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ABSTRACT 

This thesis presents two quantitative holographic reconstruction techniques for the 

imaging of dielectric targets. The first method is a quasi-real-time holographic 

reconstruction technique, which is capable of imposing physically based constraints on 

the real and imaginary parts of the permittivity. The other method is a real-time 

holographic reconstruction technique that is faster than the constrained method but cannot 

accommodate constraints on the reconstructed permittivity in its current form. The goal of 

this thesis is to introduce both methods and recommend which is best. 

Microwave holography has been used by our research group to reconstruct images of a 

target’s shape and location from microwave scattering parameters. This thesis will 

demonstrate that holography can be extended to quantify the permittivity distribution in a 

region of interest. 

The problems presented in this thesis are generic and are meant to show that near-field 

quantitative holography is a valid approach for applications such as tissue imaging, 

baggage inspection, concealed weapon detection, etc.  

The holographic inversion is carried out in the spectral domain (Fourier space), which 

allows for the use of Fourier transform properties to expedite the algorithm. This differs 

from sensitivity-based imaging (another inversion method developed by Tu et al. (2015)) 

where the inversion is performed in real space and is unable to take advantage of the 

techniques proposed in this thesis to improve the speed of reconstruction.  
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Mutual coupling is not taken into consideration in the forward model of scattering used 

here; however, this technique is meant to be viewed as a foundation for a more 

sophisticated reconstruction algorithm, like the iterative Born method, which can 

overcome such limitations. Iterative reconstruction methods require an accurate initial 

guess, which can be provided by the quantitative technique presented in this thesis. 

Moreover, this technique, implementing fast and efficient linearized inversion, can 

serve as a module, which is called repetitively by the iterative algorithm. Such a module 

will take the current estimate of the total field distribution inside the imaged volume as an 

input and will return an estimate of complex permittivity distribution. 
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Chapter 1            
          
Introduction 
Equation Chapter (Next) Section 1 

1.1 Background 
 

Microwave imaging has a history of detecting targets with some of the most prominent 

examples being aircraft detection and underground sensing [1]–[3]. While there are many 

far-field applications that are capable of detecting the electrical properties of objects in 

the microwave bandwidth, like meteorology [4] and radiometry [5], there has been 

comparatively little work done on near-field imaging. One possible reason is that the 

near-field region has an unpredictable radiation pattern.  

Recently, sensitivity-based imaging has been used to generate quantitative images of 

dielectric objects [6], [7]. However, other techniques exist that can provide near-field 

imaging results as well. One such technique is near-field holography proposed in [8] and 

[9]. 

Holography originated in the late 1940s as an image reconstruction technique 

discovered in the field of optics by Gabor and his colleagues [10]. The term holography 

has Greek origins with the word holos meaning “whole” and the word graphos meaning 

“writing” or “carving”. This is a commonly used technique to image objects, like aquatic 

microorganisms [11], [12]. However, it was not until the early 1970s that Farhat et al. 
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[13], [14] were capable of developing a holographic approach using microwaves. The 

relatively long wavelengths of microwave and millimetre waves allow for penetration 

inside dielectric bodies where visible light cannot reach [9]. This is attributed to the fact 

that the skin depth, which is inversely proportional to frequency, is larger for microwaves. 

The technique proposed by Farhat uses the amplitude and phase information of 

microwave signals and then solves a linearized inverse-scattering problem in the spectral 

domain (Fourier space) [8], [9], [13]–[15]. Not long after Farhat et al. published their 

work, Jacobi et al. were able to use microwaves to image canine kidneys immersed in 

water [16]. 

1.2 Motivation 
 

Although microwave holography has been used in a variety of applications, the 

techniques in [3], [8], [9], [13], [14] and [16] deal with a holographic approach in a 

qualitative manner. However, many applications require a quantitative imaging 

technique. The difference between qualitative and quantitative imaging can be explained 

as follows.  

Qualitative holography reconstructs images by displaying the shape of the object in the 

form of a two-dimensional (2D) or a three-dimensional (3D) image. The shape of the 

target is an indication of the locations where its constitutive parameters are different from 

those of the background. However, the actual values of these parameters as a function of 

space remain unknown. This is an acceptable technique for applications such as aircraft 

detection [1], [2], concealed weapon detection (CWD) [17]–[19] and any other 
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application that is concerned with determining the location and the shape of a target [8]–

[10], [13], [14], [17]–[19]. However, its disadvantage is that it does not provide 

information about the electrical properties (i.e. the permittivity and conductivity) of the 

target. In the case of cancer screening, for example, the presence of contrast is insufficient 

to establish the presence of an abnormality. This is due to the fact that body parts contain 

fat, muscle, cartilage, and other tissues, which all have distinct electrical properties that 

contrast alone is unable to distinguish. The values of the real and imaginary parts of the 

complex permittivity in the imaged volume are desired for tissue imaging. In addition, 

iterative imaging methods require a quantitative estimate of the permittivity distribution 

inside the inspected object. Thus, a new approach to the solution of the microwave 

holography problem needs to be developed – a quantitative approach. 

The primary difference between the qualitative and the quantitative reconstruction 

techniques is that a quantitative technique is capable of localizing and displaying the 

electrical properties of the objects as a function of position. The electrical property of 

interest is the permittivity, although conductivity could be analyzed as well as it is related 

simply to the imaginary part of the complex permittivity. This is the author’s contribution 

to near-field microwave imaging through microwave holography. 

Microwave imaging technology is driven by the need for improved efficacy, lower 

cost, and increased user access. One of the motives for developing microwave imaging 

methods for tissue imaging, for example, is that it would be a cheaper and more widely 

available method of performing medical imaging compared to magnetic resonance 

imaging (MRI) or X-rays. This is due to the fact that MRI requires large spaces to house 
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the equipment and is also expensive to manufacture and to service. Typical MRI 

machines cost millions of dollars, whereas a microwave imaging system could cost tens 

of thousands of dollars. Moreover, it does not require large or shielded premises. In fact, 

it could be used in the offices of family physicians. 

Microwave holography, along with other microwave imaging methods, has the 

advantage of using low radio-frequency (RF) power levels on the order of a typical 

cellular phone. As such, the patients and physicians need not be worried about burns – a 

concern that is all too common in the MRI community. 

Microwave reconstruction techniques can use acquisition surfaces of various shapes. 

Typical shapes are planar, cylindrical and spherical. For example, the array of antennas in 

[20] is formed into a hemisphere so that it conforms to the shape of a human breast. For 

many women, mammography can be painful and this method has the capability of 

providing a safer, less painful method of examination.  

As with any new technology, it is crucial to investigate under what circumstances it 

would be beneficial and under what circumstances it would fail. An entire chapter of this 

thesis is dedicated to the verification of the conditions under which accurate results can be 

obtained. This technology is limited by the fact that microwaves can only travel a short 

distance through human tissue before their signal becomes negligible. Unfortunately, 

many vital organs such as the kidneys, heart and lungs are not accessible through 

microwaves since they are too deep within the body. The other limitation of this 

technique is that it is unable to take into account the nonlinearities of the scattering 
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process, which is a consequence of using a direct inversion method. This can be 

overcome by techniques like the Born iterative method [21], however this requires an 

initial quantitative estimate. The results shown in this thesis are to be viewed as 

candidates for the initial values, which are to be supplied to the iterative solvers. 

1.3 Contributions 
 

The author has contributed to microwave imaging in the following ways: 

a) Developed and compared two methods to solve the near-field quantitative holographic 

problem that can reconstruct images in quasi-real time and in real time. Both methods 

solve linear systems of equations with a least-squares (LS) approach; however, one of 

these methods is significantly faster. Applying physically based constraints to the LS 

solution is also investigated. 

b) Developed a more efficient method of translating the calibration data throughout the 

region of interest (ROI) by applying a Fourier transform (FT) property. 

Parts of this work have been published in [15]. 

1.4 Outline of the Thesis 
 

This thesis intends to give a general study of the applicability of microwave 

holography and to extend this imaging method into a quantitative method. Thus, the 

problems presented in this work are generic. The technique proposed in this thesis is a 

combination of findings from subsurface imaging techniques using quasi-static fields and 

methods developed in qualitative holography [8], [9], [19], [22]. 
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Chapter 2 provides the background of microwave holography. The chapter focuses on 

the most recent developments in near-field microwave holography and discusses technical 

aspects such as the scattering model and the practical realization of the imaging system.  

Chapter 3 discusses the first method proposed by the author to the quantitative 

microwave holography problem. This chapter explains the derivation of an unconstrained 

global spectral inversion technique (UGSI) and a constrained global spectral inversion 

(CGSI) technique used to generate the quantitative images. It also discusses the 

implementation of the algorithm.  

Chapter 4 discusses the second method proposed by the author to the quantitative 

microwave holography problem, namely, the pointwise spectral inversion (PSI) 

technique. This method may or may not include the localized nonlinear (LN) 

approximation to generate the images. The chapter also explains how the algorithm is 

implemented in the software. It provides examples and discusses the strengths and 

weaknesses of this unconstrained method as opposed to the one (CGSI) that uses 

constraints.  

Chapter 5 provides examples with objects of various permittivity distributions. The 

goal of this chapter is to investigate which of the two methods performs better in terms of 

image fidelity. 

Chapter 6 provides conclusions and discusses the inherent limitations of the proposed 

quantitative holography method. The chapter also discusses future work that could 

overcome the method’s intrinsic limitations. 
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Chapter 2           
           
Background on Microwave Holography 
Equation Chapter (Next) Section 1 

2.1 Introduction 
 

This chapter provides some background information on near-field microwave 

holography with an emphasis on the methods developed by our team. The goal of 

qualitative holographic reconstruction described here is to determine the shape and 

location of an object under test (OUT), where the OUT is an unknown object that is 

embedded in a known background medium.  

The chapter begins by describing how the scattering model, which is based on the 

electric field vector, is used in the image reconstruction process. We then derive the 

relation between the scattered electric field and the measured scattering parameters (S-

parameters) [1]. This novel derivation is critical in formulating a mathematically rigorous 

forward scattering model in terms of S-parameters. 

We then summarize the work done by Sheen et al. [2] on concealed weapon detection 

(CWD) and discuss their contribution in the framework of our S-parameter forward 

model. This work provides the basic concept of far-field microwave holography, which is 

necessary to understand our team’s developments in near-field holography. Initially, our 

team developed a near-field two-dimensional (2D) holographic reconstruction technique 
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at a single frequency [3]. This has been extended to three dimensions (3D) by including a 

range of frequencies [4]. 

In both the 2D and 3D cases, Green’s function of the background medium plays a vital 

role in the reconstruction process. Initially, our team used a spherical wave propagation 

model to represent Green’s function [3]. Later, the approach was generalized to the near-

field region where the spherical-wave approximation is inadequate. This was achieved by 

acquiring the near-field incident fields of the antennas used for scanning via method-of-

moment simulations [5]. However, the fidelity of the simulations has been found to be 

low due to large modelling errors. The point-spread function (PSF) is then introduced as a 

measureable quantity characterizing the acquisition system and its background Green’s 

function [6]. 

2.2 Planar Raster Scanning Acquisition Setup 
 

Our work uses a priori knowledge of: (i) the incident-field distributions, (ii) the 

permittivity of the small scatterer and (iii) the permittivity of the background medium. To 

characterize the acquisition system, two types of measurements are performed: 

measurements of the reference object (RO) and measurements of the calibration object 

(CO). The RO is an object with no scatterers, which contains the background medium and 

the whole acquisition setup, including the antennas. The CO is identical to the RO with 

the exception of a small scatterer, which is embedded in the centre of the RO [7][8].  
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Figure 2.1 Simulation setup for planar raster scanning [8]. 

 

Figure 2.1 illustrates the setup for a planar raster scanning data acquisition system, 

which is the system used for all examples in this thesis. Planar scanning is a data 

acquisition technique similar to synthetic aperture radar techniques since the antennas are 

scanned over a top and a bottom plane. The antennas are positioned such that they are 

aligned along their boresight. 

2.3 Forward Model in Terms of Scattered Electric Fields 
 

Every reconstruction algorithm assumes a certain model for its forward solution. The 

original holographic reconstruction algorithm is based on a scalar approximation of the 

electromagnetic scattering model. This is why it is imperative to review briefly the 

scattering model for the E-field vector and describe the approximations made when it is 

reduced to a scalar model. 

The total electric field can be expressed as the superposition of the incident and 

scattered fields [9]:  
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 ( ) ( ) ( )tot inc sc
OBJ, OBJ, OBJ, ,k j k j k j= +E r E r E r   (2.1) 

where k and j represent the indices of the transmitting (Tx) and receiving (Rx) antennas, 

respectively, and OBJ OUT, CO, RO≡ . The coordinates of the Rx antenna are defined as 

( , ,0)j j jx y=r  and the coordinates of the Tx antenna are ( , , )k k k zx y D=r . Note that since 

the antennas are aligned along their boresight, k jx x x′= =  and k jy y y′= = . Thus, we 

define the scanning aperture coordinates to be ( , , )x y z′ ′ ′=r , with 0, zz D= .  

Helmholtz’ equation allows us to express the scattered field as [9] 

 ( ) ( ) ( ) ( ) ( )sc 2 2 tot
OBJ, OBJ RO OBJ,, ,k j b j k

V

k k d = − ∫∫∫E r r r G r r E r r  (2.2) 

where ( , )b jG r r  is Green’s function of the background medium. The goal of qualitative 

holography is to reconstruct the contrast function 2 2 2
OBJ RO 0 OBJ( ) ( ) ( ) ( )f k k k ε= − = ∆r r r r , 

where 0k  is the wavenumber in free-space, OBJ OBJ OBJ( ) ( ) ( )k ω µ ε=r r r  is the 

wavenumber of OBJ and OBJ OBJ, RO,( ) ( ) ( )r rε ε ε∆ = −r r r  is the relative permittivity 

contrast of OBJ.  

Previously, the 2D and 3D qualitative holographic techniques used the linear Born 

approximation to replace the total internal field with the incident field [9]: 

 ( ) ( )tot inc
OBJ, OBJ, .k k≈E r E r  (2.3) 

Since by definition the RO does not contain scatterers, it can be stated that

inc
OBJ, RO,( ) ( )k k≈E r E r . Thus, under the linear Born approximation, (2.2) is written as [9] 
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 ( ) ( ) ( ) ( )sc 2
OBJ, 0 OBJ RO,, .k j b j k

V

k dε≈ ∆∫∫∫E r r G r r E r r  (2.4) 

The above equation is the well-known -fieldE  linearized scattering model.  

2.4 Prior Developments in Qualitative Holography 
 

2.4.1 The Scalar Model of Holography  
 

The work done by Sheen et al. [2] applies (2.4) with far-zone measurements. In 

addition, the expression (2.4) is only analyzed for one scalar component [2]: 

 ( ) ( ) ( ) ( )sc 2
OBJ, 0 OBJ RO,, .k j b j k

V

E k G E dε≈ ∆∫∫∫r r r r r r  (2.5) 

This implies that Green’s function is a scalar thereby ignoring polarization effects (e.g. 

cross-polarization scattering). The work in [2] uses a background of air. Thus, Green’s 

function of the scalar Helmholtz’ equation in open-space can be written as [9] 

 
j

,
b jk

j

e− −

−

r r

r r
 (2.6) 

where j = 1− . Since the work in [2] considers only far-field data, the incident field in 

(2.5) is approximated as j b ike− −r r
−  while Green’s function is written as j b jke− −r r . In 

these approximate far-field expressions, the 1/ | |j−r r  factor has been neglected. Since 

the work done in [2] uses a monostatic arrangement, only reflection coefficients are 

measured. Thus, the Rx and Tx coordinates are the same, i.e. j k=r r . Therefore, the 

image reconstruction algorithm in [2] is based on  
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 ( ) ( )
2 2 2j2 ( ) ( ) ( )sc 2

OBJ, 0 OBJ ,b j jk x x y y z z
k j

V

E k e de − − + − + −≈ ∆∫∫∫r r r  (2.7) 

where the goal of the algorithm is to reconstruct the reflectivity function 

2
0 OBJ( ) ( )f k ε= ∆r r . It is now clear that this forward model is valid only for the case of 

far-zone scattering and is not capable of representing cross-polarization scattering. 

In addition, the work in [2] performs FTs in 3D space and assumes that 

2 2 2
z b x yk k k k= − − , where ,  ,  ,  b x y zk k k k ∈y . This implies far-field propagation in a 

lossless medium. Also, the spatial frequencies, xk  and yk , cannot exceed 2k. This limits 

the resolution along the x and y axes since some higher frequency components (e.g., 

evanescent field), which provide image sharpness, are discarded. These approximations 

are not suitable for our work since the objects we are interested in are lossy and 

2 2 2 2
b x y zk k k k≠ + +  in the near-field region. The 3D FT used in [3] is avoided in the 

reconstruction technique proposed by our team. This procedure is discussed in detail later. 

2.4.2 Depth and Lateral Resolution 
 

In the proposed techniques in [3], [4], [6], [9] and [10] the upper limits on xk  and yk  

are not limited by zk . This allows for better cross-range resolution, which can be defined 

as [3] 

 
( ) ( )( ) ( ) ( )( ),max

,
sin / 2 sin / 2 2 sin / 2 sin / 2

b
w

w b t r t rk k
π π λδ

θ θ θ θ
= = =

+ +
 (2.8) 
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where ,maxwk  ( ,w x y≡ ) is dependent on the transmission and receiving paths of the 

wave and bλ  is the wavelength in the background medium [3]. The angles rθ  (angle of 

reception) and tθ  (angle of transmission) defined in [3] are illustrated in Figure 2.2. 

x

z

( ),0,0xD

y

( ),0,x zD D

( )0,0, z

rθtθ

Tx antenna Rx antenna

 

Figure 2.2 An illustration of the angles of reception and transmission in planar scanning. 

 

The depth resolution stated in [2] and [4] is  

 ,
2z
c
B

δ =  (2.9) 

with c being the wave velocity in the background medium and B is the frequency 

bandwidth. This resolution estimate is valid only in the far-zone and only for reflection-

based measurements. In principle, there is no depth resolution in a transmission 

measurement when using a single receiving antenna.  
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2.4.3 Spatial and Frequency Sampling for 2D and 3D Holography 
 

The FT is used on the acquired data along the x′ and y′  coordinates, respectively. The 

variables xk  and yk  are the Fourier variables for x′  and y′ , respectively. The sampling 

size (defined in [2] and [4]) along the x′ and y′  coordinates are chosen such that  

 min .
4

x λ
∆ <  (2.10) 

As per Nyquist’s theorem, the maximum values of xk  and yk  are chosen such that [6] 

 max ,   , ,   , .x yk k x yπβ β ϕ
ϕ

=
∆

   (2.11) 

In addition, since the coordinate pair ( , )x y′ ′ ∈y , symmetry in the negative spatial 

frequencies must be satisfied. Therefore, the domain of spatial frequencies are 

max max
x x xk k k− ≤ ≤  and max max

y y yk k k− ≤ ≤ .  

The required frequency sampling is done in the same manner as the sampling step size 

along the x′  and y′  coordinates [2]. The phase shift resulting from a change in 

wavenumber k∆  for reflection measurements is max2 kR∆ , where maxR is the maximum 

target range. In order that these quantities not exceed π , the frequency sampling step size 

(defined in [2] and [4]) for reflection measurements needs to be  

 
max

,
4

cf
R

∆ <  (2.12) 
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where f∆  is the frequency sampling step size. Likewise, the phase shift resulting in a 

change in wavenumber k∆  for transmission measurements is 1 2( )k R R∆ + , where R1 is 

the distance from the Tx to the scattering point and R2 is the distance from the scattering 

point to the Rx. In order these quantities to not exceed π , the frequency sampling step 

size for transmission measurements needs to be [4] 

 
( )1 2

.
2

cf
R R

∆ <
+

 (2.13) 

For all examples presented in this thesis, the frequency sampling step size is 1 GHz. 

2.4.4 Estimates of Green’s Function 
 

We make the assumption that we know the incident field inc (0,0,0; , , ; )mx y z ωE  at 

every m-th angular frequency and at every point in the ROI ( , , )x y z  when the 

transmitting antenna is at (0,0,0)  [6]: 

 
( ) ( )

( ) ( )

inc inc
0

0

, , , 0,0,0; , , ; ,

, , , , , ;0,0, ; ,

m m

b m b z m

x y z x y z

x y z x y z D

ω ω

ω ω

≡

≡

E E

G G
 (2.14) 

where the incident field has the form inc ( , ; )P Q mωE r r  with Pr  being the observation point 

and Qr  is the scattering point. For a homogeneous or layered medium, the incident field 

and Green’s function satisfy the translation property [3], [4], [6]–[8], [10], [11], [12] 

 
( ) ( )

( ) ( )

inc inc
0

0

, ,0; , , ; , , , ,

, ,0; , , ; , , , .

m m

b m b m

x y x y z x x y y z

x y x y z x x y y z

ω ω

ω ω

′ ′ ′ ′= − −

′ ′ ′ ′= − −

E E

G G
 (2.15) 
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This property allows us to express the scattered field integral of (2.2) as a convolution, 

which is capable of taking advantage of some useful FT properties. 

The 2D image reconstruction method presented in [3] involves having two antennas 

along their boresight and assumes that the incident wave inc( )s  is known inside the 

scanned object when the Tx antenna is at the origin:  

 ( ) ( )inc inc
0 , , , , ;0,0,0 ,s x y z s x y z≡  (2.16) 

with ( , , )x y z  being the observation point and (0,0,0) being the origin. The wave is 

assumed to be spherical and it describes Green’s function, which has the same form as 

(2.6) with j ′=r r . Therefore, the scattered wave observed at one of the acquisition planes 

is expressed in [3] as 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2j ( ) ( ) ( )inc
0

2 2 2

, ,
, , ,

             , , , , ,

b zk x x y y D z

x y z

x y

s x x y y z e
s x y f x y z dxdy

x x y y D z

f x y z g x x y y z dxdy

′ ′− − + − + −′ ′− −
′ ′ =

′ ′− + − + −

′ ′= − −

∫ ∫

∫ ∫
 (2.17) 

where the quantities of (2.17) are defined as [3] 

 ( ) ( )inc
0 0, , , , ,s x y z s x y z= − −  (2.18) 

and [3]  

 ( ) ( ) ( )

( )

22 2j
0

0 22 2

, ,
, , .

b zk x y D z

z

s x y z e
g x y z

x y D z

− + + −

=
+ + −

 (2.19) 
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Notice that this forward model is also scalar as in [2] but now it approximates Green’s 

function as a spherical wave where the amplitude factor 1/ | ' |−r r  is not ignored.  

This allows us to express (2.17) in Fourier space as being a product [3] 

 ( ) ( ) ( )0, , , , , ,x y x y x yS k k F k k z G k k z=   (2.20) 

where the tilde above the variables indicates that the FT has been applied.  

From (2.20), a formal inversion expression is obtained for the contrast function as [3] 

 ( ) ( )
( )

1
2

0

,
, , ,

, ,
x y

D
x y

S k k
f x y z

G k k z
−   =  

  





F  (2.21) 

where 1
2D

−F  denotes the 2D inverse FT. The reconstructed image is obtained by taking 

the magnitude of (2.21), i.e. ( , , )f x y z  [3]. Note that (2.21) is only a formal expression. 

It is to be viewed as the maximum likelihood solution and is not applicable in cases where 

( )0 , ,x yG k k z  is zero. A practical approach is presented next.  

2.4.5 Solving the Least-Square Holography Problems in 2D 
 

Since we have multiple signals, (2.21) cannot be directly applied. It can be 

advantageous to use as much data as possible to reconstruct the image. However, this is 

dependent on the quality of the new data and whether the new data is sufficiently 

different. If these conditions are not met, the matrix can become rank deficient. 
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The number of signals Ns is a product of two quantities Ns = NTxNRx, where NTx is the 

number of transmitting ports and NRx is the number of receiving ports. The following 

system of equations, solved at each ( , )x yk k  pair, is obtained in the case of a two-port 

system [3]: 

 

( )
( )
( )
( )

( )

( )
( )
( )
( )

11
011
12
012

21
21 0

2222 0

, ,,
, ,,

, , .
, , ,
, , ,

x yx y

x yx y
x y

x y x y

x y x y

G k k zS k k
G k k zS k k

F k k z
S k k G k k z
S k k G k k z

          =            



















 (2.22) 

This is an overdetermined system since there are four equations and one unknown [3]. 

Therefore, the pseudoinverse command in MATLAB (pinv) is applied at each ( , )x yk k  

pair [13].  

2.4.6 Building the Least-Square Problem in 3D 
 

The scalar model in (2.17) can be generalized for the 3D case with the addition of data 

at multiple frequencies, i.e., using wideband measurements, [4], [6], [10], [11]: 

 ( ) ( ) ( )OUT, 0, , , , , , , , ,q
q m m

V

S x y z f x y z g x x y y z dxdydzω ω′ ′ ′ ′∆ = − −∫∫∫  (2.23) 

where 1,...,m Nω= , 1,..., sq N=  and 0,z D= . Like the 2D case, the scattering function 

0 ( , , )g x y z  satisfies translational invariance and allows us to express (2.23) as a product 

in Fourier space [4], [6], [10], [11], 

 ( ) ( ) ( )OUT, 0, , , , , , , , ,q
q x y m x y x y m

z

S k k z F k k z G k k z dzω ω∆ = ∫   (2.24) 
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which can be discretized as [4], [6], [10], [11] 

 ( ) ( ) ( )OUT, 0
1

, , , , , , , ; .
zN

q
q x y m x y n x y m n

n
S k k z F k k z G k k z zω ω

=

∆ ≈ ∆∑   (2.25) 

Hereafter, z∆  is omitted since the qualitative approach normalizes the result at the end of 

the algorithm. Therefore, we can express (2.25) in the form of a matrix as [4], [6], [10], 

[11] 

 
( )

( )

( ) ( )

( ) ( )

( )

( )

1 1
OUT,1 0 1 0 OUT 1

OUT, OUT0 1 0

, , , , , , ,
,

, , ,, , , ,

z

s s
s zz

m m m N

N NN m Nm m N

S z G z G z F z

S z F zG z G z

ω ω ω

ω ω ω

    ∆
    =     
    ∆     

   



    

 

 



κ κ κ κ

κ κκ κ

 (2.26) 

where the Fourier pair is defined as ( , )x yk k=k .  The system (2.26) can be written at each 

angular frequency mω  ( 1,..., )m Nω= . However, we would like to solve (2.26) for all 

angular frequencies simultaneously. Therefore, we need to construct vectors of data and 

contrast values that comprise all angular frequencies. 

Let us denote a column in the system matrix of (2.26) as [4], [6], [10], [11] 

 ( )
( )

( )

1
0

0

, ,
, , .

, ,s

m n

m n
N

m n

G z
z

G z

ω
ω

ω

 
 

=  
 
 

G









κ
κ

κ

 (2.27) 

In order to achieve good depth resolution in our image reconstruction, we define a system 

matrix that combines all of the angular frequencies together [4], [6], [10], [11]: 
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 ( )
( ) ( )

( ) ( )

1 1 1

1

; ;
,  1,..., .

; ;

z

z

N

N N N

z z
m N

z zω ω

ω

ω ω

ω ω

 , ,
 

= = 
 , , 

G G
K

G G

 





 

 



κ κ
κ

κ κ

 (2.28) 

Next, let us denote the column vector of sN  responses at a particular angular 

frequency as [4], [6], [10], [11]: 

 ( )
( )

( )

OUT,1

OUT

OUT,

, ,
, ,  1,..., .

, ,s

m

m

N m

S z
m N

S z
ω

ω
ω

ω

 ∆
 

∆ = = 
 ∆ 

S









κ
κ

κ
 (2.29) 

We combine the responses (2.29) for all angular frequencies into a single vector as [4], 

[6], [10], [11]: 

 ( )
( )

( )

OUT 1

OUT

OUT

,
.

,

T

T
Nω

ω

ω

 ∆
 

=  
 ∆ 

S
S

S









κ
κ

κ

 (2.30) 

As a result, we obtain a system of equations at each κ  pair that combines all angular 

frequencies [4], [6], [10], [11]: 

 ( ) ( ) ( )OUT OUT .=K F S κ κ κ  (2.31) 

Since this relationship is overdetermined, we use the MATLAB command pinv to acquire 

the qualitative maps (i.e., the image of the contrast function) of the OUT, OUT ( )F κ . 
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2.5 Expressing Electric Fields in Terms of Scattering 
Parameters [1] 
 

All scalar models of scattering considered so far assume that one field component is 

sampled at a point. In practice, we measure the S-parameters of the network formed by 

the OUT and the antennas in the acquisition setup. The S-parameters are not equal, nor 

are they proportional to one field component at the centre of the Rx antenna. 

We must reduce (2.4) to a scalar form corresponding to the S-parameters in order to 

have an accurate model of our experiments and simulations. The following derivation 

casts the integral-equation model directly in terms of the S-parameters and the incident 

field generated by the Tx antenna and that generated by the Rx antenna, where the latter 

operates in a Tx mode. To our knowledge, this derivation is novel and is not available 

elsewhere. At the same time, it is critical to understand the forward scattering model of 

near-field holography. 

2.5.1 Deriving the E-field Scattering Model 
 

The vector Helmholtz equation for an electric field in a nonmagnetic isotropic medium 

can be written as 

 2
0 0j ,rk ε ωµ∇×∇× − = −E E J  (2.32) 

where rε  is the complex relative permittivity [9]. 

Green’s function of the vector Helmholtz equation is a tensor that solves  
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 ( ) ( ) ( )2
0, , ,b r bk ε δ′ ′ ′∇×∇× − = − −G r r G r r I r r  (2.33) 

where I is the identity tensor and ( )δ   is Dirac’s delta function. Thus,  

 ( )
( )

( )
( )

0 0
0 0 .
0 0

δ
δ δ

δ

 
 =  
  

I


 



 (2.34) 

The relation in (2.33) can be decomposed into components such that 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2
0

2
0

2
0

ˆ, , ,

ˆ, , ,

ˆ, , ,

x r x

y r y

z r z

k

k

k

ε δ

ε δ

ε δ

′ ′ ′∇×∇× − = − −

′ ′ ′∇×∇× − = − −

′ ′ ′∇×∇× − = − −

G r r G r r r r x

G r r G r r r r y

G r r G r r r r z

 (2.35) 

where 
T

x y zG G Gρ ρ ρ ρ =  G  ( , ,x y zρ ≡ ) is the field due to a -sourceδ  of ρ  

polarization.  

As shown by Chew [9], if the current source function ( )′J r  is known, the field it 

generates can be expressed as 

 ( ) ( ) ( )0, j , ,
S

m m b
V

dω ω m′ ′= − ∫∫∫E r G r r J r r  (2.36) 

where VS is the volume of interest and the differential contribution to ( )′E r  can be 

expressed in the form of a tensor  

 

( ) ( ) ( )

0

,

j .
x xx xy xz x

y yx yy yz y

zx zy zz zz

E G G G J
E G G G J dV

G G G JE

d

d ωµ

d ′′

          =               rr rr

 (2.37) 
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For the imaging examples in this thesis, we assume a uniform background medium, 

which has no sources inside the imaged volume, i.e. ( ) 0=J r . As follows from (2.32), the 

incident field satisfies the homogenous vector Helmholtz equation 

 inc 2 inc
0 0.rk ε∇×∇× − =E E  (2.38) 

However, when a scatterer is present in the ROI, the permittivity differs from the 

background medium. The total field in the ROI satisfies 

 ( )tot 2 tot
0 OBJ 0.rk ε ε∇×∇× − + ∆ =E E  (2.39) 

By substituting (2.1) into (2.39) we get 

 ( ) ( )inc sc 2 inc sc 2 tot
0 0 OUT 0.rk kε ε∇×∇× + − + − ∆ =E E E E E  (2.40) 

We then arrange (2.40) such that we separate the incident, scattered and total fields:  

 ( ) ( )inc 2 inc sc 2 sc 2 tot
0 0 0 OBJ .r rk k kε ε ε∇×∇× − + ∇×∇× − = ∆E E E E E  (2.41) 

We recognize that (2.38) can be used to simplify (2.41) such that 

 sc 2 sc 2 tot
0 0 OUT .rk kε ε∇×∇× − = ∆E E E  (2.42) 

We then compare the right-hand side of (2.42) with (2.32) to relate the total field to an 

equivalent current distribution, eJ   

 

2 tot
0 0 OUT

2
tot0

OUT
0

j ,

j .

e

e

k

k

ωµ e

e
ωµ

− = ∆

= ∆

J E

J E
 (2.43) 

Substituting (2.43) into (2.36) gives 
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 ( ) ( ) ( ) ( )sc 2 tot
0 OUT, , .

S

m b
V

k dω ε′ ′= ∆∫∫∫E r r G r r E r r  (2.44) 

The significance of expressing the scattered field in terms of the total field rather than the 

current distribution will be shown in the subsequent sections. 

2.5.2 Expressing Vector Responses as Scalars 

Let us assume that the j-th sensor is transmitting and its current distribution can be 

expressed as  

 ( ) ( ) ,j j jm′ ′=J r M r  (2.45) 

where mj is the strength of the excitation and )(j ′M r  is the source vector distribution. 

We then consider the source’s domain to be j∂ , where ( ) 0j ′ ≠M r  only if j′∈∂r . Then, 

as per (2.36), the field generated by the j-th Tx port can be expressed as  

 ( ) ( ) ( )inc
0, j , .

j

j m m j b jm dω ω m
∂

′ ′= − ∫E r G r r M r r  (2.46) 

Let us now assume the same j-th sensor is in Rx mode when the k-th sensor transmits. 

As indicated in (2.37) and (2.44), the differential contribution to the scattered field at the 

location of the sensor is  

 ( ) ( ) ( ) ( )sc 2 tot
0 OUT, , .jk m b kk dd ω ε′ ′= ∆E r r G r r E r r  (2.47) 

Based on how S-parameters are defined in [14], we now make the assumption that the 

scalar response of the j-th sensor can be expressed as 
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 ( ) ( )sc .
j

T
jk j j kR dk

∂

′ ′ ′= ∫ M r E r r  (2.48) 

By applying (2.48) to (2.47), we obtain the differential contribution jkRδ  to the j-th 

sensor response  

 sc 2 tot
0 OUT( ) ( ) ( ) ( ) ( , ) ( )

j j

T T
jk j j k j j b kR d k d ddkdk    ε

∂ ∂

 
 ′ ′ ′ ′ ′ ′= =− ∆
  

∫ ∫M r E r r r r M r G r r r E r . (2.49) 

Using reciprocity, i.e. ( , ) ( , )T
b b′ ′=G r r G r r  and [ ( , ) ( )] ( ) ( , )T T T

b j j b′ ′ ′ ′=G r r M r M r G r r , we 

can express (2.49) as: 

 ( ) ( ) ( ) ( )2 tot
0 OUT , .

j

T
jk j b j kR k d ddk  ε

∂

 
  ′ ′ ′= − ∆   

 
∫r r G r r M r r E r  (2.50) 

We can rearrange (2.46) so that we obtain: 

 ( ) ( ) ( )inc

0
, .

j
j

b
m j

d
mω m∂

−
′ ′ =∫

E r
G r r M r r  (2.51) 

The results in (2.50) and (2.51) allow us to express the scalar responses in term of the 

electric fields:  

 ( ) ( ) ( )
2
0 OUT inc tot

0
,

j
j

jk j k
m j

k d
R

m
k ε

d
ω m
∆

= ⋅
r r

E r E r  (2.52) 

where inc
jE  is the field produced by the source function ( )′J r  of the j-th sensor. If we 

integrate over the entire ROI we obtain:  
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 ( ) ( ) ( )inc tot0
OUT

j

S

m
jk j j k

j V

R d
m

ω εk ε= − ∆ ⋅∫∫∫ r E r E r r . (2.53) 

We now have a rigorous expression that relates the electric field to the measured scalar 

response. Also, if we know the scalar response, we are able to acquire the electric field 

product inc tot( ) ( )j k⋅E r E r . Note that with this expression, there is no need for approximate 

models for Green’s function. 

2.5.3 Sampling with Small Dipole Antennas 
 

Let the j-th source’s current distribution in Tx mode be  

 ( ) ( )3 ˆ ,j j j j jJ δ′ = ∆Ω −J r r r r  (2.54) 

where j j jm J= ∆Ω , ( ) ( )3 ˆj jδ′ = −M r r r r  and 3( )jδ −r r is the 3D Dirac delta function, 

ˆ jρ  is the polarization unit vector, Jj is the current distribution and j∆Ω  is the source 

volume. 

The same sensor in Rx mode has a scalar response expressed as 

 ( ) ( ) ( )3 sc scˆ ˆ ,
S

jk j j k j k j
V

R dd= − ⋅ ⋅∫∫∫ r r E r r E rr = r  (2.55) 

which implies that the scalar response can be directly related to the electric field 

 ( ) ( ) ( ) ( )
2

sc inc tot0
OUT

0
ˆ .

j
S

j k j j k
m j j V

k d
J

ε
ω m

−
⋅ = ∆ ⋅

∆Ω ∫∫∫E r r E r E r rr  (2.56) 
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It is worth noting that the above equation leads to the sensitivity expression for the 

transmission coefficient [15] 

 inc ˆ ,jk k jT = ⋅E ρ  (2.57) 

with respect to the permittivity of a voxel. As proven in [15], if the scattered field sc
kE  is 

viewed as a variation of inc
kE  when the permittivity of a single voxel is perturbed by 

OUT ( )ε∆ r , we obtain 

 ( ) ( )
OUT

2
0 inc inc

0 OUT, 0
lim .

j
jk jk p

j k
p m j j

dT R k
d Jεε ε ω m∆ →

− ∆Ω
= = ⋅

∆ ∆Ω
E r E r  (2.58) 

This result would be obtained from (2.56) as well, if the scattered field is due to a small 

scatterer of volume p∆Ω  at a voxel p with contrast OUT, pε∆ , where both 0p∆Ω →  and 

OUT, 0pε∆ → , which allows us to use the linear Born approximation to substitute 

tot inc( ) ( )k k≈E r E r . 

2.5.4 Scalar Responses in the Form of Scattering Parameters 

By definition, the S-parameters are [16] 

 ,j
jk

k

b
S

a
=  (2.59) 

where bj is the outgoing root-power wave at the j-th port and ak is the incoming root-

power wave at the k-th port. The root-power waves (or power waves) relate to the field at 

a port through the modal vectors (as defined in [16]) 
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 ( ) ( )ˆ ˆ ,
j j

j j j j j j j
S S

b dS dS= × ⋅ = × ⋅∫∫ ∫∫E h k e H k  (2.60) 

 ( ) ( )ˆ ˆ
k k

k k k k k k k
S S

a dS dS= × ⋅ = × ⋅∫∫ ∫∫E h k e H k , (2.61) 

where ξe  and ξh  ( ,j kξ = ) are the ξ -th port modal vectors while ˆ
ξk  is its unit vector 

indicating the direction of propagation.(inward for ka  and outward for jb ). 

In order to apply (2.53) to the case of S-parameters, we need to find the source strength 

mj and its physical meaning. Let the j-th port excite the sensor j, which operates as a 

transmitter. 

ˆ
jk

jS
th portj −

( )inc inc,j jE H

 

Figure 2.3 The j-th antenna in Tx mode. 

 

The transmission line guides the wave inc inc( , )j jE H  to the antenna. Applying the 

equivalence principle [17], the incident wave can be replaced at the port cross-section Sj 

by equivalent electric surface currents: 

 incˆ2 .j j j j jm= × =J k H M  (2.62) 

Here, Love’s equivalence principle and image theory are employed at the surface Sj 

where a magnetic wall is placed [17].  
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The incident power wave at the j-th port is [16] 

 ( ) ( )inc incˆ ˆ .
j j

j j j j j j j
S S

a dS dS= × ⋅ = ⋅ ×∫∫ ∫∫e H k e H k  (2.63) 

For a given mode, let inc
j jH=H h  such that (2.63) can be expressed as [16] 

 ( ) ˆ .
j

j j j j
S

a H dS H= × ⋅ =∫∫ e h k  (2.64) 

since the orthonormal property of modal vectors je  and jh  is employed [16] 

 ( ) ˆ 1.
j

j j j
S

dS× ⋅ =∫∫ e h k  (2.65) 

Therefore, 

 inc .j j ja=H h  (2.66) 

This relation is substituted in (2.62): 

 ( ) ( ) ( )incˆ ˆ ˆ2 2 2 .j j j j j j j j j ja a m× = × = × =k H k h k h M  (2.67) 

We now consider the same sensor shown in Figure 2.3 in a receiving arrangement; see 

Figure 2.4. 

ˆ
j′k

jS
th portj −

 

Figure 2.4 The j-th antenna in Rx mode. 
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The outgoing power wave is defined as [16] 

 

 ( ) ( )( )ˆ ˆ ,
i i

j j j j j j j
S S

b dS dS′ ′= ⋅ × = ⋅ × −∫∫ ∫∫k E h E h k  (2.68) 

where ˆ ˆ
j j′ = −k k . Therefore, 

 ,
i

j j j
S

b dS= ⋅∫∫E M  (2.69) 

where 

 ˆ .j j j= ×M k h  (2.70) 

From (2.67) and (2.70), it follows that  

 2 .j jm a=  (2.71) 

From (2.53), (2.59) and (2.71) we can express the S-parameters due to the scattered field 

as 

 ( ) ( ) ( )sc inc tot0
OUT

j .
2

S

j m
jk j k

k j k V

b
S d

a a a
ω ε ε= = ∆ ⋅∫∫∫ r E r E r r  (2.72) 

This relationship is the forward model of scattering in terms of S-parameters. In 

experiments and simulations this is critical since these are the quantities that can be 

measured.  
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2.6 Point-Spread Functions 
 

The work in [6] shows that the field product inc tot( ) ( )j k⋅E r E r  can be determined by 

measuring the system PSF from a known small scatterer (CO). This allows us to express 

(2.72) as [6]  

 ( ) ( ) ( ) ( )( ) inc tot0
CO, CO CO,

j, .
2

m
jk j m j k p

j k
S

a a
ω εω ε  ∆ ≈ ∆ ⋅ ∆Ω 

r r r E r E r  (2.73) 

We can rearrange (2.73) to obtain the product of the incident and total fields [6]  

 ( ) ( ) ( )( )
CO,inc tot ,

,jk j m
j k

S
C

ω∆
 ⋅ ≈ 

r r
E r E r  (2.74) 

where 

 ( )0
CO CO,

j .
2

m
p

j k
C

a a
ω ε ε= ∆ ∆Ωr  (2.75) 

This relation is important since it allows us to extract the incident field and Green’s 

function product directly without making an approximate model or using a 

computationally expensive simulation. The equation (2.74) can be substituted into (2.72) 

for the case when the OUT is being scanned [6]: 

 
( ) ( ) ( )

( )
( ) ( )

( )
CO,0

OUT, OUT

OUT ( )
CO,

CO, CO

,j, ,
2

1                          , .

jk j mm
jk j m

j k V

jk j m
p V

S
S d

a a C

S d

ωω εω ε

ε
ω

ε

∆
∆ = ∆

∆
= ∆

∆Ω ∆

∫∫∫

∫∫∫

r

r

r
r r r

r
r r

r

 (2.76) 
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Since the S-parameters associated with the PSF are translationally invariant in a 

homogenous and layered medium, (2.76) can be expressed as [6]  

 ( ) ( )
( ) ( )OUT ( )

OUT, CO,
CO, CO

1, , .jk j m jk j m
p V

S S d
ε

ω ω
ε

∆
∆ = ∆ −

∆Ω ∆∫∫∫ rr
r r r r

r
 (2.77) 

This result is critical since it relates the S-parameters of CO and OUT to the contrast 

function. 

2.7 An Extension of Born’s Approximation 
 

It is crucial that our method does not rely on the linear Born approximation since this 

approximation has significant limitations on the size and contrast of the targets. To 

overcome these limitations, Habashy et al. [18] provided a method to overcome partially 

these constraints. According to [18], if the region that we are observing is small in 

comparison to the wavelength of the incident wave, the total internal electric field of OBJ 

can be related to the RO (where inc
RO( ) ( )=E r E r ) field by a tensor  

 ( ) ( )tot
OBJ OBJ RO ,≈ ⋅E r E rΓ  (2.78) 

which agrees with the localized nonlinear (LN) and the quasi-analytic (QA) 

approximations [19]-[21]. The tensor, OBJΓ , is based on the permittivity contrast and size 

of the small target [18]. If the DC limit proposed in [18] is satisfied, OBJ OBJΓ→ IΓ , 

where the scalar value, OBJΓ , is based on the permittivity of the RO and OBJ: 

 ( ) ( )
RO

OBJ
OBJ RO

3 .
2

εΓ
ε ε

≈
+

r
r

 (2.79) 
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We can, therefore, express the result in (2.72) for the case when OBJ OUT≡  in terms of 

the findings in [1] and [18] as  

 ( ) ( ) ( ) ( )0
OUT, OUT RO, OUT RO,

j .
2

S

m
jk j k

j k V

S d
a a
ω ε ε Γ∆ = ∆ ⋅∫∫∫ r E r r E r r  (2.80) 

This approximation also applies for the case of a small scatterer [1], [6], in which case 

 ( ) ( ) ( ) ( )( ) 0
CO, CO RO, CO RO, CO,

j,
2

m
jk j m j k p

j k
S

a a
ω εω ε Γ ∆ ≈ ∆ ⋅ ∆Ω 

r r r E r E r . (2.81) 

This allows us to express (2.77) in terms of the LN and QA approximations as [1], [6], 

[7], [18]–[21]: 

 ( ) ( )
( )

( ) ( )OUT OUT ( )
OUT, CO,

CO, CO CO

1, , .jk j m jk j m
p V

S S d
ε Γ

ω ω
ε Γ

∆
∆ = ∆ −

∆Ω ∆∫∫∫ rr r
r r r r

r
 (2.82) 

The significance of this relation and the impact of the ratio OUT CO/Γ Γ  is investigated in 

the subsequent chapters. 

2.8 Discretizing the Region of Interest into Voxels 
 

In order to analyze the system voxel-by-voxel and ensure that the voxels are small 

enough to satisfy the DC limit in [18], we need to define a new coordinate system. The 

vector rp shown in Figure 2.5 represents the coordinate of the voxel of interest ( p =

1, , vN  and v x y zN N N N= ). The permittivity contrast of the CO at voxel p can be 

defined as [7], [12] 
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 ( ) CO,
CO

0,
0,               .

p p

p

δε
ε

≠ =
∆ =  ≠

r r
r

r r
 (2.83) 

Since the permittivity contrast is the same at every p-th voxel in the ROI, we refer to 

CO, pδε  as COδε  [7], [12]. 

y

x

z

rk

rj

rp

k-th TX

j-th RX

Imaged volume

 

Figure 2.5 Illustration of the position vectors of the voxel of interest, the receiving (Rx) 
antenna, and the transmitting (Tx) antenna. 

 

Likewise, the above relationship allows us to express the calibrated S-parameters for 

the OUT as [7], [12]  

 ( ) ( ) ( ) ( )CO, , OUT
OUT, OUT

CO, CO CO
,p jk j

jk j
pV

S
S d

Γ
ε

dε Γ
∆

∆ ≈ ∆
∆Ω∫∫∫

r r
r r r  (2.84) 

where ( )
CO, , CO,( ) ( )p

p jk j jjkS S∆ = ∆ rr r  is the S-parameter due to the scattered field at voxel p. 
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Since CO, , ( )p jk jS∆ r  is directly proportional to the product of Green’s function and the 

incident field, it is also translationally invariant [8]. As such, (2.84) then becomes [7], 

[12] 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

CO, , OUT
OUT, OUT

CO CO

OUT, OUT

1 ,

1 ; ,

p jk j
jk j

V

q j q j m
V

S
S d

x y z

S f K dxdydz
x y z

Γ
ε

dε Γ

ω

∆ −
∆ ≈ ∆

∆ ∆ ∆

∆ ≈ −
∆ ∆ ∆

∫∫∫

∫∫∫

r r r
r r r

r r r r
 (2.85) 

where OUT OUT OUT CO CO( ) ( ( ) ( )) / ( )f Γ ε δε Γ= ∆r r r  is the permittivity function that is to be 

reconstructed and CO, ,( ; ) ( ; )q j m p q j mK Sω ω− = ∆ −r r r r  is the translationally invariant 

kernel [3], [4], [6]–[8], [10]–[12]. Since the formation of the system of equations is 

similar to what was presented in chapter 2.4.6 we reintroduce subscript q as the index 

number of the S-parameter ( 1,..., sq N= ). 

The integration in (2.85) over z is replaced by a summation since the algorithm is 

performed over Nz layers with zN ∈z  [4], [6]–[8], [10]–[12]: 

 
( )

( ) ( )

OUT,

OUT
1

,

1 , , , , ; .
z

q m

N

n n q n m
n x y

S

z f x y z K x x y y z z dxdy
x y z

ω

ω
=

′∆

′ ′≈ ∆ − − −
∆ ∆ ∆ ∑ ∫ ∫

r

 (2.86) 

The integral equation (2.86) can be viewed as a convolution [4], [6], [8], [10], [11]: 

 ( ) ( ) ( )OUT, OUT
1

, , , , , , , , .
zN

q x y m x y n q x y n m
n

S k k z F k k z K k k z zω ω
=

∆ ≈ −∑    (2.87) 
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The constants in the integral are ignored since qualitative imaging normalizes the result. 

This relationship can be formed into a system of equations similar to (2.31). The 

difference here is the kernel qK  is derived experimentally using a CO shift.  

2.9 Conclusions 
 

The evolution of the near-field microwave holography method developed by our team 

has roots in the far-field method proposed first in [2]. Improvements on this model to 

make it applicable to the near-field region began in [3] by making assumptions for 

Green’s function. The findings in [6] improve the model by eliminating the need for the 

crude assumptions made in [3], [4], [10] and [11] and the computational cost associated 

with simulating the antennas [22]. This is achieved by an experimental derivation of the 

system PSF. 

The work presented in this chapter serves as a foundation for the quantitative 

holographic reconstruction method, which is the main contribution of this thesis. 
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Chapter 3           
          
Quantitative Global Spectral Inversion 
Equation Chapter (Next) Section 1 

3.1 Introduction 
 

This chapter builds on the previously derived concepts and demonstrates the 

implementation of the Fourier transform (FT) and the least-squares (LS) method in the 

solution of the inverse problem and is the first method proposed by the author to 

reconstruct the permittivity distribution of dielectric targets in the near-field region using 

a microwave holography technique. The method presented in this chapter solves the 

inverse problem through a linear system of equations and allows for imposing physically-

based constraints. The importance of imposing such constraints is investigated. 

Assumptions are made to simplify the nonlinearities of the problem into a linear 

system of equations with linear constraints. This is an important feature since there are a 

plethora of LS solvers to choose from. The software used in this chapter requires both the 

constraints and the system of equations to be linear. Some systems of equation solvers are 

capable of handling non-linear constraints; however, this tends to decelerate the runtime 

of the code, which makes the technique no longer quasi-real-time. 

The image reconstruction example presented in this chapter, which has been published 

in [1], consists of an object under test (OUT) with relative permittivity 1.2-j0, where 
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j 1= − . The calibration object (CO) used in this example is a small dielectric cube with 

relative permittivity 1.1-j0 that is embedded in a background medium, with relative 

permittivity 1-j0.  

As previously mentioned, the goal of the algorithm is to acquire the permittivity 

distribution, i.e. the real and imaginary parts of the permittivity as a function of position. 

All permittivities referred to hereafter are complex relative permittivities defined as 

 ( ) ( ) ( )OBJ OBJ OBJj ,ε ε ε′ ′′= +r r r   (3.1) 

where OBJ CO, OUT, RO≡ . When reconstructing OBJ ( )ε r , we must keep in mind that 

its real part must be greater than or equal to one and the imaginary part must be less than 

or equal to zero.  

3.2 Relating the Point-Spread Function to the Desired 
Response 
 

As explained in [2], if multiple scattering is ignored, the scattering response can be 

viewed as a weighted combination of the scattering contributions of known point 

scatterers integrated over some region of interest (ROI), 3V ∈   

 ( ) ( ) ( ) ( )OUT, CO,, , ,q m mq
V

S S d
v

τ
ω ω

d
′ ′∆ ≈ ∆∫∫∫ rr

r r r  (3.2) 

where ( , , )x y z=r  is the position of the voxel, ( , , )x y z′ ′ ′=r  are the coordinates of the 

scanning aperture, q is the index of the scattering parameters ( 1,..., )sq N= ,  is the 
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volume of the small scatterer, mω  is the angular frequency ( 1,..., )m Nω= , ( )
CO, ( , )mqS ω′∆ r r  

is the scattering response of the CO when the small scatterer is at voxel r and ( )τ r is the 

distribution weighting factor [2] 

 ( ) ( ) ( )OUT OUT

CO CO
.

ε Γ
τ

δε Γ
∆

=
r r

r  (3.3) 

Here [2], 

 ( ) ( )
RO

OBJ
OBJ RO

3 ,
2

εΓ
ε ε

=
+

r
r

 (3.4) 

and  

 ( )
( )

OUT CO RO

CO OUT RO

2 ,
2

Γ ε ε
Γ ε ε

+
≈

+
r

r
 (3.5) 

where COε  is the permittivity of the small scatterer in the CO, ROε  is the permittivity of 

the background medium and OUT ( )ε r  is the permittivity distribution of the OUT. We refer 

to the ratio (3.5) throughout this thesis as the gamma factor (GF).  

It is worth mentioning that when the CO and the OUT have permittivities that are close 

to one another, OUT CO( )ε ε≈r , then the GF is approximately one, OUT CO( ) / 1Γ Γ ≈r . This 

approximation allows us to linearize the forward model and the associated constraints. 

In the implemented reconstruction algorithm, the integral equation (3.2) yields a 

summation [1], [2] 

 ( ) ( ) ( ) ( ) ( )OUT, CO, ,CO,
1 1

, , , ,
v v

p
N N

q m p m p q p mq
p p

S S Sω τ ω τ ω
= =

′ ′ ′∆ = ∆ = ∆∑ ∑rr r r r  (3.6) 
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where pr  ( 1,..., )vp N=  is the position of the voxel. We apply the FT to the x′  and y′  

coordinates, respectively, to obtain the linear relationship in Fourier space [1], which 

forms the basis for the global spectral inversion (GSI) method [1] 

 ( ) ( )OUT, CO, ,
1

, , , , , , ,
vN

q x y m p q p x y m
p

S k k z S k k zω τ ω
=

∆ = ∆∑   (3.7) 

where the Fourier variable pair is ( , )x yk k=k , xk  is the FT of x′  and yk  is the FT of y′ . 

Like the permittivity distribution, we assume that the distribution weighting factor is 

frequency independent. This allows the relation (3.7) to be expressed in matrix form as 

[1] 

 
( )

( )

( ) ( )

( ) ( )

OUT,1 CO,1,1 CO,1, 1

OUT, CO, ,1 CO, ,

, , ,
.

, , ,

v

s s s v v

m m N m

N m N m N N m N

S S S

S S S

ω ω ω τ

ω ω ω τ

   ∆ ∆ ∆  
     =     
     ∆ ∆ ∆     

  



    

  



κ κ κ

κ κ κ
 (3.8) 

Next, we build a system of equations that includes the data from all angular frequencies. 

This is done in a manner similar to the procedure used to obtain the system (2.31). 

Let us denote a column in the system matrix of (3.8) as [1] 

 ( ) ( ) ( )CO, CO,1, CO, , ., , ,s

T
m m mp p N pS Sω ω ω 

 ∆ = ∆ ∆S  

κ κ κ  (3.9) 

We then create a system matrix which is composed of the column vectors at every 

angular frequency [1]: 

 ( ) ( ) ( )CO, CO, 1 CO,, , .
TT T

p p p Nωω ω = ∆ ∆ S S S  

κ κ κ  (3.10) 
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The relation (3.10) can be used to express (3.8) as a linear combination [1]  

 ( ) ( )OUT CO,
1

,
vN

p p
p

τ
=

= ∑S S κ κ  (3.11) 

where 1OUT OUT OUT( ) [ ( , ) ( , )]
T T T

Nωω ω= ∆ ∆S S S  

κ κ κ  is the vector of acquired responses 

at all Nω  angular frequencies and the elements of that vector are defined as OUT ( , )mω∆S κ

OUT,1 OUT,[ ( , ) ( , )]s
T

m N mS Sω ω= ∆ ∆ 

κ κ . 

We can express (3.11) similar to (2.31) as a linear system of equations, which is to be 

solved for the permittivity function [1]: 

 ( ) ( ) ( )CO, CO, .p p=K F S κ κ κ  (3.12) 

Note that the matrix ( )K κ  is the same as the one in (2.31). CO, ( )pF κ  can be viewed as 

the qualitative map of the CO when the small scatterer is located at voxel p [1]. 

We can express (3.11) in terms of the qualitative maps by letting 

OUT OUT( ) ( ) ( )=S K F  κ κ κ  [1], 

 ( ) ( ) ( )OUT CO,
1

.
vN

p p
p

τ
=

= ∑K F S κ κ κ  (3.13) 

By multiplying both sides of the equality in (3.13) by ( )+K κ  (where the + sign is the 

pseudoinverse operator), we can express (3.13) in terms of the qualitative maps [1],  

 ( ) ( )OUT CO,
1

.
vN

p p
p

τ
=

= ∑F F κ κ  (3.14) 
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We have thus arrived at a linear relationship between the qualitative maps of the OUT 

and the CO by allowing for a solution for the OUT. Also, this result is advantageous from 

a troubleshooting standpoint since we can generate the qualitative maps of the CO and 

OUT to ensure that the acquired data is of good quality. 

3.3 Qualitative Maps for the Calibration Object 
 

3.3.1 Generating the Qualitative Maps of the Calibration Object by a Coordinate 
Translation 
 

It is important to note that our quantitative holographic reconstruction method requires 

the CO responses, CO, ( )pS κ , to be measured at every voxel of interest in the ROI. This 

can be done in real space by coordinate translation of the CO data measured when the 

small scatterer is at the centre of each reconstruction plane [1]–[5] 

 ( , , ) (0,0, )
CO CO( , , ; ) ( , , ; ).p p n nx y z z

m p p mS x y z S x x y y zω ω′ ′ ′ ′∆ = ∆ − −  (3.15) 

Figure 3.1 shows the scanning aperture for the CO measurements using coordinate 

translation. In order to perform coordinate translation, we require a scanning aperture of 

twice the length and width of the ROI for each layer [1], [2]. Coordinate translation is 

applicable only if the medium is homogeneous or layered [2]-[5]. 
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CO Scanned Area

ROI
x

y
Small Scatterer in the 

CO Measurements 

 

Figure 3.1 Imaged area with scatterer in the centre of the ROI and the larger CO scanned 
area. 

 

To acquire the CO responses at any p-th voxel of interest, we create data sets, which 

extract ¼ of the scanned area. For example, if we are to acquire the CO response when 

the small-scatterer is at a presumed location ( , )p px y , we can create a new data set, which 

is outlined as the dashed box in Figure 3.2.  

CO Scanned Area

ROI
x

y

Virtual Position of the Small
Scatterer ( , )p px y

 

Figure 3.2 Offset imaged area where the CO data for a small-scatterer located at ( , )p px y  
is extracted as a subset of the CO measurement. 
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Although this method is able to produce good results, it can be cumbersome for 

applications where the number of voxels is large.  

3.3.2 Generating the Qualitative Maps of the Calibration Object by a Fourier Shift 
 

To determine the CO response at each location of interest ( , , )nx y z , we can instead 

perform a FT on the CO when it is at the centre of each const.nz ≡  layer and then use a 

phase shift in Fourier space [6] to perform the same task as in (3.15) 

 
( ) ( )

( ) ( ) j j

, , , , ,

, , , , .x p y p

n x y n

k x k y
p p n x y n

S x y z S k k z

S x x y y z S k k z e e− −

→

− − →

F

F





 (3.16) 

The main advantage of the translation in Fourier space is that there is no need to scan a 

larger area. Larger imaged areas in real space translates into better spatial-frequency 

resolution since m1/u x∆ =  and m1/v y∆ = , where xm and ym are defined in Figure 3.3.  

ROI
x

y
Virtual Position of the 
Small Scatterer ( , )p px y

Small Scatterer in the 
CO Measurements

( ,0)mx

( ,0)my

 

Figure 3.3 The CO scanning aperture for the Fourier shift method. 
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3.4 Developing a Linear System of Equations for Quantitative 
Imaging 
 

Once CO, ( )pS κ  has been acquired, we solve (3.12) for CO, ( )pF κ  by applying the 

pseudoinverse to ( )K κ at each κ  pair [1], 

 ( ) ( ) ( )CO, CO, .p p
+=F K S κ κ κ  (3.17) 

Likewise, we acquire the qualitative maps for the OUT by applying the pseudoinverse to 

( )K κ  in (2.31) [3]–[5] 

 ( ) ( ) ( )OUT OUT .+=F K S κ κ κ  (3.18) 

Once the qualitative results have been computed, the linear combination in (3.14) can 

be expressed in terms of a linear system of equations [1] 

 
( ) ( )

( ) ( )

( )

( )

CO,1 1 CO, 1 1 OUT 1

CO,1 CO, OUT

; ;
,

; ;

v

z v z v z

N

N N N N N

z z z

z z z

τ

τ

   ; 
     =    
     ;    

F F F

F F F

  



    

  



κ κ κ

κ κ κ

 (3.19) 

 A bτ = , (3.20) 

where 

 
( ) ( )

( ) ( )

CO,1 1 CO, 1

CO,1 CO,

; ;

; ;

v

z v z

N

N N N

z z

z z

 
 =  
  

F F
A

F F

 



  

 



κ κ

κ κ

 (3.21) 

 [ ]1 ,v

T
Nτ ττ =  (3.22) 

and 
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 ( ) ( )OUT 1 OUT .z

T
Nz z = ; ; b F F 

κ κ  (3.23) 

It is demonstrated later that (3.20) can be used to reconstruct the quantitative images. 

3.5 Applying Constraints to the System of Equations 
 

We can constrain (3.20) such that the real part of the permittivity is always greater 

than or equal to one and the imaginary part of the permittivity is less than or equal to 

zero. To implement these constraints, we modify the problem such that the permittivity 

distribution in the OUT is the unknown vector [1], [2] 

 OUT RO COˆ .δε= = +A b A bε ε  (3.24) 

where OUT CO ROδε=ε τ + ε , RO RO 1vNε ×= 1ε , 1vN ×1  is an 1vN ×  column vector of ones, the 

unknown vector is defined as OUT OUT OUTj′ ′′= +ε ε ε , [ ]OUT OUT,1 OUT, v

T
Nε ε′ ′ ′= ε ,

[ ]OUT OUT,1 OUT, v

T
Nε ε′′ ′′ ′′= ε  and OUT RO CO( ) / δε−τ = ε ε .  

The LS problem in (3.24) can be solved by implementing bound constraints [1], [2] 

 { }
{ }

OUT

OUT

Re   1,
Im   0.

≥
 ≤

e
e

 (3.25) 

Since CO OUT,  ,  ,  δε ∈A b ε , (3.24) needs to be decomposed into its real and 

imaginary parts [2],  

 { } { }( ) { } { }( ) { } { }( )OUT OUT
ˆ ˆRe jIm Re jIm Re jIm .+ + = +A A b bee   (3.26) 

This yields two equations [2] 
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{ } { } { } { } { }
{ } { } { } { } { }

OUT OUT

OUT OUT

ˆRe Re -Im Im Re ,

ˆIm Re Re Im Im .

=

+ =

A A b

A A b

ee

ee
 (3.27) 

The result in (3.27) can be formed into a stacked system of equations, Cx = d, where the 

stacked matrix C is [2]  

 { } { }
{ } { }

Re Im
,

Im Re
− 

=  
 

A A
C

A A
 (3.28) 

the known vector is defined as  

 
{ }
{ }

ˆRe
,

ˆIm

 
 =
 
 

b
d

b
 (3.29) 

and the unknown vector becomes 

 
{ }
{ }

OUT

OUT

Re
.

Im
 

=  
 

x
e
e

 (3.30) 

The values in the system of equations ,  , ∈C d x  . As a result, the objective function can 

be defined as [1], [2] 

 2
2min .−

x
Cx d  (3.31) 

The above relation can be solved by either using the built-in MATLAB function lsqlin 

[7] or using the software package CVX [8] along with the Mosek solver [9].  

In order to determine the accuracy of the obtained image, we compute its relative root 

mean square error (rRMSE) [1], [2] 



 

54 
 

 
2

OUT OUT

OUT1

( ) ( )1rRMSE ,
( )

Nv
p p

v ppN
ε ε

ε=

−
= ∑ r r

r
 (3.32) 

where OUT ( )pε r is the true value of the permittivity of the OUT at voxel p. In all of the 

quantitative examples presented in this thesis, the rRMSE is calculated. 

The runtime and the rRMSE values for the quantitative reconstruction algorithm using 

the MATLAB solver lsqlin is tabulated below [1]. 

Table 3.1 LS solving time for lsqlin MATLAB command [1]. 

Number of 
Iterations Time (minutes) rRMSE 

1662 54 0.0028 
500 30 0.0029 
200 11.5 0.0029 
100 6.9 0.0029 
50 5.3 0.0029 
10 3.8 0.0029 
5 3.7 0.0029 

 

It was found that lsqlin was slow, even with a small number of iterations. This prompted 

us to find a more efficient LS solver.  

CVX is a convex optimization interface with MATLAB created by a pair of 

mathematicians from Stanford University [8]. CVX is only capable of implementing 

linear constraints. The solver used with the CVX user-interface is Mosek, which uses an 

interior point method to solve the LS problem [9]. This software was considered to be 

better for this application due to the fact that it is computationally cheap in comparison. 

The Mosek solver reaches a solution in 18.17 seconds and in 23 iterations. This 
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computational saving is due to the fact that the lsqlin solver uses a classic optimization 

technique, which uses Lagrange multipliers [6], whereas the Mosek method uses 

disciplined convex programming [9]. 

The steps taken to implement this algorithm can be summarized in the following 

flowchart.  
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Figure 3.4 Algorithm flowchart of the constrained LS method. 
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3.6 Results 
 

Since the depth resolution is 8
0 / 2 (2.998 10  m/s) / 2(13 GHz) = 11.5 mmz c Bδ ≈ = × , 

the images are reconstructed at 10 mm intervals. The target is simulated in FEKO [11] to 

be in the second of three layers and located 25 mm away from the transmitting antenna.  

We begin this section with the qualitative results of an F-shaped target where the CO 

has a permittivity of 1.1-j0 and the OUT has a permittivity of 1.2-j0 with an RO that has a 

relative permittivity of 1-j0. 
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Figure 3.5 The qualitative results of the F-shaped dielectric target [10]. 

We then compare these results with the OUTε  values obtained by solving (3.20) using 

direct inversion 1−= A bτ . This is performed in MATLAB with the inv command. This 

technique is known as the unconstrained global spectral inversion (UGSI) method. 
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Figure 3.6 Plotting image reconstruction with direct inversion of =A bτ : (a) the real part 
of the permittivity distribution, (b) the imaginary part of the permittivity distribution. 
 

The rRMSE value for the direct inversion is 0.0068676 with a runtime of 396.75 seconds. 

It can be seen from these images that although the permittivity distribution for the F-

shaped target is correct, the physical constraints are not satisfied. This could be due to the 

fact that inverse problems tend to be non-unique.  

We can apply physically-based constraints to the LS problem to potentially improve 

the results. 



 

59 
 

(b)

(a)

z =25 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

1

1.002

1.004

1.006
z =35 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

1

1.05

1.1

1.15

1.2
z =45 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

1

1.002

1.004

1.006

z =25 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

-15

-10

-5

0
x 10-3 z =35 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

-0.04

-0.03

-0.02

-0.01

0
z =45 mm

x (mm)

y 
(m

m
)

 

 

-100 0 100
-100

-50

0

50

100

-15

-10

-5

0
x 10-3

(a)

(b)

Figure 3.7 These are the results from the CGSI method: (a) the real part of the 
permittivity distribution, (b) the imaginary part of the permittivity distribution [1]. 

 

As can be seen by the results in Figure 3.7, the constrained global spectral inversion 

(CGSI) method is capable of determining the permittivity distribution of the OUT. The 

runtime of this algorithm was timed to be 482.8 seconds. For this example, the rRMSE 

was calculated to be 0.0037902. We then compare these results to the UGSI case. 

Table 3.2 A comparison between the unconstrained =A bτ  and the constrained =Cx d . 

 Unconstrained Method Constrained Method 

rRMSE 0.0068676 0.0037902 

Runtime (in seconds) 396.75 482.8 
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Although the rRMSE results are comparable, there is nothing preventing UGSI method 

from producing unrealistic permittivity distributions. 

3.7 Conclusions 
 

We have demonstrated that an imaging procedure in Fourier space has the capability of 

reconstructing the permittivity distribution of an F-shaped target quantitatively. The 

qualitative holographic results are the foundation for the quantitative method developed 

here and their quality is critical in solving accurately the quantitative problem. 

Constraints can eliminate unrealistic permittivities. Although we must be cognizant of 

the fact that linear constraints can only be applied if OUT CO( ) / 1Γ Γ ≈r . The relation (3.5) 

could be simplified by setting the permittivity of the RO to be very large 

 ( )OUT RO CO RO,  .ε ε ε εr    (3.33)  

However, this is impractical in most cases since the antennas should be well matched to 

the RO medium as well as the averaged OUT medium. 

A disadvantage of the constrained method is that it assumes OUT CO( ) / 1Γ Γ ≈r . In 

reality, the OUT’s permittivity distribution is unknown, thus making it difficult to 

evaluate the validity of the imaging results.  

Gradient-based optimization approaches that are capable of solving linear systems of 

equations with non-linear constraints exist, but they tend to be prohibitively slow, which 

makes the algorithm no longer quasi-real-time.  
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Chapter 4           
          
Quantitative Imaging Using Pointwise Spectral 
Inversion 
Equation Chapter (Next) Section 1 

4.1 Introduction 

This chapter looks into a fast but unconstrained least-squares (LS) solution to the 

quantitative holographic problem. This method is the author’s second proposed method to 

reconstruct the permittivity distribution of a dielectric target using the near-field 

microwave holography approach. In (2.31), we notice that the permittivity function of the 

object under test (OUT) is OUT ( )F κ , which is directly proportional to the permittivity 

distribution in Fourier space. If the permittivity distribution can be accurately 

reconstructed by this method, we can eliminate the need to compute the qualitative maps 

for the calibration object (CO) and avoid solving the large v vN N×  linear system of 

equations. 

However, unlike the method presented in chapter 3, we are unable to transfer the 

electrical constraints of (3.25) to Fourier space. We investigate the impact of the lack of 

constraints by tabulating the relative root-mean squared error (rRMSE) values and 

runtimes of this chapter’s pointwise spectral inversion method and the constrained global 

spectral inversion (CGSI) method from the previous chapter. 
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We also recall that in chapter 3, we set the gamma factor (GF) to be OUT CO( ) / 1Γ Γ ≈r  

in order to linearize the inverse problem and its constraints. The method used in this 

chapter does not require OUT CO( ) / 1Γ Γ ≈r , since constraints are not used. Therefore, we 

can analyze both the case when OUT CO( ) / 1Γ Γ ≈r  and when OUT CO( ) / 1Γ Γ ≠r . 

4.2 Using Pseudoinverse to Solve the Least-Squares Problem 

4.2.1 Reformulating Matrices 
 

As stated in chapter 2, OUT OUT CO OUT CO( ) ( ( ) / ) ( ( ) / )ε δε Γ Γ= ∆ ∗F κ κ κ , where ∗  is the 

linear convolution operator and COδε  is the permittivity contrast of the small scatterer. 

This is of particular interest, since we could theoretically solve [1]-[7] 

 ( ) ( ) ( )OUT OUT ,=K F S κ κ κ  (4.1) 

for OUT ( )ε∆ κ  directly and obtain the permittivity distribution by applying an inverse 

Fourier transform (FT) to obtain the spectral solution. Since (4.1) is overdetermined we 

use the normal equations [8] to obtain a unique solution [1]-[7] 

 ( ) ( ) ( ) ( ) ( )† †
OUT OUT ,=K K F K S   κ κ κ κ κ  (4.2) 

 ( ) ( ) ( )OUT OUT ,+=F K S κ κ κ  (4.3) 

where the + operator is the pseudoinverse operator and the †  operator is the Hermitian 

operator. This result forms the basis of the second quantitative holographic reconstruction 
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method of dielectric targets, which we refer to as the pointwise spectral inversion (PSI) 

method. 

4.2.2 Fourier Space Constraints 
 

For the method presented in chapter 3, we applied the constraints { }OUTRe 1≥e  and 

{ }OUTIm 0≤ε  in (3.25) to the LS problem in (3.31) to eliminate the occurrence of non-

physical permittivities. It could be beneficial to apply constraints in Fourier space; 

however, we realize that we cannot apply the FTs directly to (3.25) since those regions 

are not integrable [9] 

 
{ }

{ }

OUT

OUT

Re 1 ,

Im 0 .

dxdy

dxdy

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

≥ → ∞

≤ → ∞

∫ ∫

∫ ∫

e

e

 (4.4) 

Applying physically-based constraints in Fourier space remains an unsolved problem 

for now. Thus, we focus on analyzing the unconstrained solution since it could be useful.  

4.2.3 Quantitative Results with the Gamma Factor Set to Unity 
 

After solving (4.3) by performing the pseudoinverse at each κ  pair, we then apply the 

inverse FT to the solution of (4.3). Assuming that OUT CO( ) / 1Γ Γ ≈r , the permittivity 

distribution is obtained as 
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( ) ( ) ( )

( ) ( )

OUT OUT RO
OUT

CO CO

OUT CO OUT RO

, , , ,
, , ,

   , , , , .

n n
n

n n

x y z x y z
f x y z

x y z f x y z

ε ε ε
δε δε

ε δε ε

∆ −
= =

∴ = +
 (4.5) 

4.2.4 Quantitative Results with the Quasi-Analytic Gamma Factor 
 

Setting the GF to unity is a crude approximation. A better approximation is offered in 

chapter 2 by the localized nonlinear (LN) theory [10]. We can modify the result in (4.5) 

such that it takes into consideration the LN approximation of the GF: 

 
( ) ( ) ( )

( )
( )

OUT OUT
OUT

CO CO

OUT RO CO RO

CO OUT RO

, , , ,
, , ,

, , 2                  .
, , 2

n n
n

n

n

x y z x y z
f x y z

x y z
x y z

ε Γ
δε Γ

ε ε ε ε
δε ε ε

∆
=

−   +=    +   

 (4.6) 

By using arranging (4.6) for OUT ( , , )nx y zε  and using polynomial division, the 

permittivity distribution can be expressed as 

 ( ) ( )
RO

OUT RO
CO OUT

CO RO

3, , 2 .
, ,

1 2

n
n

x y z
f x y z
εε ε

δε
ε ε

= −
−

+

 (4.7) 

This solution may have better accuracy than the one where OUT CO( ) / 1Γ Γ ≈r . However, 

we see in the next chapter that it is not necessarily the case, because the quasi-analytic 

(QA) GF still does not account for multiple scattering. The following flowchart illustrates 

the procedure of the PSI method. 
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Figure 4.1 Algorithm flowchart of the PSI method. 
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4.3 Results 

We begin by plotting the permittivity distributions of the F-shaped target of 

permittivity 1.2-j0 when the CO has permittivity 1.1-j0. The background medium has 

permittivity 1-j0. The results are obtained using the PSI method. Figure 4.2 shows the 

results of the reconstruction when OUT CO( ) / 1Γ Γ ≈r . Figure 4.3 shows the results for the 

case when OUT CO( ) / 1Γ Γ ≠r . The first and second rows of the images in both figures 

indicate the real and imaginary parts of the permittivity distributions, respectively. 
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Figure 4.2 Results of the PSI method with OUT CO( ) / 1Γ Γ ≈r : (a) the real part of the 
permittivity distribution, (b) the imaginary part of the permittivity distribution. 
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Figure 4.3 Results of the PSI method with OUT CO( ) / 1Γ Γ ≠r : (a) the real part of the 
permittivity distribution. (b) the imaginary part of the permittivity distribution. 

 

It can be seen in both Figure 4.2 and Figure 4.3 that the F-shape is accurately 

reconstructed. If we compare these results with that of Figure 3.7, we notice that they are 

almost identical in terms of shape. We tabulate the results to compare which of the 

methods presented thus far performs the best. 

Table 4.1 Comparison of the PSI and CGSI methods’ runtimes and rRMSE. 

 
PSI Method 

OUT

CO

( ) 1Γ
Γ

≈
r  

PSI Method 
OUT

CO

( ) 1Γ
Γ

≠
r  CGSI Method 

rRMSE 0.0085321 0.0083061 0.0037902 

Runtime 
(in seconds) 

2.28 2.26 482.8 
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After analyzing the three cases, it appears that both of the PSI methods are the better 

choice for reconstructing the F-shaped target, since they are less expensive and 

reasonably accurate. Although the CGSI method was able to provide the most accurate 

results, the improvement in rRMSE is not significant enough to justify the computational 

burden. The GF played a negligible role in both the runtime and rRMSE, but we must 

keep in mind that in this example OUT CO( )ε ε≈r .  

4.4 Conclusions 
 

Although this method considered here is fast and can produce results within seconds, it 

runs the risk of having non-physical permittivity distributions, as can be seen in Figure 

4.2 and Figure 4.3. This demonstrates the importance of the physically-based constraints 

on the quantitative solution. On the other hand, this pointwise spectral inversion method 

has an advantage over the spectral domain inversion method because the qualitative maps 

of the CO do not need to be computed. Also, instead of solving one large system of 

equations, here we solve a multitude of very small systems of equations (for each κ  

pair). These two factors lead to a drastic reduction of the computational times so that 

reconstruction is performed in a matter of seconds. 

The model presented in this thesis does not take into account mutual coupling. This 

prevents the accurate imaging of complex objects and is the drawback of all direct 

inversion methods. This is the principle motive to explore image reconstruction 

techniques that use iterative solvers [11]. This leads us into the next chapter, which 
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discusses the impacts of changing the permittivity distributions of either the CO or the 

OUT. 
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Chapter 5           
               
Comparison of the Constrained Global Spectral 
Inversion and Pointwise Spectral Inversion 
Methods  
Equation Chapter (Next) Section 1 

5.1 Introduction 
 

So far we have only reconstructed images for an object under test (OUT) with 

permittivity 1.2-j0 and a calibration object (CO) with permittivity 1.1-j0 both embedded 

in a reference object (RO) of permittivity 1-j0. However, if we are to use this 

reconstruction technique for either tissue imaging or non-destructive testing, we need to 

increase the permittivity contrast between the scatterers (CO or OUT) and the RO.  

Although mutual coupling is not taken into account in the proposed method, the 

solution obtained from either one of the pointwise spectral inversion (PSI) methods or the 

constrained global spectral inversion (CGSI) method are intended to be used as an initial 

value in an iterative solver like the one used in [1]. Thus, we need to determine which 

method is best suited for our application. As tabulated in Table 4.1, the PSI methods 

perform better in terms of speed and are almost as accurate as the CGSI method. So, the 

question remains: Is the CGSI method worth implementing if the computational cost is 

two orders of magnitude larger than the PSI method? This chapter looks into a variety of 
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scenarios of permittivity distributions to determine which approach would be the best 

candidate to use as an initial guess for the iterative solvers. 

5.2 Results 
 

5.2.1 F-shaped Target with Permittivity 9-j0 and a Calibration Object of 
Permittivity 9-j0 
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Figure 5.1 The PSI method for an F-shaped target with permittivity 9-j0 and a CO of 
permittivity 9-j0 with OUT CO( ) / 1Γ Γ ≈r : (a) the real part of the permittivity distribution, 
(b) the imaginary part of the permittivity distribution. 

 

Consider the case where the F-shaped target has a permittivity of 9-j0 located 25 mm 

away from the transmitting (Tx) antenna and a CO of permittivity 9-j0 and a RO of 

permittivity 1-j0. We begin by displaying the images obtained with the PSI method when 
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OUT CO( ) / 1Γ Γ ≈r . Notice that the F-shape appears in the imaginary part of the 

permittivity as well. That is inaccurate and constitutes an image artifact. 

We can use the localized nonlinear (LN) and quasi-analytic (QA) approximations by 

including the gamma factor (GF), where the results of including the GF in the PSI method 

are shown in Figure 5.2 [2]–[5]. 
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Figure 5.2 The PSI method for an F-shaped target with permittivity 9-j0 and a CO of 
permittivity 9-j0 with OUT CO/ 1Γ Γ ≠ : (a) the real part of the permittivity distribution, (b) 
the imaginary part of the permittivity distribution. 

 

The result appears to have not changed compared to Figure 5.1. This is likely due to the 

fact that actually OUT CO( ) / 1Γ Γ =r . To ensure that the data acquired is not corrupted, the 

qualitative images are reconstructed as well. They are shown in Figure 5.3. 
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Figure 5.3 Qualitative holographic technique of the F-shaped target of permittivity 9-j0 
using a CO of permittivity 9-j0. 

 

While the permittivity distributions are not correct, the qualitative results show the F-

shape correctly. We can observe the impact of the constraints have by applying the CGSI 

method in Figure 5.4. 
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(a)

(b)

Figure 5.4 The image reconstruction of the F-shape of permittivity 9-j0 with a CO of 
permittivity 9-j0 using the CGSI method: (a) the real part of the permittivity distribution, 
(b) the imaginary part of the permittivity distribution. 

 

Figure 5.4 shows the real part of the F-shape’s permittivity to be not as close to the true 

value as either of the PSI methods; although, the background is reconstructed accurately. 

This could be due to the fact that OUT CO( ) / 1Γ Γ =r  in the background medium. 

To compare the three methods, we tabulate the runtimes and the relative root-mean 

squared error (rRMSE) values. 
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Table 5.1 Comparison of the PSI methods and the CGSI method in the example with CO 
of permittivity 9-j0 and F-shaped target of permittivity 9-j0. 

 
PSI Method 

OUT

CO

( ) 1Γ
Γ

≈
r  

PSI Method 
OUT

CO

( ) 1Γ
Γ

≠
r  

CGSI Method 

rRMSE 0.21075 0.1065 0.097519 

Runtime (in 
seconds) 

2.14 2.73 409.8 

 

We notice that in this example, the CGSI method had the best rRMSE value, but the 

improvement over the PSI method with OUT CO( ) / 1Γ Γ ≠r  is significant. Surprisingly, the 

PSI method where OUT CO( ) / 1Γ Γ ≈r  performed poorly despite the fact that 

OUT CO( )ε ε≈r . This may be due to significant multiple scattering or mutual coupling 

effects, which our model cannot take into account. 

5.2.2 Small Scatterer with Permittivity 9-j0 and a Calibration Object with 
Permittivity 9-j0 
 

To reduce the impact of mutual coupling, we reconstruct the small scatterer as the 

OUT. 
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Figure 5.5 The image reconstruction of a small scatterer of permittivity 9-j0 with a CO of 
relative permittivity 9-j0 using the PSI method where OUT CO/ 1Γ Γ ≈ : (a) the real part of 
the permittivity distribution, (b) the imaginary part of the permittivity distribution. 

 

We notice that we can accurately reconstruct the OUT’s permittivity distribution 

without the GF. However, in order to determine the impact of the GF on the PSI method, 

we also need to analyze the case when the GF is included. Figure 5.6 shows the results of 

the PSI technique when the GF is included. 
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(b)

Figure 5.6 The image reconstruction using the PSI method for a small scatterer with 
permittivity of 9-j0 and a CO with permittivity of 9-j0 where OUT CO/ 1Γ Γ ≠ : (a) the real 
part of the permittivity distribution, (b) the imaginary part of the permittivity distribution. 

 

We observe that the addition of the GF had no impact on the result since 

OUT CO( ) / 1Γ Γ =r . To ensure that the data is not corrupted, we analyze the qualitative 

images of the F-shaped target. 
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Figure 5.7 Qualitative images of a small scatterer with permittivity 9-j0 and a CO of 
permittivity 9-j0. 

 

The qualitative images show that the small scatterer in the correct location. We the 

observe the impact of the constraints on the image reconstruction of this problem. 

We notice in Figure 5.8 that the CGSI method does not result in significantly improved 

image reconstruction; although unlike the PSI methods, the CGSI method was not able to 

correctly display the permittivity of the small scatterer. However, it was able to 

reconstruct the background medium’s permittivity distribution better. 
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(b)

Figure 5.8 The image reconstruction of a small scatterer of permittivity 9-j0 using a CO 
with permittivity of 9-j0 using the CGSI method: (a) the real part of the permittivity 
distribution, (b) the imaginary part of the permittivity distribution. 

 

Table 5.2 Comparison of the PSI methods and the CGSI method in the example with CO 
of permittivity 9-j0 and a small scatterer of permittivity 9-j0. 

 
PSI Method 

OUT

CO

( ) 1Γ
Γ

≈
r  

PSI Method 
OUT

CO

( ) 1Γ
Γ

≠
r  

CGSI Method 

rRMSE 0.066987 0.018301 0.021974 

Runtime (in 
seconds) 

2.89 3.69 420.58. 

 

For this case, the differences in rRMSE values are drastic for all three methods, but the 

computational cost between the PSI methods and the CGSI method is large. For this case, 
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the PSI method with the GF performed the best since it had a low rRMSE value and low 

computational cost. 

5.2.3 F-shaped Target with Permittivity 9-j0 and a Calibration Object with 
Permittivity 1.1-j0 
 

It is expected that the CGSI method is not going to be accurate since the GF is not 

approximately one. But for the purpose of comparing the proposed methods, it is crucial 

to analyze the impact of such a drastic violation.  
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Figure 5.9 The image reconstruction of an F-shape with permittivity 9-j0 and a CO of 
permittivity 1.1-j0 using the PSI method where OUT CO/ 1Γ Γ ≈ : (a) the real part of the 
permittivity distribution, (b) the imaginary part of the permittivity distribution. 

 

The results of the PSI method without the GF appear to be smeared. The F-shape also 

appears in all three layers in both the real and imaginary parts of the permittivity.  
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Figure 5.10 The image reconstruction of an F-shape with permittivity 9-j0 and a CO of 
permittivity 1.1-j0 using the PSI method where OUT CO/ 1Γ Γ ≠ : (a) The real part of the 
permittivity distribution. (b) The imaginary part of the permittivity distribution. 

 

We notice that the GF did not have a noticeable impact on the results. To ensure that 

the data has not been corrupted, we display the qualitative images of the F-shape. 
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Figure 5.11 Qualitative results of F-shaped target with permittivity 9-j0 and CO with 
permittivity 1.1-j0. 
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These results show that we are unable to locate the F-shape with a qualitative method. 

As mentioned before, if we are unable to obtain a qualitative result, there will be no 

quantitative result. 
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(a)

(b)

Figure 5.12 The image reconstruction of the F-shape with a permittivity of 9-j0 and a CO 
of permittivity of 1.1-j0 using the CGSI method: (a) the real part of the permittivity 
distribution, (b) the imaginary part of the permittivity distribution. 

 

We then observe the impact of constraints to see if this method can overcome the poor 

qualitative results. Although the unrealistic permittivities have been eliminated, the 

results are still poor. We can compare the three methods in Table 5.3. 
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Table 5.3 Comparison of the PSI methods and the CGSI method in the example with CO 
of permittivity 1.1-j0 and an F-shaped target of permittivity 9-j0. 

 
PSI Method 

OUT

CO

( ) 1Γ
Γ

≈
r  

PSI Method 
OUT

CO

( ) 1Γ
Γ

≠
r  

CGSI Method 

rRMSE 1.9155 1.444 1.310 

Runtime (in 
seconds) 

3.056 2.421856 397.88 

 

The CGSI method outperformed the PSI method with OUT CO( ) / 1Γ Γ ≠r  method in terms 

of accuracy by a slight margin. In fact, inserting the GF into the algorithm provided a 

significant improvement. 

5.2.4 F-shaped Target with Permittivity 1.2-j0 and a Calibration Object with 
Permittivity 9-j0 
 

We now analyze the case where the CO used has a permittivity 9-j0 with an F-shaped 

target of permittivity 1.2-j0 in a background medium with permittivity 1-j0. We notice 

that there are echoes in the results, which could be attributed to the limitations imposed 

by the implementation of the PSF. 
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(a)

(b)

Figure 5.13 The image reconstruction of an F-shaped target with permittivity 1.2-j0 and 
CO with permittivity 9-j0.with the PSI method where OUT CO/ 1Γ Γ ≈ : (a) The real part of 
the permittivity distribution, (b) The imaginary part of the permittivity distribution. 

 

If we include the GF we notice no significant improvements in the quantitative 

reconstruction. 
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(b)

Figure 5.14 The image reconstruction of an F-shaped target with permittivity 1.2-j0 and 
CO with permittivity 9-j0.with the PSI method where OUT CO/ 1Γ Γ ≠ : (a) the real part of 
the permittivity distribution, (b) the imaginary part of the permittivity distribution. 

 

We, once again, display the qualitative images of the F-shape to determine the quality 

of the data. 
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Figure 5.15 Qualitative results of the F-shaped target with permittivity 1.2-j0 and CO 
with permittivity 9-j0. 

 

The results show that we are unable to obtain qualitative results with this set of data 

and is the reason for the poor quantitative results. 
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(b)

Figure 5.16 Quantitative holography with the CGSI method permittivity 1.2-j0 and CO 
with permittivity 9-j0: (a) the real part of the permittivity distribution, (b) the imaginary 
part of the permittivity distribution. 
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As can be seen in Figure 5.16, the addition of constraints worsens the results since the 

F-shape is no longer visible. 

 

Table 5.4 Comparison of the PSI methods and the CGSI method in the example with CO 
of permittivity 9-j0 and an F-shaped target of permittivity 1.2-j0. 

 
PSI Method

OUT

CO

( ) 1Γ
Γ

≈
r  

PSI Method 
OUT

CO

( ) 1Γ
Γ

≠
r  

CGSI Method 

rRMSE 0.024161 0.018424 0.097743 

Runtime (in 
seconds) 

2.862 2.41 428.975 

 

The F-shape does not appear in any of the quantitative or the qualitative results. The 

unconstrained case where OUT CO( ) / 1Γ Γ ≠r  and the constrained method appear to have 

the same rRMSE. Interestingly, the CGSI method provides the worst results for the 

rRMSE and runtime. 

5.3 Conclusions 
 

This chapter demonstrated the impact of the permittivity of the CO and the permittivity 

of the OUT on the quantitative results. It also showed that in many cases the results 

between the CGSI and the PSI methods are comparable in terms of accuracy. However, in 

some cases there are drastic differences, like the case where the permittivity of the F-

shape was 1.2-j0 and the CO had a permittivity of 9-j0. The difference in computational 



 

91 
 

cost is enormous, with the PSI methods being on the order of 22 10×  times faster than the 

CGSI method.  

The accuracy of the PSI method is entirely dependent on whether or not the GF is 

included. This is particularly interesting for the cases where the PSI method with 

OUT CO( ) / 1Γ Γ ≠r  outperformed the PSI method with OUT CO( ) / 1Γ Γ ≈r  even for the 

cases where OUT CO( )ε ε≈r . We conclude that the GF should not be approximated to be 

one in the PSI method. It improves the accuracy while at the same time it does not 

increase the computational burden. 

We should keep in mind that in practice, the OUT’s permittivity distribution is 

unknown. This makes it difficult to predict the accuracy of the CGSI method since it 

relies on a relation that assumes that the permittivities of the CO and the OUT are 

relatively close. This is especially important for iterative solvers, where a proper initial 

guess could be the difference between obtaining the optimal solution or an incorrect one. 
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Chapter 6          
            
Conclusions and Future Work 
Equation Chapter (Next) Section 1 

6.1 Concluding Thoughts 
 

This thesis has shown three methods to realize the quantitative microwave holographic 

reconstruction in the near zone.  

First, the constrained global spectral inversion (CGSI) method was developed that uses 

the real and imaginary permittivity values in real space as constraints. This method solves 

a large system of equations simultaneously to reconstruct the permittivity distribution of 

the target. 

The other two methods use a pointwise spectral inversion (PSI) method, which is 

capable of incorporating the quasi-analytic (QA) approximation of the total field inside 

the region of interest (ROI) through the gamma factor (GF) [1]–[4]. The QA 

approximation was shown to improve the imaged quality in our examples. 

After exploring several arrangements with different permittivity distributions, it is 

clear that the benefits that the GF brings to the PSI method are substantial. Therefore, it 

should always be included in the PSI method. 

The CGSI method occasionally obtains the most accurate results. The drawback of this 

method is that it is very slow and in many cases the improvement is marginal. 
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Another potential downfall of the CGSI method is the fact that it is based on the 

assumption that the permittivity of the calibration object (CO) is close to the permittivity 

of the object under test (OUT). In practical settings, the OUT’s permittivity distribution is 

unknown.   

It should be noted that since the contrast weighting factor ( )rτ  is a function of 

position, the voxels where no scatterers are present were generally reconstructed well for 

the CGSI method, which could attribute to the reason for the lower relative root-mean 

squared error (rRMSE). 

6.2 Future Work 
 

Direct methods have their limitations. The proposed quantitative reconstruction 

techniques are direct and are, thus, unable to handle the impact of mutual coupling. This 

becomes a hurdle when we have large permittivity contrasts and arrangements with 

scatterers close to other scatterers. As such, the intended purpose of the proposed method 

is to be used to generate an initial guess for an iterative solver [5]. 

So far, the quantitative inversion has been tested in simulations only for targets that 

have contrast in the real part of the permittivity. Further tests are required for targets and 

calibration objects that also exhibit contrast in the imaginary part of the permittivity (i.e., 

contrast in conductivity). 

The quantitative algorithm needs to be extended to the case of dispersive media where 

the complex permittivity is a function of the frequency. 
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The method also needs to be tested in an experimental setting to analyze the impact of 

noise and other environmental influences. 

In addition, since the PSI methods have been employed in Fourier space, it is crucial to 

determine if constraints in Fourier space can be applied. As seen in the CGSI method, the 

constraints improve the image reconstruction of the background medium, which is 

equally important as reconstructing the target. 

The MATLAB code for the CGSI method needs to be optimized such that it takes 

advantage of the Fourier shift property to expedite the generation of the of qualitative 

maps for the CO.  

Finally, alternative solvers for the solution of the arising linear systems of equations 

must be investigated. In particular, minimizing the 1  norm of the solution error may 

prove advantageous in preserving the shape edges and converging to a better solution. 
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