plummer density distribution. The stars and gas are in an elliptical shape with

e = 0.5 and it can be seen that the gas is clumped by the randomized distribution.

These clumps smooth out into a more continuous distribution within 100,000 years.

In panel 3.1b), we have the snapshot of the model at 0.75 Myr. The stars at the

far edges of the ellipse can be seen moving closer to the centre of the cluster, following

the gravitational pull of the centre of mass. Not every star follows this direct route
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Figure 3.1: Snapshots of the XZ plane of the fgas = 0.50 model at 0.0, 0.75, 1.75 and
2.75 Myr. Blue points are stars with M < 0.9M�, green points have 0.9 M� < M <
2.5M� and red points have 2.5M� < M < 10M�. The pink oval shows the ellipticity
of the core. Also shown is the gas density plot.
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Figure 3.2: Snapshots of the XY plane of the fgas = 0.50 model at 0.0, 0.75, 1.75 and
2.75 Myr. Blue points are stars with M < 0.9M�, green points have 0.9 M� < M <
2.5M� and red points have 2.5M� < M < 10M�. Also shown is the gas density plot.
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however, as they were also initially given a random velocity, as well as the effects of

any interactions between two or more neighbouring stars (since gravitational force

decreases with r2, the effects of a nearby star, even a small one, can have a larger

effect than a large mass at a large distance). Indeed, a small number of stars (∼ 3%)

were pushed away from the cluster and are now further from the core than they were

initially.

We can also see how the gas is moving in a different way than the stars. Even

though the mean velocity of the gas particles is lower than that of the star particles

(vgas ≈ 250 m/s compared to vstars ≈ 800 m/s), the overall pattern and shape of

the gas cloud seems to evolve at a faster rate. Already, at just 0.75 Myr, a mostly

spherical central core of gas has formed with a radius of 0.25 pc. Like the stars, the

gas at the furthest edges of the ellipse move inwards toward the core. However, there

is an additional ’rebound’ effect visible along the z axis on both sides of the central

density sphere, where gas seems to be pushed out from the centre after moving in

from the edges.

In panel 3.1c), we have the snapshot of the model at 1.75 Myr. The stars have

slightly rebounded from the core of b), with the dense central stars remaining in place

but the stars of the edge moving outwards in all directions. In this particular run, it

can be seen that most of the larger stars (M > 0.9M�) have travelled to the core of

the cluster, where initially they were scattered throughout the cluster. In Figure 3.3,

we can see that the mass segregation of the stars in the cluster does increase as the

model evolves. This is measured by calculating the Gini coefficient (Converse and

Stahler, 2008), which is related to the cumulative fractional number fN (fraction of
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Figure 3.3: Graph of the Gini coefficient (a measure of the mass segregation of the
cluster where G ≤ 0 indicates a lack of mass segregation, while G > 0 indicates the
presence of mass segregation) as a function of time for the run shown in Figures 3.1
and 3.2.
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particles within a radius) and the cumulative fractional mass fM (fraction of mass

within a radius) though the equation:

G = 2

∫ 1

0

(fM − fN)dfN (3.3)

If the mass is centrally concentrated, then fM ≥ fN at all radial distances and so

G ≥ 0. If the larger masses are located further from the centre, then G < 0.

This panel also shows the ring structures created in the gas, on either side of

the x = 0 axis. These rings expand outwards from the core, though not perfectly

symmetrically, and seem to be pushing some of the gas mass toward the edges of the

cluster and away from the central core. As there is no stellar feedback activated in

this model, these rings are a result of dynamics, hydrodynamics and shocks. Since

these rings originate along the edge of the central spherical gas density, it is possible

that something occurred at these locations and the rings are ’shockwaves’ emanating

from the event. The shape of the rebound effect is still visible in the overall shape of

the cloud.

In panel 3.1d), we have the snapshot of the model at 2.75 Myr. We can see that

the stars have relaxed into a more spherical central shape. In Figure 3.4, the ellipticity

of the cluster is shown to decrease as a function of time. Although the entirety of the

cluster still appears elliptical (the stars furthest from the centre are close to the z = 0

line), when the density contours are calculated using the R package, the cluster core

is much more spherical. If we compare this panel to Figure 3.2d), which is the same

timestamp but rotated 90 degrees to see the XY plane, we can easily see how much
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more these two panels resemble each other than the a) panels of Figures 3.1 and 3.2.

There is also more evidence of the ring structures in the gas, with the remnants of

more rings having been created in the core and dissipated by the time they reach the

edge of the cloud (when they no longer have sufficient density to be easily discernable

at this scale). These rings are also visible in Figure 3.2, which implies (since these

snapshots are all slices along the central axes) that the rings are relatively spherical

in three dimensions. The central gas core is also still visible, though significantly

smaller than in the previous snapshot, and the shape of the rebound effect is mostly

lost to a smooth spherical distribution at the edges of the cloud.

3.4.2 75% gas mass

In Figure 3.5, we have the snapshots taken of the XZ plane for the model with a

gas mass fraction of 75% at the timesteps 0.0, 0.75, 1.75 and 2.75 Myr. When the

gas mass fraction of the total mass is increased from 50% to 75%, some changes were

apparent.

The initial conditions of position and velocities remained the same, so panel 3.5a)

still greatly resembles panel 3.1a), though the gas is much more diffuse at the edges

with the higher gas mass.

In panel 3.5b), we have the snapshot of the model at 0.75 Myr. It can be seen that

the stars are still drawn gravitationally toward the core as we saw in the previous

model, while a slightly larger percentage of stars (∼ 5%) moved away from the cluster
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Figure 3.4: Graph of the ellipticity of the cluster as a function of time for the run
shown in Figures 3.1 and 3.2.
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Figure 3.5: Snapshots of the XZ plane of the fgas = 0.75 model at 0.0, 0.75, 1.75 and
2.75 Myr. Blue points are stars with M < 0.9M�, green points have 0.9 M� < M <
2.5M� and red points have 2.5M� < M < 10M�. The pink oval shows the ellipticity
of the core. Also shown is the gas density plot.
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edges. The gas still forms a central density, and with the higher gas mass, the size

and mass of this central density is also larger with a radius of 0.4 pc. The rebound

effect is still visible, though slightly obscured by the higher density of the gas still in

the elliptical formation.

In panel 3.5c), we have the snapshot of the model at 1.75 Myr. At this point, the

ellipticity of the star cluster is less than that of the previous model, so it is obtaining

its spherical shape at a faster rate with the higher gas mass. This could be due to the

larger dense core of gas at the centre of the cluster that forms more quickly than the

star distribution. In addition, the stars seem to cluster more densely at the core where

the gas is also densest and the stars are less likely to leave the cluster. Future work

may tell us if the additional mass at the centre of the cluster affects the gravitational

pull on the outer stars enough to effect these changes.

There does not exist as distinct the ring structures in the gas cloud with higher

gas mass, though they are still present. Once again, this lack of visibility is partially

due to the overall increase in density of the gas, making the shapes less distinct. Also,

these structures appear much more spherical than in Figure 3.5c), and like with the

stars, it is possible that this is due to the gravitational effects of the larger gas core.

Alternately, it could be due to the more random effect of the ring generating events

occurring closer to the centre of the gas core, allowing for a more even shock through

the cloud.

In panel 3.5d), we have the snapshot of the model at 2.75 Myr. The stars maintain

their more spherical shape, with only minor fluctuations in the core radius. The ring
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structures are still visible and more numerous as time goes on, just as in Figure 3.1d).

3.4.3 Stars

From the previous two sections, we can see that as the model evolves, the ellipticity

of the stellar core decreases and the cluster becomes more spherical.

By ∼ 2.0 Myr, the initial ellipticity of the stars is no longer as obvious to the naked

eye. When comparing the XY view to the XZ view, it is not easy to differentiate the

initially spherical setup of the XY plane from the initially elliptical setup of the XZ

plane.

By ∼ 3.5 Myr, some of the outer stars appear to be leaving the cluster or at least

dissipating outward. Some have slowed enough to create a cluster in the XZ view

that more closely resembles a normal Plummer sphere. Some have enough speed that

they will eventually leave the cluster entirely (generally only between 3-5 stars per

run).

It is interesting to note that the stars move at a much slower pace than the gas

as a set, but have in general a larger velocity when comparing particles. Stars have

a mean velocity of ∼ 1 km/s at ∼ 3.5 Myr while gas only has mean velocity of ∼ 0.2

km/s at the same timestamp.

The stars furthest from the core of the cluster move toward the centre of mass

(x ≈ y ≈ z ≈ 0), with the furthest large star (mass > 2.5M�) reaching the centre

at ∼ 2.0 Myr (we mention the largest stars because they are easy to identify on
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snapshots, being both few and a distinct colour). This is expected, due to mass

segregation. The motions of the stars initially closer to the core are much more

randomized, not merely collapsing toward the core.

3.4.4 Gas

From the sections 3.4.1 and 3.4.2, we can see that the ellipticity of the gas changes

with time as there is a rebound effect causing a secondary ellipticity at a 90 degree

angle from the initial set up. After this rebound, the gas starts to form a dense core

at the centre of the cluster, spherical in shape.

An unexpected occurrence was the formation of visible ring patterns in the gas

at ∼ 1.50 Myr (see Figure 3.1c)) that expand outward from the core. This was not

a singular occurrence as secondary rings form from the core at ∼ 2.5 and ∼ 3.5 Myr

in each of the runs. The mechanisms of gas expulsion from young clusters are still

unclear, though supernovae and stellar feedback as well as star formation are amongst

the possibilities (Dale et al., 2015; Pfalzner and Kaczmarek, 2013). If these rings of

outwardly moving gas are in fact removing gas mass from the cluster, it is possible

that dynamics, hydrodynamics and shocks may also play a role in gas expulsion.
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Chapter 4

Discussion & Conclusion

4.1 Comparison with MYStIX

What do these simulations and results mean in comparison to the MYStIX results

and other known information about clusters?

Older open clusters are known to be spherical in shape and have very little gas

remaining. Our results suggest that when starting with a young highly elliptical

cluster, it is possible that the cluster would evolve into a much more spherical cluster

within 5 Myr through pure dynamics. This could mean that the very young elliptical

cluster of the MYStIX project could later evolve into the spherical older clusters we

see elsewhere in the galaxy.

A large portion of the MYStIX clusters were found to have some ellipticity (see

Figure 1.3), which could imply that a significant portion of all young clusters began
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in a similar formation. Our model shows that if that is the case, within a few million

years it would be difficult to distinguish these formerly elliptical clusters from clusters

that were spherical from their formation. Also, we show that elliptical clusters do not

merely dissipate due to their irregular shape, and that the uniformity of their older

counterparts maybe be due to dynamical interactions.

However, the timing of it does not all quite match. There are MYStIX clusters

older than 2 Myr that still have ellipticity present in the stars, such as the Carina

Nebula at the age of 1.5-4 Myr (Getman et al., 2014) with subcluster ellipticities

in the range of 0.2-0.8, but the majority of the clusters are under 2 Myr, so it is

possible that by the time star formation ended (or slowed down), it has not been long

enough for the stars to relax into a spherical shape. It would be useful in the future

to have star formation and evolution integrated into the code in order to get a better

understanding of how these factors can affect the model, especially at the beginning

of the run time.

Another possibility is that other factors are keeping the subclusters in elliptical

shape, such as rotation, and inflows and outflows of gas. The latter is especially likely,

as many of the subclusters formed along a filament of gas, allowing the movement of

gas through the clusters along a known route. Knowing accurate velocities for stars

would tell us a lot about the movements of the subclusters as a whole and about

the movements of the stars within the subcluster. A particular topic of interest is

investigating whether or not the multiple subclusters, in various patterns as described

in Section 1.2.2, eventually coalesce into a single bound cluster, as generally open

clusters are singular objects and not the loose association of multiple subclusters.
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This could be done with this AMUSE framework by initializing multiple clusters of

stars and gas, then giving each subcluster a general velocity, as well as the more

random peculiar velocities of the individual stars.

4.2 Mass Segregation & Gas Expulsion

It was encouraging to see that mass segregation occurs gradually in this model,

as this is what is expected when stars with a known IMF are randomly placed in

a cluster. Also, that the vast majority of the stars remained bound to the cluster,

with very few stars randomly obtaining enough velocity to be ejected, as we started

with a bound system and there were no known high energy events beyond two-body

interactions.

Open clusters have little to no gas, but these very young MYStIX clusters have an

abundance of it. While it is not known exactly how these clusters lose their gas, it is

thought to occur fairly early on in the cluster’s evolution and could have an effect on

the evolution of the structure of the stars within the cluster (Pfalzner and Kaczmarek,

2013). So it is important to look at how the gas behaves within our model in order

to determine if there is a method of gas expulsion present.

It appears that even without star formation, stellar feedback or supernovae, it is

possible that the gas is being slowly dispersed from the cluster through dynamics. The

ring structures seen in Figures 3.3 and 3.5 could be waves of gas being pushed out of

the core and into the edges of the cluster where they could be more easily taken away.
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It is unknown what were the triggering events of these rings, as they occurred multiple

times in every run, but at different times and creating slightly different patterns. Since

not all the rings were centred at the centre of the gas density, but almost always near

the core of the cluster, it is possible that a stellar interaction could be what injected

enough energy into the system to create the rings. Alternately, these shocks could

be a purely gaseous phenomenon, brought on by the high concentration of gas at

the centre of the cluster. This was an unexpected effect, but one of great interest.

This gas expulsion could not happen on a fast enough timescale to completely strip a

cluster of its gas as the only mechanism, but it is a possibility as just one component

of the process.

It is important to try to solve this problem of gas expulsion, since we have seen

the mass of the gas present in the cluster does have a visible effect on the evolution

of the cluster, allowing the cluster to lose its ellipticity at a faster rate, and this effect

could be even greater with the presence of star formation and evolution.

The ’rebound effect’ seen in Figures 3.1b) and 3.5b) is also of interest. Gas from

both far ends of the cluster (furthest from the core) is drawn toward the core through

gravity, but when these two ’waves’ of gas collide, they cannot merely pass by and

through one another due to the high number of particles and density. Since the

strongest forces are coming from the ends, it is easiest for the gas particles to instead

move perpendicularly along the YZ plane (as when a gas is blown against a flat

unmoving surface, it spreads out in a circular shape around the point of contact),

giving the bulge seen in the gas density plot.
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4.3 Future Work

Our work has demonstrated the plausibility of a young elliptical cluster evolv-

ing into a spherical cluster within a few million years. Since almost all of the large

star-forming regions in the MYStIX project were formed of many small elliptical sub-

clusters, it is of great interest to investigate how those subclusters interact with each

other, if they amalgamate into one large open cluster or remain distinct. This could

be accomplished by initializing multiple instances of our model with predetermined

distances between the cores, then evolving for millions of years.

Another area of future interest is investigating how the gas is expelled from the

young cluster, as discussed in the previous section. Possibilities include adding stellar

feedback, supernovae and star formation to the code, allowing the gas to have more

interactions with both itself and the stars.
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