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An investigation of the steady state response of a non-linear 

system (having bi-linear restoring force characteristic) provided with 
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m ratio µ = M on amplitude of vibration of the system has been investigated 
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ABSTRACT 

An investigation of the steady state response of a non-linear 

system provided with an impact vibration absorber is made. The term 

non-linear in the present case refers to a system in which the spring 
f· '3 

restoring force is bi-linear. 

The effect of two main parameters viz. clearance d (i.e. the 
0 

free path of travel of the mass particle) and mass ratio µ = ~ (i.e. mass 

ratio between the mass particle and the primary system) on amplitude of 

vibration of the system has been investigated experimentally over a 

range of frequency. 

A numerical analysis of the problem is made with the aid of a 

d{gital computer to supplement the experimental results. 

It has been found that with proper choice of parameters an impact 

vibration absorber is effective in reducing vibration level of a non-

linear system undergoing sinusoidal excitation. 
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NOMENCLATURE 

A = maximum displacement amplitude of primary system in the absence of 

the impact vibration absorber (in.) 

c = damping coefficient (lb.sec/in) 

d = damping factor, c/2M pl 

d = clearance in which the mass particle is free to oscillate (in.) 
0 

e = coefficient of restitution 

F = maximum force of excitation (lb.) 

K1 = equivalent stiffness of the leaf springs in the region where their 

motion is not constrained by the guide block (lb./in.) 

K2 = equivalent stiffness of the leaf springs in the region where their 

motion is constrained by the guide blocks (lb./in.) 

M 

m 

=mass of primary system (lb.sec.2/in.) 

= mass of particle (lb.sec. 2/in.) 

P1 = J K/M I 

t = time (sec.) 

v = absolute velocity of particle ( in./sec .) 

x = displacement of M (in.) 

x = displacement of M immediately after impact (in.) a 

~ = displacement of M immediately before impact (in.) 

Y1 = displacement of particle (in.) 

y = relative displacement of particle with respect to M (in.) 

'/' = phase angle due to damping (rad) 

(vii) 



µ = mass ratio, m/M 

w = forcing frequency (rad/sec.) 

d 
= -dt 

d2 
•• = 

dt2 

N.B. The units in the parentheses are the units which have been 

normally used unless otherwise stated. 

(viii) 



1. INTRODUCTION 

l.l Historical Review of Impact Vibration Absorber 

An impact vibration absorber consists of a mass particle within 

a container and is free to move relative to the container. During 

oscillation the mass particle withdraws energy from the system and 

dissipates it through impact. 

The idea or· reducing vibration by impact was ~irst conceived 

( l). 
and investigated by Lieber and Jensen in 1944. In that investi-

gation the authors assumed that the steady state motion of an undamped 

single degree of freedom system with an impact vibration absorber 

(referred to as an "acceleration damper") was still simple harmonic, the 

elastic rebound between the mass particle and its container was zero, 

and two impacts take place at opposite sides of the container during the 

time period of the sinusoidal excitation. From the consideration of 

total work done per cycle on the system they develop a theory and show 

that for most efficient operation of the vibration absorber (i.e. for 

maximum energy dissipation) the clearance (i.e. free path of travel) of 

the mass particle should be n times the maximum amplitude of response of 

the system. 

Grubin( 2), under assumption of the existance of symmetric 2 

impacts per cycle motion determined the behaviour of a viscously damped 

system after many impacts. 

• Numbers in parentheses designate references at the end of the thesis • 

- l -
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Arnold(3), also assumed the existance of symmetric 2 impacts per 

cycle motion and developed a theory for an undamped system representing 

the impact force by Fourier ~eries. His theoretical investigation was 

supplemented by experimental studies. 

(4) 
Warbarton , gave a method to obtain a solution for 2 impacts 

per cycle motion, in which consideration of only two successive impacts 

are needed. 

Kaper( 5), investigated the problem in order to determine the 

effectiveness of impact vibration absorber (referred to as "discontin-

uous dynamic vibration absorber") in the case of free vibrations as well 

as forced vibrations due to sinusoidal excitation. 

Masri( 6), in his investigation obtained a solution for symmetric 

2 impacts per cycle motion and determined the stability boundaries for 

the same. 

A number of experimental studies has also been made to this 

effect to establish the practical feasibility of particle damping. To 

mention the name of the investigators at this end are McGoldrick(?), who 

investigated its effect on ship hulls; Lieber and Tripp 
(8) 

investigated 
' 

its effect on cantilever beam, Sankey( 9), studied its effect on single 

(10) 
degree of freedom systems and Duckwald , studied its effect in 

reducing the vibration of turbine buckets. 

1.2 Objective 

The objective of the present study is to investigate the 

behaviour (response characteristic) of a system (having bi-linear 

restoring force characteristic) provided with an impact vibration 
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absorber, when the system is subjected to a sinusoidal excitation, and 

to study the effects of parameter variation (viz. clearance d and mass 
0 

ratio µ) on the amplitude of vibration. 

The experimental studies that were conducted with a mechanical 

model are described. and their results interpreted in Chapter·2. The 

theoretical results obtained numerically and their comparison with the 

experimental ones are to be found in Chapter 3. Discussion of the 

results and conclusions drawn therefrom are given in Chapter 4. 

The derivation of the equation of motion of the system and its 

steady state solution between impacts is included in Appendix I. Using 

this result the resulting motion of the system after any impact has been 

obtained by numerical method. A detailed procedure of this, following 

the method suggested in reference (6), is outlined in Appendix II. 



2. EXPERIMENTAL STUDIES 

2.l Introduction 

This study .was carrie~ out in order to obtain 

a) a physical insight of the phenomena that occurs when a non-linear 

system provided with an impact vibration absorber is subjected to a 

sinusoidal excitation, 

b) to evaluate the efficiency of the system as a vibration absorbing 

device, 

c) to study the effect of parameter variation (viz. d and µ) on the 
0 

amplitude response of the system, 

d) to get an idea of the design problems that may be encountered in the 

actual construction of such a device. 

2.2 Mechanical Model 

Figure 1 shows a mathematical model of the system. It is 

well-known that the qualitative response of a single degree of freedom 

oscillating system is not altered if the excitation is applied to the 

foundation (i.e. at which the oscillating system is resting). 

instead of directly to the mass. Therefore, for the sake of convenience 

the former type of excitation was adopted. A schematic diagram of this 

mechanical model is shown in Figure 2. The photograph of test rig and 

actual model is shown in Figures 3 and 4 respectively. 

Here the main mass M was a rectangular box-like thing, comprising 

- 4 -
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a base plate, two L-channels and two rigid stops, inside which the 

frictionless mass particle can oscillate. The mass particle used in 

this case was a hardened steel ball that is usually used in ball

bearings. The stops upon which ball made collission were of mild steel 

but had been case hardened so as to obtain high coefficient of 

restitution. 

The introduction of non-linearity (bi-linear in this case) in 

the spring stiffness of the system was achieved by using a sliding guide 

block having two symmetrical rectangular holes. Inside each of these 

holes was another rectangular block having a slit of necessary dimensions. 

There were ample clearances between the inside dimensions of the 

rectangular holes in the main block and the outside dimensions of the 

smaller blocks so that the smaller blocks can be fixed in a proper 

position by means of screws in order to obtain exactly the same stiffness 

for both positive and negative directio'n motion of the primary system. 

The main block can slide (concentrically) in a vertical axis o~er a 

rectangular beam, which is rigidly fixed to the foundation and can be 

fixed at any.desired height, thus giving flexibility in choice of spring 

stiffness. 

The foundation (which rested on two spindle comprising four 

wheels, ball-bearings in this case and was made to roll over two rails) 

was set to excitation by an electromagnetic shaker, and the relative 

motion between the foundation and the mass M was monitored by means of a 

capacitance transducer, the output of which was displayed on a cathode

ray-oscilloscope, and measurements were made from its trace height. 

Among the difficulties which were encountered as far as proper 
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operation of the mechanical system is concerned, the major one was, above 

·a certain value of excitation force the system started giving rocking 

motion (a motion about a lateral axis) within a certain frequency range. 

This was overcome by shifting the point of application of excitation to 

a higher position than that it originally was. 

The experiments were performed with no ball (this gives the 

~esponse characteristic of the system without a vibration absorber) and 

with ball sizes of diameter 5/811 , 3/411 , 7/811 , 1 11 , 1 J/811 , 1 J/411 , 1 3/811 

and 1 1/211 and with various clearances. The result of no ball experiment 

is shown in Figure 5 together with its theoretical equivalent. 

In order to gain some knowledge of the effect of parameter 

variation (d and µ) on the response characteristic of the system, 
0 

experimental work was divided into two parts: 

a) experiments, keeping ball size constant and varying clearances (this 
d 

gives a measure of the effectiveness of gap factor, Ao ) • 

b) experiments, keeping clearanc·e the same and varying ball sizes (this 

gives a measure of effectiveness of mass ratioµ). 

2.3 Experiments with Same Ball but Different Clearances 

These experiments were performed with balls of diameter 5/811 , 

3/411 , 7/811 , 111 , 1 J/411 and 1 1/2" and for seven to ten different 

clearances in each case. A sample of such results with l" diameter 

ball for 4 different clearances is given in tabular form in Appendix III. 

A summary of experimental results (i.e. the maximum amplitude obtained 

with a ball for a certain clearance within the frequency range under 
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cpnsideration) for each of these tests is given in Appendix IV .A. 

In Figures 6 - 11 a few of the test results with different balls 

and 2 - 3 different clearances have been plotted and these show ampli-

tude response of the system. From these plotted results it is seen that 

the clearance (or gap factor) has an appreciable effect on amplitude 

response of the system. 

against 

Figure 12 in which 
d . 

(A0 ) for different 

amplitude ratio (-Ax) has been plotted max 

balls summarises the experimental results 

thus obtained and gives a more clear and convincing picture of effective-

ness of gap factor on amplitude of vibration. Figure 12.1 shows a curve 

of optimum design parameters, the data for which was obtained from 

Figure 12. 

2.4 Experiments with Same Clearance but Different Balls 

These experiments were performed for three diffefent clearances 

(d = 0.351, 0.403, 0.500 inch) with six to seven different balls. The 
0 

response curves for each of these with two different ball sizes are 

shown in Figures 13 - 15. A summary of experimental results (i.e. 

maximum amplitude for a particular configuration within the frequency 

range under consideration) obtained from each of these tests· are 

tabulated in Appendix IV.B. These results are plotted in Figure 16 as 

amplitude ratio (-Ax) against mass ratio µ and show (for a particular max 

clearance) the effectiveness of mass ratio on the amplitude response of 

the system. 
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3. THEORETICAL STUDIES 

3.1 Steady State Motion of the Primary System Without Impact Vibration 

Absorber 

Steady state motion of such a system has been obtained in 

Appendix I (eqns. (I.7) and (I.24). This is given by 

x = A sin (wt - '/') ( 3 .1) 

where A and l/' can be evaluated from 

(3.2) 

and 

respectively. 

The values of A and '/' for different excitation frequency w and 

known parameters (viz. 1S_, K2, x1 , p1 , d and F) were calculated and is 

tabulated in Appendix V, (Table V.1) (see programme - 1 in Appendix - X). 

Amplitude response of the system with varying frequency is 

plotted in Figure 5 (labelled theoretical). On the same graph corres-

ponding experimental results have also been plotted for comparison 

25 
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purposes. It should be noted here, that the value of 'd' (i.e. damping 

factor) as determined experimentally from the time history of free 

vibration of the system was found to be equal to 0.01854. With this 

value of d resonance amplitude of the system (shown in Figure 5 

labelled theoretical - d = 0.01854) was infinite and asymptotic to the 

backbone curve. But since the structural damping increases with 

amplitude of vibration, experimentally determined 'd' (which was carried 

out for small amplitude of vibration), did not give correct information. 

For this reason a more widely used value of 'd' (= 0.045) for 

structural damping was used. And the amplitude response curve of the 

system using this value of 'd' is shown in Figure 5 (labelled 

theoretical - d = 0~045). 

3.2 Resulting Motion of the Primary System With Impact Vibration 

Absorber 

In Appendix II, it has been shown that the motion of mass M and 

m during the time interval from t. 
J. 

+ 
(i.e. the time immediately after 

ith impact) to the time immediately preceding next impact t(i+l) can 

be described by 

x:: A sin(wt -f) 

y = -x + Cx. + y.) + Cx. + y.) Ct - t 1.) J. J. 1 1 ( 3.4) 

where 

and the following relationships which were obtained from impact 

conditions: 



x(t(i+l) ) 
+ 

= x(t(i+l) ) 

d 
y( t(i+l) ) = y(t(i+l) ) lyl = ....2. 

2 + 

[ (l+e) J (3.5) 

:X:< t < i+1) ) = X:<t<i+1) ) + µ l+µ y(t(i+l) ) 
+ 

y( t( i+l) ) 
+ 

= -e y( t(i+l) ) 

can be used in eqn. (3.4) as new initial conditions in the time domain 

from t(i+l) to t(i+2) • This process, when repeated over and over 
+ 

again, would give time behaviour of the system. 

A digital computer programme to find the 'exact' sequence of 

the initial conditions from (3.5) and the resulting motion of the system 

according to (3.4) for any given set of parameters and "initial" 

initial conditions was written in FORI'RAN IV language and was executed 

by an I.B.M. 7040 digital computer at the Computing and Data Processing 

Centre of McMaster University (see programme - 2 and 3 in Appendix X). 

Among the basic features of the programme, the following ones 

are worth mentioning. 

a) The right hand side of equation (3.4) was evaluated for t = t. + 
J.. 

(K-1)/100 (Initial values of t. and K were taken to be zero and 2 
J.. 

respectively) with K increasing by 1 each time until the quantity 
d 

<2° - I y I ) became negative. 

b) When condition (a) was satisfied, then starting with this value of 

(13) 
t, Newton-Raphson method was applied to find t(i+l) for which 
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With this value of t for which condition (b) was satisfied (which 

consequently represents the time at which impact took place), x, y 

(from eqn. (3.4)); x (from x = w A cos(wt - ~)), and y (from 

y = -x + y. + x., eqn. (II.14»were evaluated and, substituting these in 
1 i 

the right hand side of eqns. (3.5), new initial conditions were 

obtained. With these new initial conditions the cyclic process was 

repeated again. On repeating this cyclic process over and over again, 

a time behaviour of the system was obtained. A typical digital computer 

output is shown in Table V.2, in Appendix V. 

In Figures 17, 18 and 19, theoretical amplitude response curves 

of the system with and without an absorber have been drawn. In Figure 

18, a corresponding experimental curve of the system (with absorber) 

has also been superimposed. 
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4. DISCUSSION AND CONCllJSION 

~.l Discussion of Results 
I 

If amplitude response curves of an undamped non-linear system 

with different excitat~on parameter be drawn, then, from stability 

analysis of the system, it can be shown that the region bounded by the 

backbone curve (i.e. the curve corresponding to zero excitation) and 

the loci of points at which the response curves (for different exci-

tation parameters) have vertical tangent is unstable. For a damped 

non-linear system the unstable region is bounded by the locus of 

vertical tangents to the families of constant excitation curves. 

In Figure 5, from the experimental re~ponse curve of the system 

(which corresponds to a constant excitation parameter) it can be seen 

that during frequency increase the amplitude became as large as 0.1906" 

at w = 9.5 c/s and almost at the same frequency it suddenly dropped 

down to 0.03511 and went on decreasing as excitation frequency was 

increased. On reversing the process from this region (i.e. in decreasing 

w slowly), amplitude started growing up slowly until it reached about 

0 .10611 at w = 8.2 c/s and then it suddenly went up to 0.13611 at the 

same w. This sudden fall and rise in amplitude Cat the same frequency) 

is known as the 'jump phenomenon' and is associated with a non-linear 

systems and this occurs when response curve corresponding to a certain 

excitation parameter approaches the unstable boundary. If the system 

under consideration operates in any of the stable regions bounded by 

- 36 -
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two imaginary vertical lines through the dotted ones, in Figure 5, a 

very small accedental unsteadiness or extraneous disturbance may readily 

bring the system over the instability thr'eshold into the unstable 

region and ultimately to a stable region, other than the one in which 

it initially was. 

In Figure 5, the experimental curve drawn in conjunction with 

the theoretical one shows a good agreement between theory and experi-

ment. 

In Figures 6 - 11, experimental amplitude response curves of 

the system provided with an impact vibration absorber have been plotted. 

Each one of these figures contains about 3 curves and .each of them 

represents the system response for one parameter variation of the 

absorber namely gap factor. 

From these graphs one can obtain the information regarding, if 

introduction of an absorber has any effect on resulting motion of the 

system, whether the introduction of such a thing results in an increase 

or decrease in the resulting motion and,. if ·any, what effect one might 

expect if one of the parameters (gap factor in· this case) of the 

absorber is changed.· 

For instance, in Figure 6 where the amplitude response of the 

system provided with an ~bsorber (having 5/811 dia. ball) has been 

plotted, shows that the maximum amplitude for the system for d = .423" 
0 

was .189311 and for d = 1.019" was .169811 in comparison to .190611 with 
0 

no absorber. It should, however, be noted that although the absorber 

with d0 = l .• 019" reduced the maximum amplitude to a greater extent in 

comparison to the one having d = .423", the later one (d = 1.019") 
0 0 



is less efficient below w = 7 c/s, because due to bigger length of 

travel the absorber did not come into operation until the primary 

amplitude of the system reached a certain value. 

The small humps in the response curves as seen in Figures 8, 9 

and 10 are the result of the impact vibration abosrber's sudden coming 

into operation associated with reduction in amplitude. 

Figure 12, in which the maximum amplitude ratio against gap 

factor has been plotted, shows the effect of gap factor on maximum 

amplitude of vibration of the system. It is seen that with a particular 

absorber an increase in gap factor from its lowest value was accompanied 

by a decrease in amplitude ratio of the system at first until a certain 

optimum value was reached, after which an increase in gap factor resulted 

in an increase in amplitude ratio. For instance, with 3/411 dia. ball 

absorber an optimum value of amplitude ratio = .82 was obtained for a gap 

factor = 5. Any increase or decrease in gap factor from this value 

resulted in an increase in ~mplitude ratio. For l 1/2" dia. ball no 

optimum value was reached. From these curves it is also seen that the 

bigger the mass of the absorber the more effective is the device. This 

point will be raised again when the effect of mass ratio will be investi

gated. 

The experimental points on extreme right hand of these curves 

represent the points up to which the system was stable (stable in the 

sense that the motion of the ball was regular).· Any further increase in 

gap factor resulted in an irregular motion of the ball and amplitude did 

not remain constant. 

Figure 12.l gives information regarding the choice of parameters 
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for optimum design of the system. Figures 13 - 15 give information 

regarding the effect of absorber mass on the resulting motion of the 

system. In these figures it is seen that at low excitation frequency 

amplitude of vibration of the system with. an absorber of bigger mass was 

larger than that with.the one of lower mass having the same clearance. 

The explanation for this is that with an absorber of bigger mass the 

effective mass of the system increased considerably and thereby decreased 

the natural frequency of the system, whereas for an absorber with smaller 

mass the natural frequency of the system remained unaffected. Now taking 

a simple linear case, where motion of the system is given by 

[ 1 _ ~J 2 
+ 4 a 2 w 2 = ·[ L ] 

2 

P 2 p 2 K1A 
1 1 

where p1 is the natural frequency of the system, it can be shown that if 

A is the amplitude of vibration of the system having natural frequency pl 
1 

for a certain excitation frequency w and A is .the amplitude of a system 

~aving slightly different natural frequency p1 at the same w, where p1 
' 1 1 

<p1 , then A > A for w <p1 and A <A for w> p1 • Thus it is obvious that 

. unless the effect of impact nullify this effect then introduction of an 

absorber with a bigger mass would be of no advantage at low frequency 

range. But it is seen that with an absorber of a bigger mass maximum 

amplitude attained by the system is less than that attained with an ab-

sorber of lower mass. The discontinuous horizontal line in Figure 14 

indicates unstable region. 

Figure 16 shows· the effect of mass ratio between the absorber and 

the primary mass on the maximum amplitude attained by the system. These 

show that an increase in mass ratio resulted in decreasing the 
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amplitude ratio of the system. Though the curve with c learanc c d = 0. 351" 
0 

was approaching towards an optimum, from the present study it can not be 

said definitely that such an pptimum mass ratio exists, since the 

investigation was not carried out beyond the extreme right hand point for 

this case, and for other cases viz. with d = 0.40311 and 0.50 11 further 
0 

increased in mass ratio resulted in an unstable motion. 

If a horizontal line is drawn through these curves then the 

intersection points would give the design parameters for three different 

absorber systems which will produce the same amplitude reduction of the 

system. For instance each of the following absorbers having different 

parameters ( 1) µ = O.C555, d = 0.351 11 (2) 
0 

µ = 0.04925, d = o.403 11 
0 

( 3) µ = 0.0435, d = 0.5011 would give a maximum amplitude ratio of 
0 

Figures 17 - 19 show th.eoretical response curves (obtained 

numerically by direct step by step construction of the time behaviour of 

the system) of the system with an absorber in conjunction with the one 

with no absorber. In Figure 18, the corresponding experimental curve 

has also been superimposed, from which it is observed that the agreement 

between theory and experiment is good. The discrepancy which is seen in 

the amplitude range from .0811 to .1111 might have arisen due to some 

misalignment in the guide block which introduced non-linearity in the 

cantilever type leaf springs during the course of investigation (it may 

be recalled here that initially the model was so adjusted that the 

stiffness K2 came into play when x1 was equal to .10411). 

It should be mentioned here that with an absorber having l" dia. 
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ball and clearance d = 0.31011 , maximum amplitude attained by the system 
0 

as given by experiment was 0.1696 11 , while with the same absorber 

theoretically obtained stable (stable in the sense that symmetric 2 

impacts per cycle motion existed) maximum amplitude was only 0.1302 11 

at w = 7.8866 c/s. However, unsymmetric but stable maximum amplitude 

recorded was as high as .189 11 , or more precisely an oscillating value 

between .179 11 and .18911 • 

In Figure 19, theoretical behaviour of the system with an 

absorber having l 1/411 dia. ball and clearance d = .21011 has been 
0 

shown. Experimentally the system was found to be stable throughout the 

frequency range under consideration and the maximum amplitude attained 

by the system was .1657 11 • Theoretical results predicted that symmetric 

2 impacts per cycle stable motion was possible until the amplitude of 

the system became 0 .093511 , after which unsymmetric but regular motion 

became predominant and such a motion maintained until the maximum 

amplitude reached was 0.15311 • After this the motion became irregular 

and gave no consistent record of amplitude. 

In Figures 20, 21, 22 and 23 ·theoretically obtained amplitude 
x 

ratio max (see computer programme· no. 4 in Appendix X) has been plotted 
Ad 

against -;?- each for one fixed frequency. In these curves only those 

solutions have been plotted which.predicted the stable motion of the 

system (stable in the sense that symmetric 2 impacts per cycle motion 

existed), and they have been referred as 'stable solution curve'. 

These curves give .information regarding the stability of the 

system with a particular absorber at a certain operating frequency. For 

instance Figure 20 predicts that if the system having mass ratio 
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µ = 0.03770, be operated at an excitation frequency of w = 7.5991 c/s, 
d 

the system will remain stable if the parameter Ao (this is proportional 

to the clearance d0 ) is kept, within the range 3.077 - 12.3. In the same 

way .F'igures 21, 22 and 23 can also be interpreted. 

By obtaining the stable solution curves for the entire operating 

frequency range (4 - 11 c/s for the present case) and for various mass 

ratios µ, one can obtain the stability boundaries of the system (a plot 
d 

of Ao against w), which will then give ready answer to, if the system 

parameters chosen for a particular system would give rise to a stable 

motion of the system. 

In the present analysis stable solution curves for only four 

isolated frequencies and for a single mass ratio were obtained, so no 

attempt had been made to construct a stability boundary curve. In 

reference (6) on page 72 such a curve had been drawn for a linear system. 

Finally, an endeavour was made to obtain the solution of the eqns. of 

motion of the system by Runge-Kutta method(l4). Here, the two basic 

simultaneous equations of motion of the primary system and the mass 

particle in the absorber system were solved by the numerical method just 

mentioned by starting the solution with given initial conditions and 

then imposing new initial conditions (obtained from impact conditions) 

after each impact. Although this method failed to give any solution in 

the frequency range where multivalued solution is possible, the solutions 

given by this in other frequencies agreed with the one obtained by 

other numerical method within 'J1,. 



4.2 Conclusion 

As a result of the present investigation the following 

conclusions can be made. 

1) An impact vibration absorber is capable of reducing the vibration 

level of a non-linear oscillating system, and the degree of its 

reduction is dependent on system parameters. 

2) Usually, but not necessarily, the bigger theµ (i.e. mass ratio 

between the absorber mass and mass of the system whose amplitude is 

being reduced) the more reduction in amplitude is obtained. 

3) For a system with an absorber where µ is fixed., an increase in gap 
d 

factor (A0 ) of the absorber ~ight result in more reduction of amplitude 

of the system, provided that the original combination of system 

parameters was not an optimum one. 

4) Like viscous damper, the impact vibration absorber is less effective 

in reducing below-resonance and above-resonance vibration levels, but is 

very effective in reducing vibration level of the resonance-amplitude. 

5) Although for some parameters for which symmetric 2 impacts per cycle 

motion was not stable (as predicted by computer results), stable periodic 

motion with unsymmetric but regular impacts was found to exist. 

6) Even for extreme cases, where no PElriodic motions were found to 

exist, the absorber was often effective in reducing vibration levels. 

7) Usually the absorber is not very sensitive to slight changes in 

parameters. 

8) Since it is the resulting amplitude rather than the stable periodic 

motion that is of prime interest for practical application, impact 
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vibration absorber fulfilled its role as a vibration absorbing device in 

disorganizing the orderly process of amplitude build-up. 

In the present study the effectiveness of an impact vibration 

absorber on a non-linear system which was·subjected to a sinusoidal 

excitation has only been investigated. Other problems of interest which 

warrant investigation are to determine its effectiveness on a randomly 

excited non-linear system and also on the same type of system which is 

subjected to a pulse-like excitation. The former investigation 

presumably would be better tackled by statistical means. 

Regarding its application it offers a tempting choice in a 

system where a dynamic vibration absorber is practicable, because while 

the requirements of a tuned absorber must be met exactly, the effective

ness of an impact vibration absorber is relatively insensitive to system 

parameters. Installation of such a device in the structure of a 

television receiving antenna can reduce the vibration level caused by 

von Karman vortices and thus prevent fatigue failure of the structure. 

Helicopter vibration can ·also be controlled by installation of such a · 

device. 



APPENDIX - I 

Equation of Motion of the Primary System 

Between Impacts and Its Steady State Solution 

A non-linear differential equation may be represented in the 

form 

(I .1) 

in which the restoring force function f 2(x) and the damping force 

function f 1(x) are non-linear odd functions of the displacement and of 

the velocity, respectively. In other words, -f2(x) = f 2(-x), and 

-f1(x) = f 1(-x). Dividing through by Mand substituting a sinusoidal 

force F sin wt for f 3(t), the differential equation becomes 

E[x] .. lf(') lf'() lF. - x + - x + - x - - sin wt - o - M 1 M 2 M - (I .2) 

An approximate solution of (I.2) can be assumed consisting of n 

appropriate terms and denoting it by x, it can be represented by 

• + a ¢ (t) 
n n 

(I .3) 

In this case, E[x] will be different from E[x], and therefore 

E[x] will be different from zero. Since x is not an exact solution E[x] 

will vary from instant to instant, but over an arbitrary duration of 
. . 

time T it will be possible to demand that each of n weighted averages of the 

'expression E[x]must vanish. In mathematical language this means that 
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JOT 
E[x] ¢1 (t) dt = O, 

E[x] ¢ (t) dt = 0 (I.4) 
n 

This will yield n algebraic equations from which the coefficients 

a1 , a2 •. •.,an can be found and under these circumstances the 

approximate solution for x will be the best obtainable in the n term 

chosen. .Th" . k ·R·t · "t · (ll) is process is nown as i z averaging cri eria • 

In order to solve the differential equation (I.2), the Ritz 

2n averaging criteria may be expressed for the duration T = -;; 1 or 

equally well for the angle of 2rt radians, as follows, 

E[x] cos wt d(wt) = 0 (I.5) 

E[x] sin wt d(wt) = o (I .6) 

Now let us a~sume a two-term approximation for x in the solution of 

(I.2), that is 

. x = A sin (wt - 'r) (I.7) 

hence, 

-:ic = wA cos (wt - 'f') (I .8) 

and, 

i = -w2 A sin (wt - If) (I.9) 

Substituting the approximation (I.7), and hence (I.2) into (I.5) 

yields 

46 
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2 fo2n -w A . 
0 

sin(wt - t) cos wt d(wt) 

+ 1 (2n 
M Jo f 1 [ w A cos(wt - 'f)] cos. wt d(wt) 

1 (2n 
+ M Jo f 2 [ A sin(wt - ~) ] cos wt d(wt) 

.,, (2n 
- ~ Jo sin wt cos wt d(wt) = 0 (I .10) 

If now a new angular. variable a = wt - f be introduced so that do = d(wt) 

and cos wt= cos(a + r), then (I.10) becomes 

2 i2n -w A 
0 

1 (2n 
sin a cos(a + 'f) do+ M}o f 1(w A cos a) cos (a+~) da 

1Jo2n FVo2n + M f 2(A sin a) cos (a + t) da - M 
0 

sin wt cos wt d(wt) = 0 
0 . 

On expansion this gives· 

2 io2n -w A sin a (cos a cos 'f- sin a sin If) do 
0 

. 1: /2n 
+ M)o f 1(w A cos o) (cos a cos~ - sin o sin~) do J 

+ 1Vn2n f (A sin a)(cos a cos w - sin o sin~) do 
M 0 2 I T 

= 0 

On partial evaluation of integrals, the above equation results into 
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f 2(A sin o) sin a do = 0 

Rewriting this gives 

n: 
2 sin 1 !±_ i2 f 1(wAcos a) COS 0 dO -w 'I' - M cos 'f' rt A 

0 

1t 

1 sin '!__ i2 f 2 (A sin a) sin 0 dO 0 + - 'I' = M rt A 
0 

(I .11) 

or, 

2 1 . 1 
~w sin f --M G(A~w) cos 'f' + M H(A) sin 'f' = 0 (I.12) 

where 

n; 

G(A,w) = '!__ !2 f 1(w A cos o) cos o do nA 
0 

n; 
(I .13) 

H(A) = '!__ 12 f 2(A sin a) sin 0 dO 
rt A 

0 

Similarly substituting the approximation (I.7) in (I.6) and proceeding 

in the same manner as before would give 

2 i· 1 
-w cos '(; + M G(A,w) sin If + M H(A) cos '/' = 

Rewriting (I.12) and (I.14) gives 

[ -w2 + ~ H(A) ] sin If - ~ G(A,w) .cos '/' = 0 

[ 2 1 J 1 -w + M H(A) cos '/' + M G(A,w) sin '/' :: 

Squaring these two and adding gives 

F 
MA 

F 
MA (I .14) 

(I.15) 

( I.16) 
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[ i 2] 2 i 2 2 - [LJ 2 M H(A) - w + (M) G (A,w) - . MA (I.17) 

and from (I.15) an expression for tan~ can be obtained. 

tan <f' = 

-= 

t 

1 M G(A,w) 

1 2 - H(A)-w 
M 

(I.18) 

x 

x = Spring extension 

R = Restoring force 

'Fig. I.l: Spring restoring force versus 
K1 , K2 = Spring stiffness 

spring extension curve 

From the above figure it is seen that for the problem under 

consideration the restoring force function f 2Cx) can be represented by 

f2(x) = Kl x for o< Ix~ < xl 

and (I.19) 

.Ii'or region l ( o <!xi < x1 ) , H(A) can be evaluated from (I.13) 

1t 

4 ( 2 2 
H(A) = 1tAj~ K1(A sin a) do 

0 



on evaluating this integral gives 

H(A) = Kl 

For region 2 ( x1 < I x I ) , H( A) is evaluated as follows: 

now, 

4 rn/2 
H(A),,; nAJo f 2(A sin o) sino do 

Evaluating these integrals and rearranging gives 

2 H(A) = ;: (e1 

x = A sin o 

and when 0 = el, x = xl 

Hence, 

sin el 
xl 

= A 

and [1 x1 2 J 1 
2 cos e1 = (-) 

A 

x 
Substituting sin e1 for (Al) in (I.20) gives 

(I.20) 

(I.21) 



51 

H(A) 

Substituting values for e1 , .sin e1 and cos e1 in this expression, 

H(A) can be written as 

r x 2] 1 - c/i (I.22) 

It is assumed that damping force does not change during a cycle. Hence, 

f 1 (x) = c x 

G(A,w) = i..1~ nA 
0 

c(w A cos a) cos a do . 

on evaluating the above integ~al the following is obtained 

G(A,w) = cw (I .23) 

Now substituting for H(A) and G(A,w) from (I.22) and (I.23) respectively 

into (I.17) yields 

[ K2 + £ Kl-K2 ( c:1> j 1 _ 
x1 2 ) r . ..;1 xl 2 

M 
(-) + sin (p:-) - w M n A 

- 2 
2 

[~] + (~) = (I .24) 
M 

c b 
Let M = 2b and d = 

d is called damping factor or ratio of critical damping. 

d c 
= 2Mpl 

or, 

(I.25) 



Substituting this value for~ in (I.24) gives 

[ :2 + ~ ( \K2) ( ( ~l) J l _ ( :1;) _ w2 J 2 

+ (2dplw)2 = [ ~ r 
4 . 

dividing this by p1 , ultimately gives 

4 2 2· d w 
+ 2 = 

pl 

52 

(I .26) 

Also substituting proper values in (I.18) and rearranging, tan r can be 

written as 

. . .(I.27) 



APPENDIX - II 

II-A Numerical Method for Determining Amplitude Response 

of the System After Any Number of Impacts 

It is assumed that the duration of impact is very small so that 

the assumption at t = o (+ sign represents the state, immediately 
+ 

after impact and - sign represents the state immediately preceding the 

impact), the positions of Mand m remain the same while the respective 

absolute velocities are discontinuously changed from x and V m (i.e. at 

t = o ) to x and V is justified. 
+ m+ 

That the system does so has been 

verified experimentally as far as the positions of M and m are concerned, 

but there are enough evidences to believe (from the work of other 

investigators in this field, though for linear cases) that same is true 

for the case of velocities too (see references (3), (6)). 

In Appendix - I, steady state motion of the system between 

impacts has been obtained.by using Ritz averaging method(ll). Since 

the motion of the system during impact must satisfy the momentum 

equation, then 

Mx + mV = Mx + mV 
m + m 

(II.l) 
+ 

and from the definition of coefficient of restitution e(l2) the 

following relation is obtained, 

x - v = -eC:X: - v ) 
+ m m (II .2) 

+ 
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http:obtained.by


Dividing (II.l) by M and substituting µ for ~ gives 

x + µ v 
m 

= x + µ v 
+ m+ 

(II.2) can be written as 

e x - e V = -i + V m + m 
+ 

Adding ( II.3) and (II .4) gives 

or, 

(l+e)x + (µ-e) v = (l+µ) v m m 

+ (~) v 
l+µ m 

+ 

Substituting this value of V into (II.2) gives 
m-

or 

x = ( l+e) x 
+ l+µ 

x = (1-µe) x 
+ - l+µ 

+ 

. (~) v - e x + l+µ m 

+ µ(l+e) V 
l+µ m 

+ e V 
m 
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(II.3) 

(II.4) 

(II.5) 

(II .6) 

Again substituting this value of x into (II.3) an expression for x in 
+ 

terms of variables V and V can be obtained. This is m m 
+ 

(e-µ)V + (l+µ)V m _ m 
+ x = ~~~~(~l-+-e~)~~~ (II. 7) 

Finally, an expression for x in terms of variables V and V can be 
+ m m 

I + 
obtained by substituting the value of x- from (II.7) into (II.6). 

This gives 
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e(l+µ)V + (1-µe)V m m 
+ 

(l+e) (II .8) 

To summarize, impact condition must satisfy the following 

relations: 

v 
m 

+ 

. 
x = + 

x = 

. 
x = + 

= ( l+e) 
l+µ x + (~)V l+µ m (II.5) 

-
(1-µe) . µ( l+e) v (II.6) x + l+µ l+µ m 

(e-µ)V + (l+µ)V 
m m 

+ 
(l+e) (II.7) 

e(l+µ)V + (1-µe)V m _ m 
+ 

(l+e) <ri.8) 

Recalling the mathematical model in Figure 1, its equation of 

motion between impacts is 

y == -x * 

(II.9) 

(II.10) 

where f 1(x) and f 2(x) stand for the damping force and spring force 

respectively. 

If immediately after the ith impact at t = 

variables assume the values 

x( t. ) = 
J.+ 

x. ; 
J. 

y( t. ) = y. ; 
J. + J. 

x< t. ) == x. 
J. + J. 

t. the following 
J. 

y(t. ) = Yi (II.11) 
J.+ 

then the motion of Mand m during the time interval from t. to the 
J. 
+ 

time immediately preceding the next impact can be said to be given by 

* See Appendix II-B for derivation. 
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x = A sin(wt - tp) 

y = -x + Cx. + y.) + (x. + y.) Ct - t 1.) 

(II.12) 

(II .13) 
l. l. l. l. 

It should however, be noted that x as given by (II.12) which 

was obtained by using Ritz averaging method in Appendix - I is not a 

complete solution of x, since it does not take into account the 

transients and gives only the steady state solution. However, for the 

present analysis, this approximation is justified. 

The solution of (II.10) was obtained in the following way, 

y = -X 

applying initial conditions from (II.11) 

y = -x + Yi + xi (II.14) 

again applying initial conditions from (II.11) 

y1. = -x. + (y. + x.)t, + A2 1 1. l. l. 

Hence, 

y = -x + Cy. + x.)t + y. + x. - Cy. + x.)t. 
l. l. l. l. l. l. l. 

In order to obtain time behaviour of the system it is necessary 

to know the values of the variables in equations (II.12) and (II.13). 

The values of A and t are obtained from eqns. (I.26) and (I.27) in 
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Appendix - I. The other values can be obtained from impact condition. 

Equation (II.6) gives the relationship between x , x and V , 
+ m 

that is 

x = (l-µe)x + ~ v 
+ l+µ - l+µ m (II.15) 

but 
. 

(see Figure 1) v = y m l 

and Y1 = y + x 

. . v = y + x . . m 
(II .16) 

Substituting this value of v in (II.l ) gives m 

x = ( 1-µe) µ+µe . + µ+µe x +-- x y + l+µ - 1+µ - l+µ -
Simplifying gives 

. µ(l+e) 
x = x + l+µ y 

+ - - (II.17) 

Also (II. 2) gives 

. 
y = -e .y 

+ -
(II.18) 

The impact condition at t(i+l) 
.. gives 

+ 

x( t(i+l) 
+ 

) = x( t(i+l) ) 

d 
y( t(i+l) ) = y( t (i+l) ) 

Jyl = .....Q. 
2 + 

x<tci+1) ) :X:< tci+1) ) + [ µ(l+e) J 
Y<t(i+l) ) = (l+µ) 

+ 

(II.19) 

y(t(i+l) ) = -e y(t(i+l) ) 
+ 
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Conditions (II.19) can now be used as new initial conditions in 

equations (II.12) and (II.13) for the time interval t(i+l) to t(i+2) • 
+ -

This process can be repeated, over and over again so as to obtain the 

time behaviour of the system. 

II-B Derivation of Equation of Motion 

of the Mass Particle 

Equation of motion of the mass particle can be obtained by using 

La ' t . ( 16) h. h t t grange s equa ion , w ic s a es 

( r = 1, 2, • • • n) 

where T = kinetic energy of the system 

V = Potential energy of the system 

q = Generalized co-ordinates 
r 

(II.20) 

Q = Generalized forces at q which do not have potential. 
r r 

Now, kinetic energy of the particle is given by 

1 • 2 
T = 2 m Yi 

d 
dt 

('CT) ·• m(y·· + x"") ayl = myi = 

since Yi= y + x (see fig. 1). 

(II.21) 

(II.22) 

Since Q = o for the present case then substituting proper values 

into eqn. (II.20) gives 

m(y + x) = 0 

y = -x (Il.23) 



APPENDIX - III 

Experimental Results with 1 11 Diameter Ball 

and Different Clearances 

Table III.l Clearance d = 0.190 11 
0 

Excitation Single amplitude 
frequency of vibration 
w cycles/sec. x in. 

frequency increasing 

4 .039 

4.4 .037 

4.8 .042 

5.0 .044 

5.2 .0465 

5.4 .049 

5.6 .053 

5.8 .056 

6.0 .06 

6.2 .065 

6.4 .07 

6.6 .07 

6.7 .074 

6.75 .082 

6.8 .095 

6.9 .104 

7.0 .109 

- 59 -

w 
cycles/sec. 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 

7.8 

7.9 

8.o 

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

x 
in. 

.114 

.116 

.12 

.125 

.126 

.129 

.133 

.135 

.138 

.1405 ' 

.146 

.148 

.154 

.156 

.158 

.161 

.164 
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4able III.1 (contim.,\ed) 

w x w x 

8.8 .169 

8.9 .1735 

9.0 .177 

9.1 .185 9.2 .039 

9.15 .187 9.1 .042 

9.2 .039 9.0 .044 

9.3 .036 8.9 .047 

9.4 .034 8.8 .051 

9.5 .032 8.7 .054 

9.6 .031 8.65 .052 

9.7 .028 8.6 .055 

9.8 .027 8.5 .058 

9.9 ~026 8 .• 4 .• 063 

10.0 .025 8.3 .069 . 

10.2 .0225 8.2 .076 

10.4 .021 8.1 .08 

10.6 .02 8.o .098 

io.8 .018 7.95 .137 

11.0 .016 7.8 .135 

frequency decreasing hereafter gave the same 

11.0 .016 amplitude as during w 

gave same amplitude as increasing. 

during w increasing 
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Table III .·2 Clearance d 
0 

= .33011 

w x w x 
c/s in. c/s in. 

frequency increasing 

4.4 .0378 7.6 .129 

4.8 .0404 7.7 .133 

5.0 .0424 7.8 .1358 

5.2 .0444 7.9 .137 

5.4 .047 8.o .1422 

5.6 .0501 8.1 .146 

5.8 .0535 .8.2 .1475 

6.o .0574 8.3 .1514 

6.2 .0621 . 8.4 .1528 

6.4 .0652 8.5 .1566 

6.6 .0678 8.6 .159 

6.7 .073 8.65 .158 

6.75 .0804 8.7 .162 

6.8 .0856 8.8 .0535 

6.85 .0878 8.9 .0483 

6.9 .1044 9.0 .0456 

7.0 .1096 9.1 .04175 

7.1 .1135 9.2 .0378 

7.2 .1174 9.4 .0352 

7.3 .12 9.6 .0313 

7.4 .124 9.8 .0282 

7.5 .1266 10.0 .0256 



Table III .2 (continued) 

w x 
c/s in. 
frequency increasing 

10.4 

10.8 

.02155 

.0183 

11.0 .017 

frequency decreasing 

8.8 .0535 

8.7 .0574 

8.6 .064 

8.5 .0705 

8.4 .0782 

8.3 .09 

8.25 .0731 

8.2 .0756 

8.1 .0796 

8.o .09 

7.9 .137 

7.6 .129 

hereafter gave the same 

amplitude as during w 

increasing. 

62 



63 

Table III.3 Clearance d = .,500" 
0 

w x w x 
c/s in. c/s in. 

frequency increasing 

4.8 .0366 7.9 .1358 

5.0 .0392 8.o .1382 

5.2 .043 8.1 .141 

5.4 .0456 . 8.2 .1435 

5.6 .0496 8.25 .1448 

5.8 .0535 8.3 .146 

6.o .0574 8.35 .0861 

6.2 .0652 8.4 .0809 

6.4 .073 8.5 .0718 

6.6 .0784 8.6 .0679 

6.8 .0744 8.7 .06:j.3 

6.9 .0835 8.8 .0561 

6.95 .1044 8.9 .0496 

7.0 .1044 9.0 .047 

7.1 .112 9.2 .0418 

7.2 .115 9.4 .0366 

7.3 .1175 9 •. 6 .0313 

7.4 .12 9.8 .0287 

7.5 .124 10.0 .0261 

7.6 .128 10.4 .0215 

7.7 .131 10.8 .0183 

7.8 .131 11.0 .017 
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Table III.3 (continued) 

w x 

frequency decreasing 

8.4 .081 

8.3 .077 

8.2 .0993 

8.15 .1424 

8.o .1384 

7.0 .1044 
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Table III .4 Clearance = .54211 

w x w x 
c/s in. c/s in. 

frequency increasing 

4.4 .0366 7.6 .1305 

4.8 .0382 7.7 .133 

5.0 .0405 7.8 .136 

5.2 .0418 7.9 .136 

5.4 .0444 8.o .1398 

5.6 .047 8.1 .142 

5.8 .• 051 8.2 .146 

6.o .0575 8.3 .150 

6.2 .0548 8.4 .150 

6.4 .0587 8.4 .0757 

6.6 .0674 8.5 .0692 

6.7 .0752 8.6 .0626 

6.75 .0805 8.7 .0561 

6.8 .0888 8.8 .0522 

6.85 .098 9.0 .0444 

6.90 .1045 9.2 .0378 

7.0 .1084 9.4 .0339 

7.1 .115 9.6 .0313 

7.2 .116 9.8 .0282 

7.3 .118 10.0 .0256 

7.4 .1228 10.4 .0204 

7.5 .1267 10.8 .0185 
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Table III.4 (continued) 

w x 

11.0 .017 

frequency decreasing 

8.4 .0756 

8.3 .0835 

8.2 .0991 

8.15 .1448 

8.10 .1435 

8.o .138 



APPENDIX - IV 

A. Summary of Experimental Results With 

Same Ball Size but Different Clearances 

Table IV-A.l 5" (A = 0.190611 ) Ball diameter D = 8 max 

No. of Clearance Gap factor Maximum Amp. 
observation d inch d Amplitude ratio ·o 0 x in. A (~) 

max A max 

1 .423 2.222 .1893 .993 

2 .700 3.672 .1867 .98o 

3 .797 4.180 .1865 .978 

4 .919 4.820 .1789 .938 

5 1.019 5.350 .1698 .890 

6 1.095 5.750 .1722 .904 

7 1.196 6.275 .1750 .917 

8 1.295 6.80 .1750 .917 

Table IV-A.2 3" Ball diameter D = 4 

No. of d inch d x in. ( 2S) 
observation 0 0 

Amax 
A max 

1 .298 1.564 .1895 .994 

2 .382 2.030 .1880 .986 

3 .513 2.692 .1776 .932 

4 .590 3.095 .1736 .910 

---67 -
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Table IV-A.2 (continued) 

No. of d inch d x in. {~) 
observation 0 0 

A A max 
max 

5 .698 3.665 .1723 .<)04 

6 .762 4.000 .1645 .863 

7 .814 4.270 .1593 .835 

8 .905 4.750 .1567 .822 

9 .• 960 5.040 .1567 .822 

10 1.002 5.260 .1567 .822 

11 1.087 5.700 .1643 .863 

Table IV-A.3 1" Ball diameter D = 8 

No. of d d x (~) 
observation 0 0 

A A max 
max 

l .173 .9075 .1905 .999 

2 .268 l.4o6 .1854 .972 

3 .347 1.820 .1748 .916 

4 .412 2.160 .168o .88o 

5 .503 2.64o .1620 .850 

6 .540 2.832 .1619 .850 

7 .590 3.100 .158o .828 

8 .635 3.330 .1566 .822 

9 .675 3.542 .1579 .827 
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Table IV-A.4 Ball diameter D = 111 

No. of d d x ( !) 
observation 0 0 

A 
A max 

max 

1 .190 .997 .1870 .98o 

2 .265 1.390 .18oo .944 

3 .310 l.627 .1696 .890 

4 .330 1.731 .1620 .850 

5 .• 395 2.071 .154o .8o8 

6 .463 2.430 .146 .766 

7 .500 2.622 .146 .766 

8 .542 2.84 .150 .787 

9 .582 3.05 .153 .8o3 

Table IV-A.5 Ball diameter D = l" 1-4 

No. of d d x (~) 
observation 0 0 

A A max 
max 

1 .066 .346 .188o .986 

2 .150 .787 .1775 .931 

3 .205 1.076 .1657 .870 

4 .264 1.384 .1553 .814 

5 .290 1.521 .1461 .766 

6 .313 1.642 .J.383 .725 

7 .347 1.820 .1358 .712 

8 .381 2.000 .1423 .746 



Table IV-A.6 Ball diameter D = l" 1-2 

No. of d d x 
observation 0 0 

A 
max 

1 .069 .362 .1761 

2 .145 .761 .1568 

3 .196 1.028 .1384 

4 .250 1.311 .1253 

5 .290 1.522 .1149 

6 .312 1.640 .1096 

B. Summary of Experimental Results with 

Same Clearance but Different Balls 

Table IV-B.l Clearance d = 0.35111 
0 

No. of Ball diameter Mass ratio* 
observation D in. m 

µ = "M 

1 5/8 .00822 

2 3/4 .01436 

3 7/8 .0229 

4 1 .0337 

5 1 1/8 .0485 

6 l 1/4 .0668 

7 l 3/8 .0888 

• See Appendix IV.C 

(~) 
A max 

.924 

.822 

.726 

.675 

.6025 

.575 

Amplitude rat~o 
(~) 
A max 

1.0 

.986 

.973 

.896 

.725 

.719 

.688 

70 
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Table IV-B.2 Clearance d 
0 

= o.403 11 

No. of Ball diameter Mass ratio Amplitude ratio 

observation D in. m ( 2S) 
µ = M A max 

l 5/8 .00822 1.0 

2 3/4 .01436 .972 

3 7/8 .0229 .945 

4 l .0337 .876 

5 1 1/4 .0667 .712 

Table IV-B.3 Clearance d 
0 

= 0.50011 

No. of D in. µ ( 2S) 
.observation A max 

1 1/2 .00417 .986 

2 5/8 .00822 .979 

3 3/4 .01546 .951 

4 7/8 .0229 .876 

5 1 .0337 .815 

6 1 1/8 .0485 .725 



M = 4.3122 lb. 

Ball diameter 
D in. 

1/2 

5/8 

3/4 

7/8 

1 

1 1/8 

1 1/4 

1 3/8 

1 1/2 

C. Mass Ratios Between Different Balls 

and Primary System (µ = ~) 

Mass of Ball 
m lb. 

.018 

.0355 

.062 

.099 

.1455 

.209 

.288 

.383 

.496 

Mass ratio 
m 

µ = M 

.00417 

.00822 

.0229 

.0337 

.0485 

.0667 

.0888 

.115 
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Table V.l 

A. 

in •. 

.018 

.022 

.026 

.030 

.034 

.038 

.042 

.050 

.058 

.066 

.074 

.082 

APPENDIX - V 

Steady State Amplitude A and Phase-Angle f of the ?rimary 

System Without Impact Vibration Absorber (Analytical) 

Kl= 22 lb/in., K2 = 60.2727 lb/in., Xi= 0.104 in. 

pl= 7.5 c/s, d = 0.045, F = 0.513 lb 

wl w2 !./' 1 * '¥ * 2 
c/s c/s rad rad 

4.0830 11.3452 .06952 -.10528 

1.8393 l0.7437 .02348 -.12193 

2.4141 10 .3061 .03230 -.13833 

3.5488 9.9724 .o.5481 -.15457 

4.2163 9.7091 .07384 -.17070 

4.6773 9.4956 .09159 -.18677 

5.0204 9.3187 .10872 -.20280 

5.5028 9.0422 .14207 -.23481 

5.8292 8.8353 .17488 -.26687 

6.0665 8.6741 .20753 -.29905 

6.2477 8.5446 .24022 -.33142 

6.3911 8.4378 .27308 -.36405 

* ip1 and '112 corresponds to w1 and w2 respectively 
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Table V.l (continued) 

A wl (1)2 'P1 1f 2 

.090 6.5079 8.3480 .30618 -.39699 

.098 6.6053 8.2712 .33961 -.43029 

.106 6.7110 8.2227 .37480 -.46513 

.114 6.9832 8.3247 .42210 -.51023 

.122 7.2938 8.4770 .47567 -.56121 

.130 7.5991 8.6411 .53331 -.61639 

.138 7.8866 8.8028 .59449 - .65733 

.11+6 8.1529 8.9563 .65930 -.73816 

.154 8.3984 9.0989 .72828 -.80540 

.162 8.6249 9.2297 .80243 -.87800 

• 170 8 .8348 . 9.3482 .88342 -.95763 

.178 9.0307 9.4540 .97417 -1.04717 

.186 9.2164 9.5461 1.08049 -1.15241 

.194 9.3983 9.6202 1.21766 -1.28862 
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B. '.I'ime Behaviour of the Primary System with Impact Vibr;;i.tion 

Absorber 

Digital ComEuter OutEut 

Table V.2 w = 7.59917 c/s, p1 = 7.5 c/s, d = 0.045, µ = 0.0337 

e = 0.8, A·= 0.130 in., d = 0.50 in., 
0 

A = 0.198 in. max 

Impact 
( 2S) 

t. x. Yi x. y. A max 
(i) 1 l. 1 1+ t. -<t<t. + 

1-J.. 1 

1 .0400 .12755 .25 2.1189 -12.5599 .6442 

2 .1124 -.12900 -.25 .1100 8.9670 -.6515 

3 .1915 .09259 .25 -3.5686 -10.7473 .4676 

4 .2424 -.12986 -.25 - .5710 11.6814 -.6558 

5 .3106 .12828 .25 -.2939 -9.6922 .6479 

6 .3846 - .11057 -.25 2.4865 10 .6oo2 -.5584 

7 .4411 .12919 .25 .1196 -11.0204 .6525 

8 .5103 -.12518 -.25 .9400 10.0632 -.6321 

9 .5782 .12116 .25 -1.4712 -10 .6017 .6119 

10 .6402 - .12764 -.25 .3984 10 .5991 -.6446 

11 .7085 .12375 .25 -1.1440 -10 .3189 .6250 

12 .7738 -.12467 -.25 .9820 l0.5766 - .6296 

13 .8387 .12606 .25 -.7487 -10.4597 .6366 

14 .9057 -.12415 -.25 . 1.0745 10 .4389 -.6270 

15 .9708 .12536 .25 -.8699 -10.5244 .6331 

16 1.0367 -.12523 -.25 .8981 10.4470 -.6325 

17 1.1028 .12471 .25 -.9832 -10.4776 .6298 

18 1.1682 -.12531 -.25 .8815 10.4895 - .6329 

19 1.2342 .12500 .25 -.9374 -10.4606 .6313 



Table V.2 (continued) 

Impact 
( i) 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

60 

61 

62 

,• 

100 

t. x. Yi J. J. 

1.3000 -.12499 - .25. 

1.3657 .12517 ~25 

1.4316 -.12499 -.25 

1.4973 .12507 .25 

1.5631 - .12509 -.25 

1.6289 .12503 .25 

1.6947 - .12508 -.25 

. 1.7605 .12506 .25 

1.8263 -.12505 -.25 

1.8921 .12507 .25 

1.9579 - .12506 -.25 

3.9318 -.12506 -.25 

3.9976 .12506 .25 

4.0634 -.12506 -.25 

6.4321 -.12506 -.25 

x. y. ( ~) J. J. 
+ + A max 

.9368 10 .4831 -.6312 

-.9068 -10.4761 .6321 

.9375 10.4708 -.6312 

- .9229 -10 .4800 .6317 

.9208 10.4736 -.6317 

-.9309 -10 .4750 .6314 

.9218 10 .4771 -.6317 

-·9255 -10.4742 .6316 

.9268 10.4760 -.6316 

-.9234 -10 .4758 .6317 

.9261 10 .4750 -.6316 

.9252 10.4755 -.6316 

- .9252 -10 .4755 .6316 

.9252 10.4755 -.6316 

.9252 10.4755 -.6316 



APPENDIX - VI 

A Method of Determining Coefficient of Restitution 

Steady state speed of the mass particle can be said to be 

constant and is given by 

( VI.l) 

If at t = o_, the absolute velocity of the mass particle is 

represented by V = v then at t = o,, V = -v. m .,.. m 
+ 

Now recalling 

v = v, v = -v m m 
+ 

and substituting appropriate values in eqn. (II. 7) gives 

v(e-1-2µ) 
l+e 

Using eqn. (VI.l) into ( VI.2) ultimately gives 

+ ~ ( l+e ) · = 
~ 2w 1-e+.2µ ~ 

d 
0 

2 

Similarly from (II. 8 ) x is given by 
a 

. 
x = a 

v( e-1+2p.e) 
l+e 

(VI.2) 

(VI.3) 

(VI .4) 

and substituting for v from eqn. (VI.l) into eqn. (VI.4) ultimately 

gives 

~ + n ( l+e ) x = 
o 2w l-e-2µe a 

d 
·o 

2 
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( VI.5) 



If eqn. (VI.5) be subtracted from (VI.3) it would give 

( l-e-2"fl,e) ~ = (l-e+2µ) x 
a 

on simplification this gives 

e = 

. 
x 

1-( 1+2µ) a 
~ 
:ic 

(1+2µ)-~ 
~ 

(VI.6) 

x 
from which e can be evalua-c.:;d provided 

~ 
.a is known. The velocity ratio 

x 
(~) 
xb 

in eqn. (VI.6) can be obtained by integrating with respect to time 

the output of an accelerometer attached to the primary mass M. 

But since the value of e for hardened steel to hardened steel is 

known with quite a good accuracy and is equal to 0.8, this value of e 

(0.8) was taken for all theoretical calculations without actually 

determining it experimentally. 



APPENDIX - VII 

A. Exoerimental Technique 

The RC signal generator in the test rig supplied the necessary 

voltaee at a certain frequency to the input of the amplifier. The 

amplifier amplied this voltage, raised its energy level by means of 

push-pull operation and supplied current for energizing the exciter 

coil. This produced excitation to the model system corresponding to 

the voltage signal applied at the signal generator. 

Amplitude of vibration of the primary system (i.e. relative 

motion between the mass and the foundation) was monitored by means of a 

capacitance transducer. 

Any relative motion of the primary mass caused a proportional 

capacitance change of the transducer (considering the rest position of 

the system to correspond transducer's zero capacitance). The trans-

ducer's capacitance formed part of a series resonant circuit consisting 

of a fixed capacitance and an inductance. The combination of the fixed 

capacitance and an inductance together is referred here as tuning plug. 

This tuning plug was connected to an·oscillator circuit through a 

co-axial cable. In the circuit diagram they can be represented as shown 

below 

capacitance 
variation 

11 ;tH -----1 
.___J__..___. __ J....___9_0 -pF---•- - - - - _ J 10 0 0 pf 

transducer tuning plug 

resonant circuit 
Fig. VII.1 
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coble oscillaior 
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Since f is given by f 
c c 

1 
= 2n/f2 where fc is the resonant 

frequency of an electrical network, it is seen that the varying capaci-

tance of the transducer in conjunction with a fixed reactance and a 

resonant circuit determined the frequency of the P.F oscilla~or. In 

other words change in position of the primary mass was converted into a 

frequeccy change in the signal delivered by the oscillator. The 

frequency modulated signal was then fed to a reactance converter, which 

converted it into a DC voltage whose value followed the modulation of 

oscillator frequency. This DC voltage was then fed to the oscilloscope 

and was displayed onto the screen. The oscilloscope was previously 

calibrated in terms of its trace shift against known deflection of the 

mass and. hence signal height on the screen gave a measure of the 

amplitude of vibration of the primary mass. 

B. List of Equipments used in Ex.perimental Studies 

l. 1, Frequency Generator, "RC-Generator, type 29.060.69 11 , Philips 

Gloeilampenfabrieken, Eindhoven, Holland. 

2. 1, Amplifier Unit, "250 VA Amplifier type 11956711 , Philips. 

3. 1, Ammeter. 

4. l, Vibration Generator (exciter), "Moving Coil Vibration Generator 

Model 790", Goodmans Industries Ltd. Wimbley, England. 

5. 2, Capacitanqe Transducers (1, type 51D04;...204 (co-axial) with a 

tuning plug type 51C02; 1, proximity Vibration Transducer type 

51?21-136). DISA Elektronik, Herlev, Denmark. 

6. 2, Oscillators, type 51E02-103, DISA Elektronik. 

7. 2, Reactance Converters, type 51E01, DISA Elektronik. 



8. l, Cathode Ray Oscilloscope, Type 564 Storaee Oscilloscope, 

Tektronix Irie. S. W. Millikan Way, Beaverton, Oregon, U. S. A. 
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APPENDIX - VIII 

Digital Computer Result Tog;ether With Its · 

Experimental.Equivalent 

Table VIII.l µ = 0.014360 (3/4 11 dia. ball), d = 0.51311 

0 

w x in. 
rad/sec theoretical experimental 

5.0204 .034802 .0444 

5.5028 .043698 .0502 

5.8292 .052351 .0569 

6.0665 .060801 .0613 

6.2477 .069126 .0687 

6.3911 .077433 .0757 

6.5079 .085604 .0792 

6.6053 .093804 .0830 

6.9832 .110221 · .• 1044 

7.2938 .118181 .1187 

7 .5991 .128206 .1291 

8.1529 .142388 .1448 

8.6249 .158477 .1573 

9.0307 .175074 .1761 

9.2164 .185703 .0424 
.166732 

9.3983 .191648 .0378 
.163587 

9.3187 .034808 .03934 
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Table VIII.l (continued)· 

w 
rad/sec 

9.0422 

8.8353 

8.5446 

8.2227 

8.4770 

8.6411 

8.8028 

8.9563 

9.2297 

9.3482 

9.4540 

9.5461 

9 .6202 

theoretical 

.043554 

.052351 

.069126 

.101972 

.118181 

.128206 

.134321 

.142388 

.158477 

.• 166515 

.175521 

.185703 

.166731 

.191648 

.163588 

x in. 
experimental 

.0460 

.0575 

.0724 

.1002 
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Table VIII.2 µ = 0.0337 ( 111 dia. ball), d = 0.310 11 

0 

w x in. 
rad/sec theoretica.l experimental 

5.0204 .037852 .044 

5.5028 .046243 .0523 

6.0665 .062686 .0653 

6.5079 .087048 .0728 

6.6053 .095105 .0745 

6.9832 .111319 .1120 

7 .2938 .120040 .1200 
.095908 

7.5991 .125325 .1305 
.093139 

7.8866 .130278 .139 
.090540 

8.1529 .130893 .1446 
.117676 

8.6249 .153136 .1618 
.139408 

8.8348 .162628 .1679 
.149803 

9.0307 .171699 .044 
.159491 

9.2164 .180676 .039 
.169181 

9.3983 .189609 .034 
.179119 

l0.3061 .020029 .0215 

9.7091 .029184 .0294 

9.0422 .046243 .0444 

8.8353 .054502 .0522 



w 
rad/sec 

8.2227 

8.6411 

9 .6202 

theoretical 

.103154 

.111376 

.143097 

.129124 

.171699 

.159492 

.189608 

.179120 

x in. 
experimental 

.0678 



Table VIII .3 

w 
rad/sec 

5.0240 

5.5028 

6.0665 

6.5079 

6.9832 

7 .2938 

7 .5991 

7.8866 

8.1529 

··8 .62Lr9 

8.8348 

9.0307 

10.3061 

9.0422 

8.5446 

8.2227 

8.3247 

8.6411 

9.3482 

µ = 0.06670 (1 1/411 dia. ball), d = 0.210" 
0 

x in. 
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theoretical experimental 

.0384l+O .0522 

.046677 .o6co 

.062949 .0707 

.087905 .0774 

.060215 

.106057 .1122 

.115803 .1200 

.124255 .1305 

.134264 .1357 

.143788 .1500 

.161917 .1657 

.169459 .06 

.158474 .0509 

.016646 .02086 

.021296 .0222 . 

.030041 .0326 

.046677 .0494 

.071022 .0651 

.095278 .0752 

.106056 

.124255 

.143124 

.169979 



APPmDIX - IX 

EXPerimental Determination of the 

Structural Damping Factor 

This was determined by measuring the peak amplitudes of free 

vibration of the system. 

The free vibration trace of the system as displayed on the 

oscilloscope screen was photographed by a polaroid camera and peak 

amplitude for each cycle was measured. The value of damping factor was 

obtained by using the formula(l5) 

d = 0.366 
k 

where k = number of oscillations between two points 1 and 2 corresponding 

to maxima, 

r 1 = maximum amplitude at point l, 

r 2 = maximum amplitude at point 2. 

Fig. IX -1 
- '0? -



From the above figure, the :follo·,.1ing data were obtained. 

cycle 
no. 

0 

1 

2 

3 

4 

5 

pe:ak amplitude 
of vibration x k) 
( k = a constant) 

1.05 

.86 

.77 

.68 

d 3 ~6 1 l.OS .30~6 x .0386 
0 -1 = • o x oglO --6-~ = .9 

= .0141 

88 

Similarly the others were calculated and d was found to be, 
mean 

d = 0.01854 
mean 



APPENDIX - X 

COMPUTER PROGRAMMING 

Prograr:ime - 1 

Steady State Amolitude Response of the Mechanical System 

in Absence of Imoact Vibration Absorber 

This programme was written in order to solve for A and 'Y at · 

different frequencies w from equation ( I.26) and ( I.27) -respectively. 

For ease of solution w was solved for known A. 

Eq_uation (I .26) was modified 

2 2 2 
(Z1 - c w ) + E w - G = o, 

where 

[:1J K 2 K2-Kl 2 z = + 1 -1 K TI Kl , 
..... 

c 
1 = - E = 2 ' p· 
1 

from cqn. ( 1) 

2 
w = 

where 
z = 2 

D2 = 

2 w = 

\·Jhere 

BN = 

E - 2cZ 
. 1 

(Z )2 -
2 

BN + DN 

z 
2 

z' 4 

' 

z3 

z3 = 

= 
z~ 

c. 
z 4 

4c2(Z 2 
·1 

- 89 -

as 

I x1 2 
(-) 

A 

JD; 
.:!: z 

4 

.,.. G)' 

+ -1 x1~ sin (p:-) 

2 
Z4 = 2c 

( 1) 



Fortran Symbol 

Xl 

I"Kl 

FK2 

F 

Pl 

D 

x 

!<WSQ2 

Fl~EQl 

FREQ2 

FRl 

FR2 

SHAil 

SHAI2 

Actual Symbol Used 
in Eathernatical 
Model 

x 
1 

F 
2 

F 

d 

A 

2* c I . , 2 w1 rad secJ 

2* 2 w2 (rad/sec) 

w1 (cycles/sec) 

w2 (cycles/sec) 

wl/pl 

w2/pl 

i\'1 * * 

111'2 * * 

* w 1 
and w2 corresponds to two values of w for one amplitude A. 

"'* "Yi and tjJ2 corresponds to w1 and w2 respectively. 



$JOB 

$IBJOB 

$lBFTC 

003718 JHA 

NODE CK 

100 010 030 

C STEADY STATE RESPONSE OF THE MECHANICAL SYSTEM HAVING 

C Bl-LINEAR SPRING RESTORING FORCE 

Xl=0.104 

FK1=22.0 

FK2=60e2727 

F=Oe513 

Gl=F*F 

G2=FKl*FKl 

G3=Gl/G2 

Pl=(2e0*3el416*7e5) 

P=Pl*Pl 

C=leO/P 

Cl=C*C 

Z4=2.0*Cl 

D=0.045 

70 El=4.0*D*D 

E=El/P 

X=Oe016 

Z=Oe5 

I=l 

10 X=X+Z*Oe004 

X2=X*X 

G=G3/X2 
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IF<X.GTeXl> GO TO 20 

A=l.O 

B=O.O 

Bl=O.O 

GO TO 30 

20 A=FK2/FK1 

B=2e0*(FK1-FK2)/(3el416*FK1> 

Ql=Xl/X 

Q2=Ql*Ql 

Rl=<l.O-Q2) 

R=Rl**0•5 

U=ARSIN<Ql) 

Bl=<Ql*R+U) 

30 Zl=A+B*Bl 

Z5=Zl*Zl 

Z2=E-2.0*C*Zl 

Z3=4.0*Cl*<Z5-G) 

D2=Z2*Z2-Z3 

BN=-Z2/Z4 

IF(D2.LT.Oe0) GO TO 40 

DN=D2**0.5/Z4 

RWSQl=BN+DN 

RWSQ2=BN-DN 

RWl=ABS<RWSQ1)**0•5 

RW2=ABS<RWSQ2)**0e5 

RPC=2.0*3el416 

92 



FREQl=RWl/RPC 

FREQ2=RW2/RPC 

2 

40 

3 

50 

FRl=RWl/Pl 

FR2=RW2/Pl 

SHAil=ATANC2e0*D*FR1/CZ1-FRl*FRll) 

SHAI2=ATANC2e0*D*FR2/CZ1-FR2*FR2)) 

WRITEC6t2) XtFREQ2,FREOltSHAI2tSHAil 

FOR~ATC2XtF8e3t4El9e9) 

GO TO 50 

DN=C-02)**0e5/Z4 

COMPR=BN 

COMPl=DN 

COMP2=-DN 

WRITEC6t3) XtCOMPRtCOMPltCOMP2 

FORMATC2XtF8e3t3El9e9) 

IFCXeGEeOe04) Z=l.O 

I=I+l 

IFCieEOe80) GO TO 60 

GO TO 10 

60 WRITEC6tl) 

1 FORMAT<lH-) 

IF(OeEQeOe050) GO TO 80 

D=0.050 

GO TO 70 

80 STOP 

END 

$ENTRY 

$IBSYS 

92& 
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Steady State Amplitude Resnonse of the System 

Provided with an Im~oact Vio::-ation Absorber 

Hith Different Mass Ratios and Different Clearances 

Fortran Symbol 

BX 

Wl 

D 

A 

T 

TI 

XI 

YI 

XDOTI 

YDOTI 

x 

y 

·XD¢T 

YD,0'.I:· 

Actual Symbol Used in Hatnematical 
Model 

A (as obtained by executing 
programme - 1) 

w 
1 

µ 

d 
0 

A max 

t 

t (time immediately after impact) 
+ 

x 
a 

ya (relative position of the ball 
w.r.t x immediately after impact) 

x 
a 

e 

x 

y 

. 
~ 

Yb (relative vel. of the ball 
immediately before impact) 

Other symbols used are the same as in programme - 1. 
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$JOB 003718 JHA 100 010 030 

$IBJOB NODECK 

$IBFTC 

C AMPLITUDE RESPONSE OF THE MECHANICAL SYSTEM PROVIDED 

C WITH AN IMPACT VIBRATION ABSORBER. THE VARIABLE PARAMETERS 

C ARE (1) 3/4 IN. DIA. BALL' 0.513 IN. CLEARANCE, 

C (2) 1 IN. DIA. BALLt 0.310 IN. CLEARANCEt 

C (3) 1 1/4 IN. DIA. BALLt 0.210 IN. CLEARANCE 

DIMENSION BX(l04)tW1(104),W2<104) tSHAI1(104),SHAI2<104ltXMEW(3l 

1D(3) 

READ ( 5, 9) ( XMEW ( I l , D ( I ) , I= l , 3 l 

9 FORMAT<2Fl2e8) 

READ(5,l) <BX<I>tWl<I>tW2<I>,SHAil<IltSHAl2(1),J=lt52> 

1 FORMAT<5Fl2e8) 

DO 100 I=53tl04 

BX<I>=BX<I-52) 

Wl< I >=W2< I-52> 

100 SHAil<I>=SHAI2<I-52l 

DO 20 N=lt3 

WRITEC6t4) XMEW(N),D(N) 

4 FORMAT<lH-,6H XMEW=,F20e9t3H D=,F20e9//) 

DO 20 I=9tl04t2 

WRITEC6t7) BX<IltWl(lltSHAil<I> 

7 FORMAT<2Xt4H BX=tF20e9t7H OMEGA=tF20.9t7H SHAil=tF20.9//) 

J=l 

M=l 



A=0.198 

T=OeO 

Tl=O.O 

RPS=2.0*3el416*Wl<I> 

XI=O.O 

YI=D(N)/2.0 

XDOTI=O.O 

YDOTI=OeO 

E=Oe8 

C=XMEW<N>*<l.O+E)/(l.O+XMEW<N>> 

10 K=2 

11 T=TI+FLOAT<K-1)/100.0 

X=BX<I>*SIN<RPS*T-SHAll(l)) 

Y=-X+<XI+Yl)+(XDOTI+YDOTI>*CT-TI) 

K=K+l 

IFCCDCN)/2.0-ABSCY)l.LT.OeO) GO TO 45 

IFCK.GT.200) GO TO 45 

GO TO 11 

45 G=RPS*T 

IFCABS<G>.GT.2.0**25) GO TO 65 

95 

X=BXCl)*SIN<RPS*T-SHAil<I>> 

F=Cl.O/DCN>>*<D<N>/2.0-ABS(-X+CXl+YI>+<XDOTI+YDOTI)*<T-TI> >> 

XDOT=RPS*BX<I>*COS<RPS*T-SHAil!I)) 

DF=-<l.OID<N>>*ABS<-XDOT+<XDOTI+YDOTI)) 

T=T-F/DF 

M=M+l 



IF<ABSCF>.LE.l.E-6> GO TO 25 

IFCM.GT.80> GO TO 25 

GO TO 45 

65 WRITEC6,8) TtG 

8 FORMATC2X,3H T=,E20.9,3H G=,E20.9> 

GO TO 35 

25 X= BX<I>*SIN<RPS*T-SHAll(l)) 

Y= -X+<XI+YI>+CXDOTI+YDOTI>*<T-TI> 

XDOT=RPS*BXCI>*COS<RPS*T-SHAil< I>> 

YDOT=-XDOT+YDOTI+XDOTI 

RATIO=X/A 

IFCJeLTelO) GO TO 55 

IF<ABS<ABSCXSS>-ABS<X>>.LT.leE-5) GO TO 35 

IFCABSCABS(X)-ABS<XSS)).LT.l.E-5> GO TO 35 

55 XSS=X 

M=l 

XI=X 

YI=Y 

XDOTI=XDOT+C*YDOT 

YDOTI::!-E*YDOT 

TI=T 

WRITE<6t2) J,T,x, YtXDOTI,YDOTI,RATIO 

2 FORMAT<2X,I3t6El9e8) 

J=J+l 

IF<J.GT.100) GO TO 35 

GO TO 10 

96 
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35 WRI'TE(6t3) 

3 FORMAT<lH-> 

20 CONTINUE 

STOP 

END 

$ENTRY 

0.14360 0.5130 

0.03370 0.310 

0.06670 0.210 

0.010 4.0830648 11.345298 0.099523126 -0.10528772 

0.020 3.0602138 11.018588 0.044029119 -0.11365221 

0.022 le8393682 10.743726 o.023480656 -0.12193854 

0.024 le2667682 10.509028 0.015646337 -0.13016297 

0.026 2e4141950 10.306116 0.032307832 -0.13833787 

0.020 3.0743170 10.128817 o.044313431 -o .1464 7295 

0.030 3.5488139 9.9724766 o.054816152 -0.15457589 

0.032 3.9174469 9.8335133 o.064556700 -0.16265292 

0.034 4.2163072 9.7091256 0.073840123 -0.17070925 

o.036 4.4654488 9.5970903 0.002022967 -0.17874908 

0.030 4.6773549 9.4956162 o.091596293 -0.18677610 

0.040 4e8603845 9.4032460 0.10021768 -0.19479344 

0.042 5.0204279 9.3187805 0.10872578 -0.20280384 

0.046 5e2877393 9.1697429 0.12550328 -0.21881279 

0.050 5.5028488 9.0422912 0.14207120 -0.23481917 

0.054 5.6802062 0.9319442 0.15851289 -0.25083617 

0.050 5.8292641 8.8353863 0.17488163 -0.26687488 
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0.062 5.9565062 8.1501089 0.19121393 -0.28294503 

0.066 6.0665477 8.6741785 0.20753633 -0.29905544 

0.010 6.1627723 8.6060800 0.22386922 -0.31521426 

0.074 6.2477217 8.5446093 0.24022883 -0.33142909 

0.010 6.3233460 8.4887966 0.25662889 -o. 3~ 770736 

0.082 6.3911676 8.4378523 0.27308121 -0.~405616 

0.086 6.4523927 8.3911264 0.28959639 -0.38040261 

0.090 6.5079917 8.3480787 0.30618443 -0.39699389 

0.094 6.5587526 0.3082573 0.32285445 -0.41359716 

o.09a 6.6053238 8.2112901 0.33961546 -0.43029978 

0.102 6e6482433 8.2368219 0.35647640 -0.44710929 

0.106 6.7110935 8.2221256 o.37480182 -0.46513929 

0.110 6.8366265 0.2627865 0.39738551 -0.486733l~9 

0.114 6.9832520 8.3247695 0.42210766 -0.51023963 

0.110 7.1377289 8.3979775 0.44830599 -0.53514813 

0.122 7.2938608 8.4770356 0.47567077 -0.56121937 

0.126 7.4483008 8.5587511 0.50403595 -0.58832408 

0.130 7.5991742 8.6411037 o.53331334 -0.61639223 

0.134 7.7454503 8.1221145 o.56346550 -0.64539609 

0.138 7.8866068 8.8028946 o.59449118 -0.67533655 

0.142 8.0224373 8.8808880 o.62641964 -0.70624334 

0.146 8.1529335 8.9563805 o.65930416 -0.73816790 

0.150 8.2782118 9.0291333 o.69322323 -0.77118593 

0.154 8.3984725 9.0989967 o.72828590 -0.80540264 

0.158 a.5139642 9.1658833 o.76462962 -0.84095178 

0.162 8.6249720 9.2297406 0.80243411 -0.87800843 
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0.166 a.1310065 9.2905313 o.84193142 -0.91680454 

0.110 a.a34aoo6 9.3482237 o.88342267 -0.95763472 

0.174 8.9343169 9.4027641 0.92731644 -1.0009062 

0.178 9.0307583 9.4540630 o.97417504 -1.0471757 

0.102 9.1245981 9.5019528 l.0248132 -1.0972593 

0.186 9.2164447 9.5461259 1.0804972 -1.1524193 

0.190 9.3071761 9.5859941 1.1433666 -1.2147919 

0.194 9.3983488 9.6202780 1.2176688 -1.2886229 

Oel98 9.4938074 9.6453963 le3146316 -l.38~1390 

$IBSYS 

CD TOT 0159 
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Programme - 3 

Steady State Amplitude Resnonse of the System 

Provided. v!i th an Impact Vibration Absorber 

with a Sinn;le Hass ~atio and Different Clearances 

Fortran symbols used in the programme are the same as in 

programme - 2. 

N.B. Here the entry for BX(I), Wl(I), W2(I), SHAil(I), SHAI2(I) are the 

same as in programme - 2. 

MILLS MEMORIAL LIBRARY, 
McMASTER UNIVERSlll 



$JOB 

$IBJOB 

$IBFTC 

c 

c 

003718 JHA 

NODE CK 

100 010 030 

AMPLITUDE RESPONSE OF THE MECHANICAL SYSTEM PROVIDED 

WITH AN IMPACT VIBRATION ABSORBER. VARIABLE PARAMETERS 

101 

C ARE 1 IN. DIA. BALL AND CLEARANCES ARE Cll 0.2, C2l 0.4, 

C (3) 0.50 IN. 

DIMENSION BXC104),W1(104l,W2(104ltSHAll(l04),SHAI2<104),XMEW(3), 

1D(3l 

READC5t9l <XMEW<IltDCiltl=lt3l 

9 FORMATC2F12e8l 

R EA D ( 5 , 1 l ( B X ( I ) ' W 1 ( I l , W 2 ( I l ' SHA I 1 ( I l , SH A I 2 < I ) ' I = 1 ' 5 2 ) 

1 FORMATl5Fl2e8l 

DO 100 1=53'104 

BXCI>=BXCI-52) 

Wl< I> =W2 ( 1-52 l 

100 SHAl1Cll=SHAl2(1-52l 

DO 20 N=lt3 

WRITEC6t4l XMEW(NltDCNl 

4 FORMATC1H-t6H XMEW=tF20e9t3H D=tF20e9//) 

DO 20 I=9tl04t2 

WRITEC6t7l BX(J),Wl(lltSHAil<I> 

7 FORMATC2Xt4H BX=tF20.9,7H OMEGA=tF20e9t7H SHAil=tF20.9//l 

J=l 

M=l 



A=0.198 

T=o.o 

TI=O.O 

RPS=2e0*3el416*Wl(I) 

XI=O.O 

YI=DCN>/2.0 

XDOTI=OeO 

YDOTI=OeO 

E=OeB 

C=XMEW(Nl*(leO+E)/(leO+XMEW<N>> 

10 K=2 

11 T=TI+FLOATCK-1)/100.0 

X=BX<I>*SIN<RPS*T-SHAil(I)) 

Y=-X+CXI+YI)+CXDOTI+YDOTI>*<T-TI> 

K=K+l 

IF((D(N}/2·0-ABS(Y))eLT.o.o> GO TO 45 

IFCKeGT.200) GO TO 45 

GO TO 11 

45 G=RPS*T 

IF(ABS(G)eGT.2.0**25) GO TO 65 

102 

X=BX<I>*SINCRPS*T-SHAilCI>> 

F=Cle0/DCN>>*<D<N>l2e0-ABS<-X+CXI+YI>+(XDOTl+YDOTI>*(T-TI))) 

XDOT=RPS*BX<I>*COS(RPS*T-SHAil<I>> 

DF=-<leOID<N>>*ABS(-XDOT+CXDOTI+YDOTI>> 

T=T-F/DF 

M=M+l 



IF<ABS<F>eLEeleE-6> GO TO 25 

IFCM.GT.80) GO TO 25 

GO TO 45 

65 WRITEC6t8) TtG 

8 FORMATC2Xt3H T=tE20.9t3H G=tE20.9) 

GO TO 35 

25 X= BX<I>*SINCRPS*T-SHAilCI>> 

Y= -X+CXI+YI)+CXDOTI+YDOTI>*<T-TI> 

XPOT=RPS*BX(l)*COSCRPS*T-SHAllCI>> 

YDOT=-XDOT+YDOTI+XDOTI 

RATIO=X/A 

IF<J.LT.10) GO TO 55 

IF<ABSCABSCXSS>-ABSCX))eLT.1.E-5> GO TO 35 

IFCABSCABSCXl-ABSCXSS))eLT.l.E-5> GO TO 35 

55 XSS=X 

M=l 

XI=X 

YI=Y 

XDOTI=XDOT+C*YDOT 

YDOTI=-E*YDOT 

TI=T 

WRITEC6t2) J,r,x, YtXDOTltYOOTitRATIO 

2 FORMATC2Xtl3t6El9.8) 

J=J+l 

IFCJ.GTelOO> GO TO 35 

GO TO 10 
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35 WRITE<6t3) 

3 FORMATClH-) 

20 CONTINUE 

STOP 

END 

SENTRY 

0.0337 0.20 

0.0337 0.40 

0.0337 0.50 

SIBSYS 



Progra::ime - 4 

Bffect of Clearance (Gan Facto~) on the Arrolitude Resnonse 

of the System at a Fixed Frequency 

Fortran symbols used in the programme are the same as in 

the programme - 2. 
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$JOB 

$1BJOB 

$lBFTC 

003718 JHA 

NODE CK 

100 010 030 

C EFFECT OF GAP FACTOR ON THE AMPLITUDE RESPONSE OF THE 

106 

C SYSTEM AT A CERTAIN FREQUENCY, WHEN THE PARAMETER MASS 

C RATIO IS FIXED. THE INFORMATION OBTAINED FROM THIS 

C ANALYSIS CAN BE USED TO DETERMINE STABILITY BOUNDARIES 

C OF THE SYSTEM 

DIMENSION BX(30),Wl(3Q),SHAl1(30>,XMEW<30ltD(30ltE<30ltA<30l 

READ< 5 '9 > <BX< I > , W 1 < I > , SHA I 1 ( I > , XMEW ( I l 'E ( I ) , I= 1 , 4 > 

9 FORMAT<5F12.8) 

READ(5tl2> <D<I>tI=lt28) 

12 FORMAT(l4F5e2l 

DO 20 I=l,4 

WRITE<6t7l BX(l)tWl(l)tSHAil<I>,XMEW<l)tE(ll 

7 FORMAT(/2Xt4H BX=tF13e9t7H OMEGA=tFl4e9t7H SHAI1=,fl3e9t 

16H XMEW=tFl3e9t3H E=Fl3e9/) 

RPS=2.0*3el416*Wl(I) 

A<I>=BX(Il 

DO 2U N=22t28 

WRITE<6t4) D<N> 

4 FORMAT<2X,3H D=tfl3.9/) 

M=l 

J=l 

T=O.O 

TI=O.O 



XI=O.O 

YI= D<N>/2a0 

XDOTI=O.O 

YDOTI=OaO 

C=XMEW<I>*<l.O+E(l))/(1.0+XMEW<I>) 

10 K=2 

11 T=TI+FLOAT<K-1)/100.0 

X=BX<I>*SIN<RPS*T-SHAil<I>> 

Y=-X+<XI+YI>+CXDOTl+YDOTI>*CT-TI> 

K=K+l' 

IF<<D<N>l2.0-ABS<Y>>aLT.Oa0) GO TO 45 

IFCKaGT.200) GO TO 45 

GO TO 11 

45 G=RPS*T 

IF<ABS<G>aGT.2.0**25) GO TO 65 
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X=BX<I>*SINCRPS*T-SHAil<I>> 

F=Cl.0/DCN>>*<D<N>/2.0-ABSC-X+CXI+YI>+CXDOTI+YDOTll*CT-TI>>) 

XDOT=RPS*BXCI>*COSCRPS*T-SHAilCI>> 

DF=-<l.O/DCN>>*ABSC-XDOT+CXDOTI+YDOTl)) 

T=T-F/DF 

M=M+l 

IF<ABSCF)aLEelaE-6> GO TO 25 

IFCM.GT.80) GO TO 25 

GO TO 45 

65 WRITEC6t8) TtG 

8 FORMATC2Xt3H T=tE20a9t3H G=tE20.9) 

http:IF<M.GT.80


GO TO 35 

25 X= BX(Il*SINCRPS*T-SHAilCll l 

Y= -X+CXI+Yll+CXDOTI+YDOTil*CT-Tll 

XDOT=RPS*BXCil*COSCRPS*T-SHAilCil l 

YDOT=-XDOT+YDOTl+XDOTI 

RATIO=X/ACI> 

M=l 

XI=X 

Yl=Y 

XDOTI=XDOT+C*YDOT 

YDOTI=-ECI>*YDOT 

TI=T 

WRITEC6,2) J,T,x, YtXDOTitYDOTJ,RATIO 

2 FORMATC2XtI3,6E19.8l 

J=J+l 

IFCJ.GT.100) GO TO 35 

GO TO 10 

35 WRITEC6,3l 

3 FORMAT ( lH-l 

20 CONTINUE 

STOP 

END 

1.599174020 o.53331334 

8.0224373 0.62641964 

0.03370 

0.03370 

$ENTRY 

0.130 

0.142 

o.15a 8.5139642 o.76462962 0.03310 

0.80 

o.ao 

0.80 
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0.178 9.0307583 o.97417504 0.03310 0.80 

0.1 0.2 0.3 o.4 0.5 o.6 0.1 o.a 0.9 l.o i.1 1.2 1.3 1.4 

1.5 1.6 1.7 1.a 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.1 2•8 

$lBSYS 

CD TOT 0094 
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