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PÓLYA-AEPPLI DISTRIBUTION

BY

YANG YE, B.Sc.

a thesis

submitted to the department of Mathematics and Statistics

and the school of graduate studies

of McMaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c© Copyright by Yang Ye, April 2015

All Rights Reserved



Master of Science (2015) McMaster University

(Mathematics and Statistics) Hamilton, Ontario, Canada

TITLE: Likelihood Inference for Type I Bivariate Pólya-Aeppli
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Abstract

The Poisson distribution is commonly used in analyzing count data, and many insur-

ance companies are interested in studying the related risk models and ruin probability

theory. Over the past century, many different bivariate models have been developed

in the literature. The bivariate Poisson distribution was first introduced by Campbell

(1934) for modelling bivariate accident data. However, in some situations, a given

dataset may possess over-dispersion compared to Poisson distribution which moti-

vated researchers to develop alternative models to handle such situations. In this

regard, Minkova and Balakrishnan (2014a) developed the Type I bivariate Pólya-

Aeppli distribution by using compounding with Geometric random variables and the

trivariate reduction method. Inference for this Type I bivariate Pólya-Aeppli distri-

bution is the topic of this thesis.

The parameters in a model are used to describe and summarize a given sample

within a specific distribution. So, their estimation becomes important and the goal of

estimation theory is to seek a method to find estimators for the parameters of inter-

est that have some good properties. There exist many methods of finding estimators

such as Method of Moments, Bayesian estimators, Least Squares, and Maximum

Likelihood Estimators (MLEs). Each method of estimation has its own strength and
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weakness (Casella and Berger (2008)). Minkova and Balakrishnan (2014a) discussed

the moment estimation of the parameters of the Type I bivariate Pólya-Aeppli dis-

tribution. In this thesis, we develop the likelihood inference for this model.

A simulation study is carried out with various parameter settings. The obtained

results show that the MLEs require more computational time compared to Moment

estimation. However, Method of Moments (MoM) did not result in good estimates

for all the simulation settings. In terms of mean squared error and bias, we observed

that MLEs performed, in most of the settings, better than MoM.

Finally, we apply the Type I bivariate Pólya-Aeppli model to a real dataset con-

taining the frequencies of railway accidents in two subsequent six year periods. We

also carry out some hypothesis tests using the Wald test statistic. From these re-

sults, we conclude that the two variables belong to the same univariate Pólya-Aeppli

distribution but are correlated.
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Chapter 1

Introduction

1.1 Background and Problem

The Poisson distribution is often used as a risk insurance model. One of the most

important characteristics of a Poisson distribution is that it is equi-dispersed, that

is, mean and variance are equal. When this equality is violated, we will have either

an underdispersed or overdispersed data. An overdispersion in the count data is a

problem. This similar issue was brought by Fisher et al. (1922) during the interpre-

tation of a bacterial count data, and thus developed the Fisher Index of Dispersion

test. Given n independent random variables X1, X2, . . . , Xn ∼ Poi(λ), according to

Fisher et al. (1922),

I =
n∑
i=1

(Xi − X̄)2

X̄
(1.1)

= (n− 1)
S2
X

X̄
,

1
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where I ∼ χ2 with (n − 1) degrees of freedom. This Index of Dispersion aims to

test the null hypothesis that all the random variables Xi’s come from the Poisson

distribution against the alternative hypothesis that the variance is greater than the

mean.

Over the last century, researchers have developed many different bivariate distri-

butions. The bivariate Poisson distribution is the least complex model and is therefore

widely used in many applications. Loukas and Kemp (1986) extended the univariate

Index of Dispersion proposed by Fisher et al. (1922) to test the bivariate Poisson

distribution. This test, called the Bivariate Dispersion Test, has the form

IB =
N(X̄2S

2
1 − 2S2

12 + X̄1S
2
2)

X̄1X̄2 − S2
12

, (1.2)

where N is the sample size, X̄1, X̄2 are the sample means, S2
1 , S

2
2 are the sample

variances and S12 is the sample covariance. The test statistic IB follows by a χ2

distribution with 2N degrees of freedom.

An evidence towards an alternative distribution means that there is more vari-

ability present in the data than what would be expected with a bivariate Poisson

distribution. For this reason, many researchers sought alternative models. Lindén

and Mäntyniemi (2011) proposed a parametrization of Negative Binomial distribu-

tion to solve the over-dispersion problem for ecological count data. Later, in order

to describe the heterogeneous insurance type data, Minkova (2004) showed a gener-

alization of the count model by adding a new parameter to number of counts into

the Negative Binomial distribution. This resulted in the well known Pólya-Aeppli

2
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distribution.

The Pólya-Aeppli distribution is a model that counts the objects that occur in

clusters. The number of objects per cluster come from the geometric distribution

with probability of success 1−ρ, where 0 ≤ ρ ≤ 1, and the number of clusters follows

the Poisson distribution with mean λ (Johnson et al. (2005)). This distribution was

first studied by A. Aeppli in a thesis, followed by G. Pólya five years later. Anscombe

(1950) subsequently finalized the derivation of this distribution and gave the name

Pólya-Aeppli distribution (Minkova (2012)). The probability mass function (PMF)

of a Pólya-Aeppli random variable N is

P (N = n) = e−λ
n∑
i=0

1

i!

(
n− 1

i− 1

)
(λ(1− ρ))iρn−i. (1.3)

This expression will be formally derived in Chapter 2.

This distribution is widely applied in risk theory. It has many applications includ-

ing in estimating ruin probability (Minkova (2004)), in queueing theory of income

process (Dragieva (2011)), and in the study of times in dynamical systems (Haydn

and Valenti (2009)). For example, Haydn and Valenti (2009) showed that the limiting

distribution of the behaviour of return times at periodic points in a mixing dynamical

system is a compound Poisson distribution. All these works, however, focused on the

univariate Pólya-Aeppli distribution. Minkova and Balakrishnan (2014a) were the

first to introduce a bivariate form of Pólya-Aeppli distribution.
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To extend the univariate distribution to a bivariate form, Minkova and Balakr-

ishnan (2014a) used the trivariate reduction method (Balakrishnan and Lai (2009)).

This begins with the bivariate Poisson distribution and then compounds it with ge-

ometric distribution to obtain a bivariate Pólya-Aeppli distribution along the same

lines of a univariate Pólya-Aeppli distribution. More specifically, let us define Y1 and

Y2 as

Y1 = Z1 + Z3,

Y2 = Z2 + Z3,

where Zi are independent random variables and Zi ∼ Poi(λi). Since Y1 and Y2 are

both sums of two independent Poisson random variables, it is evident that

Y1 ∼ Poi(λ1 + λ3),

Y2 ∼ Poi(λ2 + λ3).

Campbell (1934) found the joint PGF of (Y1, Y2) as

ψY1,Y2(s1, s2) = E(sY11 s
Y2
2 )

= e−λ1(1−s1)−λ2(1−s2)−λ3(1−s1s2), (1.4)

and referred to it as the bivariate Poisson distribution. This method of constructing

bivariate distributions is commonly referred to as trivariate reduction method; see,

for example, Johnson et al. (1997) and Balakrishnan and Lai (2009).

4
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By using such a trivariate reduction method, the PGF of the bivariate random

vector (N1, N2), to be introduced as bivariate compounding later in Section 2.2, can

be derived as

ψ(s1, s2) = e−(λ1+λ2+λ3)eλ1ψ1(s1)+λ2ψ1(s2)+λ3ψ1(s1)ψ1(s2), (1.5)

where ψ1(s) = (1−ρ)s
1−ρs is the PGF of a Geometric random variable. Minkova and

Balakrishnan (2014a) gave the name Type I bivariate Pólya-Aeppli distribution for

the above distribution. Subsequently, Minkova and Balakrishnan (2014b) introduced

a Type II bivariate Pólya-Aeppli distribution with joint PGF

ψ(s1, s2) = e−λ(1−ψ1(s1,s2)), (1.6)

derived by compounding a bivariate geometric distribution with an univariate Poisson

distribution, where ψ1(s1, s2) = θ
1−θ1s1−θ2s2 with θ = 1− θ1 − θ2.

For the Type I bivariate Pólya-Aeppli distribution, Minkova and Balakrishnan

(2014a) discussed the Method of Moments (MoM) estimation for the parameters λ1,

λ2, λ3 and ρ. Here, we develop the Maximum Likelihood Estimation (MLE) method

and evaluate its performance through Monte Carlo simulations. We then compare this

method of estimation with MoM in terms of bias and mean squared error. Interval

estimation of parameters and tests of hypotheses based on these methods are also

discussed.

5
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1.2 Scope of the Thesis

This thesis focuses on the numerical determination of the method of MLEs and its

relative performance compared to the Method of Moment (MoM) estimates. For this

purpose, an extensive Monte Carlo simulation study is carried out, and some conclu-

sions are drawn from this study.

In Chapter 2, the basic theory about the univariate and bivariate Pólya-Aeppli

distributions is provided along with the corresponding derivations. Chapter 3 presents

the point estimation and interval estimation methods in detail as well as the required

derivations of the recursive probability mass functions. A short discussion about the

Grid Search method is also provided for the purpose of finding the initial values for

the Newton-Raphson algorithm in the case when MoM fails. In Chapter 4, a sim-

ulation study is conducted using various parameter settings. Comparisons between

the performance of MoM and MLE is made in terms of different performance mea-

sures. Chapter 5 considers a real data application and some hypotheses tests for the

model parameters. Finally, Chapter 6 provides a discussion and concludes with some

possible directions for future work.

6



Chapter 2

Basic Model and Probability

Calculations

2.1 Univariate Pólya-Aeppli Distribution

In this section, a basic formulation of univariate Pólya-Aeppli distribution is given.

Suppose there are Y independent random variables of the form X, and N denotes

the sum of these random variables, namely,

N = X1 +X2 + ...+XY . (2.1)

Then, the Pólya-Aeppli model is derived by supposing that

(i) X denotes the number of objects within a cluster, where X ∼ Geo(1− ρ),

(ii) Y denotes the number of clusters, where Y ∼ Poi(λ).

This random variable, N , formed by compounding in this fashion gives rise to the

univariate Pólya-Aeppli distribution, and its probability generating function (PGF)

7
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can be derived easily. First, we have the probability mass function (PMF) of X as

P (X = i) = (1− ρ)ρi−1, (2.2)

for i = 1, 2, . . . , and its PGF is

E(sX) = ψ1(s) =
∞∑
x=1

sx(1− ρ)ρx−1

= (1− ρ)s
∞∑
x=0

(sρ)x

=
(1− ρ)s

1− sρ
. (2.3)

Also, the PGF of Y is known to be

ψY (s) = eλ(s−1). (2.4)

8
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Since Xi’s are iid and independent of Y , the PGF of the random variable N can then

be readily found as follows:

ψN(s) = E(sN) = E(sX1+···+Xy)

=
∞∑
y=0

E(sX1+···+Xy |Y = y)P (Y = y)

=
∞∑
y=0

[E(sX)]yP (Y = y)

=
∞∑
y=0

[ψ1(s)]
yP (Y = y)

= ψY (ψ1(s))

= eλ(ψ1(s)−1)

= e−λ(1−
(1−ρ)s
1−ρs ). (2.5)

Since the PGF is

ψN(s) =
∞∑
m=0

P (N = m)sm,

an expression for P (N = m), for all m ≥ 0, can be obtained from the expression of

the PGF by using the inverse binomial expansion:

(1− p)−r =
∞∑
k=0

(
k + r − 1

k

)
pk. (2.6)

9
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Now, since the PGF of N in (2.5) can be expressed as

e−λ(1−
(1−ρ)s
1−ρs ) = e−λeλ(

(1−ρ)s
1−ρs )

= e−λ
∞∑
m=0

[
λ(1− ρ)s

1− ρs

]m
1

m!

= e−λ
∞∑
m=0

(λ(1− ρ)s)m(1− ρs)−m 1

m!

= e−λ
∞∑
m=0

1

m!
(λ(1− ρ)s)m

∞∑
i=0

(
m+ i− 1

i

)
(ρs)i,

upon collecting the coefficient of sm in the above series, we find an explicit expression

for the PMF of N as

P (N = m) = e−λ
m∑
i=0

1

i!

(
m− 1

i− 1

)
(λ(1− ρ))iρm−i. (2.7)

This is the PMF of the univariate Pólya-Aeppli distribution, and we shall denote it

by N ∼ PA(λ, ρ).

The mean and variance can be calculated from the first and second derivatives of the

PGF in (2.5) and then setting s = 1. Thus, we find

E(N) =
λ

1− ρ
,

V ar(N) =
λ(1 + ρ)

(1− ρ)2
.

From these, we find the ratio between variance and mean to be

V ar(N)

E(N)
=

1 + ρ

1− ρ
.

10
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Since the numerator is always greater than the denominator, it is evident that the

variance is greater than the mean. Thus, this model becomes overdispersed with re-

spect to the Poisson distribution.

Moreover, if there are two independent Pólya-Aeppli random variables Na and Nb,

Na ∼ PA(λa, ρ) and Nb ∼ PA(λb, ρ) with the same probability of success ρ, then the

sum of them also has the Pólya-Aeppli distribution with parameter λa + λb and ρ,

that is,

Na +Nb ∼ PA(λa + λb, ρ). (2.8)

This is an important property of the Pólya-Aeppli distribution that will be useful in

the construction of the bivariate form in the next section, and this property can be

easily shown from the PGF in (2.5).

2.2 Bivariate Pólya-Aeppli Distribution

We now describe the construction of Minkova and Balakrishnan (2014a) of the bi-

variate Pólya-Aeppli distribution through the trivariate reduction method. Consider

four sets of convolutions of independent and identically distributed (iid) Geo(1− ρ)

11
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random variables U , V , W , and R defined as follows:

U = U1 + · · ·+ UZ1 ,

V = V1 + · · ·+ VZ2 ,

W = W1 + · · ·+WZ3 ,

R = R1 + · · ·+RZ3 , (2.9)

where Zi’s are assumed to be independent of the compounding Geo(1 − ρ) random

variables with Zi ∼ Poi(λi).

Then, the joint PGF of (W , R) is derived as follows:

E(sW1 s
R
2 ) =

∞∑
i=0

∞∑
j=0

P (W = i, R = j)si1s
j
2

=
∞∑
i=0

∞∑
j=0

P (W1 + · · ·+WZ3 = i, R1 + · · ·+RZ3 = j)si1s
j
2

=
∞∑
i=0

∞∑
j=0

∞∑
n=0

P (W1 + · · ·+Wn = i, R1 + · · ·+Rn = j)
λn3e

−λ3

n!
si1s

j
2

=
∞∑
n=0

λn3e
−λ3

n!
[ψ1(s1)ψ1(s2)]

n

= e−λ3
∞∑
n=0

[λ3ψ1(s1)ψ1(s2)]
n

n!

= e−λ3(1−ψ1(s1)ψ1(s2)), (2.10)

12



M.Sc. Thesis - Yang Ye McMaster - Statistics

where ψ1(s) is the PGF of the compounding geometric distribution in (2.3). Now, let

us define a pair of independent random variables N1 and N2 as follows:

N1 = U +W,

N2 = V +R. (2.11)

Then, the joint PGF of the bivariate random variable (N1, N2) is given by

ψ(s1, s2) = E(sN1
1 sN2

2 ) = E(sU1 s
V
2 s

W
1 s

R
2 )

= E(sU1 )E(sV2 )E(sW1 s
R
2 )

= e−λ1(1−ψ1(s1))e−λ2(1−ψ1(s2))e−λ3(1−ψ1(s1)ψ1(s2))

= e−(λ1+λ2+λ3)eλ1ψ1(s1)+λ2ψ1(s2)+λ3ψ1(s1)ψ1(s2). (2.12)

This is the PGF of the Type I bivariate Pólya-Aeppli distribution, and in this case

we will use the notation (N1, N2) ∼ BivPA(λ1, λ2, λ3, ρ).

2.3 Joint Probability Mass Function of the Bivari-

ate Pólya-Aeppli Distribution

The following proposition presents recursion formulas for the joint probability mass

function of the bivariate random variable (N1, N2) given by

f(i, j) = P (N1 = i, N2 = j), i, j = 0, 1, 2, . . . .

13
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Proposition 2.1: The PMF of the bivariate Pólya-Aeppli distribution satisfies the

following recursions:

f(i, 0) =

(
2ρ+

(1− ρ)λ1 − 2ρ

i

)
f(i− 1, 0)−

(
1− 2

i

)
ρ2f(i− 2, 0), i = 1, 2, . . . ,

(2.13)

f(0, j) =

(
2ρ+

(1− ρ)λ2 − 2ρ

j

)
f(0, j − 1)−

(
1− 2

j

)
ρ2f(0, j − 2), j = 1, 2, . . . ,

(2.14)

where f(−1, 0) = 0, f(0,−1) = 0,

f(i+ 1, j)− ρf(i+ 1, j − 1) =

(
2ρ+

(1− ρ)λ1 − 2ρ

i+ 1

)
f(i, j) (2.15)

−ρ2
(

1− 2

i+ 1

)
(f(i− 1, j)− ρf(i− 1, j − 1))

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ1 + λ3)) + 2ρ2

i+ 1

)
f(i, j − 1)

for i = 2, 3, . . . , j = 1, 2, . . . ,

f(i, j + 1)− ρf(i− 1, j + 1) =

(
2ρ+

(1− ρ)λ2 − 2ρ

j + 1

)
f(i, j) (2.16)

−ρ2(1− 2

j + 1
)(f(i, j − 1)− ρf(i− 1, j − 1))

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ2 + λ3)) + 2ρ2

j + 1

)
f(i− 1, j)

for i = 1, 2, . . . , j = 2, 3, . . . .

Notice that f(0, 0) = e−(λ1+λ2+λ3). This follows readily from the construction that

N1 = N2 = 0 if and only if Z1 = Z2 = Z3 = 0 with P (Zi = 0) = e−λi , for i = 1, 2, 3

(Minkova and Balakrishnan (2014a)).
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To establish Proposition 2.1, we first take the derivative of Eq. (2.12) with respect

to s1 and s2 and obtain the recursive equations

(1− ρs1)2(1− ρs2)
∂ψ(s1, s2)

∂s1
= (1− ρ)(λ1 + (λ3 − ρ(λ1 + λ3))s2)ψ(s1, s2),

(2.17)

(1− ρs2)2(1− ρs1)
∂ψ(s1, s2)

∂s2
= (1− ρ)(λ2 + (λ3 − ρ(λ2 + λ3))s1)ψ(s1, s2),

(2.18)

where

ψ(s1, s2) =
∞∑
i=0

∞∑
j=0

si1s
j
2f(i, j), (2.19)

∂ψ(s1, s2)

∂s1
=

∞∑
i=0

∞∑
j=0

if(i, j)si−11 sj2, (2.20)

∂ψ(s1, s2)

∂s2
=

∞∑
i=0

∞∑
j=0

jf(i, j)si1s
j−1
2 . (2.21)

To obtain Eqs. (2.13) and (2.15), we expand Eq. (2.17) upon substituting the expres-

sions in (2.19), (2.20), and (2.21) and equating the coefficients of si1s
0
2 and of si1s

j
2.

Specifically, we get this way

(1− 2ρs1 + ρ2s21)(1− ρs2)
∞∑
i=0

∞∑
j=0

if(i, j)si−11 sj2 = (1− ρ)(λ1 + (λ3 − ρ(λ1 + λ3))s2)

×
∞∑
i=0

∞∑
j=0

si1s
j
2f(i, j)

15
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yielding the equation

(1− 2ρs1 + ρ2s21 − ρs2 + 2ρ2s1s2 − ρ3s21s2)
∞∑
i=0

∞∑
j=0

if(i, j)si−11 sj2

= ((1− ρ)λ1 + (1− ρ)(λ3 − ρ(λ1 + λ3))s2)
∞∑
i=0

∞∑
j=0

si1s
j
2f(i, j). (2.22)

Upong equating the coefficients of si1s
0
2 on both sides of (2.22), we obtain

(i+ 1)f(i+ 1, 0)− 2iρf(i, 0) + ρ2(i− 1)f(i− 1, 0) = (1− ρ)λ1f(i, 0)

for i = 0, 1, 2, . . . ,

if(i, 0)− 2(i− 1)ρf(i− 1, 0) + ρ2(i− 2)f(i− 2, 0) = (1− ρ)λ1f(i− 1, 0)

for i = 1, 2, . . . , which yields

if(i, 0) = (2ρ(i− 1) + (1− ρ)λ1)f(i− 1, 0)− ρ2(i− 2)f(i− 2, 0),

which yields

f(i, 0) =

(
2ρ− 2ρ

i
+

(1− ρ)λ1
i

)
f(i− 1, 0)− ρ2(1− 2

i
)f(i− 2, 0),

=

(
2ρ+

(1− ρ)λ1 − 2ρ

i

)
f(i− 1, 0)− ρ2(1− 2

i
)f(i− 2, 0)

for i = 1, 2, . . . . This is precisely Eq. (2.13).

Similarly, upon equating the coefficients of si1s
j
2 on the LHS and RHS of Eq. (2.22),

16
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we obtain

f(i+ 1, j) − ρf(i+ 1, j − 1)

=

(
2ρi+ (1− ρ)λ1

i+ 1

)
f(i, j) +

(
(1− ρ)(λ3 − ρ(λ1 + λ3))− 2ρ2i

i+ 1

)
f(i, j − 1)

−
(
ρ2(i− 1)

i+ 1

)
f(i− 1, j) +

(
ρ3(i− 1)

i+ 1

)
f(i− 1, j − 1)

=

(
2ρ+

(1− ρ)λ1 − 2ρ

i+ 1

)
f(i, j)

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ1 + λ3)) + 2ρ2

i+ 1

)
f(i, j − 1)

−ρ2
(

1− 2

i+ 1

)
(f(i− 1, j)− ρf(i− 1, j − 1))

for i = 2, 3, . . . , j = 1, 2, . . . . This is precisely Eq. (2.15).

Eqs. (2.14) and (2.16) in Proposition 4.1 can be provided in a similar manner by

equating the coefficients of s01s
j
2 and si1s

j
2 on both sides of Eq. (2.18) in the following

way:

(1− 2ρs2 + ρ2s22 − ρs1 + 2ρ2s1s2 − ρ3s22s1)
∞∑
i=0

∞∑
j=0

jf(i, j)si1s
j−1
2

= ((1− ρ)λ2 + (1− ρ)(λ3 − ρ(λ2 + λ3))s1)
∞∑
i=0

∞∑
j=0

si1s
j
2f(i, j). (2.23)

(2.24)

Then, equating the coefficients of s01s
j
2 in Eq. (2.23), we obtain

(j + 1)f(0, j + 1)− 2jρf(0, j) + ρ2(j − 1)f(0, j − 1) = (1− ρ)λ2f(0, j)

17
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for j = 0, 1, 2, . . . ,

jf(0, j)− 2(j − 1)ρf(0, j − 1) + ρ2(j − 2)f(0, j − 2) = (1− ρ)λ2f(0, j − 1)

for j = 1, 2, . . . , which yields

f(0, j) =

(
2ρ− 2ρ

j
+

(1− ρ)λ2
j

)
f(0, j − 1)− ρ2

(
1− 2

j

)
f(0, j − 2),

=

(
2ρ+

(1− ρ)λ2 − 2ρ

j

)
f(0, j − 1)− ρ2

(
1− 2

j

)
f(0, j − 2)

for j = 1, 2, . . . . This is precisely Eq. (2.14).

Similarly, a comparison of coefficients of si1s
j
2 in Eq. (2.23) yields

f(i, j + 1) − ρf(i− 1, j + 1)

=

(
2ρj + (1− ρ)λ2

j + 1

)
f(i, j) +

(
(1− ρ)(λ3 − ρ(λ2 + λ3))− 2ρ2j

j + 1

)
f(i− 1, j)

−
(
ρ2(j − 1)

j + 1

)
f(i, j − 1) +

(
ρ3(j − 1)

j + 1

)
f(i− 1, j − 1)

=

(
2ρ+

(1− ρ)λ2 − 2ρ

j + 1

)
f(i, j)

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ2 + λ3)) + 2ρ2

j + 1

)
f(i− 1, j)

−ρ2
(

1− 2

j + 1

)
(f(i, j − 1)− ρf(i− 1, j − 1))

for i = 1, 2, . . . , j = 2, 3, . . . .This is precisely Eq. (2.16).

Now, we decrease i by 1 in (2.15) and decrease j by 1 in (2.16) to obtain the following
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recursions:

f(i, j) = ρf(i, j − 1) +

(
2ρ+

(1− ρ)λ1 − 2ρ

i

)
f(i− 1, j)

−ρ2
(

1− 2

i

)
(f(i− 2, j)− ρf(i− 2, j − 1)) (2.25)

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ1 + λ3)) + 2ρ2

i

)
f(i− 1, j − 1)

for i = 2, 3, . . . , j = 1, 2, . . . , and

f(i, j) = ρf(i− 1, j) +

(
2ρ+

(1− ρ)λ2 − 2ρ

j

)
f(i, j − 1)

−ρ2
(

1− 2

j

)
(f(i, j − 2)− ρf(i− 1, j − 2)) (2.26)

−
(

2ρ2 − (1− ρ)(λ3 − ρ(λ2 + λ3)) + 2ρ2

j

)
f(i− 1, j − 1)

for i = 1, 2, . . . , j = 2, 3, . . . .

Let us now introduce the notation

a(i) = 2ρ+
(1− ρ)λ1 − 2ρ

i
,

b(i) = ρ2
(

1− 2

i

)
,

c(j) = 2ρ+
(1− ρ)λ2 − 2ρ

j
,

v(i) = 2ρ2 − (1− ρ)(λ3 − ρ(λ1 + λ3)) + 2ρ2

i
,

w(j) = 2ρ2 − (1− ρ)(λ3 − ρ(λ2 + λ3)) + 2ρ2

j
.
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Then, the recursive form of the PMF of Type I bivariate Pólya-Aeppli distribution

given in Eqs. (2.13), (2.14), (2.25) and (2.26) can be expressed as follows:

f(i, 0) = a(i)f(i− 1, 0)− b(i)f(i− 2, 0), (2.27)

f(0, j) = c(j)f(0, j − 1)− b(j)f(0, j − 2), (2.28)

f(i, j) = ρf(i, j − 1) + a(i)f(i− 1, j)− b(i)(f(i− 2, j)− ρf(i− 2, j − 1))

−v(i)f(i− 1, j − 1), (2.29)

f(i, j) = ρf(i− 1, j) + c(j)f(i, j − 1)− b(j)(f(i, j − 2)− ρf(i− 1, j − 2))

−w(j)f(i− 1, j − 1). (2.30)

These recursive expressions will be used in over subsequent derivations.
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Chapter 3

Methods of Estimation

3.1 Method of Moments

This section describes the parameter estimation using the Method of Moments (MoM);

see Minkova and Balakrishnan (2014a). With the joint PGF of (N1, N2) as in (2.12),

the marginal PGF of N1 and N2 are obtained readily as

ψN1(s1) = ψ(s1, 1) = e−(λ1+λ3)(1−ψ1(s1)),

ψN2(s2) = ψ(1, s2) = e−(λ2+λ3)(1−ψ1(s2)).

These readily imply that N1 ∼ PA(λ1+λ2, ρ) and N2 ∼ PA(λ2+λ3, ρ), as stated ear-

lier from (2.8). Then, the mean and variance of N1 and N2 are obtained immediately
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as follows:

E(N1) =
λ1 + λ3
1− ρ

,

E(N2) =
λ2 + λ3
1− ρ

,

V ar(N1) =
(λ1 + λ3)(1 + ρ)

(1− ρ)2
,

V ar(N2) =
(λ2 + λ3)(1 + ρ)

(1− ρ)2
. (3.1)

The cross-derivative with respect to s1 and s2 from Eq. (2.12) gives

∂2ψ(s1, s2)

∂s1∂s2
= ψ(s1, s2)[(λ1 + λ3ψ1(s1))(λ2 + λ3ψ1(s2)) + λ3]ψ

′
1(s1)ψ

′
1(s2).

Now, upon setting s1 = s2 = 1 and using the fact that ψ1(1) = 1, ψ′(1) = E(X) =

1
1−ρ , the product moment of N1 and N2 is obtained as

E(N1N2) =
∂2ψ(s1, s2)

∂s1∂s2

∣∣∣∣
s1=s2=1

= ψ(1, 1)[(λ1 + λ3ψ1(1))(λ2 + λ3ψ1(1)) + λ3]ψ
′
1(1)2

=
(λ1 + λ3)(λ2 + λ3) + λ3

(1− ρ)2
.

Thus, the covariance between N1 and N2 is obtained as

Cov(N1, N2) = E(N1N2)− E(N1)E(N2)

=
(λ1 + λ3)(λ2 + λ3) + λ3

(1− ρ)2
−
(
λ1 + λ3
1− ρ

)(
λ2 + λ3
1− ρ

)
=

λ3
(1− ρ)2

,
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from which the correlation coefficient is obtained as

Corr(N1, N2) =
Cov(N1, N2)√
V ar(N1)V ar(N2)

=

λ3
(1−ρ)2√

(λ1+λ3)(1+ρ)
(1−ρ)2

(λ2+λ3)(1+ρ)
(1−ρ)2

=
λ3

(1 + ρ)
√

(λ1 + λ3)(λ2 + λ3)
.

Now, let (n1i, n2i) be a random sample from a bivariate Pólya-Aeppli distribution, for

i = 1, 2, . . . ,m, that is,

(n1i, n2i) ∼ BivPA(λ1, λ2, λ3, ρ)

for i = 1, . . . ,m. Then, set

n̄1 =
1

m

m∑
i=1

n1i, (3.2)

n̄2 =
1

m

m∑
i=1

n2i, (3.3)

s21 =
1

m− 1

m∑
i=1

(n1i − n̄1)
2, (3.4)

s22 =
1

m− 1

m∑
i=1

(n2i − n̄2)
2, (3.5)

s12 =
1

m− 1

m∑
i=1

(n1i − n̄1)(n2i − n̄2). (3.6)
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Then, Minkova and Balakrishnan (2014a) mentioned two ways of estimating the pa-

rameters using the method of moments. First method uses strictly the equations

ρ̂ =
s21 + s22 − (n̄1 + n̄2)

s21 + s22 + n̄1 + n̄2

, (3.7)

λ̂1 = (1− ρ̂)n̄1 − (1− ρ̂)2s12, (3.8)

λ̂2 = (1− ρ̂)n̄2 − (1− ρ̂)2s12, (3.9)

λ̂3 = (1− ρ̂)2s12. (3.10)

The second method sets

θ1 =
λ1

1− ρ
,

θ2 =
λ2

1− ρ
,

θ3 =
λ3

1− ρ
,

φ =
1 + ρ

1− ρ
,

and uses the facts that

E(N1) = θ1 + θ3,

E(N2) = θ2 + θ3,

V ar(N1) = (θ1 + θ3)φ,

V ar(N2) = (θ2 + θ3)φ.
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It then uses the estimate of φ as

φ̃ =
1

2

(
s21
n̄1

+
s22
n̄2

)
, (3.11)

to come up with the moment estimates

θ̃1 = n̄1 − θ̃3, (3.12)

θ̃2 = n̄2 − θ̃3, (3.13)

θ̃3 =
s12
1+φ̃
2

, (3.14)

ρ̃ =
φ̃− 1

φ̃+ 1
=

n̄2(s
2
1 − n̄1) + n̄1(s

2
2 − n̄2)

n̄2(s21 + n̄1) + n̄1(s22 + n̄2)
. (3.15)

Notice that the MoM may not provide admissible estimates in some cases as it can

result in negative parameter estimates. In this case, the MoM will be considered to

have failed.

3.2 Method of Maximum Likelihood Estimation

This section describes the Maximum Likelihood Estimation (MLE) using the Newton-

Raphson (N-R) algorithm, which is a root finding algorithm to solve a nonlinear

system of equations. Since the PMF given in Eqs. (2.13), (2.14), (2.25), and (2.26)

are recursive functions and so will be the likelihood function, it becomes necessary

to use an iterative method to find the parameter estimates. For this purpose, a

multivariable nonlinear system of equations will be solved using the N-R method for

the likelihood estimation (Press and Vetterling (1989)).
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For facilitating the implementation of this algorithm, we present all the first and

second order partial derivatives with respect to the parameters.

3.2.1 First and Second Order Partial Derivatives

We find the partial derivatives of the recursive PMF in Eqs. (2.27), (2.28), (2.29), and

(2.30), for which we need the following partial derivatives of the involved coefficients:

∂a(i)
∂λ1

= 1−ρ
i

, ∂a(i)
∂λ2

= 0, ∂a(i)
∂λ3

= 0, ∂a(i)
∂λρ

= 2 +
(−λ1−2

i

)
,

∂2a(i)

∂λ21
= 0, ∂2a(i)

∂λ1λ2
= 0, ∂2a(i)

∂λ1λ3
= 0, ∂2a(i)

∂λ1λρ
= −1

i
,

∂2a(i)

∂λ22
= 0, ∂2a(i)

∂λ2λ3
= 0, ∂2a(i)

∂λ2λρ
= 0,

∂2a(i)

∂λ23
= 0, ∂2a(i)

∂λ3λρ
= 0,

∂2a(i)
∂λ2ρ

= 0;

∂c(j)
∂λ1

= 0, ∂c(j)
∂λ2

= 1−ρ
j

, ∂c(j)
∂λ3

= 0, ∂c(j)
∂λρ

= 2 +
(
−λ2−2

j

)
,

∂2c(j)

∂λ21
= 0, ∂2c(j)

∂λ1λ2
= 0, ∂2c(j)

∂λ1λ3
= 0, ∂2c(j)

∂λ1λρ
= 0,

∂2c(j)

∂λ22
= 0, ∂2c(j)

∂λ2λ3
= 0, ∂2c(j)

∂λ2λρ
= −1

j
,

∂2c(j)

∂λ23
= 0, ∂2c(j)

∂λ3λρ
= 0,

∂2c(j)
∂λ2ρ

= 0;

∂b(i)
∂λ1

= 0, ∂b(i)
∂λ2

= 0, ∂b(i)
∂λ3

= 0, ∂b(i)
∂λρ

= 2ρ
(
1− 2

i

)
,

∂2b(i)

∂λ21
= 0, ∂2b(i)

∂λ1λ2
= 0, ∂2b(i)

∂λ1λ3
= 0, ∂2b(i)

∂λ1λρ
= 0,

∂2b(i)

∂λ22
= 0, ∂2b(i)

∂λ2λ3
= 0, ∂2b(i)

∂λ2λρ
= 0,

∂2b(i)

∂λ23
= 0, ∂2b(i)

∂λ3λρ
= 0,

∂2b(i)
∂λ2ρ

= 2
(
1− 2

i

)
;
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∂v(i)
∂λ1

= ρ(1−ρ)
i

, ∂v(i)
∂λ2

= 0, ∂v(i)
∂λ3

= −(1−ρ)2
i

, ∂v(i)
∂λρ

= 4ρ− λ1(2ρ−1)+2λ3(ρ−1)+4ρ
i

,

∂2v(i)

∂λ21
= 0, ∂2v(i)

∂λ1λ2
= 0, ∂2v(i)

∂λ1λ3
= 0, ∂2v(i)

∂λ1λρ
= 1−2ρ

i
,

∂2v(i)

∂λ22
= 0, ∂2v(i)

∂λ2λ3
= 0, ∂2v(i)

∂λ2λρ
= 0,

∂2v(i)

∂λ23
= 0, ∂2v(i)

∂λ3λρ
= 2(1−ρ)

i
,

∂2v(i)
∂λ2ρ

= 4− 2(λ1+λ3)
i

;

∂w(j)
∂λ1

= 0, ∂w(j)
∂λ2

= ρ(1−ρ)
j

, ∂w(j)
∂λ3

= −(ρ−1)2
j

, ∂w(j)
∂λρ

= 4ρ− λ2(2ρ−1)+2λ3(ρ−1)+4ρ
i

,

∂2w(j)

∂λ21
= 0, ∂2w(j)

∂λ1λ2
= 0, ∂2w(j)

∂λ1λ3
= 0, ∂2w(j)

∂λ1λρ
= 0,

∂2w(j)

∂λ22
= 0, ∂2w(j)

∂λ2λ3
= 0, ∂2w(j)

∂λ2λρ
= 1−2ρ

j
,

∂2w(j)

∂λ23
= 0, ∂2w(j)

∂λ3λρ
= 2(1−ρ)

j
,

∂2w(j)
∂λ2ρ

= 4− 2(λ2+λ3)
j

.

Using the above expressions, the first order partial derivatives of the recursive

PMF function in Eqs. (2.27), (2.28), (2.29), and (2.30) are then obtained as follows:

∂f(i, 0)

∂λ1
=

∂a(i)

∂λ1
f(i− 1, 0) + a(i)

∂f(i− 1, 0)

∂λ1
− b(i)∂f(i− 2, 0)

∂λ1
,

∂f(0, j)

∂λ1
= c(j)

∂f(0, j − 1)

∂λ1
− b(j)∂f(0, j − 2)

∂λ1
,

∂f(i, j)

∂λ1
= ρ

∂f(i, j − 1)

∂λ1
+
∂a(i)

∂λ1
f(i− 1, j) + a(i)

∂f(i− 1, j)

∂λ1

−b(i)
[
∂f(i− 2, j)

∂λ1
− ρ∂f(i− 2, j − 1)

∂λ1

]
− ∂v(i)

∂λ1
f(i− 1, j − 1)

−v(i)
∂f(i− 1, j − 1)

∂λ1
,

∂f(i, j)

∂λ1
= ρ

∂f(i− 1, j)

∂λ1
+ c(j)

∂f(i, j − 1)

∂λ1
− b(j)

[
∂f(i, j − 2)

∂λ1
− ρ∂f(i− 1, j − 2)

∂λ1

]
−w(j)

∂f(i− 1, j − 1)

∂λ1
;
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∂f(i, 0)

∂λ2
= a(i)

∂f(i− 1, 0)

∂λ2
− b(i)∂f(i− 2, 0)

∂λ2
,

∂f(0, j)

∂λ2
=

∂c(j)

∂λ2
f(0, j − 1) + c(j)

∂f(0, j − 1)

∂λ2
− b(j)∂f(0, j − 2)

∂λ2
,

∂f(i, j)

∂λ2
= ρ

∂f(i, j − 1)

∂λ2
+ a(i)

∂f(i− 1, j)

∂λ2
− b(i)

[
∂f(i− 2, j)

∂λ2
− ρ∂f(i− 2, j − 1)

∂λ2

]
−v(i)

∂f(i− 1, j − 1)

∂λ2
,

∂f(i, j)

∂λ2
= ρ

∂f(i− 1, j)

∂λ2
+
∂c(j)

∂λ2
f(i, j − 1) + c(j)

∂f(i, j − 1)

∂λ2

−b(j)
[
∂f(i, j − 2)

∂λ2
− ρ∂f(i− 1, j − 2)

∂λ2

]
−∂w(j)

∂λ2
f(i− 1, j − 1)− w(j)

∂f(i− 1, j − 1)

∂λ2
;

∂f(i, 0)

∂λ3
= a(i)

∂f(i− 1, 0)

∂λ3
− b(i)∂f(i− 2, 0)

∂λ3
,

∂f(0, j)

∂λ3
= c(j)

∂f(0, j − 1)

∂λ3
− b(j)∂f(0, j − 2)

∂λ3
,

∂f(i, j)

∂λ3
= ρ

∂f(i, j − 1)

∂λ3
+ a(i)

∂f(i− 1, j)

∂λ3
− b(i)

[
∂f(i− 2, j)

∂λ3
− ρ∂f(i− 2, j − 1)

∂λ3

]
−∂v(i)

∂λ3
f(i− 1, j − 1)− v(i)

∂f(i− 1, j − 1)

∂λ3
,

∂f(i, j)

∂λ3
= ρ

∂f(i− 1, j)

∂λ3
+ c(j)

∂f(i, j − 1)

∂λ3
− b(j)

[
∂f(i, j − 2)

∂λ3
− ρ∂f(i− 1, j − 2)

∂λ3

]
−∂w(j)

∂λ3
f(i− 1, j − 1)− w(j)

∂f(i− 1, j − 1)

∂λ3
;
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∂f(i, 0)

∂ρ
=

∂a(i)

∂ρ
f(i− 1, 0) + a(i)

∂f(i− 1, 0)

∂ρ
− ∂b(i)

∂ρ
f(i− 2, 0)− b(i)∂f(i− 2, 0)

∂ρ
,

∂f(0, j)

∂ρ
=

∂c(j)

∂ρ
f(0, j − 1) + c(j)

∂f(0, j − 1)

∂ρ
− ∂b(i)

∂ρ
f(0, j − 2)− b(j)∂f(0, j − 2)

∂ρ
,

∂f(i, j)

∂ρ
= f(i, j − 1) + ρ

∂f(i, j − 1)

∂ρ
+
∂a(i)

∂ρ
f(i− 1, j) + a(i)

∂f(i− 1, j)

∂ρ

−∂b(i)
∂ρ

[f(i− 2, j)− ρf(i− 2, j − 1)]

−b(i)
[
∂f(i− 2, j)

∂ρ
− f(i− 2, j − 1)− ρ∂f(i− 2, j − 1)

∂ρ

]
−∂v(i)

∂ρ
f(i− 1, j − 1)− v(i)

∂f(i− 1, j − 1)

∂ρ
,

∂f(i, j)

∂ρ
= f(i− 1, j) + ρ

∂f(i− 1, j)

∂ρ
+
∂c(j)

∂ρ
f(i, j − 1) + c(j)

∂f(i, j − 1)

∂ρ

−∂b(j)
∂ρ

[f(i, j − 2)− ρf(i− 1, j − 2)]

−b(j)
[
∂f(i, j − 2)

∂ρ
− f(i− 1, j − 2)− ρ∂f(i− 1, j − 2)

∂ρ

]
−∂w(j)

∂ρ
f(i− 1, j − 1)− w(j)

∂f(i− 1, j − 1)

∂ρ
.
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Similarly, the second order partial derivatives of the recursive PMF function in

Eqs. (2.27), (2.28), (2.29), and (2.30) are obtained as follows:

∂2f(i, 0)

∂λ21
=

2∂a(i)

∂λ1

∂f(i− 1, 0)

∂λ1
+ a(i)

∂2f(i− 1, 0)

∂λ21
− b(i)∂

2f(i− 2, 0)

∂λ21
,

∂2f(0, j)

∂λ21
= c(j)

∂2f(0, j − 1)

∂λ21
− b(j)∂

2f(0, j − 2)

∂λ21
,

∂2f(i, j)

∂λ21
= ρ

∂2f(i, j − 1)

∂λ21
+

2∂a(i)

∂λ1

∂f(i− 1, j)

∂λ1
+ a(i)

∂2f(i− 1, j)

∂λ21

−b(i)
[
∂2f(i− 2, j)

∂λ21
− ρ∂

2f(i− 2, j − 1)

∂λ21

]
−2∂v(i)

∂λ1

∂f(i− 1, j − 1)

∂λ1
− v(i)

∂2f(i− 1, j − 1)

∂λ21
,

∂2f(i, j)

∂λ21
= ρ

∂2f(i− 1, j)

∂λ21
+ c(j)

∂2f(i, j − 1)

∂λ21
− b(j)

[
∂2f(i, j − 2)

∂λ21
− ρ∂

2f(i− 1, j − 2)

∂λ21

]
−w(j)

∂2f(i− 1, j − 1)

∂λ21
;

∂2f(i, 0)

∂λ1∂λ2
=

∂a(i)

∂λ1

∂f(i− 1, 0)

∂λ2
+ a(i)

∂2f(i− 1, 0)

∂λ1∂λ2
− b(i)∂

2f(i− 2, 0)

∂λ1∂λ2
,

∂2f(0, j)

∂λ1∂λ2
=

∂c(j)

∂λ2

∂f(0, j − 1)

∂λ1
+ c(j)

∂2f(0, j − 1)

∂λ1λ2
− b(j)∂

2f(0, j − 2)

∂λ1∂λ2
,

∂2f(i, j)

∂λ1∂λ2
= ρ

∂2f(i, j − 1)

∂λ1∂λ2
+
∂a(i)

∂λ1

∂f(i− 1, j)

∂λ2
+ a(i)

∂2f(i− 1, j)

∂λ1∂λ2

−b(i)
[
∂2f(i− 2, j)

∂λ1∂λ2
− ρ∂

2f(i− 2, j − 1)

∂λ1∂λ2

]
−∂v(i)

∂λ1

∂f(i− 1, j − 1)

∂λ2
− v(i)

∂2f(i− 1, j − 1)

∂λ1∂λ2
,

∂2f(i, j)

∂λ1∂λ2
= ρ

∂2f(i− 1, j)

∂λ1∂λ2
+
∂c(j)

∂λ2

∂f(i, j − 1)

∂λ1
+ c(j)

∂2f(i, j − 1)

∂λ1∂λ2

−b(j)
[
∂2f(i, j − 2)

∂λ1∂λ2
− ρ∂

2f(i− 1, j − 2)

∂λ1∂λ2

]
−∂w(j)

∂λ2

∂f(i− 1, j − 1)

∂λ1
− w(j)

∂2f(i− 1, j − 1)

∂λ1∂λ2
;
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∂2f(i, 0)

∂λ1∂λ3
=

∂a(i)

∂λ1

∂f(i− 1, 0)

∂λ3
+ a(i)

∂2f(i− 1, 0)

∂λ1∂λ3
− b(i)∂

2f(i− 2, 0)

∂λ1∂λ3
,

∂2f(0, j)

∂λ1∂λ3
= c(j)

∂2f(0, j − 1)

∂λ1∂λ3
− b(j)∂

2f(0, j − 2)

∂λ1∂λ3
,

∂2f(i, j)

∂λ1∂λ3
= ρ

∂2f(i, j − 1)

∂λ1∂λ3
+

2∂a(i)

∂λ1

∂f(i− 1, j)

∂λ3
+ a(i)

∂2f(i− 1, j)

∂λ1∂λ3

−b(i)
[
∂2f(i− 2, j)

∂λ1∂λ3
− ρ∂

2f(i− 2, j − 1)

∂λ1∂λ3

]
−∂v(i)

∂λ3

∂f(i− 1, j − 1)

∂λ1
− ∂v(i)

∂λ1

∂f(i− 1, j − 1)

∂λ3
− v(i)

∂2f(i− 1, j − 1)

∂λ1∂λ3
,

∂2f(i, j)

∂λ1∂λ3
= ρ

∂2f(i− 1, j)

∂λ1∂λ3
+ c(j)

∂2f(i, j − 1)

∂λ1∂λ3
− b(j)

[
∂2f(i, j − 2)

∂λ1∂λ3
− ρ∂

2f(i− 1, j − 2)

∂λ1∂λ3

]
−∂w(j)

∂λ3

∂f(i− 1, j − 1)

∂λ1
− w(j)

∂2f(i− 1, j − 1)

∂λ1∂λ3
;

∂2f(i, 0)

∂λ22
= a(i)

∂2f(i− 1, 0)

∂λ22
− b(i)∂

2f(i− 2, 0)

∂λ22
,

∂2f(0, j)

∂λ22
=

2∂c(j)

∂λ2

∂f(0, j − 1)

∂λ2
+ c(j)

∂2f(0, j − 1)

∂λ22
− b(j)∂

2f(0, j − 2)

∂λ22
,

∂2f(i, j)

∂λ22
= ρ

∂2f(i, j − 1)

∂λ22
+ a(i)

∂2f(i− 1, j)

∂λ22
− b(i)

[
∂2f(i− 2, j)

∂λ22
− ρ∂

2f(i− 2, j − 1)

∂λ22

]
−v(i)

∂2f(i− 1, j − 1)

∂λ22
,

∂2f(i, j)

∂λ22
= ρ

∂2f(i− 1, j)

∂λ22
+

2∂c(j)

∂λ2

∂f(i, j − 1)

∂λ2
+ c(j)

∂2f(i, j − 1)

∂λ22

−b(j)
[
∂2f(i, j − 2)

∂λ22
− ρ∂

2f(i− 1, j − 2)

∂λ22

]
−2∂w(j)

∂λ2

∂f(i− 1, j − 1)

∂λ2
− w(j)

∂2f(i− 1, j − 1)

∂λ22
;
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∂2f(i, 0)

∂λ2∂λ3
= a(i)

∂2f(i− 1, 0)

∂λ2∂λ3
− b(i)∂

2f(i− 2, 0)

∂λ2∂λ3
,

∂2f(0, j)

∂λ2∂λ3
=

∂c(j)

∂λ2

∂f(0, j − 1)

∂λ3
+ c(j)

∂2f(0, j − 1)

∂λ2∂λ3
− b(j)∂

2f(0, j − 2)

∂λ2∂λ3
,

∂2f(i, j)

∂λ2∂λ3
= ρ

∂2f(i, j − 1)

∂λ2∂λ3
+ a(i)

∂2f(i− 1, j)

∂λ2∂λ3

−b(i)
[
∂2f(i− 2, j)

∂λ2∂λ3
− ρ∂

2f(i− 2, j − 1)

∂λ2∂λ3

]
−∂v(i)

∂λ3

∂f(i− 1, j − 1)

∂λ2
− v(i)

∂2f(i− 1, j − 1)

∂λ2∂λ3
,

∂2f(i, j)

∂λ2∂λ3
= ρ

∂2f(i− 1, j)

∂λ2∂λ3
+
∂c(j)

∂λ2

∂f(i, j − 1)

∂λ3
+ c(j)

∂2f(i, j − 1)

∂λ2∂λ3

−b(j)
[
∂2f(i, j − 2)

∂λ2∂λ3
− ρ∂

2f(i− 1, j − 2)

∂λ2∂λ3

]
−∂w(j)

∂λ3

∂f(i− 1, j − 1)

∂λ2
− ∂w(j)

∂λ2

∂f(i− 1, j − 1)

∂λ3
− w(j)

∂2f(i− 1, j − 1)

∂λ2∂λ3
;
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∂2f(i, 0)

∂λ2∂ρ
=

∂a(i)

∂ρ

∂f(i− 1, 0)

∂λ2
+ a(i)

∂2f(i− 1, 0)

∂λ2∂ρ
− ∂b(i)

∂ρ

∂f(i− 2, 0)

∂λ2
− b(i)∂

2f(i− 2, 0)

∂λ2∂ρ
,

∂2f(0, j)

∂λ2∂ρ
=

∂2c(j)

∂λ2∂ρ
f(0, j − 1) +

∂c(j)

∂ρ

∂f(0, j − 1)

∂λ2
+
∂c(j)

∂λ2

∂f(0, j − 1)

∂ρ

+c(j)
∂2f(0, j − 1)

∂λ2∂ρ
− ∂b(j)

∂ρ

∂f(0, j − 2)

∂λ2
− b(j)∂

2f(0, j − 2)

∂λ2∂ρ
,

∂2f(i, j)

∂λ2∂ρ
=

∂f(i, j − 1)

∂λ2
+ ρ

∂2f(i, j − 1)

∂λ2∂ρ
+
∂a(i)

∂ρ

∂f(i− 1, j)

∂λ2
+ a(i)

∂2f(i− 1, j)

∂λ2∂ρ

−∂b(i)
∂ρ

[
∂f(i− 2, j)

∂λ2
− ρ∂f(i− 2, j − 1)

∂λ2

]
−b(i)

[
∂2f(i− 2, j)

∂λ2∂ρ
− ∂f(i− 2, j)

∂λ2
− ρ∂

2f(i− 2, j − 1)

∂λ2∂ρ

]
−∂v(i)

∂ρ

∂f(i− 1, j − 1)

∂λ2
− v(i)

∂2f(i− 1, j − 1)

∂λ2∂ρ
,

∂2f(i, j)

∂λ2∂ρ
=

∂f(i− 1, j)

∂λ2
+ ρ

∂2f(i− 1, j)

∂λ2∂ρ
+
∂2c(j)

∂λ2∂ρ
f(i, j − 1) +

∂c(j)

∂ρ

∂f(i, j − 1)

∂λ2

+
∂c(j)

∂λ2

∂f(i, j − 1)

∂ρ
+ c(j)

∂2f(i, j − 1)

∂λ2∂ρ

−b(j)
∂ρ

[
∂f(i, j − 2)

∂λ2
− ρ∂f(i− 1, j − 2)

∂λ2

]
−b(j)

[
∂2f(i, j − 2)

∂λ2∂ρ
− ∂f(i, j − 2)

∂λ2
− ρ∂

2f(i− 1, j − 2)

∂λ2∂ρ

]
−∂

2w(j)

∂λ2∂ρ
f(i− 1, j − 1)− ∂w(j)

∂ρ

∂f(i− 1, j − 1)

∂λ2

−∂w(j)

∂λ2

∂f(i− 1, j − 1)

∂ρ
− w(j)

∂2f(i− 1, j − 1)

∂λ2∂ρ
;
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∂2f(i, 0)

∂λ23
= a(i)

∂2f(i− 1, 0)

∂λ23
− b(i)∂

2f(i− 2, 0)

∂λ23
,

∂2f(0, j)

∂λ23
= c(j)

∂2f(0, j − 1)

∂λ23
− b(j)∂

2f(0, j − 2)

∂λ23
,

∂2f(i, j)

∂λ23
= ρ

∂2f(i, j − 1)

∂λ23
+ a(i)

∂2f(i− 1, j)

∂λ23
− b(i)

[
∂2f(i− 2, j)

∂λ23
− ρ∂

2f(i− 2, j − 1)

∂λ23

]
−2∂v(i)

∂λ3

∂f(i− 1, j − 1)

∂λ3
− v(i)

∂2f(i− 1, j − 1)

∂λ23
,

∂2f(i, j)

∂λ23
= ρ

∂2f(i− 1, j)

∂λ23
+ c(j)

∂2f(i, j − 1)

∂λ23
− b(j)

[
∂2f(i, j − 2)

∂λ23
− ρ∂

2f(i− 1, j − 2)

∂λ23

]
−2∂w(j)

∂λ3

∂f(i− 1, j − 1)

∂λ3
− w(j)

∂2f(i− 1, j − 1)

∂λ23
;
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∂2f(i, 0)

∂λ3∂ρ
=

∂a(i)

∂ρ

∂f(i− 1, 0)

∂λ3
+ a(i)

∂2f(i− 1, 0)

∂λ3∂ρ
− ∂b(i)

∂ρ

∂f(i− 2, 0)

∂λ3
− b(i)∂

2f(i− 2, 0)

∂λ3∂ρ
,

∂2f(0, j)

∂λ3∂ρ
=

∂c(j)

∂ρ

∂f(0, j − 1)

∂λ3
+ c(j)

∂2f(0, j − 1)

∂λ3∂ρ
− ∂b(j)

∂ρ

∂f(0, j − 2)

∂λ3
− b(j)∂

2f(0, j − 2)

∂λ3∂ρ
,

∂2f(i, j)

∂λ3∂ρ
=

∂f(i, j − 1)

∂λ3
+ ρ

∂2f(i, j − 1)

∂λ3∂ρ
+
∂a(i)

∂ρ

∂f(i− 1, j)

∂λ3
+ a(i)

∂2f(i− 1, j)

∂λ3∂ρ

−∂b(i)
∂ρ

[
∂f(i− 2, j)

∂λ3
− ρ∂f(i− 2, j − 1)

∂λ3

]
−b(i)

[
∂2f(i− 2, j)

∂λ3∂ρ
− ∂f(i− 2, j)

∂λ3
− ρ∂

2f(i− 2, j − 1)

∂λ3∂ρ

]
−∂

2v(i)

∂λ3∂ρ
f(i− 1, j − 1)− ∂v(i)

∂ρ

∂f(i− 1, j − 1)

∂λ3

−∂v(i)

∂λ3

∂f(i− 1, j − 1)

∂ρ
− v(i)

∂2f(i− 1, j − 1)

∂λ3∂ρ
,

∂2f(i, j)

∂λ3∂ρ
=

∂f(i− 1, j)

∂λ3
+ ρ

∂2f(i− 1, j)

∂λ3∂ρ
+
∂c(j)

∂ρ

∂f(i, j − 1)

∂λ3

+c(j)
∂2f(i, j − 1)

∂λ3∂ρ
− b(j)

∂ρ

[
∂f(i, j − 2)

∂λ3
− ρ∂f(i− 1, j − 2)

∂λ3

]
−b(j)

[
∂2f(i, j − 2)

∂λ3∂ρ
− ∂f(i, j − 2)

∂λ3
− ρ∂

2f(i− 1, j − 2)

∂λ3∂ρ

]
−∂

2w(j)

∂λ3∂ρ
f(i− 1, j − 1)− ∂w(j)

∂ρ

∂f(i− 1, j − 1)

∂λ3

−∂w(j)

∂λ3

∂f(i− 1, j − 1)

∂ρ
− w(j)

∂2f(i− 1, j − 1)

∂λ3∂ρ
;
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∂2f(i, 0)

∂ρ2
=

2∂a(i)

∂ρ

∂f(i− 1, 0)

∂ρ
+ a(i)

∂2f(i− 1, 0)

∂ρ2
− ∂2b(i)

∂ρ2
f(i− 2, 0)

−2∂b(i)

∂ρ

∂f(i− 2, 0)

∂ρ
− b(i)∂

2f(i− 2, 0)

∂ρ2
,

∂2f(0, j)

∂ρ2
=

2∂c(j)

∂ρ

∂f(0, j − 1)

∂ρ
+ c(j)

∂2f(0, j − 1)

∂ρ2
− ∂2b(i)

∂ρ2
f(0, j − 2)

−2∂b(i)

∂ρ

∂f(0, j − 2)

∂ρ
− b(j)∂

2f(0, j − 2)

∂ρ2
,

∂2f(i, j)

∂ρ2
=

2∂f(i, j − 1)

∂ρ
+ ρ

∂f(i, j − 1)

∂ρ
+

2∂a(i)

∂ρ

∂f(i− 1, j)

∂ρ
+ a(i)

∂2f(i− 1, j)

∂ρ2

−∂
2b(i)

∂ρ2
[f(i− 2, j)− ρf(i− 2, j − 1)]

−2∂b(i)

∂ρ

[
∂f(i− 2, j)

∂ρ
− f(i− 2, j − 1)− ρ∂f(i− 2, j − 1)

∂ρ

]
−∂

2v(i)

∂ρ2
f(i− 1, j − 1)− 2∂v(i)

∂ρ

∂f(i− 1, j − 1)

∂ρ
− v(i)

∂2f(i− 1, j − 1)

∂ρ2
,

∂2f(i, j)

∂ρ2
=

2∂f(i− 1, j)

∂ρ
+ ρ

∂2f(i− 1, j)

∂ρ2
+

2∂c(j)

∂ρ

∂f(i, j − 1)

∂ρ
+ c(j)

∂2f(i, j − 1)

∂ρ2

−∂
2b(j)

∂ρ2
[f(i, j − 2)− ρf(i− 1, j − 2)]

−2∂b(j)

∂ρ

[
∂f(i, j − 2)

∂ρ
− f(i− 1, j − 2)− ρ∂f(i− 1, j − 2)

∂ρ

]
−b(j)

[
∂2f(i, j − 2)

∂ρ2
− 2∂f(i− 1, j − 2)

∂ρ
− ρ∂

2f(i− 1, j − 2)

∂ρ2

]
−∂

2w(j)

∂ρ2
f(i− 1, j − 1)− 2∂w(j)

∂ρ

∂f(i− 1, j − 1)

∂ρ
− w(j)

∂2f(i− 1, j − 1)

∂ρ2
.
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3.2.2 Finding the Root Using Newton-Raphson Algorithm

Given the probability mass function of the bivariate Pólya-Aeppli distribution in

Proposition 4.1, the likelihood and log-likelihood functions can be written as

L(λ1, λ2, λ3, ρ|i, j) =
m∏
k=1

f(N1k, N2k), (3.16)

l(λ1, λ2, λ3, ρ|i, j) = log(L(λ1, λ2, λ3, ρ|i, j))

=
m∑
k=1

log(f(N1k, N2k)), (3.17)

respectively, where m is the sample size and {N1k = ik, N2k = jk} are each pair of

observed values of the bivariate random variable (N1, N2).

In order to determine the MLEs of the model parameters, the derivatives of the

log-likelihood function with respect to each of the parameters λ1, λ2, λ3, ρ have to be

taken. This can be represented as a vector of length four, F (λ1, λ2, λ3, ρ), and the

components in the vector are functions of λ1, λ2, λ3, and ρ:

F (λ1, λ2, λ3, ρ) =



fλ1(λ1, λ2, λ3, ρ)

fλ2(λ1, λ2, λ3, ρ)

fλ3(λ1, λ2, λ3, ρ)

fρ(λ1, λ2, λ3, ρ)


.

(3.18)
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More precisely,

F (λ1, λ2, λ3, ρ) =



∂l
∂λ1

(λ1, λ2, λ3, ρ|i, j)
∂l
∂λ2

(λ1, λ2, λ3, ρ|i, j)
∂l
∂λ3

(λ1, λ2, λ3, ρ|i, j)
∂l
∂ρ

(λ1, λ2, λ3, ρ|i, j)



=



∑m
k=1 f(N1k, N2k)

−1 ∂f
∂λ1

(N1k, N2k)∑m
k=1 f(N1k, N2k)

−1 ∂f
∂λ2

(N1k, N2k)∑m
k=1 f(N1k, N2k)

−1 ∂f
∂λ3

(N1k, N2k)∑m
k=1 f(N1k, N2k)

−1 ∂f
∂ρ

(N1k, N2k)


. (3.19)

We then need to solve the system of equations F (λ1, λ2, λ3, ρ) = 0. Since the log-

likelihood functions are recursive in nature as well as the corresponding derivatives, a

multivariate Newton-Raphson recursive algorithm (Press and Vetterling (1989)) will

be used to find the root of F .

Let us consider the Jacobian matrix J(λ1, λ2, λ3, ρ) of the vector equation F :

J(λ1, λ2, λ3, ρ) =



∂fλ1
∂λ1

∂fλ1
∂λ2

∂fλ1
∂λ3

∂fλ1
∂ρ

∂fλ2
∂λ1

∂fλ2
∂λ2

∂fλ2
∂λ3

∂fλ2
∂ρ

∂fλ3
∂λ1

∂fλ3
∂λ2

∂fλ3
∂λ3

∂fλ3
∂ρ

∂fρ
∂λ1

∂fρ
∂λ2

∂fρ
∂λ3

∂fρ
∂ρ


(3.20)

=



∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ21

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ1∂λ2

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ1∂λ3

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ1∂ρ

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ2∂λ1

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ22

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ2∂λ3

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ2∂ρ

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ3∂λ1

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ3∂λ2

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ23

∂2l(λ1,λ2,λ3,ρ|i,j)
∂λ3∂ρ

∂2l(λ1,λ2,λ3,ρ|i,j)
∂ρ∂λ1

∂2l(λ1,λ2,λ3,ρ|i,j)
∂ρ∂λ2

∂2l(λ1,λ2,λ3,ρ|i,j)
∂ρ∂λ3

∂2l(λ1,λ2,λ3,ρ|i,j)
∂ρ2


.
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With some further calculations, the Jacobian matrix in (3.20) can be shown to be:



∑m
k=1

∂2f

∂λ21
(N1k,N2k)

f(N1k,N2k)
−

∂f2

∂λ1
(N1k,N2k)

f(N1k,N2k)2
. . .

∑m
k=1

∂2f
∂λ1∂ρ

(N1k,N2k)

f(N1k,N2k)
−

∂f
∂λ1

(N1k,N2k)
∂f
∂ρ

(N1k,N2k)

f(N1k,N2k)2

...
. . .

...

...
. . .

...∑m
k=1

∂2f
∂λ1∂ρ

(N1k,N2k)

f(N1k,N2k)
−

∂f
∂λ1

(N1k,N2k)
∂f
∂ρ

(N1k,N2k)

f(N1k,N2k)2
. . .

∑m
k=1

∂2f

∂ρ2
(N1k,N2k)

f(N1k,N2k)
−

∂f2

∂ρ
(N1k,N2k)

f(N1k,N2k)2


,

where the first and second partial derivatives of the recursive PMF function with

respect to λ1, λ2, λ3, and ρ are as given earlier in Section 3.2.1.

The Newton-Raphson method for nonlinear systems will then be given by the

following iterative procedure:



λ
(n)
1

λ
(n)
2

λ
(n)
3

ρ(n)


=



λ
(n−1)
1

λ
(n−1)
2

λ
(n−1)
3

ρ(n−1)


− J−1



λ
(n−1)
1

λ
(n−1)
2

λ
(n−1)
3

ρ(n−1)


F



λ
(n−1)
1

λ
(n−1)
2

λ
(n−1)
3

ρ(n−1)


, (3.21)

for n ≥ 1, where the initial parameters λ01, λ
0
2, λ

0
3, and ρ0 will be given from the

estimate values obtained from the Method of Moments (MoM). J−1 is the inverse

Jacobianmatrix with entries λ
(n−1)
1 , λ

(n−1)
2 , λ

(n−1)
3 , and ρ(n−1). The iterative procedure

will be continued until a given tolerance error, ε, between the nth and n+ 1th iterate

values is attained or a specified maximum number of iterations is reached. The latter

stopping condition will be considered as a failure of convergence for the method of

MLE (Press and Vetterling (1989)). If a failure occurs in MoM, it will not be able to

provide initial values in which case we can use some grid method as described in the
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following section. Further comparison and analysis based on a simulation study are

provided in Chapter 4.

3.2.3 Simple Grid Search for Parameter Optimization

Woodford and Phillips (2012) mentioned a simple Grid Search method for functions.

Given an interval [a, b] which contains the optimal point, the method divides the in-

terval [a, b] into smaller sub-intervals, and finds the optimal values at the end-point

of each sub-interval by comparing the function values.

In the context of parameter estimation for the Type I bivariate Pólya-Aeppli

distribution, the reference for comparison is the value obtained from the maximized

log-likelihood function. The parameter setting which possesses the greater maximized

log-likelihood value is the optimal estimate. For each of the parameters from θ =

(λ1, λ2, λ3, ρ), we give a number c to add up and subtract from the true parameter

values, θ, in order to obtain a region [θ − c, θ + c] that contains the optimal value of

the estimate. Then, divide the interval [θ− c, θ+ c] into k sub-intervals. Each of the

parameters from θ = (λ1, λ2, λ3, ρ) will have k points to check with the MLE function.

We need to perform a cross-validation check for all combinations of λ1, λ2, λ3, ρ using

the MLE function, and find the optimal combination which has the largest MLE

value. In the case where the MoM failed, the optimal values obtained by such a Grid

method for the estimates will be used for the N-R algorithm as the initial values.
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3.2.4 Confidence Intervals using Fisher Information Matrix

Let θ be the scalar parameter of interest. Then, the Fisher Information is defined as

(Casella and Berger (2008))

Im(θ) = −Eθ
(
∂2l(θ|i, j)
∂θ2

)
,

where m is the sample size and {N1 = i, N2 = j} are each pair of observed values of

the bivariate random variable (N1, N2). To extend from one-parameter to multiple-

parameter case, the Jacobian matrix (3.20) defined in the previous subsection will be

used to construct the Fisher Information matrix. Let θ be the parameter vector for

λ1, λ2, λ3 and ρ. Then, the Fisher Information matrix is defined as

Im(θ) = −J(θ). (3.22)

As presented in Casella and Berger (2008), the asymptotic distribution of the MLEs

of θ is known to be

√
Im(θ)(θ̂ − θ)→ N(0, 1). (3.23)

Thus, the confidence interval of the jth component in the parameter vector is simply

[
θ̂j − c

√
(Im(θ̂)−1)jj, θ̂j + c

√
(Im(θ̂)−1)jj

]
, (3.24)

where c is the quantile from the standard normal distribution, and the subscript jj

stands for the element from the jth column and jth row of the inverse of the Fisher
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Information matrix Im(θ). More precisely, the confidence interval of λ1, λ2, λ3 and ρ

as follows:

[
λ̂1 − c

√
(Im(θ̂)−1)11, λ̂1 + c

√
(Im(θ̂)−1)11

]
,[

λ̂2 − c
√

(Im(θ̂)−1)22, λ̂2 + c

√
(Im(θ̂)−1)22

]
,[

λ̂3 − c
√

(Im(θ̂)−1)33, λ̂3 + c

√
(Im(θ̂)−1)33

]
,[

ρ̂− c
√

(Im(θ̂)−1)44, ρ̂+ c

√
(Im(θ̂)−1)44

]
.

3.2.5 Confidence Intervals by Using Bootstrap Method

Bootstrap is a simple and powerful method for the interval estimation of parameters.

It uses resampling to produce many bootstrap samples based on an observed sample

and then obtain the necessary information required from the population. Let us de-

note B for the number of bootstrap samples, and θ for the parameter vector (λ1, λ2,

λ3, ρ). Suppose we are given a random sample (n11, n21), (n12, n22), ..., (n1m, n2m) ∼

BivPA(θ), where m is the sample size. The algorithm is to first obtain the estimate

θ̂ from the original sample, then randomly produce B independent bootstrap samples

using θ̂ as the true θ. Denote {n∗1.b,n∗2.b} as the bivariate vector of size m from the

bth bootstrap sample, where {n∗1.b,n∗2.b} = {(n∗11b, n∗21b), (n∗12b, n∗22b), ..., (n∗1mb, n∗2mb) ∼

BivPA(θ̂)}. We thus haveB bootstrap samples {n∗1.1,n∗2.1}, {n∗1.2,n∗2.2}, ..., {n∗1.B,n∗2.B}.

The bth sample, {n∗1.b,n∗2.b}, will provide an estimated parameter vector θ∗b , and so we

will obtain the set of estimates θ∗1,θ
∗
2, . . . ,θ

∗
B from the B bootstrap samples. There

are several ways of using these bootstrap estimates to construct confidence intervals

for the parameters of interest, and the percentile bootstrap confidence interval will
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be used in this thesis. The percentile approach simply uses the percentiles from the

bootstrap distribution of θ∗1,θ
∗
2, . . . ,θ

∗
B, based on a reasonably large number of B

replications. The components of these B estimates vectors will then be sorted in an

increasing order

θ∗
′

1 ,θ
∗′
2 , . . . ,θ

∗′
B ,

which is equivalent to the matrix form



θ∗
′

1,λ1
θ∗
′

2,λ1
. . . θ∗

′

B,λ1

θ∗
′

1,λ2
θ∗
′

2,λ2
. . . θ∗

′

B,λ2

θ∗
′

1,λ3
θ∗
′

2,λ3
. . . θ∗

′

B,λ3

θ∗
′

1,ρ θ∗
′

2,ρ . . . θ∗
′
B,ρ


,

and then the 100(1− α)% confidence intervals will be



θ∗
′

Bα,λ1
, θ∗

′

B(1−α),λ1

θ∗
′

Bα,λ2
, θ∗

′

B(1−α),λ2

θ∗
′

Bα,λ3
, θ∗

′

B(1−α),λ3

θ∗
′
Bα,ρ , θ∗

′

B(1−α),ρ


.

In other words, for a B = 1000 replications bootstrap results at a 95% confidence level,

the 25th and 976th component from the sorted estimates will provide the lower and

upper bounds of the percentile bootstrap confidence interval (Davison and Hinkley

(1997)).
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Simulation Study

This chapter contains a simulation study carried out to evaluate the performance of

the MLE and the MoM. It aims to compare the performance of these two methods

under different settings. The simulation will have 1000 replications of sample series

for each of the parameter setting, and a bootstrap with 1000 replications will be per-

formed for each sample in the simulation. The simulation will consider two sample

sizes: m = 50 and m = 100, and various parameter settings.

In the Type I bivariate Pólya-Aeppli distribution, the parameter λ3 defined in

(2.9) is associated with the number of objects in the second part of the compounding

Geo(1 − ρ) random variables for both random variables N1 and N2 in (2.11). Since

the correlation between N1 and N2 will depend on λ3, it is necessary to vary λ3 in this

simulation setting, and we chose to vary it between 0.3 and 0.9. λ1 and λ2 were kept

unchanged with λ1 = λ2 = 0.6. The success probability 1−ρ from the Geometric dis-

tribution is quite important since it decides how the data will be spread out, in other

words, it has a big effect on the variance of the data. So, three values were used for
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Parameter Setting
sample size(m) 50, 100
λ1, λ2 0.6
λ3 0.3, 0.9
ρ 0.1, 0.25, 0.5

Table 4.1: Parameter settings for the simulation study

ρ as 0.1, 0.25, and 0.5. Table 4.1 lists the parameter settings for this simulation study.

Several measures of performance were computed for both methods for comparative

purposes such as rate of success, time required (second) for the calculation, bias, mean

squared error (MSE), average width of confidence interval (CI) (with both Fisher In-

formation matrix and bootstrap method) and their coverage probability (CP). In the

case where MoM failed to produce the estimates, we performed a Grid Search to

find the initial values for the N-R algorithm. For λ1, λ2 and λ3, we choose 0.3 to

add and substract from the true values, and obtain the intervals [λ1 − 0.3, λ1 + 0.3],

[λ2 − 0.3, λ2 + 0.3], and [λ3 − 0.3, λ3 + 0.3]. For ρ, we choose 0.15 to obtain the in-

terval [ρ− 0.15, ρ+ 0.15]. Then, divide each of the intervals into 12 sub-intervals for

the cross-validation check. The optimal combination of the estimates found in this

manner were used as the initial values for the N-R algorithm.

The bivariate data were simulated based on the trivariate reduction method de-

scribed in Section 2.2, and it is quite straight forward. Given a vector of parameter

values of λ1, λ2, λ3 and ρ, four sets (U , V , W , R) of compounding Geo(1 − ρ) were

simulated as given in (2.9). Then, the random variable N1 and N2 were obtained as

the sums U +W and V +R.
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Parameters Settings Time Success Rate
(λ1, λ2, λ3, ρ) (s) (%)

sample size: 50 MLE MoM MLE Grid MLE(Grid) MoM
(0.6, 0.6, 0.3, 0.1) 146.27 0.126 82.1 1.6 83.7 86.1
(0.6, 0.6, 0.9, 0.1) 262.73 0.151 81.2 4.6 85.8 86.9
(0.6, 0.6, 0.3, 0.25) 402.46 0.259 95.8 1.5 97.3 97.1
(0.6, 0.6, 0.9, 0.25) 488.58 0.213 93 2.6 95.6 97.3
(0.6, 0.6, 0.3, 0.5) 761.18 0.298 89.6 5.8 95.4 92.4
(0.6, 0.6, 0.9, 0.5) 1766.78 0.645 84.7 5.7 89.9 93.8

sample size: 100 MLE MoM MLE Grid MLE(Grid) MoM

(0.6, 0.6, 0.3, 0.1) 290.91 0.227 95 0.5 95.5 95.9
(0.6, 0.6, 0.9, 0.1) 449.34 0.292 94.3 2.1 96.4 95.2
(0.6, 0.6, 0.3, 0.25) 535.31 0.322 99.5 0.3 99.8 99.6
(0.6, 0.6, 0.9, 0.25) 920.79 0.453 99.4 0 99.4 100
(0.6, 0.6, 0.3, 0.5) 1520.02 0.588 98.6 1 99.6 98.9
(0.6, 0.6, 0.9, 0.5) 2541.30 0.82 96.8 0.8 97.6 99.2

Table 4.2: Simulation results for sample sizes 50 and 100. The first column contains
different parameters settings, the second and third column have the running time
required for N-R and MoM, respectively, and the fourth to seventh give the rates of
success with and without using the Grid method.
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Table 4.2 presents the time required to estimate the parameter values for 1000

sample replicates using MLE and MoM as well as their rates of success with 1000

sample replications. There is a dramatic difference in the running time between MLE

and MoM, with the MLE taking over hundred and thousand seconds to complete

the calculations while the MoM only needing less than one second to complete 1000

sample calculations. Notice that the running time gets increased with respect to the

change of ρ from 0.1 to 0.5 for both methods and both sample sizes. The increasing in

time effect is reasonable since the number of objects within cluster is largely depend

on the success probability 1 − ρ from the Geometric distribution. A large value of

1− ρ will make the cluster small, and a small probability of success 1− ρ will cause a

relatively larger cluster. The time required for the calculation will be increased while

the number of objects within cluster gets increased. The last two columns in Table

4.2 give the success rates of MLE using the Grid Search method when MoM failed

to provide the estimates. In some cases, the success rate of MLE exceeds the success

rate of MoM. Notice that three settings with sample size of n = 100 has a greater

success rate using MLE over MoM.

We have presented two cases for which the MoM failed to estimate the parameters,

but the MLE succeeded. Tables 4.3 and 4.4 contain these datasets chosen from the

simulation study under the settings (λ1 = 0.6, λ2 = 0.6, λ3 = 0.3, ρ = 0.5, n = 50) and

(λ1 = 0.6, λ2 = 0.6, λ3 = 0.9, ρ = 0.1, n = 100). We have also presented the estimates

of the parameters from both MoM and MLE.

Figure 4.1 provides plots of the rates of success for both methods. The rate of
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(i, j) 0 1 2 3 4 5 6 7 8 estimates MoM MLE
0 8 1 4 1 2 1 1 λ1 1.21822531 0.9743466
1 4 1 1 1 1 1 λ2 1.10136477 0.9084642
2 3 3 1 λ3 -0.01066636 0.1221384
3 1 2 3 ρ 0.35077476 0.3991278
4 2 1 1
5 2 1
6 2
7
8
9 1

Table 4.3: A random sample from the simulation study under the setting λ1 =
0.6, λ2 = 0.6, λ3 = 0.3, ρ = 0.5, n = 50 and the estimates from MoM and MLE.

(i, j) 0 1 2 3 4 5 6 estimates MoM MLE
0 8 3 1 λ1 0.82047748 0.58551576
1 8 15 8 1 λ2 0.62506438 0.39828974
2 11 14 2 λ3 1.13365357 1.25389098
3 1 6 4 3 2 1 ρ -0.02849003 0.03280126
4 1 1 3 2 1
5 2 1
6 1

Table 4.4: A random sample from the simulation study under the setting λ1 =
0.6, λ2 = 0.6, λ3 = 0.9, ρ = 0.1, n = 100 and the estimates from MoM and MLE.
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Figure 4.1: Plots of the success rates (%) changing along ρ = 0.1, 0.25, 0.5 for MoM
and method of MLE (including Grid Search) with sample size m=50 and 100. The left
side plot is for λ3 = 0.9, while the right side plot is for λ3 = 0.3, with λ1 = λ2 = 0.6
for both cases.
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Parameters Settings λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ

sample size: 50 MLE MoM
(0.6, 0.6, 0.3, 0.1) 0.0270 0.0294 0.0161 0.0039 0.0322 0.0340 0.0205 0.0045
(0.6, 0.6, 0.9, 0.1) 0.0409 0.0418 0.0343 0.0035 0.0619 0.0620 0.0440 0.0046
(0.6, 0.6, 0.3, 0.25) 0.0317 0.0330 0.0169 0.0058 0.0419 0.0429 0.0245 0.0067
(0.6, 0.6, 0.9, 0.25) 0.0590 0.0597 0.0385 0.0055 0.0940 0.0901 0.0588 0.0060
(0.6, 0.6, 0.3, 0.5) 0.0314 0.0322 0.0166 0.0038 0.0502 0.0508 0.0319 0.0053
(0.6, 0.6, 0.9, 0.5) 0.0677 0.0686 0.0449 0.0034 0.1186 0.1155 0.0823 0.0044

sample size: 100 MLE MoM
(0.6, 0.6, 0.3, 0.1) 0.0137 0.0149 0.0086 0.0024 0.0171 0.0186 0.0114 0.0026
(0.6, 0.6, 0.9, 0.1) 0.0225 0.0223 0.0170 0.0022 0.0365 0.0343 0.0227 0.0028
(0.6, 0.6, 0.3, 0.25) 0.0158 0.0172 0.0094 0.0027 0.0226 0.0247 0.0146 0.0032
(0.6, 0.6, 0.9, 0.25) 0.0278 0.0272 0.0194 0.0026 0.0497 0.0456 0.0307 0.0033
(0.6, 0.6, 0.3, 0.5) 0.0162 0.0173 0.0096 0.0015 0.0303 0.0328 0.0215 0.0024
(0.6, 0.6, 0.9, 0.5) 0.0303 0.0294 0.0218 0.0015 0.0641 0.0597 0.0448 0.0021

Table 4.5: Simulation results for sample size 50 and 100. The first four columns
contain the MSE values for all four parameter estimates using the MLE method, and
the last four columns contain the MSE values for all four parameter estimates using
the MoM.

success of MLE with sample size m = 100 is usually between 95% − 100% whereas

with sample size m = 50 falls between 80% − 95%. A larger sample size will have

a higher rate of success for both methods, of course. Left plot shows that MoM has

a significantly greater rate of success than method of MLE, but as the sample size

increases to 100, both methods achieve quite similar range of success rates, with MLE

having a higher rate than MoM in some settings. There is an interesting aspect in the

plots in what the rate of success decreases at ρ = 0.5 and achieves an optimal success

rate at ρ = 0.25. A smaller probability of success 1− ρ in Geometric distribution will

result in a big spread in the data, thus resulting in a greater chance of providing a

negative parameter estimate by MoM. This is an interesting issue that needs further

investigation.
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Figure 4.2: Plots of MSE changing along ρ = 0.1, 0.25, 0.5 for MoM and MLE with
λ3 = 0.3, 0.9. The left side plot is for sample size m = 50, and the right side plot is
for sample size m = 100.

Mean squared error (MSE) measures the average squared error between the esti-

mate (θ̂) and its true value (θ). The formula to obtain the MSE is

MSE =
1

n

n∑
i=1

(θ̂i − θ)2, (4.1)

where n is the number of repeated samples in the simulation study. Naturally, a good

estimation method will have smaller values of MSE.

Table 4.5 provides the MSE values, and the MSE values for λ1 and λ2 are always

greater than those for λ3 and ρ, and the MSEs obtained from MoM are significantly

greater than the MSEs obtained from MLE. The MSEs of ρ are always small for both

estimation methods.
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Parameters Settings λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ

sample size: 50 MLE MoM
(0.6, 0.6, 0.3, 0.1) -0.005 -0.0074 0.0047 0.0077 -0.0122 -0.0179 0.0076 0.0119
(0.6, 0.6, 0.9, 0.1) 0.0039 0.0098 -0.0144 0.0037 -0.0137 -0.0090 -0.0087 0.0111
(0.6, 0.6, 0.3, 0.25) 0.0162 0.0070 0.0016 -0.0130 0.0113 0.0002 0.0013 -0.0081
(0.6, 0.6, 0.9, 0.25) 0.0531 0.0563 -0.0174 -0.0174 0.0395 0.0461 -0.0187 -0.0112
(0.6, 0.6, 0.3, 0.5) 0.0109 0.0060 0.0075 -0.0115 0.0013 -0.0102 0.0198 -0.0117
(0.6, 0.6, 0.9, 0.5) 0.0622 0.0697 -0.0240 -0.0157 0.0543 0.0661 -0.0285 -0.0125

sample size: 100 MLE MoM
(0.6, 0.6, 0.3, 0.1) 0.0005 -0.0034 0.0021 -0.0009 -0.0020 -0.0072 0.0021 0.0018
(0.6, 0.6, 0.9, 0.1) 0.0103 0.0103 -0.0080 -0.0017 0.0057 0.0062 -0.0087 0.0015
(0.6, 0.6, 0.3, 0.25) 0.0068 0.0019 0.0013 -0.0059 0.0045 -0.0010 0.0015 -0.0041
(0.6, 0.6, 0.9, 0.25) 0.0199 0.0211 -0.0041 -0.0082 0.0161 0.0182 -0.0065 -0.0055
(0.6, 0.6, 0.3, 0.5) 0.0032 0.0001 0.0034 -0.0037 -0.0013 -0.0047 0.0078 -0.0036
(0.6, 0.6, 0.9, 0.5) 0.0219 0.0226 -0.0056 -0.0067 0.0185 0.0214 -0.0074 -0.0054

Table 4.6: Simulation results for sample sizes 50 and 100. The first four columns
contain the Bias for all four parameter estimates using the MLE, and last four columns
contain the bias for all four parameter estimates using the MoM.

Figure 4.2 plots the MSE along ρ = 0.1, 0.25, 0.5. The two plots also show the

greater MSEs of λ1 and λ2. The blue lines outline the change of MSE in MoM, and

the red lines for MLE. One can see that the red lines are closer to the horizontal axis

which means that the MSEs for MLE are smaller than those for MoM. A smaller

sample size m = 50 results in greater MSEs compared to when m = 100. As the

sample size increases to m = 100, all the MSEs get decreased.

The bias of an estimator is the difference between the expected value of the esti-

mator and the true value of the parameter, and is estimated by:

bias(θ) =
1

n

n∑
i=1

θ̂i − θ. (4.2)

An estimator with a bias value that is close to zero is naturally a good estimator as it is
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Figure 4.3: Plots of Bias changing along ρ = 0.1, 0.25, 0.5 for MoM and MLE method
with λ3 = 0.3, 0.9. The left side plot is for sample size m = 50, and the right side
plot is for sample size m = 100.

nearly unbiased in this case. The bias value can be either positive or negative. A large

negative value shows that the estimator underestimates the parameter considerably,

while a large positive value shows that the estimator overestimates the parameter.

Table 4.6 presents the bias values for all the estimates. There are some interesting

observations in the bias values changing along with different values of ρ. In Table

4.6, MLE have a significant smaller bias than MoM for all the parameters. The left

plot (sample size m = 50) from Figure 4.3 shows a significant trend of the bias. Both

MoM and MLE tend to have smaller bias when ρ is small, and have bigger bias when

ρ increases to 0.5. The right plot from Figure 4.3 with sample size m = 100 shows a

consistent accuracy for both methods, and all the parameter settings with λ3 = 0.3

have better estimates with small bias values. Since almost all bias values of ρ are

negative, both methods tend to underestimate the parameter ρ. Also, both methods
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tend to overestimate λ3 for all parameter settings when λ3 = 0.9, and underestimate

λ3 when λ3 = 0.3.
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Parameters Settings λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ

sample size: 50 MLE (Fisher) MLE (Bootstrap) MoM
(0.6, 0.6, 0.3, 0.1) 0.6745 0.6721 0.5146 0.2946 0.5888 0.5875 0.4455 0.2237 0.7573 0.7560 0.5686 0.3096
(0.6, 0.6, 0.9, 0.1) 0.8133 0.8195 0.7142 0.2844 0.7035 0.7050 0.6874 0.2126 1.0386 1.0400 0.8155 0.3233
(0.6, 0.6, 0.3, 0.25) 0.7089 0.7031 0.5430 0.2844 0.6474 0.6426 0.4675 0.2728 0.8412 0.8368 0.6425 0.3121
(0.6, 0.6, 0.9, 0.25) 0.9100 0.9141 0.7867 0.2779 0.8725 0.8736 0.7663 0.2666 1.1887 1.1925 0.9549 0.3135
(0.6, 0.6, 0.3, 0.5) 0.7291 0.7255 0.5700 0.2235 0.6688 0.6657 0.4861 0.2281 0.9843 0.9781 0.7830 0.2759
(0.6, 0.6, 0.9, 0.5) 0.9738 0.9815 0.8647 0.2175 0.9711 0.9760 0.8441 0.2556 1.4251 1.4297 1.2044 0.2637

sample size: 100 MLE (Fisher) MLE (Bootstrap) MoM
(0.6, 0.6, 0.3, 0.1) 0.4812 0.4799 0.3651 0.2069 0.4617 0.4598 0.3503 0.1718 0.5428 0.5413 0.4085 0.2190
(0.6, 0.6, 0.9, 0.1) 0.5836 0.5844 0.5054 0.1994 0.5462 0.5458 0.5006 0.1661 0.7483 0.7481 0.5816 0.2295
(0.6, 0.6, 0.3, 0.25) 0.5006 0.4985 0.3836 0.1999 0.4941 0.4918 0.3674 0.2008 0.6027 0.5994 0.4632 0.2237
(0.6, 0.6, 0.9, 0.25) 0.6251 0.6259 0.5442 0.1995 0.6260 0.6261 0.5455 0.1958 0.8415 0.8442 0.6773 0.2233
(0.6, 0.6, 0.3, 0.5) 0.5152 0.5141 0.4014 0.1558 0.5065 0.5052 0.3834 0.1581 0.7011 0.7002 0.5636 0.1950
(0.6, 0.6, 0.9, 0.5) 0.6622 0.6638 0.5919 0.1514 0.6648 0.6634 0.5921 0.1543 1.0027 1.0041 0.8539 0.1859

Table 4.7: Average widths of CIs from simulation results for sample sizes 50 and 100. The first four sets of column
contain the CI widths for all four parameters found using the Fisher Information matrix and the MLE, second four
sets of column contain the CI widths found using the Bootstrap method with the MLE, and the last four columns
contain the CI widths found using the Bootstrap method with the MoM.
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The width of confidence intervals (CIs) and coverage probabilities (CP) are also

important aspects to evaluate and to compare the performance of different estimation

methods. The average width of CI is obtained simply by subtracting the average lower

bound from the average upper bound of the CI. The coverage probability of a CI is

the number of counts that the true value of the parameter fall within the CI found

over the total number of trials. A relatively narrow width of CI with a relatively

high coverage probability (close to the nominal level) will be considered as a good

method of interval estimation. Tables 4.7 and 4.8 present the average widths of CIs

and CPs corresponding to both MLE and MoM, and Figures 4.4 and 4.5 provide the

corresponding plots.

The average widths for λ1 and λ2 when λ3 = 0.9 among the three ways of cal-

culated are significantly wider and has outlined in Table 4.7 with bold font. The

bootstrap method with MLE performed slightly better than the one using Fisher In-

formation matrix. But, both these methods based on MLEs produced similar results

when the sample size increases to m = 100. The average width obtained from Boot-

strap with MoM is significantly larger than the methods based on MLE even when

the sample size is m = 100. This difference can also be observed in Figure 4.4 where

in the plots for λ1 and λ2 in blue lines are always on the top of other plots for both

m = 50 and m = 100. However, the coverage probabilities in Table 4.8 show a better

coverage with MoM except for a few cases outlined in bold. The CIs calculated by

using Fisher Information has a better Coverage Probability only under the setting

(λ1=0.6, λ2=0.6, λ3=0.3, ρ=0.5) with sample size m = 100. From Table 4.8, we see

that the MLE using Fisher Information does not have a high coverage probability.

Bootstrap method in cases of both MLE and MoM have a relatively better coverage
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Figure 4.4: Plots of CI widths changing along ρ = 0.1, 0.25, 0.5 for MoM and MLE
with λ3 = 0.3, 0.9. The left side plot is for sample size m = 50, and the right side
plot is for sample size m = 100.

probability. Overall, the methods based on MLE have relatively narrower average

width with higher coverage probability than those based on MoM when the sample

size is large.
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Parameters Settings λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ λ1 λ2 λ3 ρ

sample size: 50 MLE (Fisher) MLE (Bootstrap) MoM
(0.6, 0.6, 0.3, 0.1) 0.9342 0.9245 0.9525 0.9781 0.9568 0.9408 0.9541 0.9951 0.9582 0.9535 0.9605 0.9872
(0.6, 0.6, 0.9, 0.1) 0.9324 0.9373 0.9508 0.9803 0.9536 0.9415 0.9315 0.9952 0.9597 0.9632 0.9425 0.9862
(0.6, 0.6, 0.3, 0.25) 0.9374 0.9280 0.9593 0.9384 0.9577 0.9485 0.9639 0.9217 0.9660 0.9506 0.9701 0.9320
(0.6, 0.6, 0.9, 0.25) 0.9495 0.9430 0.9624 0.9430 0.9235 0.9290 0.9419 0.9172 0.9414 0.9486 0.9558 0.9496
(0.6, 0.6, 0.3, 0.5) 0.9443 0.9342 0.9710 0.9498 0.9586 0.9565 0.9713 0.9330 0.9600 0.9654 0.9784 0.9372
(0.6, 0.6, 0.9, 0.5) 0.9469 0.9492 0.9575 0.9516 0.9184 0.9162 0.9377 0.9203 0.9701 0.9766 0.9723 0.9435

sample size: 100 MLE (Fisher) MLE (Bootstrap) MoM
(0.6, 0.6, 0.3, 0.1) 0.9568 0.9516 0.9526 0.9705 0.9634 0.9538 0.9499 0.9906 0.9573 0.9531 0.9489 0.9812
(0.6, 0.6, 0.9, 0.1) 0.9332 0.9495 0.9512 0.9682 0.9379 0.9491 0.9481 0.9866 0.9527 0.9590 0.9401 0.9853
(0.6, 0.6, 0.3, 0.25) 0.9508 0.9387 0.9518 0.9578 0.9549 0.9500 0.9489 0.9530 0.9538 0.9408 0.9428 0.9488
(0.6, 0.6, 0.9, 0.25) 0.9386 0.9437 0.9557 0.9467 0.9366 0.9407 0.9506 0.9396 0.9410 0.9560 0.9400 0.9560
(0.6, 0.6, 0.3, 0.5) 0.9523 0.9513 0.9615 0.9645 0.9568 0.9558 0.9539 0.9518 0.9515 0.9484 0.9505 0.9596
(0.6, 0.6, 0.9, 0.5) 0.9422 0.9453 0.9639 0.9546 0.9362 0.9410 0.9525 0.9434 0.9546 0.9587 0.9476 0.9486

Table 4.8: CI coverage probabilities from simulation results for sample sizes 50 and 100. The first four sets of
column contain the CI coverage probabilities for all four parameters found using the Fisher Information matrix and
the MLE, second four sets of column contain the coverage probabilities found using the Bootstrap method with the
MLE, and last four columns contain the coverage probabilities found using the Bootstrap method with the MoM.
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Figure 4.5: Plots of CI coverage probabilities changing along ρ = 0.1, 0.25, 0.5 for
MoM and MLE with λ3 = 0.3, 0.9. The left side plot is for sample size m = 50, and
the right side plot is for sample size m = 100.
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Chapter 5

Illustrative Example

We now provide a real data in order to illustrate the methods of inference developed

in the preceding chapter. Minkova and Balakrishnan (2014a) used it as a numerical

example when they introduced the Type I bivariate Pólya-Aeppli distribution and the

corresponding Method of Moments (MoM). Table 5.1 contains the data on a bivariate

distribution based on Adelstein’s study (unpublished). Specifically, it is about the

frequencies of accidents by 122 railway men during two subsequent six year periods.

This data was used by Maritz (1950) for fitting a Negative Binomial distribution to

detect accident proneness and by Hamdan (1972) for illustrating the fit of a truncated

bivariate Poisson distribution.

Based on Eqs. (3.2)-(3.6) in Section 3.1, we found the marginal sample means

n̄1 = n̄2 = 1.22951, the marginal variances s21 = 1.381452, s22 = 1.497155 and the sam-

ple covariance s12 = 0.4145102. By using the Bivariate Dispersion Test mentioned in

(1.2), we obtained the test statistic IB = 323.58197. With 244 degrees of freedom,

we clearly reject the null hypothesis at 5% level of significance and conclude that the
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Period 1 Period 2
(Years 1-5) (Years 6-11)

No. of Total
Accidents 0 1 2 3 4 5 6 7 No.

0 21 14 8 1 44
1 17 12 8 3 1 1 42
2 6 9 2 2 2 21
3 1 1 3 3 1 9
4 1 3 4
5 2 2
6
7

Total No. 46 39 21 11 4 1 122

Table 5.1: A numerical example of bivariate accident distribution data based on two
subsequent periods of six years.

data show an overdispersion.

Minkova and Balakrishnan (2014a) fitted the Type I bivariate Pólya-Aeppli model

for the data in Table 5.1, and the results of estimates as well as confidence intervals

(CIs) by MoM are presented in Table 5.2. Hence, we use the Fisher Information

matrix to find the CIs for all parameters of interest. The N-R method described in

Chapter 3 using the MoM estimates as initial values was employed for these data,

and the results obtained are presented in Tables 5.3 and 5.4. The Bootstrap methods

seen to produce wider CIs than MLE using Fisher Information matrix. Of course,

the MLE (using N-R method) took dramatically more time than the MoM.
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Parameter estimate s.e Cl (Bootstrap) Length of CI
λ1 0.665831 0.14114 [0.408757 0.940055] 0.531298
λ2 0.665831 0.14088 [0.397110 0.963248] 0.566138
λ3 0.318473 0.10471 [0.104651 0.542470] 0.437819
ρ 0.123467 0.05202 [0.026462 0.216427] 0.189965

Running time (s) 0.02

Table 5.2: Results for the numerical example using MoM.

Parameter estimate s.e Cl (Fisher Information) Length of CI
λ1 0.709747 0.12105 [0.472488 0.957007] 0.452902
λ2 0.703134 0.12189 [0.464241 0.942027] 0.462695
λ3 0.293456 0.09108 [0.114943 0.471970] 0.351752
ρ 0.101958 0.04674 [0.017973 0.201188] 0.184628

Running time (s) 0.2

Table 5.3: Results for the numerical example using N-R (CIs using Fisher Information
matrix).

Parameter s.e Cl (Fisher Information) Length of CI
λ1 0.11989 [0.473179 0.980239] 0.507060
λ2 0.12266 [0.470935 0.980977] 0.510042
λ3 0.08747 [0.099349 0.473961] 0.374612
ρ 0.04544 [0.025124 0.200894] 0.175770

Table 5.4: Results for the numerical example using N-R (CIs using Bootstrap).
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H0 : λ1 = λ2 p-value H0 : λ3 = 0 p-value

Fisher 0.05628572 0.4922724 3.221963 0.01154437
Bootstrap 0.05785535 0.492335 3.159944 0.01355452

Table 5.5: Wald test statistics for testing H0 : λ1 = λ2 and H0 : ρ = 0 using both
Fisher Information matrix and Bootstrap method.

In addition, we may also wish to test the hypotheses

H0 : λ1 = λ2 vs H1 : λ1 6= λ2,

and

H0 : λ3 = 0 vs H1 : λ3 > 0.

For this, we simply use the Wald test, and the test statistics are found to be

as presented in Table 5.5. By using both Fisher Information matrix and Bootstrap

method, the result shows that at a 5% level, there is no evidence against H0 : λ1 = λ2.

The third and fourth column of Table 5.5 presents the values of the test statistics as

well as their p-values for testing H0 : λ3 = 0. At a 5% level, we find enough evidence

against the null hypothesis under both methods. Thus, we may conclude that the

marginal samples are likely from the same univariate Pólya-Aeppli distribution, and

further that the two variables are significantly correlated.
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Chapter 6

Discussion and Concluding

Remarks

The Pólya-Aeppli distribution is a widely used distribution as a risk insurance model.

Minkova and Balakrishnan (2014a) studied the bivariate form of this distribution,

and discussed the moment estimates of the parameters. In this work, I have studied

the maximum likelihood estimation of the model parameters by using the Newton-

Raphson (N-R) algorithm.

A simulation study has been carried to compare the performance of MLE and

MoM estimates. Many parameter settings have been considered and the evaluation

has been done based on several performance measures such as MSE, bias, width of

CIs, and their coverage probabilities. In addition, the running time and convergence

success for the methods have also been used for additional comparison.

There is a significant difference between the two methods of estimation in terms
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of computational time. MoM usually takes a small fraction of time as compared to

the MLE. The MLE has a lower rate of success than MoM for small sample sizes, but

attains higher rate of success than MoM as the sample size increases. Interestingly,

the rate of success reaches an optimal point when ρ = 0.25.

The MLE in general has a smaller MSE than MoM. The MSEs for ρ are quite

close under both methods of estimation, but MoM possesses a large MSE for λ1 and

λ2 even with a large sample size m = 100. Both methods of estimation possess similar

bias though MLE has smaller bias values under a number of settings.

Among the three methods of obtaining Confidence Intervals (Bootstrap with MLE,

Bootstrap with MoM, and MLEs with Fisher Information matrix), the MLE with the

use of Bootstrap results in CIs with smaller width, but do not always have the high-

est coverage probabilities. The Bootstrap with MoM, in most cases, have CIs with

largest width with a relatively higher coverage probabilities. Considering both width

and coverage probability, the MLE methods perform better with larger sample size.

Minkova and Balakrishnan (2014a) also used a real data to illustrate the MoM.

Here, we have used the same dataset for parameter estimation by using the MLE.

The resulting estimates of the parameters are seen to be different than those obtained

by MoM. All the Confidence Intervals obtained from MLE are narrower than the CIs

obtained from MoM. The hypothesis tests, carried out by Walt test, show that the

two variables are correlated but possibly have the same univariate Pólya-Aeppli dis-

tribution.
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To conclude, though MLE requires more computational time and effort than MoM,

it results in better estimation than MoM in general. As future research, one may de-

velop the Expectation Maximization (EM) algorithm for parameter estimation in the

presence of missing data. Recently, Minkova and Balakrishnan (2014b) also intro-

duced the Type II bivariate Pólya-Aeppli distribution by using a different formula-

tion of convolution. It will be of interest to develop the MoM and MLE of model

parameters of this Type II bivariate Pólya-Aeppli distribution and then evaluate their

relative performance.
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Appendix A

R Codes

Partial R codes are provided. Complete R Codes will be provided upon request.

#Recursive algorithm from prop 2.1

#This function returns a matrix which contains the entire distribution

#from the joint pmf

pmf.M<-function(x,y,L1,L2,L3,rhoo){

#help functions

a<-function(i){

2*rhoo+{{1-rhoo}*L1-2*rhoo}/i

}

cj<-function(j){

2*rhoo+{{1-rhoo}*L2-2*rhoo}/j

}

b<-function(j){

{1-2/j}*rhoo^2

}
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w<-function(j){

2*rhoo^2-{{1-rhoo}*{L3-rhoo*{L2+L3}}+2*rhoo^2}/j

}

v<-function(i){

2*rhoo^2-{{1-rhoo}*{L3-rhoo*{L1+L3}}+2*rhoo^2}/i

}

A<-matrix(NA,nrow=(y+1),ncol=(x+1))

#initialize f(0,0)

counter<-0

i<-counter;im<-i+1

j<-counter;jm<-j+1

A[im,jm]<-exp(-(L1+L2+L3))

if(x==0 && y==0){return(A)}

#create initial row, f(0,*)

j<-counter+1;jm<-j+1

if(x!=0){A[im,jm]<-cj(j)*A[im,jm-1]}

for(l in ((j+1):x)){

if(x<=1){break}

jm<-l+1

A[im,jm]<-cj(l)*A[im,jm-1]-b(l)*A[im,jm-2]

}
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#create initial column, f(*,0)

i<-counter+1;im<-i+1

j<-counter; jm<-j+1

if(y!=0){A[im,jm]<-a(i)*A[im-1,jm]}

for(k in ((i+1):y)){

if(y<=1){break}

im<-k+1

A[im,jm]<-a(k)*A[im-1,jm]-b(k)*A[im-2,jm]

}

if(min(x,y)<=counter){return(A)}

counter<-counter+1

#initialize rowise

i<-counter;im<-i+1

j<-counter;jm<-j+1

for(l in (j:x)){

jm<-l+1

A[im,jm]<-rhoo*A[im,jm-1]+a(i)*A[im-1, jm]-v(i)*A[im-1,jm-1]

}

#initialize columwise

j<-counter;jm<-j+1

for(k in ((i+1):y)){

if(y<2){break}

im<-k+1
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A[im,jm]<-rhoo*A[im-1,jm]+cj(j)*A[im, jm-1]-w(j)*A[im-1,jm-1]

}

#recursions loop

counter<-counter+1

while(counter<=min(x,y)){

#rowise

i<-counter;im<-i+1

j<-counter;jm<-j+1

for(l in (j:x)){

jm<-l+1

A[im,jm]<-rhoo*A[im,jm-1]+a(i)*A[im-1,jm]-b(i)*(A[im-2,jm]

-rhoo*A[im-2,jm-1])-v(i)*A[im-1,jm-1]

}

if(y<=x && counter==(y)){break;}

#columwise

j<-counter;jm<-j+1

for(k in ((i+1):y)){

im<-k+1

A[im,jm]<-rhoo*A[im-1,jm]+cj(j)*A[im,jm-1]-b(j)*(A[im,jm-2]

-rhoo*A[im-1,jm-2])-w(j)*A[im-1,jm-1]

}

counter<-counter+1

}
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return(A)

}

#This function takes the parameters value with dataset as well as

#the dimension of the data and returns a gradient vector

dL<-function(x,y,P, Data){

f1f<-D.L1(x,y,P[1],P[2],P[3],P[4])/pmf.M(x,y,P[1],P[2],P[3],P[4])

f2f<-D.L2(x,y,P[1],P[2],P[3],P[4])/pmf.M(x,y,P[1],P[2],P[3],P[4])

f3f<-D.L3(x,y,P[1],P[2],P[3],P[4])/pmf.M(x,y,P[1],P[2],P[3],P[4])

frf<-D.Rho(x,y,P[1],P[2],P[3],P[4])/pmf.M(x,y,P[1],P[2],P[3],P[4])

A1<-sum(Data*f1f)

A2<-sum(Data*f2f)

A3<-sum(Data*f3f)

Ar<-sum(Data*frf)

return(c(A1,A2,A3,Ar))

}

#This function takes the parameters value with dataset as well as

#the dimesion of the data and returns a hessian matrix

hL<-function(x,y,P,Data){

ha<-matrix(NA, ncol=4, nrow=4)

df11<-DD.L1(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L1(x,y,P[1],P[2],P[3],P[4])^2

df12<-DD.L12(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))
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-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L1(x,y,P[1],P[2],P[3],P[4])

*D.L2(x,y,P[1],P[2],P[3],P[4])

df13<-DD.L13(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L1(x,y,P[1],P[2],P[3],P[4])

*D.L3(x,y,P[1],P[2],P[3],P[4])

df1r<-DD.L1R(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L1(x,y,P[1],P[2],P[3],P[4])

*D.Rho(x,y,P[1],P[2],P[3],P[4])

df22<-DD.L2(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L2(x,y,P[1],P[2],P[3],P[4])^2

df23<-DD.L23(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L2(x,y,P[1],P[2],P[3],P[4])

*D.L3(x,y,P[1],P[2],P[3],P[4])

df2r<-DD.L2R(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L2(x,y,P[1],P[2],P[3],P[4])

*D.Rho(x,y,P[1],P[2],P[3],P[4])

df33<-DD.L3(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L3(x,y,P[1],P[2],P[3],P[4])^2

df3r<-DD.L3R(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.L3(x,y,P[1],P[2],P[3],P[4])

*D.Rho(x,y,P[1],P[2],P[3],P[4])

dfrr<-DD.Rho(x,y,P[1],P[2],P[3],P[4])*(1/pmf.M(x,y,P[1],P[2],P[3],P[4]))

-(1/pmf.M(x,y,P[1],P[2],P[3],P[4])^2)*D.Rho(x,y,P[1],P[2],P[3],P[4])^2

D11<-sum(Data*df11)
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D12<-sum(Data*df12)

D13<-sum(Data*df13)

D1r<-sum(Data*df1r)

D22<-sum(Data*df22)

D23<-sum(Data*df23)

D2r<-sum(Data*df2r)

D33<-sum(Data*df33)

D3r<-sum(Data*df3r)

Drr<-sum(Data*dfrr)

ha[1,]<-c(D11,D12,D13,D1r)

ha[2,]<-c(D12,D22,D23,D2r)

ha[3,]<-c(D13,D23,D33,D3r)

ha[4,]<-c(D1r,D2r,D3r,Drr)

return(ha)

}

#This Newton-Raphson algorithm function takes a initial parameters

#vector with dataset as well as the dimesion of the data and returns

#a converged approximation for the parameter to be estimated.

#A failure of convergence will have NAs as return values.

NR.F<-function(x,y,P,Data){

max<-10

err<-0.00001

ii<-0
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er<-rep(10,4)

Pa<-P

result<-matrix(rep(NA, 8), ncol=2, nrow=4)

while((ii<=max) && (er>=err) ){

Pb<-Pa-solve(hL(x,y,Pa,Data))\%*\%dL(x,y,Pa,Data)

e1<-abs(Pb-Pa)

Pa<-Pb

if(min(Pa)<=0 || is.na(Pa[1])){break;}

er<-max(e1)

ii<-ii+1

result[,1]<-Pa

result[,2]<-e1

}

return(result)

}

#This Method of Moment function take the dataset as argument and returns

#a vector of estimated parameters. Any negative result will be consider

#as failure of calculation and will have NAs as return values.

MofM<-function(Data){

i1<-dim(Data)[1]

j1<-dim(Data)[2]

i2<-0

j2<-0
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for(i in 1:i1){

i2<-i2+sum(Data[i,])*(i-1)

}

for(j in 1:j1){

j2<-j2+sum(Data[,j])*(j-1)

}

sa1<-0

sa2<-0

sb<-0

n1.b<-i2/sum(Data)

n2.b<-j2/sum(Data)

for(i in 1:i1){

sa1<-sa1+sum(Data[i,])*((i-1)-n1.b)^2

}

for(j in 1:j1){

sa2<-sa2+sum(Data[,j])*((j-1)-n2.b)^2

}

for(i in 1:i1){

for(j in 1:j1){

sb<-sb+Data[i,j]*((i-1)-n1.b)*((j-1)-n2.b)

}

}

s.1<-sa1/(sum(Data)-1)

s.2<-sa2/(sum(Data)-1)
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s.12<-sb/(sum(Data)-1)

rho.h<-(s.1+s.2-n1.b-n2.b)/(s.1+s.2+n1.b+n2.b)

L1.h<-(1-rho.h)*n1.b-(1-rho.h)^2*s.12

L2.h<-(1-rho.h)*n2.b-(1-rho.h)^2*s.12

L3.h<-(1-rho.h)^2*s.12

rho.t<-(n2.b*(s.1-n1.b)+n1.b*(s.2-n2.b))/(n2.b*(s.1+n1.b)+n1.b*(s.2+n2.b))

phi.t<-(s.1/n1.b+s.2/n2.b)/2

theta3<-(2*s.12)/(1+(s.1/n1.b+s.2/n2.b)/2)

theta1<-n1.b-theta3

theta2<-n2.b-theta3

return(c(L1.h, L2.h, L3.h, rho.h))

}

#This function is an extended of MofM with the Bootstrap CIs as return

MofMF<-function(Data,P){

time<-system.time(t<-MofM(Data))

if(min(t)<=0){return(NA)}

b<-matrix(NA, ncol=4, nrow=1000)

m<-sum(Data)

for(i in 1:1000){

Da<-BivPA(t,m)

b[i,]<-MofM(Da)

}
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s<-apply(b,2,sort)

CIL1<-c(s[25,1],s[975,1])

c1<-(P[1]>=CIL1[1] && P[1]<= CIL1[2])

CIL2<-c(s[25,2],s[975,2])

c2<-(P[2]>=CIL2[1] && P[2]<= CIL2[2])

CIL3<-c(s[25,3],s[975,3])

c3<-(P[3]>=CIL3[1] && P[3]<= CIL3[2])

CIRh<-c(s[25,4],s[975,4])

cr<-(P[4]>=CIRh[1] && P[4]<= CIRh[2])

return(c(t,CIL1,c1,CIL2,c2,CIL3,c3,CIRh,cr,time[1]))

}

#This function takes a vector of parameter values and a sample size m,

#and return a simulated bivariate Polya-Aeppli distribution in a matrix form.

BivPA<-function(P, m){

BivPA<-matrix(0, ncol=2, nrow=m)

BivP<-matrix(0,ncol=m, nrow=m)

for(i in 1:m){

Z1<-rpois(1,P[1])

Z2<-rpois(1,P[2])

Z3<-rpois(1,P[3])

n1<-rgeom(Z1+Z3,1-P[4])

n2<-rgeom(Z2+Z3,1-P[4])

N1<-sum(n1)+Z1+Z3

N2<-sum(n2)+Z2+Z3
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BivPA[i,1]<-N1

BivPA[i,2]<-N2

BivP[N1+1,N2+1]<-BivP[N1+1,N2+1]+1

}

y<-max( BivPA[,1])

x<-max(BivPA[,2])

return(BivP[1:(y+1),1:(x+1)])

}

#This function takes the vector of true parameters value, the vector

#of estimated parameters, and the dataset, and will return the 95\%

#Confidence Intervals using Fisher Information matrix and their

#respected Coverage Probability.

CInt<-function(x,y,t,P,Data){

h<-hL(x,y,t,Data)

s<--solve(h)

CI1<-t[1]+qnorm(0.975)*c(-1,1)*sqrt(s[1,1])

c1<-(P[1]>=CI1[1] && P[1]<= CI1[2])

CI2<-t[2]+qnorm(0.975)*c(-1,1)*sqrt(s[2,2])

c2<-(P[2]>=CI2[1] && P[2]<= CI2[2])

CI3<-t[3]+qnorm(0.975)*c(-1,1)*sqrt(s[3,3])

c3<-(P[3]>=CI3[1] && P[3]<= CI3[2])

CIr<-t[4]+qnorm(0.975)*c(-1,1)*sqrt(s[4,4])

cr<-(P[4]>=CIr[1] && P[4]<= CIr[2])

c(CI1,c1,CI2,c2,CI3,c3,CIr,cr)

78



M.Sc. Thesis - Yang Ye McMaster - Statistics

}

#This function takes number of replication N and perform a Bootstrap using

#the Dataset, the estimated vector of parameters, real parameters value,

#and will return a 95\% Confidence Intervals and their

#respected Coverage Probability.

Boots<-function(Data,P,Pa,N){

x<-dim(Data)[2]-1

y<-dim(Data)[1]-1

t<-NR.F(x,y,Pa,Data)

if(is.na(t[1,1])){return(NA)}

p<-t[1:4,1]

ma<-matrix(NA, ncol=4, nrow=N)

i<-1

m<-sum(Data)

while(i<=N){

Da<-BivPA(p,m)

x<-dim(Da)[2]-1

y<-dim(Da)[1]-1

t<-NR.F(x,y,Pa,Da)

if(is.na(t[1,1])){next}

ma[i,]<-t[,1]

i<-i+1

}

r<-apply(na.omit(ma),2,mean)
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s<-apply(na.omit(ma),2,sort)

CIL1<-c(s[ceiling(N*0.025),1],s[round(N*0.975),1])

c1<-(P[1]>=CIL1[1] && P[1]<= CIL1[2])

CIL2<-c(s[ceiling(N*0.025),2],s[round(N*0.975),2])

c2<-(P[2]>=CIL2[1] && P[2]<= CIL2[2])

CIL3<-c(s[ceiling(N*0.025),3],s[round(N*0.975),3])

c3<-(P[3]>=CIL3[1] && P[3]<= CIL3[2])

CIRh<-c(s[ceiling(N*0.025),4],s[round(N*0.975),4])

cr<-(P[4]>=CIRh[1] && P[4]<= CIRh[2])

return(c(CIL1,c1,CIL2,c2,CIL3,c3,CIRh,cr))

}

#This function takes the vector of real parameters value, sample sizes,

#and number of sample replicates for simulation, and will return

#the required results

simT<-function(P,nn,N){

ptm <- proc.time()

ma<-matrix(NA, ncol=17, nrow=N)

mo<-matrix(NA, ncol=17, nrow=N)

Bo<-matrix(NA, ncol=12, nrow=N)

for(i in 1:N){

set.seed(i)

Da<-BivPA(P,nn)

x<-dim(Da)[2]-1
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y<-dim(Da)[1]-1

p<-MofMF(Da,P)

mo[i,1:16]<-p

mo[i,17]<-logL(x,y,p[1:4],Da)

t<-NR.F(x,y,p[1:4],Da)

Bo[i,]<-Boots(Da,P,t[,1],1000)

ma[i,1:4]<-t[,1]

ma[i,5]<-logL(x,y,t[,1],Da)

ma[i,6:17]<-CInt(x,y,t[,1],P,Da)

}

outputB<-apply(Bo,2,mean)

m<-na.omit(ma)

nm<-dim(m)[1]

output<-apply(m,2,mean)

B1<-sum(m[,1]-P[1])/nm

MSE1<-sum((m[,1]-P[1])^2)/nm

B2<-sum(m[,2]-P[2])/nm

MSE2<-sum((m[,2]-P[2])^2)/nm

B3<-sum(m[,3]-P[3])/nm

MSE3<-sum((m[,3]-P[3])^2)/nm

Br<-sum(m[,4]-P[4])/nm

MSEr<-sum((m[,4]-P[4])^2)/nm
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oB1<-sum(mo[,1]-P[1])/nm

oMSE1<-sum((mo[,1]-P[1])^2)/N

oB2<-sum(mo[,1]-P[2])/nm

oMSE2<-sum((mo[,2]-P[2])^2)/N

oB3<-sum(mo[,1]-P[3])/nm

oMSE3<-sum((mo[,3]-P[3])^2)/N

oBr<-sum(mo[,1]-P[4])/nm

oMSEr<-sum((mo[,4]-P[4])^2)/N

outputM<-apply(mo,2,mean)

t<-proc.time() - ptm

return(list(success=nm, setting=P,size=nn, oBias=c(oB1, oB2, oB3, oBr),

oMSE=c(oMSE1,oMSE2,oMSE3,oMSEr), Bias=c(B1, B2, B3, Br),

MSE=c(MSE1, MSE2, MSE3, MSEr), op=output, opM=outputM,opB=outputB, ma, mo, time=t))

}

#This function takes the argument given from the simulation function

#and print out the result in a readable way with labels

output.print<-function(s){

out<-list(success=s$success, setting=s$setting,size=s$size, oBias=s$oBias,

oMSE=s$oMSE,Bias=s$Bias, MSE=s$MSE, op=s$op, opM=s$opM,opB=s$opB, time=s$time)

class(out)<-"sim"

out

}
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print.sim<-function(out, digits=5){

#function to print the simulation results

cat(paste("Simulation result with sample size ",out$size,

" and parameters: ", out$setting[1],",", out$setting[2],",",out$setting[3],

",",out$setting[4],"\n\n"))

cat(paste("success: ", out$success), "\n")

cat(paste("N-F estimates", round(out$op[1],digits),round(out$op[2],digits),

round(out$op[3],digits),round(out$op[4],digits),"\n"))

cat(paste("N-F estimates Bias", round(out$Bias[1],digits),

round(out$Bias[2],digits),round(out$Bias[3],digits),

round(out$Bias[4],digits),"\n"))

cat(paste("N-F estimates MSE", round(out$MSE[1],digits),

round(out$MSE[2],digits),round(out$MSE[3],digits),

round(out$MSE[4],digits),"\n"))

cat(paste("N-F estimates logL", round(out$op[5],digits),"\n"))

cat(paste("N-F L1 CI & Coverage P", round(out$op[6],digits),

round(out$op[7],digits),round(out$op[8],digits),"\n"))

cat(paste("N-F L2 CI & Coverage P", round(out$op[9],digits),

round(out$op[10],digits),round(out$op[11],digits),"\n"))

cat(paste("N-F L3 CI & Coverage P", round(out$op[12],digits),

round(out$op[13],digits),round(out$op[14],digits),"\n"))

cat(paste("N-F Rho CI & Coverage P", round(out$op[15],digits),

round(out$op[16],digits),round(out$op[17],digits),"\n"))
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cat(paste("N-F Boot L1 CI & Coverage P", round(out$opB[1],digits),

round(out$opB[2],digits),round(out$opB[3],digits),"\n"))

cat(paste("N-F Boot L2 CI & Coverage P", round(out$opB[4],digits),

round(out$opB[5],digits),round(out$opB[6],digits),"\n"))

cat(paste("N-F Boot L3 CI & Coverage P", round(out$opB[7],digits),

round(out$opB[8],digits),round(out$opB[9],digits),"\n"))

cat(paste("N-F Boot Rho CI & Coverage P", round(out$opB[10],digits),

round(out$opB[11],digits),round(out$opB[12],digits),"\n"))

cat(paste("MofM estimates", round(out$opM[1],digits),

round(out$opM[2],digits),round(out$opM[3],digits),

round(out$opM[4],digits),"\n"))

cat(paste("MofM estimates Bias", round(out$oBias[1],digits),

round(out$oBias[2],digits),round(out$oBias[3],digits),

round(out$oBias[4],digits),"\n"))

cat(paste("MofM estimates MSE", round(out$oMSE[1],digits),

round(out$oMSE[2],digits),round(out$oMSE[3],digits),

round(out$oMSE[4],digits),"\n"))

cat(paste("MofM estimates logL", round(out$opM[17],digits),"\n"))

cat(paste("MofM L1 CI & Coverage P", round(out$opM[5],digits),

round(out$opM[6],digits),round(out$opM[7],digits),"\n"))

cat(paste("MofM L2 CI & Coverage P", round(out$opM[8],digits),

round(out$opM[9],digits),round(out$opM[10],digits),"\n"))
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cat(paste("MofM L3 CI & Coverage P", round(out$opM[11],digits),

round(out$opM[12],digits),round(out$opM[13],digits),"\n"))

cat(paste("MofM Rho CI & Coverage P", round(out$opM[14],digits),

round(out$opM[15],digits),round(out$opM[16],digits),"\n"))

#invisible(out)

}

#different parameters settings

P1<-c(0.6, 0.6, 0.3, 0.1)

P2<-c(0.6, 0.6, 0.9, 0.1)

P3<-c(0.6, 0.6, 0.3, 0.25)

P4<-c(0.6, 0.6, 0.9, 0.25)

P5<-c(0.6, 0.6, 0.3, 0.5)

P6<-c(0.6, 0.6, 0.9, 0.5)

s1a<-simT(P1,50,1000)

output.print(s1a)

s1b<-simT(P1,100,1000)

output.print(s1b)

s2a<-simT(P2,50,1000)

output.print(s2a)

s2b<-simT(P2,100,1000)

output.print(s2b)

s3a<-simT(P3,50,1000)

output.print(s3a)
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s3b<-simT(P3,100,1000)

output.print(s3b)

s4a<-simT(P4,50,1000)

output.print(s4a)

s4b<-simT(P4,100,1000)

output.print(s4b)

s5a<-simT(P5,50,1000)

output.print(s5a)

s5b<-simT(P5,100,1000)

output.print(s5b)

s6a<-simT(P6,50,1000)

output.print(s6a)

s6b<-simT(P6,100,1000)

output.print(s6b)

############## Real Data Application ###########

#Import dataset

Data <-matrix(c(

21,14,8,1,0,0,0,0,

17,12,8,3,1,0,0,1,

6,9,2,2,2,0,0,0,

1,1,3,3,1,0,0,0,

1,3,0,0,0,0,0,0,
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0,0,0,2,0,0,0,0

), ncol=8, nrow=6, byrow=T)

#MofM

MofM(Data)

#method of MLE

NR.F(7,5,MofM(Data), Data)
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