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In order to investigate the formation of different types
of pit shapes on the crystalline surfaces, a mathematical model
has been considered, which does not take into account surface
diffusion and which defines the removal or transformation of
different characteristic sites on the surface according to a
set of frequencies. The characteristic sites are defined
according to Terrace-Ledge-Kink model for the simple cubic
crystal. With the help of the geometry of the step systems,
specific conditions have been obtained under which the step
systems considered could be obtained for a pit of monoatomic
thickness. The dissolution of a simple cubic crystal has been

simulated according to a set of probabilities.
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Introduction

When a close-packed crystal face is considered in contact with
an etchant, dissolution of the crystal sets in since the chemical potential
of the crystal substance in the etchant is Tower than the chemical potential
of the crystal. Dissolution takes place by step movement. The sources of
steps will be screw dislocations, two dimensional nuclei of dissolution
(hollows of monoatomic thickness in the surface layer of the lattice), sub-
grain boundaries and the crystal edges.

The theoretical analyses of crystal dissolution that are most
widely accepted today can be grouped into two categories: (a) those which
invoke a mechanistic approach as first rigorously applied by Burton, Cabrera
and Frank (1); (b) those based upon phenomenological or kinetic arguments
such as the topographical theory of Frank (2). Both types of theories
follow the concepts of Kossel (3) and Stranski (4) who developed the currently-
accepted geometric model for vicinal crystalline surfaces. This model of
the surface with the various characteristic sites on the surface is called
TLK model. If the crystal is exemplified as a regular simple cubic lattice,
the sites of which are occupied by atoms depicted as cubes, then the typical
sites on the surface which may arise may be schematically illustrated as
in Figure 1. Ledges and especially kink sites along the ledges are ener-
getically preferred sites for removal of atoms from a crystalline surface.
Hence, dissolution occurs by the recession of a train of monoatomic Tedges
across the surface (5). The localized dissolution rate will be proportional
to the product of the ledge velocity (v) and the concentration of ledges (k)
in the given vicinity. The theoretical analysis of the dissolution processes

then involves an interpretation of the dependence of v on k. The significant



difference between the mechanistic approach and the topographical theory is
that in the former, Burton, Cabrera and Frank invoked the ledge model of
dissolution and derived v equal to v(k), whereas in the latter, Frank
assumed a form for v(k) and then developed his theory.

In practice, the etch pits have been found to have varying
shapes from conical to pyramidal. Even for the same crystalline material,
different types of pit shapes are obtained on the surface depending on the
process variables (6,7). The summary of the experimentally-obtained pit shapes
for NaC1is shown in Figure 2 and Figure 3 along with the conditions under
which they were obtained. Ives (8) tried to explain qualitatively the
different pit shapes on the basis of undersaturation of the solution and the
inhibitor concentration in the solution. It was postulated that kink
nucleation is primarily controlled by the undersaturation of the dissolving
species in the solvent and the principal effect of etchant inhibitor is in
the retardation of kink motion. The present study has been made to pin-point
the values of the process variables at which a transition can take place from
one type of pit shape to another.

In order to study the different pit shapes, a mathematical
model was considered which took into account the removal of the different
characteristic sites from the surface and the transformation of a particular
characteristic site into another characteristic site according to a set of
frequencies. The solution was obtained by considering the process as a
stochastic process of birth and death type. From the solution obtained,
conditions were derived in terms of the frequencies for obtaining the
different pit shapes.

| Also, since the processes occurring on the surface of a crystal

are random in nature, computer simulation of the dissolution process was



thought to be appropriate in order to verify the conditions under which the
different pit shapes are obtained. The computer simulation technique has
previously been successfully used in the surfaces field by Moore (9) to study
surface diffusion, by Chernov (10,11) to investigate random walk processes
and kinetic order disorder transition in crystal growth and by Bertocci (12)
to estimate the relative importance of random nucleation and step motion on
the growth rate of crystals.

The model for computer simulation was that of a section of a
crystal surface from which dissolution took place through the removal of
different atomic units according to a set of parameters defined initially

for each of the characteristic sites.

Mathematical Analysis

Introduction

A very simple model has been used for studying the distribution
of the different characteristic sites on the surface. The model does not
take into account surface diffusion. For the simple cubic crystal, there
are five characteristic sites on the surface, the atoms at these sites have
less than their full complement of neighbouring atoms, and these are
characterized in chemical terms as having lower coordination than atoms in
the interior of the crystal. According to the notation of Nicholas (13),
under the assumption that only the effect of the first nearest neighbours
is taken into account, a surface atom with j nearest neighbours will besaid
to have coordination j and will be referred to as an atom of typejor(ﬁ.The

five sites can then be defined according to Table 1.



The Model

Consider a system containing the different characteristic
sites on the surface of the crystal and undergoing statistical fluctuations
in the density of the different characteristic sites. Two processes
which take place on the surface are postulated: (i) whenever a parti-
cular characteristic site is removed from its position on the surface
(independent of the number of nearest neighbours it may have) it gives
rise to an in-terrace site; (ii) Due to the effect of (i), the number
of nearest neighbours of the neighbouring sites to the site removed is
modified and a transition to a lower next nearest neighbour site takes place.

.The process as depicted above is a multi-dimensional process,
there are five phases in the present case and the frequency of the
removal My (j = 1,2,3 and 4) of the five characteristic sites will be
different from each other as the different characteristic sites on the
surface have different energies. Also, the frequency of a change of
site from a particular coordination (j) to the next lower coordination
(3=1) is Aj (j = 2,3,4 and 5) and is different for different j's.

The above process is sketched in Figure 4 and the different
frequencies are designated accordingly. The tail of the arrow indicates
a decrease by one in the species toward which the tail is and the head
indicates an increase by one in the species towards which the head is.

The stochastic development of the process will be fully

described once the function



is known, which is the probability that at time t the number of individuals
of the jth characteristic sites is n; (14). At t =0, a; (j =1,2,3,4 and 5)
denote the number of the characteristic sites present on the surface of the
Jjth type. In order to derive the differential equation describing the

course of fluctuations, it is necessary to consider the possible transitions,

in the interval of time (t, t + At) which lead from the state

> > >
N w > (8]

=

into other states and the transition which bring the system from other states

into

>

- =
n w B o

The differential equation describing the process can be written if we adopt

the convention that p = 0, whenever any of the nj are negative. It will

then readily be seen that
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If we introduce the generating function

X5 g
X4 n
n n n n n
Pl xg t]= y X 1 Xy 2 Xq 3 Xy 4 Xg 5 p n, t (2)
X2 n
A 1

it will follow that when (2) is applied to (1), (2) must satisfy the partial

differential equation

4
-X.) QE:+ E] b3 (xgx.) 92: (3)

Pl 3,0 = x]a] x2a2 x423 x4a4 x5a5 (4)

The final system of differential equations for the variation
of mean value of the number of each characteristic site with time as obtained

in Appendix I from equations (3) and (4) are

dm](t)

—gg— = - wymy () + amy(t)
dmz(t)
T= - ()\2+u2) m2(t) + >\3m3(t)
dm3(t)

—g— = - (Agtug) my(t) + a,m,(t)



dm,(t)
_%,_c__ = = (agtug) my(t) + agmg(t)
dm.(t)
G 7 - gt +ugm )+ ugmy(t) + ugny(t) + ugmy(t)

(5)

whererq&)designates the mean value of the number of the jth characteristic
site present on the surface at time t. Up to now, it has not been possible to find the
nature of the distributions for the different characteristic sites, although
the different equations (5) for the mean value of each of the characteristic
site have been obtained.
For the general process ). and My are generally unknown and a

J

straightforward solution of (5) is not possible. However, if Aj and M

do not depend on time, then one can express the solution of the equations (5).

The solution of the system of equations(5) along with their initial
conditions
mj(o) = a; (j = 1,2,3,4 and 5) have been obtained in Appendix II and
Appendix III for two cases. In both the cases, Aj and My have been taken

independent of time.

Solution for Multilayered Pit

In Appendix II, the solution for the general case was tried.
The complete solution was not possible, although it can be obtained by

numerical techniques. The final result would be of the form

4
= sit 1 =
mj(t) ] cije 1+ ¢ j=1,2,3,4 and 5 (6)
i=1
The constants cij’ cj5 and S; are not known at the present. This case is

applicable when multilayered pits are obtained on the surface, in other



words, when the sources of steps are screw dislocations, subgrain boundaries,

and the crystal edges.

Solution for a Pit of Monoatomic Thickness

In Appendix III complete solution was obtained for the equations (5)

under the assumption

m:(t) = A = constant (7)

which means that the sum of all the characteristic sites on the surface is
constant at any time. This is possible when the sources of steps are two-
dimensional nuclei of dissolution (hollows of monoatomic thickness in the
surface layer of the lattice). This is an idealized case. The final

results for this case as obtained in Appendix III are:
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-(u -(u
no(t) = 2230080 g Sttt ST
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where N = (A2+U2)(A3+U3)(A4+U4)(U]+A5) + AS(X2+U2)(A3+U3)(U]‘U4)

+ A4A5(A2+U2)(U]‘U3) + A3A4A5(U]‘U2)
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The above equations have the same form and can be written as

- X,
Jt

where
ArA~AaAA A
_ ApAgrghs ) 2
Ly =—F%— Xy =wm*+ 7
AaApApuqA
= 34571 - -
Ly = = Xg = Ap * up7)g
Aare(Aotu,)uqA
_ Agrg\otug)uy )
Ly = N X3 = A3 * u3-}y
L = >\5(>\2+U2)(A3+U3)H]A X =y, 4 "
4 N 4~ 44" P8
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5 N I e e A

It has been verified that irrespective of the values of Aj and
My N is always positive. Therefore Lj (j = 1,2,3,4 and 5) will always be
a positive quantity.

Variation of Mean Values with Time Under Limiting Conditions

The mean value of the number of any characteristic site is

dependent on the values of Lj, aj and Xj. By giving different values to

. will vary with time.

Lss aj and Xj, we can find how mJ

J

1. aj and Lj both non-zero

(a) Xj < 0, thenfrom (8)
(i) when aj > Lj at t =0, mj = aj; t -~ large, mj + large
i.e. the mean value of the number of the jth characteristic

site increaseS with time.



(b)

aj=0, then (8) becomes

11

(ii) when aj < Lj at t = 0, my = aj; t -~ large. my > -(large)

i.e. the mean value of the number of the jth characteristic
site decreases with time and becomes negative. When ms < 0,

this case does not operateas m. can never be negative.

J

(i1i) when a; = Lj att =0, m; o= ags o any I m; = ay

i.e. the time average of the mean value of the number of the
jth characteristic site is constant.

Xj > 0, then from (8)

(i)  when a; > Lj att =0, my = ay; t > large, m; > Lj

i.e. the mean value of the number of the jth characteristic
site reaches a limiting value Lj at large times.

(ii) when 3y < Lj at t =0, my o= a3 t » large, my > Lj
i.e. same as (i).

0, mj = aj, any t» mj =2

i.e. time average of the mean value of the number of the

iii) when a. = L.
(ii1) whe jelyatt
jth characteristic site is constant.

Irrespective of the value of aj and Lj, at t = 0> mj = aj;

any t, mj = aj i.e. the time average of the mean value of

the nurher of the jth characteristic site is constant.
mj has been plotted schematically against t for the

above cases in Figure 5.

-X.t

=1. (1-e 9
mj LJ (1-e )

(i) Xj >0att=0, mj =05 t - large, mj - L

i.e. mj increases with time



ii .=0 = L) . = > s . =
(i) XJ att=0 mJ 05 any t m, 0

In this case, the jth characteristic site does not have a
chance to increase its population.

(iii) Xj <0att=0, my = 0; t - large, my > negative m

This case is not possible, since mj can never be negative.

The schematic plot of mj against t has been shown

in Figure 6 for these cases.

3. L. =0, then (8) becomes
J -X.t

(i) Xj =0att=0, m, = ag; any t, ms = a

i.e. the time average of the mean value of the number of the
jth characteristic site is constant.

(i) Xj >0att=0, my o= as; t > large, L 0

i.e. the mean value of the number of the jth characteristic
site decreases till it becomes zero in the limit.

(i) Xj <0att=0, my = aj; t » large,. my > large

i.e. mj increases with time.

The schematic nlot of mj against t has been shown

in Figure 7 for these three cases.
Discussion of Kinetics of Dissolution

There are in all twelve different cases which can be applicable
for the jth characteristic site. For the ad-atom and at-ledge sites (under
the assumption of no surface diffusion) the energy with which these sites
are bound in the surface is very small. We assume that as soon as these
sites are formed, they are removed from the surface. The kinetics of
dissolution of ad-atom site is then determined by the case 3(ii) and

the kinetics of dissolution of at-ledge site is determined by the cases
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(1(a(ii))) and (3(ii)). For the in-Tedge and kink sites, the processes are
complex since none of these sites tend to a zero value. There is generally
a net density of kink and in-ledge sites on the urface. On this basis,
we can say that kinetics of dissolution and formation of these sites are
governed by all the cases considered except cases (1(a(ii))) and (3(ii)).
The in-terrace sites decrease with time, but their number on the surface
can never become extinct. The only case that determines the kinetics of
the in-terrace sites is thus (1(b)(i))).

Depending upon what has been said above, we can say that the

kink and in-ledge sites are the only ones which are important in determining
the shape of the pit. Thus it is necessary to determine the ratio m4/m3
(which is the ratio of the mean number of in-ledge sites at any time to the
mean number of kink sites at the same time) by considering the combinations
of the different cases which are applicable for kink and in-ledge sites
respectively.

Conditions for Pit Shapes

In order to study the conditions under which different pit shapes
are formed, it is necessary first to subdivide the cases whose solution
can be expressed by the equation (8). It simply means that we should sub-
divide the cases which fall under the general area of the pit of mono-
atomic thickness. There are two such cases:

(i) Perfect surface

(i) Surface with a system of steps.

By perfect surface we mean that initially the surface consists of
only the in-terrace sites and by surface with a system of seps we mean
that there is already a hollow of monoatomic thickness on the surface with

an initial distribution of kink and in-ledge sites.
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Using equation (8), we next consider different surface
conditions and find the limiting values of m4/m3 for hem.

A. Perfect Surface

Perfect surface means at t = 0, only the in-terrace sites are
present. The initial surface conditions are then By " 0, a, = 0, ag = 0,
a, = 0 and ag = A. Nucleation of a two-dimensional hole is necessary for

the dissolution to take place. From (8), for the initial conditions, we

obtain
-X.t
my = Lj (1-e 9J) j=1,2,3 and 4 (10)
Therefore,
dm -X5t
a¥§ = L3X3e 3 and
(10a)
dm -X,t
R 4
gt~ e
and
-X3t
my = L3(]-e ) and (11)
-X,t
my = L4(]-e 4 )
From (11) we can write
-X,t
m L,(1-e 4 )
(i
= = (12)
m3 -X3t
L3(]-e )
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which on simplification gives

2
(X,t)
m4 L4(X4t _ _2_1;-_4-..-) (]3)
s XLt
"8, Lalxgt= SRR

Ives and Hirth (5) measured pit widths as a function of etching
time. Their results as obtained for dissolution of LiF in the etchant
obtained by adding 2.5 ppm ferric ion as ferric fluoride to distilled water
which had been slightly acidified to prevent the precipitation of ferric
hydroxide, are shown in Figure 8. At 32°C in the linear region, it was
estimated that 25 microns pit width took place in 5 minutes, and in 6 x 10~
seconds only one atomic layer (4 x 10'8 cm) was removed from the pit.
Assume the pit to have a square shape, ]0]3 particles were removed in

6 x 10'3 seconds from the pit surface. Xj are also very small since u. and

J
Aj are fractions. To a first approximation, then we can write
2
LT T S R
J 20 J
and (13) becomes
"y Ldka
M G
my :
which says o will have a constant value for any pit shape, and it can be

3
said that the value of m4/m3 depends upon the values of X4 and X3. From

(10a), the rate of change of kink and in-ledge sites reduces with time till
it becomes zero or is always zero depending on whether X3 and X4 are
greater than zero or X3 and X4 are equal to zero. As discussed before
for this case, X3 and X4 can never be negative. From (11) we can put down

the three possible cases in Table 2.
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B. Surface with System of Steps

The steps on the surface can give rise to different surface
conditions at time t = 0. The dissolution from the surface now takes place
by the movement of the steps and nucleation is not the Timiting process.

In general, we can say that ag #0, a, # 0 and although ag # A, it is greater
than L5. For the kink and in-ledge sites following surface conditions

could be possible

aj > Lj . aj < Lj and aj = Lj J= 3,4

In general from (8) we can write

-X3t
ms = L3 - (a3-L3) e

-X4t
mg =Ly + (a4-L4) <
As discussed for the case of perfect surface, to a first

approximation, we can write

)

my = ag + (L3-a3) X3t

and | (15)

7/

The rate of change of kink and in-ledge sites is

dm3 )
at = (L3ma3) X5
and $ (16)
dm4
Tt = (Lgmay) X, |
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Following different cases can be obtained from (15) and (16).
d. - For Xs:<B and X <0

4
The surface condition which is applicable in this case is

ag > L5 and a, > Ly then from (15)

my ag + 113-a3) X3t

a4[T———)——— Q3

i (17)
a
3

[ Ta%gt 11]

When the steps are already present on the surface in the form

of a hole, then for a 25u hole, there are m10]3 particles on the steps of
m

the hole. On this basis, m, ~ a, and m, ~ a, and (17) transforms to . 5 Q
3 3 4 4 ma

and from (16) Q is
(L a4)X
1“3 ag)Xs

Different pit shapes can be obtained depending on the value of Q.

g For X3 < 0 and X4 > 0

The surface conditions which are applicable are ag > L3 and
a, 2 L4. Then from (15)
m3(t) = Ligt & (a3-L3)(]-X3t)
and

& L4

when t is large irrespective of whether a, > L4 or a, < L4.
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Under the condition X3 < 0 and ag > L3, m3(t) increases with
time. When ay > L4, and X4 > 0, the mean population of in-ledge sites

decreases with time, and becomes constant at large time and reverse is

m
possible when 3, <L, and X4 > 0. Then we can write ﬁﬂ- tends to zero
3

when 1 tends to a large value.

35 For X3 > 0 and Xy < 0

The surface conditions which are applicable are a3 % L3 and
a, > L4. Then from (15) my = L3 when t is large irrespective of whether
ag>Lgzoraz<Lljand m4(t) =L+ (a4 - L4)(]-X4t).

my always increases with time. The ratio m4/m3 at large t is

Mg Ly -+ (a4-L4)(1-X4t)

s 4
-
The value of = tends to infinite as t tends to a large value.
-
4, There are cases when only one of the species increases with

time and the other is constant at its value at £t = 0. The results obtained

in this case would be the same as in part (2)and part (3) above. Uhen a5 > L,
X3 < 0 and a=L,, X, 0, part (2) is applicable. When as=L., X= 0 and aplys

5. For X3 > 0 and X4 > 0 X4<0, part (3) is applicable.

From (8), as t tends to a large value, irrespective of the

surface condition (a; >¢cL; and a; % L,), we obtain

-
S

E'hs
w

w

Substitute the values of Eﬁ“ we get,
3

which gives



L}

o R L
m

Mg Ay

This is the condition that there is no net change in the
population of kink sites on the surface. In other words, this case is
obtained when there is dynamic equilibrium for dissolution.

There are other cases which lead to the dynamic equilibrium
for dissolution, these cases and all the ones discussed above are summarized
in Table 3. The cases marked with stars are of no importance to us and
they in fact do not have any physical significance.

Until now we have only considered the conditions under which
different pit shapes could be obtained, but we do not know what type of
pit shapes will be obtained under different conditions. In order to under-
stand this, forthe pitshapes obtained in practice, we consider a simple
cubic crystal with a single pit on its surface. As the results obtained
above are for a pit of monoatomic depth, a pit of only monoatomic depth
is considered. It is assumed that the atoms are only removed from the
step sites. Our interest is only in kink and in-ledge sites. The aim is
to find out how the population of the kink and in-ledge sites changes as
the pit enlarges or as the time increases.

In Figures 9 to 14, different step systems in simple cubic
crystal have been considered. The figures show the minimum size of the
pit that could be obtained (the innermost shape) and it follows the pit
shape as higher removal take place. In doing this, care was taken to see
that the pit shape was perfect. It can be visualized that a particular
perfect pit shape can have only a discrete number of removals from the

surface. In Figures 9 to 14, the kink sites are marked with crosses.



For determining the number of kink and in-ledge sites On the
surface as a function of total removal of atoms from the pit of a
particular size, the following quantities are defined:

N, is the total number of atoms removed from the surface for

R
obtaining a pit of particular size. N(C3) is the number of kink atoms
at the perfect pit and N(C4) is the number of in-ledge atoms at the
perfect pit.. Following the above analysis, it was seen that for a
particular system of steps, for different dimensions of the pit, NR is

given as a polynomial of second order in degree L, where L is the number

of the perfect pit obtained, the minimum sized pit being designated as L =

In order to get a better quantitative picture, the values of

N(C3), N(C4) and Np were calculated as a function of L. The resulting

formulae have been collected in Appendix IV. For the pit size parameter, a

dimensionless quantity dre] was chosen, which is defined as the ratio of

the diameter of a sphere with a volume equal to NR times the volume

occupied by an atom in the unit cell, to an atom diameter dat' Therefore,

d

_ _sphere

dre] - 3
at

I BRI Vi

d RN
at " "
where Vu = volume of the unit cell
Nu = number of atoms in the unit cell.

For simple cubic crystal = 1 and Vu = d3at’ which gives

_ (6 2173, 1/3
doy = & N3 = 1201 ()

20

1e
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hence dre] for simple cubic crystal is only dependent on the number of
atoms removed from the pit. Figures 15 to 20 show the results as obtained
in the form of a plot of N(C3), N(C4) and N(C4)/N(C3) versus d . It is
evident from these plots that N(C4)/N(C3) reaches a limiting value of K as

d increases or as time increases. Table 4 gives the summary of the

rel
results as obtained from Figures 15 to 20 and Table 5 gives the value of
K for the different step systems. In the results shown in Table 4, a little
modification has been made for the step system (100) [010]. In actual
cases for this step system , there are always a finite number of kinks at
the pit and their time average can be taken as constant. Then we can say
that N(C4)/N(C3) increases with time for the system (100) [010].
Comparison of Table 3 and Table 5 gives the following
conditions (Table 6) which are necessary for obtaining the corresponding
pit shapes in the case of surface with steps.
Having obtained the rough conditions for which different
pit shapes are formed, our next aim is to find the exact values of X3
or in other words, A, and u.'s for which different pit shapes are

4 J J
formed. For this, computer analysis was carried out. Our endeavour in

and X

this respect was to find the extent to which computer analysis could be

used in obtaining xj and uj'S-

Computer Analysis

In the analysis that follows, we make the basic assumption
that the dissolution of a crystal occurs by dissolution of characteristic
sites at particular points on the crystal surface as defined by the TLK
model. It is considered that the dissolution takes place from the

characteristic sites irrespective of the molecule that is present at that point.
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Depending on the sites the molecules occupy, the molecules on the surface
are bound with different energies. It is also assumed that the forces of
interactions of only the first neighbours are present. In keeping with
the mathematical model, the line imperfections are neglected and also
surface diffusion is neglected.

The problem of dissolution of surface from characteristic
sites can be reduced in the following way. The source of steps taken is
a two-dimensional hole in the surface layer of the crystal of monoatomic
thickness. The hole at t=0 can have any shape or in other words, it can
have any distribution of characteristic sites. The atoms from the
characteristic site can be removed one at a time according to a set of
predefined probabilities called the overall probabilities and designated
as e(Cj) where j = 1,2,3,4 and 5 for the respective characteristic sites.
It means that the removal of the characteristic sites from the surface
takes place at discrete moments of time. The removal of any characteristic
site from the surface modifies the distribution of the other characteristic
sites. For example, if a C5 site comes out, it produces four sites of C4
type, which are formed from four C5 sites. In order to remove any character-
istic site, we will have to know the ease with which this characteristic
site could be removed with respect to all the other characteristic sites
on the surface. This makes it essential for us to know the count of the
characteristic sites of each type on the surface after each removal of a
particular characteristic site. If ﬁ(Cj) denotes the number of characteristic
sites of type Cj on the surface at any moment, then the probability that
any one type of characteristic site is removed before the others}or at

that moment is given by
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n (Cj) e(Cj)

P(Cj) = j=1,2,3,4 and 5
n(Cj) e(Cj)

1 (18)

I ©o~>1o0

J

Computer Simulation

The computer simulation of crystal dissolution from atomic
sites was carried out in the following way: The surface was mapped onto
a square array, the integers contained in each element of the array
indicating the layer of the crystal exposed to the surface. Steps are
present if adjacent places contain different numbers. The uppermost
layer of the crystal to begin with is designated as 1. The program made
use of the periodic boundary conditions in attachment of particles not
only from row to row within a single layer, but also from layer to layer,
the last row in one layer was regarded as a neighbour to the first row in
the next layer. Each row and layer consisted of 49 particles each way.

No limitation to the number of layers was built in the program. Geometrically,
this crystal under the periodic boundary conditions gives a toroidal shape

to the surface. Before starting a run, the shape of the monoatomic hole

in the first surface layer was decided and was built in the program.

The overall probabilities for each of the characteristic sites
were selected at the beginning of each run. In the beginning of the
process, the characteristic sites of each type were counted on the surface
and the instantaneous probabilities P(Cj) were calculated. The choice of
the random outcome as to which characteristic site was to be removed was
made by using Monte Carlo Method (15,16,17) (Appendix V), which utilises

the random number generator operating in the unit interval (0,1)
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(see Appendix V). Once the characteristic site (Cj) to be removed was
decided, a decision was required as to which one of the characteristic
sites out of a total of ﬁ(Cj) sites existing on the surface is to be
removed. The choice of this random outcome was made again by a random
number generator operating in the unit interval (0,1) (see Appendix V).
At this stage, the integer contained in the element representing the
characteristic site chosen by the above process was increased by one,
to signify that the characteristic site has dissolved. Due to this
removal, the adjacent characteristic sites to this characteristic site
will have their coordination number Towered by one and these numbers of
characteristic sites are deleted from ﬁ(cj) and added to ﬁ(Cj-l). This
gave the new count of the type of characteristic sites Cj and the
whole process was repeated until a predetermined number of atom removals
took place from the surface. Appendix VI gives the flow chart of the
randomized model and Appendix VII gives the computer programme written
in Fortran IV language. The program was run on CDC 3600 computer and it
took about 11 seconds for 400 atom removals from the surface.

The dependence of the pit shape on the overall probabilities
was determined in the experiments. In all the experiments e(C1), e(CZ)
and e(C5) were given the same value. The overall probability of the ad-atom
site will be highest since it is bound on the surface with the least
energy as compared to other characteristic sites and since we are neglecting
surface diffusion, we want all the ad-atom sites to dissolve as soon as
they form. On this basis, the value of e(C]) chosen was 1.0. On similar
grounds e(C2)= 0.1. The removal of in-terrace sites is dependent on e(CS),

that is the nucleation on the surface at new sites is dependent on e(C5).
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As we are dealing with a very small surface, and we are interested only in
seeing the development of the pit with time, it is necessary to restrict the
value of e(C5) to a Tow value so that no surface nucleation takes place.

The value of e(C5) taken was 1 x ]0']2. The important variables are

overall probabilities of kink and in-ledge sites. It was observed that

the variations of e(C3) or e(C4) does not make any difference to the
observed morphology on the surface as far as e(C3)/e(C4) had a constant
value. On this basis, we also gave e(C4) a constant value and varied only
e(C3). The value of e(C4) should be such that e(C3) could be varied over

a large range. The value of e(C4) so chosen was 1.0 x 1072,

of e(C3) was then varied from 1.0 to 2 x 107,

The value

RESULTS

As mentioned previously, the configuration at the pit does not
vary as long as the ratio e(C3)/e(C4) is constant irrespective of the values
of e(C3) and e(C4). Thus instead of using e(c3) and e(C4), we will use a
new notation €3, = e(C3)/e(C4) which gives a better physical picture.
Physically, €34 is the relative probability of removal of kink sites with
respect to the inledge sites.

For each of the €3p values twenty experiments were carried out.
The number of experiments was limited to twenty because of the fact that for
the same input parameters the spread in the values of SITE (j) between
experiments was very small. In the case of each of these twenty experi-
ments, the starting random number for the string of the random number
generator was different. This was necessary for complete randomization of
the process. After each removal SITE (j) values were noted and for each
experiment for a particular value of €345 the sample mean of SITE(j) was

obtained for 365 removals. The sample mean has been denoted as (SITEj) for

MCMASTER UNIVERSITY LIBKRARY
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for the jth characteristic site. The population mean was obtained for each value

of €3, from the sample means of twenty experiments. The population mean has
been denoted as (SITEj) av.

The values of (SITE3) av. are plotted against the square root of
€34 for each value of €3y 8s shown in figure 21. It is observed from this
figure that (SITE3)av. has a limiting value of 0.003.

The structure of the pits are seen in figure 22 and 23, which are
reproductions of the computer's printed output and show the locations of
the atoms on the lattice surface. Numeral 1 stands for the particles in the
first surface layer and numeral 2 stands for the particles in the layer just
beneath the first surface layer. The lines drawn across the crystal indicate
the boundary between the particles of the first and the second layer which
are exposed to the medium and actually show the structure of the pit surface.
Figure 22(a) and 23(a) show the portions of the crystal surface at t = 0.
Figures 22(b) and 23(b) show the same portions after 365 removals for e(C3)
= 0.01. Also figures 22(c) and 23(c) show the portion of the crystal surface
in 22(a) and 23(a) after 365 removals for e(C3) = 7.0 x 1074, 1t is seen
from the figures that irrespective of the initial shape of the hole or the
initial distribution of the different characteristic sites on the surface, the
end result for the same values of e(C3) is the same. When e(C3) = 0.01, the
(100) [010] step system is obtained for the pit but when e(C3) = 1.0 x 10'4
there is no regular pattern at the pit surface and the configuration is
rough.
DISCUSSION:

It is observed from figures 22 and 23 that irrespective of the

initial shape of the hole or the initial distribution of the different charac-

teristic sites on the surface, the end result for the same values of e34 is
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the same. This is the Morkoffian property on which the mathematical model
is based. On the basis of this property, it seems that the computer
simulation is representative of the mathematical model.

As observed in the last section there is a limiting value of 0.003
for (SITE3) av. The reason why the limiting value of (SITE3) av. stays
finite is that there are always a finite number of kink sites on the surface
at any time. During the dissolution process the formation of kink sites
takes place by the removal of the in-ledge sites from the steps. The major
part of the dissolution then takes place by the motion of the kink sites
thus formed. If there is no formation of kink sites on the surface, then
the dissolution cannot take place. Hence, for dissolution to proceed,
there must be-finite number of kink sites on the step surface.

There are three ranges of behaviour of (SITE3) av. with €4+

(i) ve,, > 50.0, the value of (SITE

34 3)
with €3 i.e. (SITE3)av. is independent of €34 This is the range where

av. hardly increases at all

square morphology is obtained. At any moment the number of kink sites on
the surface is very small. If at any instant there are no kink sites on the
step, immediately an inledge site comes out to form two kink sites. The
small number of kink sites helps to maintain the (100)[010] step system at
the pit.
| (i) /Egz_ < 3.0, (SITE3) av. varies linearly with €34 in this range.
This is the range where rough morphology is obtained.

(iii) 3.0 < /EEZ_ < 50.0, this is the intermediate range.

It is clear from the above that if the process variables are such
that /Eg;'> 50.0, then the step system obtained will always be (100) [010].

As mentioned before, for the simulation only one set of numbers,

the overall probabilities were used as the input parameters. These probabi-
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lities were fixed throughout the simulation experiment. It means that the
simulation was carried on for the deterministic model. In fact the input
information we have put in the simulation part is not complete and is not
representative of the mathematical model. This is so because of the fact
that the mathematical model is probabilistic and not deterministic. We
are completely neglecting the chance variations which are part of the
mathematical model.

The simulation was carried on for the deterministic model because
up to now, it has not been possible to find the form of the distributions
for the different characteristic sites. Once the form of the distributions
for the different characteristic sites is known, we will be in a position to
have two sets of numbers as the input parameters. The two sets of numbers
will be (i) the mean and (ii) the standard deviation of the distribution
function for each of the characteristic site. The overall effect of this
would be that we will have different values of overall probabilities for
each of the characteristic sites after each removal of any characteristic
site.

As mentioned before we have been able to obtain only the rough
morphology and the morphology with (100)[010] system of steps during the
computer simulation experiment. Up to now, it has not been possible to obtain
the (100)[110] system of steps during the computer simulation experiment.

A glance at the input information tells that the enthalpy and vibrational
entropy are accounted for by the values of the overall probabilities whereas
the configurational entropy is accounted for by the crystal matrix. The
configurational entropy control will then be possible - provided we include
back flow in the simulation experiment.

Inclusion of back flow in the simulation experiment means that we

should take into account migration of the atoms on the surface. We assign
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probabilities for the movement of the atoms towards East, West, South or North.
In the simplest experiment we assign equal probabilities for all four directions
and the atom site selected is allowed to move towards the direction selected
by unit distance. We do not let the in-terrace, in-ledge, kink and ad-atom
sites to be removed directly from the surface, but instead all these sites
are transformed consequently to lower coordination number sites and removal
of an atom from the surface takes place only when it forms an adatom site.
Also as we approach the step system (100)[110], the positions of

kinks in the steps are no longer the kinks of unit height as is the case for
the system (100)[010]. This is because of the influence of the second
nearest neighbor bonds. We can include the second nearest neighbour bonds
for the kink sites in the simulation experiment. Two type of kink sites are
obtained on the basis that the number of the second nearest neighbours for
them is different. On this basis we have to define one more overall proba-
bility parameter as the input parameter.
CONCLUSIONS

1. The differential difference equation obtained by the stochastic
development of the model, ha$S been solved exactly for pits of monoatomic
thickness.

2. With the help of geometric considerations for the pits of the
type (100)[010], (100)[011] and (100)[010] and (100)[011] and the results of
the model, some of the necessary conditions for obtaining the corresponding
pit shapes have been obtained.

3. Computer simulation has been carried out to find the extent to
which it could be used. It seems that with the additional information of the
form of the distribution of the different characteristic sites and the modifi-

cation of the experiment to take into account the back flow and the second



nearest neighbour bonds, one should be able to find the conditions under
which different pit shapes are obtained. This should be the next aspect

of the simulation to be considered.
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APPENDIX I

To Find Differential Equations in Terms of the Mean
Value of the Fraction of Each Characteristic Site

Starting with the differential equation

& 4
3P _ P %) 2P
3t Z Aj(xj_]‘xj) 3xj + z llj (xs XJ) B,Xj (3)
j=2 j:
and the boundary conditions
Xg
X
4
Pl x3,t]| = x1a] x2a2 x3a3 x4a4 x5a5 (4)
X2
]

where P is the generating function, we write x; = e®3 which gives the

J
corresponding moment generating function.
05
O a
0 e%4
4 0
M| eg,t] =P e3 ,t (A1)
0, e®2
01
0, e
then (3) and (4) become
5 -0.+0, 4 -0:+0
aM _ J73-1 _ gy M 3775 _ gy M
7 jZZ ) (e 1) T + 3 uy (e 1) 20,
j=1

with initial condition

Al -1



05
0, 0, e 4
K 03 » t|= log M 03 » t] =Tlog P e%3 |t (A4)
0 0 92
2 2 o1
Then (A2) and(A3) become
5 -0.40. 4 -0:+0
3K -1 3K 5 aK
oy Z )‘j (e J -1)5-6_-+ z Uj(e -1) 30. (A5)
j=2 I 1
with the initial condition
%5
%
K| o3 ,0] =20y + a0, + a0, +a,0, + a0 (A6)
.
¥

In order to find the mean values of the numbers of different
characteristic sites, it is necessary to expand the cumulant generating
function in (A5) in first powers of 045 05 O35 0 and o5. To achieve this,

the value of cumulant generating function must be known in terms of



0], 02, 03, o4 and o5 i.e. for the five random variables, we are concerned

with the joint probability distribution at time t given by

P { xy(t) = by xp(t) = ¢, x5(t) = d, x,(t) = e, x5(t) = 1 =p ()

(A7)
for which we can define the probability generating function
X5
Xg
_ b_c¢c_d_e f
Plxs»t)= 1 Pocdef(t) X1 Xp7 X3~ X4~ x5~ (A8)
X5 b,c,d,e,f
Ky
Applying (A1), we can write the moment generating function
%
0
4 bo,+co,+do,+eo0 ,+fo
- 1772 773 774 75
M| og,t] = ! Ppedes(t) ©
92 b,C,d,e,f
(A9)
%
and applying (A4) gives the cumulant generating function
%
0
4 bo,+co,+do,+e0 ,+f0
1772 773 774 75
K{eog,t]=Tlog ) pbcdef(t) e
0, b,c,d,e,f (A10)
%
Expanding
%5
%
K 05 »t
92
A
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in powers of 015 055 O35 Oy and Og provides the definition in terms of

joint cumulants as

%
0 ® u_ v W _X Yy
3° uvwxy ul viwl xI y!
0 U,V ,W,X,y>0
2 (A11)
&

where kbOOOO = 0.

Using (A11) in (A5) and equating the coefficients of 05 on both

sides of (A5), the following differential equations are obtained

dm,(t)

—T]j‘t_= —uqmy (t) + azm, (t)
dm,(t)
__g_t__ = - (ytu,) my(t) + Agmy(t)
dm,(t)
_—3_1:_—-: - ()\3+p3) m3(t) £ )\4m4(t)
dm4(t)

—g— = - (agtug) my(t) + agmg(t)

dm5(t)
T = ‘)\sms(t)+u1m](t)+U2m2(t)+U3m3(t)+U4m4(t)

k k and k =

where koooo = ™ > Kot000 = M2* Koo100 = ™3> Kooo1o = Ma 00001

m5.
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APPENDIX II

Solution of System of Differential Equations

The differential equations are:

dm](t)
—g— = “uqm () + Amy(t) (B1)
dmz(t)
—55— = -0utuy) my (t) + agma(t) (B2)
dm3(t)
— -(X3+u3) ms (t) + A4m4(t) (B3)
dm4(t)
e = -(A4+u4) My (t) + Asms(t) (B4)

dm (t)
e = g (t) + ugm(8) + () + ugma(£) + ugm,(t) (85)

with the initial conditions

mj(O) = aj j=1,2,3,4 and 5 (B6)

The solution of these equations can be obtained as follows:
Let Qj(s) = L {mj(t)} denote the Laplace transform of mj(t),

then the subsidiary system of equations is given by:

\
(U]+S) Q](S) = A202(5) = a]

(utas+5)Q5(s) - A505(s) = a,

(U3+A3+S)Q3(S) = A4Q4(S) = 63

(ugtag*s)Qy(s) - 2;Q:(s) = a, i

AIl -]



(}\5+S)Q5(S) - U]Q](5)"UzQz(S)'U3Q3(S)‘U4Q4(S) = a5J

The above is a set of simultaneous equations whose determimant

can be written down as

(B7)

e M2 g Mg g'S

Solving the system of algebraic equations (B7) we have
2, u2+A2+s -A3 0 0
a3 0 u3+x3+s -A4 0
a4 0 0 u4+x4+s -A5
2 “H2 “H3 “Hg Aglhs
Q](S) = D
u]+s a] 0 0 0
0 a, -A3 0 0
0 ag u3+x3+s -A4 0
0 a4 0 u4+A4+s -As
¥y 3 "u3 "My hgts

Qy(s) = D



Q5(s)

Qy(s)

Qg (s)

the degree of the denominator and hence we can expand in partial fractions

In each of the above the degree of the numerator is less than

to obtain a solution of the form

Q;(s) =

I o~
¢ L—:

uyts -2y a, 0 0
0 HotA*S a, 0 0
0 0 ag -Aq 0
0 0 a, ugtigts -Ag
My M2 % Mg A5*S
D
uyts -2y 0 2, 0
0 uytA ts -A3 a, 0
0 0 ugtigts ag 0
0 0 0 3 -Ag
s "2 "V3 25 A5tS
D
u1+s —Az 0 0 a4
0 u2+A2+s -A3 0 2,
0 : ugtigts Ay s
0 0 0 ugtigts 2,
ol i V3 Vg %
D
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where S], 52 ‘s 55 are the roots of the determimant D, and the cij are constants.

The determinant D on evaluation gives

55 + s4 (A5+A4+u4+k3+u3+lz+uz+u])
+ 53 [A5A4+U](U2+A2)+(U3+A3)(U]+U2+A2) +
(U4+A4+A5)(U]+U2+A2+U3+A3)]

2
+ s [A5A4(A3+U]+HZ+A2)+U](U2+A2)(U3+A3) +
(U4+A4+A5)[U](U]+A2>“U3+A3)(U]+U2+A2)]

s DgrgOguitagiotuquatiguy) +

U](U]+A2)(U3+A3)(U4+A4+A5)] =0 (88)

It is clear from the above that $ = 0 is one of the roots of

the determinant and if 51,52,53 and 54 are the other roots, then

D = s(s-s])(s-sz)(s—s3)(s-s4)

Taking out one s from (B8) we can see that obtaining the roots
of the quartic is a formidable task. Hence numerical techniques have to
be used to obtain the roots. Nonetheless, once we know the roots, we can

apply the inverse transforms and obtain

4
: 5.t .
mj(t) = 12] cjy e+ Ci5 j=1,2,3,4 and 5



APPENDIX III

The Solution of System of Differential Equations

The differential equations are

dm](t)
—gt— = MM t) + agmy(t)

dmz(t)
T = -()\2+p2)m2(t)+>\3m3(t)

dm,(t)
T = -()‘3+u3)m3(t)+>\4m4(t)

dm,(t)
T = -()\4+p4)m4(t)+}\5m5(t)

dm_(t)
—ar— = Mg ()humy (€1 hupmy(£)+ugma ()4 m (2)

with the initial conditions
mj(O) = ay where j = 1,2,3,4 and 5

The solution is to be obtained under the assumption

5
) mj(t) = A
J=1

From (C7) we can write
my = A-mz-m3-m4—m5
Substituting the value of m, in (C5), we have

AIII-]

(c1)

(c2)

(C3)

(C4)

(C5)



dm
_a%'(t) = U]A - (u]-uz)mz-(u1-u3)m3-(u]-u4)m4-(u]+X5)m5

(C8)

The equations (C1) to (C4) and (C8) are a set of simultaneous

equations. If we substitute in these equations

dm. (t)
i ij where j = 1,2,3,4 and 5
i.e é%-= D, we get the following set of equations:
(D+u])m1-A2m2+Om3+0m4+0m5 =0 (C9)
Om]+(D+A2+u2)m2->\3m3+0m4+0m5 =0 (c10)
Om.l+0m2+(D+A3+u3)m3-x4m4+0m5 =0 (c11)
0m1+0m2+0m3+(D+>\4+u4)m4-xsm5 =0 (c12)

0m1+(u]-u2)m2 + (u]-u3)m3+(u1-u4)m4+(D+u1+k5)m5 = ug A (C13)

The value of My sMg sMy and mg can now be obtained by the use of

the determinants from the last four simultaneous equations (C10) to (C13).

D+x2+u2 -A3 0 0 0 -A3 0

0 D+A_+y 3 0 0 Da+u -2

(C14) 373 4 m,(t)= 3"M3 4
WyTHp  HTH3 HymHg Drugtag WA g Ty

AIII-2

ThUSs

0
0
_)\5
D+u1+X5



D+>\2+u2 -A3 0 0 D+A2+u2 0 0 0
(C15) 0 Dhghuy -2y 0 my(t)=| 0 0 A, 0
0 0 D+ ,+u -\
474 5 0 0 D+A4+u4 Ag
Uq=H Uq=H Uq=u DL+
172 173 1 "4 175 M= u-IA MMy D+u]+>\5)
D+)\2+u2 -)\3 0 0 D+)\2+u2 -)\3 0 0
0 DA, +u - 0 _ 0 D+x,+u 0 0
(c16) 373 4 m,(t)= 33
0 0 D+x4+u4 g 0 0 0 -Ag
WpTHz o wptHg o ugtag DRughag MpmHp  wpteg A Dty
D+A2+u2 -A3 0 0 D+)\2+u2 -A3 0 0
0 D+a,+u -\ 0 0 D+r,+u -\ 0
Hy=H) Hy=H3 Hy=Hg D+u]+A5 Wy=Hp  MyTHg  Hptlg u]A
Solving the determinants in (C14) to(C17) we get the following
~equations:

{[(D+A2+U2)(D+A3+U3){(D+A4+U4)(D+U]+A5) + (U]'U4)A5} +
A4{A5(UI'U3)}] + A314A5 (U]'Uz)}mz

= A3A4A5u]A (c18)

{[(D+A2+U2)(D+A3 +u3){(D+u4+k4)(D+u]+l5) + (Ui‘U4)A5} +
>\4{)\{,-)(1""‘113)}] + A3}\4}\5(1‘]"“2)}"13

= A4A5(A2+u2)u]A (c19)
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{[(D+A2+U2)(D+A3+U3){(D+A4+U4)(D+U]+A5) + (U]'U4)A5} +
Mg g (uy=ug) 11+ Aghghg (uy-up) Jmy

= As(A2+u2)(A3+U3)U]A (CZO)

{[(D+A2+U2)(D+A3+U3){(D+A4+U4)(D+U]+A5) + (U]‘U4)A5} v
A4{A5(U]'U3)}] + 13K4A5(u]-u2)}m5
= (A2+UZ)(A3+U3)(A4+U4)U]A (CZ])

In the above differential equations, we have now the variables
separated. These are non-homogeneous differential linear equations. The
general principle on which the solution of such type of equations is obtained is:
Any solution of a non-homogeneous linear equations L(m) = f is
the sum of a particular solution of the non-homogeneous equation and a
solution of the corresponding homogeneous equation (complementary function).

Thus the solution can be written as

where Yy particular solution

and v a complementary function.

The equations (C18) to (C21) have power of 4 for D. There will
be 4 constants in the complementary function for each of these equations,
since there will be four roots of the homogeneous linear equation .

Thus the complementary function for equations (C18) to (C21) is

_ At Bt
vV = C]e + Cze + C3e



where A,B,C and D are the roots which can be obtained in terms of A's

u's from the auxiliary polynomial
{[(Y+A2+U2)(Y+A3+U3){(Y+A4+U4)(Y+U]+A5) + (U]‘U4)15} +
A4{X5(u]-u3)}]+X3K4A5(u]-u2)} =0

for the cases (C18) to (C21), and C1,C2,C4 and C4 are constants which will
have the same values for cases (C18) to (C21).

The particular solution will be different for all of the
differential equations (C18) to (C21) and can be obtained as

! 1

t
y =
2 DA+, ) (Dt ) LDFA s ) (DHuatrg) + (upug)Agd +
2 "2 373 4 74 175 1 74’75

A3A4A5u]e°

A (uy=ug) Y + Agphg (ug-uy)}

A3hghguy has been multiplied by eot (since el = 1) and by doing this, the
calculation of particular solution becomes very simple. Now the procedure
is to put down zero in the place of D and simplify the above. The final

value obtained is the particular solution. Thus

, AaA s A-uaqA
¥y = 3%4"5%1

v Ags(Aptuplugh
Y3 N

' - A5(A2+U2)()\3+U3)U]A
Yq N

' _ (A2+U2)(A3+U3)(A4+U4)U]A
s N

AITI-5



where N = (A2+U2)(A3+U3)(A4+H4)(U]+A5) +(A2+u2)(k3+u3) X
(U]'U4)A5 + A4A5(A2+U2)(U]'U3) + A3A4A5(U]‘U2)

Now we can put down the final solution for (C18) to C21) as

) T P T .
_ At Bt Ct Dt 374751
m, = C]e + C2e + C3e + C4e i e (c22)
Aare (A +u, ) uqA
_ At Bt Ct Dt 47°5'"2 27

Ag(Aotuy) Ogtug)ugA
- .ot Bt Ct Dt . 26} Vall gTV3 M
my = Cie"" + Cpe + Cge’” + Cpe + N (C24)

- c.eht Bt , . Ct pt  (Agtup) (Agtug) (Aghug)ugA
mg = C]e +Cpe "+ Cae”" + Che 4 .

(Cc25)

We want to get rid of C],CZ,C3 and C4; this can be done by
substracting m, from M3, Mg from my and my from Mg . This choice was made

so that the differences could be utilised for further solution. THus

A grg (At )ugAmdgh A
m3=my N

_ Agglagtug-agluh (C26)
N

Ae(Ao*tu,) [ +ua=2 , JuqA
my-my = 5\ H2 - 3 H37g4M (c27)

(Aotu,) (Agtua) (A gHug=Ag ) uqA
ngom, = 222 3ha) gt g —_—

On rearranging these we can write

— (A2+U2)(A3+U3)(A4+U4‘A5)U]A
4 N

- Ag(agtun) (Agtug-ng)ugA
3 N

AIII-6
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Aghg(Agtup=ag)uyA
Mg * N

Substituting the value of My iy and mg in (c2), (c3) and (C4)

respectively, we get,

dm AoA g (Aotun=2y)uq A
2 _ 7374752 "2 "377]

q + (gtupmagim, = N (C29)
dm Aahe(Aotus) (Aqtuqg=2,)u,A

3 _ 475V P20V 3 R340
at + (gtugagdmg = N S

dm A {otin ) (Agtus) (A g+, -2 ) uaA

4 _ "RV FRINA3TRZINL VL R

Similarly, in order to eliminate My 5l and My from (C8) we find (m2-m5)
from (C25) and (C22), (m3-m5) from (C25) and (C23) and (m4-m5) from (C25) and C24).

N [)\3)\4>\5"()\2+U2) ()\3+1J3) ()\4+U4)]U'| A

m, = mg N (C32)
ot LA d e =(Aqtuq) (A +u,) JuqA
no=m 4 22”475 T73TH3 4T (c33)
3 "5 N
(Aotus) (A gtun) (Ap=2 -1, ) uqA
mg = mg + 2 W/ \ A3 g 57A47Hg M (c34)

Substituting the values of M, sM and my in (C8), we find the

following differential equation on simplification

i PR . = uAOtup) (gtug) (gtug) (Bugmpmig-ughis)
dt lJ'l Uz H3 IJ4 5/Mg N

To eliminate My from (C1) we use the relation (C7) and substitute
for mg and m; in terms of m, from (€32) and (C26) respectively. The value
of m, can be obtained in terms of m, by substracting (C22) from (C24).
Nonetheless, substituting the values of Mg My and Mg in terms of m, in

(C7) yields
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my = g [A-m=L00%p) O gtg) (gt -2 2 hgtagL Oigptiny) (A gtug)
Aghgl PgrgOigrug=ag)y wAl
Substituting the value of m, in (C1) and simplifying we get

dm] Ao A
Tt (rImy = g a2 g2 a(4uytag) LEaE)
Thus we have succeeded in obtaining equations (C36), (C29)
to (C31) and (C35) from equations (C1) to (C7). The equations obtained are
linear differential equations of the first order and hence it is possible

to give the complete solution explicitly. The complete solution of these

linear differential equations can be written as

A A
Pt A ()t
m](t) = e [[ —Iﬁ-xsx4x3(4u]+xz) e dt+K1]
(€c37)
“(Aotun=A)t  AAAc(Aotus=Ao)usA  (Aotu,-2s)t
mz(t) e B 2 "2 "3 [f 374”5 ﬁ 2 "3 & 22 3 dt+K2]
(c38)
=(Aatua=a )t A A (Aotu,) (Agtua=A ) ugA (g +ug-2,)t

my(t) =e 33 4y 452 4 37H3ThgMT V3T dtek, ]

(€39)

-(gtugag)t [ 25 00gtup) Ogtug) DghugAghigh - (ghug=ag)t g ]

m4(t) = e v

(C40)

e’(4U]‘U2'U3:U4+)‘5)t [IU]A(A2+U2)(>\3+U3)(A4 +U4)(4U]"U2"U3'U4+>\5) X
N

U'I—‘
—
-+
~
i

=(Buq=uy-Hay-u,FAg)t
AR P

(ca1)
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where K],KZ,K3,K4 and K5 are arbitrary constants. The value of these
arbitrary constants can be determined from the initial conditions at t = 0.
Thus integrating (C37) to (C41) and substituting (C6), we obtain the

following solutions:

A2A3A4A5A

(Rt (uyr Bt
m(t) = 2345 e T e ae T E

a]e

-(A,*uy-a0)t =(A,tu,-20)t
my(t) = 2221 e 27234 g 223

Are(Aotu,)uqA =(Agtuq-a,)t =(Agtug=2,)t
my(t) = 45 ﬁ 2™ [1-e 37 M3 1+ age 373

-(Agtug-2g)t

- As(A2+u2)(A3+U3)U]A []-e'(x4+U4'A5)t

m4(t) N ]+ a,e

-(4u]-u2-u3-u4+k5)t

(A2+U2)(A3+U3)(A4+U4)U]A []-e'(4U1‘U2'N3'U4+A5)t

ms(t) = N ] + a5e



Case 1

Case 2

Case 3

APPENDIX 1Iv

L Np  K(C,)  N(Cy)
1 ] 4 0
2 4 8 0
3 9 12 0
T 16 16 0
4 25 20 0
Formula L 2 4L 0
L Np H(C,) N(C3)
1 36 24 0
2 140 40 4
3 312 56 8
4 552 72 12
Formula 2L(17L+1) 8(2L+1) 4(L-1)
L "R N(C,) N(C4)
1 45 20 4
2 249 36 16
3 617 52 28
4 . 1149 68 40
Formula 2(4112-211)+5  4(41+1)  4(31-2)

AIV-1]



Case 4

Case 5

Case 6

L Ng N(C,) N(C3)
1 32 16 4
2 120 24 12
3 264 32 20
4 464 40 28
Formula 4 (7L+1) 8(L+1) 4(2L-1)
L Ne N(c,) N(C4)
1 52 16 8
2 196 24 20
3 432 32 32
4 760 40 44
Formula 2L(23L+3) 8(L+1) 4(3L-1)
1 5 4 4
2 13 4 8
3 25 4 12
4 41 4 16
Formula 2L(L+1)+1 4 4L

AIV-2



APPENDIX V
MONTE CARLO METHOD

The Monte Carlo Method, in general, is used to solve problems
which depend in some important way upon probability: problems where physical
experimentation is impracticable and the creation of an exact formula is
impossible. Thus, the application of Monte Carlo Method is very essential
to our problem.

During the simulation of the process, it is necessary to obtain
simulated statistics of the process which is entirely numerical in nature
and is carried out by supplying the pseudorandom numbers into the process
or system under study and obtaining numbers (random variates) from it as answers.

The degree of success with which a computation may be made by
the Monte Carlo Method on electronic computers is determined by the quality
of the source of random numbers, which depends upon the choice of the method
of generation of random numbers.

The uniformly-distributed random numbers which are required
during the simulation can be obtained in various ways on a computer.

The first technique which is used comparatively rarely is to
read a table of uniformly-distributed random numbers into the computer
storage. The main disadvantage of this method in addition to the extra
computer storage it takes is that for the solution of the problem for one
set of input of overall probabilities, we frequently require ~ 104 random
numbers, which is many times greater than the size of existing tables of
uniformly-distributed random numbers.

The second technique for generating random numbers consists of

using special apparatus on the computer -- a "random number device" which

AV-1
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transforms the results of some random physical process into random numbers.
The register in which the random numbers are generated is usually assigned
an address within the general system of addresses in the computer storage.
Then a reference to the random number device reduces to a reading from that
storedin the machine. The disadvantages of this method are (i) there is a
risk of instability in random number devices and hence, they need periodic
testing; (ii) it is impossible to reproduce exactly the results of the
computation of a problem. Although this method increases the speed of a
computation, for occasional use, the maintenance in working condition of
random number device demands a considerable amount of work.

The Tast technique and the one we have used and which is being
widely used is to find a random number, by means of a recurrence relation.
Each successive number %54 is formed from a preceding number o; by applying
some algorithm consisting of arithmetic and logical operation. Such a
sequence of numbers is not random but nevertheless, it may satisfy various
statistical criteria of randomness. These numbers are thus called pseudo-
random numbers. The main advantage of this method is the random numbers
are reproducible and hence we can check their randomness. A subroutine was
available for generating pseudo random numbers at the computer section of
the McMaster University and it could be used on CDC-3600 computer. In this
case, the first hundred numbers produced were destroyed in order to improve
the randomness of the pseudo random numbers.

The aim is to use the random number generated at a particular
instant to choose which characteristic site Cj should be removed from the
surface of the crystal. As it is known that only one type of characteristic

can be removed at any discrete moment of time, then the events pertaining

site
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to the removal of a characteristic site Cj are mutually exclusive events

with probabilities P(C]), P(Cz), cen P(C5) respectively and

5
z P(Cj) =]
j=1
then

PICI) + en # P(C; 1) v < P(CY) + ou + P(C)) 3 = 1,2,3,4.5

determines the type of the characteristic site (Cj) to be removed. 1y is
a uniformly-distributed pseudo random number. The following is the flow

diagram which schematizes the procedure

© s
- R
R e I Y R O I 0 e
D ™ v IP(C;) .
e ' )Q A% ]
-)P(C.
szl J ——__——(:) ‘ C ] -
@ N 4 AN
j=
T | -

The box containing y always denotes reference to the subroutine
FRANDN generating the next random number of the sequence.

In the case when we have to choose one characteristic site for
removal out of a set of a particular type of characteristic sites, the pro-
cedure is still shorter. Here, we multiply the random number generated with
the total number ﬁ(Cj) of that particular type of characteristic site at that
instant. The resulting number gives the location of the atom site to be

removed, 1i.e.

lTocation of atom site to be removed = y * ﬁ(Cj) j=1,2,3,4 and 5
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FLOWCHART

('START)
¥
Input Data
¥

Start the string
of the random
number generator

¥

Define
ISIT = (Depth of the site) x 100
+ coordination of the site

¥

=)
¥

Count the number of all types
of characteristic sites on
the surface

¥

Calculate

C.) x e(C.)
= 3° | 3=1,2,3.4 and 5

(
5 -
Z] n (Cj) e(Cj)

¥

A random number determines
the type of characteristic
site to be removed

¥

®

continued

------
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¥

¥

A random number determines
the location of the site to
be removed

v
Remove the site selected

¥

Count the number
of sites removed

¥

Modify the coordination
of neighbouring sites

¥

Modify the value of ISIT
of the neighbouring
sites and the site removed

v

Number of sit Yes e,

removed =S13g§ — | Output | ~ (STOP
+ NO

®
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APPENDIX VII
COMPUTER PROGRAMME

PFrRUGKAS evAR(InwPUT=1oussuciruli=lould)
COMiin 1olITLls90U)
REAL luuJdemienNoETY

DO 1u N=lewozlil
CALL OECURDITILAST)
IT=TLAST#1lvivetlie
CALL FRANLGCTOLTeluusll)
Cabl wURNTTIOIT o)
CALL oECunD(Tinuw)
T=TNOw=TLALT

PRINT 2uGUstinToIT
CCNT I UE

STOP

FORMAT(219)

FORMAT (%0 e Tiv SECUNUS FUR SLTHeT39% wAL¥ b Ged 9D s  TARTING

GEIR Folk lANDUR wulnibois Gooelkalur WaAo®eilu)
cNUL

SUBROUTINE workR(IOITE9)

ComiCit ISIT(louuy)
CUrmiUnZiArt /o (5 ) oo (9) simARE (D) sinnlLL(2)
DIvienSTION TolloCmem) oIl (Luu)eFP (L) eAly)
CIMENOTON srrus(b)eY(9)

AR EIRIE ot

JREM=U

Nol(Ll)=No(d)=iho(3)=NS(4) =0

DO 14 1=1e%

SPRus()=vev

LU 2 1=1leruu

ISIT(L)=1uy

NS (D)=

READ Lluvueiis JinAX

FORMAT(1IATIY)

PRINT 2wUuel

FORMAT (% Livdmngin Wb SITES wEmuVeow DI TTALLYS

KA luwUeled

W=h=1

IJd=1+(J=1) %

CALL REmUVE (LS 9in)
IF(N oGTev) Gu TU 11U
LO 15 TI=1e%

NROT) =MeARE (D) =MLl ()=
KEALD Lleust
FORMAT(OYF 1401 1)
OSP=Gew

Du Suu IT=1ley

OP=LPHPR ()

DO ane b
Y(I)Y=P(])y/L¥
XX=Y(1)/Y(5)

lHi[_


http:ITU\LLY*ti':.il
http:1<i:'.1�.vV

AY=Y(2)/Y(35)
K=Y {4)y/YL(3)
Au=Y(2)/Y(35)
PRINT 12uuel
o Fuenal (surikounslicliles
Lk eZXebt lbeD)
PRINT 140GusY

Ul

KoV I

J FURMAT(¥UTHE VALUES wF P LL)/(our UF

21 TU 5 ARE*92Xe5b1lel)
PRINT 13v 9 XX Y 9sXL oAU

v FO|<I‘|I:KT(’*ul"’i\ui”’ﬁl“\:}l i ICJ wlTe

PRINT Zuiuv

o FURMAT(1H1e/ /7 927X s%* INTTIAL

DO 20 J=1sw
DO 20 I=1siu
S ISTI)=151Te(lesd)/1uv

o PRINT Gusus (IoT(I)el=19id)

s FORMAT(L1Xslcavwll)

KesSPECT

Cu—=uhulinal tun

AL L ""(I))

Tu KRl S1Tes

SURKFACLE*//)

CALCULATE TivoTANTANEWUD PrUsAbILITico

5 S=Uo
DO 4u I=1ls>

) S=+P (1) #05(1)
DO 50 I=1l9>
X(I)=P(I)y*nNo(I) /5

) SPROB(I)=0PROB(I)+X(1)
CALL FRANLUN(Rs19eu)
IF(ReLEeX(L)) LU TU oU
X(2)=X(1)+X(g)
[F(RelLEeaX(2)) WG TU Tu
X(3)=A(2)+X(2)
IF(KelLteX{n)) LU TU Gu
X(4)=X(3)+K(4)
IF(RelEeX(4)) WO TO vu
N S osu 1o luu

NC=14 »oov Ty luwu
NC= e E S CTCA U V)
A‘L=j 1‘ av l‘\) l\J\J

NC=4 & Gu Tu luv
CALL FRANRDHN(Re19U)
IR=R®NS(HC)Y+1e
roNES /2

o0 12y TJd=1lsin

IFCAOULIOITOL+mii=1U)9luu) ebbleliv)

IF(IK) 1Z2ueilusliu

IF(AODUISTIT O n+Id)eluu) etiwenC) IR=1

[IF(IR) la4Uselausllu
CONT I KUE

IJd=ri =) v TU 1bu
[Jd=1+nin=1Jd »  (Gu TO 1b
[J=1J+mN

CALL inbmoviL CLlusr))
JRLm=Jkerm+l
IF(JRLFebweuw)LU TU 1au
IF(JRLMelWeluuw)OU TG 14

U

s

IF(URLMebwelbu)GUu TC 18U
[IF(JRLMet.We2Uu)GUL TU 18U
IF(JKktMebGeBU)GL TU 1w
IF(JRbLIFMebWed 75)00G TU 13vu
IF(JRkoriebwesuwU)UU TU lovu
IF(JUREMetWes3£5)00 TU lsu
IF(JUREMeEWLe350v)GU TU lau

IkK=I=-1

ix=1

wllH

1

WUmoeiko L v

vARY 1ina

b

SRRV

N

ARKLH 93K 94 i4eD)


http:J1:./Lr�1.Lu
http:i-<.Lt::.X(.i.Jl
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J
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-
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Y,

/

IF(JREMeLTowAX) GU Ty 35
Lo L6y 1=leru
IOITCI)=Iol i (1) /1oy
PRIMNT SuuceiviveJRED

FURvAL (Fuivoibbx OF Slico nbimoviel Wil Cu—=okibnal lun nunivbiny 1

OARLEF e 1S edKew [UTAL Iumizun mbimoViLy wALX D)

PRIGT TowoenicARKLE
PRINT 8uvoesesivellLi

FORMAT (#CoiNJnopER UF 31TES CkeAleD wIThH CU=URDINATIUN numuiExRS

S ARE*9515)

FuRimAT(foivumiper oF 31Tes wedThuYou alTH Cu=0kutlivaTluiv nuimoo sy

b5 ARE¥eDID)
PRINT ©uuceillo

FURMAT (funum=eik UF RKiralnlnng olTes wlld cu—unulnTlun nurmntine

5 3 ARKL¥ISIL)
PIRTINT SO e bPKOD
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Table 1

Definition of Characteristic Sites for

Simple Cubic Crystal

Surface atom

Number of
First Neighbours(j)

Notation used for
the atom site

e

In-terrace

In-ledge
Kink
At-Ledge

Ad-atom

5

4

Ce 5
C, 4
o 3
c, 2
c 1




Table 2

m
Behaviour of —ﬂ-when a,=0anda, =0*
m3 3 4
Condition for T&
X4 and X3 m3

X4 = 0 and X3 >0 Zero

X4 > 0 and X3 =0 infinite

X4 > 0 and X3 >0 finite and constant

* Applicable for short times



Behaviour of m4(t)/m3(t) and Q

Table 3

with Different Surface Conditions *

o & my () Q
urface Condition ﬁngT
> L, and a, > L4 (i) X3 < 0 and X4 <0 constant finite and constant
(ii) X3 <0 and X, >0 tends to zero zero
(ii1) X3 > 0 and X, <0 tends to infinite infinite
< L, and a, > L4 (i)* X3 > 0 and Xg = 0 tends to constant --
(i) X3 > 0 and Xy > 0 tends to constant condition for
dynamic equilibrium
(iii)*X3 =0 and X, >0 tends to constant -
(iv) X3 > 0 and X4 <0 tends to infinite infinite
> Ly and a, < Ly (i) X3 > 0 and X; > 0 tends to constant condition for
' dynamic equilibrium
(i1)* X3 =0 and X; > 0 tends to constant --
(ii'i)fx3 >0 and X, =0 tends to constant --
(iv) Xs < 0 and X4 20 tends to zero zero
Ly and a, < Ly (i) X3 >0 and X, > 0 tends to constant condition for
dynamic equilibrium
(ii)* X3 = 0 and X4 >0 -
(1ii)%X; > 0 and X, = 0 il
and 3 = L4 X3 Z—O and X4 Z—O constant at t = 0 dynamic equilibrium
Lyand a, > L, (i) X3 =0 and X4 > 0 tends to constant condition for
/ dynamic equilibrium
(i1) X3 ~0and X, <0 tends to infinite infinite
L, and a, = L (1) . X0 and %520 tends to constant condition for
4 4 3 4 . IR
dynamic equilibrium
(i1) x3 < 0 and Xg gt tends to zero zero
Ly and a; < L, X3 =0 and X, > 0 tends to constant  condition for
dynamic equilibrium
Ly and 3, = L, X3 > 0 and X, E—O tends to constant condition for

* Applicable for short times

dynamic equilibrium



Table 4

Behaviour of N(C3), N(C4) and N(C4)/N(C3)for
Different Step Systems*

Step System

Number of Kink Sites

Number of in-ledge sites

N(C4)
N(C35

00)[010]

00)[011] and
00)[010]

00)[011]

(i) zero
(ii) finite and constant
with time

increases with time

increases with time

(i) increases with time
(ii) increases with time

increases with time

constant with time

(i) infinite
(ii) increases with time

(tends to infinite
at large times)

constant at large times

decreases with time
(tends to zero at
large times)

* Applicable for short times



Table 5
K For Different Step Systems

Case Step K
Number System
1 (100)[010] zero
2 (100)[011] and
(100)[010] 4.0
3 (100)[011] and
(100)[010] 1.333
4 (100)[011] and
(100)[010] 1.0
5 (100)[011] and
(100)[010] 0.6666

6 (100)[011] infinite




Table 6

Conditions for Obtaining Pit Shapes =*

Step System Condition
(100)[010] a,>L, and a,>L
.4 4% %550 and x4<0
a3<L3 and a4>L4
az=Ly and a4>L4, X3;.O and X4<0
(100)[011] a,>L, and a,>L
B $ % ;<0 and X,20
a3>L3 and a4<L4
P >
a3>L3 and a4-L4, X3<0 and X42.0
(100)[010] and (100)[011] agrly and a4>L4, X3<0 and X4<0

* Applicable for short times



Fig. 1. .Schematic view of metal-vapor interface,

depicting ledges and atoms in sites (1) in surface.

(b) in ledge, (c) kink. (d) at ledge, and (¢) adsorbed

on the surface, and impurity atoms (f) adsorbe:,
(g) at ledge, and (h) *‘poisoning” a kink
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" (after ROZHANSKIL et al-)

Fi gure 2' S‘ummn.ry of studics on the etching of sodium
chloride in acctic acid-based solvents (after Rozhanskii

et al.).
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i qure 3 = Summary of studies on the etching of sodium
coride in cthyl alcohol-based etchants (atter KosriN
et al).
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TIME—>

Fig. 5 Schematic behaviour of the mean
value of the jth characteristic site with
time when aj # 0 and Lj #0.
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Fig. 6 Schematic behaviour of the mean
value of the jth characteristic site with
time when aj = 0.
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Fig. 7 Schematic behaviour of the mean
value of the jth characteristic site with
time when Lj = 0.
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Figure 9. Case 1: (100)[010] in simple cubic
--- - Line joining the centres of the atoms removed.




Figure 10. Case 2: (1700)[011] and (100)[010] in simple cubic
X - kink atom; ---- - line joining the centres of the atoms removed.



Figure 11. Case 3: (100)[011] and (100)[010] in simple cubic
X - kink atom; ---- - line joining the centres of the atoms removed.



Figure 12. Case 4: (100)[011] and (100)[010] in simple cubic
X - kink atoms; ----- - line joining centres of atoms removed.



Figure 13. Case 5: (100)[011] and (100)[010] in simple cubic.
X - kink atom; ----- - line joining the centres of the atoms removed.



(100)[011] in simple cubic

Figure 14. Case 6:

X - kink atom.
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Statistics of surface atoms for case 1, (100)[010] step system.
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Fig. 16 Statistics of surface atoms for case 2, (100)[011] and (100)[010] step system.
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Fig. 17 Statistics of surface atoms for case 3, (100)[011] and (100)[010]
step system.
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step system.
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step system.
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Figure 22(a). Initial distribution of sites on
the surface.
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Figure 22(b). Distribution of sites on the
surface after 365 removals for the overall
probability of kink sites of 0.01.
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Figure 22 (c). Distribution of sites on the
surface after 365 removals for the overall
probability of kink sites of 1 x 10-4.
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Figure 23(a) - Initial distribution of sites on
the surface.
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Figure 23(b). Distribution of sites on the surface after
BESOrSTovals for the overall probability of kink sites
of 0.01.
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Figure 23(c). Distribution of sites on the surface
after 365 removals for the overall probability of
kink sites of 1 x 10-4,





