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PREFACE 

In recent years, many attempt~ have been made to 

calculate the st~ucture of real nuclei starting from first 

principles, using two-body forces which accurately describe 

the interaction of t\vo free nucleons. Z\mong these, 

T. T. s. Kuo and G. E. Brown (1), c. H. Wong (2), 

H. S. Kohler (3), A. D. Mackellar and R. L. Beckar (4), 

A. K. I<errnan ~t al (5), and H. I~. Pal and A. P. Stamp (6) 

have uscd.~cthods derived from the theory of nuclear matter. 

The procedure consists in the determination and evaluation 

of the G-rnatrix. This G-matrix takes the two-body inter­

action into account to all orders of perturbation theory 

in the presence of other particles (Pauli and dispersive 

Effects). Of course, all the theories referred to above, 

ma~e some approximation in their evaluation of the G-rnatrix, 

and the crux of the matter is to decide which of these 

approximations is the best. 

On the other hancl, there is also considerable 

ambiguity in the theory of the potential V(r). Starting 

with the Gammel-Thaler potential, which was fitted to low 

energy data and to Stapp's phase shifts at 310 MeV, there 

has been a steady increase in the accuracy with which 

phenomenological potentials reproduce observed scattering 

(iv) 



data. There has also been a steady increase in the amount 

and quality of the data to be fitted •. Presumably the 

modern phenomenological potentials such as Hamada-Johnston 

(7), Yale (8), Reid (9), and Bressel-Kerman (10) are of 

comparable validity. The best phenomenological potentials 

fit· nearly one thousand pieces of n-p and p-p scattering 

x2data with a ratio approaching 2.0 or slightly more. 

This figure, of course, depends somewhat on the selection 

of data employed. A potential fitted to one data selection 

would not seem very good when tested against another set 

of data. P. Signell*, for example, has computed x2 for a 

large number of the more recent potentials and he might 

be considered an unbiased umpire in this field. Without 

going into the validity of particular models, we believe 

that there is not a 9reat deal to choose between them on 

the basis of "goodness of fit". At the present time, the 

main progress is in the area of n-p triple scattering 

experiments (as evidenced, for example, in the Florida 

Conference report (24)) and in careful analysis of low 

energy experiments which now seem to yield definite. results 

even for the P-waves in p-p scattering in the ten to fifty 

MEV range (11). 

Finally there is the question of whether. the short 

range, repulsive two-body force is better des~ribed as an 

infinite hard core, a finite square core, a Yu~awa core, 

* Private communication from Professor Sprung. 
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a separable non-local core (12), or an energy independent 

boundary condition (13). The scattering data by itself 

is unable to resolve this ~mbiguity. 

To try to avoid the preceding uncertainties, in 

the force and in the method of calculation, Elliott, 

Sanderson, and Mavromatis (14) have proposed an elegant 

alternative to the construction of the nuclear potential 

V(r) for use in nuclear structure calculations. The 

required matrix clements of G between finite nucleus, single 

particle eigenstates would be evaluated directly as a 

weighted sum of integrals over the two-body scattering 

phase shifts. These phase shifts can be taken from various 

fits to the data, for example, those of G. Breit et al (15) 

or R. A. Arndt and M. H. MacGregor (16). 

Actually, Elliott's method is based on the followirig 

two assu~ptions. The first is that the wave functions 

for the finite nucleus are taken to be those of the 

harmonic oscillator. More general ones, such as. 1·1oods­

Saxon, could be expanded in oscillator states however. 

Secondly, Elliott's formulation relies to some extent on 

the assumption that the l:asic two-body interaction can be 

represented by a weak, finite, and local interaction V(r). 

In this case, the present derivation, like Elliott's is 

based on a Born approximation. D. s. Koltun (18), however, 

has been able to derive a very.s_imilar formula on the 
• -<"­
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opposite assumption that the nuclear force is very strong 

and short ranged. This indicates, possibly, that the method 

has a wider range of validity than the Born approximation 

would suggest. However, only V(r} and not G is considered. 

A different way of looking at this theory has been 

discussed, for example, by D. M. Brink and R. E. Peierls (26). 

We assume some two-body potential exists which may have 

any degree of complexity in strength and non locality. 

According to the Brueckner theory, one should solve for 

the finite nucleus reaction matrix GN by the following 

equation: 

Here the operator Q is the Pauli operator which prevents 

scartering of particles into ciccupied states. The quantity 

e js ~he energy denominator which, in a many-body system, 

includes both kinetic and potential energy effects. It 

is possible to relate GN to the free two-nucleon reaction 

matrix tF: 

P + Principal value 

e + Kinetic energies only
0 

by the following relation. 

This relation has been given by Bethe, Brandow and Petschek (29) 

(vii} 



who used it to relate the nuclear matter G-matrix to the 

reference matrix GR. This approach to approximate the 

nuclear reaction matrix by the free two nucleon reaction 

matrix has, in fact, been advocated for several years by 

Kahana and co-workers. Provided the effects of Q approx­e 

imately cancel the effects of P , the method will have 
eo 

great merit. In binding energy calculations, one certainly 

cannot justify this. But for calculation of nuclear 

spectra, one might expect reasonable results for those 

nucleons near the top of the Fermi sea because they are 

in a low density region. One may go further and include 

correction terms to tF; this is being studied. To the 

extent that tF approximates GN, the nuclear problem 

reduces to evaluating matrix elements of tF between 

harmonic oscillator states. Since diagonal matrix elements 

of tF between plane wave states are related to the tangents 

of the phase shifts, Elliott's method can be applied and 

'11then the d ' d GN t rix' ] as ' t lwi express esire ma e .ements in.egra. s 

over the phase shifts. There is, however, one remaining 

difficulty. V or tF must be local (26) for Elliott's 

formulation to work. Undoubtedly t 
F is a very non local 

operator in coordinate space. However, it may be possible 

to approximate tF by some local tF making errors comparable 

to those in the previous assumptions. For example, in the 

work of Bethe and Siemens* , it has been shown that the G-matrix in 

* Private communication from Dr~ ·H.A. Bethe and Mr. P. Siemens. 
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nuclear matter can be reasonably well approximated by a 
A 

local, effective operator G. Equivalent suggestions have 

been made by R. K. Bhaduri and C. S. Warke (28) , and by I. J. 

Donnelly (30). It is reasonable to.hope that tF can be 

similarly approximated, and thus the use of Elliott's 

method would be justified. 

For simplicity in the following discussion, we 

will write the equations as though applying Elliott's 

method for a weak potential V(r); however, this other 

viewpoint of regarding V(r) as a local free two nucleon 

reaction matrix should be kept in mind. 

We now illustrate the application of Elliott's 

method for reduced matrix elements in conjunction with 

Moshinsky-Talmi (17) techniques. When the relative 

matrix elements are known, the two-body matrix element 

can be computed as shown below (27). 

( n 1)' ( l)'< "'l 2 J1 9.,2 72 J2 JMTTzlveffl (Jl,3 ~)j3(9.,4 \)j4 JM'l'Tz> 

1 1 

x >: 
:X..A'J'nn' 

(-) :\+;\ 
1 

(2J 1 + 1) (2:\ + 1) (2.A 1 + 1) (28 + 1) 

t' JI, NL 

'.,. 
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R. 
I Ix '{L R. A l _ -(-) R.+S+T J}{L :.} [ 

s J J' s J 

x <n!SJ' Iv ln'R.'SJ'>eff 

The above is obtained by transf_orming the two particle 

state from j-j coupling scheme to the L-S representatio~ 

with inclusion of the Moshinsky transformation. The 

quantity we are interested in is the reduced matrix element 

<nR.SJ' Iveff ln'1 1 SJ 1 >· all other factors are essentially
I 

geometric in origin and contain no physics ~bout the 

interaction. The usual method for obtaining the reduced 

matrix element will now be described. 

Since the oscillator wave functions are partly 

comprised of Laguerre functions which are polynomials in 

the square of the relative coordinate r, any relative 

matrix element·evaluated in an oscillator representation 

~s expressed essentially as a weighted sum of terms. 

These terms are integrals over various even powers of r 

times the interaction potential and a qaussian in r. Hence, 

according to Talmi (17), a two-body relative matrix element 

can be written as 

<Rn R. IV ( r ) IRn , R. , >. = E B{n,R.,n' ,11. 1 ,p} I 
p p 

where 

2 I ] ~ 
[ r(n~~+3/2T 

(x) 



is the radial part of the general oscillator eigenstate. 

The L!+l/2 (r 2) are Laguerre 'polynomials ·as defined by
n. 

Erdclvi et al (25) in the relative coordinate r. The. -­
B(n,1,n' ,1 1 ,p) factors are Talmi coefficients and I­p 
are Talmi integrals as defined as follows: 

The summation index p is always integral valued since 

tha following inequality must hold 

1~(!+!') ~ p ~ ~(1+1 } + (n+n') 

and where R. = 1 1 for diagonal matrix elements and 1 = R.' ± 2 

for off diagonal matrix elements. 

In the present derivation, we continue to use the 

above.formul"ltion of Talmi, but follow the suggestion of 

Elliott for evaluating Talmi integrals not as in their 

definition but as in their relation to integrals over the 

phase shifts. For 1=1'=1 and n=n'=O, only one Talmi 

integral is needed. Elliott ~t ~l have given for this case 
ClO 

Il = jc-f~:} f 
0 

where 6 are the known phase shifts appropriate to this1 

value of 1 and E is the laboratory energy of the nucleon 

in units of the oscillator ene~gy ~w. Since B{O,l,0,1,1) = 1, 
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1 it follows that the relative matrix element is equal to r • 

<O,ljv1 (r) IO,l> = r 1 


The purpose of this thesis is threefold: 


1) To generalize Elliott's method to all n and l. 

2) To find a convenient way to evaluate the Talmi 

integrals -- a recursive method is derived. 

3) 	 To generalize to the case of a tensor force 

where matrix elements which are non-diagonal 

in the orbital angular momentum t occur. 
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CHAPTER I 

MATHEMATICAL FORMULATION 

Since most functions found in physics can be 

expressed in hypergeometric expansions, it would be 

desirable to obtain an integral over hypergeometric 

functions whose value is also expressed as a hypergeometric 

series. This expression was obtained from Slater (18) 

and is given in equation (1.1). This is useful since we 

desire an integral over spherical Bessel functions to be 

2 2
equated to various powers of r These powers of r will 

then yield a relation between Talmi integrals and integrals 

over the phase shifts. The general hypergeometric function 

AFB with A arguments of type (a) and B arguments of type {b) 

is defined as follows: 

(al) (a2) (aA) 
\I x " = 

co 

" "E 
(bl) (b2) (bB) VTv=O 

\I " " 
Here, 

(a) 
\) 

= a {a+l) (a+2) • • • {a-l+v) 

When A < B, the above hypergeometric function is absolutely 

1 



2 

convergent for all values of the factors a. of type (a)
J. 

and b. of type {b) provided that x is finite and none cif 
J. 

~he b. 
l-

is zero or a. negative integer. Ne begin with the 

fol lowing expression: 

Je-k It d-1t AFB c· (a); {b); ]kt 1F 1 (a'; b'; k't] dt 

0 

= Ck')-d r(d) r(b') r(b'-a'-d) 
r (b' -a') r (b 1 -d) 

(1.1) 

x A+ FI3+l ( {a), d, l+d-b'; {b) 1 l+d+a'-b'; ~.) · 2

In equation {1.1), we now make the following substitutions 

which are consistent with the requirements for its validity: 

2 2k' = q 'k = - r 

. = k2d = ,Q,+3/2 I t 

a' = -i-1-µ i b' ·- 1/2-R. 

Here µ, ~ are positive integers or zero. The form of the 

hypergeometric function is chosen to have the following 

construction: 

Equation (1.1), with the new variables, appears below. 
co 

2 2-k 2R. 2 22 f e q k 1F2 (i+l; !+3/2, 2!+2; -k r) 

0 

2 2 2 x F (-1-l-µ; 1/2-1; k q )k dk1 1 

= 1 r (£+3/2) r (1/2-1) r (µ-R.) 
(q)2t+3 r(p+3/2f r<-2i-1 
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X 3F 3 [ 9..+l, 9..+3/21 29..+2: 9,+3/21 2.Q.+2 1 9..+l-'µ i -r 2/q ] (1. 2)2 

Since we will require the hypergeometric function 1F 2 

in equation (1.2) to eventually have the form of the 

square of the spherical Bessel function, the choice of 

a' and b' in 1F1 (a~; b'~ k't), appears to be arbitrary. 

Hov·;ever, an improper choice for these variables will lead 

to an infinite series for the hypergeometric function 

A+ 2FB+l which would present a great inconvenience from 

a numerical point of view. But for the selection of a' 

and b' that has been made, the hypergeometric function 

A+ 2FB+l ~s reduced to as well as becoming a polynomial1F1 

of low order. The polynomial F (a', b', k't) with the new1 1 

variables is actually a member of the family of Laguerre 

polynomials but is identical to nei the..r of the com1non ones 

associated with the wavefunctions of the hydrogen atom nor 
• 

the spherical harmonic oscillator. It is ir.unediatcly 

apparent that the hypergcometric function F reduces in Eq. (1.2) to3 3 


since the two factors 'i.rhich are cornrnon in both the
1F 1 

numerator and denominator will cancel out in all terms of 

the series. One must now investigate the behaviour of 

2r(µ-t) -r 
r (-2t-l) lFl (t+l; t+l-µ; -2) 

q 

which appears in right side of equation (1.2). Since the 

gamma function of zero or a negative integer is infinite 

and the hypergeometric.function contains a factor 9..+l-µ. in 



4 

the denominate~ a zero will appear in some term and all 

succeeding ones. We now study two cases. 

Case I: where. 1-µ~o 

Now the term 1+1-µ can never be zero or a negative integer 

so that the hypergeometric function is well behaved. 

· r(µ-1)·
The factor r(- 21 _ ) outside consists of the ratio of two1

gamma functions of negative integral arguments. Abramowitz 

and Stegun (19) give for gamma function of negative integers: 

(-) n 1
lirn r (-z) = --::-i-n. 1 im (--)z-nz-+n z-+n 

where n is zero or a positive integer. 

Therefore 

r(-(t-µ)) t+µ+l (21+1)! 
rc-r21+1) = (-) (1-µ)"! 

and is no longer indeterminate. 

Case II: 1-·µ<o 

Now the hypergeometric function containes a term 

1+1-µ which will yield zeros in the denominator but r(µ-1) 

is now well behaved. Here one must take the ratio of the 

limit of each term as one of its factors approaches zero 

with the limit of th~ gamma function f (-21-1). It will be 

found that those terms in the hypergeornetric series which 

contained no singularities are now zero and those which 

did are now finite. 

We now desire the expansion of a product of two 
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ordinary Bessel functions in terms of a hypergeometric 

series. From Rainville (20), we obtain 
n+m 

(~)
2 


Jn(x) Jm(x) = r(n+l) r(m+l) 


n+m+l n+m+2 2 x n+l, i:n+l, n+m+l, -x ]. (1. 3)
2 2 

The spherical Bessel functions, which are the eigenfunctions 

of a free particle in spherical coordinates, are related, 

according to Schiff (21) , as follows 

Hence for n=m=1+~ 

(~)
2 (kr) 21 

= 2t+l 2
[r ( 9,+3/2)]2 

(1.4) 

The hypergeometric function F in equation (1.4) is
1 2 

exactly that obtained under the integral in equation (1.2) 

and is thus replaced by the spherical Bessel function 

squared to yield 

2 
[r (t+3/2) J 

2 2 2
X F [ -9..-1-µ; 1/2-1; k q ] k dk1 1 

2
1 r(?..+3/2) r(l/2-t) r{µ-9..) [ r J= -r:->\ ~-- F 1+1; 1+1-µ; --->\""21+3 r{µ+3121 r(-21-1) 1 1 ~ q q 

co 

~ f 
6 

(1. 5) 
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It is now desirable to convert the hypergeometric function 

on the right side of equation (1.5) into a new hyper-

geometric fupction times an exponential which when 

2multiplied by r £ begins to appear like a product of 

oscillator wavefunctions. From Slater {18), we have that 

e -x . F ( a; ,o; x J = l Fl [ b-a; b; -x ] •1 1 

It can also be shown that, for £-µ>o 

22R.+2+µr (1/2-t) r (µ-t) Q, ! = -{-)µ ( -..,. (t+l/2)r (µ+3/2f r (-2i-l) 2µ+1) ! . (t-µ)! 

where 

(2µ+1) ! ! = (2µ+1) {2µ-1) (2µ-3) ••• 5. 3 .1 

The resulting equation takes the following form: 

CQ 

-k2 2 2 2 2 2e q jt (kr) 1F 1 (-t~l-µ; ~-t; k q )k dk
J 
0 

2 
(!'_) 2 2( _2!,,) q 2(-)µ 2µ · e-r /q t!2 = --3­ r (9,+12) (2µ-i-1) ! ! (£-µ) r 

q 

2 
r )x lFl (-µ; t+1 -µ; - 2 (1. 6) 
q 

The general procedure to be followed in the succeeding 

chapters will now be explained. Both sides of equation 

{1.6) are multiplied by appropriate nuclear potential and 

integrations performed over r. The integral over the 

square of the spherical Bessel function is replaced by a 

phase shift and the integrals over the finite number of 
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terms of the hypergeometric function become Talmi integrals. 

The number of integrals obtained depends on the value of 

µ, as well as 1. To get the appropriate Talmi integrals, 

for µ=µ , one needs to know the Talmi integrals corresponding
0 

to µ=µ -1. Hence one always begins at µ=0, in which case 
0 

the· single Talmi integral may be evaluated numerically, 

and precedes by recursion to obtain all Talmi integrals 

required for the maximum value of µ. When multiplied 

by Talmi coefficients and summed, these Talmi integrals 

yield the two-body relative matrix element. What makes 

one matrix element different from another is the number of 

terms which are summed since this depends on µ and where 



CHAPTER II 

DIAGONAL MATRIX ELEMENTS 

We now consider the factor 

in equation (1.6). Sinceµ is a positive integer, the 

hypergeometric function is a polynomial of degree µ and 

if .t-µ>o the expression is well behaved. When .t-µ<o 

then (i~t, r vanishes alone but when multiplied by the 

hypergeornetric function, cancellations occur which yield· 

a non zero result. Specifically, 

Q, I 2 2 
-·-~ F (-µ Q.+l-µ r /q )
(£-µ/~ 1 1 I I 2 . 

r
(-2> 

= .t! ( (-µ) q + (-µ) (-µ+l)1<i-µ)T + <i-µ+TT -~ (£-µ+2) (£-µ+lf . . . J 
2 

(E-)
2= I [ 1 (-µ) q + ,(-µ} (-µ+l) ... )

£. Ti..:µ)! + (.t-µ+l) ! ---rr-~£-µ+2} ! 
cE-1v' 


\) I 2 

µ ! .Q, ! q= (-} (µ-v 1 )! (.t-µ+v'l'T 7!"' 

\)I =a 

where 

a = max {o, µ-.t} 

tve now make the substitution v' = w-v to obtain 
2 µ-v 

r 
S . V. (---:;) 


(-)µ E ~(_-~}--;µ~!,__Q~,-!_q_.~w...,,___. 
 ( 2 .1)where S = min
v=O (µ-v} ! (.t-v) ! v! 

8 
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The new form of equation (1.6) is as follows 

00 

2 2
-k q 2 , k2q2) k2dke j (kr) F (-1-l-µ; 72-1;

1 1 1J 
0 

2 1 2 µ-v 
r (E-}

(-.!'..) <2> 2/ 22µ q e-r q s -)\) lnl 22 E -( µ•N• g ( 2. 2)= --3­ r<i+12> (2µ+1) ! ! (µ-v) ! (1-v) ! v! 
q v=O 

2where the factor (-) µ drops out since it is always positive. 

Ne wish to make the terms in the sum in equation (2.2) 

into Talmi integrals. The Talmi integrals will now be 

defined in a slightly more general manner as given in the 

introduction. We consider an uncoupled partial wave with 

a definite 1, S, J, and set 

00 2 1+µ 
2

I (i, µ) = I (r2)r(1+µ+3/2) 

0 q 


where v (r) is the effective potential appropriate to the
1 

value of 1 and a relative matrix element is now expressed 

for 1=1 1 

<n1!V (r)ln'1>=EB(n, 1, n', 1, 1+µ) I(i, µ)
1 

µ 

and the former P is written ~~ 

so that in the summation, we have 

0 ..:_ µ < n+n' 

'l'his just reflects the fact that each oscillator wavefunction 

contains a factor r 1• An explicit calculation of a diagonal 
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matrix element 2=1' = 1 andµ= 1 will be performed below. 

In this case, the reduced and rearranged form of equation 

(2.2) is 

- " (_..::.) 
1T 

3 
r(.i+~)q 

0 

Q, µ-12 2 2 2 µ
2µ -r /q µ ,Q,= (£__) e ( (r ) - (r~) J (2.4)(2µ+1) ! ! 2 2 IT 

q q q 

where the explicit 9, and µ dependence is shown. Equation 

(2.4) is nultiplied by 

00 

22 v (r) S dr
r(t+µ+3/2) Q, q qJ 

0 

and the order of integration over k and r is interchanged 

to obtain 
00 00 

I 
2 2 

[ I(-2) 2 -k q 2 2r(t+l/2) e j Q, (kr) V.i(r)r ar]
1T r<.i+µ+3/2) 

0 0 

2
x lFl [ -,Q,-1-µ; 1/2-.i; k2q2 J k <lk 

2 µ 

(E.._)00 2 Q, 2 2 
...,..,....-2~µ=-: 2 f <r2) e-r /q g2 

-- (2µ+l)!T [ r ( 9-·-+"-µ-+"""'3._,/~2..-) 
0 q 

2 µ-1 
r 

<-2> 1
J:1 ,Q, q (2. 5)( ,Q,+µ+l/2) r <x.+µ+l/2f 

Inside the integral over k of the left side of equation (2.5), 

an expression appears which is identical to the first 

order Born approxirnation for the phase shift which is given 
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in Schiff (21). 

- ,fi 2 0 R, (k 
2 

) 

Mk 

00 

(2.6) 

0 

where M is the nucleon mass, ~k is the momentum of one 

nucleon in the center of mass frame, and ot(k2 ) are the 

phase shifts appropriate to the value of l for various 

values of the energy which is proportional to the square 

of k. The energy of the nucleon projectile in the laboratory 

frame is 

2 22n k 
ELAB = .M 

and the oscillator energy is 2{1~ = ~w. The factor 2 in 
mq 

the preceding equation occurs because the usual size 
112 

parameter b is related to the oscillator energy by .flw - -­
- mb 2 • 

The relative coordinate is expressed for this definition 

of b as r = r - r2. However, in Moshinsky's notion
1. 

1 ....:. 
r = -(r - r2) so that the size parameter squared is m 1--X 1 
q 2 

= 2b2 • An additional parameter E is introduced which 

is equal to the laboratory energy in units of the oscillator 

energy 11.w. 

E = 

The factor 

r(1+1/2) 
r ( i+µ+3/2J 

can be shown to be equal to 

2µ+l (2t+l)!! 
(2i+l} (2i+2µ+1) ! ! 
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Thus the left side of equation (2.5) becomes 

• 

\ve observe that the right side of equation (2.5) is just 

a combination of two Talmi integrals and that 

dE kdk-2 = 
2q 

The final expression for the case .e. = t' = 1 = µ is 

. µ .e, 
I ( t, µ) - ( X.. +µ+~) I ( t , µ -1) 

co 

= 2(2u+l)!!(2£+1)!! ({lw) f -E 0 (F) (2.7) 
(2£+1T-C2t+2µ+1TI! n e t :. 

0 

By substitutingµ= 0 up toµ= n+n' iu equation (2.7), 

one obtains the required Talrni integral~ which when 

multiplied by the appropriate Talmi coefficients and 

summed provide the relative matrix element. It may be noted 

that for µ = 0 in equation (2.7) one obtains the same 

formul~ as given by Elliott et al for t = t' = 1 and 

n+n' = O. The general expression for arbitrary µ and t follows 

B (-) v p ! 9;! 2"J (29,+2µ+l-2v) ! ! I (t, µ-v)
E ( µ-v)! ( t·- v) ! v ! (2t+2µ+T)!!
v=O 
(2. 8) 

co 

= 2 (2w+l) ! ! ..,. J.~_?,_+l~ .~.f. (nw) J 
(2t+ll- t2:? . ..f 2µ+~).. 1T 

0 
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The method presented here applies equally well to 

the diagonal matrix elements (1=1') in the case of coupled 

states of angular momentum J and parity (-)J+l. The 

off-diagonal matrix elements with 1=1'±2 are considered 

next. 



CHAPTER III 

OFF-DIAGONAL MATRIX ELEMENTS 

In this chapter, we apply the techniques for 

obtaining diagonal matrix elements to off-diagonal matrix 

elements where J1-1' I = 2. Coupled states due to the tensor 

force consist of two triplet states with the same total 

angular momentum but whose orbital angular momenta differ 

by 2. '·:rhat we have to work with are the part of the total 

phase shift that would be produced if the tensor· force 

alone acted for each member of the coupled pair as well as 

a coupling parameter which describes the strength of the 

interaction. One might have expected that only the coupling 

parameter would be required, but this is not the case. 

To get a useful formula for this case, it will 

become apparent that one must use equation (2.2) with 

the value of 1 being numerically identical to the total 

angular momentum J of the coupled state. Thus for the 

3 
- 3 o coupled state equation (2.2) with 1~1 was used acds1 1 

the notation changed from 1 to J to obtain 
00 

2 2
2 3 -k q 2 2 2 J 2-(~) r(J+~)q e jJ (kr) ( -J-1-µ; ~-J; k q k dk1I F1 

0 

2 J 2 µ-1 ]2 2 
-r /q )l J(~} e - lT (;.) (3. l)2 

q q 

14 



15 


where the µ and J dependence is maintained but is valid 

only for J=l. (General J is considered below) • t\Te wish 

to convert the square of spherical Bessel function jJ 

into a product of Bessel functions jl=J-l(kr) and 

jl=J+l(kr) which are related to the component states of 

the coupled one. To ac~ieve this, we operate on equation 

(3.1) with r ~r observing that the only r-dependence 

occurs in the Bessel function and the terms on the right 

hand side. Since 

and from Schiff v.re obtai_n the derivative of the sph2rical 

Bessel function to achieve 

2 
r ~-rj J (kr)]::1r , 

2 ~ • 
jJ-l (kr) - (J+l) jJ+l ... (kr) jJ+l o~r) jJ-1 (l:r>] 

(3. 2) 

Using this expression arid carrying out the differentiation 

of the right side, the new form of the equation is: 

-­
2µ+1 

-(2µ+1)!! 

2 J 
(qr2) 

2 2 
e -r /q 

[ 
-

2 µ 
<r2·> 
q . 

+ (µ,J+J+µ) 

µ-1
2 

(£._)
2 

q 

- µJ(J+µ-1) 

µ-2 

2 ]{r2) 
q 

2 
(r )
2 
q 

(3.3) 
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In a completely analogous manner to that in Chapter II, 

we now write down the Dorn approximation to the phase shifts 

T and Tl'=t+2 due to the tensor force for both partial
1 

J 
waves and the coupling parameter E as follows: 

OJ 

...f12 2 2 r drTJ-l (k ) = I jJ-12(kr) VT (r)Mk 
0 
00 

..:.n2 2 2 
r drhk 'J+l (k ) = I jJ+l2(kr) VT (r) . 

(3.'1)
0 

and 

OJ 

-h 
2 

E 
J 

(k2) 6 /J (J+l) I 
~ ­ -C2J'+r) 

0 

VT(r) is the radial part of the tensor interaction and the 

J-dependent factor is the matrix element of s Again we12 . 

wish to make Talmi integrals out of the terms on the right 

side of equation (3.3), so we multiply equation (3.3) by 
co 

f(J+~+372) f VT(r) ~r 
0 

and interchange the order of integration over k and r on 

the left side. Hence 
co 

1 
( 2J+1) ! : 2µ+ (~~) I -E [e J 'J-l(E) - (J+l) 'J+l (E)

( 2J+2µ+1) ! ! . ( 2J+l) 3 
7f 

0 

(3. 5) 

( 2J+l)~ EJ(E)] lpl (-J-l-µ; ~-J; E) EdE 

6 /j(,J+l) 2J+µ 2 J+µ-1 


r 
co 2 2 [ - <2·> <S> 

= 2µ 2 f -r /q __g ; {µJ+,J+µ) 9 
·c2µ+1>!T e r CJ+11+3T2> · (J+µ+l/2) r(J+µ+l/2~ 

0 2 ,J+µ-2 
(E.__) 

µ J (J+µ-1) 2 ] 
T.J+µ+112» (J+µ-172) r cS+µ--112> 
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3 EdE
where we have replaced k elk by -- •4

2q 
The Talmi integral for the tensor potential is defined 

analogously to that in Chapter II. 
00 2 J+µ2 2 22 -r /q r drVT(J, µ) e (£._) vrn (r)= r (J+µ+3/2) f 2 J. 2q

q q
0 

The final form of equation (3. 5) is 

2(1+2µ} vrn(J 1) 4µ2 VT(J 2)VT(J )
' µ - c2 µ +3T J.: ' J.J - ·r 

L 12 µ +3 ) <2µ +1 > ' µ ­

00 

= 2 
{2µ+3~ (2J+l) 2 

X lpl (-J-1-µ; ~-J, E) Ec1E 

Ordinarily the term J TJ_ (E) would appear in the preceding1 

equation but for the 3 3o coupl~d state TJ_1 (E) iss1 1 

identically zero since the tensor force does not connect 

the S-state to itself. However, equation (3.6) is not 

useful unless one knows what VT(J, -1) is, in order to start 

the recursion. In the case of diagonal matrix elements, 

the corresponding term vanished since it was multiplied 

byµ= O. We can supply this deficiency by an alternative 

deduction from equation (3.1). Setting µ=0, we obtain 

2 J 2 2 
{£_) e -r /q

2 q 

00 

2 2 
e -k q J. 2 (J:r) [ 1 2 2 ] 2 k= - (-) 2 r C.J+~;d J - -J-1; ~-J; k q k"d 

1T f 1F1 
0 
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and from Schiff (21) we make the substitution 

k2 2 2 
J• 

2 ci-r) = J •'- r 2 (jJ-1 (kr} + jJ+l (kr))
(2,J+l) ­

k 2 2
which also provides the convenient factor r . Thus 

2 J-l 2 2 

E_.) -r /q 2 


C 2 e . - (E....)
2 q q 

2= - (-) 
1T 

r (.T+~) 
(2J+l) 2 

E9uation (3.7) is multiplied by 

00 

r(J-1~3/2} f VT(r) ~r 
0 

2 2 3and the analogous substitutions for l: q , k <lk, and the 

Bessel functions were made to obtain 

(hw) 00 

7T -EVT(J, -1) = e ir\ [ -J-1; ~1-J I E]
(2J+l) 2 f 

0 (3. 8) 

2(2J+l):x: + + £J (E) J EdE[•J-l(E) 'J+l (E) 
6 /J (J+l) 

3 .3chgain is identically zero for the - coupled.:Jl Dl'J-1 

state only. ~quation (3.B) is correct for all J. Now 

an expression will be given for the general recursion 

formula of the off-diagonal Talmi integrals. 

x 
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x 	 [ \l (J+µ+l-\J) + ev, B+l (p+l·-v) (J+l-v) J VT (JI µ-v) 

00 

2(2µ+1)!! (2J+l)!! (!lw) -E (-	 r e -J TJ-l(E) + (J+l) TJ+l(E)
1T(2J+2µ+l) ! ! (2~T+l) 3 J 

0 

+ 	 (2J+l) t:J (E) J lFl (-J-1-µ; 12-J; E) EdE 93.9) 
6 /J(J+l) 

where B=min {µ, J} and 

e = o if y=oy, 0 

= 1 otherwise 

Now we explicitly illustrate how the phases T (E) are1 

obtained from th~ total nucleon-nucleon scattering phase 

shift. The general nuclear potential, which consists of 

central, spin-orbit, and tensor interactions, can b8 

written as 

V(r) = Vc(r) + L.S VLS(r) + VT{r)s 12 

When matrix elements of the above potential are taken, one 

obtains, in Born approximation, phase shifts which were 

shown (22) to be in proportion to the respective matrix 

elements. The coefficients of the respective matrix elements 

are the expectation values of the spin-orbit (L.S) and tensor 

(s12 > operators for each value of j in ~le triplet state. 
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Thus 

3 2 ( Q,+ 1)
= 0 - ( Q,+l) - a·

!:,. 9..J=2-l c 0LS ( 2 9..-1) T 


3· 

= - + 2!:,. 9..J=9.. oC 0LS oT 


3 22
+ 2 0
t:,. 2tT=2+1 = OC r.s (22+3) oT 

where t:,.3,Q, are the measured nuclear phase shifts. In order
J 

to solve for the "component phase shifts" one requires the 

following three conditions: 

2+1 

1) 1 E (2J+l) t:,.3,Q, = oc 


ffit+l) J=t-·l J 


9..+l 
2) E 63 .Q, =AJ J 0LSJ=t-1 

t+l 
63 Q,3) E =BJ o'l'JJ=Q,-1 

where AJ' BJ are undetermined coefficients. He are 

interested only in oT (which were called ti previously) 

so that we need calculate only BJ. By applying condition 

3) above, one obtains 

= 0Bt-1 

= 0-(t+l)Bt-l 

2 (t+l) 292B , B
(29..-1) BQ.-l + . Q, - (29..+3) . t+l = 1 

By writing the first two equations in symmetric form, one 

sees the contribution by each component of the triplet to 
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the tensor phase shift. 

BR, BQ,+i· 
= -- = k= =T2""i+lT 1 1 

where k is a common factor depending on 1. ~·Ji th the last 
1 

of the three equations, it can easily be shown that 

k = - 1 ( 2 £-1 ) ( 2 £+ 3 ) 
1 TI t(J,+1)(29,+l) 

As an example, for 1=1 

10 
BO = - 72 

so that 

5 
72 

-1• 15 .3p
T ­ 7 i 1LlR.==l 

• 



CHAPTER IV 

NUMERICAL PROCEDURE 

All calculations were made at the computation 

centre of McHaster University on an IBM 7040 originally 

and then on a CDC 6400. Diagonal matrix elements were 

calculated for values of 1=0 up to 1=5 for various 

combinations of n and n' such that 

0 2. 	 n(or n') 2. 3 

Off-diagonal 	matrix elements were calculated up to the 

- H coupled state for similar values of n and n'.
3

F4 
3

4 

Advantage was taken of the fact that a symmetric inter­

change of nt with n 1 1' in the Talmi coefficients leaves 

them unchanged.. Thus, for the diagonal case only, matrix 

elements were calculated only for n' > n. The T=O phase 

shifts of G. Breit et al (15) were used in the calculations. 

Interpolation in the phase shifts and coupling parameters 

was achieved by using a ten-point Lagrarige formula evaluated 

1 1 

according to the Aitken iteration method. This produces 

a ninth order polynomial. 

In the hypergeometric function F (-t-l-µ; ~-1, x}, 

the order of the polynomial obtained is identical to the 

negative value of the first argument. In our case,. the 

22 
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maximum value of £ was five and µ equal to six so that 

a h;elfth ot:ner expansion must be evaluated. A novel 

procedure ',\ras errm.l oved to achieve this since by simple.... .. 
addition of each successive term, one obto.ins numbers of 

unusually great mo.gni tu.de with a resultant loss of sign­

ificance because each term is generally added with alternate 

sign. Eence, the polynomial was calculated in the "nested"· 

way in which one begins with the coefficient of the highest 

power and procedes to the lower powers. 

We nov.r must in:te<Jrate a polynomial of maximum 

order twenty-one for the diasonal matrix elements and of 

twenty-second aider for off-diagonal matrix elements where 

an additional factor of the variable of integration occursj 

For this, a fifteen-point Gauss-Laguerre quadrature 

formula was used \~1ich in principle will yield an exact 

solution for a polynomial of twenty-ninth degr8e or less. 
. . 

This proved raore than adequate. Apart frcro t~c inter­

polation in the phase shifts, thG preceding cal~ulations 

were made using approximately fourteen significant fl~urcs 

for both thQ reJuction of round-off and for better accuracy 

in the numerical integration. The Talmi coefficients were 

also evaluated with a similar degree of accuracy since for 

µ ~ 4 the magnitude of the coefficients are of the order 
(n+n'_.,,____ - 1)

.") 

lQ ~ and for large n and n' can be quite large. 
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These coefficients are then multiplied by the Talmi integrals 

which are generally less than one and usually much less. 

Since the Talmi coefficients appear with alternate sign in 

the summation of Talmi integrals one may incur large 

round-off errors particularly when µ is large. 

Elliott et al have compared the reduced matrix 

elements obtained by their method with those obtained by 

actual integration of the Tabakin (12) potential for the 

three states of the triplet P partial wave. They have 

found that the disagreement varies from within a few 

percent to over one hundred percent. The method thus 

appears to be moderately inaccurate. One source of this 

discrepancy lies in the Born approximation of the phase 

shift. It is known that one can expect the Born formula 

to be accurate provided the wavefunction of the scattered 

nucleon closely approximates the free particle wavefunction. 

This is generally true for high valties of the relative 

kinetic energy of the two nucleon system. The requirement 

that the phase shift be small is insufficient to guarantee 

a good Born approximation since, at low energies the phase 

shift is small but the nucleon wave function is highly 

distorted compared to the free nucleon eigenstat~. Mien 

one compares the phase shifts calculated exactly and in 

first Born approximation on the Reid (9) potential, it is 

1found that for waves, the disagreement at low energiess 0 
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can be as large as five hundred percent * • At energies 

greater than one lmi1dred MeV (laboratory frar.:e) for the 

'1ucleon, agree:mcnt is obtain2d to within five or ten· 

percent~ For the 10 2 wave, similar accuracy was observed 

for energies greater than fifty MeV. _The Dorn approximation 

becomes bett~r for larger values of the orbital angular 

momentum ~ince, in these cases, the scattered nucleon 

only sees the tail of the scattering potential. The 

Ha.vefunction is therefore less distorted. Another 

consideration of Elliott's method is necessary since, 

in·calculating nuclear spectra due to interactions of 

nucleons near the fermi surface, the relative kinetic 

energy of two nucleons is small. For two nucleons in the 

lowest relative S-state, the relative kinetic energy is of 

order 1'1w, which for light nuclei is approxirnu.tely ten MeV. 

It uas seen above that it is in this lov energy region where 

the Eorn approximation is least accurate. 

* Private communication from Mr. M. K. Srivastava • 

..... 
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