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Abstract

As an extension to the ongoing Coconut (COde COnstructing User
Tool) project at McMaster University, we present a Scala library for
constructing type-safe domain-specific languages that uses Coconut’s
hypergraph-based representation of code (code graphs) as the intermediate
representation. Our library automatically produces strongly typed, deeply
embedded DSLs given only a minimal specification of the DSL’s value types
and primitives. We make extensive use of path-dependent types and im-
plicit argument lookup to construct a type-safe interface on-the-fly, rather
than requiring DSL designers to explicitly create a type-safe interface.

In this thesis we present our library and demonstrate its utility as
both a general-purpose DSL framework and as a suitable platform for con-
tinued research on the Coconut project. By giving practical examples of the
library in use, we demonstrate both its general utility, and the striking swift-
ness with which new DSLs may be constructed, especially compared to the
previously laborious Haskell DSLs of Coconut.
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Chapter 1

Introduction

1.1 Motivation

The Coconut project being researched at McMaster University is a collection
of related tools and libraries, primarily written in the Haskell programming
language, designed to aid in the generation of efficient code from prov-
ably correct domain-specific models [KAC06, ACK+04, AK07b, AK07a].
These models are often specified in the form of type-safe domain-specific
languages (DSLs) embedded within Haskell. See Chapter 2.

Although highly effective (see [AK09]), these tools have been crafted in
a somewhat ad-hoc fashion over the course of many years. The Glas-
gow Haskell Compiler (GHC), itself an active research project, has evolved
greatly since the inception of Coconut, and as a result, much of the old code
that would be useful today is no longer compilable. Although Coconut’s ag-
ing code base is becoming increasingly obsolete, much of its functionality is
still highly useful.

Rather than attempt to patch up the aging code (an assuredly temporary
measure) or rewrite it from scratch in Haskell, we view this as an opportu-
nity to look at the goals of Coconut from a completely new perspective. The
Haskell code base exists primarily, among other things, as an academic re-
search tool. There have been efforts to take it even further in that direction,
such as [Kah11], which brings Coconut’s core data structures into the realm
of automated proof checking. This has powerful implications for produc-
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ing correct code, but lacks mainstream applicability and does not promote
rapid experimentation and implementation.

The research presented in this thesis represents an effort to realize the goals
of Coconut from a practical standpoint rather than a purely academic or
theoretical one. Using the emerging programming language Scala, our goal
is to provide a reusable toolkit for rapid development of, and experimen-
tation with, domain-specific languages suitable for practical use, while also
easily facilitating the kind of research tasks Coconut specializes in.

The Scala programming language is a general-purpose language that com-
piles to Java Virtual Machine (JVM) bytecode [OAC+04]. Its type system is
a generalization of the underlying Java type system, and so features the full
object-oriented class system of that language—however, it adds many extra
features onto Java’s type system, such as co/contravariant generic param-
eters, class composition via traits (mixins), first class singletons, and, most
importantly, dependent types. The balance between extreme type safety
and platform ubiquity (due to being hosted by the JVM) makes Scala an ob-
vious choice in trying to bring the Coconut project’s specialized functional-
ity and inherently type-safe interface into the realm of general mainstream
applicability.

1.2 Prior Work and Contribution

The Yin-Yang library for Scala [JSS+14] provides a macro-based translator
to provide a deep embedding for a shallowly embedded DSL interface. See
Chapter 2 for an overview of deep and shallow embedding.

The Delite project is, like Coconut, a performance-oriented library focused
on efficient code generation. Delite is a compiler framework and runtime
that facilitates the implementation of highly performant, parallel domain-
specific languages from within Scala [BSL+11, RSL+11, SRB+13].

Our research is intended to bring the past work of the Coconut project to
the Scala language, primarily in order to make use of its extremely pow-
erful type system. Its goal is to provide a reusable platform for the rapid
development and use of deeply embedded domain-specific languages. The
underlying data structures, code graphs (see Chapter 3) are well-studied, and

2



1. INTRODUCTION

by using them explicitly within our DSL library, we facilitate the furtherance
of the interests of Coconut.

1.3 Organization

The remainder of this thesis is organized as follows:

• Chapter 2 looks at embedded domain-specific languages in general.
It serves to motivate our desire to use DSLs and demonstrates ways
in which type-safe DSLs can prevent problems that would otherwise
occur in untyped environments

• Chapter 3 gives a brief overview of the Coconut project, code graphs,
and the strongly typed domain-specific language Coconut uses for
code graph construction. This lets us clearly see later how the syn-
tax and semantics of the existing tools can easily be adapted (and ex-
tended) in the Scala environment.

• Chapter 4 presents our Scala library for constructing domain-specific
code graphs using rapidly developed DSLs.

• Chapter 5 relates past Coconut work to our modern Scala code base
and demonstrates the implementation of the exponential function—
a function typical of those implemented using Coconut—using a
rapidly constructed DSL.

• Chater 6 presents the conclusions of this thesis.

3





Chapter 2

Embedded Domain-Specific
Languages

2.1 Domain-specific Languages

Domain-specific language (DSL) describes a class of languages whose seman-
tics are strictly relevant to a specific domain. Such languages often par-
tially or completely capture the conventions and jargon of their respective
domains, and allow domain experts to use familiar words and idioms to
interact with a system without being burdened by the semantic overhead
of a traditional API bound to a general-purpose language. For example, a
typical configuration DSL may have only simple keywords for configuring
each facet of the subject domain and nothing else. The same configuration
expressed in a general-purpose language would necessarily be subject to at
least some overhead from the language, such as the need for string liter-
als and the lack of domain-specific keywords. This overhead can obscure
domain semantics and increase the programmer’s cognitive load.

There is clearly a trade-off present when it comes to capturing domain-
specific semantics: a general-purpose language offers many features (i.e.,
control flow, complex function evaluations) not present in a typical domain-
specific language, while a domain-specific language has a much lower com-
plexity floor and can be more easily and reliably used by non-programmers.

Varying audiences may require varying levels of complexity (and expressiv-
ity) from domain-specific programming interfaces. Advanced users, such as

5
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those with a strong programming background, may desire full imperative
control over their domain operations and so benefit from having access the
power of a general-purpose language, while others may require only basic
access to a fixed set of features and would benefit from the simplicity of a
DSL.

Luckily, the goals of general-purpose languages and domain-specific lan-
guages are not inherently mutually exclusive. Many modern programming
languages have syntaxes sparse and extensible enough to support establish-
ing a DSL directly within the language without imposing too much seman-
tic or syntactic overhead of its own. A DSL hosted inside a general-purpose
language in this way is called an embedded domain-specific language.

An embedded DSL is typically a library written in a suitable host language
whose functionality is expressed through a system of domain-specific prim-
itives that partially obscure or abstract the underlying semantics of the lan-
guage. These primitives form a sub-language embedded within the host
language, allowing access to the full power of the host language while still
providing rich domain-specific abstractions.

// Using Python
servers[’MyServer’][’HOSTNAME’] = ’10.0.0.1’
servers[’MyServer’][’PORT’] = 7080
servers[’MyServer’][’ALIASES’] = [’foo’, ’bar’]

// Using a domain-specific language
server MyServer {

at 10.0.0.1:7080
aliases foo bar

}

Listing 2.1: A short, contrived example illustrating how a traditional
domain-specific language can eliminate much of the syntactic and semantic
overhead (such as string literals and dictionary semantics) of a general
purpose language like Python. Also note the use of the canonical
hostname:port syntax, which is familiar to domain experts.

6



2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES

Real-Life Example: Sinatra

The HTTP protocol is surrounded by many domain-specific terms and con-
ventions, which makes it a prime subject candidate for a domain-specific
language. One compelling aspect of HTTP is its use of verbs, such as GET
and POST, as units of communication. Such clear divisions of work and un-
ambiguous terminology leads to obvious abstractions of the sort that makes
a good embedded DSL.

The Sinatra library for Ruby provides (among other things) a DSL for creat-
ing HTTP applications. Ruby is a natural choice for creating an embedded
DSL because it has a clean and extensible syntax—core language constructs
are effectively indistinguishable from user-defined ones, and there is very
little syntactic noise.

require ’sinatra’

get ’/’ do
’Hello world!’

end

Listing 2.2: A minimal Sinatra
application.

Listing 2.2 shows a minimal Sinatra appli-
cation. The only construct present in the
code is a get block, which is not a prim-
itive construct in Ruby. Indeed, at first
glance, it may not be clear exactly how
the get construct is implemented in Ruby,
but the semantics are fairly self-evident to
anyone familiar with even the most basic
HTTP applications (i.e., a domain expert).

That distinction nicely highlights the typ-
ical characteristics of embedded DSLs:
their syntaxes should be free from overhead generated by the host language
and they should hide as many of the irrelevant semantics of the host lan-
guage as possible while cleanly and concisely capturing the semantics of
the subject domain.

In the case of Sinatra, get is a domain-specific primitive that captures the se-
mantics of one of the core functions of the library—routing a GET request—
while completely hiding the underlying Ruby semantics (like the fact that
an implicitly constructed Application object is having its routes variable
mutated behind the scenes, none of which is relevant to the domain).

7
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2.2 Shallow Embedding and Deep Embedding

Sinatra is implemented by mapping the domain-specific primitives (such as
get and post) directly onto corresponding semantics within Ruby (such as
mutating the underlying list of HTTP routes). This kind of embedding—
mapping domain primitives directly onto corresponding host language
semantics—is known as a shallow embedding. Figure 2.1 gives a simple
overview of the way a shallowly embedded domain-specific interacts with
its host language.

Many utility DSLs are implemented this way, as they provide a natural al-
ternative to clumsy, verbose, or otherwise inhospitable interfaces for many
tasks. This type of DSL has many practical applications, but for use-cases
that extend beyond wrapping existing functionality in a nice syntax, it is
likely to be impractical or impossible to map the domain primitives directly

Host Language

Create file Delete file Move file Copy file

User intent

Alter 
permissions

touch rm mv cp

Domain-specific language syntax

chmod

open() unlink() rename() copyfile()

Host language semantics

chmod()

File created File deleted File moved File copied

Domain semantics

Permissions 
altered

Figure 2.1: A simple overview of a shallowly embedded DSL.
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2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES

onto the host language semantics. For these cases, a deep embedding may be
used, where the domain primitives are not mapped directly onto language
semantics, but rather onto intermediate, often recursive data structures—
i.e., an abstract syntax tree (AST)—which can then be interpreted. Figure 2.2
(page 17) shows how an embedded DSL interacts with its host language.
Note that unlike a shallow embedding, a deep embedding allows for the
domain-specific constructs to be stored, inspected, and transformed, rather
than only directly executed.

This kind of embedding allows for a much richer language representation,
at the expense of a potentially more hostile user experience—rather than us-
ing familiar programming constructs with real-time side effects, users must
(directly or indirectly) manipulate data structures.

Languages that support algebraic data types and pattern matching, such as
Haskell, are well suited to deeply embedded DSLs; algebraic data types pro-
vide a seamless way to integrate the abstract syntax tree (AST) of the DSL
into the type system of the host language, while pattern matching provides
a seamless way to decompose and evaluate these structures.

2.3 FILEDSL: A Simple DSL in Haskell

In this section we present a simple deeply embedded DSL called FILEDSL
for performing Unix-style file operations in Haskell. It serves to reify the
concepts talked about so far in this chapter. This section is written in the
Literate Haskell style, meaning that this section is interspersed with the en-
tire executable Haskell code for this DSL.

module FILEDSL where

import Control.Monad (mapM_, mplus)
import Data.Char (ord, chr)

2.3.1 Data Types

We start by defining our data types. We use Filename as a semantic alias for
String.

type Filename = String

9
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Permission encodes the 8 possible octal values used by the Unix permission
system. The toOctal function converts it to its corresponding octal digit. See
Section 2.4 for a short description of how chmod works.

data Permission
= Deny | Execute | Write | WriteExecute
| Read | ReadExecute | ReadWrite | All

deriving (Show, Enum)

toOctal :: Permission→ Char
toOctal p = chr $ (fromEnum p) + (ord ’0’)

Perms encodes an individual file’s permissions.

data Perms = MkPerms
{ p_owner :: Permission
, p_group :: Permission
, p_world :: Permission
}

deriving (Show)

Since this is a deeply embedded DSL, we need to define a type to encode our
AST. Since this is such a simple DSL, our AST will just be a usual Haskell
list of operations, which are represented by the FileOp type. We alias the list
and call it FileAST to obscure Haskell’s underlying list semantics from our
DSL’s syntax.

data FileOp
= CreateFile Filename
| DeleteFile Filename
| CopyFile Filename Filename
| MoveFile Filename Filename
| ChMod Perms Filename

deriving (Show)
type FileAST = [FileOp]

10



2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES

2.3.2 Execution

The execFileOp function executes a single FileOp.

execFileOp :: FileOp→ IO ()
execFileOp (CreateFile filename) =

void $ spawnProcess "touch" [filename]
execFileOp (DeleteFile filename) =

void $ spawnProcess "rm" ["-f", filename]
execFileOp (CopyFile from to) =

void $ spawnProcess "cp" [from, to]
execFileOp (MoveFile from to) =

void $ spawnProcess "mv" [from, to]
execFileOp (ChangeMode (MkPerms o g w) filename) =

let permString = (toOctal o) : (toOctal g) : (toOctal w) : "" in
void $ spawnProcess "mv" [permString, filename]

2.3.3 DSL Syntax

We have data structures representing our DSL, but their names do not
match the familiar Unix operations, and they do not comprise complete
ASTs by themselves, so we provide some wrappers with the familiar names.

Note that although FileAST is actually just an alias for a list, we choose not
to admit that fact here and interact with it only through its monad interface
(return). This keeps the semantics of our AST separate from Haskell’s list
semantics—they are identical, but only coincidentally. It is an implementa-
tion detail.

touch, rm :: Filename → FileAST
mv :: Filename → Filename → FileAST
chmod :: Perms → Filename → FileAST

touch = return ◦ CreateFile
rm = return ◦DeleteFile
mv x y = return $ MoveFile x y
cp x y = return $ CopyFile x y
chmod p f = return $ ChMod p f
perms o g w = MkPerms o g w

We have chosen to obscure the fact that the AST is a list by never requiring
the user to admit it in practice. All of the primitive operations return ASTs
already, so constructing lists manually is never necessary. The other fun-
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damental operation we must support is the joining of two ASTs to indicate
operation sequencing; to this end, the &&& operator is a synonym for list
concatenation that has domain-specific semantics (i.e., do these file operations
in sequence) rather than general Haskell semantics (i.e., concatenate these two
lists).

We use mplus rather than its alias ++ (in this context) simply because it is
more general.

(&&&) = mplus

The fileDSL function is the entry-point to our DSL. It executes a FileAST.

fileDSL :: FileAST→ IO ()
fileDSL = mapM_ execFileOp

2.3.4 Shallow Embedding For Free

By making a “shallow” version of each primitive—that is, one which sim-
ply evaluates to the underlying Haskell semantics of the domain primitive
rather than to a structure representing that primitive—we can derive a shal-
lowly embedded variation of our DSL.

The fact that it is deeply embedded behind the scenes is merely an imple-
mentation detail; if these were the only functions exported from this module
then this DSL would be, for all intents and purposes, shallowly embedded.

touch′ = fileDSL ◦ touch
rm′ = fileDSL ◦ rm
mv′ x y = fileDSL $ mv x y
cp′ x y = fileDSL $ cp x y
chmod′ p f = fileDSL $ chmod p f

2.3.5 Example

Note that exampleDeep executes the DSL after each of the DSL primitives has
already been evaluated (and turned into an AST) by passing it to fileDSL,
while exampleShallow is a sequential do block that executes each primitive
as it is evaluated. Both functions produce the same effect.

12
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exampleDeep :: IO ()
exampleDeep = fileDSL $

mv "data" "data.bak" &&&
cp "output/data" "data" &&&
chmod (perms All Read Read) "data" &&&
rm "output/data"

exampleShallow :: IO ()
exampleShallow = do

mv′ "data" "data.bak"
cp′ "output/data" "data"
chmod′ (perms All Read Read) "data"
rm′ "output/data"

2.4 Type Safety

FILEDSL makes heavy use of data types due to its deeply embedded
nature—all of our syntax has a structural counterpart in its corresponding
FileOp constructor. Since Haskell is a statically-typed language, it detects
type errors at compile-time; that means if we can encode semantic con-
straints within the data types used by our DSL, then we can make the host
compiler enforce those constraints automatically. For an example of this,
consider the chmod primitive in FILEDSL.

chmod is a UNIX command that changes the permissions of a given file. Its
basic syntax (where $ represents a Bash prompt) is as follows:

$ chmod 777 filename

The literal 777 is an octal number representing the level of access to the file
granted to users of the system. Each of the three 3-bit octal digits holds a
bitfield indicating the access levels of the file’s owner, the file’s group, and
other users respectively. Within each digit, the three bits (starting from the
most significant bit) represent read access, write access, and execute access
respectively. One very commonly used file mode is 744, which means “file
owner has full access, file group and other users have read-only access”.
7 corresponds to full access, since all three access bits are 1, while 4 corre-
sponds to read-only access since only the most significant bit, correspond-
ing to read access, is 1.

13
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This notation is a convenient representation for the computer; it is a concise
way to fit a lot of information into a small number of bits. For humans, how-
ever, working with it requires specialized technical skills (like mentally vi-
sualizing and manipulating octal bitfields) as well as remembering arbtirary
conventions about the syntax (like which bit refers to which access type). To
the uninitiated reader, the syntax offers no clues as to its meaning. It pro-
vides no indication as to what range of data may be valid as an argument,
or as to the meaning of each symbol.

In capturing the semantics of chmod, we did not simply map the syntax of
the UNIX command onto our DSL. If we had done that, our chmod primitive
would have had to accept an octal literal. Octal literals in Haskell are of the
form 0o777 and are of type Int, so our FileOp datatype would have looked
something like this:

data FileOp
= CreateFile Filename
| DeleteFile Filename
| CopyFile Filename Filename
| MoveFile Filename Filename
| ChMod Int Filename

This would simplify things a bit—there would be no more need for the
toOctal function. In fact, the Permission and Perms types could go away en-
tirely. However, before we go ahead and make this change, we should first
make sure we are not inviting any catastrophes.

Consider a user who is familiar with chmod, but who is not as familiar with
Haskell. This user may not know about the seldom-used 0o777 octal syntax
and attempt to call the chmod primitive with a decimal literal, as in chmod
744 "myfile". (Alternatively, this user may be extremely familiar with
Haskell and less so with chmod, neglecting to realize that the argument is
supposed to be octal at all.) In this case, the argument would be interpreted
incorrectly as the octal value 13508—an invalid argument under our seman-
tics. In order to more closely match the UNIX syntax, we could change our
chmod to accept decimal literals that look like the intended octal value (mean-
ing 744 ≡ 7448) and convert them internally, but that only further obfus-
cates the true meaning of the argument. Aside from that, this solution only
changes the site of the problem; when a seasoned veteran of both UNIX
and Haskell reasonably assumes that the semantically octal argument can

14



2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES

be supplied by an octal literal and passes 0o744, it will be interpreted as
the decimal number 48410, which, interpreted literally in octal, is a bogus
number.

Internally, the decimal and octal representations are indistinguishable. If the
user uses the wrong one, we cannot even give them a good error message;
the best we can do is crash at runtime and tell them that they supplied
an invalid file mode, and to make sure they are using the right encoding.
In fact, if the misinterpreted argument is itself a valid file mode, then all
is lost; we cannot even detect that anything wrong has occurred, and the
user’s files will become incorrectly permissioned, perhaps without anyone
noticing. The implications of this are both numerous and obvious.

The problem is that only a very small subset of syntactically possible inputs
to chmod are valid, but the user is nevertheless forced to select from the
entire range. Indeed, regardless of whether we consider the argument to be
an Int—decimal or octal—or a String, only 83 = 512 values are semantically
relevant. The rest are inherently malformed and must be rejected. It is up
to the user to ensure that they do not supply one of these nearly limitless
invalid values. This raises the question: Why include those values in the
argument domain at all?

Instead of using the primitive Int type for our representation of permissions,
we have constructed a type, Perms, with exactly the same cardinality as the
set of valid file modes. We injectively map Perms onto the semantically-
relevant subset of String using toOctal, and the result is a representation of
permissions that is both provably1 equivalent to the traditional literal-based
notation and definitionally incapable of providing an invalid file mode. We
did not have to do anything to achieve this level of safety, other than de-
fine our datatypes and ensure that they cannot contain semantically invalid
data. Haskell’s type checker enforces the semantic contract for us.

This highlights one of the major strengths of embedding a DSL in a strongly
typed language like Haskell; were the same DSL to be implemented in
Ruby, which has no compile-time type checking (or indeed, any “compile-
time” at all), the chmod primitive would have to be prepared to accept any
value at all. It would be up to us to either meticulously inspect the argu-

1By exhaustion, if the reader is bored.
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ment to ensure it meets all of our preconditions (allowing us to fail grace-
lessly at runtime zero or more times in the future), or to place the onus of
type-correctness on the user and let incorrect inputs propagate internally
(allowing us to fail with even less grace or predictability). The strong, static
nature of Haskell’s type system takes this unbounded sequence of graceless
run-time failures and collapses them all into a single, descriptive compile-
time message.
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Host Language

Create file Delete file Move file Copy file

User intent

Alter 
permissions

touch rm mv cp

Domain-specific language syntax

chmod

CreateOp DeleteOp MoveOp CopyOp

Intermediate data structures

PermOp

Host language semantics

Evaluator

Text output

Printer

open()unlink()rename()copyfile()rm -f file.txt

File system

Serializer

open()unlink()rename()copyfile()unlink()

Domain semantics

open()unlink()rename()copyfile()File removed JSON

Figure 2.2: A simple overview of a deeply embedded DSL.
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Chapter 3

Code Graphs and Coconut

3.1 Background

Coconut (COde COnstructing User Tool) is a continuing project at McMaster
University dedicated to researching provably correct code generation, espe-
cially as it relates to the field of medical imaging [KAC06, ACK+04, AK07b,
AK07a].

The Coconut project encompasses many related projects, but the one that is
of most relevance to this thesis is its family of purely functional DSLs that
encode the instruction set architectures (ISAs) of several IBM processors. Each
DSL targets a specific architecture and allows developers to write highly
optimized functions at the lowest possible level without having to worry
about tedious details such as register allocation or optimal instruction or-
dering.

3.2 Code Graphs

The data structures that Coconut uses to store and manipulate code are
called code graphs. There is a very mathematical treatment of code graphs
in [ACK+04], but as our goals in this thesis are much more general than
those of that report, we will omit any rigorous mathematical discussion
about the structure of code graphs and focus on their practical applications
to domain-specific languages.
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Figure 3.1: A Coconut code graph that encodes a function using the AltiVec
instruction set. Reproduced more-or-less directly from [ACK+04].

A code graph is an acyclic graph structure that encodes a function’s data
flow. It can be represented by a hypergraph, where a node represents a
value and is labelled with its type, and a hyperedge represents an operation
and is labelled with its name. The incoming and outgoing tentacles of a
hyperedge represent the inputs and outputs of the corresponding operation.
Similarly, nodes of indegree 0 are given an ordering and considered input
nodes of the whole graph while nodes of outdegree 0 are given an ordering
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and considered output nodes. All inputs and outputs must preserve their
respective orders.

It is worth noting that we may also represent a hypergraph as a bipartite
graph, with one set of nodes representing values, and the other set repre-
senting operations. This is the representation that we use for visualization
of code graphs, as bipartite graphs are much easier to draw than hyper-
graphs.

Code graphs homogenize the representation of code-as-data by separating
the structure of the code from the semantics of the domain—where a tradi-
tional AST encodes both domain semantics and graph structure in its defini-
tion, code graphs encode only a graph structure, leaving domain semantics
out of it. This lets us establish a set of common patterns and algorithms
to talk about and manipulate code as data without worrying (except where
necessary) about the underlying domain semantics.

add_tax

add_tip

magnify

enhance

Hyperedges

Nodes

dollars

image

image process

money calculation

Figure 3.2: Two completely different code graphs from unrelated domains
exhibiting identical structure.

The above figure demonstrates how omitting domain semantics from the
structure of our representation allows semantically unrelated code graphs
to be represented using identical structures. This homogeneity is a key part
of what makes code graphs so useful for domain-specific languages. Were
we to represent these two code graphs using domain-specific AST types,
we would have to encode the graph (tree) structure for each one separately,
with it arising implicitly through the use of recursive data types. It may
look something like this:
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data MoneyExpr = AddTax MoneyExpr
| AddTip MoneyExpr
| – ....

data ImageExpr = Magnify ImageExpr
| Enhance ImageExpr
| – ...

These types are not compatible with any other pre-existing type, so they
cannot take advantage of pre-existing algorithms. In fact, they share no
common structure (as far as Haskell is concerned) whatsoever, so it is diffi-
cult (though not impossible) to make even simple algorithms work on both
structures without duplicating them wholesale.

3.3 Code Generation

As mentioned at the beginning of this section, Coconut is concerned with,
among other things, generating efficient code for supercomputer architec-
tures. Exactly what “efficient code” means and how to generate it depends
greatly on the characteristics of the target processor. It is not hard to gener-
ate executable code from a code graph. C code, especially, can be generated
easily by simply serializing the code graph using a topological sorting algo-
rithm and emitting one variable assignment per edge. Figure 3.3 shows an
example of this.

mulmul add

mul

add

x + y

x y

x2 y2

(x + y)2 x2 + y2

void fn0(float in0, float in1,
float *out0, float *out1) {

float aux0 = in0 + in1;
float aux1 = in0 * in0;
float aux2 = in1 * in1;
*out0 = aux0 * aux0;
*out1 = aux1 + aux2;

}

Figure 3.3: A simple code graph with two inputs and two outputs, and a
possible serialization as C code.

For many problems, simply emitting C code would be sufficient; what-
ever the architecture, a native C compiler is likely to be able to take care

22



3. CODE GRAPHS AND COCONUT

of architecture-specific concerns and make sure the code is compiled rel-
atively efficiently. However, not all compilers are perfect—especially for
novel architectures—and compiler bugs can lead to impossible-to-debug (or
even diagnose) defects. Aside from that, sometimes we do require absolute
control over the execution of our function. In these cases, emitting C code
is not going to be enough; we need to emit assembly code directly. Emitting
assembly code the same way we would emit C code will give us a valid
program, but not one that makes very efficient use of the CPU’s resources.

In high-performance computing scenarios, it is not particularly important
how many cycles it takes to run a function one time; rather, it is important
how many cycles it takes to run that function thousands of times in a row, on
a huge array of data. We can make use of some loop scheduling techniques
to greatly increase the throughput of our function when applied to large
arrays of data. This is discussed briefly in Section 5.7.1.

3.4 A Dual-Purpose DSL

The code graphs presented here so far have all been fully-formed—pre-
computed and pre-rendered. The question remains: how do we achieve
a code graph from scratch?

Constructing a code graph can be a tricky thing. In Section 2.4 we saw
how easily a user can inadvertently do the incorrect thing while believing
it to be correct, and how it can be impossible to even detect this scenario, let
alone provide adequate feedback—and that was in the presence of only a
few simple primitives, most of which map directly to existing and familiar
functionality. Every aspect of the structure of a code graph is essential to
its overall meaning. If even a single edge or node is misplaced within the
code graph, it becomes effectively meaningless; if it still constitutes a valid
code graph at all, then it will be one whose semantics are undefined. If
the code graph is ultimately used for code generation, it may produce valid
code that simply exhibits unexpected behaviour. This kind of problem can
be very hard to debug, and such egregious and untraceable bugs would
quickly undermine the credibility of our software. The Coconut solution to
this is to create a type-safe embedded DSL in Haskell.
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Many DSLs written in Haskell make use of the monad design pattern in or-
der to give the impression that there is imperative state behind the DSL. This
is a natural fit for DSLs that construct a data structure because, obviously,
the data structure needs to be kept somewhere as it is mutated—designing
a monadic DSL would let us keep the code graph state behind the scenes,
exposing primitives which mutate that state and ultimately extract the fin-
ished code graphs. However, we are not actually attempting to model the
building of a code graph with our DSL. In fact, if anything, we would like to
hide the fact that a code graph is being built at all, since that is more-or-less
an implementation detail. So perhaps a monadic interface is not necessarily
the best option for this kind of DSL.

Monadic DSLs do not capture the purely functional spirit of Haskell. They
force explicit sequentialization of operations and specialized syntax. One of
Coconut’s primary goals is to provide a natural and expressive syntax em-
bedded within Haskell for writing pure domain-specific functions. Haskell
monads do provide an expressive syntax, but it is a syntax for describing
imperative computations, not for pure functions. The functions we tend to
describe with Coconut are not imperative (at least, we don’t want to repre-
sent them that way) and so we avoid embedding the DSL inside Haskell’s
imperative do blocks.

Instead, Coconut’s DSL is based purely on Haskell’s declarative syntax. Be-
low is an implementation of the function log2(x) written using Coconut’s
DSL for targeting the SPU instruction set of IBM’s Cell/BE platform.
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log2SPU :: (PowerType n, HasJoin String (VR n)) ⇒ VR n→ VR n
log2SPU v = evalPoly

where
c0PexpPart = fa expAsFloat c0
frac = onePlusMant 23 v
killSign = shli v 1
expByte = shufb killSign killSign

$ unbytes [ shufb0x00, shufb0x00, shufb0x00, 0
, shufb0x00, shufb0x00, shufb0x00, 4
, shufb0x00, shufb0x00, shufb0x00, 8
, shufb0x00, shufb0x00, shufb0x00, 12
]

expAsFloat = csflt (ai expByte (−127)) 0
(offset : c0 : coeffs) = lookup8Word (22, 20) log2OffsetsCoeffs v
evalPoly = hornerV (c0PexpPart : coeffs) fracMoffset
fracMoffset = fs frac offset

The primitives of the DSL (i.e., CPU instructions) have been underlined to
emphasize their enhanced semantic role over other functions.

PowerType is the type class that represents our instruction set (so named
because it encompasses the PowerPC instruction set as well as the SPU in-
struction set). Every instruction from the target architecture that will be us-
able by the user must be included as a function in the interface of PowerType,
accompanied by an appropriate implementation elsewhere. This raises the
important point that there may be multiple implementations of PowerType
and thus multiple separate sets of semantics for a single shared DSL syn-
tax. In this case, there are two implementations of PowerType, denoted by
the names INTERP and GRAPH. These are both empty types, useful only as
type-level discriminators (e.g., VR GRAPH represents a value in the GRAPH

interpretation).

INTERP’s implementation of PowerType reduces our DSL to a shallow em-
bedding by mapping our primitives directly onto the corresponding in-
struction’s semantics, as we did for FILEDSL in Section 2.3.4. It deals in
numbers and simulates the flow of data through our functions as though
it were executing on the target architecture. This helps domain experts de-
velop and verify functions without needing to access a real architecture or
even compile their functions into assembly code at all.
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The GRAPH implementation of PowerType, on the other hand, turns our
primitives into code graph constructors and transformers. The domain val-
ues in this interpretation are not floating-point numbers, but entire code
graphs. Each code graph represents the entire flow of data from the in-
puts of the function all the way down to its corresponding domain value.
As values are combined by instructions, the corresponding code graphs are
merged together to produce a common ancestor for the the output code-
graphs. The result of a function under this interpretation is a code graph
encoding all of the data flow from the inputs of the function to the output,
with no need for monads. See Figure 3.3 for an example of how code graphs
are built declaratively within Coconut.

It’s worth noting that this declarative interface automatically discards un-
used data paths within the graph. If, for example, we ultimately discarded
the x2 + y2 output in Figure 3.3, then the resulting code graph would be
the one associated with the (x + y)2 node—one with only two instructions
intead of five.
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Figure 3.4: The code graph from Figure 3.3 annotated with partial code
graphs.
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Chapter 4

A Scala-Based Approach to Code
Graphs

4.1 Introduction

In Chapter 3, we saw how code graphs can be used to form the basis of a
domain-specific language, as well as Coconut’s code-graph-based declara-
tive assembly language. In this chapter we will look at how some of Scala’s
novel features let us tackle the same problem with a very different, more
object-oriented approach, while still maintaining (and in some cases, even
improving upon) the level of type safety that was achieved in the Haskell
version.

Source code in this chapter is presented in a quasi-literate style—it does not
constitute an entire compilable program, but it is a subset of one, and prose
is interspersed amongst the code.

4.2 EXPRDSL: A Simple DSL in Scala

Before describing how our code graph library works, it is good to see an
example of it in action. This will help immediately highlight the strengths
of Scala as a host language, as well as some of the specific techniques used.

In order to demonstrate the straightforwardness of building a DSL using
Scala code graphs, we will construct a very simple expression library us-
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ing our code graph library, with a DSL that encodes regular arithmetic and
boolean expressions, which we will call EXPRDSL.

4.2.1 Node and Edge Labels

First we need to define the types for both values and primitives inside our
DSL. In this toy language, we will use only integers and booleans as values.

object NodeLabels {
sealed abstract class ExprNodeLabel
case class INT() extends ExprNodeLabel
case class BOOL() extends ExprNodeLabel

}

We will support all the usual arithmetic and logical primitives, as well as
numerical comparisons. The Sig object contains the traits from which our
primitives will derive.

object EdgeLabels {
import NodeLabels._
sealed abstract class ExprEdgeLabel
object Sig {

trait Nullary[T] extends ExprEdgeLabel with EdgeLabel.Nullary[T]
trait Unary[T, U] extends ExprEdgeLabel with EdgeLabel.Unary[T, U]
trait Binary[T, U, V] extends ExprEdgeLabel with EdgeLabel.Binary[T, U, V]

}
case class constInt(value: Int) extends Sig.Nullary[INT]
case class constBool(value: Boolean) extends Sig.Nullary[BOOL]
case object add extends Sig.Binary[INT, INT, INT]
case object sub extends Sig.Binary[INT, INT, INT]
case object mul extends Sig.Binary[INT, INT, INT]
case object div extends Sig.Binary[INT, INT, INT]
case object lt extends Sig.Binary[INT, INT, BOOL]
case object leq extends Sig.Binary[INT, INT, BOOL]
case object gt extends Sig.Binary[INT, INT, BOOL]
case object geq extends Sig.Binary[INT, INT, BOOL]
case object equ extends Sig.Binary[INT, INT, BOOL]
case object and extends Sig.Binary[BOOL, BOOL, BOOL]
case object or extends Sig.Binary[BOOL, BOOL, BOOL]

}

Our node and edge labels are made up of case classes and case objects—
these are Scala’s window to algebraic data types, which in Haskell are defined

30



4. A SCALA-BASED APPROACH TO CODE GRAPHS

with the data keyword. Scala’s approach results in a type hierarchy, rather
than a single data type with multiple constructors. As a result, we are able
to construct complex type hierarchies on which we can pattern match, as
opposed to Haskell’s sum types which cannot support a hierarchical struc-
ture without requiring deeply nested constuctors.

4.2.2 An Example: Fahrenheit-to-Celsius

Already we have defined enough to create a code graph using the relatively-
syntactically-sparse DSL that comes built into our code graph library. Here
is an example of a code graph that converts temperatures from degrees
Fahrenheit to degrees Celsius using the well-known formula

C =
5
9
· (F− 32)

object fahrenheitToCelsius
extends CodeGraph[ExprNodeLabel, ExprEdgeLabel]
with CodeGraphBuilder[ExprNodeLabel, ExprEdgeLabel] {

type Input = Unary[INT]
type Output = Unary[INT]

val fahrenheit = input
val minusThirtyTwo = sub(fahrenheit, constInt(32)())
val timesFive = mul(minusThirtyTwo, constInt(5)())
val celsius = div(timesFive, constInt(9)())
output(celsius)

}

The trait CodeGraphBuilder provides a DSL-like set of primitives for con-
structing a code graph using a syntax reminiscent of the one we saw used by
Coconut in Section 3.4. Unlike the Coconut DSL, however, this DSL is made
up of state mutation primitives rather than pure functions. These mutation
primitives are available strictly within the implementations of CodeGraph-
Builder, and the code graphs themselves do not appear externally stateful.
(cf. Haskell’s ST monad for performing referentially transparent computa-
tions with local mutable state).

fahrenheitToCelsius is a complete code graph object that contains the struc-
ture of our conversion function and can be used anywhere a code graph is
expected. Furthermore, by specifying the Input and Output, we made the
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code graph strongly typed. This is one of the places that Scala’s type sys-
tem offers us flexibility where Haskell’s doesn’t. Each primitive, including
the input and output meta-primitives, is strongly typed; the input opera-
tion’s return type depends on the type assigned to Input, and the fahrenheit
binding’s type is inferred accordingly (in this case, it is a single INT-typed
value node). Unary[T] is merely a semantically relevant alias for Tuple1[T]—
analogous aliases exist for Binary[T,U] and Ternary[T,U,V].

Note that we can simply use the edge labels as though they were functions,
making them DSL primitives in and of themselves; this function applica-
tion maps internally to an insertion of the appropriate edge along with
materialization of result nodes. There is no code required on the domain
expert’s part to do this. This is made possible by Scala’s powerful im-
plicit conversion mechanism, which lets us implicitly provide a function
application definition for anything deriving from the code graph’s edge la-
bel type. Once we’ve defined our edge labels, we can immediately build
a graph with them using function application within CodeGraphBuilder.
Most importantly, the function application is well typed according to the
type and arity we assigned to each primitive. For example, since sub ex-
tends Binary[INT, INT, INT], the extension method sub(...) accepts two INT-
typed arguments, and returns a single INT-typed value node. This is en-
forced at compile-time like any other function call.

The syntax, while not overly verbose, still requires us to reference the edge
labels by name, which is not exactly natural for this domain. However, one
of the major strengths of this approach to code graphs is that we can easily
subclass CodeGraphBuilder to provide more domain-specific syntax and
otherwise augment the expressivity of the code graph library to an arbitrary
extent.

4.2.3 A More Domain-Specific DSL

Let us first define a new CodeGraph subtype that will be the base type of
all of our expressions. This is not strictly necessary but it simplifies some
type signatures and makes the type organization more semantically precise.
CodeGraphInterface is a trait that contains abstract Input and Output types,
enabling strongly-typed interfaces on CodeGraphs.
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trait Expression
extends CodeGraph[ExprNodeLabel, ExprEdgeLabel] with CodeGraphInterface

A parameterized subtrait defined in the companion object will act as an easy
way to specify the types of an expression’s inputs and outputs.

object Expression {
trait Typed[Input0 <: Product, Output0 <: Product]

extends Expression
{

type Input = Input0
type Output = Output0

}
}

We can refine our DSL’s syntax by extending the CodeGraphBuilder trait.
We also mix in our typed Expression trait so we don’t have to mix it in our-
selves every time we use ExpressionBuilder.

trait ExpressionBuilder[Input <: Product, Output <: Product]
extends CodeGraphBuilder[ExprNodeLabel, ExprEdgeLabel]
with Expression.Typed[Input, Output]

Anything defined in this trait will be visible inside the code graph defini-
tions that implement it. This lets us easily add extension methods and type
conversions that are automatically available when defining code graphs
with our DSL.

The most important thing we need to do is provide some domain-specific
operators for graph nodes (which are the things that represent values in
our DSL). We do this by providing an implicit conversion (denoted by the
implicit keyword) from a NodeName to a wrapper type containing our de-
sired operations. First, we define the operators on integer nodes. Note that
the return types are correct based on the return types we assigned the prim-
itives.
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implicit class IntegerOperations(n: NodeName[INT]) {
def + (m: NodeName[INT]): NodeName[INT] = add(n, m)
def − (m: NodeName[INT]): NodeName[INT] = sub(n, m)
def ∗ (m: NodeName[INT]): NodeName[INT] = mul(n, m)
def / (m: NodeName[INT]): NodeName[INT] = div(n, m)
def < (m: NodeName[INT]): NodeName[BOOL] = lt(n, m)
def <= (m: NodeName[INT]): NodeName[BOOL] = leq(n, m)
def > (m: NodeName[INT]): NodeName[BOOL] = gt(n, m)
def >= (m: NodeName[INT]): NodeName[BOOL] = geq(n, m)
def === (m: NodeName[INT]): NodeName[BOOL] = equ(n, m)

}

We do the same for boolean operations.

implicit class BooleanOperations(n: NodeName[BOOL]) {
def && (m: NodeName[BOOL]): NodeName[BOOL] = and(n, m)
def || (m: NodeName[BOOL]): NodeName[BOOL] = or(n, m)

}

As one last bit of syntactic sugar, we automatically promote literal values
into graph nodes by the appropriate constant-materializing primitive.

implicit def intConst(value: Int): NodeName[INT] =
constInt(value)()

implicit def boolConst(value: Boolean): NodeName[BOOL] =
constBool(value)()

}

4.2.4 Fahreinheit-to-Celsius Revisited

These small additions to CodeGraphBuilder allow us to rewrite our original
temperature conversion function as follows:

object fahrenheitToCelsius extends ExpressionBuilder[Unary[INT], Unary[INT]] {
val fahrenheit = input
val minusThirtyTwo = fahrenheit− 32
val timesFive = minusThirtyTwo ∗ 5
val celsius = timesFive / 9
output(celsius)

}

We can write this as a one-liner as well.
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object fahrenheitToCelsius extends ExpressionBuilder[Unary[INT], Unary[INT]] {
output(((input− 32) ∗ 5) / 9)

}

Separating values into separate variables is generally recommended, how-
ever, as the symbolic names of the variables can be associated with the cor-
responding graph nodes via Scala’s type introspection mechanisms. This
can be very helpful for debugging and graph rendering. In any case, the
resulting code graph is shown in Figure 4.1.

4.2.5 Graph Splicing

Sometimes it is useful to compose code graphs together to reuse function-
ality. For this reason, CodeGraphBuilder provides function application on
CodeGraphs, analogous to the function application on edge labels for edge
insertion, that splices a code graph into another code graph. Like edge
construction, graph splicing is type-safe and matches the interface of the
spliced code graph. The arguments must match the types specified in the
CodeGraphInterface trait, and the result nodes will automatically be typed
accordingly as well. Here is an example of a code graph that checks to see
if a temperature in degrees Fahrenheit is at or below the freezing point:

object isFreezing extends ExpressionBuilder[Unary[INT], Unary[BOOL]] {
output(fahrenheitToCelsius(input) <= 0)

}

It is implemented by first converting the temperature to degrees Celsius
and then comparing it with zero. Note that we “call” the fahrenheitToCelsius
code graph directly, as though it were a function. Splicing fahrenheitToCelsius
results in the whole code graph becoming part of isFreezing. Figure 4.2
demonstrates that the code graph structure of isFreezing contains the struc-
ture of fahrenheitToCelsius in its entirety.

4.2.6 Evaluation

With only a small amount of code, we have created a strongly typed, deeply
embedded expression DSL and implemented two simple expressions with
it. Now that we have graphs representing functions, we can do whatever we
wish with them. One obvious option is to evaluate them under the expected
semantics. The evaluate function takes an expression graph and a sequence

35



M.Sc. Thesis – Simon C. Broadhead – McMaster University – Computer Science

sub

32

mul

5

div

9

Figure 4.1: The fahrenheitToCelsius
code graph.

sub

32

mul

5

div

9

leq

0
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of values representing the inputs to the expression graph, and evaluates the
expression.

def evaluate[Input <: Product, Output <: Product]
(cg: Expression[Input, Output], inputs: Seq[Any]): Seq[Any] = {

import CodeGraphOps._

To facilitate evalutation, we simply need to store a mapping from graph
node names to their corresponding values. Initially, the only known values
are the inputs. Using the built-in topSort extension method (imported from
CodeGraphOps above) to sort the edges in dependency order, we can simply
evaluate each edge knowing that the values needed for the arguments have
already been computed and are available in env.
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var env: Map[CodeGraph.NodeKey, Any] = cg.inputs.zip(inputs).toMap
for(edgeKey← cg.topSort) {

val edge = cg.edge(edgeKey).head
def args = edge.args.map(x⇒

env.getOrElse(x,
throw new RuntimeException(s"Node not evaluated: $x")))

def arg0[T] = args(0).asInstanceOf [T]
def arg1[T] = args(1).asInstanceOf [T]

def results = edge.label match {
case constInt(x)⇒ Seq(x)
case constBool(x)⇒ Seq(x)
case add ⇒ Seq(arg0[Integer] + arg1[Integer])
case sub ⇒ Seq(arg0[Integer] − arg1[Integer])
case mul ⇒ Seq(arg0[Integer] ∗ arg1[Integer])
case div ⇒ Seq(arg0[Integer] / arg1[Integer])
case lt ⇒ Seq(arg0[Integer] < arg1[Integer])
case gt ⇒ Seq(arg0[Integer] > arg1[Integer])
case equ ⇒ Seq(arg0[Integer] == arg1[Integer])
case and ⇒ Seq(arg0[Boolean] && arg1[Boolean])
case or ⇒ Seq(arg0[Boolean] || arg1[Boolean])

}
env = env ++ edge.results.zip(results).toMap

}
cg.outputs.map(x⇒ env.getOrElse(x,

throw new RuntimeException(s"Node not evaluated: $x")))
}

4.3 Error Messages

A strongly typed DSL makes writing correct code much easier due to the au-
tomatic rejection of many incorrect programs. Any code graph that would
be malformed due to a semantically invalid operation will be rejected out-
right by the compiler. Achieving a code graph with invalid semantics is
much more difficult (if not impossible) using a strongly typed construction
interface.

So far we have only seen code graphs whose well-formedness is witnessed
by the types of the nodes and edges—the fact that the Scala compiler ac-
cepts the code that constructs a code graph is effectively proof of its well-
formedness. But what happens when a code graph is not well formed? We
have already established that the compiler will fail. However, it is impor-
tant that users be able to quickly identify and rectify problems, which means
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that one of our secondary goals is to provide users not only with a compi-
lation failure, but also with meaningful feedback in the form of an error
message.

Our library does not make heavy use of macros, nor does it force users to
use any non-standard syntax. Because of this, type errors are reported ex-
actly as they would be in any other context. Consider the following function
in EXPRDSL:

object isPositive extends ExpressionBuilder[Unary[INT], Unary[BOOL]] {
val x = input
val pos = x > 0
output(x)

}

The output primitive expects an argument that matches the result type of
the code graph. We have mistakenly attempted to use the input, an INT-
typed value, as the output, which must be a BOOL-typed value. Upon com-
pilation, we will see something like this:

Error:(216, 12) type mismatch;
found : NodeName[INT]
required: NodeName[BOOL]

output(x)
^

This level of type-safety exists in every code graph operation that our DSL
supports.

4.4 Type-Safe Code Graph Construction

The most fundamental feature of our code graph library is its type-
safe domain-specific language framework. Our goals when producing a
domain-specific language are, broadly:

• capture the maximum amount of information about a code graph;

• minimize the amount of syntax that is necessary;

• offer total type safety; and
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• allow easy domain-specific refinement of the syntax.

In order to achieve these goals, we need to first define an interface through
which a code graph can be built. This trait is called CodeGraphBuilder
and is described in Section 4.7. It is a mutable code graph implementa-
tion with internally-available mutator primitives. Up until this chapter, we
have dealt exclusively in immutable structures. In Chapter 3, we explicitly
avoided any imperative-style code, preferring a pure functional style ex-
clusively. Here, however, we make use of mutable state to build our code
graph imperatively.

We embrace mutable state here in Scala for the same reason we avoid it in
Haskell: to fit in with the natural idioms of the host language. In Haskell,
using state is cumbersome and gets in the way of its naturally declarative
style. In Scala, which is not declarative and supports mutable state inher-
ently, the practical difference between a pure functional interface and an
imperative one is far less significant. So, we elect to make use of the option
which grants us the most flexibility, which is to make some use of inter-
nal mutable state for inherently mutator-like operations (like constructing a
code graph), but keep the external interface pure. Scala’s rich object system
allows us to encapsulate all state within a small scope, exposing only an
immutable impression of it externally, much like Haskell’s ST monad.

4.5 A Trait-Based Object Model

Scala’s traits are class-like packages of behavior and data which can be in-
herited like any class, but which are not rooted in the type system, and can
be multiply inherited from. They are similar to interfaces in Java or C#, ex-
cept that they can contain a subset of a full implementation, rather than just
method declarations. They cannot be instantiated directly, but they can be
freely composed by classes, unlike abstract base classes. It is idiomatic in
Scala for data structures to be most generally represented by traits, rather
than concrete or even abstract base classes. This completely separates the
notion of a data structure from its concrete implementation; in fact, using
this technique, many ad-hoc implementations of the same data structure
may be used depending on the context.
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We use this same idiom in our code graph library. Our code graph is char-
acterized essentially the same way it is in Coconut. NodeKey and EdgeKey

are both long integers.

trait CodeGraph[N, +E] {
def inputs: Seq[NodeKey]
def outputs: Seq[NodeKey]
def nodes: Map[NodeKey, N]
def edges: Map[EdgeKey, Edge[E]]

}

There is no “standard” implementation of a code graph. This trait is truly
the most canonical representation there is. Even the basic immutable code
graph constructor is implemented in an ad-hoc fashion using an anony-
mous trait implementation.

object CodeGraph {
/* ... */
def apply[N, E]
( nodes0: Map[NodeKey, N], edges0: Map[EdgeKey, Edge[E]],

inputs0: Seq[NodeKey], outputs0: Seq[NodeKey] ): CodeGraph[N, E] =
new CodeGraph[N, E] {

val nodes = nodes0
val edges = edges0
val inputs = inputs0
val outputs = outputs0

}
}

Each immutable code graph constructed in this way has its own anonymous
singleton implementation of the CodeGraph trait pre-wired to the given
data.

4.6 Strongly-Typed Code Graph Interfaces

One of the biggest changes we are making over the Haskell implementation
of code graphs is to be able to encode the input and output types and arities
of a code graph and its operations. So, we need a mixin trait that encodes the
input and output types of a code graph. Product is a base trait for product
types (e.g., a tuple).
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trait CodeGraphInterface {
type Input <: Product
type Output <: Product

}

We define our typed interface trait without type parameters, instead using
abstract types to specify the input and output type signature of the code
graph. This allows code graphs of different interfaces to be regarded as
having a shared base type.

object CodeGraphInterface {
type Aux[Input0, Output0] = CodeGraphInterface {

type Input = Input0
type Output = Output0

}
/* ... */

}

The type aliased by Aux is a refinement type, which means it is a subtype
of CodeGraphInterface with additional structural constraints—in this case,
that the input and output types are equal to the ones specified in the pa-
rameters. Note that this is not a class, but rather the name of a type. Any
CodeGraphInterface whose Input and Output types are known at compile-time
to match Input0 and Output0 will be considered a subtype of the correspond-
ing Aux type.

In a sense, the Input and Output types are existentially quantified, since the
types are known to exist but the type system does not know about them at
compile time. In order to represent non-existentially-quantified types, we
can use the nested Aux alias to supply type parameters. Thus, if we wish
to talk about code graphs with typed interfaces in general, we use the trait
CodeGraphInterface. If we wish to talk about code graphs with a particular
interface, then we use the refinement CodeGraphInterface.Aux[Input,Output].

We also define a similar interface for edge labels, allowing us to capture the
type and arity of individual operations.

trait EdgeLabel[Args0 <: Product, Results0 <: Product] {
type Args = Args0
type Results = Results0

}
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4.7 The CodeGraphBuilder Trait

All of the domain-specific language associated with our code graph library
is contained in a trait called CodeGraphBuilder. Within the scope of this
trait is a mutable code graph and a set of primitives to mutate it in a domain-
generic way

The main benefit of using a trait as the base representation of CodeGraph,
rather than an abstract class, is that any class can make itself into a code
graph by simply implementing the CodeGraph trait, regardless of what
other base classes it may have. The implementations of the CodeGraph’s
abstract methods can even come from other traits that don’t necessarily im-
plement CodeGraph themseleves, and that is the technique we use for our
CodeGraphBuilder trait.

As we saw in Section 4.2, when we are constructing a code graph with our
DSL, we actually create an entirely new class (or singleton object) that im-
plements both CodeGraph and CodeGraphBuilder. Although CodeGraph-
Builder does not implement CodeGraph, it does provide concrete imple-
mentations for all of the abstract members of CodeGraph, so implement-
ing both traits yields a full implementation of CodeGraph without lineariz-
ing the type hierarchy (i.e., making CodeGraphBuilder a subtrait of Code-
Graph). That way we can specialize both CodeGraph and CodeGraph-
Builder to our own purposes separately, and then mix them together. Users
may mix them together into a single subtrait if they wish (as we did in our
ExpressionBuilder trait on page 33), but we purposely do not enforce that re-
striction.

The idea behind CodeGraphBuilder is to provide a very limited context in
which code graph mutators are visible, and to appear immutable every-
where else. Here is the basic structure of CodeGraphBuilder:
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trait CodeGraphBuilder[N, E] extends CodeGraphInterface { self ⇒
implicit protected val cg: MutableCodeGraph.Aux[N, E, Input, Output] =

new MutableCodeGraph[N, E] {
type Input = self .Input
type Output = self .Output

}
def nodes = cg.nodes.toMap
def edges = cg.edges.toMap
def inputs = cg.inputs.toSeq
def outputs = cg.outputs.toSeq

/* ... */
}

For now we have omitted the mutation primitives, but we can see that, at its
core, CodeGraphBuilder is nothing more than a mutable code graph with
a typed interface. (The implementation of MutableCodeGraph is extremely
simple: one appropriate mutable container for each of the four components
of CodeGraph.)

4.8 Dependent Types

In most functional languages such as Haskell, types and data operate on
two different levels. Type expressions contain types, and value expressions
contain values. There is no way to, for example, define a function which
takes an integer and returns a tuple of that length, because the length of
the tuple is part of its type. In other words, there’s no general way to map
a value onto a type. Some languages, such as Coq and Agda, deal with
values and types at the same syntactic level and are able to talk about types
that depend on values. These types are called dependent types. One very
powerful application of dependent types is the dependent function, which is
a function of the form

f : (x : A)→ B(x).

This is a function whose result type depends on the value of the first argu-
ment. That is, B is a type parameterized by a value of type A, rather than by
another type—it is a function from a value to a type.

Scala’s powerful type system incorporates dependent types, which sets it
apart from Haskell. Unlike in traditionally dependently-typed languages

43



M.Sc. Thesis – Simon C. Broadhead – McMaster University – Computer Science

such as Coq and Agda, Scala allows a more restricted form of dependent
types called path-dependent types. Types and values are still distinct and can-
not be freely mixed in type expressions. However, a type that is nested in-
side an outer type actually belongs to the instances of the outer type rather
than to the outer type’s class, as is the case in most OOP languages such as
C# and Java. In order to access these types, type expressions may contain
values, but only within a dot-separated path terminating in a type name
(e.g., foo.bar.ReturnType). The concrete type referred to by the type name
depends on the values in the path. It lets us represent dependent functions:

def f (x: A): x.B = { /* ... */ }

It should be noted that Haskell (via GHC extensions) does have some sup-
port for using type-level representations of data. For example, it supports
type-level natural numbers, giving rise to types such as Vec 32 Int, which
might be a statically sized 32-element Int vector. Representing data at the
type level is not, however, the same as dependent typing. The type-level
natural number 32 is not the same thing as (nor does it contain) the Int value
32, nor can a non-literal Int value be used to determine a type-level natural.
In particular, type-level representations of data do not facilitate dependent
functions.

4.9 Type-Level Transformations

In Section 4.6, we defined traits that capture the input and output types of
both code graphs and operations within that code graph. Using these types
is not trivial, however, as the types specified by CodeGraphInterface and
EdgeLabel are merely tuples of an arbitrarily chosen node type. Whereas the
input type of a code graph may be (Int,Bool,Float), we need the inputmeta-
primitive to produce a tuple of the form (NodeName[Int], NodeName[Bool],
NodeName[Float]). Tuples all implement Product which allows us to access
them generically at run-time, but this does not help us at compile time,
where tuples of different sizes and types are effectively unrelated. We need
some compile-type mechanism for polymorphically mapping types to other
types.
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To achieve this, we make extensive use of the shapeless1 library by Miles
Sabin. shapeless uses dependent types to provides a wide variety of
generic type-level algorithms for working with heterogeneous lists, type
classes, and other type-level patterns. It also leverages Scala’s type-safe
macro system to provide generic algorithms on tuple types of arbitrary size,
which is crucial to our type-safe interface. This level of flexibility at the type
level is one of the major ways that Scala excels at hosting type-safe domain
specific languages.

To solve the aforementioned problem of mapping a tuple of node types onto
a tuple of corresponding NodeNames, we make use of shapeless’s HList
(heterogeneous list) algorithms to map the NodeName type class over the
types in a tuple.

We define a trait that encodes the result of wrapping each type in a tuple
inside of a NodeName.

trait NodeNameTupleMapped[L] extends Serializable { type Out <: Product }

object NodeNameTupleMapped {
type Aux[L, Out0] = NodeNameTupleMapped[L] { type Out = Out0 }

We use an Aux type (a standard idiom in shapeless) to specify the other-
wise existential output type.

We turn NodeNameTupleMapped into a type-level partial function by defin-
ing an implicit instance of it for each element in the domain. When a
NodeNameTupleMapped is resolved implicitly at compile-time, the relevant
instance (and thus the output type of our dependent function) will be cho-
sen depending on the type of the input.

The first instance applies to the type PUnit, which is a stand-in for the usual
Unit type that implements the required base trait Product. It functions as the
base case and simply maps onto itself.

implicit def nodeNamePUnitMapper:
NodeNameTupleMapped.Aux[PUnit, PUnit] =

new NodeNameTupleMapped[PUnit] {
type Out = PUnit

}

1Available at https://github.com/milessabin/shapeless as of October 21, 2015.
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The other case is slightly more complicated and follows the same general
pattern as the rest of the type-level machinery in our code graph library.
The list of implicit arguments forms a chain of type-level transformations.
Notice that the final parameter of each argument’s type (i.e., the Out type
of the Aux refinement type) matches the first parameter of the following
argument’s type.

implicit def nodeNameTupleMapper[Args <: Product, AGen <: HList,
AMap <: HList, ATup <: Product]

(implicit
agen: Generic.Aux[Args, AGen],
amap: hlist.Mapped.Aux[AGen, NodeName, AMap],
atup: hlist.Tupler.Aux[AMap, ATup]):

NodeNameTupleMapped.Aux[Args, ATup] =
new NodeNameTupleMapped[Args] {

type Out = ATup
}

}

The conversion proceeds as follows:

1. agen is looked up. Generic is shapeless’s mechanism for converting an
arbitrary Product type to a generic type-level list (HList). An appropri-
ate implicit instance is found (defined inside the shapeless library),
and the type of AGen is able to be inferred from it accordingly. AGen is
the resulting HList type.

2. amap is looked up. Mapped is a way of mapping a higher-order type
over an HList. In this case, we map NodeName over the HList type
witnessed by agen. AMap is the resulting HList such that every element
is a NodeName wrapping the respective argument type.

3. atup is looked up. Tupler is a way of converting an HList to a tuple of
the appropriate length. ATup is the resulting tuple, and is used as the
Out type (i.e., the return type) of our type-level function.

This is the reason we enforce all of our input and output types to derive
from Product, as it allows those types to be generically transformed in cru-
cial ways.
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This is only one example of dependent-type based machinery used in our
code graph library. It is used throughout our library to generate strong type
signatures on-the-fly based on only a few simple type parameters. We make
use of it extensively in our CodeGraphBuilder trait.

4.10 Type-Safe Graph Mutators Using
Dependent Types

In Section 4.7, we saw the foundation of the CodeGraphBuilder trait with
all of its mutators omitted, and in Section 4.8 we saw how dependent types
(along with shapeless’s generic programming functionality) can help us
construct type-safe interfaces on-the-fly. Now we are prepared to take a
look at how CodeGraphBuilder’s type-safe mutators are implemented. Let
us consider the input meta-primitive.

def input[T <: Product]
(implicit

nni: NodeNameInstantiator.Aux[Input, T],
tuw: TupleUnwrapper[T]): tuw.Out = {

if(_inputs != null) {
return _inputs.asInstanceOf [tuw.Out]

}
val inputs = nni.apply()
val nodes = inputs.productIterator.collect { case x: NodeName[N]⇒ x }.toSeq
for(node← nodes) addNode(node)
cg.inputs = MutableSeq(nodes.map(_.key): _*)
val unwrapped = tuw(inputs)
_inputs = unwrapped
unwrapped

}

This is mostly straightforward, except for the two implicit parameters
which actually do the entire duty of ensuring type safety. The two implicit
parameters perform the following operations:

nni This is a dependent function that materializes nodes with fresh ran-
domly generated node names for the given input types and returns a
well-typed tuple of nodes.
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tuw This is used to get rid of the type Tuple1[T] in case it arises, replacing it
with T. This is necessary, otherwise users of CodeGraphBuilder have
to unwrap the result from every operation.

Note that the return type is tuw.Out, meaning that input is a dependently
typed function. Haskell, by comparison, is not capable of this level of type-
level flexibility. We cache the result internally so that multiple uses of input
will not materilize multiple sets of input nodes. The cached value _inputs
is of type Any, requiring a bit of manual type coercion. It is safe in this
case, however, since the real type is already definitively known when it is
needed.

Other graph mutators, such as splicing, the output function, and edge in-
sertion, use similar techniques to have dependent type signatures. This is
what allows code graph construction to be automatically both extremely
powerful and type-safe with minimal boilerplate.

4.11 Macros

Some of CodeGraphBuilder’s primitives have somewhat awkward syntax
when used directly. For example, splicing a code graph is done with a
helper class called Splicer. Here is our isFreezing example from Section 4.2
with the splicing operation represented directly.

object isFreezing extends ExpressionBuilder[Unary[INT], Unary[BOOL]] {
output(Splicer(fahrenheitToCelsius).apply(Tuple1(input)) <= 0)

}

This is unsightly and unwieldy—for one thing, the name Splicer is arbitrary
and reflects an implementation detail within CodeGraphBuilder. For an-
other, the apply method requires a tuple, even for a single argument. Scala
lacks a nice 1-tuple syntax, so we are stuck saying Tuple1 (or a semantically
relevant alias) all the time. Luckily Scala is able to provide strongly typed
source code transformations using compile-time macros. Unlike preproces-
sor macros, such as those featured in C, Scala’s macros operate at the AST
level. Rather than textual replacement of tokens, Scala macro functions ac-
cept entire syntax trees as arguments and return a replacement tree as a
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result. The resulting tree is spliced into the caller’s AST at the point the
macro was invoked with type safety intact.

Here is the macro version which accepts a list of arguments rather than
a tuple. Note that it is still type-safe despite the use of Any, because the
resulting substituted AST will still be dealing with strongly-typed methods.
Type errors will not be allowed to propagate.

def apply(args: Any*): Any = macro CodeGraphMacros.spliceSyntaxImpl

The corresponding macro implementation is straightforward. It simply ac-
cepts any number of arguments and, depending on how many there are,
emits the appropriate product type as an argument to the strongly-typed
version. The q prefix on the string indicates that it is a quasiquote, meaning
that the code inside the string is parsed into a Scala AST at compile-time.

def spliceSyntaxImpl(c: whitebox.Context)(args: c.Tree*): c.Tree = {
import c.universe._
val prefix = c.prefix
args match {

case Nil⇒ q"$prefix.apply(<>)"
case x :: Nil⇒ q"$prefix.apply(Tuple1($x))"
case xs⇒ q"$prefix.apply((..$xs))"

}
}

A similar macro system is available for Haskell called Template Haskell,
although its use requires special syntax at the call site, adding substantial
syntactic overhead to a DSL built for it.

4.12 Conclusion

In this chapter we have seen how easy it is to build a domain-specific code
graph with our Scala code graph library, and how easy it is to build a
domain-specific language on top of it. Many of the features described in
this chapter are not achievable in Haskell, such as any of the instances of
dependent types (including anything involving the shapeless library).

We feel that this library and its associated DSL achieves its goals as stated in
Section 4.4. Scala has proven its worth as a rich and powerful host language
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for domain-specific languages; it provides (and augments) the type safety
and functional style that Haskell programmers are accustomed to, while
its imperative underpinning and Java ecosystem make it an accessible and
practical language for general use.

In the next chapter we will look at an example of implementing a subset of
Coconut in order to demonstrate how quickly our library can help achieve
its goal of modeling, simulating, and scheduling architecture-specific func-
tions.
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Chapter 5

Coconut Revisited

5.1 Overview

In Chapter 3 we briefly introduced the Coconut project and talked about
how it makes use of code graphs to achieve its goals of creating highly-
optimized architecture-specific functions. The Haskell library is very ex-
pressive and has certainly achieved its goals, given the performance of its
results, such as those as discussed in [AK09]. Nevertheless, each Coconut
Haskell DSL is implemented in a relatively ad-hoc fashion—each DSL is
separate from the next, sharing only the underlying code graph data struc-
tures and algorithms. The type classes used for primitives, and thus the
primitives themselves, are unrelated and so most of the critical machinery
such as type-safe code graph construction must be handled anew with each
new application of Coconut. This is both an inefficient use of a domain
expert’s time and a frustrating source of problems as the code base ages;
by capturing each new instruction set in an ad-hoc DSL, we end up with a
preponderance of essentially disjoint and increasingly obsolete code bases.

In fact, the motivation for this Scala code graph library lies in the inability
of recent versions of the Glasgow Haskell Compiler (GHC) to compile the
oldest parts of Coconut, and the level of difficulty experienced attempting to
bring it up to date. In this chapter we will revisit Coconut and demonstrate
how we can use our Scala code graph library to achieve the same goals with
far less code, and a far greater opportunity for code reuse.
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5.2 Encoding an Instruction Set

In Section 3.4, we saw a example of Coconut’s Haskell DSL. As mentioned
before, each architecture-specific DSL is implemented as a separate type
class. We have seen PowerType, the type class implementing a DSL for IBM’s
PowerPC and SPU instruction sets, but there are other, very similar DSLs
that target other architectures. Each one needs to implement its own map-
ping from primitives to code graph construction behaviour. These imple-
mentations generally rely on using raw graph transformations that must be
hand-verified. Mistakes in this part can result in difficult-to-diagnose bugs
when the seemingly safe, strongly typed interface yields bizarre behaviour
caused by a bug in an underlying primitive function.

While the same is certainly true of our library, we have factored the core
functionality out into a single Scala trait where all the graph transforma-
tion behaviour can be easily identified, audited, and verified. Implemen-
tors of new DSLs need only use the existing functionality without concern-
ing themselves with mechanical details of code graph transformation and
potentially introducing bugs. Furthermore, by providing a reusable Scala
library, we allow legacy code bases to remain current by simply switching
to a newer version of our library.

Encoding an instruction set in a Coconut Haskell DSL is tantamount to cre-
ating an entirely new ad-hoc code graph construction DSL. In this case, the
primitives are described by the PowerType type class.

class PowerType n where
data VR n

The associated VR type encodes a value that lives in a vector register. There
are other types of registers, but for demonstration purposes we only need
VR. The type class parameter n is never actually used directly, but funtions
only as a label at the type level to discriminate between implemenations of
the DSL.

The primitives (i.e., architecture instructions) are listed here, with their sig-
natures specified in terms of the associated value types. Only a tiny ex-
cerpt is reproduced here—a real DSL may contain hundreds of primitives
depending on the scope of the original instruction set.
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fa :: VR n→ VR n→ VR n – add
fs :: VR n→ VR n→ VR n – subtract
fm :: VR n→ VR n→ VR n – multiply
fma :: VR n→ VR n→ VR n→ VR n – fused multiply-add
– ...

This is merely a type class definition and these primitives lack definitions.
In order to turn these primitives into a code graph, a whole implementation
of this type class (including possibly hundreds of instruction primitives)
must be created just to map each primitive onto the underlying code graph
transformation semantics. Code reuse is essentially impossible, as a mini-
mum of one implementation must be created for the type class, even if it
functions only as a pass-through to existing behaviour. A new architecture
DSL requires a significant amount of boilerplate to be written before any
code graphs can be produced.

By contrast, our Scala code graph library is able to produce code graphs
with only the values and operations defined. No boilerplate is necessary,
and domain experts may begin using their primitives to construct code
graphs immediately.

For our subset of Coconut, we need only one type of register, corresponding
to a vector register, hence the name VEC.

object Registers {
sealed abstract class Register
case class VEC() extends Register

}

For the purposes of this thesis, we will encode exactly the instructions we
need in order to implement the exponential function (see Section 5.4) and
no more. It turns out we need nine different instructions (plus the const
primitive) so we encode those here.
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object Instructions {
import Registers._
abstract class Instruction
object Sig {

trait Nullary extends Instruction with EdgeLabel.Nullary[VEC]
trait Unary extends Instruction with EdgeLabel.Unary[VEC, VEC]
trait Binary extends Instruction with EdgeLabel.Binary[VEC, VEC, VEC]
trait Ternary extends Instruction

with EdgeLabel.Ternary[VEC, VEC, VEC, VEC]
}
case class const(value: Vec4) extends Sig.Nullary
case object a extends Sig.Binary
case object and extends Sig.Binary
case class cflts(scale: Int) extends Sig.Unary
case object fcgt extends Sig.Binary
case object fm extends Sig.Binary
case object fma extends Sig.Ternary
case class roti(value: Int) extends Sig.Unary
case object selb extends Sig.Ternary
case object shufb extends Sig.Ternary

}

As in our example DSL in Section 4.2, we are now prepared to create full
code graphs using a type-safe DSL consisting of the primitives we have
defined here. In fact, we do not even need to define a new syntax, since the
function application style that our code graph library provides by default is
appropriate.

For convenience, we create a trait to represent our domain-specific code-
graphs.

trait FunctionGraph extends
CodeGraph[Register, Instruction] with
CodeGraphInterface

We will also create an existentially-typed function builder trait and an ex-
plicitly typed subtrait.

54



5. COCONUT REVISITED

trait FunctionBuilder
extends FunctionGraph
with CodeGraphBuilder[Register, Instruction]

object FunctionBuilder {
trait Typed[Input0 <: Product, Output0 <: Product] extends FunctionBuilder {

type Input = Input0
type Output = Output0

}
}

5.3 Auxiliary Functions and Modules

Now that we have our primitives defined, we can take advantage our li-
brary’s extensible nature to provide auxiliary functionality to users of our
domain-specific language.

On the Haskell side, Coconut uses a pure functional code graph interface,
as we saw in Section 3.4. This makes it relatively easy to construct auxil-
liary funtions for use within the DSL—they are just Haskell functions that
operate on the value types of our DSL. The semantics of the primitives au-
tomatically establish it as a code graph construction function.

In Scala, we have to work a little bit harder. Since our code graphs are not
built purely, but rather using state mutators, we cannot simply create auxil-
iary functions the same way we would in Haskell—each auxiliary function
requires access to a CodeGraphBuilder so that it has access to its mutators (let
alone something to mutate).

There are two ways to support auxiliary functions:

1. Create the auxiliary functions as entire code graphs—not a big deal
considering the low syntactic overhead of code graph construction—
and use graph splicing syntax to “call” the graphs as though they were
functions.

2. Place the functions inside a class that depends on CodeGraphBuilder in
its constructor, and then instantiate that class where the functions are
needed, using the contextual builder as its argument. Then we can use
them as actual functions.
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Both approaches have their advantages. Under the first option, each aux-
iliary function will be a standalone code graph object that can be eas-
ily inspected, analyzed, printed, and debugged. The downside is mainly
syntactic—graph splicing is done with function application, meaning an
unsightly set of extra parentheses will arise occasionally.

The alternative is to keep our auxiliary functions as regular Scala functions,
but put them inside a class that requires a CodeGraphBuilder in order to be
constructed. Since this gives us the least syntactic overhead and the most
flexibility, this is the technique we choose to employ. Note that a wrap-
per code graph can be trivially constructed that merely calls into a module
function, giving us the benefits of the other approach with a small amount
of overhead.

As an example, consider mathematical functions. Since Coconut is primar-
ily concerned with numerical computation, it makes sense to have a library
of useful mathematical functions at the DSL level. In order to facilitate this,
we create a class called MathUtils that depends on FunctionBuilder in its con-
structor, effectively making MathUtils a domain-specific module.

class MathUtils(builder: FunctionBuilder) {
import builder._

The second line is important, as it brings all of the builder’s mutators and
conversions into scope, essentially activating our DSL within the context of
this class.

Here is one of the functions from the math library, which evaluates a poly-
nomial.

def evalPolynomial(coeffs: Seq[NodeName[VEC]])
(v: NodeName[VEC]): NodeName[VEC] = {

var i = 0
var r = coeffs.last
for(c← coeffs.init.reverse) {

r = fma(r, v, c) named s"poly$i"
i += 1

}
r

}
}
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Note that it uses the code graph DSL seamlessly—such is the power of im-
porting a CodeGraphBuilder into the current scope.

Also of note is the named meta-primitive being invoked on the result of the
fma primitive. CodeGraphBuilder is capable of associating textual names with
each graph node in order to aid in debugging, and in fact in cases where a
graph node is assigned to a named field, the textual names will be deduced
automatically using Scala’s type reflection capabilities. In some cases, we
would like to assign a name manually, so we do that here in order to se-
quentially number the steps of a polynomial evaluation.

In order to use the module from within a function, we can create a local ob-
ject that extends our module class. This has the benefit of creating a name-
space for our functions.

object EvalPoly extends FunctionBuilder.Typed[Unary[VEC], Unary[VEC]] {
object math extends MathUtils(this)
val coeffs = /* compute coefficients ... */
output(math.evalPolynomial(coeffs)(input))

}

5.4 Implementing the Exponential Function

To test out our code graph library, we will implement the exponential func-
tion from Coconut’s SPU math library. This function computes exp(x) for
a 32-bit floating point number x. See [AS09] and [AS10] for a detailed de-
scription of how exp is implemented.

We present the original, slightly simplified Haskell code here without ex-
planation.
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expSPU :: PowerType n⇒ VR n→ VR n
expSPU v = final

where
final = selb result maxFloat restrictDomainmax
result = fm exp evalPoly
vBylog2 = fm v (unfloats4 (1 / (log 2) ∗ (1 + 1.5 ∗ 2 ∗∗ (−24))))
restrictdomainmin = fcgt (unfloats4 (−127)) vBylog2
domainmin = selb vBylog2 (unfloats4 (−127)) restrictdomainmin
restrictDomainmax = fcgt vBylog2 (unfloats4 (129− 128 ∗ 2 ∗∗ (−23)))
vBylog2AsInt = cflts domainmin (23)
exponent = and vBylog2AsInt (unwrds4 0xff800000)
exp = a exponent (unwrds4 0x3f800000)
frac = onePlusMant 20 vBylog2AsInt
coeffs = lookup8Word (22, 20) coeffLists vBylog2AsInt
evalPoly = hornerV coeffs frac

coeffLists = [[0.48891047, ...], ...]

It is mostly straightforward; however, make note that the functions
onePlusMant, lookup8Word, and hornerV are auxiliary functions within Co-
conut that represent many primitive instructions. coeffLists is a list-of-lists
holding the values to be looked up by the lookup8Word instruction, which
performs in-register table lookup.

One important thing about expSPU is that it is not, in fact, a code graph.
Turning it into a usable code graph requires extra machinery to materialize
input nodes, evaluate the function, and extract the finished code graph from
the resulting output node.

Implementing this function in our Scala DSL is quite simple. The functions
onePlusMant and hornerV (renamed to evalPolynomial) are encapsulated in
our MathUtils module shown in the previous section. Rather than making
constant materialization functions such as unfloats4 (used to duplicate a con-
stant across all four 32-bit slots of a 128-bit vector register) primitives in the
DSL, as in the Haskell implementation, we elect to move them into a utility
module called VecUtils and give them slightly more semantically relevant
names.

The lookup8Word function performs an 8-way register-level lookup (via two
4-way vector registers). It has been moved into its own module which en-
capsulates the underlying table-lookup functionality called LookupTable8.
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The data to look up, formerly held in a variable called coeffLists, is now part
of the lookup table. The floats function translates a row of floating-point
values into their underlying integral representations within the table. The
underlying code has been ported directly from Coconut.

Here is the Scala code graph implementation of the exponential function as
ported from Coconut.

object exp extends FunctionBuilder.Typed[Unary[VEC], Unary[VEC]] {
object vec extends VecUtils(this)
object math extends MathUtils(this)
object coeffTable extends LookupTable8(this) {

override val values = Seq(floats(0.48891047, ...), floats(...), ...)
}

val v = input
val vByLog2 = fm(v, vec.splatFloat4({

1 / scala.math.log(2) ∗ (1 + 1.5 ∗ exp2f (−24))
}.toFloat))

val restrictDomainMin = fcgt(vec.splatFloat4(−127), vByLog2)
val domainMin = selb(vByLog2, vec.splatFloat4(−127),

restrictDomainMin)
val restrictDomainMax = fcgt(vByLog2, vec.splatFloat4(129− 128 ∗ exp2f (−23)))
val vByLog2Int = cflts(23)(domainMin)
val exponent = and(vByLog2Int, vec.splatInt4(0xff800000))
val exp = a(exponent, vec.splatInt4(0x3f800000))
val frac = math.onePlusMant(20, vByLog2Int)
val coeffs = coeffTable.lookup(20)(vByLog2Int).zipWithIndex.map {

case(n, i)⇒ n named s"coeff$i"
}

val polyResult = math.evalPolynomial(coeffs)(frac)
val raw = fm(exp, polyResult)
val result = selb(raw, vec.splatFloat4(Float.MaxValue),

restrictDomainMax)
output(result)

}

Figure 5.1 on page 60 shows an automatically generated representation of
this code graph.

59



M.Sc. Thesis – Simon C. Broadhead – McMaster University – Computer Science

exp 
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000

poly2
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14

-
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c

makePair_1
      0.18578433 0x3e3e3e3f
      0.74705881 0x3f3f3f3f

      -27765.500 0xc6d8eb00
   1.1721152e-31 0x0c182635

coeff0
      0.69142383 0x3f310127
      0.69142383 0x3f310127
      0.69142383 0x3f310127
      0.69142383 0x3f310127

c0123
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018

createKey
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c

raw 
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14

-
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff

makePair_1
     0.046200980 0x3d3d3d3d
     0.046200980 0x3d3d3d3d
  -2.2213131e-34 0x8793a1af

      -1.6319571 0xbfd0e3f8

look2
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414

vByLog2AsInt 
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0

coeff3
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6

-
       -Infinity 0xff800000
       -Infinity 0xff800000
       -Infinity 0xff800000
       -Infinity 0xff800000

makePair_1
     0.046200980 0x3d3d3d3d
     0.046200980 0x3d3d3d3d
   5.0118434e+27 0x6d818d99
  -5.1009379e-15 0xa7b7c7d9

restrictDomainMin 
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000

makePair_1
      0.18676470 0x3e3f3f3f
      0.74705881 0x3f3f3f3f

  -1.7664018e+35 0xfa081422
   2.8132032e-09 0x31415265

domainMin 
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad

makePair_2
   4.1838861e+26 0x6bad0a9e
  -1.2739273e-36 0x83d8bf5c
  -4.4042689e-20 0x9f4ffc58

   1.9416368e+27 0x6cc8c2b3

-
       1.0000000 0x3f800000
       1.0000000 0x3f800000
       1.0000000 0x3f800000
       1.0000000 0x3f800000

poly1
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c

vByLog2 
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad

-
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff

makePair_2
   3.2012320e-17 0x2413a17a
   3.3354569e-22 0x1bc99db2
   1.7552008e+28 0x6e62dab9
  -3.6672255e-25 0x96e2fd82

-
       128.99998 0x4300ffff
       128.99998 0x4300ffff
       128.99998 0x4300ffff
       128.99998 0x4300ffff

splatKey
       0.0000000 0x00000000

   1.5518369e-36 0x04040404
   4.0935452e-34 0x08080808
   1.0788833e-31 0x0c0c0c0c

-
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000

exponent 
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000

mask
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707

restrictDomainMax 
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000

frac 
       1.124683

       1.1246834 0x3f8ff5a0
       1.1246834 0x3f8ff5a0
       1.1246834 0x3f8ff5a0

makePair_2
   2.7255977e+11 0x527dd750
   2.4702703e-38 0x01067e8b
   5.9604099e+34 0x7937ab58
   3.0076791e-15 0x2758b9e3

-
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01

coeff2
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c

poly0
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a

makePair_2
   1.2240125e+30 0x71772ff6

  -4.5059325e+22 0xe518aabc
  -5.9504684e-26 0x95935393
  -1.7871955e+23 0xe61761a0

coeff1
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96
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01

2
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Figure 5.1: An automatically generated rendering of the exp code graph.
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exp 
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000
   1.7179869e+10 0x50800000

poly2
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14
       1.5418725 0x3fc55c14

-
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c
       1.4426951 0x3fb8aa3c

makePair_1
      0.18578433 0x3e3e3e3f
      0.74705881 0x3f3f3f3f

      -27765.500 0xc6d8eb00
   1.1721152e-31 0x0c182635

coeff0
      0.69142383 0x3f310127
      0.69142383 0x3f310127
      0.69142383 0x3f310127
      0.69142383 0x3f310127

c0123
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018
   7.4045732e-40 0x00081018

createKey
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c
   1.6466155e-36 0x040c141c

raw 
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14

-
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff
   3.4028235e+38 0x7f7fffff

makePair_1
     0.046200980 0x3d3d3d3d
     0.046200980 0x3d3d3d3d
  -2.2213131e-34 0x8793a1af

      -1.6319571 0xbfd0e3f8

look2
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414
   7.4760502e-27 0x14141414

vByLog2AsInt 
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0
   1.6405110e-28 0x114ff5a0

coeff3
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6
     0.081981465 0x3da7e5e6

       24.000000 0x41c00000
       24.000000 0x41c00000
       24.000000 0x41c00000
       24.000000 0x41c00000

-
       -Infinity 0xff800000
       -Infinity 0xff800000
       -Infinity 0xff800000
       -Infinity 0xff800000

makePair_1
     0.046200980 0x3d3d3d3d
     0.046200980 0x3d3d3d3d
   5.0118434e+27 0x6d818d99
  -5.1009379e-15 0xa7b7c7d9

restrictDomainMin 
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000

makePair_1
      0.18676470 0x3e3f3f3f
      0.74705881 0x3f3f3f3f

  -1.7664018e+35 0xfa081422
   2.8132032e-09 0x31415265

domainMin 
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad

makePair_2
   4.1838861e+26 0x6bad0a9e
  -1.2739273e-36 0x83d8bf5c
  -4.4042689e-20 0x9f4ffc58

   1.9416368e+27 0x6cc8c2b3

-
       1.0000000 0x3f800000
       1.0000000 0x3f800000
       1.0000000 0x3f800000
       1.0000000 0x3f800000

poly1
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c
      0.75616717 0x3f41942c

vByLog2 
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad
       34.624683 0x420a7fad

-
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff
   1.4693665e-39 0x000fffff

makePair_2
   3.2012320e-17 0x2413a17a
   3.3354569e-22 0x1bc99db2
   1.7552008e+28 0x6e62dab9
  -3.6672255e-25 0x96e2fd82

-
       128.99998 0x4300ffff
       128.99998 0x4300ffff
       128.99998 0x4300ffff
       128.99998 0x4300ffff

splatKey
       0.0000000 0x00000000

   1.5518369e-36 0x04040404
   4.0935452e-34 0x08080808
   1.0788833e-31 0x0c0c0c0c

-
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000
      -127.00000 0xc2fe0000

exponent 
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000
   1.0097420e-28 0x11000000

mask
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707
   1.0158336e-34 0x07070707

restrictDomainMax 
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000
       0.0000000 0x00000000

frac 
       1.1246834 0x3f8ff5a0
       1.1246834 0x3f8ff5a0
       1.1246834 0x3f8ff5a0
       1.1246834 0x3f8ff5a0

makePair_2
   2.7255977e+11 0x527dd750
   2.4702703e-38 0x01067e8b
   5.9604099e+34 0x7937ab58
   3.0076791e-15 0x2758b9e3

-
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01
   2.5783920e-26 0x14ff5a01

coeff2
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c
     0.093512386 0x3dbf836c

poly0
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a
      0.18571559 0x3e3e2c3a

makePair_2
   1.2240125e+30 0x71772ff6

  -4.5059325e+22 0xe518aabc
  -5.9504684e-26 0x95935393
  -1.7871955e+23 0xe61761a0

coeff1
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96
      0.54729593 0x3f0c1b96

   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
   2.6489168e+10 0x50c55c14
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0x7070707
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Figure 5.2: An automatically generated rendering of the exp code graph
being evaluated, with intermediate nodes labelled by their name and value.
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5.5 A Code Graph Interpreter

In Section 3.4, we saw that Coconut’s Haskell DSLs have two sets of
semantics—one for simulating functions using real values, and one for con-
structing code graphs. Because of the construction of our DSL, it is not
possible to do the same in Scala—our primitives are state mutators, not
pure functions, and anyway we aren’t using a type-class-based primitive
system with which to provide multiple implementations of the primitives.
However, as we saw with FILEDSL in Section 4.2, we can use the built in
topSort code graph operation to trivially produce a set of graph edges in data
dependency order and evaluate them one-by-one until all nodes are com-
puted. We do the same here, using the interpreter semantics from Coconut
as a reference. The implementation is omitted, but it is largely identical to
the expression evaluator in Section 4.2.

5.6 Debugging Techniques

Since our execution is deferred beyond the point of code graph construc-
tion, we cannot use normal debugging techniques such as breakpoints or
print statements to trace the execution of our algorithms. In order to debug
functions written for Coconut, they generally return a pair of values—the
computed result node, as well as a table of intermediate values labelled by
name. When run with interpreter semantics, this gives us a lens into the
inner workings of our function.

See Table 5.1 for an example of one of these tables as output by Coconut. It
gives us a relatively clear picture of what is going on inside the algorithm,
but it places a burden on the domain expert—they must manually collate
the intermediate results into a table, duplicating the symbolic value names
inside string literals, and ensuring that all relevant intermediate values are
represented. In Haskell, the symbolic names of value bindings are not avail-
able at runtime through any normal means, so we are stuck doing a lot of
repetative mechanical work by hand.

Haskell has some runtime type introspection support in the Data.Data and
Data.Typeable modules, but it still cannot help us extract the names of tem-
porary bindings inside where clauses, which is where our bindings live.
In Scala, however, our intermediate values actually become public fields of
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Name Slot1 (float) Slot1 (hex) Slot2 (float) · · ·
v 24.0 41c00000 17.0 · · ·
final 2.6489167872e10 50c55c14 2.415499e7 · · ·
result 2.6489167872e10 50c55c14 2.415499e7 · · ·
vByLog2 34.62468338012695 420a7fad 24.52581787109375 · · ·
restrictdomainmin 0.0 0 0.0 · · ·
domainmin 34.62468338012695 420a7fad 24.52581787109375 · · ·
restrictDomainmax 0.0 0 0.0 · · ·
vByLog2AsInt 1.6405109784889363e-28 114ff5a0 1.504572583741766e-31 · · ·
exponent 1.0097419586828951e-28 11000000 9.860761315262648e-32 · · ·
exp 1.7179869184e10 50800000 1.6777216e7 · · ·
frac 1.1246833801269531 3f8ff5a0 1.02581787109375 · · ·
evalPoly 1.541872501373291 3fc55c14 1.4397495985031128 · · ·
coeffs0 0.6914238333702087 3f310127 0.6914238333702087 · · ·
coeffs1 0.5472959280014038 3f0c1b96 0.5472959280014038 · · ·
coeffs2 9.35123860836029e-2 3dbf836c 9.35123860836029e-2 · · ·
coeffs3 8.198146522045135e-2 3da7e5e6 8.198146522045135e-2 · · ·

Table 5.1: Excerpt from debug table returned by Coconut’s SPU exp imple-
mentation, which operates on four 32-bit vector slots.

our CodeGraphBuilder, allowing us to trivially access every named interme-
diate value using Scala’s built-in runtime reflection mechanisms. In fact,
CodeGraphBuilder automatically gives appropriate symbolic names to any
graph nodes whose name can be deduced through reflection. The named
meta-primitive can also be used to manually assign a name to a graph node.

What’s more, since we are evaluating the code graph ourselves, rather than
allowing the host language to do it for us, we have access to the value of
every intermediate value in the computation—even the ones that are part
of a subexpression or auxiliary function. In contrast, any values that are
materialized as part of a subexpression or auxiliary function in Coconut are
inaccessible to the interpreter and must be refactored into a separate, named
value binding in order to access its value directly.

Rather than producing tables of values as in the Haskell implementation,
we can actually produce a visual representation of the code graph with
nodes labelled by their symbolic names and values. This lets us see the val-
ues changing as they flow through the algorithm and pinpoint the source
of erroneous values much more easily than in the Haskell implementation.
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See Figure 5.2 for an example of our exp code graph being evaluted with
intermediate values visible and labelled.

5.7 Instruction Scheduling and Beyond

As discussed in Section 3.3, Coconut’s primary motivation is to generate
efficient architecture-specific code. In general, the only way to do this prop-
erly is to generate assembly code directly, since C compilers are often too
general to effectively capture and optimize the quite-specialized patterns
our functions are built around. Using a priori knowledge of the domain,
Coconut has outperformed general compilers in the domain of vectorized
mathematical functions. See [AK09] for some of those results.

5.7.1 Explicitly Staged Software Pipelining

The instruction scheduling algorithm used by Coconut is known as Explic-
itly Staged Software Pipelining (ExSSP). A full treatment of this algorithm and
its relationship with code graphs can be found in [Tha06].

In a modern CPU architecture, the execution of individual instructions is
broken up over the course of several clock cycles (a pipeline) in order to
facilitate greater throughput; there is a several cycle delay between the dis-
patch and the completion of an instruction when its results are available, but
many instructions may be executing in parallel as long as their operands do
not depend on each other. As a result, generating an assembly program
with the instructions in toplogically sorted order (recall Figure 3.3 for an
example of this), while correct, will result in a woefully inefficient program.
Each successive instruction may have to wait the full length of the instruc-
tion pipeline before it can read the result of its immediate predecessors and
be dispatched. See Figure 5.3 for a visualization of an instruction pipeline.

There is not much we can do about this in the case of a single execution of
the function, but since numerical computation generally involves large ar-
rays of data, we can use some function vectorization techniques to produce
high throughput for mapping our function over an entire array.

The ExSSP algorithm makes use of loop unrolling and software pipelining in
order to produce an efficient loop that performs our computation in pieces,
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Figure 5.3: A visual depiction of a 7-cycle execution pipeline. The grey
column on the left represents the instruction to be dispatched next, and the
grey column on the right represents the completion stage of the instruction.
IB requires the result of IA and so pipeline stalls (the bubbles) are issued to
compensate.

allowing the inputs from several loop iterations to be processed by differ-
ent parts of our algorithm at once. This gives us a large number of inde-
pendent instructions that can be scheduled freely amongst each other, since
different loop iterations never depend on each other. Thus we can max-
imize throughput by ensuring that no instruction is scheduled before its
operands are ready, preventing the stall scenario pictured in Figure 5.3. In-
depth discussion of scheduling algorithms is beyond the scope of this thesis
(see [Tha06] for full details), but it is important to note that the algorithm
is based heavily on code graphs, and is agnostic to the underlying imple-
mentation, meaning it (and any other known code graph algorithm) can
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be straightforwardly implemented in Scala and be used to put code graphs
into production in a relatively short amount of time.

5.7.2 Nested Code Graphs

Past treatments of code graphs that capture control flow [AK07b, Tha06]
make use of a loop specification construct called MultiLoop that uses nested
hypergraphs to establish control-flow relationships between the strictly
data-flow type of code graphs we have seen so far.

Our code graph library supports strongly-typed nested code graphs almost
trivially. For example, we could add the following DSL primitive to our
Scala Coconut DSL:

case class nest[Input <: Product, Output <: Product, N <: Register, E <: Instruction]
(cg: CodeGraph[N, E] with CodeGraphInterface.Aux[Input, Output])
extends Instruction with EdgeLabel[Input, Output]

This is a primitive that references a strongly-typed code graph and whose
argument and result types are deduced from that code graph. Note that the
nested code graph may have more specific types than the outer graph, and
we could in fact fix N and E to be specific subtypes of Register and Instruction.

For instance, we could define a new abstract subtype of Instruction called
DataInstruction, and make all of our existing primitives derive from that.
Other primitives, such as control flow instructions, can derive from another
subtype, such as ControlInstruction. If we then restrict our data-flow code
graphs to be of type CodeGraph[Register,DataInstruction], then we have es-
tablished a data-flow-specific specialization of a more general code graph—
such a code graph cannot contain control-flow instructions. However, since
DataInstruction derives from Instruction, we can still nest it in a more general
control-flow-aware code graph using the nest primitive. We can even al-
ter nest to only accept CodeGraph[Register,DataInstruction], thus ensuring the
semantic validity of the nesting.

There is still much research to be done in this area. The CodeGraphBuilder

trait, being invariant in its node and edge label types, makes it diffi-
cult for the modules from Section 5.3 to be made generic in their under-
lying edge labels. This means that, for example, it may be difficult to
make DataInstruction primitives usable in code graph builders that are gen-
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eral enough to contain arbitrary Instruction primitives. While representing
nested code graphs in a type-safe way is already possible, safely and gener-
ically constructing code graphs using this kind of nesting is an avenue of
future research.
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Chapter 6

Conclusion and Future Research

We have constructed a lightweight library in Scala that functions both as a
type-safe platform for continuing the past research of the Coconut project,
and as a base for the rapid development and usage of domain-specific lan-
guages in general. We have shown that it is more than capable of achieving
the same results as past Coconut DSLs with far less boilerplate and syntac-
tic overhead. We have also seen that it can easily achieve results in other
domains, with EXPRDSL in Section 4.2.

We have used code graphs in their most general formulation in this the-
sis. Code graphs have been used in more specialized formulations, such
as in [AK07b], where control flow and data flow are modeled as nested
code graphs. This was discussed briefly in Section 5.7.2. While we have left
the door open to a natural well-typed formulation of nested code graphs,
we have not explored it as a way to model control-flow. In particular, the
current invariance of CodeGraphBuilder’s type parameters raises significant
issues in using the module pattern in Section 5.3 when multiple types of
primitives are introduced. Mitigating these issues and further exploring
type-safe modeling of control-flow via nested code graph construction is an
avenue for future research.

The library presented in this thesis is fairly lightweight and stands alone.
Other Scala DSL libraries such as Yin-Yang [JSS+14] and Delite [BSL+11,
RSL+11, SRB+13] feature much more complex treatments of DSLs. We
chose to build our own library from scratch so that we could directly in-
corporate the underlying code graph data structure into it, rather than
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making it a byproduct of some other DSL’s intermediate representation—
specifically, we wanted to, for the purposes of this thesis, explore the utility
of code graphs as DSL intermediate representations in and of themselves.
Nevertheless, it is worth exploring alternative DSL libraries as a front-end
to code graph generation.

Scala has proven itself a worthy host to domain-specific languages. Its sup-
port for dependently typed method signatures has opened the door for a
level of automatic type safety that was not possible with Haskell. We have
only scratched the surface of its powerful type-safe macro system—there is
much future work to be done investigating the syntactic possibilities that
macros can bring to our code graph library and its DSLs.
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