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An investigation of the steady state response of a non-linear
system (having bi-linear restoring force characteristic) provided with
an impact vibration absorber is made.

The effect of two main parametérs viz. clearance do and ﬁass
ratio u = ﬁ on amplitude of vibration of the system has bgen investigated
experimentally over a range of frequency.

A numerical analysis of the problem has been made with a digital

computer to supplement the experimental results.
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ABSTRACT

An investigation of the steady state response of a non-linear
system provided with an impact vibration absorber is made. The term

non~-linear in the present case refers to a system in which the spring

=

restoring force is bi-linearf

The effect of two main parameters viz. clearance do'(i.e. the
free path of travel of the mass particle) and mass ratio u = % (i.e. mass
ratio Between the mass pgrticle and the primary system) on amplitude of
vibration of the sjstem has been investigated experimentally over a
range of frequency.

A numerical analysis of the problem is made with the aid of a
d&gital computer to éupplement the experimental results.

It has been found that with proper choice of parameters an impact

vibration absorber is effective in reducing vibration level of a non-

linear system undergoing sinusoidal excitation.
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NOMENCLATURE

maximum displacement amplitude of primary system in the absence of
the impact vibration absorber (in.)
damping coefficient (lb.sec/in)
damping factor, c/2M P,
clearance in which the mass particle is free to oscillate (in.)
coefficient of restitution
maximum force of excitation (1b.)
equivalent stiffness of the leaf springs in the region where their
motion is not constrained by the guide block (1lb./in.)
equivalent stiffness of the leaf springs in the region where their
motion is constrained by the guide blocks (1b./in.)
mass of primary system (lb.sec.e/in.)
mass of particle (lb.sec.a/in.)
Kl/M
time (sec.)
absolute velocity of particle (in./sec.)
displacement of M (in.)

displacement of M immediately after impact (in.)

displacement of M immediately before impact (in.)

= displacement of particle (in.)

relative displacement of particle with respect to M (in.)

phase angle due to damping (rad)

(vii)



¥ = mass ratio, m/M
w = forcing frequency (rad/sec.)
. 3";{
_ a2
dte

N.B. The units in the parentheses are the units which have been

normally used unless otherwise stated,

(viii)



1. INTRODUCTION

l.1 Historical Review of Impact Vibration Absorber

An impact vibration absorber consists of a mass particle within
a container and is free to move relative to the container. During
oscillation the mass particle withdraws energy from the system and
dissipates it through impact.

The idea of’redubing vibration by impact was first conceived

(1)

and investigated by Iieber and Jensen in 1944, 1In that investi-
gation the authors assumed that the steady state motion of an undamped
single degree of freedom system with an impact vibration absorber
(referred to as an "acceleration damper") was still simple harmonic, the
elastic rebound between the mass particle and its container was zero,
and two impacts take place at opposite sides of the container during the
time period of the sinusoidal excitation. From the consideration of
total work done per cycle on the system they develop a theory and show
that for most efficient operation of the vibration absorber (i.e. for
maximum energy dissipation) the clearance (i.e. free path of travel) of
tﬁe mass particle should be n times the maximum amplitude of response of
the system.

Grubin(a), under assumption of the existance of symmetric 2
impacts per cycle motion determined the behaviour of a viscously damped

system after many impacts.

* Numbers in parentheses designate references at the end of the thesis.

-1 -



(3)

Arnold , 8lso assumed the existance of symmetric 2 impacts per

cycle motion and developed a tHeory for an undamped system representing
the impact force by Fourier series, His theoretical investigation was
supplemented by experimentai studies.

Warbarton(h), gave a method to obtain a solution for 2 impacts
per cycle motion, in which consideration of only two successive impacts
are needed.

(5

Kaper , investigated the problem in order to determine the

effectiveness of impact vibration absorber (referred to as "discontin-
uous dynamic vibration absorber') in the case of free vibrations as well
as forced vibrations due to sinusoidal excitation.

Masri(6), in his investigation obtained a solution for symmetric

2 impacts per cycle motion and determined the stability boundaries for

the same.
A number of experimental studies has also been made to this

effect to establish the practical feasibility of particle damping. To

mention the name of the investigators at this end are McGoldrick(7)

(8)

investigated its effect on ship hulls; Lieber and Tripp , investigated

(9)

degree of freedom systems and Duckwald(lo), studied its effect in

, who

its effect on cantilever beam, Sankey » studied its effect on single

reducing the vibration of turbine buckets.

1.2 Objective

The objective of the present study is to investigate the
behaviour (response characteristic) of a system (having bi-linear

restoring force characteristic) provided with an impact vibration



absorber, when the system is subjected to a sinusoidal excitation, and
to study the effects of parameter variation (viz. clearance d° and mass
ratio 1) on the amplitude of vibration.

The experimental studies that were conducted with a mechanical
model are described and their results interpreted in Chapter ‘2. The
theoretical results obtained numerically and their comparison with the
experimental ones are to be found in Chapter 3. Discussion of the
results and conclusions drawn therefrom are given in Chapter 4,

The derivation of the equation of motion of the system and its
steady state solution between impacts is included in Appendix I. Using
this result the resulting motion of the system after any impact has been
obtained by numerical method. A detailed procedure of this, following

the method suggested in reference (6), is outlined in Appendix II.



2. EXPERIMENTAL STUDIES

2.1 Introduction

This study was carried out in order to obtain
a) a physical insight of the phenomena that occurs when a non-linear
system provided with an impact vibration absorber is subjected to a
sinusoidal excitation,
b) to evaluate the efficiency of the system as a vibration absorbing
device,
¢) to study the effectlof parameter variation {viz. do and ) on the
amplitude response of the system,
d) to get an idea of the désign problems that may be encountered in the

actual construction of such a device.

2.2 Mechanical Model

Figure 1 shows a mathematical model of the system. It is
well-known that the qualitative response of a single degree of freedom
oscillating system is not altered if the excitation is applied to the
foundation (i.e. at which the oscillating system is resting).
instead of directly to the mass. Therefore, for the sake of convenience
the former type of excitation was adopted. A schematic diagram of this
mechanical model is shown in Figure 2. The photograph of test rig and
actual model is shown in Figures 3 and 4 respectively.

Here the main mass M was a rectangular box-like thing, comprising

-4 -
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a base plate, two I~channels and two rigid stops, inside which the{
frictionless mass particle can oscillate. The mass particle used in
this case was a hardened steel ball that is usually used in ball-
bearings. The sﬁops upon which ball made collission were of mild steel
but had been case hardened so as to obtain high coefficient of
restitution,
the spring stiffness of the ;ystem was achieved by using a sliding guide
block having two symmetrical rectangular holes. Inside each of these
holes was another rectangular block having a slit of necessary dimensions.
There were ample clearances between the inside dimensions of the
rectangular holes in the main block and the outside dimensions of the
smaller blocks so that the smaller blocks can be fixed in a proper
position by means of screws in ordér to obtain exactly the same stiffness
for both positive and negative direction motion of the primary system.
The main block can slide (concentrically) in a vertical axis over a
rectangular beam, which is rigidly fixed to the foundation and can be
fixed at any.desired height, thus giving flexibility in choice of spring
stiffness. |

The foundation (which rested on two spindle comprising four
wheels, ball-bearings in this case and was made to roll over two rails)
was set to excitation by an electromagnetic shaker, and the relative
motion between the foundation and the mass M was monitored by means of a
capacitance transducer, the output of which was displayed on a cathode-
ray-oscilloscope, and measurements were made from its trace height.

Among the difficulties which were encountered as far as proper
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operation of the mechanical system is concerned, the major one was, above
a éertain value of excitation force the system started giving rocking
motion (a motion about a lateral axis) within a certain frequency range.
This was overcome by shifting the point of application of excitation to

a higher position than that it originally was.

The experiments were performed with no ball (this gives the
response characteristic of the system without a vibration absorber) and
with ball sizes of diameter s/8n, 3/4n. 9/8n, v, 1 1/8n, 1 1/4", 1 3/8n
and 1 1/2" and with various clearances. The result of no ball experiment
is shown in Figure 5 together with its theoretical equivalent.

In order to gain some knowledge of the effect of parameter
variation (do and u) on fhe response characteristic of the system,
experimental work was divided into two parts:

a) experiments, keeping ball size constant and varying clearances (this

d

o
T ).

b) experiments, keeping clearance the same and varying ball sizes (this

gives a measure of the effectiveness of gap factor

s

gives a measure of effectiveness of mass ratio wu).

2.5 Experiments with Same Ball but Different Clearances

These experiments were performed with balls of diameter 5/8%,
3/4v, /8", 1v, 1 1/4" and 1 1/2" and for seven to ten different
clearances in each case. A sample of such results with 1" diameter
ball for 4 different clearances is given in tabular form in Appendix III.
A summary of experimental results (i.e. the maximum amplitude obtainéd

with a ball for a certain clearance within the frequency range under
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cpnsideration) for each of these tests is given in Appendix IV.A.

In Figures 6 - 11 a few of the test results with different balls
and 2 - 3 different clearances have been plotted and these show ampli=-
tude response of the system. From these plotted results it is seen that
the clearance (or gap factor) has an appreciable effect on amplitude
response of the system.

Figure 12 in which amplitude ratio &S} has been plotted
q A" max
against (KQ) for different balls summarises the experimental results
thus obtained and gives a more clear and convincing picture of effective-
ness of gap factor on amplitude of vibration. Figure 12.1 shows a curve

of optimum design parameters, the data for which was obtained from

Figure 12,

2.4 Experiments with Same Clearance but Different Balls

These experiments were performed for three different clearances
(d_ = 0.351, 0.403, 0.500 inch) with six to seven different balls. The
response curves for each of these with two different ball sizes are
shown in Figures 13 - 15. A summary of experimental results (i.e.
maximum amplitude for a particular configuration within the frequency
range under consideration) obtained from each of these tests are
tabulated in Appendix IV.B. These results are plotted in Figure 16 as
amplitude ratio ('}-;-)max against mass ratio u and show (for a particular
clearance) the effectiveness of mass ratio on the amplitude response of

the system,



Amplitude

frequency increasing

Amplitude

frequency decreasing —

Fig.5:-1- Jump Phenomena [Qualitative
Response]

12a



9 b1y
ON0IIS 434 $313A3 NI AJNINDBIY4
L 0l 6 8 [ 9 g

-

1 T _ I ] L 1 Y } I — ! — i

60z — it —

,E21°0= °p 33up103)I o

oywowisadxa) Tive vig & HLIM

"

WILSAS 3HL 40 3A¥NI  ISNOJS3Y

NOLLVEEIA 40 300LITdWY

NI

VSEHJNI




~
I ! ! ! i ! | ! i —
— -4
- 1
—
- -
e Jo
—
L -
— e —— - —— — —— ———— — — —— —— —— - —
I. e — e - - —— ————— —— —— — -t
= -
= —
= o
— -
j—y X
-~ o
= g
L el I= o .
= .= "
w fo—. °
> 3
w o -
= @
- o) Z =4 b g
= _, e
o I -
| and — — -
- fes)
=2 @
[ S, —
B o © -
<L
(W) -
> o _
o= -
» =N vy
o .4 +
™~T _
Ll
- w» = y + .
= -
o
a-
w = < + <
jS W)
- o< ’ — T
{ 1 { 1 i L | L ] -
~T o o o~ < ~7 o
~N o~ — -— o o

SIHINI NI NOILVHEIA mo 30N LITdWY

PER  SECOND

CYCLES

IN

FREQUENCY

Fig. 7



INCHES

OF VIBRATION- 1IN

AMPLITUDE

24

.20

16

12

.08

.04

RESPONSE
WITH

CURVE OF THE SYSTEM

7

8

DIA.

BALL lexperimental)

clearance do=0173"

n

do = 0.4127
do= 06357

- |

b
FREQUENCY

7
IN

CYCLES
Fig. 8

8

PER

9
SECOND

12

ST



OF VIBRATION IN INCHES

AMPLITUDE

.24

.20

16

12

.08

04

RESPONSE CURVE

WITH

1 inch BIAMETER

0F THE

e—s—0o—e clearance do=-19'

v doz-33"
v do=-426

SYSTEM
BALL [experimental]

1

b
FREQUE NCY

IN

7

CYCLES
Fig. 9

8
PER

SECOND

12

9T



INCHES

OF VIBRATION IN

AMPLITUDE

24

RESPONSE CURVE OF THE SYSTEM

1

Fig. 10

.20 WITH 17 DIA.  BALL [experimental) _
A clearance do=0.066"
et — v do=0.264" .
s " do=0.313"
.16 _
A2 -
.08 -
.04 -
.
0 | ) | 1 ] L | 1 | | | 1
3 A 5 ) 7 ) 9 10 1" 12
FREQUENCY IN CYCLES PER SECOND

LT



INCHES

VIBRATION IN

OF

AMPLITUDE

- 24 T T T T T T T T T | T T
i RESPONSE CURVE OF THE SYS‘TEM |
1// X
WITH 15 DIA. BALL (experimental
201 "0 ’ | .
i ._4.__0___.0—-» clearance do=0.069"
e v do=0196"
161~ v do=0257 : -
- !
|
i | i
|
|
A2 | —
|
|
i | i
|
|
08l | -
|
..'
Q4 7
0 1 1 ! 1 1 | 1 1 1 | 1 1 |
3 A 5 b 7 8 10 1 12
' _FREQUENCY IN CYCLES PER SECOND

Fig.11

3T



1.0

o©

)

AMPLITUDE  RATIO ({-)m”

[=2]

=
dia. ball

77 i
L dia. ball
8

1" dia. ball

EFFECT OF GAP FACTOR |(clearance)

ig. ball

ON

AMPLITUDE  RESPONSE [experimental)

ball

GAP FACTOR 9A—°
_ ma

4 5 b

_ X.
Fig. 12

<4



20

80

Lo

90

121 61y
0ILY¥Y SSYW

El=

50° ho: £0- 20 1o 0

— ] — 1 — ] — ¥ — |

SHILIWYYYd NIISIO WNWILdO

4013v3 dv9



24

.20

16

INCHES

IN

12

VIBRATION

0F

.08

AMPLITUDE

04

RESPONSE CURVE OF
FOR CLEARANCE

3//

< -0 -0 -l-.-

3¢ % % Ll”
8

THE SYSTEM
do=0.351" (experimental)

Dia. ball
Dia. ball

b 7
FREQUENCY IN

CYCLES
Fig.13

8

PER

SECOND

12

12



INCHES

OF  VIBRATION,

AMPLITUDE

2

20

16

—
~N

.08

04

KESPONSE
FOR

CURVE
CLEARANCE

3
Ea3

OF THE SYSTEM
do=0.403" (experimental)

3//
i Dia. ball

”

11 Dia. ball

1 i 1 | ) 1 1 1

b 7 8
FREQUENCY IN CYCLES PER SECOND

Fig. 14

12

cc



INCHES

VIBRATION IN

0F

AMPLITUDE

24

20

16

12

.08

04

CLEARANCE

[+

®©]— e

x
X

OF THE SYSTEM

do =0.50” lexperimental)

V4
Dia. ball

”

Dig. ball

b
FREQUENCY

7
IN

CYCLES
. Fig.15

B

PER

9
SECOND

12

€2



1.0

@

%)(nax

RATID

~3

AMPLITUDE

45

_clearance do=0.50"

EFFECT OF MASS RATIO ON AMPLITUDE
RESPONSE ([experimental)

| 3 ] 1 | 1 | 2 | 1 I

clearance do=0.351" |

clearance do=0.L03"

04 06

. 05
MASS  RATIO  (F)

Fig.16

e Y

07 08 09

47



%, THEORETICAL STUDIES

3.1 Steady State Motion of the Primary System Without Impact Vibration

Absorber

Steady state motion of such a system has been obtained in
Appendix I (eqns. (I.7) and (I.24). This is given by
x = A sin (0t - ¥) , (3.1)

where A and Y can be evaluated from

2
K K. ~K X X X 2 2 2
2 2 % (A 1.2 0 -1 21\ W | 440
K; + = ( K ) (A ) [ 1- T ) + sin’ (A )| - 5|+ — 35—
| ‘ Py ] Py
2 ' .
F
= — (302)
and
2 dw
P
tan'y = 1
K K. =K X X, 2 X 2
2 2 % 1 [,k N
X + = ( K ) (A ) 1--(A ) + sin (A ) 5 (3.3)

P
respectively.

The values of A and'W’for different excitation frequehcy w and
known parameters (viz. Kl’ K2, Xl’ pl, d and F) were calculated and is
tabulated in Appendix V, (Table V.1l) (see programme - 1 in Appendix - X).

lAmplitude response of the system with varying frequenéy is
plotted in Figure 5 (labelled theoretical). On the same graph corres-

ponding experimental results have also been plotted for comparison

25
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purposes. It should be noted here, that the value of 'd' (i.e. damping
factor) as determined experimentallyvfrom the time history of free
vibration of the system was found to be equal to 0.0l854. With this
value of d resonance amplitude of the system (shown in Figure 5

labelled theoretical ~ d = 0.01854) was infinite and asymptotic to the
backbone curve. But since the structural démping increases with
amplitude of vibration, experimentally determined 'd' (which was carried
out for small amplitude of vibration), did not give correct information.
For this reason a mére widely used value of 'd' (= 0.045) for

structural damping was used. And the amplitude response curve of the
system using this value of 'd' is shown in Figure 5 (labelled

theoretical - d = 0.045).

3.2 Resulting Motion of the Primary System With Impact Vibration

Absorber
In Appendix II, it has been shown that the motion of mass M and
m during the time interval from ty (i.e. the time immediately after

+
3th impact) to the time immediately preceding next impact t

i+1) _ can
be described by
x = A sin(wt -Vy)
y = -x + (xi + yi) + (xi + yi) (t - ti) (3.4)
where
ti+< £ <)

and the following relationships which were obtained from impact

conditions:



x(t(i+l) +) = x(t(i+l)-)
do
Y ) = ¥y ) v = 3
(3.5)
. . (1+e) .
X(t(i+1)+) = X(t(i+l)_)'+ [“’EIE'} y'('°(:'.+1)_)

§<t(i+l)+) = -e y(t(i+l)_)

can be used in eqn. (3.4) as new initial conditions in the time domain

from t(. to t

i+l) (i+2) _°
+ -

again, would give time behaviour of the system.

This process, when repeated over and over

A digital computer programme to find the 'exact' sequence of
the initial conditions from (3.5) and the resulting motion of the system
according to (3.4) for any given set of parameters and "initial"
initial conditions was written in FORTRAN IV language and was executed
by an I.B.M., 7040 digital computer at the Computing and Data Processing
Centre of McMaster University (see programme - 2 and 3 in Appendix X).

Among the basic features of the programme, the following ones
are worth mentioning.

a) The right hand side of equation (3.4) was evaluated for t = t, o+
(K-1)/100 (Initial values of t; and K were taken to be zero and 2
respectively) with K increasing by 1 each time until the quantity
(52 - 'yl ) became negative.

b) \When condition (a) was satisfied, then starting with this value of

(13)

t, Newton-Raphson method was applied to find t(i+l) for which
d
z - |y < 107
d X .

o
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With this value of t for which condition (b) was satisfied (which
consequently represents the time at which impact took place), x, ¥y
(from eqn. (3.4)); %x (from x = w A cos(wt - Y)), and § (from
y = =x + &i + ii, eqn. (II.14))were evaluated and, substituting these in
the right hand side of eqns. (3.5), new initial conditions were
obtained. With these new initial conditions the cyclic process was
repeated again. On repeating this cyclic process over and over again,
a time behaviour of the system was obtained. A typical digital computer
output is shown in Table V.2, in Appendix V.

In Figures 17, 18 and 19, theoretical amplitude response curves
of the system with and without an absorber have been drawn. In Figure

18, a corresponding experimental curve of the system (with absorber)

has also been superimposed.
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L4, DISCUSSION AND CONCLUSION

4,1 Discussion of Results

If amplitude response curves of an undamped non-linear system
with different excitation parameter be drawn, then, from stability
analysis of the system, it can be shown that the region bounded by the
backbone curve (i.e. the curve corresponding to zero excitation) and
the loci of points at which the response curves (for different exci-
tation parameters) have vertical tangent is unstable. For a damped
non-linear system the unstable region is bounded by the locus of
vertical tangents to the families of copstant excitation curves.

In Figure 5, from the experimental response curve of the systeﬁ
(which corresponds to a constant excitation parameter) it can be seen
that during frequency increase the amplitude became as large as 0,1906"
at w = 9.5 ¢/s and almost at the same frequency it suddenly dropped
down to 0,035" and went on decreasing as excitation frequency was
increased. On reversing the process from this region (i.e. in decreasing
w slowly), amplitude started growing up slowly until it reached ab;ut'
0.106" at w = 8.2 ¢/s and then it suddenly went up to 0.136" at the
same w. This sudden fall and rise in amplitude (at the same frequency)
is known as the 'jump phenomenon' and is associated with a non—lineaf
systems and this occurs when response curve corresponding toc a certain
excitation parameter approaches the unstable boundary. If the system

under consideration operates in any of the stable regions bounded by

- 36 -
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two imaginary vertical lines through the dotted ones, in Figure 5, a
very small accedental unsteadiness or extraneous disturbance may readily
bring the system over the instability threshold into the unstable
region and ultimately to a stable region, other than the one in which
it initially was.

In Figure 5, the experimental curve drawn in conjunction with
the theoretical one shows a good agreement between theory and experi-
ment.

Ip Figures 6 - 11, experimental amplitude response curves of
the system provided with an impact vibration absorber have been plotted.
Each one of these figures cdntains about 3 curves and each of them
.represents the system response for one parameter variation of the
absorber namely gap factor.

From these graphs one can obtain the information regarding, if
introduction of an absorber has any effect on resulting motion of the
system, whether the introduction of such a thing results in an increase
or decrease in the resulting mot%on and,. if any, what effect one might

expect if one of the parameters (gap factor in this case) of the
absorber is changed.

For instance, in Figure 6 where the amplitude response of the
system provided with an absorber (having 5/8" dia. ball) has been
plotted, shows that the maximum amplitude for the system for do = JL423n
was .1893" and for do = 1,019" was .1698" in comparison fo .1906" with‘
no absorber. It should, however, beAnoted that although the absorber
with do = 1.019" reduced the maximum amplitude to a greater extent in

comparison to the one having do = 423", the later one (do = 1,019")
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is less efficient below w = 7 c/s, because due to bigger length of
travel the absorber did not come into operation until the primary
amplitude of the system reached a certain value.

The small humps in the response curves as seen in Figures 8, 9
and 10 are the result of the impact vibration abosrber's sudden coming
into operation associated with reduction in amplitude.

Figure 12, in which the maximum amplitude ratio against gap
factor has been plotted, shows the effect of gap factor on maximum
amplitude.of vibration of the system. It is seen that with a particular
absorber an increase in gap factor from its lowest value was accompanied
by a decrease in amplitude ratio of the system at first until a certain
optimum value was reached, after which an increase in gap factor resulted
in an increase in amplitude ratio. For instance, with 3/4% dia. ball
absorber an optimum value of amplitude ratio = .82 was obtained for a gap
factor = 5. Any increase or decrease in gap factor from this value
resulted in an increase in amplitude ratio. For 1 1/2" dia. ball no
optimum value was reached. From these curves it is also seen that the
'bigger the mass of the absorber the more effective is the device. This
point will be raised again when the effect of mass ratio will be investi-
gated.

The experimental points on extreme riéht han& of these curves
represént the points up to which the system was stable (stable in the
sense that the motion of the ball was regular). ‘Aﬁy further increase in
gap factor resulted in an irregular motion of the ball and amplitude did

not remain constant.

Fighre 12.1 gives information regarding the choice of parameters
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for optimum design of the system. Figﬁres 13 - 15 give information
regarding the effect of absorber mass on the resulting motion of the
system. In these figures it is seen that at low excitation frequency
amplitude of vibration of the system with an absorber of bigger mass was
larger than that with the one of lower mass having the same clearance.
The explanation for this is that with an absorber of bigger mass the
effective mass of the gystem increased considerably and theréby decreased
the natural frequency of the system, whereas for an absorber with smaller
mass the natural frequency of the system remained unaffected. Now taking

a simple linear case; where motion of the system is given by

2 2
N BN G
2 2 - KlA
! 51

where pl is the natural frequency of the system, it can be shown that if
A is the amplitude of vibration of the system having natural frequency Py
for a certain excitation frequency w and A‘ is the amplitude of a system
?aving slightly different natural frequency pi at the same w, where pi
<pl, then A'> A for w <p:L and A' <A for w> Pq- Thus it is obvious that
.unléss the effect of impacp nullify this effect then introduction of an
abéorber with a bigger mass would be of no advantage at low frequehby
fange.' But it is seen that with an absorber of a bigger mass maximum
amplitude attained by thé system is less than that attained with an ab-
sorber of lower mass. The discontinuous horizontal line in Figure 14
indicates unstable region.'

Figure 16 shows' the effect of mass ratio between the absorber and
the primary mass on the maximum amplitude attained by the system. These

show that an increase in mass ratio resulted in decreasing the
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amplitude ratio of the system. Though the curve with clearance do = 0.,351"
was approaching towards an optimum, from the present study it can not be
said definitely that such an optimum mass ratio exists, since the
investigation was not carried out beyond the extreme right hand point for
this case, and for other cases viz. with d_ = 0.403" and 0.50" furtner
increased in mass ratio resulted in an unstable motion.

If a horizontal line is drawn through these curves then the
intersection points would give the design parameters for three different
absorber systems which will produce the same amplitude reduction of the
system. For instance each of the following absorbérs having different
parameters (1) wu = 0.C555, d = 0.351" (2) w = 0.04925, d = 0.403"
(3) u = 0.0435, d, = 0.50" would give a maximum amplitude ratio of
0.75.

Figures 17 - 19 show theoretical response curves (obtained
numerically by direct step by step construction of the time behaviour of
the system) of the system with an absorber in conjunction with the one
with no absorber. In Figure 18, the corresponding experimental curve
has also been superimposed, from which it is observed that the agreement
between theory and experiment is good. The discrepancy which is seen in
the amplitude range from .08" to .1l1l" might have arisen due to some
misalignment in the guide block which introduced non-linearity in the
cantilever type leaf springs during the course of investigation (it may
be recalled here that initially the model was so adjusted that the

stiffness K, came into play when X

5 was equal to .104"),

1

It should be mentioned here that with an absdrber having 1" dia.
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- ball and clearance dO = 0.310", maximum amplitude attained by the system
as given by experiment was 0.1696", while with the same absorber
theoretically obtained étable (stable in the sense that symmetric 2
impacts per cycle motion existed) maximum amplitude was only 0.13%02"

at w = 7.8866 ¢/s. However, unsymmetrickbut stable maximum amplitude
recorded was as high as .189", or more precisely an oscillating value
between .179" and .189".

In Figure 19, theoretical behaviour of the system with an
absorber having 1 1/4'" dia. ball and clearance do = ,210" has been
shown. Experimentally the system was found to be stable throughout the
frequency range under considération and the maximum amplitude attained
by the system was .1657". Theoretical results predicted that symmetric
2 impacts per cycle stable motion was possible until the amplitude of
the system became 0.0935", after which unsymmetric but regular motion
became predominant and such a motion maintained until the maximuﬁ
amplitude reached was 0.153%". After this the motion became irregular
and gave no consistent reéord of amplitude.

In Figures 20, 21, 22 and 23% theoretically obtained amplitude

ratio zax (see computer programme no. 4 in Appendix X) has been plotted

against %2 each for one fixed frequency. In these curves only thosg
sclutions have Eeen plotted which'predicfed the stable motion of the
system (stable in the sense that symmetric 2 impacts per_cycle motion
existed), and they have been referred as 'stable solution curve'.
These curves giveAinform;tioﬁ regarding ﬁhe stability of the

system with a particular absorber at a certain operating frequency. For

instance Figure 20 predicts that if the system having mass ratio
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u = 0.03770, be operated at an excitation frequency of w = 7.5991 c¢/s,

d
=

the system will remain stable if the parameter A

(this is proportional
to the clearance do) is kept within the range 3.077 - 12.3. In the same
way Figures 21, 22 and 23 can also be interpreted.

By obtaining the stable solution curves for the entire operating

frequency range (4 - 11 ¢/s for the present case) and for various mass

ratios u, one can obtain the stability boundaries of the system (a plot

d
Kg against w), which will then give ready answer to, if the system

of
parameters chosen for a particular system would give rise to a stable
motion of the system.
In the present analysis stable solution curves for only four
isolated frequencies and for a single mass ratio were obtained, sc no
attempt had been made to construct a stability boundary curve. In
reference (6) on page 72 such a curve had been drawn for a linear system.
Finally, an endeavour was made to obtain the solution of the egns. of
motion of the system by Runge-Kutta method(lu). Here, the two basic
simultaneous equations of motion of the primary system and the mass
particle in the absorber system were solved by the numerical method just
mentioned by starting the solution with given initial conditions and
then imposing new initial conditions (obtained from impact conditions)
after each impact. Although this method failed to give any solution in
the frequency range where multivalued solution is possible, the solutions

given by this in other frequencies agreed with the one obtained by

other numerical method within S%.
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4,2 Conclusion

As a result of the present investigation the following
conclusions can be made.
1) An impact vibration absorber is capable of reducing the vibration
level of a non-linear oscillating system, and the degree of its
reduction is dependent on system parameters.
2) Usually, but not necessarily, the bigger the n (i.e. mass ratio
between the absorber mass and mass of the system whose amplitude is
being reduced) the more reduction in amplitude is obtained.
3) For a system with an absorber where p is fixed, an increase in gap
factor (;2) of the absorber might result in more reduction of amplitude
of the system, provided that the original combination of system
parameters was not an optimum one.
4) Like viscous damper, the impact vibration absorber is less effective
in reducing below-resonance and above-resonance vibration levels, but is
vefy effective in reducing vibration level of the resonance-amplitude.
5) Although for some parameters for which symmetric 2 impacts per cycle
motion was not stable (as predicted by computer results), stable periodic
motion with unsymmetric but regular impacts was found to exist.
6) Even for extreme cases, wheré no periodic motions were found to
exist, the absorber was often effective in reducing vibration levels.
7) Usually the absorber is not very sensitive to slight changes in
parameters. |
8) 'Since it is the resulting amplitude rather than the stable periodic

motion that is of prime interest for practical application, impact
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vibration absorber fulfilled its role as a vibration absorbing device in
disorganizing the orderly process of amplitude build-up.

In the present study the effectiveness of an impact vibration
absorber on a non-linear systém which was subjected to a sinusoidal
excitation has only been investigated. Other problems of interest which
warrant investigation are to determine its effectiveness on a randomly
excited non-linear system and alsoc on the same type of system which is
subjected to a pulse-like excitation. The former investigation
presumably would be better tackled by statistical means.

Regarding its application it offers a tempting choice in a
system where a dynamic vibration absorber is practicable, because while
the requirements of a tuned absorber must be met exactly, the effective-
ness of an impact vibration absorber is relatively insensitive to system
parameters. Installation of such a device in the structure of a
television receiving antenna can reduce the vibration level caused by
von Karman vbrtices and thus prevent fatigue'failure of the structure.
Helicopter vibration can also be controlled by installation of such a

device.



APPENDIX - I

Equation of Motion of the Primary System

Between Impacts and Its Steady State Solution

A non-linear differential equation may be represented in the
form

Mk + fl(k) + fz(x) = fB(t) (I.1)
in which the restoring force function f2(x) and the damping force
function fl(k) are non-linear odd functions of the displacement and of
the velocity, respectively. In other words, —f2(x) = fz(-x), and
-fl(k) = fl(-i). Dividing through by M and substituting a sinusoidal

force F sin wt for f_(t), the differential equation becomes

3

o AU I )
B[x] = x + 5 fl(x) + 5 fz(x) G Fsinuwt =o (1.2)
An approximate solution of (I.2) can be assumed consisting of n
appropriate terms and denoting it by X, it can be represented by

X = a; ¢l(t) +a, ﬁa(t) ..o ta ¢n(t) (I.3)

In this case, E[X] will be different from E[x], and therefore
E[X] will be different from zero. Since % is not an exact solution E[X]
will vary from instant to instant, but over an arbitrary duration of

time T it will be possible to demand that each of n weighted averages of the

* expression E[X] must vanish. In mathematical language this means that
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T T
[T s @ e o,f BIE 2, (8) at = O,
0 0

. ‘
f " E[X] an (t) 4t = 0 (I.4)
0

This will yield n algebraic equations from which the coefficients
al, a2 s e er @y can be found and under these circumstances the
approximate solution for X will be the best obtainable in the n term

' (11)

chosen. This process is known as Ritz averaging criteria .
In order to solve the differential equation (I.2), the Ritz
averaging criteria may be expressed for the duration T = %?, or

equally well for the angle of 2n radians, as follows,

]
o

2n
f E[X] cos wt d(wt) (1.5)
0

[0}
o

2n ‘
f E[X] sin wt d(wt) (1.6)
0

Now let us agsume a two-term approximation for x in the solution of

(I.2), that is

X = A sin (0t -y) (I.7)
hence, |

§»= wA cos (wt -vy) ‘ _ (1.8)
and,

%= -0® A sin (0t - ) | (1.9)

Substituting the approximation (I.7), and hence (I.2) into (I.5)

yields



> 2n '
-0 A ][ sin(wt = %) cos wt d(wt)
0

1

2n
+ 5 j/ £, [ o A cos(ut - )] cos wt d(wt)
o .

1 2n
m j/ f. [ A sinfwt = ¥) ] cos wt d(wt)
o 2

1
=i

o) .
j[ sin wt cos wt d(wt) =0 (1.10)
0

If now a new angular. variable 0 = wt - ¥ be introduced so that do = d(wt)

and cos wt = cos(o +¢¥), then (I.10) becomes

P 2on 1 2T
-0° A sin o cos(o + ¥) do + = f.(w A cos 0) cos (o +¥) do
0] M 0] 1

1 2n F 2n
+ = f (A sin o) cos (0 +¥) do - = sin wt cos wt d(wt) = O
nj, o' M)y

On expansion this gives '
> 2n ?
-W %f/ sin o (cos © cos Y- sin O sin y) do
0 ,

on
i// fl(w A cos 0) (cos 0 cos ¢ - sin ¢ sin ¢) do
0

+

2n
%// f_ (A sin 0)(cos 0 cos ¢ - sin ¢ sin y) do
M 0 2 v

+

=O'

On partial evaluation of integrals, the above equation results into

> 1 2n
w“ Am sin y + I cos y f.(w A cos 0) cos 0 do
M 0 1
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1 on
- g sin f/[ fa(A sin 0) sin 0 do = O
. o
Rewriting this gives

b
-w2 sin y - % cos ¢ %K 2 fl(m A cos 0) cos 0 do
: o

T
1 y [@ '
+ 5 siny — . f2(A sin ¢) sin ¢ do (I.1D)

= 0
or,
—w® sin y -~% G(A,w) cos ¢ + % H(A) sin ¢ =0 (1.12)
where
L3
o [ 2 .
G(A,0) = Y fl(w A cos 0) cos o do
o
(1.13

n
y [ 2 .
H(A) = — . f2(A sin ©) sin © do

Similarly substituting the approximation (I.7) in (I.6) and proceeding

in the same manner as before would give

5w2 cos ¥ + % G(A,w) sin ¢ + ﬁ H(A) cos y = %K (I.1%)
Rewriting (I.12) and (I.1k) gives
[ o+ % H(A)'] sin ¢ - % G(A,w) cos ¢ =0 (1.15)

[ —® + % H(A) ] cos ¥ + % G(A,w) sin ¢ = (I.16)

=]

Squaring these two and adding gives
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2

G2(A,w) = [F ] : (I.17)

[% H(A) - wa] ; + (%) Ty

and from (I.15) an expression for tan Y can be obtained.

% G(A,w)
tan ¢ = T——s (1.18)
-ﬁ H(A)-w
R
K2
o
T
[ 0 = P
L X R2 Kz(x Kl)
R =

= (r(l-Ka)Xl+K2x

e
N
m . -
Spring extensicn

_i_f x

]

o)
1]

Restoring force

‘Fig. I.1l: Spring restoring force versus K

=~
]

10 &5 Spring stiffness
spring extension curve

From the above figure it is seen that for the problem under

consideration the restoring force function f2(X) can be represented by

f2(X) K x for o<|x| < X

(1.19)

and

(K.-K)X. + K_x for x, < x|

£,(x) 1708 Y )

For region 1 ( o< x| < X, ), H(A) can be evaluated from (I.13)

n
2
L .2
H(A) = nA:/: Kl(A sin“o) do .



on evaluating this integral gives

H(A) = Kl

For region 2 ( Xl<< |x]), H(A) is evaluated as follows:

H(A)

1]

T

[}

: 2
K, A sinZo do + (K.-K)X. sin 0 do
A 175274
1

EK_J/ f (A sin o) sino do

1

I

2 .
+ . 2 .
/Z: K2 A sin © dc}

0

Evaluating these integrals and rearranging gives

X

2 1 . L | 1
H(A) = = (el - 5 sin 2 el) (Kl—KZ)‘+ K2 + = (Kl-xz),( A) cos e1
.. . (1.20)
now,
A sin ©
and when O = 91, X = Xl

Hence,

(0]
-
=
(0]
1]

(1.21)

and Xl 2 %
cos 6 1=~ (==

Substituting sin 6, for (Kl) in (I1.20) gives
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H(A)

2 . : e L .
- (61 - sin el cos 61) (Kl—Kz) + K, + - (Kl - K2) sin ©. cos ©

2 1 1

1]

2
K, + £ (K-K) [e

1 + sin 61 cos Gl}

Substituting values for 61, sin 91 and cos 61 in this expression,

H(A) can be written as .

| X X, [ % 2
B = Ky + 2 (koK) | st (gD - gD [1-Gh | @

It is assumed that damping force does not change during a cycle. Hencg,

£, (x) = ¢ %

rold

G(A,w) = %K_J, c(w A cos 0) cos 0 do
o

on evaluating the above integral the following is obtained
G(A,0) = co : ' - (I1.23)
Now substituting for H(A) and G(A,w) from (I.22) and (I.23) respectively

into (I.17) yields

2
2.2 22 (O[3 L a2
M T M A A A
. 2
2 .
cw F
+ (5 = [MA] (I.24)
c b 2 El
Let M= 2b and d = 5; where P, = q
d is called damping factor or ratio of critical damping.
C
d =
2Mpl
or,

Y = 2dp, | (I.25)
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Substituting this value for -CIQI- in (I.24) gives

2
K K,-K X X
[f-wf(—l&l—% ((f-)/l- (K;')>-w2}

2
+ (2dploo)2 = l:-;—xz]

dividing this by plb’, ultimately gives

2
e (ﬁlK—Z) <(ﬁ> /1 <)—{l)2 + sin™t <i3=>> et
K T K, A A A 2
1 1 Py
2 R
2 2.
L 3% w F . »
+ ——2——' .= ﬂ (1.26)
Py 1 ,

Also substituting proper values in (I.18) and rearranging, tan Y can be

written as

2dw

tan ¥ = pl
K K. =K X X, 2 X 2
2. 2.1 2 _.3_-/ _ (L I R AN A
Kl+n(K1 ){(A) 1 (A) + sin (A)jl 5

Py

. . J(I.27)



APPENDIX - II

II-A Numerical Method for Determining Amplitude Response

of the System After Any Number of Impacts

It is assumed that the duration of impact is very small so that
the assumption at t = o, (+ sign represents the state, immediately
after impact and - sign represents the state immedigtely preceding the
impact), the positions of M and m remain the same while the respective
absolute velocities are discontinuously changed from x_ and Vm (i.e. at

t = o_) to x, and Vm is justified. That the system does so has been
verified experimenta{ly as far as the positions of M and m are concerned,
but there are enough evidgnces to believe (from the work of other
investigators in this field, though for linear cases) that same is true
for the case of velocities too (see references (3), (6)).

In Appendix - I, steady state mQtion of the system betweenl
impacts has been obtained‘by»using Ritz averaging method(ll). Since
the motion of the system during impact must satisfy the momentum

equation, then

My +mV = Mk + mV . (II1.1)
- m + m )

- +
s _ . . (12)
and from the definition of coefficient of restitution e 3 the
following relation is obtained,
x, - Vm+ = —e(x_ - Vm_? ' _ (11.2)
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Dividing (II.1) by M and substituting p for % gives

X+ Vm- =X+ Vm+ (11.3)

(II.2) can be written as
ex ~eV =-% +V (I1.4)
m + m
- +
Adding (II.3) and (II.4) gives
(l+e)x_ + (p-e) Vm_ = (1+p) Vm+
= (e L-e .
Ve = (G X o (v, (I1.5)

m_ 1+ 5

Substituting this value of V_ into (I1.2) gives

v o= (e g 3 L-ey v ‘
x, = (l+u X -ex + (l+u) Vm_ + e Vm_
or . |
. l-uey . p(l+e) ./ , .
X, = (i:E-) x_+ T Vm_ 4 (11.6)

Again substituting this value of X _ into (II.3) an expression for i; in
terms of variables Vm and Vm ‘can be obtained. This is
- + .

(e4u)Vm + (l+p)Vm+

X =

- -(l+e) (11.7)

' Finally, an expression for i+ in terms of variables Vm and Vm can be
. - A
obtained by substituting the value of X_ from (II.7) into (II.6).

This gives
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e(l+u)Vm + (l-ue)vm+

. vy (11.8)

To summarize, impact condition must satisfy the following

relations:
Vo= (B8 x4 &Sy (II.5)
m, 1+u - 1+u” 'm_
o= (ke g, uldre) (I1.6)

+ .1+ -7 1+ m_

(e-u)Vm + (l+u)Vm+

x_ = GF™) (I1.7)
e( i+u) v, (l-ng:) v
%, = Zl+e) * : (I11.8)

Recalling the mathematical model in figure 1, its equation of
motion between impacts is

M¥ + (0 + £(x) = F sin wt (II.9)
y o= =% * . (I1.10)
where fl(k) and fz(x) stand for the damping force and spring forcgk
respectively.

If immediately after the ith impact at t = ti the following
variables assume the values

x(ti ) = X, 3 y(ti ) = v, x(ti ) = X, i y(ti ) = ¥y (II.11D)
+ + + +

’

then the motion of M and m during the time interval from ti to the
+

time immediately preceding the next'impact can be said to be given by

* See Appendix II-B for derivation.
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x = A sin(ot - ¢) | (I1.12)

L]

yo=oxor (g by o+ Gy ) (6=t (11.13)

for b, <0 <

It should however, be noted that x as given by (II.1l2) wnich
was obtained by using Ritz averaging method in Appendix - I is not a
complete solution of x, since it does not take into account the
transients and gives only the steady state solution. However, for the
present analysis, this approximation is justified.

The solution of (II.10) was obtained in the following way,

j = -x
¥y = -x + Al
y = =X + Alt‘+ A2

applying initial conditions from (II.1l)

Yy = % v Ay Ay =y v %

Vo= =X + ¥, + X, (II.14)

again applying initial conditions from (II.11)

- .
¥y X + (yi + xi)ti +

2
A2 =g otXg - (yi + xi)ti

Hence,

y = =X + (yi + xi)t Yyt X - (yi + xi)ti
y = =% + (xi + yi) + (xi + yi) (t - ti) .

In order to obtain time behaviour of the system it is necessary
to know the values of the variables in eguations (II.12) and (II.13).

The values of A and ¢ are obtained from egns. (I.26) and (I.27) in
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Appendix - I. The other values can be obtained from impact condition.

Equation (II.6) gives the relationship between k+, x_ and Vm s

that is
ko= (Ao , Ldey
+ 1+’ "= 1+u m_
but V_ =y, (see Figure 1)
and ¥y =7 + x
V = ).Y + X

Substituting this value of V  in (II.1) gives

X =

l-uey - v+Re . ut+pe .
+(-——-l+)x+ — ¥y

- 1+u 7 1+ -

Simplifying gives

. n{l+e)
X =X —_
+ - 1+ -

Also (II.2) gives

y, = -ey_

The impact condition at t(i+l) gives
+

X(t(l"l'l) +) = X(t(l'l'l)-)
’ d

y(t(i+l)__) i Iyl = 59

y(t(s,0) )
+

. ' . w(l+e) | -
X(t(i+l)+) = xltggyy ) [ (1) ] TSR

§(t(i+l)+) =-e 9(t(i+l)_)

(I1.15)

(I1I1.16)

(II.17)

(11.18)

(I1.19)
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Conditions (II,19) can now be used as new initial conditions in

equations (II.12) and (II.13) for the time interval t(; to t

i+l) (i+2) °
+ -

This process can be repeated, over and over again so as to obtain the

time behaviour of the system.

II-B Derivation of Equation of Motion

of the Mass Particle

Equation of motion of the mass particle can be obtained by using

(16)

Lagrange's equation , which states

d (BT ) oT oV

at ‘9q_ " aa, Toa - r

(r=1,2, ¢« « . n) (I11.20)

where T

kinetic energy of the system

V = Potential energy of the system

qr = Generalized co-ordinates
Qr = Generalized forces at q. which do not have potential.

Now, kinetic energy of the particle is given by

T = % m i, (II.21)
2T my also o=— = o and 2V o
— = , = .
2y, 1 oy, 9y,
& G =iy =G+ R (11.22)
: .

since yl =y + X (see fig. 1).
Since Q = o for the present case then substituting proper values

into eqn. (II.20) gives

m(y + X) = o

¥ o= =% (I1.23)



APPENDIX - III

Experimental Results with 1" Diameter Ball

and Different Clearances

Table III.1

Excitation
frequency
w cycles/sec.

Clearance do = 0.190"

Single amplitude
of vibration
X in.

frequency increasing

N
Ly
4.8
5.0
5.2
5.4
5.6
5.8

6.0

7.0

039
037
.0k2
LOkk
.0k65

_.0k9

053
056
.06

- 59 -

w

cycles/sec.

7.1
7.2
7.3
7.k
7.5
7.6
7.7
7.8
79
8.0
8.1
8.2
8.3
8.k
8.5
8.6
8.7

in.

.11k

.116

.125

.126

.129
133
135
.138
1405 -
146
148
<154
.156
.158
.161

164



Table III.1 (continued)

w x ® x
8.8 .169 .
8.9 L1735 . .
9.0 177
9.1 - .185 . 9.2 039
9.15 .187 9.1 .0k2
9.2 .039 9.0 Ol
9.3 .03%6 8.9 .OL7
9.4 .03k ' 8.8 .051
9.5 .0%2 8.7 .05k
9.6 .02 3.65 .052
9.7 .028 .‘ 8.6 : .055
9.8 .027 ' 8.5 | .058
9.9 .026 8.4 - .063
10.0 .025 8.3 069 -
0.2 L0225 8.2 .076
10.4 .021 8.1 .08
10.6 .02 8.0 .098 h
10.8 .018 7.95 .137
11.0 .016 7.8 ‘ .135
frequency decreasing hereafter gave the same
11.0 .016 : amplitude as during w
gave same amplitude as increasing.

during w increasing



Table III.2

®
c/s

Clearance do = ,330"

X
in.

frequency increasing

b4
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.7
6.75
6.8
6.85
6.9
7.0
7.1
7.2
7.3
7.4
7.5

.0378
.OLOL
LoL2k
LOLkk
.OL7
.0501
.0535
L0574
.0621
L0652
L0678
073
.0804
.0856
.0878
1044
.1096
L1135
L1174
.12
124
.1266

w
c/s
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8L
8.5
8.6
8.65
8.7
8.8
8.9
9.0
9.1
9.2
9.4
9.6
9.8

10.0

in.

129
.1%3
.1358
.137
L1b22
.146
L1475
L1514
.1528
.1566
.159
.158
.162

0535

.0483 

L0456
04175
.0378
.0352
.0313
.0282

.0256

61



Table III.2 (continued)

w X
c/s in.
frequency increasing

10.4 .02155
10.8 .0183
11.0 .017

frequency decreasing

.

.

8.8 - .0535
8.7 L0574
8.6 .06k
8.5 .0705
8.4 .0782
8.3 .09
8.25 .0731
8.2 .0756
3.1 .0796
8.0 .09
7.9 137
7.6 .129

hereafter gave the same
amplitude as during w

increasing.

62



Table III.3

W
c/s

Clearance do = 500"

X
in.

frequency increasing

4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
6.9
6.95
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

.0366
.0392
.0L3
L056
.0496
.0535
L0574
.0652
073
L0784
LO7kk
.0835
. 104k
. 1044
112
115

.1175

.12k
.128
131

.131

w

c/s
7.9
8.0
8.1
8.2
8.25

8.3

8‘35‘
8.4
3.5
8.6
8.7
8.8
8.9
9.0

9.2

9.6
9.8
10.0
10.4
10.8

ll .O

in.

.1358
1332
L1kl
<1435
L1448
146
.0861
.0809
.0718
.0679
L0613
L0561
.0kg6
NolY
L0418
.0366
.031%
.0287
.0261
.0215
.0183

.017

63



Table II1.3% (continued)

W b
frequency decreasing

8.4 - 081
8.3 .077
8.2 .0993
8.15 b2k
8.0 .138Lk

7.0 . 1044

el



Table III.4 Clearance = ,5k2n

w x
c/s in.

frequency increasing
L.k L0366
4.8 .0382
5.0 - .0405
5.2 .0418
5.4 ' LOLhh
5.6 ,'047
5.8 .051
6.0 -0575
6.2 .0548
6.4 ~.0587
6.6 L0674
6.7 L0752
6.75 .0805
6.8 .0888
6.85 .098
6.90 .1045
7.0 1084
7.1 115
7.2 116
7.3 .118
7.4 .1228
7.5 1267

W
c/s

7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.4
8.5
8.6
8.7
8.8
9.0
9.2
9.4
9.6
9.8
10.0
10.4

10.8

65



Table III.4 (continued) -

W

11.0

X

.017

frequency decreasing

.

8.4
8.3
8.2
8.15
8.10
8.0

.

.

0756
.0835
.0991
L1448

L1435
.138

66



APPENDIX - IV

A, Summary of Experimental Results With

Same Ball Size but Different Clearances

Table IV-A,l Ball diameter D = —85-" (A = 0,1906")
max
No. of Clearance Gap factor Maximum Amp.,
observation d_ inch d _ Amplitude ratio
° ‘A_o ’ X in. (2(_)
max A" max
1 423 ' 2.222 .1893 .993
2 " .700 3.672 .1867 .980
3 797 4,180 .1865 .978
4 .919 4,820 .1789 .938
5 1.019 5.350 .1698 .890
6 1.095 5.750 .1722 .904
7 1.196 6.275 .1750 .917
8 1.295 6.80 .1750 .917
3"
Table IV=A.2 Ball diameter D = n
No. of d inch d, X in. (%)
observation ° T A" max
max
1 .298 1,56k .1895 .99k
2 .382 2.030 .1880 .986
3 .513 2.692 1776 .932
b .590 3,095 .1736 .910

-.67 -



Table IV-A,2

No. of
observation

N Oy WU

10

11

Table IV-A.3

No. of
observation

1

2

(continued)
d inch d
° )
A
max
.698 3,665
.762 4,000
814 L,270
.905 4,750
960 5.040
1.002 5.260
1.087 5.700

Ball

d
o

173
.268
. 347
412
-503
.540
.590
635
675

. 2"
diameter D = g
d
2

max

.9075
1.406
1.820
2.160
2.640
2.832
3.100
3.33%0
3.542

X in.

.1723%
L1645
.1593
.1567
.1567
.1567
L1643

.1905
.1854
.1748
.1680
.1620
.1619
.1580
.1566
-1579

68

.822

.863

.822

.827



Table IV-A.L4

No. of
observation

~N o v F

Table IV-A.5

No. of

observation -

N o v F

Ball diameter D = 1"

d
o

.190
.265

.310

395

L1463

.Sh2
.582

Ball

.066
0150

.26h
.290
.313
347
.381

d
L

Amax

.997
1.390
1.627
1.731
2.071
2.4%0
2.622
2.84

3.05

diameter D = 1T

d
o
max
. 346
.787
1.076
1.384
1.521
1.642
1.820

2.000

l“
L

.1870
.1800
.1696
.1620
.1540
.146
146
.150
.153

.1880
-1775
.1657
1553
L1461
1383
.1358
.1423

69

A)max

.980
.9hb
.890
.850
.808
.766
.766
.787

A" max

.986
.931
.870
.81k
.766
.725
.712

746



1]
Table IV-A.6 Ball diameter D = l%
No. of d d x
. o [o!
observation T
© max
1 069 .362 .1761
2 .145 .761 .1568
3 .196 1.028 .1384
4 .250 1.311 .1253%
5 290 1.522 .1149
6 .312 1.640 .1096
B. Summary of Experimental Results with

Same Clearance but Different Balls

Table IV-B,1

No. of Ball diameter
observation D in.

1 5/8

2 3/

3 7/8

i 1

5 11/8

6 11/4k

7 13/8

* See Appendix IV.C

Clearance do = 0,351"

Mass ratio*

b=
.00822
.01436
.0229
.0337
0485
.0668
.0888

Amplitude

€]

A" max

1.0
.986
973
.896
.725
.719
.688

70

A" max

rat.o



Teble IV-B.2

No. of
observation

F_J

Table IV-B.3

No. of
.observation

1

2

=

oy U

Clearance do = 0.LkO3"

Ball diameter
D in.

5/8

3/4

7/8

1

1 1/4

Clearance do

D in.

1/2
5/8
3/4
7/8

1

11/8

Mass ratio
_n
M
,00822
L0143%6
.0337
.0667

= 0,500"

.00k17
.00822
01546
.0229
.0337
.0485

71

Amplitude ratio

(%

A" max

1.0



C. Mass Ratios Between Different Ralls

and Primary System (p = =)

M= 4,3122 1lb.

Ball diameter Mass of Ball
D in, m 1b.

1/2 .018

5/8 : .0355

3/4 .062

7/8 .099

1 v L1455

11/8 .209

1 1/% .288

1 3/8 .383

11/2 g6



Table V.1

* y& and Vé corresponds to w

APPENDIX - V

Steady State Amplitude A and Phase-Angle w of the Primary

System Without Impact Vibration Absorber (Analytical)

Kl = 22 lb/in., K2 = 60.2727 1b/in., Xi = 0.104 in.

Py = 7.5 ¢/s, d = 0,045, F = 0.513 1b

91 92 Y1 v
c/s c/s rad rad
L.0830 11.3452 .06952 -.10528
1.8393% 10.7437 .02348 -.12193%
2.4141 10.3061 .03230 -.13833
3.5488 | 9.972k4 .05481 -.15457
I, 2163 9.7091 L0738k -.17070
L.6773 9.4956 .09159 -.18677
© 5.020k4 9.3187 - .10872 -.20280
5.5028 9.0k422 .14207 -.22481
5.8292 8.8353 .17488 -.26687
6.0665 8.6741 .20753 -.29905
6.2477 8.5446 .2k022 -.%31k2
6.3911 8.4378 ‘ .27%08 -.36405

and w, respectively

1 2

- 73 -



Table V.1 (continued)

.090
.098
.106
114
122
.130
.138
146
154
.162
.170
.178
.186
L9k

6.5079
6.605%
6.7110
6.9832
7.2938
7.5991
7.8866
8.1529
8.3984
8.62k49
8.8348

9.0307

"9.2164

9.3983

c© ©o 0o o o 0o 0o o

9

9.
9.
9.
9.
9.

@

.3L480
.2712
.2227
.32k
4770
L6411
.8028
9563
.0989

2297
3482
4540
5461

6202

Y1
.20618

33961

.37480

42210
47567
.53331
. 5944
.65930
.72828
.80243
.883k2

97417

1.080k9

1.21766

75

Yo
-.25699
-.b2029

.16513

.51023

.56121

.61639

05733

.73816

.805L0

.878c00

.95763

-1.04717
-1.15241

-1.28862



B. Time Behaviour of the Primary System with Impact Vibration

Absorber

Digital Computer Output

Table V.2 o = 7.59917 ¢/s, p; = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>