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INTRODUCTION

One of the basic aims of nuclear thsics is to predict
various nuclear properties from a knowledge of nucleon—nuclednr
interactions. This at once presents two problems. First of
all there is the need to determine the interaction itself, and:
secondly one is confronted with a many-body problem, In
recent years there have been remarkable advances in both as-.
pects.

To describe the nucleon-nucleon .interactions Taketani
(1951) advocated the adoption of a sort of semi-phenomenologi-.
cal appreoach. 1In his region I, the classical region, when the
inter-nucleon distance is r ; 2F, the nucleon-nucleon inter-.
action is dominated by the-oné—pion—exchange mechanism, In
region II, the dynamical regien‘(lF N B 2F);:qualitative
behaviour can still be understood from a field-theoretic point
of view. In region III, r ; 1F, however, so many complicated
effects take place that Taketani called it the»phenomenologidal
region. Recently, there have been two very successful phenom~ .
enological potential models. Both the Hamada-Johnston (1962)
and the Yale (Breit et al, 1960; Hull et al, 1961) potentials
are capable of correlating a large amount. of two-body scattering
data up to laboratory energy of about 300 Mev. Both have the

well-established one-pion-exchange tail and both have a hard
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core, that is, an infinite repulsion at an inter-nucleon dis-
tance of about 0.5 F. This is to be compared with the value of
0.4 F for the older Gammel-Thaler (1957) potential.

Another approach to the treatment of the nucleon-
nucleon scattering is through dispersion relations. In this
approach, one does not start with a Lagrangian or a Hamiltonian
as in the convential field theory, nor are the results expres-
sed in terms of potentials. The theme 6f this approach is that
one should only deal with physically observable quantities and
rely on a few general principles such as analyticity, unitarity
and crossing symmetry of - the scattering matrix.

As for the nuclear many-body problem, Brueckner (see
for example, Brueckner and Gammel 1958) and Goldstone (1957)
initiated a powerful formalism which pays special attention to
the treatment of the hard core in the two-body interactions.
Within this formalism there are two notable modifications which
not only greatly simplify the calculation but also permit deeper
physical insight into the problem. These are the separation
method propounded by Moszkowski and Scott (1960), and the refer-.
ence spectrum method developed by Bethe, Brandow and Petshek
(1963) .

The simplest test ground for a many-body. theory-is a
hypothetical, uniform nucleus of infinite dimensions with equal
numbers of.electrically neutral protons and neutrons. Such a
medium is called nuclear matter, It has the simplicity of

having no Coulomb. and surface effects to worry about. The



closest realization to such a hypothetical medium is- perhaps
the interior of a heavy nucleus. Nuclear matter is character-
ized by the average energy E per particle in the medium, and
by jits density p or equivalently, by the Fermi momentum kF

since the two quantities are simply related for a uniform gas:

©
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Here r, denotes- the rad;us of the volume occupied by each’

nucleon. Empirically E is deduced by interpreting it to be
the volume energy per particle in the BetherWeizs;cker semi-
empirical mass formula, and r, is obtained from high energy
electron-nucleus scattering experiments. The appropriate
values for nuclear matter, as recommended by Brandow (1964),
are.

E = -15.8 Mev per particle
1

and r, = 1.12F corresponding tokF = 1.36F .

More recently, however, Professor Bethe* seems to be in favour

of a higher density kF 2 1.43F_1. Using the reference spectrum

method .» Razavy4(1963) obtained E = <7,8 Mev per particle and

ry = 1.35F with the Hamada-Johnston potential, whereas-

Brueckner and Masterson (1962) obtained E = -8,3 Mev per par-.

ticle and r., = 1.28F for the Yale potential.

o
The discrepancy with the empirical values may be due to

*Private communication from Dr. D. W. L. .Sprung.
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several reasons. Perhaps one should sum over more subsets of
diagrams in the Brueckner-Goldstene theory. Indeed, Bethe
(1965) has summed the three-body cluster diagrams to all.
orders. Or it may also be the case that one cannot use a poten-
tial in nuclear matter calculation. Nuclear forces are derived
from analysis of scattering experiments. Now in nucleon-
nucleon scattering the energy and mementum of the .centre of
mass system before -and after the collision are always the same,
Formally this is expressed by saying that scattering experi-
ments only shed informatien on the diagonal elements of the
scattering matrix or one is always on the energy shell. 1In
nuclear matter calculation, however, the situation may. be a
long way off the energy shell. This off-<energy-shell effect
in nuclear matter will be discussed in greater detail in
Chapter III. For the present, suffice to say that when we wish
to express the many-body composite scattering amplitude in
terms of the two-body scattering amplitude, intermediate states
in which, energy is not conserved will occur, The ektrapolation
from an on-shell knowledge to the off<shell behavieur is usually
made by assuming that the forces are given by a potential..
This of course may be inco£rect.

Without being so drastic, we shall assume the potential
concept to be valid. Then a third possibility that may help to
correct the discrepancy is to modify the nucleon-nucleon poten-
tial so as to give correct nuclear binding and density while

maintaining the fit to two-body scattering data., That this can
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be done is clear from the work of Gel'fand and Levitan (1951),
and - Jost and Kohn (1952).. They have shown that a local poten-
tial in a given angular momentum state is uniquely determined
if
(a) . the phase-shifts in that angular momentum
state are known for all pesitive energies,
(b) . the energies of the two-body bound-states
are known, and
(c) the residues of: the S-matrix at the poles
corresponding to the bound states are
known.
Since in practice we cannot even fulfil condition (a), it is
clear one does not have a unique potential, Thus we can con-,
struct .-a set of equivalent potentials which all will give the
same two-body scattering data up to say 300 Mev laboratory
energy. Bressel et al (1965) have made up a modified Hamada-
Johnston potential with a finite core (core radius ro * .69F),
Nuclear matter calculations done by-Sprung and Bhargava (1966)
using the Bressel potential appear to be very encouraging.
- C. Wong (1964, 1965) has also made some calculation using a-
static, sofft-core potential, and he has found the binding
situation in nuclear matter is indeed improved. He employs a
’three—term Yukawa potential, and the interaction is assumed to
act only in the singlet S~-state. Although this potential is
made up purely phenomenolegically, one may assume that the

three terms are due to the exchange of a pion, a scalar meson
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and a vector meson. Now, meson-field-theoretical consideration
does in fact favour a soft core over a hard core. Thus the.
idea of a soft core is not only attractive but also seems:to
be justified. Effects of soft-core potentials in nuclear mat~
ter have also been investigated recently-by»KBhler and Waghmare
(1965) .

It has also been fashionable to use a velocity-depen-
dent potential instead of a static, hardfcore one, From field
theory, velocity dependence can also be expected, Notice that
the Gel'fand-Levitan uniqueness theorem applies only to static
potentials, so that even if phase shifts are known accurately
there are many velocity-dependent potentials which are equiva-
lent on the energy-shell. Baker (1962) has shown the extent.
of the equivalence between hard core and velocity-~dependent
potentials: they produce the same phase shifts in two-body
scattering problem but are not equiValent;for any system of-
more particles. Razavy et al (1962) have considered a phenom-

enological velocity-dependent potential of the type

Vo(r) + p.w(xr) p,

and Green (1962) has used the form

V(r) + p2w(r) + w(r)p?

in both scattering and nuclear matter calculation, The two

types of velocity-dependence can be related by

(p2f + fpz) = [Pr [flp]] .
pfp - 2 2



7
In Green's potential, w(r) is taken to be a Gaussian. Green
has found that his potential does not give saturation in the
proper density region for nuclear.matter. Bhaduri and Preston.
(1964) have studied this saturation problem in considerable
detail.

The objective of the present investigation is to
study the use in nuclear matter calculations of a soft-core,
velocity-dependent potential model which has some contact with
"fundamental" meson field theory. This potential is obtained
from field theoretic basis.

In Chapter I we begin with a general survéy and review
of the nuclear force problem. Discussion is then centered
around the one-boson-exchange potentials. In Chapter II we
describe a simplified version of D. Wong's original model (1964).
In this simplified version, the potential is assumed to arise
from the exchange of three mesons, and it contains explicit
velocity dependence. The Séhrédinger equation is then set up
for such a potential. Phaéé shift analysis is discussed at
some - length because, although simple 'in principle and treéted_
in all quantum.mechanics text books, nevertheless in practice
one. encounters difficulties which appear trivial only after one.
struggles through them. Therefore a concrete consideration
outlining practical steps of phase shift analysis is not thought.
to befuseless."The result of the potentiai parameter search is
given at the end of this chapter. In Chapter III a review of .

the theory of nuclear matter precedes the calculation with the
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velocity-dependent potential given in Chapter II. Conélusions:

and remarks form Chapter IV.



CHAPTER I

NUCLEON-NUCLEON POTENTIAL

The description of the nuclear force by a potential
has its origin in analogy with the gravitational and electro-
magnetic forces. Although the concept of potential is
essentially a non-relativistic one andwthus_iﬁ has only
restricted validity, it is nevertheless extremely useful in
describing nuclear phenomena at not too high energies..

There are many comprehensive reviews on the nuc}ear potential
(e.g. Moravcsik 1963). We shall merely discuss some relevant,:
general features before we proceed to D, Wong's potential.

In a loose manner, the difference between the total.
Hamiltonian and the Hamiltonian of free particles of a system
is usually referred to as the pétential. ‘Thus, in the two-

nucleon Schrodinger equation, the potential V is given by-
= H-H = -_ Yy
vy ( o) ¥ (E-H,)

where Hy is the Hamiltonian of the‘free«particles. Phenom«
enologically, one can construct a potential with parameters
adjusted to fit experimental data when the Schrédinger equation
is solved. The potential cannot be, however, entirely arbitrary.

The following requirements must be satisfied:
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(1) hermiticity,
(2) translational and Galilean invariance; these .
require, respectively, that the potgntial be a

function of the relative coordinate'?#fiéfz and.
(51‘52)’
e

(3) rotation and space reflection invariance,

the relative momentum P=

(4) particle exchange invariance, due;to the indis~
tinguishbility of the particles,

(5) time reversal invariance..
We now examine the possible "form" of a potential.. For a two-:.
particle system, we have (a) two-particle L~space, (b) two-
particle S-space, and (c) two-particle J-space. Conservation
of the total angular momentum J means that the interaction is
a zeroth-rank tensor in the J-space. Therefore the most

general form of the interaction is

_ n(0) gy = (k) (k)
g = 1 @) = o @)

(s).
Where T(k)(s) is a tensor of rank k in the spin space, and
T(k)(Q) is a tensor depending on angular variables. In the
spin space, we can construct

(1) (©)

Qiév(o)\

(§)§l)

Q§x§)(2);
We cannot get tensors of rank higher than two because § itself-

is a tensor of rank one only. The various combinations of
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T(k)(Q)'T(k)(S) are
(l)(o) > (l)(o)‘ central and spin-independent:
interaction,
(§;§D(O) “ (l)(o) central but spin-dependent,
(§)(l) > g&)(l) spin-orbit interaction,
Q§x§)(2) «> (gﬁg)(z) tensor force,
G?%U(Z) > (&xg)(Z) quadratic spin-orbit- force.

So far we have neglected the isotopic space. If we assume the
interaction to be charge-symmetrical and also charge-indepen-.
dent, then only (l)(o) and (24.32)(0) can occur. Taking all

the above into account, we write down. the most general form of

the potential as
vV = { v (r,p) + V  (r,p) g .0, + Vg (r,p) S15

+ Vo (r,p) LS + V(jp (r,p) g1:0 92+p !

+{ ‘70 (r,p) + \76‘ (ryp) g;-95 +‘\7’1‘ (r,p) $;,

+ VL.(r,p) L5+ vép (r,p) 0,°P g, }T,.T,, (1-1)

~

where

il
Q
E)Q
-
i
3a
[{?

12 =

r(2) (2)

(s).-T (L), the tensor force.




12

Instead of the glzggzig.quadratic term we could have written.
down the quadratic spin-orbit term g, -Lg,-L, since these are
not entirely independent (Okubo and Marshak 1958).

Experimentally it is found that all the terms in-
equation (I-1) are necessary or desirable, The spin-~dependent
g, -9, hature of nuclear force was recognized long ago by.
Wigner, as he noted that otherwise the measured zero-energy
cross-section for n-p scattering and the deuteron binding
energy were incompatible. The tensor force-S12 is called for
by the non-vanishing quadrupole moment of the deuteron, and by
analysis of nucleon-nucleon differential cross section. There.
is no real proof of the spin-orbit L-S force, but there are
many indications. that one should include it in nuclear force.
The ordering of the%Prphase shifts at high energy (2 100 Mev

laboratory energy)
3 3 3
§ (TPy) > 8¢ Py) > & (7Pp)

can be explained easily by the existence of a spin-orbit L-.S
interaction. The presence of such a force also improves
fitting at 310 Mev. The indication of the quadratic spin-orbit
term comes from the fact that otherwise it would be impossible
to fit simultaneously the S- and D-state proton-proton scat-
tering phase shifts as a function of energy.

We now discuss the radial dependence Vi(r,p) of the
potential. To explain the mysterious isotropy of the p-p dif-

ferential corss-section even at 400 Mev, Jastrow (1951) proposed
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the presence of a hard (i.e. infinite) repulsive core at about
.5F. A dqualitative argument may be given as follows. At low-
energy, only the S-wave gets inside .5F and feels the core.

As energy increases, more and more of the S-state wave function
is packed into smaller distance and so the repulsive core. is
felt much more appreciably., Eventually, at about 250 Mev,the
S-phase becomés negative. The D-phase 1is still positive.
Therefore the S-D interference term in the differential cross
section is negative, and this together with the positive pure
D-phase contribution, may make the resulting differential
cross section isotropic. |

A typical phenomenological potential is that of
Hamada-Johnston (1962) . Using the above most general form of
the potential with a hard core of radius .48F, they manage to
get a very good over-all fit to p-p and n-p data up to about.
300 Mev by means of about thirty parameters,

Another approach to the potential problem is to start.
from field theory. The various necessary invariance require-
ments are built in an interaction Lagrangian, which is chosen
to be invariant under improper and proper (i.e, the full Lorentz
group) Lorentz transformation. The physical idea of the meson-
field-theoretic view point of the potential can easily be
understood. Just as the photon is the field quantum of- the
electromagnetic field, the original Yukawa theory maintained
that the pion is the field quantum of the nuclear field. A
physical nucleon is surrounded by a cloud of pions, and nucleér

force between two nucleons arises from an exchange of pions
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between them, The potential generated by such one~pion exchange
process is the Yukawa potential Q:Fr,vwhere p is the reciprocal
pion Compton wavelength, This p;;ential is found to be true at-
least for two nucleons interacting at. large distance (2 2F),
and is now known as the OPEP (one-pion-exchange-<potential) tail,
The exchange of several pions simultaneously is a very complir
cated mechanism, and it is mathematically difficult to eXamin?,
such processes. However, the well-known argument by Wick (1938)

shows that the exchange of n pions contributes to the potential

only for short distance-{S 4%} of separation between two nucleons.
i ;

We have already noted that nucleon-nucleon interaction
has a very strong, short-range repulsion, and a spin-orbit
&’ﬁ.term which is also short-range since low energy phenomena do
not manifest its presence. The pion-exchange model has great
difficulty in accounting for these two features, A strong,
'short-range repulsion does emerge when extended source technique
is used, but only in even angular momentum states. It actually
becomes attractive in odd angular momentum states. Relativistic
corrections can give a spin-orbit-L°S term, but it is,faf too
weak. In general, pion-exchange calculation (two-pion-exchange)
always gives very small spin-orbit force.

It was observed (Breit 1937, 1938, 1960; Nambu 1957;
Sakurai 1960) that the exchange of. a single vector meson could
explain quite naturally both of these two short-range features.
The vector meson would have a mass of several times the pion.

mass, as it is responsible for short-range phenomena. There
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were also other evidences leading to the conjecture of vector,
mesons. In the Yukawa pion theory, the electromagnetic struc-~
ture of the nucleon is explained by the virtual dissociation

p+-»>n + nt and n«»p + m . Assuming the interaction strength to

p(n) be the same in both cases, one
() | would expect that the mean
n(p) --Y——(from the square charge radius of the
- probe)
+ - : proton and the neutron to be.
7 (7 )
roughly equal in magnitude,
p(n) though the sign is opposite,

Experimentally, however,

2 1/2
< X > p 0.8F
and:
2 1/2

< r > ~ 0,0F,

Nambu (1957) suggested that an isoscalar vector meson could
explain this observed data. This meson is now called the
w-meson. The coupling of the w—meSQn,to nucleons gives contri~:
bution not only of equal magnitude in the neutron and the pro-
ton case, but it is also of. equal sign (positive). Therefore.
in the neutron case the negative contribution of the n. -cloud
could possibly be cancelled out by the w-meson contribution.:

In addition, an isovector vector meson was also called for by
Frazer and Fulco (1959) to explain~quantitatively‘the igovector~
part of the anomalous electromagnetic form factor. This meson:

is now called the p-meson. The w-meson was discovered experi-
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mentally by Maglic et al (1961), and the p-meson by Erwin et al
(1961) . Very recently, Cocho (1965) fitted the electromagnetic
form factors of the nucleon with a pole model. Using a phepom—
enological cut-off and the physical masses of the p,w and ¢, he
obtained excellent agreement with experiments, Table I-l shows
some’ of the mesons, based on the table compiled by Roos (1963).

The potential generated by the exchange of various
types of mesons is referred to as the OBEP (one-boson-exchange-
potential) model. Many authors have discussed the OBEP model.
Hoshizaki et al (1961) have given the exact expression for
V(k,k'), the potential in momentum space, as well as the ex-.
pansion of V(k,k') with respect to k/M where M is the nucleon
mass. The latter is done in order to get the potential in_
coordinate space. OBEP in the non-relativistic limit has also
been given by Bryan et al (1963), among a number of other
authors. In their work, Bryan et al considered the exchange
of one scalar, one pseudoscalar, and one vector meson, The
pseudoscalar meson is the pion. The scalar one is assumed to
be isoscalar, and the vector meson is taken to be a mixture of
the p and the w. The one-boson-exchange potential in momentum
space is defined bynV=T(2), where T(Z) denotes the scattering
amplitude due to single meson exchange. The potential in the
configuration space is the Fourier transform of. the above V,
and Bryan et al wrote down their V(r) by going to the non-
relativistic limit. The potential was set equal to zero within

1 3P -state

Dy=r "Ppy,1,2

.54F. They. obtained good fits to the
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phase shifts, but they had rather poor result for the lSo,::~
state. In a latter paper, Bryan and Scott(1964) uséd six-
mesons  (p, w, 7, n, one isoscalar scalar and one isovector
scalar meson) in their one-boson-exchange model. Note that
there are two trivial misprints in their expressions for Rc
and R12' The potential was set equal to zero within .6F in
all states, Probably because of this zero cut-off, the
potentiai in the singlet odd state, for example, is much_
stronger than that in the corresponding state of hard core
type cut-off potentials. With this potential Bryan and Scott
were now able to fit a much larger number of phase parameters,

although the lSO and 38, states still remain only qualita~..:

1
tively correct, the former being too positive and the létter‘
too negative throughout the interesting energy region. 1In
view of the large zero cut-off radius, this potential will
cause virtual excitation mainly to the region just outside
the Fermi sea. Therefore in nuclear matter calculation the.
Pauli principle will be most important. This is in contrast
to the spirit of the reference spectrum method, in which the
emphasis is on the spectral term rather than the Pauli term.
Consequently it may be more. appropriate to use the Bryan-Scott
potential in conjunction with the Bethe-Goldstone equatien
(1957) in nuclear matter calculation.

Another OBEP model is due to D. Wong (1964) which we
shall describe in some details. The mesons exchanged are one-

scalar meson (wABC)' two pseudoscalar mesons (m and n), and

three vector mesons (p, w and ¢). To get the salient features
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of his model, it may be sufficient to consider only three
representative mesons and, in the vector meson case, we shall
only consider vector coupling for simpligity. The S«matrix
for the nucleon-nucleon scattering in the centre of mass

system is related to the transition amplitude T by
(3) (3)

(ptnl!SIpn) = § (B'_,E) S (EJ—&)
.o (4) - 2 .
-2 71is (p'+n'-p-n) M (x'|T|k), (I-2)
E E ~
k kl .
where
k = (p~- ), k' = "—n')

2 =

suppose T(2) denotes the single boson exchange amplitude,

Then D. Wong defines his potential in momentum space to be

K, k'), (1-3)

This potential is to be used in the non-relativistie
Schrédinger equation, and the Born amplitude(for the &-th

partial wave) is defined as
£,(k') = mzle,l v, (k)

The potential in the configuration space is defined as the
Fourier transform of VQE,EJ), If V(k,k') depended only on the
—homentum transfer (k-k'), it would yield a local velocity~
dependent potential. Our VQ&,&]), however, depends on k}ahd

k' in a more complicated way so that it gives rise to a non-
v
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local velocity-dependent potential, In doing Fourier trans-
formation one puts E, =E,,z E (i.e., |k2|=|k'2|) because other-
wise the integrals seem prohibitive.k Then one cén obtain the
potential in the form of a product of a non-local factor N

and an explicitly velocity-dependent part U
Vi(r,r') = Ui(r,pz) N(lr-r']). (I-4)

U is a polynomial in p2. The factor N is the Fourier trans-
form of M, and the nonlocality is confined to fhe order of one
nucleonvgompton wave lehgth. If one approximates M by lf\Ei_ ’
then a purely local potential results. Writing fhz 2M2
potential in polynomials in k2, however, reélly means one 1is to
stop'at the term k2 itself, for otherwise one would get a dif-
ferential equation of higher thah the second\order. Moreovef,

2
if we use the potential expanded«to,ﬁj we should somehow-

estimate the effect of the higher order terms.
We shall use only three representative mesons, The

interaction Lagrangian is

- 15 ps v
L, = L7 + L& + L)
int int int int

AT (ggTve %)+ g Tvgue (PP w g Bviee () ),

(I-5)
- Applying the Feynman-Dyson technique (e.g., see Schweber 1961),

we have

%) gk = - 1 g2 UmNUMm) _1_U(pHUm),
) 2+ ES' |
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(2) - - 2 =
Tps AR == 1 g, Gnt)y Un) _ L Ty U@,
27r2 q2+u2' '
e ps
2 . - , -
and Pk = 1 g2 BwmirvMum T By um),
v \
2“2 q2+u2
~ v
(I-6)
2
where g s(k}ﬁgz. We adhere to Schweber's convention,
- + -
= U Yor uu = 1,
: A%
U =|(E+M gL v
J ‘ E+M /' (I-7)

and goo=,_ —gll= —g22= -g33= +l, gu\)-_- (o] for eV,

Using equations (I-3), (I-5), (I-6) and (I-7), we get

R | . e o ! ) .
V.o (k,k') = _92 (E+M) (E'+M) |;_ 1B S1°E 1- %270 92°R
g S 4ME (E "FtM) (E+M) TETM) (E+M)
(I-8a)
1 1 '
X
2 2 2
2 +
m g' us
) ' ] V L] ' . N
= —gg (E+M)2 1~ /g/l nlf/ gl n]f/ 1- 3/2 i{v E' ~]E 1/21[;‘2’
AME (E+M) 2 (E4)2 [ q?+u?
. 2 Ty
Voo (k, k') = - 2 (gl'q)ﬁg2'q)
"PS WA gps ~~ g (I-8b)

2,2, 2
4ME 27 (gv +ups)
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» 2 g2
Volksk') = 9o 1 (E+M-Ij ke=q"/2 )2 raxle o2
| 4ME 2 2 | E+M ~ s
2T (g +H_)
~ v
2.
2 2 e
*.21:~£1:2.' q 0;.0, +1 3 +k%-2 (91495) * (k 'xk)
(E+M) 2
- ____l_z_ o1 (k') o, (k 'xk)
(E+M) ¢ ' (I-80)

The potential in configuration space is given by

ik x! -iker

e V(E,lc/') e d

It
'_l

viz.z') k'a3k.  (I~9)

Since V(Eﬂﬁf) is not symmetrical to start.with, neithe} will

V(r,x') be, and it has to be symmetrized. The resulting poten-

tial is
2 1o i 2 .
V(r,z') = {g5¥(s)|- 2% (lz-g'H+2%:% - v o1~ %i,‘l’z,
2 2 2 2 4
+"s Vo - 1 vie | 4 g2¥(v)1 ¢ -3v o+ u o +tL V o,
35 2 2 2 v 2 o .. Ve 2
2 2 .1 4 1 2 2 2 1 4
- u° v + L % + Y(s) 1 ue vve ~ L ul oo
2
2 2 2
2 Hos 2 My ¢ = v V2
Y(ps) -PS & T T + g Y(v) [ Vo - _V
*gpst (PS) = 0y et 9y 3" 1 2 2

+ uV Iy Gaqo + 492Y'(5) 1 Hg Fg 724>
2 r



+ g . Y(ps) (i + Mps + “ES 6. T.+T. = 1 gy Y(w) (l
r r
2 2 2
+ Py o4 l‘x)q> + Ivy (v) (_l_ + Hyvo+ “_v_)v ¢ |s
I 3 2 2 T 3 5 [ T12
+ g2 [L/a o +1 d 2 T
L[ ~ s )
s | = (drY(S)) 5a.i_.Y(s)V °, — a‘fY(S) 2

1l dy. 1 Ay (v
1 rar -
2 2 .
+ gsUs(szp Y(s) chl-p + ol-pY(s) ngz.p')
T_MM wr oy SV w2 o

2 2 ' |
5 (21p T iE e g %)
2

+ Terms with r «» r', etc. (I-10)
~ ~

The notationsin equation (I-9) are

Y(a) = o ’
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- ik« (r'«r
1 L e ~ o a3k,
(2m) 3 aME :
_ ik (¥'~r) .
e T I a’k. (I-11)
2m) " — 2
(21) 4AME (E+M)

We have in mind the representative scalar and pseudoscalar
mesons to be the waRC and the pion, respectively, and there-
fore we have assumed them to be isoscalar and isovector
respectively. The representaﬁivekvector meson is supposed
to be a mixture of the p and the w, so although We have
wfitten\it as isoscalar in equation (I-10), we shall allow
kdifferent coupling constants for the T=0 and T=1 etates. In

equation (I-10), we have also omitted certain contact terms.
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rector singlet

Table I-1
Symbol JP Charge ‘T Mass
(Mev)
scalar singlet N Te ‘0+ 0 0 317
i 0~ 1 1 140
T 0~ 0l 1 135
m 0~ -1 1 140
¢ 0~ 1 1/2 494
pseudoscalar “K 0~ -1 ll/2 494
octet

K 0~ 0 1/2 498
% 0- 0 1/2 498
n 07 ‘0 0 549
P 1" 1 1 757
0 1" 0 1 754
o 1 -1 1 757
* 1" 1 1/2 4890

vector octet
k¥ 1" -1 /2. 890
* 1" 0 1/2 890
P 1” 0 1/2 890
¢ 1 0 0 1020
w 1" 0 0 783




CHAPTER II

D. WONG'S POTENTIAL AND SCHRODINGER EQUATION

A, The Integral-differential Equation: David Wong's poten=-

tial as given by equation (I-~10) is a non=~local quantity and
‘therefore when used in the Schrodlnger equatlon, an 1ntegr0v,
differential equatlon w1ll result, On the other hand, if one
uses the potential by completely expanding it in powers of

kz/ 2, then one gets a 100al though exp11c1tly ve1001ty—
dependent potentlal. In order to have avdlfferentlal equation"
of the second order, one in fact only keeps terms up to k /M2

It is difficult, however, to examine the neglected terms if we
start with. the expanded potentlal at the very beglnnlng. In
thls Chapter we proceed to show that equatlon (I—lO) can be
written in such a way that the main‘terms.do not contain inte*‘
grals and are identical to those obtained in Wong's paper hj
expanding'the potential to the,kz/ﬁz terms; and’that the remain-
ing terms are small and may be treated'as corrections.~ The
advantage of using the integro-differential equation is thus
obvious: corrections could be taken into account if so desired,
although it greatly_increases the mathematical compiexity.k
Having shown that the corrections arevnot.toe'large, onermay
then proceed with the differential equation alone,

For an arbitrary angular momentum state L, even. the

25
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formalism becomes very complicated, to say nothlng of. the

numerlcal part. We therefore. consider a partlcular case, the

lso, T=1 state. . The Schrédinger equation is of the form

2

(ve +E) v (x) =fV (r,xr') v (') dr/. (II-1)

In our system of units, fi=c=M=1l, To av01d confusion we do

not yet put the energy E, a c-number, as kz. We recall~that

V(r,xr') con51sts of terms llke f (r)O @ and f (r )0 ¢ Let
U ywpwpn (E) M \

v (x) = ] s"L"J" . . | (II~2)

S"L"J" B A ‘ S.L"J" . e

Then equation (Ii—l) becomes

dlzl"ooo + Euooo =r Z dr‘'de Qj (sz )|f o °. uS'L'O(r )
”dr2 o T * S'L' ‘

© .
Yoo 5e)

where the scalar product notation is temporarlly confined to

spln—space. We shall neglect the quadratlc g 2%228 inter-

wl
action, and we are here only concernedeithu0i=l-andﬂgl;gz,

for which %} is an eigenfunction with eigenvalues Ai

S'L'l:
(say).. So

o . (r )
<%oo‘( "foq’ o ‘V 'L0r>
_ Ugrrinalr') o]
_Aifi SLr? <‘%oo (9” IHSLO '> )

(II-4)




Now consider

F, (k%) a’k. (II-5)

We expand

'k- | - ]
SEETEL 4 1 0, @) Y™ () () E
£ ,;m
L' ,m'
) . ml* ml
jzl(kr )YQI (Qk)Y;Q, (Qr.!)
= (4m)2 7 (- Rt (kD)3  (kr )Y (2))
£,m %
l',m'
m'* m* m' .
Y., ‘(Qk)Yl (Qr)Yz'(Qr')' (II-6)
Therefore
0 LD 2 120 k3, e ¥ (2 ¥R 0, 0y (62)
(27)
= 1 6" (xenv™le )P ), (11-7)
2,m 1 2 r L r

where we denote

2
6; M x,en =0 (un? |k aki, (ko) 3, (ke F, (k7). (11-8)
3
(2m)

Hence

<l ooo )IQIQé S'L'O (% 'i>
=V (%) ' ' 0,0~ _ymom o
I My GOy M) () Yz‘ﬂi)lqj arpio(8 ) -

L,m
(IT-9)
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Inserting equations (II-4) and (II-9) into (II<3), and inte-.
grating over d@r and er., we get

dzu

090 , Eu =,rZA.f.(r) [r'dr'G(o)
. R

i (r,r')uooo(r')-

,dr2 000 i
(II-10)

The treatment for f(r')6i¢i is similar (fi will be inside the
integral now), and hence equation (II-«10) indicates at least:
the structure of our equation.

Using the potential (I-10) the actual equation for

the T=1, lSo—state is explicitly (we now write u for uooo)
2,
u"+Eu= - gi rr'dc' (s)G(o)(r-r')u(r')
2 q* o f
g2
+ 28 u ‘rr'dr'qj(s)G(o) (r,x')u(xr")
2 s 1 ‘

+ gg frr'dr'Qj(s) io)u(r')

92 u2 (o)
+ 52 S rr'dr'y(s)gzo u(r')

n N
-

+ =3 S rr'dr'%/(s)Gé°)u(r{)

2

g :
- ?ﬁ J rr'dr'%/(s)Héo)U(r')

2 2

g’ﬂ' u'!T ' ' (0) ]
- L3 { rr'dr '9”)(;1 u(r')




where

2
+ EX J rr'dr'?{(v)G(o)u(r’)
2 S -
+ 3g3’ J rr'dr'y(v) gl(;o)u(r')

g2
+ 7; rr'dr'qﬁ(v)Héoéu(r')
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(II-11)

(IT-12)

(II-13a)

(II-13Db)

2 2
gi u
- V2 Y| rr'ar’ V(V) gz(o)u(r')
J
2 4
M
- gv4 v rr ‘dr'! Qé(v)G( )u(r')
J
= e_uir + e—uir'
Gé?)(r,r’)= 2 Jk dkjo(kr)jo(kr YA k2+l +l)
m 4\/k2+1
G{O) (r,r')= 2 k2 dkj (kr)j (kr) 1 .
i 24l
63 (x,xh= iJk dkjo(kr)jo(kr ) 1
ki
£¥}°’cr,r')= 2 szdkjo(kr)jo(kr') k2,
! 4 [k2+1

4 /x2+41 (J¥EL +1)2

(II-13c)
(I1-13d)

750)(::,::'): __?._szdkjo(kr)}jo(kr) X2

w

4 /x%+1 (fk +1 +1)2

(II-13e)
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ana B (r,xh= 2 J kPdkj (k) 3 (k') ___i4 .
" 4 k21 (k%1 +1)2
(II-13f).

We also define

B O (r,r1)= 2 szdkjo(kr)jo(kr‘) 1

w n
JK24+1 (k241 +1)
(II-13g)
We observe that we can write
7(0) = ¢l®u 2689 o 1 s(r-rn, (II-14a)
1 o 1 ST
2rr’
(o) _ (o) (o) . -
%72 =Gy '+ 1/2 Bl ’ (IT~14Db)
and .
o = 260 + Z) - 1 s(x-r"), (II-14c)
2 o 1 IrrT
Therefore -we only have to consider G{o), Géo)‘and~B{°),
These are-all of the type-
" k24K (kr)j . (kr') -

I (e) = 2 z -
Tlo VK41 (J k%+1 +1)°

with o=0, 1, and 2. This integral can be manipulated and re-

written as

; @ : . - ey !
o nrr'J === Re (1+i] ,/ y -1) {e
1 Jy -1y

-y(r+r')}
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In term of this integralrowe have

500 To(©) ¥ vlEet| e

1 1 dy e -
» 4 4nrr!' 1Jr;%ff

(II-17a)
I e ,
clol: I, o d l~(2-y2),
2 2 T = T
Txrxr . ) y _l y
-ylr-r'| -y (x+r')
e’ - (,II—_l?b)_
and
(o) _ _ °° ~y|lr-r'| . -y (r+r')
Bl :Io(l) = 1 - dz_i_ e’ -e -
Trr' . 2 2
1J y -ly
(II'717C)
We now define a 7{-function by
Koo 2oy [_ap & |
g (x) = C ‘dg;_. e _ (II-18)
Jy%-1 Y
1
with
cC = 1 C.. =C_ = 2
o = ' N1 2 =
cC, =C, = 8 C. = C. = 16 (I1-19)
3 4 3T ’ 5 6 o

Some properties and evaluation of these functions are dis-.
cussed in Appendix A. For our present purpose, suffice it to
say that the-XZ—functions are rapidly decaying functions.- A
few of these functions are sketched in Fig. II-l.

Returning to the Green's functions in our integro-

differential equation, we see that now they can be expressed
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in terms of the ;t—functions. For example,

(0)_ *® - -r! -« $rt
6i%= 1'{ dy_[e y|rer'| ~y(r+r')
__4rrr J”"Z
> 1y v =1
= 1 (X Uz-x']) = K (x+rn)] . (II-20)
4rr'

Thus the integrals in equation (II-11l) are of the form

Im ar'_ Y hyrre) + g (zmrt))1,m even

rr'.rp :
o( ) (II—Zla)
and
—dr’  Yu(r') [-(x+r') 7{ (c+r)+|r-r'| X (|z-x')1,
(rr,)p N N
dy - J oo N odd.
(IT-21b)
Let us consider equation (II-2la). With an obvious change of
variables, eguation (II-2la) can be written as
o -ur U (r=X)
- e
[ oax Ry T il LT T
p - B
dx }:N(x) 1 u(r-=x) e + e
+ : 2p <P | x

]

o -ur -u (x+r)
dx (x) 1 u(r+x) |e +e
+ 7<N 2p P r ‘ ]
r Gﬁ f) r@ﬁ X
0 r r
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-ur

= e 1l | ax 76&(X), 1 «u(r+x)(l+ eiux,)

r r2p ; "
| (1+ .’;.f 1+ X
Ptg nx.
, [25(=x)] “u(z-x]) [, 28(z-Re(x=x) & ) :
x\P x
1- — 1. —
(- %) ¥ (II1-22)
where .
-1/2 ifr?so
5(3)= (I1-23)
+1/2 if >0 ‘
and
2uy 21y
e(}) = S(j) (l-e ") + 1/2(1+e ). (IT-24)
We also define the fdllowing quantities:
—~uX -
u(E) (r,x)=. 1 ulrex) (1+g,\,e
X \P z
(1+ ;)_ 1+ 7
p+0 | X
+ [28(r-x)] -l-u(ll«.»qxl)(l+ 25z 8 ewe ),
1- £
a- 2)° t
r )
»(II%25)
ul(P)(r,x) = u(p)er,x)‘~ 4u(r), (II-26)
* 3

u"(E)(r,x)

\ 2
u'(g) —X2 [Y-l d2 (Yu) + d u ]. (I:-27)
ar? drg
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where as before Y stands for the Yukawa function, and

(o]

¢}
é;'(p)ér)= ) (%) u,(p)(r X) 4x N even
N# B ﬂCN ' + i , ‘ ‘
[¢]
"( ) , - " |
/ REE Jo A0 wn P e x) ax ) (II-28)

For N odd, X X;N replaces ;6N in equatioen (IIT28), Using the
properties of the,?&—functions as -well as the definitions.

above, we can write- down

Jl\(II:) (r) = /' (L:) (r) + 2u(r). (11-29)

d-2 (yul] » N even

w2 () PV (r) & we1 [ur o+ vl
/ = Jn RT3 =

= "(p)(r) + 3(N+2)- u"+¥'l‘d2(Yu) . N odd.
fo e [T 2

(XI-30)
We are now in a positién to separatevtherintegrals in the’
right-hand side of -equation (II-11) into two partss . one -with-
out integrals and one with integrals which are relatively
small. Thus for instance, .
frr'dr' yu<r').G{°’= 1/4 fdr'yu(r') y AIEE PRV MEERN

= 1/4 e .6;(0)(r)

r o=
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1/4 e [2u+ Cy' (r)] .
— o)

Il

o)
= -

THI (o) -1
1/4 e [2u+ ]!'O* +1/2[u"+Y ~ (Yu)"]
— ‘,

()

O

n

(II-31)
4 2 2 ‘

1/2 [(Y+ Y")ut ¥'u' + Yu"J+1/4 Y }
Similarly all the other terms in the right-hand side of-

equation (II-1ll) can be written in this way. One remark is.

in order at this point,; There are some inherent ambiguities

due to the fact that we setlggﬁé}z. This means fon‘some~Fi(kg) we
can-write it alternatelyras\k'gFi(kz)ﬁ and. the result\will of
course be different. So far we have not explored the latter

{O) and Héo); but

alternative. This situation occurs for
the latter can be expressed in terms of the former., Therefore
for the original term which containsbk4in Fi(kz),_we take the
average of the two terms withrk'ZFi(kz)*and F(k2) respectively.
For integrals involving these .quantities, we also take the.

local limit, since otherwise they lead to highly singular terms

near the origin. The resulting equation can then be written as

2 2
2. 2 2 4 g_x_ 2 x4
"tk“u= {-gZ (1- % - Xs )¥(s)~ 1T Y(m)+ 1« %Yy bu
’ { 9 55') z gvf( §7) }

4
2 2 44 2.2 2 2. 4
- J9s (1- s - Is Jesrw o+ gr¥n (v(mu) +9y (3=« %v + *v
1 g 16 - TTE ) g 16
(Y(v)u) "}

2 2 .4 2.2 2 2 4]
-(9s (l—:xs - % ) v(s)+ In¥tn y(m+ Iy (3- v o+ fz_)X(v). u".
4 78 T1g 16 g 8 187

— e e e e e o e e e mm e e e e em mmme . e et ey mmm e v wem G e e o
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2,2 2
+ 9s¥s Y(s) a (s)- gs s Y(s) ,,(o) (s)+ gé g Y(s)
4 -8 32

(o) . (o)
3/2 ng- (8)- J"Z_ (s)

(o)

22 2
- IV v(v) }"(°) (v) + gixZ Y (v) } (v)
8 o- —5 2~
2
— gv x‘4’ Y(V) [3/2 "4(0) (V)"‘ |12(?) (V)] - gTTX'lT Y(Tr)j (O)
32 =

(IT=32)
Here xi’has the numerical value of My The(}'s are those
integrals defined in equation (II-28). Without these, equa-
tion (II-32) is the Schrddinger equation with a velocity-.
dependent potential of the usual type V =»vo(r)+ pzw(r{jw(r)pz,Y
here w(r) being sums of Yukawa functions. The integrai\part,
is relatively small compared with the_reét. In fact, if we
2

takevgS =-gi, and X_= X

S v+ they cancel out to a large extent,

with only the terms

92x2 v(s) j (o )<s) -9
=S LS

=N
"
S
<
=
N
-"\
o]
A
~~~
3
g

left. The first term has its origin in the central part of
the original, complete potential. It is interesting to com-_
pare this result with the recent work of Green and Sharma
(1965). In their velocity-dependent potential, by setting
the coupling constants and masses of the scalar and vector
mesons to be equal, they find that only the central part con-

tributes to velocity~dependence. In our case we have seen
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that only the central part contributes to the non-locality if

we take gi = gi and x_ = X

s v+ The magnitude of the integral

part in equation (II-32) of course depends on r: these terms
are expected to become  larger at smaller r. With a given set.
of;poteﬁtial parameters, we can get the zeroth order wave:
function by ignoring the integralé in equation- (II-32). This.
wave function is then used to evaluate the integrals. These-
rough estimates show that they are one<seventh of those terms
above the dotted line in equation (II-32) at a distance of

one nucleon Compton wavelength and at an energy Ecm=27 Mev.

They drop to about one-twentieth at about 2F.

B. The Differential Egquation: In the last section we have
1

shown how to write the. So—state Schradinger.equation con--
sisting of derivatives and integral parts. The whole formal-
ism can be extended to states of arbitrary angular momentum L.
Since we -are doing a three~meson model calculation only, we

do not think it warrants such a tedious mathematical complica-
tion. Instead, we shall use David Wong's potential in the-
form expanded inlkéf‘i.e. we use the local but velocity-,
dependent form. %hile we havé,seenathat,the higherlorder
correction is not particularly small at small distance (less
than a nucleon Compton wavelength) of separation between two.
nucleons, we adopt a sort of phenomenological view point by
fitting the local and velocity-dependent potential to experi-

mental data. This velocity-dependent potential will never-,

theless be of interest as it differs from the usual A. M. Green
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type velocity~dependent potgﬁtial in that.the radial functions.
are Yukawas,‘énd‘that the téﬁsor-and spin-orbit interactions
are,alsohvelocity-dependentgs

/ Let us write the- total potential in the form

+
Vtot 1 =V+V, SlZ+VLSL .S p [W+WT 12+WLSL ",]

+[WH_g L~§]p2, (II-33)

12

where

V—V +V

3@
iq

l
and

=Wc+ch,l .'_52 .

We shall also write V= V -3V, Vp +V, and 51m11arly fer

3 L

3+ We have not put in‘the.Ti 5 explicitly, but we

shall write down separate potentials . (w1th

W, and W
Wl 2 properly
taken into account) for the T=0 and the T=1 states. ~Let us -
consider the triplet case, as the'singlet case can.also be -

readily obtained from the former. We expand the total wave

function

y =‘,Z‘ uJL(r) M
L r JLS,=1,

The two-body Schrodinger .equation is- then (in units of

A=M=C=1) .
2 A2 u oM u M
(—ldr+L)z,JL/Ij' + v, YL
4 9 E- 3L
r er rZ L :?E JL1 . r JL1
M M
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) . M
+ (-1 & r+L )W3quL'[j
r drg ) L r JLl
- M-
+(-_J;__dir+,ﬁ‘)WTESlquL ’%
T o2 L2 L r JL1

Pl
T ar r®
»~ M
+w3(-_1_ d2r+i)2uLV
r er r2 L r JL1

Wy 12(--1-—
4 r dr2 2/ L
. M
+WLSL-§/ (-1 d2r+L2)quL ’%
L 1 9 L
r dr2 r2 L r JL1
M.
(II-34)

=e ] Jon ¢
L r JL1

Premultiplying by M on both sides and‘integrating dver;
the solid angle dQ,

) 4 g+l
a® oL + L(x+1) %L + v oL +v, ) * 8,
' | r Li=g-1 gLl +4

1.
r 2 2 r
dr r
M 9
’% an YL
JL'1 r
af '(W‘u;'r"']i"):

f M M -
*  L.S ’lf ae gL' - 1 _gf
JL1L ™™ JL'1l r r 2

+ VLS El
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| X (M
+2L@+) Wy YL - w @& oL - 1 _a® rw,, | %%* S1,
2 r r r 2 L'} JL1.
r dr dr™
M
%# ae YL
JL'y Tt

M M

r
5 , M M
-1 _a° rw g ) * L*S ag YL’
r 2 L' JgLlr v~ JL'1 r
dr
M M
+ 1 W  L(L+1) ) * L*S as Ygn'
fz L' JLl ™ JL'1 r
M . M
+ WTJ an qi* 51, (; 1 ar+1f )] 2 uJL'flj
1 1
JL1 T drz 2 /L x J'Ll
M "y M
+w a0 Y=* ns (-1 ar+12 )] 1 YL
LS JL1 T 2 2 JT' T J'Ll
dr r
= %JL . (II-35)
X

We now make use of - the matrix elements

M M
el
J,J,11 12 J,J,1:
M M
(Qj ls r%} > = 2(J+2)
J,J+1,1 12 J,J+1,1 (23+1)
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M M
(Qﬂ Isl2 IQé ) - 2(J-1)
3,3-1,1 3,3-1,1 2a%1)

M M

(Qj Isl2 qu ) 6/F(I+1)
J,J+1,1 3,3-1,1 "I D

M M
0% ,r§|qj )=£[JUHJ-—MDH)-2].
JL1I™ JL1 2

and write equation (II-35) for L=J-~1, L=J+1 and L=J separately.

For L=J-1, we get

" [- (1+2W,) + 4(J-1) W - 2(J-1)W ]
“ ToTr1y LS

J,a=-1- (2J+1)

u' [— 2W! + 4(J-1) W' - 2(J—1)W',]
t J,3-1 @3+ T LS

+ Y3,7-1 [J‘J"l)(1+2W3) + V= 2(I=1) Voh (I-1) VW3

) (29+1)
- 4(@-1)%3 "r + 2J(Jhl)2WLS +2(J=1) W~ (3~ l)WES]
(20+1) = 2 L2 (23¥I)

(20+1) 2J+1

+93,5+1 [ 123 (J3+1) WT] +3 J+1[ 1273(J+1) WT]

+97,5+1 |6/3(3+D) V- 6/T(3+D) Wy + 12 (3%+3+1) /T (@F+1) ﬁg]
(29+1) T T(za+D) 25+ 2

= k2 ug,J-1. (I1-36)
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where we have now written«E=k2. The Schrsdinger‘equation for
L=J+1 is

Us, J+1 [—(l+2W ) + 4(J+2) W

3 (23+1)

T + 2 (J+2)WLS]

+47,3+1 | -2w" + 4 (J+2) WY+ 2 (J+2) Wﬂs]
A 5 5§

+93,041 | (3+1) (3+2) (r2w) +v,- ZTFDVe _ (gaa)y -we

2 RSN 3

~ r

, « .
_ 4(J+1)(J+2)~WT _ 2(Jfl)(J+2)2 Wy ot 2(J+2) W§+(J+2)W£S]

(2J+1)  r? r? T (20%T)

+u3;J—1,[— 12/3 (3+1) WT] +93,3-1 [— 12/3(3+1) W,
(2J+1) (23+1)

+uJ,J~1,[6/ETEIIT“V - 6/F(J+1) W" + 12(3%+3+1) VT (3+1) W |
\TEFD T T Tz T ~ (23+1) 2

= k2 Yg,3+1. (II-37)
We note that equations (II-36) and (II-37) are coupled because

of the tensor force. For L=J, the equation is uncbupled;

ul _ _ . u! oW AT v
J,J I (l+2W3) 4WT+2WLS] +°J3,73 [ 2W3. 4WT +2WLS]

W "
3 7 Mg

u J(J+1) (1+2W,) - -
+97,3 [ T 30 + Vgt 2V -V o - W

2
r

2 2

+ 47 (J+1) Wg + WLS - 2J(J+1) wLS ]

H

= k% Y3,3. (I11-38)
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To get the equation for the singlet case, we only have to.
change V

inte V., W_. into Wl,iand set all quantities with

3 1’ 73
subscripts T and LS to be zero in equation (II-38).
David Wong's potential is, using three representa-

tive mesons,

5=0, T=1
4. 2 2 4
V,= —gi!(s)(l-—-?‘_é - Xs ) - .,,x% Y(m) + gy¥(v) (1‘—- Xv ) ’
- i 32 4 32
2 2 4 2.2 2 2 (4
Wl=‘%§ilv?“(l— ig - fg_)+ I g Y(r) + gu3f33~(3-,fz + ﬁz ),
4 8. 16 16 4 8 16
All other V's and W's = O (II~-39)
§=0, T=0 .
' 2 4 2 2 ‘ 4
Vl=‘—g2Y(s).(l— Xs - fg_)+3gn Xn y(m) +gi¥ﬁv)( 1- fz-),
Z 32 16 .l
2 2 4. 2 2. 2 2 4
Wl= gs¥(v) (l— fﬁ.- ig_)—3gn xn,Y(n) + ng(V)( 3- iz + fz),
4 8 16 16’ 4 8 16
All other V's and W;s. = O (II-40)
s=1, T=0' ,
- 2 4. 2 2 ) PR
V.= -g%y(s) [ 1- ¥s + ’_‘_s_)- In¥r y(m) +g2¥ (v) (l+_2__' xo+ ﬁ)
3 7s =z 32/ T v I VO3

2 2
V=-g_ui‘_"i(_§,+iﬁ+x2)—iv_“ii’i~ _3_+3_xz+»x2),
T I 2. ¥ m 12 2 T v
r r
2 2
V.= -g%¥(s) {1 + %s ;-X_s) g’y [ 1+ % Y3+ %),
LS S ;i T 2 3 -2 r )2 716

2 2 4 2 2 2 2 4
w = 9g¥(s) (l— 11xg 4 f§_)+ In¥Xp y(r) + Iy¥(V) (3_ 1lxy - Xy

24 6. 16 4
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Wr——

2 2
W = ng (S) ( 3 + 3XS + X2 ) + g,n_Y('ﬂ') 3 + 3X,n, + XZ)
r_2 r s 16 :2— Y m

2
+ ?23_(_\_’_)_ _3_ + 3XV + X2 ), (II-41)
96 2 T v
r
2 2 2
W= 9s¥(s) _1__+§§)(3-X_§)+9VY<V> 1+ Xy \[5+ Xy
B \zZ & 2 16 \Z T w3
s=1, T=1
‘ 2 4 2.2, 4
V3= -ggY(s) (l- x_s_ + §)+-gnxwy(“) +g‘2,Y,(v) -(l+ 2 x% + }i‘l) ’
' 4 32 12 3 32
g2Y(1T) - 3x 2 ng(v) 3x 2
V= n'v(__3_+ n+x")-v,_(_§_+ ‘v+xv),
12 L2 r 12 2 r
2 2
v, = ~g2¥(s) (_£_+ Xg ) 1 - fg_)-gzy(v) 1+ 5 )3+ %),
2 r 2 3 2 T 2 T6

2 4 2,2 2 2 4
Wy= gﬁz‘(S) 1o 11xS Xs ITXT y(m) + goy (V) <3_ 11x¢ ~ X,
P £: 50 4 24 T I

2.
ng(V) 3 + 3xv + x2 '
* —35% 2 T v
) 2 .
2 2 2 2
W= Iar ) L+’_{§) 3—x_s_)+ng(V) 1+ v )5+ *v |.
r,2 r 2‘ 15 ;_7 Y 2

(I1-42)
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Here as before, Y(i)= & and x.= Hi = My numerically.
r - :
M
The pion is of course isovector. We have in mind the scalar

meson to be something like the wABCand therefore it is assumed
to be isoscalar. For the model vector meson, it is really a

combination of the w, p and ¢ and so it does.not-have definite
quantum number T. We have written it as if it has. T=0, but if

necessary, we shall allow it to have different coupling con-

stants for different isospin states.

C. Phase Shift Analysis: In the singlet case, the"

Schrédinger equation is just a single equation and the, phase
shift is determined by the asymptotic behaviour of the wave

function. In particular,

tan 8, = k] g (ka) -wyJ, (ka) (II-43)

kng (ka)-w n (ka)

where differentiation is carried out with respect to the
argument kr, and a is some point in theLasymptotic region,

w2 is the logarithmic derivatives of the radial wave. function
at point a and is obtained numerically.

The triplet case is more complicated. We shall des-.
cribe this in some details and indicate how the various.
formulae are obtained. For a given J there are now three
states,,namely, those with L=J*1 and L=J. The L=J state is
uncoupled, so equation (II-43) can still be used to find the
phase shift. The two states L=Jt1 are coupled.- In the

asymptotic region, however, the potential is negligible and
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they become uncoupled, with the asymptotic form

-i[ke=- 1/2(J~1) ] i[kr= 1/2(J«1) n]
Us,J-1 » Ae - B,e ,
, 1
-i[kr~ 1/2(J+1) 7] ilkr= 1/2(J+1) 7]
uJ,J+l > A e - B.e .
2 2
(II~44)

The scattering matrix S is defined as

B = SA (II«45)

SOREN

and S is a 2x2 matrix which is unitary (conservation of

where

probability) and symmetric (reciprocity). S can be diagonal~
ized by a unitary transformation U which, applied to equation

(II-45) from the left, yields

UB = UA (II-46)
0] 52
where
usu~l = (II-47)
(0] 82 ‘

and UA are the eigenvectors. The eigen-phase shifts é, and
§g are defined by the eigenvalues of the S-matrix.
2is,, 2iég

e z Sl’ e = S2

and we now denote the corresponding eigenvectors by

-ig, (1 -isg fo
UA,= - e , UAg= - e (I1-48)
21 o} 2i 1l
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Since the 2x2 S-matrix is unitary, it follows<that,6a and~66
are real. In addition, the S-matrix is symmetric, and there~-
fore it can be completely characterized by three independent.

parameters. We already have 6& and 6, as two of these, so U

B
can now be expressed in terms of only one real number, Let
us take
cosé€ sine€
-sin€e cose

&€ 1is called the 'mixing parameter', From equations (II-48)

and (II-49),

—i ' . -i6 ~sin
A - Ala) - is, cosé A AlB) - e 8 ¢
a~ — . ' B~ Fr——
A 21 sine A 21 cos g /,
2a 28
(II—SO)

and from equations (II-46) and (II-50),

B is cos €\’ B iés -sin&
B, = la) = - ¢ , Bg: 18 - e
B,y 21 sing¢ Bog gi » cos € /.

RS

(II-51)

Thus there are two sets of independent solutions of- the form
of equation (II-44), one set with A1=Ala' B1=Blaj A2=A2a and
B,=By, which we shall call the a-solution, and the other set
being the B-solution. Using the explicit expressions (II-50)
and (II-51) for A and B in equation (II-44), we get

r T )
(“3,3-1), > cose sin | kr- (3-1)7 + §_ |,  (II-52a)
- 2 4

-

(uJ,J+l)a + ging sin kr- (J+1l)7m + daw, (II-52b)
L 2 /
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o
(uJ,J—l)B+ -sine sin | kr- (I-1)m + 8. |, (II-53a)
~ 2 ‘
u : g
( J.,J+l)6 > CcosS¢ sin kr- (J+1)n +-GB . (II-53b)
2
N .

/

Also, by means of (II-50) and (II-51), it can easily be

verified that
ReA_+RelA_tané&

tan Ga = 1 2 (ITI-54a).
ImA,+ThA, tane
- & )
tan 56 - ReA2>ReAltan (II-54b)

ImA,-ImA;tane
It may be remarked that, although there appears to be
four complex constants in equation (II-44), expressions (II-50)
and (II-51) show that ReA1= -ReB, and ImAlé»ImB-, so that
there are really only two independent complex\numbers-brffour
real constants. For practical purpose it is more convenient

to use real constants and write the asymptotic wave function as -

u - . -
J,J=1 » r[AjJ_l(kr)+BnJ_l(kr)], (II-55a)

u [ ' -5
J,J+1 > r[A ]J*l(kr)+B nJ+l(kr)] (IT~-55b)

where A, B, A' and B' are real. Using the asymptotic forms
for the spherical Bessel and Neumann functions and comparing

equation (II-44) with (II-55), we find

Al = iA-B , (II-56a)
2k ;
and
A, = iA'-B' (II-56b)

2k
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Hence we may rewrite equation (II-54) as

tan 6§ = - B+B'tan& (IT-57a)
A+A'tan€e
tan 68 = - B'+Btané& (II~57b)

A'-Atané

The practical procedure of finding the phase shifts is as
follows. We choose an arbitrary set of appropriate-initial
conditions and solve the two coupled differential equations
numerically. By taking two different points ry and rzyin.the
asymptotic region, we can determine the A, B, A' and B' in
equation (II-55) for the particular set of initial values we
have used. Now, we choose another set of initial coenditions,
distinct from the previous set, and again solve the tweo

coupled equations numerically, thus similarly getting another

~N o~ ~ . .
set of A, B, A' and B'. In view of equation (II~-57), we have
~ ~
B+B'tan € = B+B'tané& (II-58)
A+A'tan ¢ A+A'tan €&

Since A, B, A', B', A, B, A' and B' are all known, we can
find tan € . Equation (II-57) can then be used to determine
tand_ and tané,.
o 8
It may appear that equation (II-58) gives two values

for tan € , and one wonders which one to use in equation

(IT-57). We can write equation (II-58) as
2

atan‘e + btane + ¢=0 (IIr59)
with

~/ ~o
a = A'B' - A'B',

~ ~ ~ ~
b =A'B - A'B + AB' - AB',

~

c = AB - AB. (I1-60)
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Now, instead of equation (II-58) which is obtained by using

equation (II-57a), we can also make uses of equation (II~57b)

1

and get
~ o~
- B'+B tané = - B'+B tané&
A'-A tane A'-A tang -
which would yield
c tanze. - b tane +a=0. (IT1-61)

In order for equation (II-59) and (II-61l) to be compatible,
we must have c¢=-a. Then the roots of the gquadratic equation
(II-59) satisfy

(tan €,) (tan€,) = = -1 (II-62a)
a
Or we have

€ = €

1 2 t

T 1f &_ <0
5 2

I

€, - /2 if 62>o (II-62b)

restricting to the principal values of the inverse tangent.
Incidentally, we note that equation (II-62a) also serves as a
useful check in numerical work. Therefere although there are
two values of tan€& , there is‘only;ggé set~of;tan6a and tanGB,
as equation (II-57) .is invariant under the exchange of-

€ > € ¢ 1 which merely amounts to relabelling aand g. The

N

ambiguity of calling which one o and which one 8 may be
resolved by the following convention,. Although in general the
states L=J:1 are not eigenstates of the scatteringvmatrix, ;n
the limit of zero bombarding energy the difference betwgen the‘
centrifugal barrier effects for these two states is so pro-

nounced that they become eigenstates. Equations (II-52) and
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(II-53) imply that & becomes either zero or m, These two
values are-also consistent with equatiqn‘(II-§2). We choose

Lt ¢ — O
E->O (ITI-63)

Thus, in the zero-energy limit, the a-wave is essentially
L=J-1, and the B-wave is essentially L=J+1, It is incorrect,
however, to think of G;J) and Géq) as the phase shifts for

the state L=J-1 and L=J+1, respectively. Nevertheless it is

. 2
a common practice to denote, for example, Géz) and Gé )

respectively as 6(3P2) and 6(3F2).
Our S-matrix so far is characterized by the so-called .

Blatt-Biedenharn phase shifts §,r 65 and mixing parameter & .

B

Another set of parameters are the bar parameters, 3& and EB'

The convection between these two sets are given by (Stapp et al

1957)
sin 2€ = (sin 2€) [sin(aa—cSB)]f |
sin (3,-3,) = tan 2€ (II-64) -
tan 2€ :
and

g =6 +5 .
8,76, = 8,5,

We note that the two sets of .€ , éa and\dB give_the same set

of & , ?a and ?B. For the L=J case as well as the exceptional
3

Po-state, the nuclear bar phases are the same as the corres-

ponding Blatt and Biedenharn phases.
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D. Numerical Details and Results: To get the phase para-

meters, theaSchrédinger equation must‘first be solved
numerically. For the singlet states and the uncoupled trip-
let L=J states, the equation has the structure
a(r)u"+b(r)u'+c(r)u=0. (II-65)
The singlet case presents no problem. For the triplet L=J
case, a(r) will in general vanish at a certain point r=r_,
the precise location of which depends on the potential para-
meters used. This is to be compared with A. M. Green's
velocity-dependent potential. In his case a(r)=(l+2w) is
always positive. The nature of our}singularity may - be .ascer-
tained as follows. Let a(ro)=Q and r-r_=x. 'since the .
functions a(r), b(r) and c(r) are Yukawas’or dérivatives of -

Yukawas, near x=0 equation (II-65) has the form

alxu"+bou'+cou=o (IT-66)
where a;, b, and c, are constants. Let
u= -}y .4 x (II~67)

Substituting equation (II-67) into (II-66), and equating the .
coefficients of the lowest term in x, one gets .the indicial

equation

ola; (o-1)+b ] = O, (II-68)
or the two roots are-

0,=0 and o_.= - bo = (l— g_ g.
1 2 q at| x=

' n n ,
The last step follows since a=Japx and b=]bpx . The solution
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corresponding to o, is a regular solution at x=0. If“02>o,
then this second solution is a;so regular. If 0,%0, then

this second solution is irregular. If ozao,,weAthen have two
equal roots to the indicial equation (II-68) and so the
second solution has a logarithmic:singularity at x=0, With
our potential
02 = 0

and thus we have a logarithmic singularity. For instance, =
for the 3Pl\state

a= —l—2w—4wa2wLS

= - L. '3 '
2w '4WT‘2wLS

and the refore

b:l.

——

3!
With the potential parameters we shall use, this point I=rq
occurs at about. .19F for the 3Pl and«3Fl states, whereas for .
the 3D2 and 3G4states this occurs atrr0=.llF.

For the coupléd triplet states we have the structures

a(r)u? +b(r)u' +c(r)‘ +d(r)u"
+4& (r)yu! +f(r)u =0 (ITI-69a)
() g *EE, 5 70 h
and
ryu" +q(r)u’ +8(r)u +t(r)u"
p(x) J,J+1 a(x) J,Jd+1 J,J+1- J,J-1
+u(r)u' +v(r)u = =0, (II-69Db)
J,J-1 J,J*l

We reduce this set of two second-order differential equations:
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into a system of four first-order ones. Let
u_ =Y (1
J,J+1° (1)

u&’J+l=Yf(l)EY(2)EZ(l),

n =V =
uJ;J+l,YV(l)_Z(2)'

uJ'J_lEY(3),

u&,J_l;Y!(B)zY(4)EZ(3),

and u&,J—l=Y"(3)EZ(4)' (II-70)

We then have

S 2(l)=Y(2), | (II-71a)

I

Z(2)= 1 [(ct-ds)Y(1)+(bt-dq)Y(2)

(dﬁ;at)

+(ft-dv)Y(3)+(et-du)Y(4)1, (II-71b)
z(3)=Y(4), (II-71lc)
Z(4)= 1  [(cp-as)Y(1l)+(bp-aq)¥(2)
(at~dp)
+£fp-av)Y(3)+(ep-au)Y(4)]. ‘ (II-714)

Again, in general (dp-at) will vanish at a certain point r=rg.
We use the Runge~Kutta-Gill method to solve the:
differential equations. For computational convenience, we
put ‘in a mathematical hard core at r#rc{ and start our outward
integration at this point. We choose the wave function to
vanish at r=r_ but allow it to have arbitrary slope, which is
immaterial for phse shift analysis. With respect to the
singular point r=rg, this solution will in general be a mix-
ture of regular and irregular selution. Fortunately the -

singularity does not seem to be too serious, since the results

are not sensitive to mesh size V(variation around Vv =~.01lF, say).
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We cannot, of course, reduce the mesh indefinitely. One
reason why the singularity is not serious is perhaps becﬁﬁse
logarithmic divergence is relatively weak and,theféfore the .
singular admixture in our solution remains finite and small
unless we get.really close to the singular point. Another
reason may be seen if we note that the singular point Iy
occurs at small distance (never further.out than .49F)., 1In
this region, the wave function,is still very small and cer=-
tainly much smaller than that in the asymptotic region.-
Thus a little change in the wave function in this. innermoest
region due to a change in mesh will be covered up-in- the
asymptotic fegionl thus producing no difference in the phase.
shifts. For nuclear matter calculation, we are confronted
with a bound state problem; the magnitude of the wave function
at large distance is not bigger than that in the inside
region. Actual computation indicates again, however, -that
even here -the difference in wave function due to change in
mesh is tolerable, and the situation is further helped by
noting that the interesting quantity, the G-matrix, is

G "‘f (¢=v) ¢dr

where ¥ is the actual wave function, and ¢ is the‘unpertyrbed
wave function. For S-state, ¢ is just a sine wave.. For most
collision momenta, sin(kr) is quite small for small r, and
thus essentially (¢-V¥) is reduyced greatly and the integrand
in this region where the singularity occurs has only small

contribution to the G-matrix.
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The singularity is unphysical. It arises because we
have expanded the potential, resulting in a particular type
of velocity-dependence. All mesons, including the pion,
contribute to it. Thus the velocity-dependence is not necessar-
ily - weak or extremely short-ranged.

Otherwise the numerical procedure is straight forward.
We only wish to make two practical coﬁments. We,have~élready
mentioned in connection with equation (II~55) that, in order
to determine A, B, A', and B' we need the asymptotic solu-

tions at two different points rl_and r In principle these .

'2!
can be any two points in the asymptotic region, but in prac-

tice it may be advisable to choose ry and r, to be approxi-

2
mately one quarter of a wavelength apart. We also wish to
emphasize that by the asymptotie region we mean the region
where V(r)<<k2. Therefore for very low-energy scattering, we
have to go out very far for the asymptotic region..

We first fit the T=1 states. The calculated phases
are compared with those from Yale or Livermore analysis, and
the potential parameters are then adjusted accordingly. for
the ‘-next run on the computer. We fix the pion mass to be
.147 nucleon mass, gi_to~be.l4.0 and the vector meson mass
to be .8085 nucleon mass as predetermined. The T=0 states .
are subsequently investigated. : Surprisingly,»thewparameter
values given by Bryan, Dismukes and Ramsay (1963) actually

: 1

phase is not even gqualitatively correct. The vector meson,:

almost give a best over-all fit, except that the singlet
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supposedly a mixture of w and p meson, acts as an isoscalar
particle. To get any reasonable behaviour for the singlet
lPl-phase, it is necessary to use a vector meson coupling
constant more than twice as large as that for the other
states. This is perhaps a reflection of the fact that we.
have an oversimplified model, that in reality there are more
mesons. Anyway our necessity of using different gi for the
singlet-odd states may be regarded as aephenomenology.y
Furthermore, with-the above'potentieljparameters, although
the high energy region for the singlet-even states are fairly
well repréduéed, low-energy scattering data sﬁch as the,
scattering length and effective range are not too good.
Therefore we again adjusted the scalar meson parameters
slightly for these states.: The final potential parameters
are shown in Table II-1, We have set a hard—core,at-r=:c=.074F.
This is a device partly to cut off. the singularity at the
origin, and partly for convenience in using the reference-
spectrum method in a nuclear matter calculation.: The S-~states
are sensitive to r, and in this sense r, is an extra~parame£er.‘
All the other states are not sensitive to rc! in view of its
smallness. The various. calculated phase parameters are
sketched in Fig. II-2 to Fig. II-15.

Certainly one cannot claim this is the best~£it or a
unique fit. If we have chosen the veetoereson‘mass to be

1.051 nucleon mass, which is approximately equal to C. Wong's.

value of uv=5F’l; then g2=3.02,us=.40i g3=42.245and r.=.052F


http:gv=42.24
http:gs=3.02,�s=.40
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will give almost a perfect fit to the lSor and,lDz-states,

The fit to other states are rather poer..:It is found that

also in this case the singlet odd. states need a much strongér

2

95 than other states.
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TABLE II-1

59

Singlet Even

Singlet 0dd

Triplet Even

Triplet 0dd

.147
14.0

.8085
34.0

.598

15.3

.147

14.0
.8085

74.0
.588

15.4

147
14.0
.8085
34.0
.588

15.4

.147

14.0
.8085

34.0
.588

15.4

All states have rc=..074F.

4 in units of reciprocal nucleon Compton wavelength.




CHAPTER IIT

NUCLEAR MATTER CALCULATION

A. Brueckner Theory: Nuclear matter is a hypothetical

infinite mediumvof\equallnumber of protons. and neutrons..

For such a medium, Coulomb force must of course be omitted,
and we assume that the two-body interaction-vij to be of a.
purely nuclear nature. The simplicity of nuclear matter is-
that it has uniform density, and it has no surface effect. -
The nearest. realization of such a hypothetical medium is
perhaps the interior of a heavy nucleus. The study of nuclear
matter is the first-step towards an understanding of a many-
body treatment of actual finite nuclei.

To calculate the interaction energy, one may wish to.
use the pertﬁrbation theory. The nucleon-nucleon interaction
is known to be very strong and in fact, is usually taken to
consist of an infinite repulsive core in some phenomenolo-
gical potential models., Thus the matrix elements of the
potential become infinite and~pérturbation method seems
meaningless and inapplicable. If the range of the strong.
interaction is small, however, the interaction energy will
also be small. This suggests that a suitably modified per-
turbation approach may nevertheless still be useful, This. is

done. by the so-called vertex modification, or expressed more

60
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plainly, by defining a new interaction G in terms of- the

original wv:
\'% —————

G - v + + L o= ——
‘Each of the terms on the right-hand side is very large or
divergent, but their sum may be quite small.

In an infinite medium of fermions, all the-levels up
to the Fermi momentum kp are occupied in the ground state.
Therefore, when two nucleons. scatter against each other, they.
are excited to states k>kp only, leaving two holes inside the
Fermi sea. We reserve, the name particles for those. nucleons.
with k>kF,vand holes for those with k<kF. Diagramatically,
particles are represented by a solid line with an arrow
pointing upwards (particles propagate forward in time 4 ), and
a hole by a solid line with an arrow pointing downwards  (holes
propagate backward in time Y} ).

Brueckner's theory of nuclear matter consists of
selective summation of certain terms in the perturbatien
series. Precisely, the theory sums all diagrams with only two
hole lines and allows the two excited particlés to‘intéract
any number of times with each other, i.e., it includes dia~-:

grams such as

00 -} - )0
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We have not drawn.any exchange diagrams explicitly, but they
are understood' to be included as well. Hole-hole scattering
is not included because the phase space for such interactions

is more restricted. The total energy of the system is then

E ~ ] (lTli) + 12 ] (ij]6]ij~31) ) (III-1)
lng l,jng) ‘
where
@ilelip=G3lvlin - §  Gifvlm) 1
(mn|G[ij) . (111-2)

Some of the diagrams omitted are, in the third-order:

0 QOO
Ly
(a) (b)
Diagrams of type (b) are called self-energy insertions and,
may be taken into account, at least in a sort of average
manner, by introducing the Hartree-Fock potential (modifica-.
tion of the propagator, T . é'i) . Diagrams of class (a) form
the so-called three-body cluster diagrams, and recently Bethe
(1965) has shown how to handle such diagrams up toiall order.
We shall neglect this class of diagrams except that we shall
follow Rajaraman's (1963) suggestiqn of‘appropriate adjustment
of the sté%istical weight of various states. On the other
hand, we shall discuss the self-energy diagrams in some details
later. |

The original Brueckner approach is to solve directly-

the integral equation (III-2). This is rather tedious and
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painful. Two computationally simpler methods, the separation

method and the reference spectrum method, have been developed.

B. The Separation Method: Moszkowski and Scott (1960) have-

pointed out that, although the nucleon-nucleon interaction is
very strong, the repulsive part, which may be infinite, is
actually cancelled out to a large extent by part of the
attractive part of the potential. Therefore, effectively,
only the weak tail part of the éttraction is left and so even
ordinary perturbation theory might be used.:

Consider two nucleons colliding'in vacuo (free space) ..
Let wF be the wave function describing this situation of the.

two nucleons interacting with V, and ¢ be the unperturbed

wave function (V=0). Schematically they are shown in Fig. 1.
Let us separate the . )
v acting Vs-actlng Vz;actlng
’ ¢ //,, ¢
] -
!F —r A’ :
c d d
Fig. 1 Fig. 2.
potential into two parts
vV = Vs' rsd
= Vz' r>d

We then see (Fig. 2 and Fig. 3) that, the effect of Vg alone
is to distort the wave function at short distance, but causes
no phase shift. Vz_acting alone, on the other hand, does not
distort the wave function at short distance but prodhces the

same phase shift as the complete potential V,
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Since Vz»istweak~and of long range, it causes- scat<
tering mainly inte inside the Fermi sea, which is forbidden
by the Pauli Principle. Thus A\ has little effect on  the
wave function inside nuclear matter and, therefore, to a
very good approximation, it may be assumed

N . : |
Yy = wave function in nuclear matter:

s . . .
2V , wave function for two-body scattering in
vacuo with interaction‘Vs.
The G-matrix has been defined as-

N=v-vg " (I1I-3)
N
e

where Q is the Pauli operator to ensure all the intermediate
states are projected outside the Fermi sea, and the index N

refers to nuclear matter. We new define

F . I . -
6 Z Vs~ Va L Gg : (III-4)
(0]
and
Gf = v .aof (III-5)
"S- S S

where ey is: the propagator in free space, Qz the wave opera-
tor which converts the unperturbed wave function ¢ to the
perturbed wave function ws.\ It .can then be shown (Bhaduri
1963)
N F _(oF_ _aNy (of o
G a2 Gy + V=V, Q V,=(2.-1) (e -e”) (2g-1)
: N
e
e (e-1) (ae-1)-v, o GE-GF
‘(Qs‘l)e Q-1 s g = T8 S
€o 0.

e 4
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The separation distance d has been so chosen that the local

phase shift due to Vs is zero, i.e.

(I11I-7)

That the phase shift due to V; is zero implies (k|G§1k)=Q,

since

B0 = - m (e Vslud= - m k[eE|x),
ﬁz : ﬁz '

It is clear that d will depend on k. qu~high~energy colli-
sion, the particles see-more=ﬁepulsionand therefore more of
the attractive, outer regiomn is required to cancel the repul-
sion; hence a larger-d is required. For the interesting
range of k, however, it turns out that d varies onﬁy,lele-
with k, and it is usually taken to be k—inaependent,

The termS‘V& and'VLg;Vl form the first-order and.
second-order Born approximation terms. The second-order Born:
term is small due to the somehow mutually exclusive effects -
of Q and V,, The term (Qz—l)(eo—eN)(Q§4l)larises<because
energy-momentum relation in nuclear matter is different from
that in vacuo, and is therefore called the . dispersion.correc~
tion term. The term (Qz—l)e(Q—l)(Qz—l) is referred to as the-
Pauli correction term. The last two terms in equation (III-6)
are the interference terms between thefshort-range and the
long-range parts of the potential. In vacuo, only the first
three terms in (III-6) survive. It is clear now that Ehe

advantage of the separation method lies not onily in its compﬁ*
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tational simplicity, but also in its clarification of the
individual;role‘élayed;by the Pauli Principle and by the
modified energy épectrum in nuclear matter.

The dispersion terxrm can be written as

G (D) = (k| (af-1) (e_-e™) (o -1) k)
| 2
=£_'| <ws-—¢k}k.> I <k'leo—ele')
~ _ N ' s . 2 _
X (e e )avea ]Z{,l < V=0, |k > | . (III-8)

We can write

(II1-9)-

- 2
Gy (D) = 3(2 #1)C G

where C2 is a statistical factor., For the singlet S state

C= 6. For S-state, we have
L T6
rd

Ghy (D 47 (eg=e') | [u(kr)-sin(kr)]?dr

5 ve

=

rd :
= 4n (eo-eN) xzdr (IIT-10)
12 aveJ

o]
the notations being vS (kr)= u(kx) and ¢ (kr)= sinkr.

kr kr
To find the dispersion cerrection to the average potential
energy per particle, we multiply.Gkk(b) by the probability
of finding a pair of particles with relative momentum k, and
integrate it:.over the Fermi sphere
k 3

n ;e
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If we assume a potential acting only in the lSo-s,tate, then

k -
E =38 | Fg° (D) |1- 3 k + 1 k3 k2dk
D kk 2 X+ 1 k7
“x
o F
8cO kF3 S
~— 37 Sk (P
™
d N
= 3 (e -eN) dmp x2 dr = 3 (e -e™) D.
16 o ave n ) ‘ko 16 ave
o €]

(III-11)
where ko is some average value of k. Moszkewski and Scott
take

(e —eN)ave = 2AU . (III-12)

o
where AU is the difference in the single-particle potential
between an average excited state and an average state inside
the Fermi sea.

As alreadywmaﬁtioned, the long-range part szof the
potential acting alone will produce the same phase-shift as
the whole potential. For twe different nucleon-nucleon
potentials giving the same phase shifts for two-body. scat-
tering in vacuo, it is thus expected that theirl(klvzjk) will
not differ much. Hence, the difference in binding enérgy
per particle in nuclear matter calculation by using two differ-.
ent potentials producing same phase shifts is mainly due to

.difference in the dispersion term

if AU is taken to be 70Mev. C. Wong (1965) obtained several-
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1

sets of potentials for the So—state and calculated various

low-energy scattering data as well as nuclear matter proper-

ties. To compare with his three-meson static potential

2

model, we choose for our potential Ig =2.42,u —.40X%}

(reciprocal nucleon Compton wavelength), 92—14 O,u =,147% l

g$=42.24»and uv=l.0508%_1. The vector meson mass is the

same as C. Wong's, and we also use r, .0001F. as the starting
point for numerical integrations. The comparison is shown in
Table III-1. The notations here are as follows: a is the.

1

scattering length, r, is the effective range, § the So—state

phase shifts, d the separation distance as defined by.
k_2

(e}
Born term of the long-range part of the potential. We see

Moszkowski: and Scott, Vdf;4w‘fé sinZ(k r)ngr)dr,is the first
L ——— o I
d

that relative to C. Wong we have

IAED [z -94Mev.

1

We must note, however, that comparison in the Sofstate alone

may not be very conclusive because of the dependence on.r,
and thus the added arbitrariness. Also, all we have seen is
that perhaps we shall get more binding, but nothing is said

of the saturation problem. Moreover, we have not considered

the interference terms.

C. The Reference Spectrum Method: In the Moszkowski-Scott

separation method, a Gz—matrix is defined

F
G =v-v 1 Gz (II1-4)
s s 8 ™5

e
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to be the G-matrix corresponding to the short-range part Vg
of the potential in free space. It is introduced as a first

approximation to

the actual G-matrix for the short-range part of interaction
in nuclear matter. Here e without any superscript refers
to the energy spectrum in,nuclegr matter. The separation
distance d is so chosen that GZ_Vanishesw Then the total
G-matrix is made of the first Born approximationrfor’V&:and,
several small correction terms. Bethe et al (1963) have
developed -a further method called the reference spectrum
method, which improves the accuracy and- also is,simplér in
the sense that it:doesf£ot require separatioen into short and.
long range parts, althdughwﬁhis can easily be done if so
desired. We shall briefly outlipe the ﬁnderlying ideas; de-
tailed derivation of varidus formulae is given in the origin-
al paper by Bethe et al. -

Although the contribution of»Gg to the binding energy
is small compared with that df'Vy it is very important. for
the saturation problem owing to its strong dependence on the
density. Therefore one-should try to get as good an approxi-
mation to it as possible. BBP suggests that, instead of
using szas a first approximation to Gg, one uses the refer-
ence matrix

R

G EVS‘VS

cR | (III-13)
S S

1
oR
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. R . . .
where el is a reference spectrum. If e 1is quadratic in

R

< is quite easy to. calculate. Therefore We

momentum, then G

define the reference energy

Eg(k') = a + k'? (III-14)
2m*

Then

2
eR = k' + 28 + P% - H(k,P) (III-15)
k! P : ,

m m*
‘where H is the starting energy., Parameters A and m* in the.
reference spectrum can-be so chosen as to fit the energy.
regioen of most importance in. the nuclear matter. calculation..

If no separation is- intended, then we can still define
G} = v-v 1 % (III-16)
R
e N
for the whole reaction matrix. Replacing GR by VQR, where

R .
" is the wave operator, we get

veR = v-v 1 vet (II1-17)

eR

If we apply this to the unperturbed wave function ¢ we have

vt = v¢-v 1 vk (III-18)
eR
Or

This equation can be easily written in-cenfiguration space
because of the guadratic momentum—dependence.of'eR; The

resulting equation is

(Y2'V2 )‘ SR=m*VUJR (III-20)
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where

2
P + m* [2A-H(kg,P)] (III-21)

=<
m

and
is the wave defect. [The reference matrix is given by

(kl6% kg ) = (el V1Y)

z I¢(k r)Vw (k nE)d T
f
= 2 2 R
= L) J ¢ Usox) 47 (k ,r)d T, (III-23)

The actual . reaction matrix ‘ GN in nuclear matter is relate,d - tQ_’

GR‘by (BBP appendix A)

cN=cR+ R+(l _Q)GN
eR e.
xGR+GR+‘( 1-9) cR , (III-24a)
R e

or equivalently,

(kIGIk) (kIGI)

+ _ 1 k| k|6t |k y |2 ( 1 - (k') ).
(2m) 3 eR(k ") e (k™)

(III~24b)

D. On- and Off-energy Shell Propagation; We have mentioned

that, in addition to ladder diagrams,sthe Brueckner theory.
also attempts to take the third-order selfrenergy diagrams
into account by using adjustable undefinedVSingle particle

energy. We write the Hamiltenian-
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H=] (m|T|n) A A +1/2] (13 |V|ke-2k)A; TR A A

Il

[j(m|T+UJn)Aﬁ+An]+[l/22(ijIvlkz-gk)Ai+Aj+A£Aer(miuln)AmfAnJ

il

Ho + Hint.

U is some single particle potential yet to be specified. The

single-particle energy new is T+U=€&€ , and the interactioen

H. is
int —7 } v { }_U
------ - -=-x

In the Hartree~Fock theory, it is possible to define U in
such a way that the particle (also hole) self-energy is ex~.
actly cancelled by the corresponding insertion of the single-

particle potential U, i.e.
= —.—— X

o

in all.orders. Our aim here.is to cancel:self-energy diagrams

in the third-order in the G-interaction:
b’  m
+
-0 m
b
and n

+

n U(n)x

i

m
n
In other words, we would like to define the single particle

potential U(g) as

U(g) = ] (gm|G|gm-mq)- (III-25)
mng

It turns out., however, that we are unable to do this exactly.
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Let us expand the G-interaction of the inserted

bubble in terms of the V-interaction

)
b m ’
L an ——— R

The contribution to energy of this diagram is

) (&n]|G|ab) 1 (bm|G|bm) 1 (ab|G|n)
éa+£b-€£_€ﬁ éa+éb_é§—éh
where
(bm|G|bm)=(bm|V|bm) - ] (bm|V]|cd) 1 (cd|G|bm)
cd>k, € TETE5-€ -€ €

(III-26)
In equation (III-26) we see that the energy denominator is
not €c+ éd— Eb— €. Instead it is éc+ €d— éb—£€m+6E with
SE = é£+'éb_ ég— én' We say that the particle (in state b) pro-
pagates off the energy shell. There is an additional excitation
energy S8E. Thus, when the G-matrix occurs with self-energy
bubble insertion, we should write it as (bm|G(SE) |bm) since
it depends on other parts of the diagram as well. It is now
clear that equation (III-25) cannot be satisfied. The right-
hand side depends on a, b, ¢, n (but only three of these are
independent), whereas the left-side is a function of b oaly.

The best we can do is to define

_ ave

o = ]
<

(bm |G (8E) |bm-mb; 4n) (I11-27)
F

Therefore the single particle potential U is not really self-

consistent. The cancellation of self-energy diagram is only
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true for some sort of average momentum.

The same thing might alse be said of the hole propa-.

gation

(ITII~-28) :

(I11-29)

Their. combined contribution is
| (4n|V]ab) (nm|V]ed) |2

X. 1 . 1 . 1
[(€;+eb_€i_ég) (ééf€b+€2+éaf€1_€h-?€5) (eéfébféi'gh)

+ 1 . 1 - ) =
T ETe) (§e e 6,8 €75, 67€)

= J(znlyjab)(nleLgd)Jz
(6%+eb_é§_€5’(eé+ed_€h_§h)(E%+é%_<%féag

Hence bubble insertion to a hole line may be taken to be on .
the energy shell if we implicitly also include (III-29).. This
important result was first noted by Brueckner and Goldman
(1960) , and proved generally by Bethe et al (1963). We may

therefore write the single hole potential

U(n) = ) (nm|G(S8E=0) |nm-mn) .
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E. Calculational Procedure and Numerical»Details: Practical.

techniques for using the»refereﬂce spectrum method have been
lucidly given by Razavy (1963) and by Razavy and Sprung (1964).
In particular, we have been greatly benefited from discussions

with Dr. Sprung.

I. Static-Potential

1. Singlet,Case,

Let

= ‘L .
4= _1_ 7 (u+l)il%_(k r)p_(cosé ),

k r.
(@]
6= 1 ] (2L+1)i"3  (k r) P, (cos ),
kor i
and v :}_{%z (2L+l)iLUL(kor)lPL(cosg ). (III-30)
o

Then equation (III-20) becomes

2 .
d_.i. + gL) X,Lb—hﬁ’», (II1-31)
dr ‘
where
- A 2 ' . et ’
9y, =~ L(LZ}) + Y7+ m*V (II1X-32a)
. _'r’
and
- *V/,
By, " Vé{L ‘ | (III-32b)
; . H (Yr) ()
In the asymptotic region, X (c) L where the Hy

(YC) «

are related to the usual spherical.Hankel»functions by
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(L+1)
i (FiX)hl(‘l) (5ix)

(%)
HL (x)
~-(L+1) y
=i (tix)héz)(tix).

Therefore we have

(=)'
dx; _ YHI-~(Yr) X, =0, r=e . (III-33)
dr (=) '
Hp * (yr)

as one of our boundary conditions. Here the prime denotes
differentiation with respect to the argument. Now, alﬁhough
our potential has a soft core, for computational convenience
we have put-in a very small mathematical hard core at r=c.
Thus

XL(c)=JL(c) (II1-34)

Equations (III-31), (III-33) and (III-34) constitute a two-
point boundary value problem. A convenient way is to use the
Ridley method (Ridley 1957), which essentially converts the

two-point boundary value problem into an initial value pro-

blem. Let
a + t. () (d + 8 (r{) X.=h Camy
Tt ) 4 *5 L=PL (III-35)

Comparison of (III-31) and (III-35) shows .

SL(r) + tL(r) = 0, (II1-36)
and
das _ TTT 2
L + SLtL—*gL (III 37)



Hence
ds 2
L -8, =g
_— L
dr L
Let
dX -
L +*SLXL WL.

Then equation (III-35) can be rewritten as

h:dw +.
L L t W

=  LL
= dWp, _ S.W, .
dr ”

From equations (III-39) and (III-33) we get
1{ o=
= -y Hé )(Yr)

© (-)

H (yr) ®

and

W

L 0.

«©
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(III-38)

(III-39)

(III~40)

(IIIAAla)

(III-41Db)

With these as the initial conditions, eguations (III=38) and

(III~-40) can be integraﬁed backWards to r=c¢, At r=c, we use

(III-34) as the initial condition and integrate (III-39) for-

wards, thus obtaining the solution for XL. Once the wave

defect X. is known, the reaction matrix

L
2 2
(k |GR|k )= (¥ tko ) ¢ (kx r) X dr.
o L o T —| L o 'L

can be obtained in a straightforward manner.

(ITII-42)
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"Priplet Case

78

The treatment for the uncoupled triplet state is

practically identiéal to that of the singlet case already

discussed. .

states L=Jt1.

We therefore

The basic:

confine -ourselves to the coupled

equation is now

(III-43)

(J+1) (J+2)

-

(sz-Yz—m*vJ)xJ=\-m*vi;*J
where _
2
vJ = dr2 rz
dz
0 ar2
o Jour |,
P
A - (J,J—llvtot]J,J-l)
(J,J+1|VtotJJ,J-l)‘
and
o = £5-1,3-1 XJ—l,J+1T
fJ+1,J-1 xJ+l,J+lM

is the solution matrix with

2

i

(III~44)

(EII-45)

(J,J+l|Vtot|J,J+l{

(III-46)

(II1-47)



[

e

and

p—

X
J+1,3-1

-

X
J+1,J+1

each being a solution:

.

for

Us-1,5-1

’UJ+l,J—l

-
Us-1,3+1

Ug+1l,3+1.
-
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the first one'is the(J-1)-~wave domin-

ant solution, whereas the second one is the (J+1)-dominant

solution.:

Equation (III~43) in essence centains feur equa-

tions and can again be solved by Ridley's method with the

following generalizations:

s, —> 57 = $3-1,3-1 S3-1,3+1!
(III~-48)
LSJ+1,J—1 SJ+1,J+1_»
. W W
L ’ (III-49)
"o+1,3-1 Wre1,0+1
J i 2
g9=29 = <] (J-1)J + Y° + m*V : m*v
L T2 J-1,3-1 J-1,J+1
2
m*v (J+1) (J+2) + +m*V
| 9+l,0-1 2 J+1,J3+1

(1II-50)
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and

1 pa— - J by N
hL—-—>h» = —m*V j (ITI-51)

Equations (III-38), (III-40) and (III-39) are simply replaced,.

respectively, by

Q:ii - (SJ)2 = gJ,\ (III-52)
dr-
aw? - s9wd = nY, (III-53)
dr

and
axy + s9x9 = wJ (III-54)
ar'

The numerical solution then proceeds as before, and the
reaction matrix is given in terms of the diagonal elements : -
of X.
2
R _ (v +k_2)

k k = \Y ‘ k III-55

(k 16 %[k ) o J¢L( of) Xp Ldr (III-55)
‘with L=J:1.

II. Velocity-dependent Potentials

1. Singlet Case

For a velocity~dependent potential of the form: (II-3)

the equation for the wave defect X becomes

a2 + £ = _

(__2_ Lg_+gL)xL hp (III-56)
dr

where
£ = 2m*W , (III-57)
(1+2m*W)
9. = L(L+l) + (FPrmrvomrwt) o, (I1I-58)
2 (I+2m*wW)

r
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and
h.z  m* 2‘ew/ Y 2 ;'- [V—W"+' 2L, (L+1) W]f/ .
L T 2w L L | o L
£2
(III+59)

Applying Ridley's method we now get

ds : =
g + (fL—SL) 5179, (III-60)
dWL + (f ~S ) W =h ’ (III"Gl)
—ar L L L L
and
dx |
L+ S X =W. (III-62)
dr LL L

Note that for a static potential‘fL=O and these three equa-.
tions reduce to the previous set of equations (III-38),

(ITI1-39) and (III-40).

2. Triplet Case

For the coupled triplet states we need the matrix
elements

(3,3 1|vtoth,J 1). = V- 2(J3-1) V_+(J 1)vL

(20+1) S
+ 2J3(3-1) |w- 2(d-V)Wp 4 (g-1)w ~W"
2 (29+1) LS
r
t gégi%l Wp = (I=L)Wpg (III-63)

+1-2W'+ 4(3-1) W - 2(J-1)W! ] d
[ 4y v - 2] ¢

-+-[-2W + 4(J-1) W

- 2(3-1)W ] a2
(23+1) ol By

T

aJd + bJ d + cJ a2
J-1,3-1 = 3-1,3-1 g d-1,3-1 =%
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(3,3+1]V oy |,3+1)
= V- 2(J+2) V= (J42) Vp o+ 2(T+1) (J+2)
20+1 7
r
[W- 2(J+2) W ~(J+2)W_
201 T LS
~W"+ 2(J+2) WA o+ (T+2)W!
20+1- T LS
+(=2W'+ 4(J+2) W!'+2(J+2)W!
"EE?TL T2 (J+2) s) (III-64)
+(-2W + 4(J+2) W +2(J+2)W )d
20+1 T p)
‘ dr
_.J J J 2
"q40,0+1 T Paer,041 &

ar + J+1,J+l_§—§~,
dr

and

(J,J+l|VtotJJ,J-l)=(J,J—lthotlJ,J+l)

= 6/J(J+1) + 243+ -W"-2W! - 2
6/3(J+1) [VT 2(3%43+1) WyWp-2y 4 -2y, &

1
2J+1 r drz
. I J J 2
= 8541,0-17 Pae1,0-1 &t Coe1,0-1 £ . (111-65)
dr dr2 v
quation (ITII-43) now takes the form:
1 s W d J J |
(I-m*cy 5 g-1)» "™*C7.1 741 m*by_ 1,0-1 " *o1o1, 341

< & + d_

J J 2 J o end dr
| "M*Cg41,9-1, (I M¥egyy , g41) | |y g1, TP*Pgeg, g4l
v -l

- -

g 2 J
+ “(m*aJ-l,J—l+ J(J;l) + v )) -m*azy_y,J+1
r
—m* g9 —(m*a (%7
m*al o1 , (m 3e1, 041t (J+l)(J+2lAf? ) (X
. r - J
_ _m*vJC}»J. (III-66)
Oxr
(d? +£7a +9¢7) xla? (I11-67)
2 dr
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where p |
J J
-m* -m.X
P m*o3_1,9-1 1,41
f =M
Y —m*hY , =
h bJ+l,J-l‘ m*Pi1,3+1 | (II1-68)
LJ 2 LT
'(m ag-1,J-1% éé&éll +°) ) -m ag-1,J+1
r
g7zmt |
J J 2
-m*al. g1 , -(m*aJ+1’J+l+(J+l)éJ+2), +Y°)
- .r -
(III-69)
nt - —M‘lm*vJA J (III-70)
and )
i J J T
~-m* -m¥* '
. (1-m*c; 1, 5-1) M Car1,3+1
M_ =
..*J _*J
M Crs1,7-1 (I-m*cg 1 g+1)
= l , .
I | ) (1-m*cY —m*cY J
(I-m*c5 1 g-1) I™* S g41) ™ C341,5-157+1, 341
i —m* Y *oJ
(I-m*c7i1,q+1) M Cr4+1,0+41

.*J
m*Cy41,7-1

J

(III-71)

Hquation (III-67) is the coupled triplet counterpart of:

equation (III—56).

We can also immediately write down the,
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corresponding equations to (III-60), (III-61l) and (III-62):

asY + (£9-89) sd= g9, (III-72)

aw’ + (£2-87) w'=n", (III-73)

and

ax¥d + g9x9= wJ, (III-74)
dr

To cdmplete this discussion, we also write down the

equation for the triplet L=J case:

+ gJ)XJ = h (III~-75)

2
d + £
(85" % J.

dr

oo
R

where

£ = (=2W'-4WS+2W! () m*

! III-76
I TTIH20"W) —Am W F 2me Wy g (III-76)
g5° 1 v2+ J(J+1) (1+2m*W)
- % — ”* * -
(1+2m*W) -4m WT+2m WLS N

n 4J(J l)W "
+m* | V+2V -~ W - + 4J(J+ + WY - +1) l III-77)
r r

and

h = n* (=2W~4W +2W ) 3"'
J T(I+2m*W) = 4m*W +2m*W T LS ¢J

+(f2W'-4W +2W' )}

+ [2J(J+l) WHV+2V -V, -W"-2w"+ 4J(J+1)Wp

P T LS T ‘ 2
r r
" _ + W . III-78
+ Wig- 20(7+1) Ls] jJ | ( )
r
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The Ridley method described above is a very compact
and convenient one. We solve all our singlet states by this
method. The equation in the s~function, however, is a non-
linear one and may grow quite fast and thus cause an over-:
flow in the computer. This happens to our triplet case, as
we have  a weak singularity. We therefore resort to some
other conventional methods in treating the two-point boundary-
value problem with boundaries at x=a and x=b. One method is
the two-point matching method. Consider a single second
order, inhomogeneous differential equation. Let yho be a
solution to the corresponding homogeneous differential equa-
tion with yho(a)=0,and‘arbitrary initial slope. We integrate
this solution outwards to a point-x=xz (say) . Let yporbe=a
particular integral of the inhomogeneous equation with
ypo(a):y(a), the given boundary conditibn at x=a, and also
arbitrary initial sliope. This is also integrated from x=a

to X:X2 Then

L)

is a solution of the inhomogeneous differential equation for
aSXSXZ. C is a yet undetermined coefficient. Now we start
at x=b with another set yhi and ypi and integrate inwards

each time to X=Xq, X, <X, Thus,

1

Y,=Dy . + y._.
i ¥hy T Ypi

is another solution of the inhomogeneous differential equation
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for xl$;<§kL The initial conditions

of yhi and y are so chosen that Y;

pi
will satisfy the required boundary

condition at x=b. For example, sup-~ ' ' '
xX=a Xl X2 b
pose we want y(b)=y. Then we can choose yhi(b)=0, ypi(b)=a.
The coefficients C and D are determined by matching’yo and

y; at the two points X, and Xy This joins yokand yi smoothly,

1

and the boundary conditions are satisfied at x=a and x=b,

Yet another method is as follows. Suppose we now consider a

system of two second order inhomogeneous differential equa-
|

tions in: the functions u and y. Then:

u Auhl + Buh2 up

is a set of solutions. Here subscript hi denotes the i-th
independent set of homogeneous solution, and p the set of
particular integrals, Suppose the given boundary conditions.
are y(a)=u; u(a)=g, y' =c and u' =T, The boundary con-.
y b u |b
ditions at x=a can be satisfied 1f we choose the homogeneous
solutions to be zero at x=a and yp(a)ma, up(a)=8, These are
all integrated outwards to x=b. The boundary conditions at
x=b can be satisfied if we choose A and B to be

! - 7 by-v' (b
!yp(b) cyp(b) cyhz( ) yhz( ) |

A= ‘ué(b)—Tup(b) Tuhz(b)-uﬁz(b)

det


http:cons.id.er
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b)~-y' (b ! -
oyhl( ) yhl( ) Yp(b) oyp(b)
- b)-u' (b ! ~T.
B= Tuhl( ) uhl( ) up(b) Tup(b)
det
where
b)-y' (b b)~y' (b
oyhl( ) yhl( ) oyhz( ) yhz( )
det= Tuhl(b)-uﬂl(b) Tuhz(b)"uﬁ2(b)

We use the latter method for the triplet L=J:1 states, and
the former for the L=J states.

Before solving the differential equafioh for the wave .
defect X we must first decide on .an approximate expression

2
for v . Bethe et al (1963) uses

W2 - 2 _ .2 . _

Ym 2AkF ko (III-79)
for holes, and

2 2 2

¥ = A-, “ II1I-80

L 3kO + (3 6) ko ( )

for particles. Here k denotes the difference of the

momenta of the two colliding particles. These expressions
for y2 are meant to take the off-shell propagation effect
into account, and are tailored for a hatd core potential, In
Fig. III-1 we show a plot of X vs. r for our non-static, soft
core potential, and in Fig. III-2 we plot the square of the
Fourier transform of the wave defect X. We see that our
important intermediate states are in comparable momentum
region as those for a hard core potential, and therefore we
conclude that we may use the same expression as Bethe et al,

for yz.
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As already mentioned, once one has the wave defect
the G-matrix has essentially been obtained. To calculate
the binding energy 6f a nucleon in nuclear matter, we follow
closely the procedure of Razavy (1963). We differ from him
in that we only calculate the hole potential energy for an
average collision momentum and that we do not attempt separa-
tion in any angular momentum state.

First, we calculate the G-matrix for an average
collision momentum kO=/73kF. From this we get the mean

single-particle potential energy for the hole-state

3

- _ 2k — R

= . g (k=Y .3kp{G |k,) x 41.5Mev. (III-81)
W

R . . .
Here G denotes the sum of all the partial waves, including
their appropriate statistical weights. We then calculate the

G-matrix for the particle states. Let

particle 3
W & )= 2%p x 41.5 § (kx |cR|k )  (TII-82)
© 3@2 eveng ° %t ©

Following Rajaraman's suggestion (Rajaraman 1963), for particle
states we only sum over the even states and with statistical
weights equal to one, This serves to take the three-body
cluster effect into account to a certain extent. We compute
particle
W for two k 's, namely, for k =1.5k_ and 2k_, and we

- o] o} F F
fit

particle 2 ;
W (kd)= A' + B! ko (III-83)

by a parabola. Then the single particle potential energy for

particle states is, as shown in Razavy (1963),
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.6k§B' 5
u(kb) = |A' + + B' k (II1I-84)

and
mE = 1 (II1-85)
]
1+ 23
2h
be="f 1 Julky= Y6 k) - 4] (III-86)
1.5 2
kF

For a given kF, we choose a quessed input Ai and m;, and see
if the output Af and m% are consistent with the input. If
not, we repeat the cycle. The results are shown in

Table III-2.Jr Table III-3 shows the contribution of various
partial waves to ﬁh. The average energy per particle is

given by the sum of the average kinetic energy and one-half

of the average single particle potential energy

E=T+ 'm= 2 ké + "m.
2 2

= b
3F3

The above description forms a major cycle in our

computation. We execute major cycles for kF=l.25F_l, l.36F_l

and 1.50F_l. Fig. III-3 shows that we get saturation at

kF=l.38F_l with an energy minimum of E = -13.2Mev per particle.
t 3

Due to a mistake in the Pl state now corrected, the
self-consistent values for A will be slightly reduced to .6,

but the value for m* would probably remain the same.



COMPARISON OF STATIC AND .VELOCITY~-DEPENDENT

THREE-MESON POTENTIAL MODELS
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TABLE III-1
C. Wong's Y2 Our Model.
np
a -23.73 F -23.58 F
r 2.67 F 2.78 F
o .
§ (250Mev) .001 rad. «019 rad.
a 1.06 F 1.04 F
v, ~461.3 Mev-F> | -462.8 Mev-F>
D .0537 .0179

Fermi momentum kF=l.36F_l; Relative momentum ko = 75 F

-1




REFERENCE SPECTRUM PARAMETERS

TABLE III~2

k - *
F(F ) Al m{ Af m
1.25 0.7 0.80 0.68 0.83
1l.36 0.7 0.90 0.72 0.80
1.50 0.65 0.85 0.68 0.86

91
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PARTIAL WAVES CONTRIBUTION TO THE G~-MATRIX.
3
= 2k =/73 k
W, (k) g C, (ko ) Flczlgo) X 41.5Mev, WHERE
37 ‘ 3
C, IS THE APPROPRIATE STATISTICAL WEIGHT, kEFlg36F— .
TABLE III-3
States Wy, (Mev)
lg -32.30
@]
1p + 8.45
1
1p - 5.29
2
lp + 1.79
3
lg - 0.64
4
3p - 8.97
o
3p +21.43
l«
3p’ - 5.67
2
3p + 0.84
3
3G - 0.19
3g -43.41
1
3p + 2.98
1
3p - 9.43
2
3p - 1.18
) ;
3p - 0.08
3
3¢ + 0.28
3 E
3p - 0.62
4
3g - 0.06
4
Total -72.02.




CHAPTER IV

SUMMARY AND CONCLUSION

We have studied a nucleon-nucleon gotential based
on the one-boson-exchange model. This poténtial has a
specified type of velocity-dependence, whiéh occurs not
only in the central force part but also in.the tensor and
spin-orbit parts. Moreover, the velocity-dependence is not
of short range.‘

We have fitted the potential parameters to twor~body
scattering data. In view of the comparatively few para-
meters we have, our fit is fairly satisfactory, especially
for the important S-states.

We have applied this potential to'nuclear‘matter
calculation.. We come to the following cpndlusiohsg

(1) one does not need a hard-core to .get saturation

at reasonable density. This point has been of
considerable interest, as first questioned by
Green (1962), and examined in great detail by
Bhaduri and Preston\(1964) who arrived at the
same conclusiQn as the,ﬁresentwinvestigation.‘
The'poténtial we use nevertheless possesses a
very strong soft core, and from thefwave‘defeCt
curve, Fig. III-1l, we see that it is almost

equivalent to a hard core of 0.3F,
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(ii) a velocity-dependent, soft core potential seems

to give still more’binding than a static, soft
core potential. This is borne out by our com-
parison with C. Wong's work (1965), fixing the
same three potential parameters as predetermined
and fitting the remaining three to reproduce the
same two-body scattering data.

Our calculation gives a binding energy of 13.2Mev per
particle in nuclear matter at a saturation density kF=l.38F—l.
Preliminary calculations by Patrick Yip indicate that the Pauli
and spectral connection terms reduce the binding energy by
about 2Mev per particle. Sprung and Bhargava (1966) have
pointed out that the contribution from higher partial waves
will reduce the binding energy further by about 1.8Mev per
particle, whereas an increase of 4 to 5Mev will come about if
one treats the three-body clusters properly. Therefore our
binding energy would be about 14Mev per particle at kF=:l.4F—l.
These are comparable to the results obtained by Sprung and '

Bhargava (1966) for the Hamada-Johnston potential, the Bressel

potential, and the Reid potential.
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APPENDIX A

THE X/ -FUNCTIONS

Definitions

The ;C-function is defined by

%\I © Xy
(x)=0Cy | &y e

5 _

Wy?2-1 y (A 1)

where CN is a normalization constant. For N=0Q this function
is equivalent to the zeroth order modified Bessel fgnctien of

the second kind. The normalization coenstants are chosen such

Jm ;t&(x)dx
[¢]

and (a-2)
J” X XN(x)dxs 1/2 if N odd.

o]

that

1/2 if N even,

In particular, this choice gives Cé=l . From equations (A-1)
‘ , =

and (a-2), it follows that

CN+1=2CN 2:N+l(o) if N even,
and - (A=3)

CN+2_=2CN7CN+2 (0) if N odd.

Determination of  the Normalization Constants

We can write alternately.

(m/2  No1  -xseco
K;N(x)=C&] cos 6 e de. (A-4)
4 0O
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(A-5)

/2 N2
K (0)=C cos 8 d(sin®)
N N{ o .
= EEE_»(N-Z) %:N_z(O) - (N=2) ;tg<°)' if N>2
N-2
Or
2; (0)= (N-2) N Z: (e), N>2
N — N_2 [ e »
®1) T,
Since .
Kier = ¢ Jm-—fhi—— "Gz
2
1 yJy -1
and

x X, axs1/2 = ¢, dy | xe ax=c;

we obtain

c,=2 and A(o) =1
1l 1

Similarly we get

C,= 2 and x:z(o)

m

2
m

Now from eqguation (A-5) we have.

Kon(©) = 0oz Xon-2(®) = 2n-2 2n-4 Gtén:4(°)
2 4 ;

on 2n-1 C2n—2 2n-1 2n-3 C2n_4
- 2n-2 2n-4 -——- 2 _A2(°
2n-1 2n-3 R
2»,
= (2n-2)1! , n>1
(2n-1) 11!
and
%2n+1(°) = 2n-1 2n-3 ---- 1 %1‘(0)
Conel 2n 2n-2 2 ¢

I

(2n-1) !} © , n2l.
n) 1t 2

)=

(A-6)

(A=7)



Taking equations (A-3) and (A-7) together we - get

Cpp= 1/2 Can+1 = (2n)11 : 1, n>1
: 7{ (o) (2n=D)T11" 7
2n+1 .
and -

c = (2n+2)1t 1 , nyl.
2n+l  RFDIT 7 ¢
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(A-8)

(A-9)

These together with CO= l, C.=2 and C2= 2 completely

1 =
m 1)
determine all -the normalization constants.

Recursion Formulae

From the definition, we get by integration by parts

m/2- N-1 -xseco
CN cos 0 e de
]

fW/Z -xsecé N-1
N

76N(x)

o0 .

N-2 N-4
-XCOS 8+ xcos 8].

N-3

deée [-(N-2)ces. o0+ (N-2)cos,

& (A-10)

Equation (A-10) holds for any N if x>0, and it holds for

N>2 if x=0. It follows then

N-1 =(N-2) © - +

(N-1) %N (N=2) cN (/{N—Z X %N b
N-2

Thus we may write

Konx)= (2n-2) 2n) K0, ()= x

N>2

%jN 3" %20 °

. {x)+ 2nx s
Konrt0)t 2ox__

(2n—l)2 T (2n-1)
Kan-zr ™1
and n=s (A-11)
(x)= (2n-=1) (n+1) (x) -~ ntl X (x)
X:Zn+l n(2n+1) X;Zn-l a(2n+iy) 2n
+ 2(n+l)x. on-2" n2l.

(2n+1) (2n-1)

These formulae are useful in checking numerical results,
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Asymptotic Expansion

% o -Xy -X © 4 "u.z
= ‘=C e. 2 dau e
y2-1 ¥ | l+&§*{k+.u_;-. |
1 o 2X X
-X
~c jEE'e (1f N+1/4 + ——7. (A-12)
2X 2X

Numerical Evaluation

The definition we give for

oo "Xy-
7tN(x)ECN dy e
N

is an .improper integral. For numerical purpose:'it.is there-
fore more convenient to make the change of variable vé/yél,
Then 2
% _x had -XV
N(x)=2CNe_ dv ; e S . (A-13)
24V7(1+V )

For N=0 and small values of x, the integrand in equation
(A-13) may not decay very fast and in such a case it may be

more useful to sum the series

X x=-c I f§22m {zn x - w(m+1)7 , (2-14)
| ° (m1)? X f |

where
p(n)= -y+(n-1) ] 1 (A-15)
S=0 4§+‘l) (S+n)

y = 0.5772157---

is Euler's constant. The series converges well for x<<2,
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Some' Integrals Containing the %;—functions.

Here we list some integrals which may be useful;

[=]

s %N(x)dx=cNmz K N+me1 (©)

o C:N+m+ 1

<o

2
X (x)dx= [(2n)1l] 1,
0 %h @n-1)IT2n+D) 10 ™

o 2.

x2 o (x)dx= 2n+1 (A-16)
o n 2 (n+l) ,

x (x)dx= [(2n+2)!1] . 2,
o %anl (2n+1) 11 (2n+3) 11

x> %2n(x)dx= (2n) 11 (2n+2) 11 6 ,

(2n-L) 1 (2n+3) 11 7

|
|
r e K, a1,
|
|
|

o}

and
jw %3 2m_'_l“(x)’d-x= (2n+2) !V (2n+3) 113 = _3(2n+3)j .

o (2n+1) 1T (2n+4) 1! "2n+d



APPENDIX B

ON CONVERSION OF UNITS

There are many sets of units and all appear to be‘
'natural' to their own propounders. In principle cohversion
from one set of units to another is simple and straightﬁfﬁr—‘
ward, but in practice this-is always annoying and agonizing.
For convenience we therefore give various conversion rela-
tions. concerning us in our work.

In field theoretic work, one sets h=c=l. Then mass,
energy, and momentum all have the dimension-bf-inverse

-1

length. For energy, one has 1lF "=197.31Mev, In our.poten--

tial we have used fi=c=M=1, where M is the nucleon mass. This.
amounts to choosing the nucleon Compton¢wavelength~xNasnthe
unit of length:
lF=4.7582%N‘
and 1%, "1=938.858Mev,
In nuclear matter calculation, it is customary to set ‘§_=l.
M

Energy is then expressed as the square of inverse length. The

conversion factor is >

1F “=41.47Mev,

Equations in the reference spectrum methe§ are in this system

of units. To put our potential (as given by equation  (II-39)

to (II-42) in these.eqguations we must make the~following
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conversion:.
V(r) — (4.7582)%x V(4.7582r), r now in F,
W(r)—s W(4.7582r),
W'(r)—(4.7582) x W'(4.7582r),

W' (r)—(4.7582)% x W"(4.7582r) .
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FIGURE CAPTIONS

Fig. II-1 The x;—functions.
II-2 : Phase shift characteristics.
to II-15 A are -points taken from the analysis

of Arndt and MacGregor, Preprint
UCRL~-14252-T (1965) .,
+ are Yale poeints.

: 1
Fig. III-1 The wave defect for the S_-state,

o
calculated for kF=1.3eE‘1, ko=.75F'1,
m*=,9 and A=.75.

III-2 The square of the Fourier Transform

of the wave defect.

III-3 The binding enérgy curve.
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