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Abstract

Globular clusters are found in the halos of all types of galaxies, and

have been shown to play major roles in the formation of stars and galaxies.

The purpose of this thesis is to advance our level of understanding of the dy-

namical evolution of globular clusters through N -body simulations of clusters

with a range of circular, eccentric, and inclined orbits. Theoretical studies

have historically assumed that globular clusters experience a static tidal field,

however the orbits of globular clusters are all non-circular and the tidal field of

most galaxies is not symmetric. Understanding how clusters evolve in realistic

potentials allows for them to be used to constrain the formation, merger his-

tory, and evolution of a host galaxy and even map out the current size, shape,

and strength of a galaxy’s gravitational field.

We find that dense and compact clusters evolve as if they are in iso-

lation, despite being subject to a non-static tidal field. For larger clusters,

tidal shocks and heating inject energy into the cluster and significantly alter

its evolution compared to previous studies. We describe how a non-static field

alters the mass loss rate and relaxation time of a cluster, and propose methods

for calculating a cluster’s size and orbit.

We then apply our work to clusters in the giant galaxies M87, NGC

1399, and NGC 5128. We consider each cluster population to be a collection of

metal poor and metal rich clusters and generate models with a range of orbital

distributions. From our models we constrain the orbital anisotropy profile of

each galaxy, place constraints on their formation and merger histories, and

explore the effects of nearby galaxies on cluster evolution.

By advancing studies of globular cluster evolution to include the effects

of a non-static tidal field, we have made an important step towards accurately

modelling globular clusters from birth to dissolution. Our work opens the door

for globular clusters to be used as tools to study galaxy formation, evolution,

and structure. Future studies will explore how galaxy formation and growth

via the hierarchical merger of smaller galaxies will affect cluster evolution.

iii





Co-Authorship

Chapters 2-6 are original papers written by myself, Jeremy Webb, and

have been re-formatted to conform to the specifications of the McMaster thesis

style.

Chapter 2 was published in The Astrophysical Journal, with reference

Webb, Jeremy J.; Harris, William E.; Sills, Alison; Hurley, Jarrod R., Vol-

ume 764, Issue 2, pages 124-136, Bib. Code: 2013ApJ...764..124W, DOI:

10.1088/0004-637X/764/2/124. Chapter 3 was published in Monthly Notices

of the Royal Astronomical Society, with reference Webb, Jeremy J.; Leigh,

Nathan; Sills, Alison; Harris, William E.; Hurley, Jarrod R., Volume 442, Issue

2, pages 1569-1577, Bib. Code: 2014MNRAS.442.1569W, DOI: 10.1093/mn-

ras/stu961. Chapter 4 was published in Monthly Notices of the Royal Astro-

nomical Society, with reference Webb, Jeremy J.; Sills, Alison; Harris, William

E.; Hurley, Jarrod R., Volume 442, Issue 2, pages 1569-1577, Bib. Code:

2014MNRAS.442.1569W, DOI: 10.1093/mnras/stu961. Chapter 5 was pub-

lished in The Astrophysical Journal, with reference Webb, Jeremy J.; Sills,

Alison; Harris, William E., Volume 779, Issue 2, pages 94-103, Bib. Code:

2013ApJ...779...94W, DOI: 0.1088/0004-637X/779/2/94. Chapter 6 has been

recently submitted to Monthly Notices of the Royal Astronomical Society, and

is currently under the review process. It will have co-authors Alison Sills,
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Chapter 1

Introduction

1.1 Globular Clusters

In our Universe, matter is found to be concentrated in large structures called

galaxies. Galaxies are massive collections of stars and gas orbiting within a

halo of dark matter that can be found in isolation, within small groups, or in

large galaxy clusters. Galaxies form via the hierarchical merging of smaller

dwarf-like galaxies and haloes, with many minor mergers initially leading to

the formation of the most massive galaxies in a group. Major mergers in large

galaxy clusters, where the masses of the two galaxies differ by less than a factor

of 10, can lead to the formation of a massive central host galaxy (Kravtsov &

Gnedin, 2005; Tonini , 2013; Li & Gnedin, 2014; Kruijssen, 2014). The final

picture is then a central host galaxy that is surrounded by dwarf satellites that

have yet to merge. Within each galaxy, stars are also found both in isolation

and within clusters. Star clusters of all masses have been observed, ranging

from lower masses of ∼ 300M⊙ to masses greater than ∼ 106M⊙. Star clusters

also range in size, with lower mass clusters having limiting radii rL (radius
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Figure 1.1 The Galactic globular cluster M80 (Image Credit: F.R. Ferraro, M.
Shara et al. and the Hubble Heritage Team).

at which stellar density drops to zero) on the order of 10 pc while high mass

clusters can have values of rL greater than ∼ 35 pc (Binney & Tremaine, 2008).

An example of a high-mass cluster (also known as a globular cluster) can be

found in Figure 1.1, which is a Hubble Space Telescope (HST) image of the

Milky Way globular cluster M80.

The key difference between low-mass clusters and high-mass clusters is
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that high-mass clusters can survive as bound clusters for longer periods of time.

Lower mass clusters, typically referred to as open clusters, are known to be sites

of recent star formation (within a few 100 Myr), as they are typically found in

the disks of galaxies where there is plenty of gas and star formation is currently

on-going. Furthermore, their metallicities reflect the current metallicity of

their host galaxy and they contain high mass stars with notably short lifetimes

(Binney & Tremaine, 2008). Due to their low mass and density, low-mass

clusters will quickly dissolve and lose their stars to the host galaxy. Globular

clusters, which are primarily found in galaxy halos where no star formation is

occurring, are believed to be so old (10 - 12 Gyr) that they must form as part

of the galaxy formation process (Maŕın-Franch et al., 2009; VandenBerg et al.,

2013). Hence globular clusters have significantly lower metallicities than open

clusters and are comprised of low-mass stars with long lifetimes. Similar to

open clusters, globular clusters are also in the process of slowly dissolving as

stars are lost to the galaxy. However their high mass and density has allowed

for many globular clusters to survive until the present day, with the majority

of clusters having dissolution times greater than the age of the Universe.

It is believed that the very first globular cluster ever discovered was

M22, found in 1665 by Johann Abraham Ihle (Jones, 1991). In the 350 years

since, we have found 157 globular clusters in the Milky Way (Harris, 1996)

and countless globular clusters in distant galaxies. The giant elliptical galaxy

M87 alone has over 13,000 globular clusters (McLaughlin et al., 1994; Strader

et al., 2011). The discovery of globular clusters in almost all galaxies has led

to them being considered one of main the building blocks of our Universe, as

they represent the first structures which form during galaxy formation and

the first sites of star formation. The general picture that emerges from star
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cluster studies is that the majority of stars (70 − 90%) form in a clustered

environment, with approximately 5% of stars populating bound stellar clusters

(Lada & Lada, 2003). Galaxies first form via the hierarchical mergers of small

galaxies, so the galaxies in which globular clusters first form are small, have

low metallicities, high gas surface densities, and turbulent velocity dispersions.

All of these factors result in the formation of massive globular cluster like

objects. As smaller galaxies continue to merge to form a massive host galaxy,

the tidal forces experienced by gas during the merger process can result in

the formation of new globular clusters. Furthermore, tidal forces experienced

by clusters during mergers serve to push globular cluster orbits out into the

halo of the central host galaxy (Kruijssen, 2014). Over time, as these clusters

evolve they slowly dissolve such that only the most massive and most dense

globular clusters have survived to reach the present day. As less and less gas

became available for star formation, stars could only be formed in low-mass

clusters with short dissolution times. Hence only the most recently formed

open clusters are observable today. The resulting stellar population within a

galaxy is then made up of stars in star clusters and stars that have escaped

star clusters.

Understanding how globular clusters initially form and evolve provides

us with a road map linking observations of present day globular clusters and

cluster populations to constrain the present day and past properties of a host

galaxy. The general purpose of this thesis is to use theoretical models of

globular cluster evolution to explain the observed properties of globular clus-

ters today. Linking observable cluster parameters to the dynamical history

and present day properties of host galaxies allows astronomers to use globular

clusters as tools to study the Universe.
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1.2 Observations of Globular Clusters

As observations of cluster populations in more and more galaxies have become

available, an observational trend that has emerged is that globular cluster

populations share many of the same global characteristics. Shared character-

istics between cluster populations over a range of galaxies suggest that either

globular clusters undergo similar formation and evolution mechanisms that

are independent of the host galaxy or that galaxies undergo similar phases

of formation and evolution which result in nearly identical globular cluster

populations.

1.2.1 The Universal Globular Cluster Luminosity Func-

tion

The brightness or luminosity of a globular cluster is referred to as its absolute

magnitude. Studies of globular clusters in the Milky Way have revealed the

distribution of cluster luminosities is approximately Gaussian, centred on a ab-

solute magnitude of -7.3 and a standard deviation of 1.3 (Figure 1.2). Studies

of extragalactic cluster populations have revealed similar luminosity distri-

butions, suggesting the globular cluster luminosity function is near-Universal

(Brodie & Strader, 2006). Within stellar populations, light is considered to

be a tracer of mass, with brighter stars being more massive than fainter stars.

With Galactic globular clusters having a mean measured mass to light ratio of

(M
L
)V = 2 (McLaughlin & van der Marel, 2005), the luminosity function can

be converted to a mass function centred around ∼ 105M⊙. Studies have also

shown that the luminosity function is the same throughout a given galaxy.

A universal present day mass function immediately suggests that the portion
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Figure 1.2 Globular cluster luminosity function for Milky Way globular clus-
ters. The solid line is a Gaussian centered at -7.3 with a standard deviation of
1.3 (Brodie & Strader, 2006). Data taken from Harris (1996) (2010 Edition).

of the initial (or primordial) distribution of cluster masses which survives to

reach the present day is also universal, and that these clusters must undergo

similar evolutionary phases.
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1.2.2 The Structure and Scale Size of Globular Clusters

Models of the density and surface brightness profiles of globular clusters date

back to King (1962), and have continued to received attention in the over 50

years since (e.g. King , 1966; Sérsic , 1968; Wilson , 1975; Gunn & Griffin,

1979; Gebhardt & Fischer, 1995; van de Ven et al., 2006). Globular clusters

can generally be modelled as a distribution of stars that gradually becomes less

dense as you get farther from the centre. At a given clustercentric distance,

stellar velocities follow a Maxwellian-like distribution which extends out to

the escape velocity at that distance. An example of a standard King (1966)

profile is illustrated in Figure1.3, and can be constrained by the core radius rc

(radius at which the stellar density drops to half the central density), effective

radius rh (also known as the half-light radius, the radius which contains half

the cluster’s total light) and rL. The central density can be used in place of

rh to constrain a cluster’s density profile. Differences between different cluster

models are due to different choices for the cluster’s distribution function and

how exactly cluster density decreases to zero at rL.

Unfortunately rL is a very difficult quantity to measure. In the Milky

Way, it is difficult to distinguish between stars that are gravitationally bound

to a cluster and ones that have either recently escaped or are in the fore-

ground/background. For extragalactic globular clusters, individual stars can-

not be resolved and globular clusters appear as star like objects, as seen in

Figure 1.4 of the Sombrero galaxy. The size of an extragalactic globular cluster

can only be measured from its surface brightness profile which quickly tran-

sitions to background near rL. Therefore astronomers instead use the rh as

a tracer of cluster size. Studies have shown the determination of rh is quite
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Figure 1.3 King 1966 globular cluster density profile (normalized by core den-
sity) as a function projected distance (normalized by core radius).
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Figure 1.4 The Sombrero Galaxy. Almost all star-like objects in this image
are actually globular clusters. (Image Credit: NASA, ESA and the Hubble
Heritage Team).

robust and independent of the measurement technique used (e.g. Webb, Sills,

& Harris, 2012a).

Surprisingly, like the universal globular cluster luminosity function, the

distribution of cluster sizes also appears very similar between galaxies. The

distribution of cluster sizes in all galaxies is centred around a mean rh of

approximately 2.5 pc, and has been illustrated for the Milky Way and the

giant galaxies M87, NGC 1399, and NGC 5128 in Figure 1.5. Unlike the

universal luminosity function, the distribution of globular cluster sizes does

have some dependence on galactocentric distance as illustrated in Figure 1.6

again for the Milky Way, M87, NGC 1399, and NGC 5128. For comparison

purposes, three dimensional galactocentric distances rgc in the Milky Way

have been converted to projected galactocentric distances Rgc assuming one is

viewing the Milky Way face-on. In all cases, globular clusters near the centre
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Figure 1.5 Distribution of globular cluster effective radii in the Milky Way
(black), M87 (red), NGC 1399 (blue) and NGC 5128 (magenta).

of a galaxy are quite small with mean cluster size initially increasing with Rgc.

Eventually, mean cluster size stops increasing with Rgc and even flattens out

such that the mean rh stays at ∼ 2.5 pc. This trend is observed in almost

all extragalactic cluster populations (Spitler et al., 2006; Gómez & Woodley,

2007; Harris , 2009a; Harris et al., 2010; Puzia et al., 2014).
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Figure 1.6 Effective radii rh and log projected galactocentric distance LOG
Rgc of globular clusters in the Milky Way, M87, NGC 1399 and NGC 5128.
The solid lines represent the median rh calculated with radial bins containing
5% (10% for the Milky Way) of the total cluster population each.
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1.2.3 Color Bimodality in Globular Cluster Populations

Photometric studies of globular cluster populations have revealed that in al-

most all galaxies cluster populations are bi-modal in colour (e.g. Zepf & Ash-

man, 1993; Larsen et al., 2001; Harris , 2009b; Peng et al., 2006). This colour

bimodality has been attributed to cluster populations consisting of metal poor

and metal rich sub-populations, with metal poor clusters commonly referred

to as the blue population and metal rich clusters referred to as the red popula-

tion (e.g. Zepf & Ashman, 1993; Brodie & Strader, 2006). Many structural and

kinematic differences have been identified between these two sub-populations

that are surprisingly consistent between galaxies. Most applicable to this study

is the common observation that blue globular clusters are on average 20%

(∼ 0.4 pc) larger than red clusters (e.g. Kundu & Whitmore, 1998; Kundu

et al., 1999; Larsen et al., 2001; Jordán et al., 2005; Harris , 2009a; Harris

et al., 2010; Paolillo et al., 2011; Blom et al., 2012; Strader et al., 2012; Wood-

ley, 2012; Usher et al., 2013). While various studies have been able to show

that the size difference can be attributed to different formation, dynamical

and stellar evolution histories (e.g. Kundu & Whitmore, 1998; Jordán, 2004;

Jordán et al., 2005; Harris , 2009a; Sippel et al., 2012; Schulman et al., 2012),

the fact that the size difference is consistent between galaxies suggests cluster

formation and evolution is galaxy independent.

Since the properties of the galaxies which host globular cluster popula-

tions are quite different, the fact that we observed such similar characteristics

between cluster populations is surprising. These similarities suggest that we

need to explore how and when the similar properties are established, as well as

the subsequent role that environment plays on globular cluster evolution. We
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therefore turn to theoretical models of globular clusters to study the effects of

environment and attempt to reproduce the observations discussed above.

1.3 Theoretical Studies of Globular Clusters

Pioneering work by von Hoerner (1957), Henon (1961), and King (1962)

have helped set the stage for future studies on globular evolution. Through

purely analytic techniques, these studies were able to model the evolution of a

globular cluster from birth, both in isolation and in the presence of an external

gravitational potential, and make strong predictions regarding the structure

and kinematics of present day globular clusters. The majority of studies which

focus on the dynamical evolution of globular clusters assume that the cluster

has already formed and consists of a gravitationally bound population of stars

with a range of initial positions, velocities, and stellar masses. At this stage

globular clusters consist of almost no gas, with the exception of gas lost from

stars via stellar evolution, and zero dark matter.

If we first consider a cluster in isolation, stellar evolution will be the

initially dominant mechanism behind cluster evolution as the most massive

stars in the cluster undergo mass loss and eventually go supernovae. After

∼ 100 Myr, once this early phase of mass loss is complete, energy transfer

between stars via long-range two-body interactions begin altering the stellar

orbits within the cluster (Henon, 1961, 1973; Spitzer, 1987; Heggie & Hut, 2003;

Gieles, Heggie & Zhao, 2011). This mechanism, known as two-body relaxation,

results in an overall cluster expansion as massive stars fall inwards and low

mass stars are pushed to wider orbits. Some stars may even get energized to

velocities greater than the escape velocity of the cluster, resulting in a decrease
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in total cluster mass. Given enough time, a cluster will completely dissolve

via two-body relaxation. For any Milky Way-like globular cluster in isolation,

dissolution time scales are much greater than the age of the Universe. Only

extremely low mass (M ∼ 103M⊙) or compact (rh ∼ 0.5pc) globular clusters

will reach dissolution within a Hubble time.

For a cluster orbiting within the gravitational potential (tidal field) of a

galaxy, the situation becomes quite a bit more complicated. The external tidal

field of the host galaxy sets a boundary around a globular cluster that marks

the distance where stars within a globular cluster feel a stronger acceleration

toward the host galaxy than the cluster (von Hoerner, 1957). This distance is

commonly referred to as the tidal radius rt of the cluster, but is also known

as the Jacobi radius or the Roche lobe of the cluster. If we simply consider a

star on a circular orbit around a point-mass cluster of mass M, which in turn

is orbiting around a more massive point mass galaxy (Mg) at a galactocentric

distance rgc, von Hoerner (1957) finds that the clustercentric distance the star

must have in order to feel equal and opposite gravitational forces from the

cluster and the galaxy is:

rt = rgc(
M

2Mg
)1/3 (1.1)

Equation 1.1 provides us with a first order approximation of how cluster

size is related to cluster mass and the strength of the host galaxy’s gravita-

tional field. However, before a direct comparison can be made between theory

and observations, a more rigorous derivation of rt is necessary that does not

constrain the gravitational potential of the host galaxy to be a point mass.

Bertin & Varri (2008) consider a globular cluster on a circular orbit with ra-
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dius rgc and orbital frequency Ω in a galactic potential ΦG(r). Assuming the

galactic potential is spherically symmetric, rt can be written as:

rt = (
GM

Ω2υ
)1/3 (1.2)

Where Ω, κ and υ are defined as:

Ω2 = (dΦG(r)/dr)rgc/rgc (1.3)

κ2 = 3Ω2 + (d2ΦG(r)/dr
2)rgc (1.4)

υ = 4− κ2/Ω2 (1.5)

Equation 1.2 directly illustrates how an external tidal field primarily

serves to restrict cluster sizes. However it also implies that an external tidal

field will also strongly influence globular cluster dissolution times as two-body

interactions only have to energize stars out to distances comparable to rt. At

a given rgc, if a cluster is large enough to have stars orbiting near rt (tidally

filling) then the dissolution process will be accelerated as stars are more easily

tidally stripped from the cluster. However, if a globular cluster is sufficiently

small and compact, such that its size is much less than rt (tidally under-

filling), then it will evolve as if it were in complete isolation (unaffected by

the surrounding galactic potential). Ultimately, the rt of a cluster provides us

with multiple theoretical predictions regarding cluster structure that can be

compared to observations. Equation 1.2 predicts that:

• Within a given galaxy, cluster size should increase with rgc as the tidal

field weakens
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• Cluster size should increase with cluster mass, as more massive clusters

are able to retain stars out to larger distances

• For clusters at the same rgc in different galaxies, clusters in the more

massive galaxies will be smaller due to the strength of the tidal field.

1.4 Comparing Theory and Observations

With a thorough understanding of rt, and its dependence on a cluster’s loca-

tion in a tidal field, the observational results from Section 1.2 can be further

explored. It becomes surprising that observations of clusters in different galax-

ies suggest they all evolve in a similar manner, as clusters in different galaxies

will all orbit within dramatically different gravitational potentials. Tidal fields

will vary in both shape and strength, and should alter the sizes, dissolution

timescales and orbital decay times of their respective cluster populations. All

of a sudden, a universal globular cluster luminosity function, especially one

that is the same at all rgc, becomes difficult to explain. Galaxies with stronger

tidal fields should more easily destroy low mass clusters and tidally strip high

mass clusters than weaker galaxies. Even within a given galaxy, where the

tidal field changes as a function of rgc, the distribution of cluster masses would

also be expected to change with rt.

Even more difficult to explain is the distribution of cluster sizes, which

we can directly link to tidal field strength, being the same from galaxy to

galaxy. Since no correlation exists between cluster density and rgc, rh will

scale with rgc in the same way as rt. Hence all cluster populations having

a similar distribution in size about 2.5 pc is puzzling. Additionally, having

mean cluster sizes initially increase with Rgc and then remain constant near
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rh = 2.5 pc also lacks a clear understanding. In the outskirts of a galaxy where

the tidal field is weak, one may expect clusters in different galaxies to have

similar ranges in size as most clusters will be tidally under-filling. Only the

most extended clusters will be tidally affected. However moving towards the

centre of the galaxy, where tidal field strength increases at different rates for

different galaxies, the distribution of cluster sizes should also be different.

Tidal theory does however provide a possible explanation of why red

and blue clusters have different mean sizes. Observational studies of globular

cluster systems indicate that the blue sub-population is less centrally con-

centrated in the host galaxy than the red sub-population (e.g. Larsen et al.,

2001; Forbes et al., 2006; Harris , 2009a,b). Given Equations 1.1 and 1.2, it is

straightforward to conclude that red clusters are on average smaller than blue

clusters because they will be subject to increased tidal stripping and decreased

tidal radii since they orbit in a stronger tidal field. Larsen & Brodie (2003)

then suggest the perceived size difference is simply due to the projection of

two different spatial distributions, with blue clusters having larger rgc. An

observational prediction that stems from this argument is that the size dif-

ference between red and blue clusters should decrease with Rgc, and that the

two sub-populations should have similar mean sizes when projection effects are

minimized. This has been shown not to be the case by Harris (2009b), where

the ratio between mean blue cluster size and mean red cluster size remains

constant with Rgc in six different giant elliptical galaxies. Similar results were

found in studies of NGC 1399 (Paolillo et al., 2011; Puzia et al., 2014), NGC

4365 (Blom et al., 2012), and M87 (Webb, Sills, & Harris, 2012b). So while

these studies argue against the size difference being a result of projection, the

question of why red and blue clusters in different galaxies are affected in the
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same way remains. As previously mentioned, differences between red and blue

clusters are likely a result of differences in either their formation mechanisms

and formation environments or their dynamical and stellar evolution histories.

However for clusters that have expanded to the point of being affected by the

surrounding tidal field, one should still expect the size difference between the

two sub-populations to vary based on tidal field strength.

1.4.1 Advancing Tidal Theory

The simplest explanation for the discrepancies between observations and the-

ory mentioned above is that all clusters must be tidally under-filling, such

that they evolve effectively in isolation. This explanation in turn suggests

that globular cluster populations are unaware of their surrounding tidal field.

Alexander & Gieles (2013) was able to reproduce the current distribution of

cluster sizes in the Milky Way by first assuming all clusters form extremely

compact before expanding naturally due to two-body interactions. However,

after 12 Gyr of evolution many clusters had expanded to the point of fill-

ing their tidal radius. That fact that not all clusters are under-filling is also

supported by Gieles, Heggie & Zhao (2011), who finds that 1
3
of the Milky

Way’s cluster population has expanded to the point of being tidally filling. So

while a fraction of cluster populations are expected to look the same from one

galaxy to the next, assuming of course they all form with similar properties, at

least 1
3
(if not more in galaxies with stronger tidal fields) of a globular cluster

population will be tidally affected and should serve to alter the population’s

luminosity function and size distribution.

A second possible explanation, from Kruijssen (2014), suggests that the
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majority of cluster evolution occurs early during the galaxy formation stage

when clusters are forming within the molecular clouds of dwarf galaxies. Since

the high-pressure / high density environment of the molecular cloud subjects

the cluster to impulsive shocks, clusters must quickly migrate to the halo of

the galaxy in order to survive. Kruijssen (2014) suggests that this will happen

naturally as galaxies undergo repeated mergers, as a merger event will help

push clusters out into the halo. Once the migration is complete, the cluster

will then effectively evolve in isolation as the tidal field is much weaker than

its formation environment. However as previously mentioned, some clusters

have had time to expand and fill their rt with at least 1
3
of the Milky Way

cluster population is tidally affected.

To explore these apparent discrepancies between observations and the-

ory further, we need to take a closer look at the definition of rt. All derivations

of Equation 1.2, including Innanen, Harris, & Webbink (1983), Jordán et al.

(2005), Binney & Tremaine (2008), and Bertin & Varri (2008), make a few

very important assumptions:

• The tidal field of the galaxy is spherically symmetric

• The tidal field of the galaxy is constant in time

• Globular cluster orbits are circular

All assumptions are made in order for the tidal field experienced by the

cluster to be taken to be static. However there exist many situations under

which this assumption breaks down, including:

• Globular cluster orbits are non-circular (Galactic clusters with solved

orbits have a mean orbital eccentricity of ∼ 0.6)
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• The host galaxy is not spherically symmetric (e.g. elongated elliptical

galaxies and spiral galaxies)

• The mass profile of the host galaxy changes as a function of time (e.g.

accretion of satellites or the accretion of a globular cluster)

• Globular clusters undergo close encounters with sub-structure (e.g. giant

molecular clouds, dark matter sub-halos)

If the tidal field that a cluster experiences is not static, then an analytic

determination of rt is no longer possible (Renaud et al., 2011). The main goal

of this thesis is to remove these assumptions and still be able to quantify rt for

any cluster in an arbitrary tidal field. For clusters with eccentric orbits in a

spherically symmetric potential, it has historically been assumed that rt is set

at the cluster’s perigalactic distance Rp (King , 1962). The reasoning behind

this assumption is that stars are stripped from the cluster at Rp where the

tidal field experienced by the cluster is the strongest, and the cluster does not

have time to significantly expand over the course of its orbit before returning

to Rp again.

Secondary effects also begin to play important roles when a cluster has

an eccentric orbit. For abrupt changes in the local gravitational field, such as

when a cluster is undergoing a perigalactic pass or a close encounter with a

molecular cloud, the cluster receives what is known as a tidal shock. When
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a cluster undergoes a tidal shock, individual stars within the cluster receive

additional energy which in turn increases the size of their orbit. For stars

already orbiting near rt, a tidal shock can result in an episode of enhanced

mass loss (Spitzer, 1958; Gnedin & Ostriker, 1997; Gieles et al., 2007; D’Onghia

et al., 2010; Madrid et al., 2014). For slower changes in the local gravitational

field that occur over the course of the cluster’s entire orbit, this process is called

tidal heating. Even though the effects of tidal heating are small compared

to a tidal shock, over the course of a cluster’s lifetime energy injection via

tidal heating will still have a significant effect on the cluster evolution by

redistributing stellar orbits and accelerating the mass loss process (Baumgardt

& Makino, 2003; Renaud et al., 2011; Brockamp et al., 2014; Madrid et al.,

2014).

The long term effects of tidal shocks and tidal heating need to be fur-

ther explored in order to determine how the effects will be reflected in studies

of globular cluster population. Furthermore, prior to the work presented in

this thesis recent studies had begun finding that assuming rt is imposed at Rp

is likely incorrect. These studies instead suggest that an orbit average distance

better reflects the cluster’s size and evolution (e.g. Brosche, Odenkirchen, &

Geffert, 1999; Baumgardt & Makino, 2003; Kupper et al., 2010). Unfortu-

nately, a formal definition of the rt for a cluster with an eccentric orbit is lack-

ing. With proper motion measurements of Galactic globular clusters revealing

that no clusters in our galaxy actually have a circular orbit (e.g. Dinescu et al.,

1999; Casetti-Dinescu et al., 2007, 2013), and galaxy formation models sug-

gesting that the distribution of cluster orbits will differ from galaxy to galaxy

(e.g. Côté et al., 2001; Prieto & Gnedin, 2008; Zait, Hoffman, & Shlosman,

2008; Weijmans et al., 2009; Gnedin & Prieto, 2009; Ludlow et al., 2010; Krui-
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jssen et al., 2012) it is clear that we need to develop an understanding of how

orbital eccentricity affects globular cluster evolution.

In non-spherically symmetric potentials, like disk galaxies or tri-axial

elliptical galaxies, even clusters with circular orbits will undergo tidal heating

and tidal shocks during disk passages if their orbit is inclined relative to the

non-spherically symmetric component of the galaxy. While the effects of disk

shocking on individual globular clusters have been well studied (Gnedin &

Ostriker, 1997; Madrid et al., 2014), a calculation of a cluster’s size in a non-

spherically symmetric potential does not exist. Furthermore, the long term

evolution of a globular cluster population in a non-spherically symmetric tidal

field has not been explored.

Finally, the effects of a time dependent potential on cluster evolution

are not well understood. Since galaxies are built up via the hierarchical merger

of dwarf galaxies, the early tidal field of a galaxy will be in a constant state

of flux. Globular clusters which form in the central host galaxy will undergo

repeated dynamical interactions as a galaxy is assembled. Furthermore, clus-

ters which form in dwarf galaxies that are then accreted by a central host will

also be subject to a variable tidal field. Previous studies attempt to replicate a

time dependent tidal field by treating a merger event as a step process, where

the mass of the central galaxy is increased at specific time intervals (Madrid

et al., 2014) or a cluster is instantaneously moved from a dwarf galaxy po-

tential to a more massive central host (Miholics et al., 2014). Only recently

have studies begun looking at the effects of a truly time dependent tidal field

on globular cluster evolution (Bianchini et al., 2015; Renaud & Gieles, 2015).

Preliminary results from these studies suggest cluster structure is only de-

pendent on the present day tidal field, however more detail simulations are
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required with a more accurate treatment of the tidal field’s evolution. In order

to better quantify and understand the effects of orbital eccentricity, inclina-

tion, and time dependent tidal fields on globular cluster evolution, specifically

tidal heating and tidal shocks, we must abandon the analytic approach and

turn to computational N -body simulations of star clusters.

1.4.2 N-Body Simulations of Star Clusters

N -body simulations are effective tools for studying problems for which an

analytic approach is either difficult or not possible. In an N -body star cluster

simulation, each star within the model is treated as a point particle. Each

particle can be given a position, velocity, mass, and metallically generated from

a distribution of the user’s choosing. Hence we can set the initial conditions

under which a star cluster forms. N -body codes also typically allow for binary

stars to be included within the stellar population as well. Once the initial

system is setup, the simulation calculates the gravitational force on each star

due to all the other stars in the cluster and the external tidal field. From the

gravitational force, the equation of motion for each star can be determined

and the future position and velocity of each star at the next specified time

step can be predicted. This process can then be repeated in order to study

cluster evolution for long periods of time. Since N -body simulations utilize

Newtonian gravity (which is well understood) to calculate gravitational forces,

the output of these models is quite realistic.

The publicly available code used in this thesis, NBODY6 (Aarseth et al.,

1974; Aarseth , 2003), has two key advantages that make it ideal for realisti-

cally modelling star clusters. The first, is that the code keeps track of stellar
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evolution throughout the simulation. So not only can the future positions and

velocities of each star be predicted, but the mass of each star at the next time

step is predicted based on stellar evolution tracks for both single stars and

binary stars (Hurley, 2008a,b). The second advantage is the code’s ability to

incorporate a realistic gravitational field into the simulation. While previous

studies simply invoke a maximum radius that stars can reach in order to mimic

the existence of a gravitational field, NBODY6 allows for the formal definition

of a galactic potential which contributes to the net gravitational force acting

on each star within the cluster. The form of the galactic potential is also

flexible, with NBODY6 allowing for a three component potential consisting of

a galactic bulge, disk, and halo that mimics the Milky Way. Therefore the

effects of tidal heating and shocking, which are difficult to model analytically,

are automatically taken into consideration as the model cluster orbits within a

gravitational field. NBODY6 serves as the best tool for studying the effects of

orbital eccentricity and inclination on globular cluster evolution, as it allows

the user to study and quantity the various mechanisms at play in a non-static

tidal field.

1.5 The Evolution of Star Clusters in Tidal

Fields

The purpose of this thesis is to establish an understanding of how cluster

evolution is related to the local environment, specifically the gravitational

field of the host galaxy, and to extend dynamical evolution theory to a more

advanced and general level of understanding. As previously discussed, many of
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the observed properties of globular cluster populations are identical from one

galaxy to the next, suggesting cluster evolution is independent of environment.

Tidal theory on the other hand indicates that an external gravitational field

should have a significant effect on cluster evolution, assuming the cluster is

sufficiently large (tidally filling).

The key drawback to previous theoretical studies of globular clusters is

that they assume clusters have circular orbits in spherically symmetric poten-

tials, in order for an analytic calculating of cluster size and mass loss rate to

be determined. When a cluster has an eccentric orbit, previous studies have

always assumed that cluster size is imposed at Rp. Based on these assump-

tions, the only way cluster evolution could be independent of environment is

if all clusters are tidally under-filling, which has been shown to not be true

for a significant number of clusters in the Milky Way. Furthermore, globu-

lar clusters with proper motion measurements have revealed that no Galactic

clusters have circular orbits and theoretical studies have begun to show that

assuming size is imposed at Rp is incorrect (e.g. Dinescu et al., 1999; Brosche,

Odenkirchen, & Geffert, 1999; Baumgardt & Makino, 2003; Casetti-Dinescu

et al., 2007; Kupper et al., 2010; Casetti-Dinescu et al., 2013). Taking into

consideration that assuming any galaxy is spherically symmetric is likely in-

correct, especially disk galaxies like the Milky Way, there is no surprise that

theoretical cluster studies cannot reproduce observed cluster populations.

For my Master’s thesis, we attempted to reproduce the distribution of

cluster sizes in the giant elliptical galaxy M87 by allowing clusters to have

different orbital distributions. We assumed that cluster size is imposed at Rp

when orbits are eccentric and that all clusters tidally filling. The best fit model

that reproduced the relationship between cluster size and Rgc out to 12 kpc
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assumes that cluster orbits are preferentially radial. While this finding is in

line with galaxy formation models, the mean orbital eccentricity of clusters in

our model is much higher than observations of M87 suggest (Côté et al., 2001;

Strader et al., 2011). We proposed that a more in-depth study on the effects

of orbital eccentricity, allowing cluster orbits to become more radial with Rgc,

incorporating the existence of under-filling clusters, and extending our obser-

vational dataset out to larger Rgc will allow for more accurate models to be

used to reproduce the observed characteristics of globular cluster populations

(Webb, Sills, & Harris, 2012a).

Establishing a clear relationship between cluster evolution and galaxy

environment will help introduce a new era of globular cluster studies. Linking

a cluster’s size to its orbit within a tidal field opens the door to use observations

of cluster populations to map out the size, shape, and strength of a galaxy’s

gravitational field. This approach is especially useful for mapping dark matter

halos, which is a very difficult thing to do. Cluster sizes could even be used to

search for evidence of sub-structure within dark matter halo’s, a theoretical

prediction that has yet to be observationally confirmed, as repeated dynamical

interactions with sub-structure will tidally heat a cluster and help stars escape.

In galaxies with well studied tidal fields, clusters sizes could even be used to

constrain the orbital anisotropy profile of a galaxy. Understanding how these

galaxies must have evolved over time also means that we can constrain the ini-

tial size and mass of both individual clusters and the global cluster population.

The latter point is extremely useful for models of galaxy formation. Clusters

which appear to have evolved irregularly given their local environment will

also be of interest, as they may represent a population that has been recently

accreted by a galaxy via a minor or major merger. Hence globular clusters
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could also be used to constrain the merger history of a particular galaxy.

This work first explores how the orbit of a cluster in a gravitational

field affects the evolution of its mass, scale size, and stellar mass function.

In Chapter 2, N -body simulations of globular clusters with a range of initial

sizes and orbits in a Milky Way-like potential are used to explore how orbital

eccentricity affects the evolution of cluster structure. We include simulations

of both tidally filling and under-filling star clusters. From this study we in-

troduce a correction factor for calculating rh and rt for tidally filling clusters

with eccentric orbits. In Chapter 3, we use a similar set of N -body simulations

to explore how mass loss due to orbital eccentricity influence the stellar mass

function of a globular cluster, and propose a method for constraining cluster

orbits using a cluster’s stellar mass function. Similar to our study of orbital

eccentricity on globular cluster sizes, we also use N -body simulations of star

clusters in Chapter 4 to determine how tidal heating and tidal shocks experi-

enced by clusters on inclined orbits in the Milky Way influence their evolution.

From our models, we suggest the best method for theoretically calculating rh

and rt when a cluster’s orbit is inclined.

In the subsequent chapters, we take what we have learned regarding

the effects of environment on cluster evolution from N -body studies and ap-

ply the results to observations of globular cluster populations. In Chapter 5,

we were able to build on our study of globular clusters in M87 from Webb,

Sills, & Harris (2012a) out to 120 kpc thanks to an accepted HST proposal.

With an improved calculation for the size of a cluster with an eccentric orbit

from our N -body studies, we again search for the distribution of cluster orbits

which reproduces the relationship between cluster size and Rgc in M87. We

also explore the possibility of cluster populations having orbital anisotropy
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profiles such that orbits become more radial with distance, allow for the exis-

tence of tidally under-filling clusters, and study the metal-poor and metal-rich

sub-populations separately in M87. In Chapter 6, we take our work with the

M87 cluster population and apply it to the cluster populations of NGC 1399

and NGC 5128. We improve on our previous work by allowing cluster orbits

to become preferentially radial with rgc and allow clusters to become more

and more tidally under-filling with rgc as the tidal field weakens. By studying

the distribution of cluster sizes in each galaxy, we are able to constrain the or-

bital anisotropy and tidally filling profiles of each cluster population. While an

isotropic distribution of orbits suggests a cluster population has not undergone

any recent dynamical disruptions, a high degree of radial anisotropy serves as

an indicator of recent or on-going merger events as a significant amount of

clusters still have highly eccentric orbits. The tidal filling profile of a galaxy

indicates what the initial structural properties of a globular cluster popula-

tion was at formation, which in turn allows us to place constraints on the

surrounding birth environment of globular clusters. Hence we can use the re-

sults to make conclusions regarding the formation and merger histories of each

galaxy. We also explore the differences between the metal-poor and metal-rich

sub-populations in each galaxy, and find evidence for the distribution of clus-

ter orbits being different between the two sub-populations which would help

explain the observed size difference. Finally, in Chapter 7 we summarize our

findings and identify future studies which will be based on the results of this

thesis.
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2.1 Introduction

Theoretical calculations of the radius of a star cluster, or tidal radius, usually

assume that the gravitational field of the host galaxy regulates cluster size.

In most previous treatments, for simplicity it is further assumed that the

gravitational field in which the cluster orbits is constant, i.e. the cluster has a

circular orbit in a spherically symmetric galactic potential (e.g. von Hoerner,

1957; King, 1962; Innanen, Harris, & Webbink, 1983; Jordán et al., 2005;

Binney & Tremaine, 2008; Bertin & Varri, 2008). The tidal radius is then

assumed to be equal to the Jacobi radius (rJ), the distance beyond which

the acceleration a star feels towards the galaxy center is greater than the

acceleration it feels towards the cluster center, and the star is able to escape.

First-order tidal theory determines the tidal radius (von Hoerner, 1957) via:

rt = Rgc(
Mcl

2Mg
)1/3 (2.1)

where Rgc is the galactocentric distance of the cluster, Mcl is cluster mass, and

Mg is the mass of the galaxy (assumed in early studies to be a point mass).

For a cluster with a non-circular orbit, the fact that the tidal field is no

longer static makes an analytic approach very difficult (see Renaud et al. (2011)

for another approach). Historically it has been assumed that for a globular

cluster on an eccentric orbit, its tidal radius is imposed at perigalacticon (Rp)

where the tidal field of the host galaxy is the strongest. This assumption was

initially suggested by von Hoerner (1957) and later King (1962), and follows

from the fact that the internal relaxation time (trh) of the cluster is greater

than its orbital period for almost all observed globular clusters. Therefore

after stars outside the tidal radius at perigalacticon escape, the cluster would
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not be able to relax and expand before it returns to perigalacticon. Thus in

Equation 6.1, Rgc is usually replaced with Rp to calculate the tidal radius of

a cluster with an eccentric orbit (e.g. Innanen, Harris, & Webbink, 1983; Fall

& Zhang, 2001; Read et al., 2006; Webb, Sills, & Harris, 2012).

However, recent studies are showing with increasingly strong evidence

that the actual sizes of observed clusters are not imposed at perigalacticon in

this simple way. The actual size of an observed cluster is known as its limiting

radius rL, which marks the point where the cluster density falls to zero (Binney

& Tremaine, 2008). Using the solved orbits of 15 Galactic globular clusters,

Odenkirchen et al. (1997) demonstrated that cluster limiting radii are not

solely dependent on perigalactic distance. Brosche, Odenkirchen, & Geffert

(1999) suggested some sort of orbit-averaged tidal radius is more appropriate

when predicting limiting radii. Even with the orbits of an additional 29 Milky

Way globular clusters currently known (Dinescu et al., 1999; Casetti-Dinescu

et al., 2007), there is still no clear relationship between limiting radii and

perigalactic distance, and the conclusions of Odenkirchen et al. (1997) still

hold.

With the Galactic potential as given by Johnston et al. (1995) (the

same Galactic potential Casetti-Dinescu et al. used to solve cluster orbits), we

calculated the theoretical tidal radius rt at perigalacticon (that is, the Jacobi

radius at R = Rp) of each of the 44 Galactic clusters with known orbits. The rt

values were calculated with the formalism of Bertin & Varri (2008) (as outlined

in Section 3.0). The main uncertainty in the theoretical tidal radius is due to

the uncertainty in Rp quoted in Dinescu et al. (1999) and Casetti-Dinescu

et al. (2007). To compare theory and observations for individual clusters, we

take cluster limiting radii as determined from direct King (1966) model fits
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rk to the observed cluster profiles as listed in Harris (1996) (2010 edition).

We then calculate the ratio of the difference (rk − rt) between observed and

theoretically predicted values to their average ((rk + rt)/2). An uncertainty of

10% was assigned to values of rk. If theory and observations are in agreement,

the ratio will be approximately zero. Clusters which have a ratio greater than

zero will be ones which overfill their predicted tidal radius, while clusters with

ratios less than zero will be tidally under-filling. The comparison between

theory and observations is illustrated in Figure 2.1.

While it is not expected that all clusters are tidally filling (Gieles et al.,

2010), the fact that the majority of clusters appear to be tidally overfilling is

a strong signal that the simple assumptions built into the model need investi-

gation. The known presence of tidal tails around observed (e.g. Odenkirchen

et al., 2001) and simulated (e.g. Montuori et al., 2007; Küpper et al., 2012;

Lane et al., 2012) globular clusters is not sufficient to explain the cases of

apparent overfilling. The observed rk values are determined from King-model

profile fits that are heavily dominated by the inner populations of stars, out to

a few half-light radii. In almost all cases the extremely low densities of stars in

the tails, at or beyond the nominal tidal radius, exert little leverage on these

fits. Furthermore, King (1966) models are known to underestimate cluster

sizes in general as they require a sharp tidal cutoff which is not observed in

all clusters (McLaughlin & van der Marel, 2005). Only in the most extreme

cases (e.g. Pal 5 (Odenkirchen et al., 2003)), will large and extended tidal tails

influence model fits to the cluster surface brightness profile.

Theoretical calculations may also underestimate rk because the assump-

tion that the tidal radius is imposed at perigalacticon implies that the shape

of the tidal field and the cluster orbit are not important. Hence factors such as
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Figure 2.1 Ratio of difference between observed (rk) and theoretical (rt) tidal
radius at perigalacticon to the average ((rt+rk)/2) versus perigalactic distance
for Galactic globular clusters.

40



Ph.D. Thesis, Ch. 2 - J.J. Webb McMaster - Physics & Astronomy

tidal heating and disk shocking due to a varying symmetric galactic potential

are not taken into consideration. However, despite these potential inaccura-

cies we still expect to see some sort of correlation between rk and perigalactic

distance, if tidal radii are imposed at perigalacticon. The Milky Way cluster

data therefore suggest that something is wrong with basic tidal theory.

Recent N -body simulations by Küpper et al. (2010), find that their

fitted King (1962) radius was better represented by the time averaged mean

tidal radius of the cluster and not the perigalactic tidal radius. In a later

study on the structure of tidal tails, Küpper et al. (2012) found that while

stars outside the tidal radius as calculated at perigalacticon will likely become

unbound at perigalacticon, some are able to be re-captured by the cluster as

it moves away from perigalacticon and the instantaneous tidal radius of the

cluster increases. That is, the limiting radius of a cluster will be greater than

the tidal radius calculated at perigalacticon. This discrepancy is expected to be

amplified for clusters on very eccentric orbits, as they make quick perigalactic

passes and spend the majority of their time near apogalacticon (Ra). In fact,

N -body simulations by Madrid et al. (2012) suggest that the half-mass radius

of a globular cluster is more likely imposed at Ra than Rp.

The purpose of this study is to explore more thoroughly the influence

of orbital eccentricity on cluster size. Model N -body clusters with different

initial half-mass radii are evolved from zero age to 10 Gyr over a range of

orbital eccentricities in the disk of a Milky Way-like potential. The models

and their initial conditions are described in Section 2. In Section 3 we focus on

the influence of orbital eccentricity on the mass (M), half-mass radius (rm),

limiting radius, and tidal radius of each model cluster over time. In Section 4

we explore the influence of initial cluster half-mass radius on our results. In
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Section 5 we discuss the results of all our N -body models and the influence

of orbital eccentricity not only on cluster radii, but on individual stars within

the cluster as well. Based on our findings, in Section 6 we suggest a correction

factor that can be applied to the perigalactic tidal radius of a cluster to better

match its observed limiting radius. This correction factor is then applied to

the Galactic globular clusters shown in Figure 2.1. Finally in Section 7 we

summarize our conclusions.

2.2 The Models

We use the NBODY6 direct N -body code (Aarseth , 2003) to evolve model

star clusters from zero age to a Hubble time, over a range of both initial cluster

half-mass radii and orbital eccentricity. All models in this study begin with

48000 single stars and 2000 binaries.

As long as we use one particle to represent one real star, clusters of

this size correspond physically to either a very massive open cluster, or a

low-mass globular cluster in the Milky Way. Ideally, we would like to follow

more “average” globular clusters, which will typically have 200,000 stars or

more. However, to this point in the history of the subject, direct N-body

integrations with N-values that large have only been carried out for special,

specific purposes (for example, see Hurley & Shara (2012) for a 200,000-star

simulation in the tidal field of a point-mass Galactic potential and a circular

orbit; Zonoozi et al. (2011) for N ≤ 100, 000−star simulations directed at

modelling Pal 14, again on a circular orbit; or Heggie & Giersz (2009) for a

105,000-star simulation of NGC 6397 over 1 Gyr). Encouragingly, however,

these high-N models generally confirm the trends obtained from earlier, small-
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N simulations (see Hurley et al. for additional discussion).

The purpose of our suite of 50,000-star models is instead to survey a

wide parameter space of initial cluster half-mass radii and orbital type. Our

chosen ranges (see below) match real Milky Way star clusters moving in a

realistic time-varying potential. Eventually, with advances in computational

capabilities this type of survey work can be extended to higher N values (up to

106) that will cover almost the entire known range of globular clusters. How-

ever, as will be seen below, the models summarized here already prove to be

highly informative in revealing important physical effects of orbital eccentric-

ity on the internal dynamical evolution in a direct way that does not rely on

analytical approximations.

Since we are only concerned with the influence of orbital eccentricity

on clusters of different initial half mass radii, our choice of initial parameters

such as cluster metallicity, the stellar initial mass function (IMF), and binary

fraction are of little consequence as long as they remain consistent between

models. However, we note that binary fractions of a few per cent are typical

for globular clusters (e.g. Davis et al., 2008).

The masses of single stars are drawn from a Kroupa, Tout, & Gilmore

(1993) IMF between 0.1 and 30 M⊙. For binary stars, the masses of two

randomly selected single stars are combined to equal the total mass of the

binary, with the primary and secondary masses determined by a mass-ratio

randomly drawn from a uniform distribution. The initial total mass of each

model is 3 × 104M⊙. The initial period of each binary is drawn from the

distribution of Duquennoy & Mayor (1991) and their orbital eccentricities are

assumed to follow a thermal distribution (Heggie , 1975). All stars were given

a metallicity of Z = 0.001. The initial positions and velocities of the stars
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are generated based on a Plummer density profile (Plummer , 1911; Aarseth

et al., 1974). We note that the Plummer model extends to an infinite radius

so we impose a cut-off at ∼ 10 rm to avoid rare cases of large cluster-centric

distances. A description of the algorithms for stellar and binary evolution can

be found in Hurley (2008a,b).

The model clusters orbit in a three-dimensional Galactic potential,

which consists of a point-mass bulge, a Miyamoto & Nagai (1975) disk (with

a = 4.5 kpc and b = 0.5 kpc), and a logarithmic halo potential. The combined

mass profiles of all three potentials result in a circular velocity of 220 km/s

at a galactocentric distance of 8.5 kpc. The bulge and disk have masses of

1.5×1010 and 5×1010M⊙ respectively (Xue et al., 2008). Aarseth (2003) and

Praagman, Hurley, & Power (2010) describe the incorporation of the Galactic

potential into NBODY6. All models were set to orbit in the plane of the disk

such that a cluster on a circular orbit experiences a static tidal field, and will

not be subject to factors such as tidal heating or disk shocking.

For the purposes of our study, the only parameters which are important

and change from model to model are initial cluster half-mass radius, initial

cluster position, and initial cluster velocity which determine the shape of the

orbit. Our first models were for clusters with orbital eccentricities of 0.25, 0.5,

0.75, and 0.9, where eccentricity is defined as e = Ra−Rp

Ra+Rp
. All of these have

the same perigalactic distances of 6 kpc and initial half-mass radii rm,i of 6

pc. These clusters are located at perigalacticon at time zero. For comparison

purposes a model was simulated with a circular orbit at perigalacticon (6 kpc)

and four more with circular orbits at the apogalactic distance of each eccentric

cluster (10 kpc, 18 kpc, 43 kpc, and 104 kpc). These simulations allow us to

directly compare the properties of a globular cluster on an eccentric orbit to
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clusters on circular orbits at both perigalacticon and apogalacticon.

Our set of models also included re-simulations of the cluster with an or-

bital eccentricity of 0.5, and the corresponding e = 0 perigalactic and apogalac-

tic simulations, but with initial half-mass radii of 4 pc, 2 pc, 1 pc, and 0.5 pc.

This range allows us to study the influence of initial cluster half-mass radius.

Both sets of models are summarized in Table 4.1. Model names are based

on orbital eccentricity (e.g. e05), circular radius at apogalacticon (e.g. r18),

and initial half mass radius (rm6). Hence a model cluster with a perigalactic

distance of 6 kpc, apogalactic distance of 18 kpc (orbital eccentricity of 0.5),

and an initial half-mass radius of 6 pc would be labeled e05r18rm6.

Table 2.1: Model Input Parameters

Model Name rm,i Rp vp e

pc kpc km/s

e0r6rm6 6 6 212 0

e025r10rm6 6 6 280 0.25

e0r10rm6 6 10 224.5 0

e05r18rm6 6 6 351.5 0.5

e0r18rm6 6 18 232 0

e075r43rm6 6 6 455 0.75

e0r43rm6 6 43 229.95 0

e09r104rm6 6 6 543.5 0.9

e0r104rm6 6 104 225.25 0

e0r6rm4 4 6 212 0

e05r18rm4 4 6 351.5 0.5

e0r18rm4 4 18 232 0

e0r6rm2 2 6 212 0

e05r18rm2 2 6 351.5 0.5
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e0r18rm2 2 18 232 0

e0r6rm1 1 6 212 0

e05r18rm1 1 6 351.5 0.5

e0r18rm1 1 18 232 0

e0r6rm05 0.5 6 212 0

e05r18rm05 0.5 6 351.5 0.5

e0r18rm05 0.5 18 232 0

2.3 Influence of Orbital Eccentricity

The first portion of this study will focus solely on models with an initial rm

equal to 6 pc, with the only difference between each model being their Galactic

orbits. However, we first need to determine whether any given star is bound

to the cluster. In a cluster-centric coordinate system, we define the x-axis as

pointing away from the galactic center, the y-axis pointing in the direction

of motion of the cluster, and the z-axis pointing perpendicular to the orbital

plane. In this coordinate system the energy of an individual star can be written

as:

E =
1

2
(ẋ2 + ẏ2 + ż2)−

N−1
∑

i=1

Gmi

‖r − ri‖
− 1

2
Ω2(z2 − υx2) (2.2)

where the second term is the potential energy due to the remaining N-1 stars

in the simulation, each with mass mi and located a distance ri from the star.

The third term is the tidal potential with Ω2 equal to the orbital frequency

of the cluster. Here υ is a dimensionless positive coefficient defined below in

Equation 4.5. The tidal potential, taken from Bertin & Varri (2008), results
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in a stretching of the cluster in the x-direction, no change in the y-direction,

and a compression in the z-direction. If the resultant energy is less than zero

the star is bound, otherwise it is considered unbound.

We considered additional criteria for determining whether a star is

bound or unbound in addition to the energy calculation. Other studies have

invoked a distance cutoff such that the stars’ cluster-centric distance must be

greater than the cluster perigalactic or instantaneous tidal radius for it to be

unbound (e.g. Takahashi & Baumgardt, 2012). It has also been suggested that

a star’s velocity plays a role in whether or not it can be considered unbound

(e.g. Küpper et al., 2010, 2012). However, we found these additional criteria

did not change any of the results found in Section 3 as they only effected a

small percentage of simulated stars. Therefore, we only require that a star’s

energy as given by Equation 2.2 to be greater than zero for the star to be

considered unbound.

Figure 2.2 shows a model cluster at a representative timestep. The

tidal tails formed by escaping stars are clearly visible in our simulations. The

densely populated spherical collection of stars marked in red are those that

satisfy our boundedness criterion and are considered cluster members. The

unbound stars that appear close to the centre of the cluster are foreground

stars with a large z coordinate and are simply projected onto the cluster in

the x-y plane. These tails have no effect on our determination of theoretical

tidal radii or observed limiting radii as we only consider stars that are bound

to the cluster.
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Figure 2.2 Snapshot of a model cluster on a circular orbit at 6 kpc after 32
orbits (5680 Myr). Bound stars are marked in red.
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2.3.1 Mass

We first wish to study how orbital eccentricity influences the total mass, or

more specifically the mass loss, of a star cluster over time, which then plays an

important role in determining tidal radii (rt ∝ M
1

3 ). The total mass of stars

bound to the cluster in each model is illustrated in Figure 2.3. In general, mass

loss is due to stellar evolution, evaporation due to two-body interactions, and

tidal stripping. For clusters with circular orbits, in all cases the apogalactic

cluster loses mass at a lower rate than the perigalactic case as a result of less

tidal stripping.

The e=0.25 case loses mass at almost the same rate as if it had a circular

orbit at its perigalactic distance, but the final mass is still notably larger than

the perigalactic case. Since eccentric clusters spend the majority of their time

away from perigalacticon, they too will be subject to less tidal stripping than

an ideal cluster that spends all its time at perigalacticon. As eccentricity

increases, the mass-loss profile shifts further away from the perigalactic case

and closer to a cluster with a circular orbit at apogalacticon.

At higher eccentricities the mass no longer smoothly decreases, in con-

trast to the circular orbit cases. Instead periodic fluctuations are present.

The minima of these fluctuations correspond to perigalactic passes, where the

rapid increase in tidal field strength results in episodes of significant mass

loss. These fluctuations suggest that a greater change in tidal field strength

between apogalacticon and perigalacticon results in stars gaining more energy

at or near perigalacticon.

Especially interesting in the lower right panel of Figure 2.3 is the fact

that once a cluster undergoes significant mass loss during a perigalactic pass,
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Figure 2.3 The evolution of total cluster mass over time. The red lines corre-
spond to models with orbital eccentricities as labelled in each panel. In each
plot, the lower black line corresponds to a cluster with a circular orbit at peri-
galacticon (6 kpc), while the upper black line corresponds to a cluster with a
circular orbit at apogalacticon.
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the cluster starts to regain mass before resuming its mean mass loss rate.

In these intervals just after perigalacticon, the cluster is re-capturing some

of the stars which were previously unbound. Stated differently, many of the

stars that were formally unbound at Rp drift away slowly enough that they

are recaptured as the cluster moves back outward and its instantaneous tidal

radius expands again. Furthermore, these fluctuations suggest that while a

perigalactic pass does have a strong effect on an eccentric cluster, the cluster

cannot be treated as if it had a circular orbit at Rp. These results are in

agreement with the findings of Küpper et al. (2012) discussed earlier.

2.3.2 Half-mass Radius

We next consider how orbital eccentricity can influence the half-mass radius

rm of bound stars within a globular cluster. It should be noted that rm is not

the same as the half-light radius rh (also known as the effective radius), which

is a directly observable parameter. In our simulations, the half-mass radius is

always slightly larger than the half-light radius.

The results of our simulations are illustrated in Figure 2.4. The initial

increase in rm during the first ∼ 2000 Myr in all cases is driven by two-body

relaxation and stellar evolution mass-loss. However once the cluster is relaxed,

tidal stripping becomes the dominant dynamical process.

The rm profiles of the apogalactic cases in the lower panels do not begin

to decrease after 2000 Myr, but instead continue to increase up to 10 Gyr. As

discussed in the next section this trend is due to the fact that these clusters are

barely tidally filling, so can still expand and not be subject to tidal stripping.

Similar to the results of Section 3.1, for low eccentricities the rm pro-
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Figure 2.4 The evolution of half mass radius over time. The red lines corre-
spond to models with orbital eccentricities as labelled in each panel. In each
plot, the lower black line corresponds to a cluster with a circular orbit at peri-
galacticon (6 kpc), while the upper black line corresponds to a cluster with a
circular orbit at apogalacticon.
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file of the eccentric model cluster is comparable to the circular orbit case

at perigalacticon. Increasing eccentricity brings the rm profile closer to the

apogalactic case on the average, but increasing eccentricity again results in

sharp fluctuations in the rm profile which correspond to perigalactic passes.

The trends shown in Figure 2.4 reveal what is perhaps the most striking dif-

ference between clusters on static circular orbits (the classically assumed case)

and ones on more realistic eccentric orbits. If cluster limiting radii are imposed

at perigalacticon, we would expect the minima of the eccentric rm profile to

be equal to the rm profile of a cluster orbiting at Rp. While a high-e clus-

ter may briefly expand after a perigalactic pass, the next perigalactic pass

would restore rm to a size equal to the perigalactic case. But not even at

perigalacticon does the rm of the eccentric cluster equal the perigalactic case.

Instead, the time averaged rm is reflective of a tidal field weaker than the field

at perigalacticon, in agreement with Küpper et al. (2010).

After a perigalactic pass, Figure 2.4 illustrates again that the cluster is

able to increase in size. Especially apparent in the lower right panel of Figure

2.4 is the fact that the cluster is able to increase to a size greater than its

mean rm. Inspection of our N -body models shows that this increase in size

is due to a combination of re-capturing some of the previously unbound stars

(Küpper et al., 2012) and the stars in the inner region of the cluster gaining

enough energy to move outward and repopulate the halo of the cluster. These

statements are discussed in further detail in Section 5.0.
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2.3.3 Tidal and Limiting Radii

The Jacobi radius represents a theoretical surface around a cluster past which

a star cannot pass and still remain bound. The Jacobi radius allows for the

calculation of the instantaneous tidal radius of each model cluster as a function

of time. To calculate the instantaneous tidal radius of each model cluster,

we require a derivation of cluster tidal radius which takes into consideration

the tidal field of the host galaxy. Assuming only that the tidal field must be

spherically symmetric, the theoretical tidal radius as derived by Bertin & Varri

(2008) is:

rt = (
GM

Ω2υ
)1/3 (2.3)

where Ω, κ and υ are defined as:

Ω2 = (dΦG(R)/dR)Rp
/Rp (2.4)

κ2 = 3Ω2 + (d2ΦG(R)/dR2)Rp
(2.5)

υ = 4− κ2/Ω2 (2.6)

ΦG is the galactic potential, Rp is the perigalactic distance, Ω is the orbital

frequency of the cluster, κ is the epicyclic frequency of the cluster at Rp, and

υ is a positive dimensionless coefficient. Using the tidal field of the Milky

Way discussed in Section 2.0 and the mass and galactocentric distance of the

model clusters at each time step, we calculate the instantaneous tidal radius

of each model. The results of these calculations are shown in Figure 2.5. Here

the instantaneous rt increases and decreases periodically along the orbit, but
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Figure 2.5 The evolution of the instantaneous tidal radius over time. The red
lines correspond to models with orbital eccentricities as labelled in each panel.
In each plot, the lower black line corresponds to a cluster with a circular orbit
at perigalacticon (6 kpc), while the upper black line corresponds to a cluster
with a circular orbit at apogalacticon.

never quite reaches the perigalactic and apogalactic cases due to differences in

mass loss rates among all three cases.

Next we compare the tidal radius to the limiting radius. For a simulated

cluster, since we know which stars are bound or unbound, we could call the

limiting radius of the cluster the distance to the farthest bound star, but this
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approach introduces some significant problems. First, since cluster tidal radii

are calculated for stars with circular prograde orbits, any star with a retrograde

and/or eccentric orbit within its cluster can remain bound beyond the nominal

tidal radius (Read et al., 2006). Second, any star in the process of escaping the

cluster can reach large clustercentric distances before becoming energetically

unbound. Third, the stars along the y-axis of the cluster (the direction of

motion) are unaffected by the tidal potential in Equation 2.2, allowing them to

also remain bound at larger clustercentric distances. These three issues cause

the true limiting radius of the cluster to change dramatically from time-step

to time-step. To gain a more stable indication of cluster size, we instead focus

on the x-axis of the cluster, the axis along which the tidal radius is calculated,

and define the limiting radius as the average x-coordinate of all stars with

‖x‖ > rt. This calculation typically involves less than 1% of the total cluster

population. While this is not the true limiting radius of the cluster and will

always be slightly larger than the true tidal radius, it acts as a tracer of the

outer region that is less affected by individual extreme outliers. If a cluster is

tidally over-filling, the limiting radius will still be significantly larger than the

tidal radius. For a cluster that is tidally under-filling, the limiting radius is

simply the distance to the outermost bound star.

In Figure 2.6 we show this empirically determined rL for each model

as a function of time. For circular orbits, on average the limiting radius of

the cluster decreases smoothly as a result of mass loss. For eccentric orbits,

the small fluctuations with perigalactic passes in Figures 2.3 and 2.4 are much

more prevalent in Figure 2.6. Comparing Figure 2.5 to Figure 2.6, the fluc-

tuations in both figures indicate that the limiting radius behaves the same as

the instantaneous tidal radius.
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Figure 2.6 The evolution of the limiting radius over time. The red lines corre-
spond to models with orbital eccentricities as labelled in each panel. In each
plot, the lower black line corresponds to a cluster with a circular orbit at peri-
galacticon (6 kpc), while the upper black line corresponds to a cluster with a
circular orbit at apogalacticon.
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It should be noted that the apogalactic cases for e = 0.75 and 0.9 in

Figure 2.6 are not smooth due to the fact that these clusters are barely tidally

filling and their limiting radii are easily influenced by individual escaping stars.

Directly comparing limiting radii in Figure 2.6 and tidal radii in Figure

2.5, all circular orbits have a relatively constant ratio at approximately rL
rt

=

1.1. Since we expect rL to slightly overestimate rt, a ratio of 1.1 suggests

that these clusters are approximately tidally filling. For eccentric clusters

the ratio is in general also 1.1, suggesting the clusters come close to filling

their instantaneous tidal radius at all times. Fluctuations in the ratio for

the e = 0.75 and 0.9 cases indicate that after a perigalactic pass the cluster

is slightly tidally under-filling and works to fill its instantaneous tidal radius

on the way to apogalacticon. When travelling back in from apogalacticon

to perigalacticon, the cluster will remain tidally filled and lose stars to tidal

stripping as the instantaneous tidal radius shrinks.

2.4 Influence of Initial Cluster Half-Mass Ra-

dius

Up until this point we have only considered clusters with initial half-mass

radii of 6 pc. This initial half-mass radius was chosen simply to ensure that

the model clusters with Rp = 6 kpc would be tidally filling. As seen in Figure

2.4 this produces clusters with sizes at 10 Gyr ranging from 3 to 14 pc, which

are larger than most (but not all) real globular clusters. In an attempt to

produce Milky Way-like clusters which have a mean effective radius of 2.5 pc,

we re-simulated the e0r6rm6, e05r18rm6, and e0r18rm6 models with initial
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Figure 2.7 The evolution of half mass radius over time. The upper left, upper
right, lower left, and lower right panels are for simulations with initial half mass
radii of 4 pc, 2 pc, 1 pc, and 0.5 pc respectively. The red lines correspond to
models with orbital eccentricities of 0.5, while the lower black lines correspond
to a cluster with a circular orbit at perigalacticon (6 kpc) and the upper black
lines correspond to a cluster with a circular orbit at apogalacticon (18 kpc).

half-mass radii of 4 pc, 2 pc, 1 pc, and 0.5 pc. The results are shown in plots

of half mass radius versus time in Figure 2.7.

The rm4 clusters closely resemble the rm6 clusters, with similar periodic

fluctuations with perigalactic passes and the final rm values for the perigalactic,
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eccentric, and apogalactic cases. However, the rm4 clusters undergo smaller

initial expansion due to two-body interactions than the rm6 clusters, and thus

when outer region stars are being removed through tidal stripping, since the

majority of the mass is concentrated in the inner region, the mass-loss profile

is less affected.

This issue of initial size becomes even more significant in the rm2, rm1,

and rm05 cases. The periodic fluctuations on the eccentric orbit are barely

visible in the rm2 cluster, and non-existent in the rm1 and rm05 clusters. The

rm1 cases are significantly smaller at 10 Gyr, approaching the typical ∼ 2 -

3 pc size that match the majority of real globular clusters. The rm05 models

have completely dissolved by 10 Gyr.

These small clusters are only tidally filling in the sense that two-body

interactions have pushed some bound stars to orbits that take them out to

the instantaneous tidal radius. With the majority of the bound stars located

in the inner regions of the cluster, tidal stripping is not the dominant form of

mass loss and the influence of the galactic potential and cluster orbit are min-

imized. Instead, stellar evolution and two-body interactions are the dominant

forms of mass loss. These clusters would be classified as “tidally unaffected”

(Carballo-Bello et al., 2012). For the rm1 case, the rm profiles of the peri-

galactic, eccentric, and apogalactic cases begin to split only after ∼ 5 Gyr,

when stars have been finally pushed to the outer regions of the cluster and

tidal stripping is beginning to play an important role. While this is true, it

is not due to two-body interactions but instead a result of core collapse. For

the rm05 case, not even core collapse can push stars to the outer region of the

cluster in order for tidal stripping to occur. In fact, the rm05 clusters all have

the same rm up until the complete evaporation of the cluster at approximately
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7 Gyr.

Producing Milky Way-like globular cluster effective radii of 2 - 3 pc for

clusters on circular orbits at 6 kpc or greater appears to require initial rm size

less than 1 pc. The N -body models reveal that either clusters originally are

extremely compact and tidally unaffected, or present-day cluster orbits have

changed significantly from the orbit along which the clusters originally formed.

Some observational support for this view can be found in recent measurements

of very young, massive clusters (e.g. Bastian et al., 2008, 2012; Portegies Zwart

et al., 2010; Marks & Kroupa, 2010). However, recent N -body simulations by

Sippel et al. (2012) showed that rh and rm can be very different because of

stellar mass segregation, and produce clusters with final rh values near 3 pc

despite large rm,i. These issues will be explored in future studies.

2.5 Discussion

A perigalactic pass has three effects on a globular cluster, which we illustrate in

Figure 2.8 for the e=0.9 model e09r104rm6. In this figure, we plot the energy

per unit mass of individual stars (as per Equation 2.2) as a function of radial

distance from the cluster center at 9 points in the orbit. Beginning in Panel

A of Figure 2.8, for a given time between apogalacticon and perigalacticon

there are a few stars that are within close proximity of the cluster but remain

unbound (marked in red). As the cluster moves towards Rp and the instanta-

neous tidal radius shrinks (Panel B), more and more stars become temporarily

unbound. As predicted in Section 3.0, even stars in the inner region of the

cluster are provided with a significant increase in energy by the tidal shock

and can become unbound. Just after the cluster reaches perigalacticon (Panel
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C), a large number of stars are no longer bound to the cluster. As the cluster

moves away from perigalacticon (Panels D to I):

• some stars that became unbound escape the cluster (which causes the

initial decrease in rm and rL);

• some of the stars that are unbound in Panel C return to energies below

zero and are recaptured (see Figure 2.9);

• the tidal shock gives stars initially found in the inner region enough

additional energy to move outward and fill the orbits vacated by stars

which permanently escaped the cluster (see Figure 2.10).

It is even possible for inner region stars to become temporarily or per-

manently unbound if they move outward at a rate faster than the instantaneous

tidal radius increases.

2.6 Predicting Cluster Limiting Radii

Now that we have shown that limiting radii are not imposed at perigalacticon,

it is useful to know how to calculate a meaningful number that predicts the

limiting radius of a globular cluster on an eccentric orbit. As we saw in Fig-

ures 2.5 and 2.6, the limiting radius essentially traces the instantaneous tidal

radius. However the ratio between cluster limiting radius and instantaneous

tidal radius undergoes small periodic variations as a function of the location

of a cluster along its orbit.

Orbital phase is defined as:

F =
Rgc −Rp

Ra − Rp

(2.7)
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0 50 100 150 0 50 100 150

Figure 2.8 The radial distance and energy of stars within model cluster
e09r104rm6 for different time steps. Beginning in Panels A and B the cluster
is travelling towards perigalacticon. In Panel C the cluster has just left peri-
galacticon. In Panels D to I the cluster is moving away from perigalacticon.
Bound stars are marked as black and unbound stars are marked as red.
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Figure 2.9 The total number of bound (red) and unbound (green) stars in a
cluster as a function of time. The black line corresponds to the total number
of stars and the orbital eccentricity of the model is labelled in each panel. For
comparison purposes, the number of unbound stars has been increased by a
factor of 10.
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Figure 2.10 The evolution of the number of stars within the inner 10 %
Lagrangian radius over time. The red line correspond to the e=0.9 model
(e09r104b). The lower black line corresponds to a cluster with a circular orbit
at perigalacticon (6 kpc), while the upper black line corresponds to a clus-
ter with a circular orbit at apogalacticon (104 kpc). The number of stars
within the inner 10 % Lagrangian radius will naturally decrease over time due
to two-body encounters, however the eccentric case (red line) illustrates that
with each perigalactic pass a significant number of stars move beyond the inner
10 % Lagrangian radius.
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such that the cluster has F = 0 at perigalacticon and F = 1 at apogalacticon.

A cluster with a circular orbit will always have F = 0. The median limiting

radius of the eccentric cluster as a function of orbital phase is then determined

in order to calculate the ratio of the instantaneous limiting radius to the lim-

iting radius of the e = 0 perigalactic case ( rL(e)
rL(e=0)

), both normalized by mass.

This ratio is plotted as a function of phase in Figure 2.11. It is important

to note that we have ignored the first 2000 Myr of evolution for each model

cluster when evaporation due to two-body relaxation is the dominant source

of mass loss.

For a given orbital eccentricity, rL(e)
rL(e=0)

changes almost linearly with

phase F. It is interesting to note that we observed a second order effect that

the rate at which the cluster expands is lower than the rate at which it con-

tracts. When the cluster is moving away from perigalacticon, it works to fill

its expanding tidal radius. Conversely a cluster moving towards perigalacticon

would be larger as it is always tidally filling on the way inward.

The rate at which the limiting radius of the cluster increases and de-

creases as a function of orbital phase is a strong function of orbital eccentricity.

These rates were determined explicitly by finding the slopes of each line, where

the y-intercept is forced to equal one. The slopes are listed in Table 2.2, along

with the associated uncertainty (1σ).

Table 2.2: Lines of Best Fit

Orbital Eccentricity Slope Uncertainty

0.25 0.512 0.007

0.5 1.29 0.04

0.75 3.37 0.07
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0.9 7.84 0.07

A smooth relationship between slope and eccentricity emerges, that can

be fit with an exponential, and allows us to propose a purely analytical correc-

tion to the calculation of the tidal radius of a globular cluster. For a globular

cluster on an orbit with eccentricity E, with a tidal radius at perigalacticon

rt(Rp) and located at a phase F in its orbit, its limiting radius is equal to

rL(F ) = rt(Rp)(1 + a F eb E) (2.8)

where a = 0.17±0.03 and b = 4.1±0.2. Note that since this calculation

involves a single cluster over the course of a single orbit, the mass normalization

is no longer necessary as cluster mass will not have changed significantly over

a fraction of one orbit.

The next step is to simulate a larger suite of model clusters ranging

in initial cluster mass and half-mass radii to determine if these parameters

play a role in the correction factor suggested above. However, regardless of

the influence of cluster mass or initial half-mass radius, all tidally affected

simulations follow the rule that the limiting radius traces the instantaneous

tidal radius rather well. Thus if full orbital information or phase F is unknown,

the calculation of the instantaneous tidal radius is a reasonable estimate of the

limiting radius of a cluster. For globular clusters in other galaxies, in which

only their projected galactocentric distances are known, it may be possible to

determine their theoretical tidal radius based on their present King radius rk.

Future work will explore this possibility.
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Figure 2.11 The ratio of the mass normalized limiting radius of model clusters
with eccentric orbits to the mass normalized limiting radius of a cluster with
a circular orbit at perigalacticon as a function of orbital phase as defined in
Equation 2.7. Error bars represent an uncertainty of 1σ.
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2.6.1 Application to the Milky Way

For many Milky Way globular clusters, their current galactocentric distance,

orbital eccentricity and orbital phase are known. In Figure 2.12 the revised,

fully corrected version of Figure 2.1 is illustrated, where rL is now the phase-

corrected value from Equation 2.8. We now see more tidally under-filling

clusters and the scatter of points more nearly around zero. A stronger agree-

ment between theory and observations emerges. Correcting for using a non-

spherically symmetric potential in calculating tidal radii and improved meth-

ods for determining observational limiting radii will likely strengthen this com-

parison further.

2.7 Conclusions and Future Work

Globular clusters have been simulated with a range of both circular and eccen-

tric orbits. After determining which stars are bound to the cluster at a given

time, we show that while eccentric clusters undergo episodes of significant mass

loss during a perigalactic pass, their time averaged mass loss rate reflects a

tidal field less than the tidal field at perigalacticon. Additionally it was found

that clusters are able to re-capture unbound stars after a perigalactic pass as

their instantaneous tidal radius increases.

Second, we show that the half-mass radius of a globular cluster in-

creases and decreases about a mean value over the course of an orbit. These

fluctuations suggest that the perigalactic pass also has the effect of energizing

inner region stars to larger orbits. Finally, we find that the limiting radius of

a cluster traces its instantaneous tidal radius at all times.

These findings argue against the historical assumption that globular
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Figure 2.12 Ratio of difference between fitted King (1962) radius (rk) and
limiting radius (rL) to the average of the two radii versus perigalactic distance
for Galactic globular clusters. Limiting radii have been calculated based on
the orbital eccentricity and phase of a cluster as given by Equation 2.8.
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cluster tidal radii, and by extension limiting radii, are imposed at perigalacti-

con for clusters that do not have circular orbits. While it remains true that the

half-mass relaxation time is greater than one orbital period, the cluster does

not need to fully relax in order to expand. The eccentric orbit introduces an

effect of tidal shocking that is not experienced by clusters in a static potential

(circular orbit).

While the instantaneous tidal radius is a useful first approximation of

the limiting radius, we have proposed an analytically determined correction

factor that is a function of orbital eccentricity and phase. This correction

leads to a much stronger agreement between the predicted limiting radii and

observational King (1962) radii of Milky Way globular clusters. Future studies

will explore how the correction factor depends on initial mass or initial half-

mass radius and how corrected limiting radii are related to King radii.

Since the tidal field of the Milky Way is not spherically symmetric,

correcting limiting radii based on eccentricity and orbital phase is not the fi-

nal step. We still need to correct for orbital inclination to account for factors

like disk shocking and tidal heating, which may reveal important effects for

the Milky Way and other disk galaxies. However, the present results already

have clear applicability to elliptical galaxies, which have more nearly spherical

potentials. We are currently investigating N -body simulations in these direc-

tions. The ultimate goal is to be able to predict the limiting radius of any

tidally affected globular cluster, given its orbit, galactocentric position and

the galactic potential of the host galaxy.
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Aarseth, S., Hénon, M., Wielen, R., 1974, å, 37, 183
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Fall, S. M. & Zhang, Q., 2001, ApJ, 561, 751

Gieles, M., Baumgardt, H., Heggie , D. C., Lamers, H.J.G.L.M. 2010, MNRAS,

408, L16

Harris, W. E. 1996, AJ, 112, 1487, 2010 Edition

Hegie, D.C. 1975, MNRAS, 173, 729

Heggie, D. C. & Giersz, M. 2012, MNRAS, 397, 46

Hurley, J.R. 2008a, Lecture Notes in Physics, 760, The Cambridge N -body

Lectures. Springer-Verlag, Berlin, p.283

Hurley, J.R. 2008b, Lecture Notes in Physics, 760, The Cambridge N -body

Lectures. Springer-Verlag, Berlin, p.321

Hurley, J. R. & Shara, M. M. 2012, MNRAS, 425, 2872

Innanen, K. A., Harris, W.E., Webbink, R.F. 1983, AJ, 88, 338

Johnston, K.V., Spergel, D.N., Hernquist, L. 1995, ApJ, 451, 598

74



Ph.D. Thesis, Ch. 2 - J.J. Webb McMaster - Physics & Astronomy
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3.1 Introduction

Massive star clusters in the Milky Way (MW), called globular clusters (GCs),

have typical total masses and ages ranging from ∼ 104 - 106 M⊙ and ∼ 10-
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12 Gyrs, respectively (Harris, 1996, 2010 update; Maŕın-Franch et al., 2009).

They have had time for their structural properties and stellar mass functions

(MFs) to have been modified from their primordial forms due to both stel-

lar evolution and stellar dynamics. Thus, in order to constrain the initial

cluster conditions and mass function, simulations are needed to rewind their

dynamical clocks.

The dominant mechanisms which drive the dynamical evolution of star

clusters are:

• Stellar Evolution

• Two-body Relaxation

• Tidal Stripping

• Tidal Heating

• Disk Shocking

Stellar evolution is initially the main driver of dynamical evolution in

a cluster as significant mass loss occurs when massive stars quickly evolve off

the main sequence and go supernova. After 2-3 Gyr, two-body relaxation,

the cumulative effects of long-range gravitational interactions between stars

acting to alter stellar orbits within the cluster, becomes dominant (e.g. Henon,

1961, 1973; Spitzer, 1987; Heggie & Hut, 2003; Gieles, Heggie & Zhao, 2011).

The most massive stars accumulate in the central cluster regions, and the

lowest mass stars are dispersed to wider orbits. The re-distribution of low

and high mass stars, known as mass segregation, is also a source of mass

loss with the probability of ejection past the tidal boundary increasing with
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decreasing stellar mass. Therefore, two-body relaxation will slowly modify the

distribution of stellar masses within clusters, and can cause very dynamically

evolved clusters to appear severely depleted of their low-mass stars (e.g. von

Hippel & Sarajedini, 1998; Koch et al., 2004; De Marchi, Paresce & Portegies

Zwart, 2010).

Tidal stripping is the removal of stars from a cluster by the host galaxy.

The galactic potential imposes a theoretical boundary around a globular clus-

ter, known as the tidal radius rt or the Jacobi radius rJ . Beyond rt, a star

will feel a greater acceleration towards the galaxy center than it feels towards

the center of the cluster, and will therefore escape (Binney & Tremaine, 2008).

For clusters subject to a strong tidal field, stripping serves to both accelerate

mass loss and minimize cluster size.

Tidal heating is an effect only experienced by clusters which experience

a non-static tidal field, and so only applies to clusters with eccentric orbits or

circular orbits in non-spherically symmetric potentials. The non-static tidal

field injects energy into the stellar population of a globular cluster and the

kinetic energy of individual stars increases. Energy injection leads to both

the energization of stars to larger orbits and the ejection of stars that would

otherwise remain bound to the cluster. The effects of energy injection are

strongest during a perigalactic pass where the cluster experiences a sudden

and dramatic increase in the local potential (Spitzer, 1987; Webb et al., 2013).

Disk shocking is a specific and extreme form of tidal heating, similar to a

perigalactic pass, as the local potential changes dramatically when the cluster

passes through the Galactic disk.

While stellar evolution, two-body relaxation and tidal stripping have

all been well studied for GCs in isolation and on circular orbits in realistic
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potentials, how these mechanisms change as a function of orbital eccentricity

remains unclear. The purpose of this study is to determine how tidal heating,

due to a non-circular orbit in a disk potential, and energy injection during

perigalactic passes can influence both relaxation and mass loss due to tidal

stripping. All of the Galactic GCs with solved orbits are non-circular (Dinescu

et al., 1999; Casetti-Dinescu et al., 2007, 2013), therefore understanding the

effects of orbital eccentricity are key to any future studies of GCs.

We evolve model N -body clusters for 12 Gyr with a range of orbits in

a Milky Way-like potential. Clusters with different orbits experience different

degrees of tidal stripping and tidal heating, which can have significant effects

on both the low-mass stellar population in the outer regions of the cluster

and cluster density. In Section 3.2 we discuss the N -body models used in this

paper. To study how orbital eccentricity can alter the dynamical evolution of a

cluster, we investigate the effect that tidal heating has on cluster mass loss rate

(Section 3.3), velocity dispersion (Section 3.4), relaxation time (Section 3.5),

and the stellar MF (Section 3.6). Within Section 3.6, the evolution of the

MF in different regions of the cluster is also discussed. Finally in Section 3.7,

we illustrate how present day characteristics of GCs can be used to provide

constraints on cluster orbits. We then place constraints on the orbits of specific

GCs that remain unsolved. We summarize our results in Section 3.8.

3.2 N-body models

We use the NBODY6 direct N -body code (Aarseth , 2003) to study the evolu-

tion of model star clusters over 12 Gyr. The models in this study begin with

96000 single stars and 4000 binaries and have a total initial mass of 6×104M⊙.
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Since we are only concerned with the influence of orbital eccentricity on clus-

ter evolution, only the initial position and initial velocity vary from model to

model while all other parameters remain unchanged.

A Kroupa, Tout, & Gilmore (1993) IMF between 0.1 and 30 M⊙ is

used to assign masses to individual stars, all with a metallicity of Z = 0.001.

For binary stars, the total mass of the binary is set equal to the mass of two

randomly selected stars. The mass-ratio between the primary and secondary

masses is then randomly selected from a uniform distribution. The distribution

of Duquennoy & Mayor (1991) is used to set the initial period of each binary

and orbital eccentricities are assumed to follow a thermal distribution (Heggie

, 1975). Initial positions and velocities of the stars are based on a Plummer

density profile (Plummer , 1911; Aarseth et al., 1974) with a cut-off at ∼ 10 rm

to avoid the rare case of stars positioned at large cluster-centric distances. The

initial half-mass radius rm,i of each model is 6 pc. The algorithms for stellar

and binary evolution are described in Hurley (2008a,b).

The Galactic potential is made up of a 1.5×1010M⊙ point-mass bulge, a

5×1010M⊙ Miyamoto & Nagai (1975) disk (with a = 4.5 kpc and b = 0.5 kpc),

and a logarithmic halo potential (Xue et al., 2008). The combined mass profiles

of all three components force a circular velocity of 220 km/s at a galactocentric

distance of 8.5 kpc. The incorporation of the Galactic potential into NBODY6

is described by Aarseth (2003) and Praagman, Hurley, & Power (2010). In

order for the model clusters to experience a spherically symmetric tidal field

they were set to orbit in the plane of the disk, eliminating factors such as disk

shocking or tidal heating due to a non-spherically symmetric potential.

Since we are only focussed on stars that are energetically bound to the

cluster, the simulation eliminates stars with r > 2 rt, where rt is the King
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(1962) tidal radius. We then calculate the total energy of each star given its

kinetic energy, the potential energy due to all other stars in the cluster, and

the tidal potential (Bertin & Varri, 2008; Webb et al., 2013). Stars with E > 0

are considered to be unbound, and are not included in calculations of cluster

parameters. It should be noted that a star with E > 0 can be recaptured at a

later time if it does not travel beyond 2 rt.

We first simulate three clusters with orbital eccentricities of 0 (circular

orbit), 0.5, and 0.9, where eccentricity is defined as e = Ra−Rp

Ra+Rp
. Ra and Rp

are the apogalactic and perigalactic distance of the orbit, respectively. All

three models have an Rp equal to 6 kpc and are located at Rp at time zero.

For comparison purposes we also simulate two additional models with circular

orbits at the apogalacticon of the e = 0.5 and e = 0.9 models, corresponding to

orbits at 18 kpc and 104 kpc, respectively. Therefore we can directly compare

the properties of a cluster on an eccentric orbit to clusters on circular orbits

at both Rp and Ra.

The initial model parameters are summarized in Table 4.1, with model

names based on orbital eccentricity (e.g. e05) and either circular radius or

radius at apogalacticon (e.g. r18).

Table 3.1: Model Input Parameters

Model Name rm,i Rp vp e

pc kpc km/s

e0r6 6 6 212 0

e05r18 6 6 351.5 0.5

e0r18 6 18 232 0

e09r104 6 6 543.5 0.9
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e0r104 6 104 225.25 0

3.3 Mass Loss Rate

The most important characteristic of a globular cluster is its total mass, as it

sets rt, the relaxation time trh and velocity dispersion σV of the cluster. Since

our models all start with the same initial mass, the key feature which sets the

models apart is their mass loss rate. Mass loss due to stellar evolution will

be identical from model to model, however mass loss due to tidal stripping

is orbit dependent since rt is a function of the instantaneous galactocentric

distance Rgc of a cluster. The total mass (left panel) and mass loss rate (right

panel) of each model is plotted in Figure 3.1.

In Figure 3.1, the mass loss rate of a GC on a circular orbit increases

with decreasing Rgc, resulting in the present day mass of inner clusters (e0r6)

to be much less than outer clusters (e0r104). The relationship between mass

loss rate and Rgc is expected as rt decreases linearly with Rgc. A stronger

tidal field and smaller rt results in outer stars being easily removed from the

cluster. The only exception to this rule is when a cluster is not tidally filling.

As shown in Webb et al. (2013), clusters fill their instantaneous tidal

radius at all times, independent of their orbital phase. That is to say there

will always be energetically bound stars at or near rt. However the degree to

which a cluster is tidally filling depends on the ratio rh
rt
, where a cluster can be

approximated to be tidally filling if rh
rt

> 0.145 (Henon, 1961). The fraction rh
rt

indicates whether the bulk of the cluster is centrally concentrated and only a
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Figure 3.1 Mass (left) and mass loss rate (right) of each model cluster as a
function of time. Models are separated by colour as indicated.
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Figure 3.2 Ratio of rh
rt

as a function of time. Models are separated by colour
as indicated. The dotted line indicates a value of 0.145.

few outer stars are affected by the tidal field (tidally under-filling) or if stars

are more uniformly spread out between the cluster center and rt.
rh
rt

is plotted

as a function of time for each model cluster in Figure 3.2.

Tidally under-filling clusters, like e0r014, will therefore have a lower

mass loss rate at a given Rgc than if rh
rt

> 0.145. Mass loss in under-filling

GCs is primarily driven by stellar evolution and close two-body interactions

occurring primarily in the dense cluster core.
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The mass loss rate of a GC on an eccentric orbit can be much higher

than if it had a circular orbit where it is currently observed, which is most

likely near Ra. For example, in the left panel of Figure 3.1 the final masses of

e05r18 and e09r104 are significantly less than the apogalactic cases of e0r18

and e0r104 respectively. So despite spending the majority of its lifetime near

Ra, an eccentric cluster will be lower in mass than a cluster with a circular

orbit at Ra. Periodic episodes of enhanced mass loss (right panel of Figure 3.1)

during a perigalactic pass are greater than the mass gained from recapturing

stars as the instantaneous rt increases while the GC travels to Ra.

It is interesting to note that e09r104 has a lower mass loss rate than

e0r18 during the majority of its orbit, but e09r104 undergoes periodic episodes

of mass loss at Rp that results in similar mass profiles during the first 12 Gyr

of their lifetime. e0r18 and e09r104 having similar mass profiles is in disagree-

ment with the relationship between dissolution time and cluster orbit given by

Baumgardt & Makino (2003). The results of Baumgardt & Makino (2003) sug-

gest that a cluster with an orbital eccentricity of 0.9 and perigalactic distance

of 6 kpc would behave as if it had a circular orbit between 10.5 and 11.5 kpc

and that e0r18 will take between 1.4 and 1.7 times longer to reach dissolution

than e09r104. However, evolving our model clusters beyond 12 Gyr and defin-

ing the dissolution time as the time it takes for clusters to reach 35% of their

initial mass, we find that the mass profiles eventually diverge and e0r18 takes

1.35 times longer to reach dissolution than e09r104. The slight discrepancy

between our models and the results of Baumgardt & Makino (2003) can easily

be attributed to our clusters having different initial conditions and orbiting in

a different tidal field than those presented in Baumgardt & Makino (2003).

e09r104 having a similar mass profile to e0r18 can be attributed to the clus-
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ters undergoing non-linear mass loss rates which result in both models losing

similar amounts of mass over the first 12 Gyr of cluster evolution and different

amounts of mass beyond 12 Gyr. Therefore we consider e09r104 to have an

effective circular orbit Re near 18 kpc. Re can be thought of qualitatively as

the circular orbit distance that an eccentric cluster could have and undergo

the same dynamical evolution. 1

e09r104 has a semi-major axis of 60 kpc and a time average galacto-

centric distance (< Rgc >= 1
12Gyr

∫ 12Gyr

0
Rgc(t)dt) of 73 kpc, both significantly

larger than Re. Even the time averaged galactic potential experienced by

e09r104 (< Ψ >= 1
12Gyr

∫ 12Gyr

0
Ψ(t)dt), which is the exact same as a cluster

with a circular orbit at 62 kpc, is larger than Re. The circular orbit distance

which experiences the same < Ψ > as an eccentric cluster will be referred to

as RΨ, such that Ψ(RΨ) =< Ψ >. Hence perigalactic mass loss leads to the

mass loss rate of an eccentric cluster being higher than if the cluster had a

circular orbit at < Rgc >, RΨ or with the same semi-major axis.

It should be noted that we consider e0r6 and e05r18 to be tidally filling,

while e09r104 is only tidally filling near Rp. e0r18 is marginally filling, so while

it is still subject to the effects of the tidal field, tidal heating and stripping

will be less efficient than in tidally filling clusters. e0r104 is the only cluster

that can be considered to be truly tidally under-filling over 12 Gyr, and its

evolution independent of the tidal field.

1Unfortunately, no quantitative relationship between the orbit of e09r104 and its appar-
ent Re of 18 kpc could be established.
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3.4 Velocity Dispersion

An observable parameter that is commonly used to study the dynamical state

of a globular cluster is its global line of sight velocity dispersion σV (Equation

3.1)

σV =

√

√

√

√

√

N
∑

i=1

v2i

N
(3.1)

where vi is the line of sight velocity of individual stars. We have plotted

the evolution of the global line of sight velocity dispersion of each model as a

function of both time (left panel) and fraction of initial mass M
M0

(right panel) in

Figure 3.3. The velocity dispersion was calculated along a random line of sight

at each time step. Comparing model clusters as a function of fraction of initial

mass is equivalent to comparing clusters on the same evolutionary timescale,

as the fraction of initial mass lost from the system per relaxation time due

to energy equipartition-driven dynamical evolution should be approximately

the same for all clusters independent of their mass, as shown by Lamers et al.

(2013). It should be noted that since the model clusters are only simulated

to 12 Gyr and not to dissolution, each model cluster will have lost a different

fraction of its initial mass by the end of the simulation.

The trend is for the velocity dispersion of all models to decrease as

they evolve, primarily due to mass loss over time. Since velocity dispersion is

proportional to cluster mass and inversely proportional to size, both of which

are dependent on orbit, it is difficult to relate velocity dispersion to cluster

orbit when plotted as a function of time (Figure 3.3 left panel). However, if

we plot velocity dispersion versus the fraction of initial mass (Figure 3.3 right
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Figure 3.3 Velocity dispersion as a function of time (left panel) and fraction
of initial mass (right panel). Models are separated by colour as indicated.
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panel) we are comparing clusters at the same mass. Since GC rh decreases

with decreasing Rgc, we expectedly see a higher σV for clusters with circular

orbits that experience a stronger tidal field for a given fraction of initial mass.

While stronger Galactic tides increase the velocity dispersion of a GC on

a circular orbit, tidal heating due to a non-circular orbit can play a secondary

role. In Figure 3.3 we see that the velocity dispersion of GCs with eccentric

orbits spikes during perigalactic passes as tidal heating injects all stars with

additional energy (Spitzer, 1987; Gnedin et al., 1999), with the line of sight

velocity dispersion deviating by up to 0.15 km/s and the three dimensional

velocity dispersion deviating by up to 0.3 km/s. When this energy is injected

into the cluster, the acceleration (and hence energy) imparted to these stars

will push them outwards as they move closer to being energetically unbound

and can even strip outer low-mass stars from the cluster if their initial binding

energy is low enough, in agreement with Webb et al. (2013).

Even though the majority of the high velocity stars will escape the

cluster and not be recaptured, some stars will remain bound. The periodic

process of increasing the velocity dispersion during a perigalactic pass acts to

slow the decrease in σV compared to if it had a circular orbit at < Rgc >, RΨ,

the semi-major axis of the eccentric cluster, or Ra. Therefore for two given

clusters that are equal in mass at the same Rgc, a higher velocity dispersion

will indicate an eccentric orbit assuming the eccentric cluster is located near

apogalacticon.
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3.5 Relaxation

We next wish to examine how cluster orbit affects the timescale over which the

distribution of stellar energies approaches equilibrium, known as the relaxation

time trh (Heggie & Hut, 2003; Trenti & van der Marel, 2013). trh is given by

Equation 3.2 (Meylan et al., 2001), where M is the total GC mass, m̄ is the

mean stellar mass, and rh is the half-light radius.

trh[yr] = (8.92× 105)
(M/M⊙)

1

2

(m̄/M⊙)

(rh/1pc)
3

2

log(0.4M/m̄)
(3.2)

The relaxation time, plotted as a function of time (left panel) and frac-

tion of initial mass (right panel) in Figure 3.4, is dependent on all three of the

previously discussed cluster characteristics; mass, rh, and velocity dispersion.

As previously discussed, a cluster which experiences a strong tidal field

will have a higher mass loss rate, higher velocity dispersion and be smaller

in size than a cluster which experiences a weaker tidal field. While a larger

velocity dispersion will increase the relaxation time of a GC, differences in σV

due to cluster orbit are minimal compared to the differences in mass and size

of clusters in different tidal fields. Therefore the relaxation and segregation

times of a cluster are primarily dependent on cluster size and density, both

of which are proportional to Rgc. With the exception of e0r104, trh decreases

with time after its initial expansion while each cluster loses mass and contracts.

Since e0r104 is undergoing a near-zero mass loss rate and still expanding, trh

continues to increase.

Figure 3.4 indicates that a cluster with an eccentric orbit relaxes on a

timescale between that of GCs with circular orbits at Rp and Ra. Increasing

eccentricity increases trh relative to the Rp case, primarily due to the eccentric
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Figure 3.4 Half-mass relaxation time of each model cluster as a function of time
(left panel) and fraction of initial mass (right panel). Models are separated by
colour as indicated.
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cluster having a larger rh. Therefore for two clusters at the same Rgc, the

cluster with a more eccentric orbit which brings it deeper into the galactic

potential will have a shorter relaxation time and be more mass segregated

than a cluster with a near-circular orbit. Similar to the evolution of total

mass and σV in Figures 3.1 and 3.3, model e09r104 has a relaxation time

profile that overlaps with e0r18.

3.6 Evolution of the Mass Function

The overall effect of orbital eccentricity on the dynamical evolution of GCs

is observed in the stellar MF. Increased tidal stripping results in eccentric

clusters being severely depleted of mass segregated low-mass stars compared

to clusters with circular orbits near the same Rgc. Hence studying the stellar

MF of a GC allows for constraints to be placed on its orbital eccentricity.

3.6.1 Evolution of α

We quantify the evolution of the MF by calculating the exponent α, where α

is defined in Equation 3.3.

dN

dm
∝ mα (3.3)

In this form, the traditional Salpeter initial MF has α = -2.35 (Salpeter ,

1955). For each model, α is the best fit slope to a plot of log(dN
dm

) versus

log(m), calculated over mass bins greater than 0.15M⊙ and less than the main

sequence turn-off. The evolution of the global α for each of our models is

plotted in Figure 3.5 as a function of time (left panel) and fraction of initial
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Figure 3.5 The evolution of the global α is plotted as a function of time (left
panel) and fraction of initial mass (right panel). Models are separated by
colour as indicated.

mass (right panel).

Almost immediately, α decreases from its initial value due to both

stellar evolution and the breaking up of binaries which are assumed to be

unresolved. After 1000-2000 Myr α begins to increase as a function of time at

a faster rate for GCs which experience a stronger tidal field. The accelerated

evolution of α is a direct result of increased mass loss due to tidal stripping
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producing a lower mass cluster with a shorter relaxation time and a smaller

scale size (rt ∝ M
1

3R
2

3

gc). As a function of fraction of initial mass, all models

again undergo a similar initial evolution in α. It is not until after the first

1000 Myr and each cluster has completed multiple orbits and experienced the

combined effects of the galactic potential that the evolution of α becomes orbit

dependent. For a given fraction of initial mass, α will then be higher for a

cluster with a large < Rgc > as the weaker tidal field can only remove the least

massive of the low mass stars. A stronger tidal field can remove stars over a

larger mass range, slowing the evolution of α.

We have already shown that tidal heating, on top of the lower mass and

smaller scale size of an eccentric cluster, accelerates its dynamical evolution

compared to a GC with a circular orbit and either the same semi-major axis,

the same < Rgc > or the same RΨ. Comparing GCs as a function of initial

mass, α increases at a faster rate with increasing eccentricity (for a given

Rp) because the weaker tidal field again can only remove the lowest of low

mass stars. Since clusters with higher orbital eccentricities are subject to

increased tidal heating and a tidal shock at Rp, a larger fraction of low-mass

stars populating the outer regions have the potential to be tidally stripped.

3.6.2 Radial Dependence of the Mass Function

It is often the case that the slope of the mass function for a given GC is

measured in a specific region of the GC (e.g. De Marchi, Paresce & Portegies

Zwart, 2010). Therefore, to properly compare with observable parameters we

consider the evolution of α for stars in different radial regions of the cluster.

Specifically we focus on stars within the 10% Lagrangian radius (r10), stars
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between r10 and the half mass radius (rm), and bound stars beyond rm. For

our purposes, rm is used as a substitute for rh because it undergoes a smoother

evolution from time step to time step than rh.

The slope of the mass function in all radial bins (Figure 3.6) follows the

same trend as the global mass function, however within observational uncer-

tainties the inner mass function appears to be independent of orbit. The orbital

independence is due to two-body interactions being the dominant physical pro-

cess in the core of a GC relative to tidal stripping. Assuming a Universal IMF,

the nearly orbit independent evolution of α for r < r10 could be used to solve

for the initial MF and hence total initial mass of MW GCs given their core

mass function (Leigh et al., 2012).

For the intermediate mass function, we begin to see a clear separation

in the evolution of α for GCs with different orbits. α increases at a slower rate

than the inner region, primarily because both two-body relaxation and tidal

stripping are in effect. The removal of low mass stars via tidal stripping slows

the evolution of α compared to if just two-body relaxation was occurring.

In the outer region we see an initial decrease in α as mass segregation

results in high mass stars migrating to the inner region of the GC. However, α

quickly begins to increase for tidally filling clusters (e0r6, e05r18) as they lose

mass. Unlike the inner region of the cluster, tidal stripping is now the dominant

mechanism and can produce significantly different values of α based on cluster

orbit. Specifically the difference between e0r6 and e05r18 is larger in the outer

region than the intermediate region. With observational uncertainties in α

typically ranging from 2 to 15% (De Marchi, Paresce & Portegies Zwart, 2010;

Paust et al., 2010), discrepancies of this magnitude should be measurable in

high quality observations. For the outer regions of clusters e0r18, e09r104,
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Figure 3.6 Slope of the mass function (α) for stars within r10 (left), stars
between r10 and rm (center), and bound stars beyond rm (right). Models are
separated by colour, as indicated in the right panel.
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and e0r104, α is still decreasing as the cluster relaxes. Since outer clusters are

either barely tidally filling or not at all (see Figure 3.2), two-body interaction

is the only mechanism affecting the outer region of the GC and the evolution

of α is not accelerated due to tidal stripping. Unfortunately, the outer mass

functions of Galactic GCs are difficult to measure due to low number statistics

and field contamination, and we are forced to rely on mass functions measured

near rh.

In principle, the ratio of α in the core to α in the outskirts could put

very tight constraints on orbital eccentricity. Consider two clusters with the

exact same mass, rh, Rgc and value of α in their outskirts. While one may

conclude these two clusters must have similar orbits, this conclusion would be

incorrect if the clusters had different sizes or masses at birth. The evolution

of α in the core on the other hand is independent of cluster orbit, and only

depends on the initial mass and size of the cluster of birth as these properties

are what govern the time it takes for the core to relax. Therefore normalizing

by the value of α in the core is analagous to normalizing by the initial cluster

conditions. In the current example, the cluster with the smaller core α was

likely more massive and larger than the other cluster at birth and took longer

to relax. To have the same value of α in the outskirts, the cluster with the

higher initial mass and size must have an eccentric orbit and be near Ra in

order to have lost a higher fraction of its initial mass. Additional simulations

of clusters with different initial conditions are required to further explore the

usefulness of the ratio of α in the core to α in the outskirts.
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3.7 Application to Milky Way Globular Clus-

ters

Our models demonstrate that the periodic perigalactic passes and tidal heating

experienced by GCs with eccentric orbits can lead to enhanced mass loss,

increased velocity dispersions, and shorter relaxation times than if the cluster

had a circular orbit at Ra, < Rgc >, RΨ, or with the same semi-major axis.

All of these effects combine to alter the stellar MF of a GC in a predictable

manner. Assuming a universal IMF, which is consistent with the results of

Leigh et al. (2012), the possibility then arises to relate the observationally

determined MF of GCs to the tidal field, and thereby constrain GC orbits. A

universal IMF is consistent with results of Leigh et al. (2012). Below, we use

our model results and the MFs of GCs with solved orbits to illustrate how GC

orbits can be constrained given α and Rgc.

In Figure 3.7, we plot α from De Marchi, Paresce & Portegies Zwart

(2010) versus current Rgc, Rp, orbital eccentricity, and the ratio rh
rt

(Harris,

1996, 2010 update) for Galactic GCs with solved orbits (Dinescu et al., 1999;

Casetti-Dinescu et al., 2007, 2013). Cluster tidal radii are calculated at their

current Rgc given the formalism of Bertin & Varri (2008). The vertical dotted

line in the bottom right panel corresponds to rh
rt

= 0.145, where clusters with

rh
rt

> 0.145 are considered to be tidally filling and clusters with rh
rt

< 0.145

are considered to be tidally under-filling (Henon, 1961). Clusters in the De

Marchi, Paresce & Portegies Zwart (2010) dataset with unsolved orbits are

plotted in Panels A and D as large green crosses. For comparison purposes,

NGC 7078 (black triangle), NGC 6809 (blue filled circle) and NGC 2298 (red

filled squares) have been singled out as they cover the full range in Rgc, ec-

99



Ph.D. Thesis, Ch. 3 - J.J. Webb McMaster - Physics & Astronomy

centricity, and α. It should be noted that values of α taken from De Marchi,

Paresce & Portegies Zwart (2010) were measured near the effective radius of

the cluster. Therefore differences between eccentric and non-eccentric clusters

should follow the behaviour described in the centre panel of Figure 3.6.

3.7.1 Clusters with Solved Orbits

3.7.1.1 NGC 7078 (M15)

NGC 7078 (black triangle) has the steepest mass function (most negative α) of

all the GCs with solved orbits, suggesting it is the least dynamically evolved.

Without any prior knowledge about the orbit, this cluster appears at face-value

to represent an anomaly as its present day Rgc is approximately the mean Rgc

of all clusters in the dataset. We conclude, based solely on the mass function of

NGC 7078, that it has a low orbital eccentricity and a correspondingly large

perigalactic distance. Taking into consideration the cluster’s known orbital

parameters, NGC 7078 actually has one of the largest perigalactic distances

of all clusters with solved orbits. Therefore, it experiences a weaker mean

tidal field than the majority of GCs. Compared to other clusters with large

values of Rp, NGC 7078 is very tidally under-filling. Being smaller in size and

tidally under-filling, combined with experiencing a weaker mean tidal field,

means that NGC 7078 has a very low mass loss rate and has likely retained

the majority of its stars. Furthermore, its lower orbital eccentricity means

that tidal heating plays a near negligible role.
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Figure 3.7 Slope of the mass function (α) compared to the present Rgc (Panel
A), Rp (Panel B), orbital eccentricity (Panel C), and rh

rt
(Panel D) for Galactic

GCs with solved orbits. In Panel D, the vertical line corresponds to rh
rt

= 0.145.
NGC 7078 (black triangle), NGC 6809 (blue filled circle) and NGC 2298 (red
filled squares) have been highlighted. In Panels A and D, large green crosses
mark the clusters in the De Marchi, Paresce & Portegies Zwart (2010) dataset
with unsolved orbits.
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3.7.1.2 NGC 6809 (M55)

NGC 6809 (blue filled circle) represents the inner most cluster in the dataset

with a present day Rgc of 4 kpc, however it is less dynamically evolved than

one would expect given the strong tidal forces it must experience. Its tidal

and effective radii suggest that the cluster has expanded enough such that it is

almost tidally filling and stars should be able to be stripped from the outskirts.

Therefore we would conclude that the cluster must actually spend more time

beyond 4 kpc than within 4 kpc, so it must have a moderate to high orbital

eccentricity and be located near Rp. This statement is consistent with the

solved orbit for this cluster. The cluster has an orbital eccentricity near 0.5

and an Rp of approximately 2 kpc, meaning that the cluster is currently closer

to Rp than Ra, such that its current position does not represent the mean

tidal field it experiences. The weaker than expected tidal forces experienced

by NGC 6809 result in a lower mass loss rate and larger relaxation time, both

of which help to account for the relatively unevolved (i.e. steep) slope of the

MF.

3.7.1.3 NGC 2298

Finally, NGC 2298 (red filled squares) is very dynamically evolved as it has an

inverted mass function with a large positive value of α. Again, without prior

orbital information, this cluster would appear to be too dynamically evolved

as the weak tidal forces it experiences at its current Rgc should not have been

able to remove enough stars to invert the mass function. Panel D suggests

that NGC 2298 is also very tidally under-filling, so one would expect that

it would not be strongly affected by tidal forces. Hence the only way NGC
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2298 can be so dynamically evolved given its current Rgc would be if it has

a highly eccentric orbit that brings it deep into the tidal field of the galaxy.

Furthermore, NGC 2298 must be near Ra to explain its extremely low rh
rt
.

Our conclusion is confirmed by noting NGC 2298 has an orbital eccentricity

of 0.78 (Figure 3.7), a Ra of 15.3 kpc, and a current Rgc of 14.4 kpc. Periodic

episodes of enhanced mass loss during each perigalactic passes have stripped

the majority of low mass stars from the outer regions of NGC 2298 leaving it

to appear tidally under-filling when near Ra.

Note that a similar argument can be made for NGC 288 and Pal5,

which despite having Rgc’s greater than 10 kpc, both appear to be quite dy-

namically evolved with an α of 0. With orbital eccentricities greater than

0.68, perigalactic passes bring both clusters deep into the Galactic potential

to Rp’s less than 2 kpc. Enhanced mass loss and energy injection have accel-

erated each cluster’s evolution compared to if they had circular orbits at their

current Rgc’s.

3.7.2 Clusters with Unsolved Orbits

We have demonstrated that an understanding of how orbital eccentricity can

influence the dynamical evolution of GCs can be used to make predictions of a

GC’s orbit based on its Rgc and α. While it is difficult to predict cluster orbit

based solely on Rgc and α without additional simulations to explore possible

degeneracies between orbit, initial size, and initial mass, we can make some

general statements about the remaining clusters in the De Marchi, Paresce &

Portegies Zwart (2010) dataset with unsolved orbits (plotted as green crosses

in Figure 3.7):

103



Ph.D. Thesis, Ch. 3 - J.J. Webb McMaster - Physics & Astronomy

• NGC 1261 is tidally under- filling, has the largest Rgc, and has one of the

least negative values of α of the remaining clusters suggesting it is similar

in nature to NGC 2298. Therefore NGC 1261 is likely located near Ra

and has a large (e > 0.7) orbital eccentricity. Its high-e orbit causes

NGC 1261 to be subject to significant tidal heating and large injections

of energy during perigalactic passes, accelerating its dynamical evolution

compared to if it had a circular orbit at its current Rgc.

• NGC 6352 and NGC 6496 both have similar values of α to NGC 1261

but are located in the inner region of the MW ( 3 kpc < Rgc < 5

kpc). Therefore their orbital eccentricities are likely less than NGC 2298

or NGC 6809 (e < 0.5), and are currently located somewhere between

Rp and Ra. Since NGC 6352 is tidally filling, it is likely closer to Rp.

Similarly since NGC 6496 is tidally under-filling it is likely closer to Ra.

• NGC 6304 is tidally filling, but has an extremely negative α considering it

is located deep in the galactic potential of the MW (Rgc ∼ 2 kpc). NGC

6304 is comparable to the previously discussed NGC 6809, and likely has

a moderate to high (e ∼ 0.5) orbital eccentricity and is currently located

near Rp. Hence its very negative α can be explained by the fact that

NGC 6304 spends the majority of its time beyond its current Rgc.

• Unfortunately no firm conclusions can be made regarding the orbit of

NGC 6541 as it is both extremely tidally under-filling and located at a

small Rgc. Hence the evolution of its mass function is likely independent

of its orbit. Its extremely negative α suggests the cluster has retained

the majority of its stars over its lifetime and likely formed extremely

compact relative to other GCs. Due to its low Rgc, it is also possible
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that the cluster is near Rp and has a low eccentricity orbit which brings

the cluster slightly farther out in the galactic potential. However the

fact that it is so tidally under-filling is surprising given its low Rgc. It

may instead be the case that NGC 6541 is a recently accreted GC or the

nucleus of a dwarf galaxy, and did not evolve at its current location in

the Milky Way . Further simulations of tidally under-filling clusters on

eccentric orbits are required to explore these hypotheses.

3.8 Summary

Our simulations show that orbital eccentricity can play an important role in

the dynamical evolution of a star cluster. Our models demonstrate that for

two GCs located at the same Rgc, one with a circular orbit and one with an

eccentric orbit and Ra = Rgc, the GC with an eccentric orbit will have:

• increased mass loss rate

• smaller size

• increased velocity dispersion

• shorter relaxation time

• shallower mass function

The same conclusion would be reached by comparing a cluster with

a circular orbit at a smaller Rgc to the cluster with a circular orbit at Ra.

However, the non-static tidal field and periodic perigalactic passes experienced

by a cluster with an eccentric orbit produce second order effects.
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The first effect of an eccentric orbit is periodic episodes of enhanced

mass loss during perigalactic passes. So while the mass loss rate that an

eccentric cluster experiences for most of its lifetime may correspond to <

Rgc >, the enhanced episodes of mass loss produce a higher overall mass

loss rate. The second effect of perigalactic passes is the energization of inner

region stars to larger orbits, as first discussed in Webb et al. (2013). The

periodic injection of energy into the cluster, combined with additional energy

due to tidal heating from a non-static tidal field, increases the kinetic energy

of individual stars. Therefore inner region stars will be pushed to larger orbits

and stars in the outskirts will be able to escape, decreasing the relaxation

time and mass segregation time of the cluster. The combined effects of orbital

eccentricity serve to partially balance the decreased tidal field strength the

eccentric cluster experiences during the majority of its orbit, such that its

evolution is comparable to a cluster with a circular orbit at a distance much

less than RΨ, < Rgc >, or with the semi-major axis of the eccentric cluster.

The recurring example discussed in this paper involves model e09r104, which

undergoes a similar dynamical evolution as a cluster with a circular orbit at

18 kpc.

The influence of tidal heating and perigalactic passes are reflected in

the global mass function of eccentric GCs, as it will be flatter (less negative

slope) than would be expected given the clusters current Rgc. A flatter mass

function is the direct result of increased tidal stripping of outer region stars

that are preferentially low in mass due to mass segregation. Conversely, the

inner mass function appears to be independent of cluster orbit as the effects of

tidal heating are negligible compared to two-body relaxation. Hence the inner

mass functions of Galactic GCs may instead be used to constrain the initial
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mass and size of the GC, and the ratio of α in the core to α in the outskirts

could serve as a tracer of orbital eccentricity.

We make use of the measured mass functions of 33 GCs by De Marchi,

Paresce & Portegies Zwart (2010), 28 of which have solved orbits (Dinescu

et al., 1999; Casetti-Dinescu et al., 2007, 2013), to demonstrate how α and

Rgc can be used to constrain cluster orbit. We then put constraints on the

orbital eccentricity of the remaining clusters with unsolved orbits based on

their α and Rgc:

• NGC 1261 has e > 0.7, and is currently located near Ra

• NGC 6352 has e < 0.5, and is currently located near Rp

• NGC 6496 has e < 0.5, and is currently located near Ra

• NGC 6304 has e ∼ 0.5, and is currently located near Rp

• NGC 6541 is extremely under-filling with a low Rgc, so its α must be

orbit independent. To be under-filling with such a small Rgc, it is likely

that NGC 6541 either formed extremely compact and is currently located

near Rp with a low e, is a captured GC, or is a dwarf galaxy remnant.

Additional simulations, specifically exploring the influence of orbital

inclination, initial size, and initial mass on the dynamical evolution of GCs,

will help explain the current dynamical state of all Galactic GCs. Isolating

the effects of orbital eccentricity, however, is an important first step towards

understanding the different ways tidal heating and periodic perigalactic passes

can influence cluster evolution. A complete suite of simulations will allow for

specific constraints to be placed on the orbits of GCs that have yet to be

solved.
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Chapter 4

The Effects of Orbital Inclination

on the Scale Size and Evolution of

Tidally Filling Star Clusters

Jeremy J. Webb, Alison Sills, William E. Harris, Jarrod R. Hurley

Monthly Notices of the Royal Astronomical Society, Volume 445, Issue 1, pages

1048-1555,

Bib. Code: 2014MNRAS.445.1048W, DOI: 10.1093/mnras/stu1763

4.1 Introduction

The gravitational dynamics of a three-body system which consists of a star

orbiting in the combined potential of a star cluster and its host galaxy becomes

increasingly complicated as one attempts to make the system more realistic.
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By treating all three members of the system (star, cluster, galaxy) as point

masses, one can easily determine the tidal radius rt (or Jacobi radius rJ) of the

cluster, which is defined as the distance beyond which a star feels a stronger

acceleration towards the host galaxy than the cluster itself (von Hoerner, 1957).

A straightforward derivation of rt yields a function that depends on cluster

mass Mcl, galaxy mass Mg, and the cluster’s galactocentric distance Rgc:

rt ≃ Rgc(
Mcl

2Mg
)1/3 (4.1)

Allowing the host galaxy to have a non-point-mass potential introduces

significant complexity that has led to multiple analytic definitions of rt (e.g.

King, 1962; Innanen, Harris, & Webbink, 1983; Jordán et al., 2005; Binney

& Tremaine, 2008; Bertin & Varri, 2008). However all analytic expressions

of rt, no matter how complex the tidal field, are limited by the assumptions

that the host galaxy has a spherically symmetric potential and the cluster has

a circular orbit. Under these assumptions the tidal field experienced by the

cluster can be taken to be static. The derivation by Bertin & Varri (2008) is

likely the most generalized derivation of rt, as spherical symmetry is the only

assumption it makes. In that work, rt is defined as:

rt = (
GMcl

Ω2υ
)1/3 (4.2)

where Ω, κ and υ are:

Ω2 = (dΦG(R)/dR)Rgc
/Rgc (4.3)

κ2 = 3Ω2 + (d2ΦG(R)/dR2)Rgc
(4.4)
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υ = 4− κ2/Ω2 (4.5)

Here ΦG is the galactic potential, M and Rgc are the mass and galactocentric

distance of the cluster respectively, Ω is its orbital frequency, κ is the epicyclic

frequency of the cluster at Rgc, and υ is a positive dimensionless coefficient.

Since disk and triaxial elliptical galaxies have non-spherically symmet-

ric potentials, and most Galactic globular clusters have non-circular orbits (Di-

nescu et al., 1999; Casetti-Dinescu et al., 2007, 2013), assuming that a cluster

experiences a static tidal field as it evolves is clearly incorrect. Various works

have studied the evolution of clusters in non-static tidal fields (Baumgardt &

Makino, 2003; Giersz & Heggie, 2009, 2011; Renaud et al., 2011; Webb et al.,

2013; Brockamp et al., 2014; Madrid et al., 2014), where the easiest approach

is to first consider clusters with eccentric orbits in a spherically symmetric

tidal field. These studies have shown that a cluster on an eccentric orbit will

lose mass faster than if it has a circular orbit at apogalacticon Ra, but slower

than if it has a circular orbit at perigalacticon Rp. The increased mass loss

rate is attributed to tidal shocks during perigalactic passes and tidal heating.

Tidal heating and tidal shocks occur when a cluster experiences a time

varying gravitational force. A tidal shock refers to a highly varying gravita-

tional force experienced over a short period of time (e.g. perigalactic pass or

passage through a disk). During a tidal shock, individual stars undergo an

increase in energy that is dependent on their location within the cluster, and

the cluster’s binding energy is reduced. The orbits of stars during a shock

can receive a significant kick, which can push loosely bound stars outside rt

(Gnedin & Ostriker, 1997). Tidal heating on the other hand refers to a slowly

varying gravitational force experienced over a long period of time (e.g. eccen-
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tric orbit or non-spherically symmetric potential). While the amount of energy

injected into the cluster per unit time is much smaller than a tidal shock, over

significant periods of time tidal heating can also have a strong influence on a

cluster’s evolution. Both mechanisms can provide stars with additional energy

to escape the cluster that otherwise would remain bound, accelerating mass

loss (Webb et al., 2013; Brockamp et al., 2014).

For a cluster on an eccentric orbit in a spherically symmetric potential,

Equation 4.2 represents the instantaneous rt of the cluster, which fluctuates

between a maximum at Ra and minimum at Rp. In Webb et al. (2013) we

demonstrate that the limiting radius rL of a tidally filling cluster (the radius

at which the stellar density approaches zero) traces rt at all phases of its orbit.

The agreement between rL and rt can be attributed to the cluster recapturing

stars as it moves away from Rp, as well as energy injection from tidal shocks

and tidal heating energizing bound stars to larger orbits within the cluster.

To better reflect the globular cluster population of disk galaxies, in-

cluding the Milky Way, orbits need to be considered that are both eccentric

and inclined to the plane of the disk. Studies of the effects of an inclined orbit

on star clusters have primarily been focused on the effects of disk shocking as

the cluster passes through the plane of the disk, which accelerates accelerate

mass loss (Gnedin & Ostriker, 1997; Gieles et al., 2007; D’Onghia et al., 2010;

Madrid et al., 2014).

A cluster on an inclined orbit will not only undergo tidal shocks, but

tidal heating as well even though its orbit is circular. If the cluster orbit is

inclined and eccentric, which is the case for Galactic globular clusters, it will

experience a third tidal shock at Rp. The overall effect on the mass loss rate

and scale size of such a cluster has not been fully explored.
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The purpose of this study is to both isolate and identify the effects of

orbital inclination on the evolution of a star cluster and consider the combined

effects of orbital inclination and eccentricity. Model N-body clusters with a

range of orbital inclinations and eccentricities are evolved from t=0 to 12 Gyr

in a Milky Way-like potential. In Section 2 we introduce the models and

their initial conditions. In Section 3 we focus on how orbital inclination and

eccentricity influence the evolution of cluster mass (M), rt, velocity dispersion

σV , rL and half-mass radius rm. We discuss the results of all our N-body

models in Section 4. Specifically we suggest a method to correct both the

dissolution time and the theoretical calculation of a cluster’s scale size for

inclination and/or eccentricity. We summarize our conclusions in Section 5.

Model clusters are evolved from t=0 to 12 Gyr with the NBODY6 direct

N-body code (Aarseth 2003). The initial mass of each model is 6 × 104M⊙

and has 96000 single stars and 4000 binaries. Stellar masses are drawn from

a Kroupa, Tout, & Gilmore (1993) initial mass function between 0.1M⊙ and

30M⊙, with each star assigned a metallicity of Z = 0.001. The distribution of

stellar positions and velocities follow a Plummer density profile with a cutoff

at 10rm (Plummer , 1911; Aarseth et al., 1974). The initial half mass radius

of each model is set to 6 pc, which ensures that all models exhibit bound stars

at or beyond rt and can be considered tidally filling.

To first study the effects of orbital inclination on star clusters, we sim-

ulate model clusters with circular orbits at 6 kpc and 18 kpc that have orbital

inclinations of 0◦, 22◦, and 44◦. We then study the combined effects of orbital

eccentricity and inclination by simulating a cluster with an orbital eccentricity

of 0.5, orbiting between Rp of 6 kpc and Ra of 18 kpc, with the same orbital

inclinations. We selected these orbital parameters to allow us to compare a
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cluster with an eccentric orbit to clusters with circular orbits at Rp and Ra

over a range of inclinations. The models with orbital inclinations of 0◦ were

first introduced in Webb et al. (2014), hence we refer the reader to that study

for additional details on the input parameters used in our models.

The clusters orbit within a Milky Way-like potential made up of a

1.5 × 1010M⊙ point mass bulge (Equation 4.6), a Miyamoto & Nagai (1975)

disk (Equation 4.7 with Md = 5× 1010M⊙, a= 4.5 kpc, and b = 0.5 kpc), and

a logarithmic halo potential (Equation 4.8 (Xue et al., 2008)). The halo is

scaled such that the three potentials combine to give a circular velocity (vC)

of 220 km/s at a galactocentric distance of 8.5 kpc in the plane of the disk

(Aarseth , 2003). Therefore RC in Equation 4.8 is 8.8 kpc. The initial radius

in the plane of the disk (Rxy), initial height above disk (Zi), Rp, eccentricity

and orbital inclination of each cluster is given in Table 4.1. Note that model

names are based on orbital eccentricity (e.g. e05), circular orbit distance or

apogalactic distance (e.g. r18) and orbital inclination (e.g. i22).

Φbulge(Rgc) =
−GMb

Rgc
(4.6)

Φdisk(Rxy, z) =
−GMd

√

R2
xy + [a +

√
b2 + z2]2

(4.7)

Φhalo(Rgc) =
1

2
(v2C)LOG(R2

gc +R2
C) (4.8)
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Table 4.1: Model Input Parameters

Model Name Rxy Zi Rp e i

kpc kpc kpc degrees

e0r6i0 6 0 6 0 0

e0r6i22 5.56 2.25 6 0 22

e0r6i44 4.32 4.17 6 0 44

e05r18i0 6 0 6 0.5 0

e05r18i22 5.56 2.25 6 0.5 22

e05r18i44 4.32 4.17 6 0.5 44

e0r18i0 18 0 18 0 0

e0r18i22 16.69 6.74 18 0 22

e0r18i44 12.73 12.73 18 0 44

In order to better visualize the orbits of each model cluster, specifically

how they evolve with time, we have plotted the x and z coordinates at each

time step for each cluster in Figure 4.1. The orbital eccentricity, circular orbit

distance or apogalactic distance, and orbital inclination are marked in each

panel.

4.2 Influence of Orbital Inclination

To study the effects of orbital inclination on the scale sizes of clusters, we

focus on the evolution of the mass, tidal radius, velocity dispersion, limiting

radius and half-mass radius of all bound stars in each model cluster. A star

is considered to be bound if the difference between its kinetic energy and the

potential energy due to all other stars in the simulation is less than 0.
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Figure 4.1 Orbits of all model clusters. Clusters with circular orbits at 6 kpc
are in the lower row, with orbital eccentricities of 0.5 and perigalactic distances
of 6 kpc in the middle row, and circular orbits at 18 kpc in the top row. Orbital
inclination changes from 0◦ in the left column, to 22◦ in the middle column,
to 44◦ in the right column.
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4.2.1 Mass

The total bound mass of each cluster is plotted in Figure 4.2 as a function of

time. For any cluster, mass loss is driven by stellar evolution and the tidal

stripping of stars pushed beyond rt. For clusters with circular orbits in the

plane of the disk, the mean mass loss rate increases with decreasing Rgc due

to the increased strength of the tidal field. For clusters which experience non-

static tidal fields (those with eccentric and/or inclined orbits) tidal heating

and tidal shocks due to a sudden increase in the local gravitational potential

(passage through a galactic disk or near Rp) are additional sources of mass

loss. For example, clusters with circular orbits at 6 kpc that are inclined lose

mass at a higher rate than the i = 0 case, with e0r6i22 losing mass the fastest.

Model e0r6i22 (22◦ inclination) loses more mass than e0r6i44 (44◦ in-

clination) over 12 Gyr for two reasons. First, e0r6i22 passes through the disk

more often, thus experiencing more frequent disk shocking. Secondly, the tidal

field of the disk is proportional to z−1 for a given Rxy (see Equation 4.7, so the

cluster e0r6i22 spends the majority of its time in a stronger tidal field. e0r6i44

is far enough from the plane of the disk that when at its maximum height

zmax it experiences a weaker and nearly spherically symmetric tidal field such

that tidal heating is less of a contributing factor. Model clusters with higher

inclinations, like those performed by Madrid et al. (2014), are also in agree-

ment with our findings. Clusters with extremely high inclinations not only

pass through the disk more frequently due to shorter orbital periods, but also

pass through the disk perpendicular to the Galactic plane. Crossing the disk

at such a high inclination increases the amount of energy imparted to cluster

stars. Stronger and more frequent disk shocks experienced by high inclina-
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0 5000 0 5000 0 5000

Figure 4.2 The evolution of total cluster mass over time for clusters with
a circular orbit at 6 kpc (left panel), an orbital eccentricity of 0.5 and an
apogalactic distance of 18 kpc (center panel) and a circular orbit at 18 kpc
(right panel). The black solid lines, red dotted lines, and blue dashed lines
correspond to models with orbital inclinations of 0◦, 22◦, and 44◦ respectively.
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tion clusters result in an accelerated mass loss rate compared to the models

presented here.

For circular orbits at 18 kpc, there is very little difference between

the mass profiles of the inclined and non-inclined cases. The strength of a

Miyamoto & Nagai (1975) disk decreases as R−1
xy (Equation 4.7). Hence for

clusters orbiting at similarly large distances, the majority of the disk’s mass is

within their orbit, and the clusters evolve more as if they are in a spherically

symmetric potential. However it is surprising that the clusters on inclined

orbits are actually more massive at all times than the i = 0 case since we expect

these clusters to undergo some degree of disk shocking and tidal heating. This

will be addressed in Section 4.2.

For clusters with eccentric orbits, periodic episodes of enhanced mass

loss due to perigalactic passes are present in all three cases. In the case of

a cluster with orbital eccentricity e in the plane of the disk (e05r180), the

cluster takes (1+e) times longer to reach dissolution than a cluster with a

circular orbit at Rp, or (1-e) times shorter than a cluster with a circular orbit

at Ra. The dissolution time scaling is in agreement with Baumgardt & Makino

(2003), who defines the dissolution time as the time it takes for the cluster

to reach 100M⊙. Given that the behaviour of collisional N -body simulations

can become noisy at late times when only a small number of stars remain, we

have checked the results of Figure 4.2 against an alternative definition of the

dissolution time (when the cluster reaches 10% of its original mass) and find

no noticeable change.

The amount of mass lost during a perigalactic pass decreases with in-

creasing inclination because the tidal field is weaker at Rp when the cluster

is above or below the plane of the disk. However, the inclined and eccentric
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clusters still lose more mass than e05r18i0 because they undergo additional

mass loss via disk shocking and increased tidal heating. While tidal heating

has been shown to be a factor for clusters with eccentric orbits in the plane of

the disk (Webb et al., 2013), it is even more effective for clusters with inclined

orbits as the rate of change of the local potential is higher. The rate of change

of the local potential is reflected in plots of rt versus time and the cluster’s

height above the disk as discussed in Sections 3.2 and 4.1 respectively. Disk

shocking, while still an additional source of mass loss, is less effective than if

the cluster had a circular orbit at Rp because disk passages occur at larger

galactocentric radii. The combined effects result in the (1-e) scaling factor

from the perigalactic case remaining an accurate indicator of dissolution time

(within 9%) for a given orbital inclination, while the Ra case does not (greater

than 30%).

4.2.2 Tidal Radii

Tidal shocks and tidal heating can be traced by the evolution of rt over the

course of a cluster’s orbit and lifetime. Any correlation between rt and orbital

phase indicates that tidal heating is occurring, while a tidal shock occurs when

rt suddenly goes from decreasing to increasing. To illustrate events of tidal

shocking and heating, we plot the instantaneous rt of the models with circular

orbits at 6 kpc in Figure 4.3. Model e0r6i22 is plotted in the lower panel (red)

and e0r6i44 in the upper panel (blue). The non-inclined case, e0r6, has been

plotted in black in both panels. The instantaneous rt has been calculated

via Equation 4.2 given each cluster’s mass and instantaneous location in the

Galactic potential. To remove any dependence of rt on the mass loss rate
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0 2000 4000 6000 8000

Figure 4.3 The evolution of the mass normalized tidal radius over time for
clusters with a circular orbit at 6 kpc. The black solid lines, red dotted lines,
and blue dashed lines correspond to models with orbital inclinations of 0◦, 22◦,
and 44◦ respectively.

and focus on effects due to cluster orbit, rt has been normalized by M
1

3 (See

Equation 6.1). Hence for clusters with circular orbits in the plane of the disk,

their mass normalized rt never changes.

Figure 4.3 indicates that the rt of clusters with inclined orbits fluctuates

by ±5% over the course of a single inclined orbit. The fluctuations in rt can be
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Figure 4.4 The mass normalized instantaneous tidal radius at all points in the
Rxy − z plane. Solid lines mark galactocentric distances of 6 kpc and 18 kpc.

understood by plotting the mass normalized rt at all locations in the Galactic

potential with Rxy < 20 kpc and |z| < 20 kpc in Figure 4.4. A cluster will have

its largest rt when at its maximum height above the disk, with rt decreasing

as the cluster approaches the disk. The process is then reversed as the cluster

leaves the disk again on its way to its maximum distance below the disk.

For clusters orbiting at 18 kpc we see that the tidal field is essentially

spherically symmetric. The tidal field imposed by the Galactic disk alone, and

its gradient, become independent of z at approximately 15 kpc. Therefore a

possible cut-off radius for the influence of orbital inclination may exist. Future

studies on how this cut-off radius may depend on initial cluster conditions or

the assumed structure of the Galactic disk are planned.
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For a cluster on an inclined and eccentric orbit, rt will also be growing

and shrinking as it moves towards and away from Rp. With the distance

above or below the disk at Rp and Ra changing from one orbit to the next, a

cluster with such a complicated orbit cannot be considered to be in any form

of equilibrium, but is instead in a constant state of flux.

4.2.3 Velocity Dispersion

The clearest demonstration of how these model clusters are affected by tidal

shocks and tidal heating is in the evolution of the global three dimensional

velocity dispersion σV of all bound stars in Figure 4.5. The general trend in

all cases is for σV to decrease with time as mass segregated low-mass stars with

higher velocities escape and the cluster loses mass. For a cluster on a circular

orbit in the plane of the disk, the decrease in σV is smooth. Periodic spikes

in σV , that are only present in the inclined and eccentric clusters, are points

where a sudden injection of energy (a tidal shock) has occurred. A sudden

increase in energy can cause a significant increase in stellar velocities (Webb

et al., 2014).

For models on circular inclined orbits, each peak in σV signifies a disk

shock. The peak is followed by a sharp decrease in σV as rt decreases and

stars with lower binding energies (and high velocities) escape. σV then slowly

increases due to both the recapturing of temporarily unbound stars as rt begins

to re-expand, and tidal heating as the cluster moves through a non-static tidal

field. Hence the cluster expands as it moves towards zmax. The process then

repeats itself when the clusters moves through the disk during the second

half of its orbit. The strength of the shock decreases with Rgc as the disk’s
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0 2000 4000 6000 8000

Figure 4.5 The evolution of the velocity dispersion of all bound stars over
time for clusters with a circular orbit at 6 kpc (bottom panel), an orbital
eccentricity of 0.5 and an apogalactic distance of 18 kpc (center panel) and a
circular orbit at 18 kpc (top panel). The black solid lines, red dotted lines,
and blue dashed lines correspond to models with orbital inclinations of 0◦, 22◦,
and 44◦ respectively.
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contribution to the Galactic potential decreases.

The situation is slightly more complicated for models with eccentric

and inclined orbits like e05r18i22 and e05r18i44 . The cluster still crosses

the disk twice per orbit, but since the orbit is non-circular the disk passages

occur at different galactocentric radii. The disk shock that occurs nearest Rp

will be much stronger than the shock occurring near Ra. The weaker second

shock results in the mass loss rate of inclined and eccentric clusters being

only marginally higher than the non-inclined case. It is also important to

note that when a cluster has a circular and inclined orbit, tidal heating and

the recapturing of unbound stars is able to increase σV between shocks. But

when the cluster has an eccentric and inclined orbit, the weaker tidal field

experienced as the cluster moves towards Ra only injects enough energy to

keep σV constant between shocks. Therefore clusters on eccentric and inclined

orbits do not expand in size as efficiently as clusters on inclined and circular

orbits near Rp while the cluster moves towards zmax.

4.2.4 Limiting Radii

We next consider the effect of inclination on the [ limiting radius]. For the

purposes of this study, the limiting radius is defined as the average cluster-

centric distance of all bound stars located beyond the instantaneous rt (Webb

et al., 2013). The interplay between a changing theoretical rt and the actual

size of the cluster rL is illustrated in Figure 4.6 where we plot the ratio of rL
rt

as a function of time. Based on our definition of rL, the ratio will always be

slightly larger than 1.0.

How a cluster responds to its instantaneous rt is indicated by how much
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0 5000 0 5000 0 5000

Figure 4.6 The ratio of the limiting radius of each cluster to its tidal radius as
a function of time for clusters with a circular orbit at 6 kpc (left panels), an
orbital eccentricity of 0.5 and an apogalactic distance of 18 kpc (center panels)
and a circular orbit at 18 kpc (right panels). The black (bottom panels), red
(middle panels), and blue (top panels) lines correspond to models with orbital
inclinations of 0◦, 22◦, and 44◦ respectively.
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the ratio fluctuates around its mean value. For example, it has been shown

that clusters which orbit in the plane of the disk fill their instantaneous rt at

all times (Webb et al., 2013), which is why the ratio is nearly constant as a

function of time for the non-inclined cases. The inclined cases, however all

fluctuate around the mean rL
rt

value of the non-inclined case. The fluctuations

are not the result of a non-static field, as e05r18 has a nearly constant ratio

despite orbiting between 6 kpc and 18 kpc in the plane of the disk. The

oscillations are due to inclined clusters being subject to increased tidal heating

and additional shocking events per orbit compared to clusters in the plane of

the disk. Before the cluster even has a chance to respond to its new local

potential, which takes approximately one crossing time (Madrid et al., 2014),

the local potential has already changed so quickly that the cluster never comes

to equilibrium.

During each orbit, when the cluster is moving away from the disk and

towards zmax it will be slightly underfilling as rt expands. As the cluster

approaches zmax it slows down and therefore has time to respond to its local

potential and fill rt. As the cluster moves away from zmax and towards the

plane of the disk, the cluster is slightly overfilling since rt is now decreasing.

As the cluster passes through the plane of the disk and undergoes a disk shock,

outer stars can become permanently or temporarily unbound, and the cluster

becomes briefly tidally filling before rt begins to increase again.

4.2.5 Half-mass Radius

The inner structure of globular clusters, observationally traced by the effective

radius rh, is far more robust and less model dependent than rL (e.g. McLaugh-
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lin & van der Marel, 2005; Webb, Sills, & Harris, 2012; Puzia et al., 2014). For

N -body simulations, the half-mass radius rm is more commonly used to probe

the inner regions of globular clusters (e.g. Gieles et al., 2010; Madrid et al.,

2012; Webb et al., 2013). The three-dimensional half mass radius is taken to

be the radius enclosing half of the total bound mass, including both bound

objects orbiting beyond rt and stellar remnants. The latter points resulting in

rm being on average slightly larger than rh.

The half-mass radius and the mass normalized half-mass radius of each

cluster as a function of time are plotted in Figure 4.7. It should be noted that

our clusters all have final half-mass radii 2-3 times greater than most actual

globular clusters. Future studies will explore the influence of inclined orbits in

disk potentials on a wider range of initial rm.

Figure 4.7 suggests that the inner structure of a star cluster is less

affected by changes in orbital inclination than rL. If we first consider the

models orbiting at 6 kpc, the inclined clusters are smaller because they lose

mass at a faster rate than the non-inclined case. However if we normalize by

mass, the mass normalized rm of all three cases are nearly identical for almost

7 Gyr. At 7 Gyr, the inclined clusters are approximately 1× 104M⊙ in mass,

and are in the process of dissolving. The eccentric clusters only differ in rm

by 1 pc after 12 Gyr and the clusters orbiting at 18 kpc differ by less than 0.5

pc. After normalizing by cluster mass, the eccentric and 18 kpc clusters are

nearly always identical in size.
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0 5000 0 5000 0 5000

Figure 4.7 The evolution of the half mass radius (top panels) and the half
mass radius normalized by mass (bottom pannels) over time for clusters with
a circular orbit at 6 kpc (left panels), an orbital eccentricity of 0.5 and an
apogalactic distance of 18 kpc (center panels) and a circular orbit at 18 kpc
(right panels). The black solid lines, red dotted lines, and blue dashed lines
correspond to models with orbital inclinations of 0◦, 22◦, and 44◦ respectively.
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4.3 Discussion

Our simulations indicate that the primary effect of an inclined orbit in a non-

spherically symmetric potential is an increased mass loss rate due to tidal

heating and shocking. To apply these findings to observations of star clusters,

we need to know how tidal shocks and heating depend on cluster orbit and

how they would influence the calculated size of a cluster.

4.3.1 Tidal Heating and Shocks

The increased mass loss rate experienced by clusters on inclined orbits is a

direct result of them being subject to both tidal heating and tidal shocks, nei-

ther of which clusters on non-inclined circular orbits experience. We examine

both of these effects further by plotting the mass normalized rt of each model

cluster as a function of its height z over 12 Gyrs (Figure 4.8). Since data points

are equally spaced in time, the density of points reflects the proportion of its

lifetime a cluster spends at a given z.

In Figure 4.8, episodes of tidal heating are indicated by gradual changes

in rt. All model clusters experience some degree of tidal heating as rt decreases

while the cluster moves inward from zmax. Tidal shocks are seen in Figure

4.8 when the mass normalized rt goes from decreasing to increasing. For an

inclined orbit that is perfectly circular (e=0), a disk shock would be a singular

event as rt reaches a minimum at z = 0. However, since the orbits of our

model clusters at 6 kpc and 18 kpc are not perfectly circular (e ≤ 0.05),

the situation is slightly more complicated. At smaller Rxy (6 kpc) the disk

shock appears to consist of two shocking events, just before and just after the

cluster passes through the plane of the disk, unless the disk passage actually
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Figure 4.8 Mass normalized tidal radius as a function of height above the disk
z for all inclined model clusters (black crosses). Data points are equally spaced
in time and cover 12 Gyrs of evolution, so the density of points reflects the
amount of time the cluster spends at a given z. Red squares mark model
clusters with orbits in the plane of the disk.
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occurs at Rp. The increase in rt to a local maximum between the shocks lets

the cluster temporarily expand freely. The dual shocks are what separates a

disk shocking event from a more simple tidal shock, like a perigalactic pass,

and make it more efficient at removing stars from the cluster. However, since

the shape of the disk potential changes and strength of the disk decreases with

Rxy, both shocks are not necessarily equal in magnitude, with one of the shocks

sometimes being weaker and even negligible when orbits are near circular. At

larger Rxy (18 kpc), the decreased strength of the disk results in the disk

shock being a singular event. Inclined and truly eccentric clusters (middle

row of Figure 4.8) experience a strong dual tidal shock during its innermost

disk passage, a weaker single shock during its outermost disk passage, and a

third shock during each perigalactic pass.

Figure 4.8 indicates that inclined, eccentric clusters experience varying

amounts of tidal heating from one orbit to another. While some orbits keep the

cluster at a high z until just before crossing the disk (minimizing tidal heating),

other orbits gradually bring the cluster in from zmax to z=0 (maximizing tidal

heating). The complex orbits of clusters that are inclined and eccentric makes

quantifying the effects of tidal heating or shocking difficult. However this study

suggests that the evolution of a cluster with an eccentric and inclined orbit is

more similar to a cluster with the same eccentricity and i = 0◦ rather than a

cluster with the same i orbiting at Rp with e=0.

4.3.2 The Effective Tidal Radius of an Inclined Orbit

Because of the chaotic evolution of the instantaneous rt of a cluster with an

inclined orbit, and because rL does not precisely trace rt as in a spherically

135



Ph.D. Thesis, Ch. 4 - J.J. Webb McMaster - Physics & Astronomy

symmetric potential, it is difficult to define what exactly the size of a star

cluster is. While an inclined cluster may appear to have an rL greater than

its current rt, this could simply be a function of its current orbital phase and

not accurately indicate its current dynamical state. As we saw in Figure 4.6,

an inclined cluster ranges between being tidally over-filling and under-filling,

except at zmax and z = 0 when rL and rt are near equal.

We wish to define an effective rt for a cluster with an inclined orbit,

in order to get a sense of its dynamical state and whether or not the cluster

is tidally filling. When defining an effective rt, it should ideally represent a

stable state during the cluster’s orbit at which the cluster spends the majority

of its orbit. We consider the rate of change in the mass normalized tidal radius

as a function of height above the disk in Figure 4.9. The rt of a cluster near

the plane of the disk fluctuates dramatically during the disk passage, and only

represents a brief portion of the total orbit. Setting the effective rt equal to the

rt near z = 0 would be equivalent to setting the rt of a cluster on an eccentric

orbit equal to its rt at Rp, which we know to be incorrect (Webb et al., 2013).

The clear choice is to let the effective rt of a cluster with an inclined orbit be

equal to its instantaneous rt at zmax. Not only is the rate of change in rt is

at its minimum when the cluster is both approaching and leaving zmax, but

inclined clusters also spend the majority of their lifetime near zmax. Therefore

the time averaged rt of each model also corresponds to rt at zmax.

4.4 Summary

In this paper, we simulated the evolution of star clusters orbiting in a Milky

Way-like potential with a range of orbital inclinations in order to study the
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Figure 4.9 The rate of change in the mass normalized tidal radius (pc/M⊙s
−1

as a function of height above the disk z for all inclined model clusters. Data
points are equally spaced in time and cover 12 Gyrs of evolution, so the density
of points reflects the amount of time the cluster spends at a given z.
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effects of orbital inclination on their dynamical and structural evolution. The

main factors which separate star clusters on inclined orbits are tidal heating

and tidal shocking. While clusters on eccentric orbits in a spherically symmet-

ric potential do experience tidal heating and tidal shocking at perigalacticon,

both inclination and eccentricity are more dominant when the orbit is inclined

and a galactic disk is present. The strength of both tidal heating and shocking

due to an inclined orbit however weakens with Rgc. By 18 kpc, the Galactic

potential is nearly spherically symmetric and orbit inclination is nearly negli-

gible. When performing N -body simulations of remote halo clusters, such as

Pal 4 and Pal 14 (Zonoozi et al., 2011, 2014), unless their orbits are highly

eccentric and bring them deep into the inner regions of the Milky Way it can

be safely assumed that they orbit in a spherically symmetric potential.

We have simulated model clusters with identical initial conditions with

both circular and eccentric orbits over a range of orbital inclinations to deter-

mine the main effects of tidal heating and tidal shocking. Our main conclusions

are as follows:

• For clusters with small Rgc, inclined clusters experience an enhanced

mass loss rate due to increased tidal heating and two tidal shocking

events during a disk passage. Clusters with small orbital inclinations

are more strongly affected since they spend a longer time in the stronger

disk potential.

• At higher Rgc, the strength of the galactic disk is weaker, minimizing

the effects of tidal heating and disk shocking. Furthermore, rt at zmax

is larger than in the plane of the disk, so inclined clusters will actually

lose mass at a lower rate than non-inclined clusters.
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• Disk shocking causes a temporary increase in σV , followed by a sharp

drop as stars that have been energized to higher velocities escape the

cluster.

• Between shocking events, σV can remain constant or even increase due

to tidal heating.

• The local potential around a cluster with an inclined orbit is in a constant

state of flux, so an inclined cluster is not able respond to its instantaneous

rt except at zmax. The rL of the cluster instead fluctuates around rt at

zmax, ranging between being tidally under-filling and over-filling as it

travels away from or towards the disk respectively.

• Tidal heating and shocking have a negligible effect on the inner region

of the cluster (r < rm).

• The tidal radius of a cluster on an inclined (or inclined and eccentric)

orbit is best approximated by assuming it has a circular orbit at its

maximum height above the disk: rt(Rxy, z, e, i) = rt(Rxy, zmax)zmax

The final point that rm is unaffected by orbital inclination is helpful

when studying globular clusters in other galaxies. More specifically in disk

galaxies or elliptical galaxies that are triaxial, the commonly observed effected

radius is independent of the orientation of the clusters orbit in the galactic

potential, which would be difficult to determine. Therefore the effective radius

is solely dependent on the cluster’s three dimensional position and orbital

eccentricity.

The combined effects of orbital inclination and eccentricity on a cluster

are complex. The cluster experiences a strong disk shock when it crosses the
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disk near Rp, a weak disk shock when crossing near Ra, and a tidal shock during

its perigalactic pass. Furthermore, the cluster does not cross the disk at the

same Rgc or reach Rp at the same z from one orbit to the next. The cluster is

also constantly subjected to tidal heating since both the Rgc and z coordinate

of the cluster change with time. Ultimately, predicting the evolution of a

cluster with an inclined and eccentric orbit is difficult, although the effects

of orbital inclination clearly decrease with increasing orbital eccentricity since

high-e clusters spend the majority of their lifetime at large galactocentric radii.

We do find that the dissolution time of such a cluster can be approximated

to be (1+e) times longer than the dissolution time of a cluster with a circular

orbit at Rp and the same orbital inclination, in agreement with the work of

Baumgardt & Makino (2003) for clusters with non-inclined obits.

Exploring a large parameter space in both orbital inclination and ec-

centricity, and their subsequent effects on clusters, is necessary as the orbits

of Galactic globular clusters are neither circular nor in the plane of the disk.

As previously mentioned, we also wish to explore how the initial rm of a clus-

ter changes its dynamical evolution in a non-spherically symmetric potential.

The ultimate goal is to be able to predict the size of any cluster no matter its

position or orbit in an arbitrary tidal field. Any clusters whose theoretical and

observational sizes do not match may indicate recently captured clusters that

have not spent long in their current tidal field. When theory and observations

do match, we will be able to predict other dynamical properties of a cluster,

including its stellar mass function, and rewind the cluster’s dynamical clock

to determine its initial mass and initial size.
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Chapter 5

Globular Cluster Scale Sizes in

Giant Galaxies: The Case of M87

and the Role of Orbital Anisotropy

and Tidal Filling

Jeremy J. Webb, Alison Sills, William E. Harris

The Astrophysical Journal, Volume 779, Issue 2, pages 94-103,

Bib. Code: 2013ApJ...779...94W, DOI: 10.1088/0004-637X/779/2/94

5.1 Introduction

Many globular cluster (GC) properties, even simple ones like scale size, lack

fundamental explanations. It is typically assumed that the gravitational field
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of the host galaxy is responsible for limiting cluster size (e.g. von Hoerner,

1957; King, 1962; Innanen, Harris, & Webbink, 1983; Jordán et al., 2005; Bin-

ney & Tremaine, 2008; Bertin & Varri, 2008). The tidal field imposes a tidal

radius rt, also known as the Jacobi radius rJ , of the GC, beyond which a star

feels a stronger acceleration towards the host galaxy than toward the clus-

ter and can escape. It is often assumed that the observationally determined

limiting radius rL, which marks the point where cluster density drops to zero

(Binney & Tremaine, 2008), represents rt. But comparisons of the observa-

tional relationship between cluster size and galactocentric distance to theory

are beginning to suggest otherwise.

First-order tidal theory suggests that the rt of a GC on a circular orbit

is related to its galactocentric distance (von Hoerner, 1957) via:

rt = rgc(
M

2Mg

)1/3 (5.1)

where rgc is the three dimensional galactocentric distance of the cluster, M

is the cluster’s mass, and Mg is the mass of the galaxy. Assuming the mean

cluster mass is independent of galactocentric distance and the host galaxy

potential can be approximated by an isothermal sphere (Mg(rgc) ∝ rgc), we

expect rt ∝ r
2

3

gc. Furthermore, if central concentration c is also independent of

rgc, the mean effective (or half-mass) radius rh will also be related to galacto-

centric distance by the same scaling.

Suppose we assume more generally that rh ∝ Rα
gc, where now Rgc is

the two-dimensional (projected) galactocentric distance. If rh ∝ r
2

3

gc, then the

effects of projection from 3D to 2D would make α ∼ 0.4−0.5 for normal radial

distributions. However, observations of GCs in different galaxies do not match
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this simple theoretical prediction. The Milky Way cluster population comes

the closest with α = 0.46± 0.05 (data from Harris 1996 (2010 Edition)). The

discrepancy in α can perhaps be attributed to the Milky Way’s non-spherical

potential, and to the fact that GCs do not have circular orbits (e.g. Dinescu

et al., 1999; Casetti-Dinescu et al., 2007, 2013).

Issues due to a non-spherical potential can be minimized by focussing on

giant elliptical galaxies. However recent measurements of α in giant elliptical

galaxies present an even larger discrepancy between theoretical and observa-

tional values. Spitler et al. (2006) found α = 0.19 ± 0.03 for NGC 4594, as

did Harris et al. (2010). Gomez & Woodley (2006) found relationships for

the metal poor and metal rich GC populations of NGC 5128 separately, with

α = 0.05± 0.05 for the metal poor clusters and α = 0.26± 0.06 for the metal

rich clusters. Harris (2009a) found an extremely flat relationship α = 0.11

for a sample of six massive gE galaxies. However, Blom et al. (2012) found

that NGC 4365 has a rather steep value of α equal to 0.49 ± 0.04 compared

to other giant ellipticals, in closer agreement with simple theory. Such a high

value of α, along with the identification of three distinct GC sub-populations,

may indicate NGC 4365 underwent unique stages of formation and evolution

compared to the other galaxies mentioned above.

In summary, measurements of α in most galaxies so far yield an ob-

served relationship between rh and Rgc much shallower than predicted. At-

tempts to explain this disagreement have been inconclusive. Madrid et al.

(2012) used N -body simulations to illustrate the relationship between rh and

Rgc is better represented by rh ∝ tanh(Rgc) for identical model clusters on

a range of circular orbits in a Milky-Way like potential. They found that rh

increases steadily with galactocentric distance out to 40 kpc, beyond which rh
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stays relatively constant as the effect of tides becomes less and less important.

However, their model clusters had larger effective radii than clusters seen in

the outer regions of giant E galaxies. Application of this work to the poten-

tials of giant E galaxies and including a larger range of non-circular orbits is

promising.

It may instead be the case that outer halo clusters originally formed

tidally under-filling, and are still in the process of expanding (e.g. Gieles et al.,

2010; Webb et al., 2013). Strader et al. (2012) also found that clusters in NGC

4649 showed no relationship between rh and Rgc beyond 15 kpc, indicating

they are not tidally truncated. For tidally under-filling clusters, rL would be

distinctly less than the theoretically allowed rt, and tidal theory would then

over-estimate their size. It may also be possible that the current location

of outer GCs is not indicative of their location when they formed; they may

represent a captured population from smaller satellite galaxies. Therefore

it would be the cluster’s orbit in the potential of the satellite galaxy that

first imposed cluster size, making any predictions with the potential of the

current host galaxy inapplicable. The concept of GC populations consisting

of one or more captured sub-populations has also been used to explain their

observed bi-modal or even tri-modal distribution in colour, typically attributed

to differences in cluster metallicity (e.g. Zepf & Ashman, 1993; Larsen et al.,

2001; Brodie & Strader, 2006; Peng et al., 2006; Harris , 2009a; Blom et al.,

2012).

In a previous paper (Webb, Sills, & Harris, 2012) we measured the size

distribution of GCs with Rgc ≤ 10 kpc in M87, and found a very shallow trend

α = 0.08 ± 0.02. We explained the distribution by introducing an anisotropy

gradient in the cluster orbits. If GC orbits become more and more radial with
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galactocentric distance, the mean cluster size will drop below the theoretical

prediction as clusters will be subject to increased tidal stripping (Webb et al.,

2013) and will thus flatten the relationship between rh and Rgc. Unfortunately

our work was limited by the range in Rgc of our observations. In this paper we

present new Hubble Space Telescope (HST) observations of the outer regions

of M87, extending cluster size measurements beyond 100 kpc. M87 contains

the largest easily accessibly GC population, making it easiest to trace out to

large Rgc. The larger range in Rgc allows for a much stronger test of how

orbital anisotropy effects the size distribution of GCs.

In Section 2 we introduce our new observations and determine the effec-

tive radii of each cluster in order to extend the observed trend between cluster

size and galactocentric distance. In Section 3 we discuss the model originally

used in Webb, Sills, & Harris (2012) for simulating a theoretical M87 cluster

population, and discuss in detail the improvements we have made. The model

makes use of the known mass distribution of M87 (McLaughlin , 1999) and

various cluster population parameters (set to match the observations) to es-

tablish a theoretical relationship between cluster size and Rgc. In Section 4

we discuss the comparison between between theory and observations, as well

as planned future work.

5.2 Observations

We use a combination of archived and new HST images to study the GC popu-

lation of M87. The new HST images presented in this study are from program

GO-12532 (PI Harris), and consist of both Wide Field Camera 3 (WFC3) and

Advanced Camera for Surveys (ACS) images of the outer regions (Rgc > 10
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kpc) of M87, extending out to nearly 110 kpc. For each field, three WFC3

exposures totalling approximately 2600 seconds and three ACS exposures to-

talling approximately 2300 seconds were taken simultaneously with the F814W

filter. The following orbit repeated the same observations with the F475W fil-

ter. The process was repeated for three additional ACS/WFC3 pairs for a

total of 8 fields of view over 8 orbits. The final co-added composite exposures

in each filter were constructed through use of the STSDAS/MULTIDRIZZLE

routine within IRAF. The details of of each M87 image are summarized in

Table 5.1 and the locations of our fields are illustrated in Figure 5.1.

Table 5.1: HST Image Information

Field RA DEC Camera Filter Exposure Time

(J2000) (J2000) (seconds)

F3WI 12 30 56.4865 +12 21 48.20 WFC3 F814W 2589

F3WB 12 30 56.4865 +12 21 48.20 WFC3 F475W 2729

F3AI 12 31 03.691 +12 27 29.47 ACS F814W 2282

F3AB 12 31 03.691 +12 27 29.47 ACS F475W 2351

F5WI 12 31 15.360 +12 21 48.30 WFC3 F814W 2589

F5WB 12 31 15.360 +12 21 48.30 WFC3 F475W 2729

F5AI 12 31 23.374 +12 27 25.58 ACS F814W 2282

F5AB 12 31 23.374 +12 27 25.58 ACS F475W 2351

F7WI 12 31 34.849 +12 21 48.20 WFC3 F814W 2589

F7WB 12 31 34.849 +12 21 48.20 WFC3 F475W 2729

F7AI 12 31 50.450 +12 17 13.94 ACS F814W 2282

F7AB 12 31 50.450 +12 17 13.94 ACS F475W 2351

F8WI 12 32 06.642 +12 21 25.08 WFC3 F814W 2589

F8WB 12 32 06.642 +12 21 25.08 WFC3 F475W 2729

F8AI 12 32 15.130 +12 15 50.32 ACS F814W 2282
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Figure 5.1 Fields of view for new HST images relative to the center of M87.
WFC3 images (F3W, F5W, F7W, F8W) are marked in blue and ACS images
(F3A, F5A, F7A, F8A) marked in purple. Field of view of archive ACS images
(F0A) is marked in white.

F8AB 12 32 15.130 +12 15 50.32 ACS F475W 2351

We combined our new HST data with archived HST ACS/WFC images

of the central regions of M87 in the F814W (I) and F606W (V) filters (also

illustrated in Figure 5.1), from program GO-10543 (PI Baltz). A detailed

description of the co-added composite exposures in each filter can be found in

Bird et al. (2010). The GCs in this central field have been studied in detail by

Madrid et al. (2009), Peng et al. (2009), Waters et al. (2009) and Webb, Sills,

& Harris (2012). To follow the nomenclature established in Table 5.1, these

images will be referred to as F0AI and F0AV.

For consistency, our search for GC candidates was performed with the

method described in Webb, Sills, & Harris (2012). All images were searched for

GC candidates with thresholds set such that individual halo stars are rejected
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while the faintest of GCs are still included. Finally, only objects that were

found in both the F814W and F475W filters were accepted, resulting in an

initial candidate list of 3287 objects.

5.2.1 Globular Cluster Effective Radii

Before we can make any measurements of the structural parameters of our

GC candidates, a point spread function (PSF) must first be modelled for each

image, which we do empirically. The process is described in detail by Madrid

et al. (2009). For a given image, stars were identified with SExtractor (Bertin

& Arnouts, 2008) by approximately measuring the full width half maximum

(FWHM) of all objects that are brighter than the background by a factor

of 5 times the standard deviation of the background. Star-like objects with

FWHMs of approximately 2.5 pixels for the WFC3 images and 2.0 pixels for

the ACS images are easily identifiable that correspond to the expected 0.′′01

FWHM of stars. Stars were inspected for faint companions, bad pixels, or

other anomalies before use of the standard DAOPHOT routines to build the

PSF.

In Webb, Sills, & Harris (2012), the surface brightness distribution

of each cluster was fit with PSF-convolved King (1962) models via the code

GRIDFIT (e.g. Barmby et al., 2007; McLaughlin et al., 2008; Harris et al.,

2010). Unfortunately, attempts to use GRIDFIT with the new HST dataset

resulted in poor fits due to the lower resolution. Therefore we opted to measure

the rh of each cluster candidate with the software ISHAPE (Larsen, 1999)

which has been successfully used many times on images with similar resolution

(e.g. Madrid et al., 2009).
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For consistency purposes, we also re-measured the GCs in the central

field F0A with ISHAPE. We measured these clusters through both 0.′′025 px−1

and 0.′′05 px−1 versions of the F0A combined images. Then, since a portion

of the F3W image overlaps with the F0A image, we explore the influence of

measuring cluster sizes on images with different detectors by plotting the rh of

clusters found in both images in the left panel of Figure 5.2. From Figure 5.2

(left panel), images with lower resolution appear to result in underestimating

cluster sizes by a mean value of 0.7 pc, or 0.2 pixels in the lower resolution

image.

To determine whether the discrepancy of 0.7 pc can be attributed to

differences in resolution, we compare the GCs in F3 in the right panel of Figure

5.2 with the same objects in F0A but now at 0.′′05 px−1. When measured at

similar resolutions, the overlapping GCs in each field have comparable effective

radii, with the scatter centered around a 1 : 1 correlation. The scatter is

expected due to the images having significantly different signal-to-noise ratios

(F0AV and F0AI images have much longer exposure times equalling 24,500 and

73,800 seconds). Therefore, the mean difference of 0.7 pc in Figure 5.2 (left)

can be attributed to differences in both resolution and signal-to-noise between

the F0A and F3W images. To remain consistent with works of Madrid et al.

(2009), Peng et al. (2009), Waters et al. (2009) and Webb, Sills, & Harris

(2012) regarding F0A, cluster sizes measured with our new HST dataset in

fields F3-F8 are increased by 0.7 pc.

Objects were then removed from the candidate list that were poorly fit

by ISHAPE (χ2 values greater than 10) or that had large differences between

the measured rh in the F814W and F475W bands. For the ACS images, true

magnitudes were determined through aperture photometry extrapolated to
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Figure 5.2 rh of F3W GCs vs. the rh of overlapping GCs in the high resolution
(0.′′025 px−1) F0A images (left) and low resolution 0.′′05 px−1 F0A images
(right). The dotted lines represent a 1:1 correlation.
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large radius (Sirianni et al., 2005). The transformations of Saha et al. (2011)

were then used to convert magnitudes to the standard B and I. However for the

WFC3 images, only the filter-based magnitudes could be measured (F475W,

F814W) since no well calibrated transformation to (B,I) is available at present.

The candidate list was trimmed further by cutting objects that were

either extremely blue, extremely red, or extremely faint and could be visually

identified as non-GCs. Colour-magnitude diagrams (CMDs) of the final 1047

candidates are shown in Figures 5.3 and 5.4. In both CMDs, the blue (metal-

poor) and red (metal-rich) sequences are clearly visible. ACS objects with

B-I < 1.8 and WFC3 objects with F475W-F814W < 1.5 were declared blue,

with the remaining clusters declared red. The size, goodness of fit, colour, and

magnitude cuts described above ensure none of the objects in Figures 5.3 and

5.4 are either foreground stars or background galaxies.

The F814W and F475W images of each field were then co-added to

boost the signal to noise ratio, and ISHAPE was again used to measure the

rh of each of the final candidates. The rh from these combined images as a

function of Rgc for each candidate is illustrated in Figure 5.5. The median rh

is plotted in red, calculated with radial bins containing 50 GCs each. Finding

the slope of the median line in log-log space allowed for the determination

of α to be 0.14 ± 0.01, similar to the values found in other giant E galaxies

discussed in Section 1.

While the relationship between the median rh and Rgc is shallow, it is

important to note that the scatter about the median increases with Rgc. The

outer halo of M87 consists of extended (rh > 5 pc) GCs at large Rgc and that

have been projected to smaller Rgc. The extended clusters are more in line

with what is expected from simple tidal theory, which indicates that the outer
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Figure 5.3 CMD of the GC candidates in ACS images of the outer regions
M87.
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Figure 5.4 CMD of the GC candidates in WFC3 images of the outer regions
M87.
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Figure 5.5 rh vs. log Rgc for observed GCs. The solid red line indicates the
median rh calculated with radial bins containing 50 GCs each. Error bars
represent the standard error σ/

√

(n) as given by Harris et al. (2010).
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halo may comprise a mixture of dynamical histories.

5.3 Simulation

The observational results shown in Figure 5.5 are next compared to models

of GCs moving in the tidal field of M87, to constrain our understanding of

their scale sizes. The simulation we use is described in detail in Webb, Sills,

& Harris (2012), but we now extend it further.

5.3.1 Initial Conditions

We first set up a model cluster population with the same observational char-

acteristics (radial profile, velocity dispersion, mass distribution, central con-

centration distribution) as the observed population of M87 clusters, and then

use tidal theory to establish a theoretical relationship between cluster size and

Rgc that can be compared to Figure 5.5. The simulation allows for separate

red and blue populations to be modelled.

Each simulated GC is given a position in the halo (r, θ, φ), velocity (vr,

vθ, vφ), mass (M), and central concentration (c = rt
rc
). The spatial distribution

of the red and blue cluster subpopulations is taken from Harris (2009b), and we

assume the angular distribution to be spherically symmetric. The luminosity

function of the F0A GCs, a Gaussian with a mean visual magnitude of -7.3 and

a standard deviation of 1.3 (Webb, Sills, & Harris, 2012), is used to establish

the mass distribution of GCs with (M
L
)V = 2 (e.g. McLaughlin & van der Marel

(2005)). We adopt (m−M)0 = 30.95 for M87 (Pierce et al., 1994; Tonry et al.,

2001). The central concentration of each simulated GC was drawn from the

observed distribution of Milky Way clusters from Harris 1996 (2010 Edition),
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a Gaussian with a mean of c = 1.5 and standard deviation of 0.4.

The observed line of sight velocity dispersion (σ) (Côté et al., 2001) is

initially assumed to be identical for each spherical coordinate (R, θ, φ), such

that σR = σθ = σφ. This assumption results in an isotropic distribution of

orbits and the anisotropy parameter (β) equal to zero (Equation 6.3) (Binney

& Tremaine, 2008),

β = 1−
σ2
θ + σ2

φ

2σ2
R

(5.2)

In our simulation β is kept as a free parameter, and can also change

with galactocentric distance. All distribution parameters are summarized in

Table 5.2.

Table 5.2: Simulated Globular Cluster Population Input Parame-

ters

Parameter Value

Radial Distribution Hubble Profile

Blue Population

σ0 66 arcmin−2

R0 2.0’

a 1.8

Red Population

σ0 150 arcmin−2

R0 1.2’

a 2.1

Angular Distribution Spherically Symmetric

Mass-To-Light Ratio (M/L)V = 2

Mass Distribution Gaussian
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〈log(M/M0)〉 5.5

σlog(M/M0) 0.52

Velocity Dispersion Gaussian

〈v〉 -19 km/s

σv 401 km/s

β 0

Central Concentration Gaussian

〈c〉 1.5

σc 0.4

While the initial setup of our model population is the same as in Webb,

Sills, & Harris (2012), improvements have since been made towards making the

model cluster population more realistic and representative of the observations

we are trying to duplicate.

5.3.2 Calculating Tidal and Effective Radii

After a cluster has been assigned a position, velocity, mass, and central concen-

tration the orbit of the cluster is then solved. Now we have all the ingredients

necessary to calculate rt and rh,which is the first improvement made over the

model presented in Webb, Sills, & Harris (2012). Recent N -body simulations

by Webb et al. (2013) have shown that the historical assumption that tidal

radii are imposed at perigalacticon is invalid because a GC is able to fill its

instantaneous rt at all times, independent of its orbital eccentricity. More

specifically, the mass normalized limiting radius of a cluster (rL,n = rL

M
1

3

) is

the same at a given Rgc, independent of cluster orbit.
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However, comparing the instantaneous rt of a cluster to its observa-

tionally determined rL is also incorrect. Küpper et al. (2010) found that the

bulk of the cluster, and hence the surface brightness profile, is nearly con-

stant over an orbital period and more accurately reflects the mean tidal field

that the cluster experiences. So while the true rL of a cluster changes with

orbital phase (Webb et al., 2013), the observational limiting and effective ra-

dius as determined by a King (1962) model does not. To best compare with

observations we need to calculate the effective radii of our simulated clusters,

as the effective radius does not fluctuate as dramatically with orbital phase

(Küpper et al., 2010; Webb et al., 2013) and will therefore be more comparable

to observationally determined effective radii.

In Figure 5.6 we plot the mass normalized half-mass radii rm,n = rm

M
1

3

of various N -body model clusters as a function of time. A detailed discussion

of the N -body models presented here is done in Webb et al. (2013). With the

infinite resolution of our model clusters, rh can fluctuate dramatically from

time step to step. Therefore we use the half-mass radius rm to trace the

evolution of rh as it remains consistent between time-steps. Even though rm

is always slightly larger than rh, the two radii scale the same with respect to

time (Webb et al., 2013). In each panel, the lower black line is for a model

cluster with a circular orbit at 6 kpc. The red line is for a model cluster

with an eccentric orbit that has a perigalactic distance of 6kpc. Clusters were

modelled with eccentricities of 0.25, 0.5, 0.75, and 0.9, with the eccentricity

marked in each panel. The upper black line in each panel is for a model cluster

with a circular orbit at the apogalactic distance of the eccentric cluster, which

in these cases are 10 kpc, 18 kpc, 43 kpc, and 104 kpc.

In Figure 5.6, the rm,n profile of clusters with circular orbits (black
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Figure 5.6 Mass normalized rm of simulated star clusters on eccentric orbits
(red) compared to clusters with circular orbits at Rp (lower black line, always
6 kpc) and Rap (upper black line) as a function of time. Data taken from
Webb et al. (2013).
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lines) decreases smoothly over time. Clusters with eccentric orbits (red lines)

only undergo a brief fluctuation at Rp, but are also more or less smooth from

one time-step to the next. A smooth evolution in rm is in agreement with the

results of Küpper et al. (2010) discussed above. The effective radius also ap-

pears to be linked to the time-averaged tidal field that the cluster experiences:

highly eccentric clusters are closer in size to clusters with orbits at Ra while

clusters with low eccentricities are comparable to clusters with circular orbits

at Rp.

In order to predict rm or rh given the orbit and limiting radius of a

cluster, we note that rm,n increases strongly as a function of eccentricity in

Figure 5.6. Hence the rm,n of two clusters with the same Rp and at the same

Rgc will not be the same if they have different orbits. From the results of

our N -body simulations in Webb et al. (2013) (Figure 5.6) as well as larger

mass versions of each model (presented in Leigh et al. (2013)), we find that

the ratio of rm,n for a cluster with an eccentric orbit to rm,n for a cluster with

a circular orbit at Rp increases linearly with eccentricity after 10 Gyr. More

specifically, clusters with eccentric orbits have effective radii that are a factor

of (1+ 0.31× e) larger than if they had circular orbits at Rp. The uncertainty

in the correction factor of 0.31 is ±0.01. The correction factor is applicable to

old GCs, but further simulations are required to determine how it depends on

a GCs evolutionary stage.

In order to determine the effective radius of each simulated cluster,

we first calculate their tidal radii as if they had a circular orbit at Rp given

the formalism of Bertin & Varri (2008). The derivation of rt by Bertin &

Varri (2008) is ideal as it makes no assumptions regarding the potential of the

host galaxy except that it must be spherically symmetric. Therefore the mass
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profile of M87 determined by McLaughlin (1999) can be used to determine the

galactic potential. We next assume that all clusters are tidally filling, such that

rL can be set equal to rt at perigalacticon. We explore the effects of non-tidally

filling clusters in Section 5.4.3. The perigalactic effective radius (rh assuming

a circular orbit at Rp) is then calculated given the central concentration of the

cluster and assuming that it can be represented by a King (1962) model. The

true rh will be a factor of (1.0 + 0.31× e) larger than the perigalactic case.

5.3.3 Including Orbital Anisotropy

The second major improvement to our model involves the anisotropy param-

eter β. In our previous work (Webb, Sills, & Harris, 2012), σθ and σφ were

kept equal to the observed line of sight velocity dispersion when β < 0, while

σR was decreased based on Equation 6.3. Similarly for β > 0, σR was kept

equal to the observed line of sight velocity dispersion while σθ and σφ were de-

creased. This approach did have the desired effect of altering the distribution

of cluster orbits, but the resulting velocity dispersion was no longer equal to

the observed one. The improved simulation we use here now adjusts σR, σθ

and σφ simultaneously such that Equation 6.3 is satisfied and the overall mean

velocity dispersion equals the observed line of sight velocity dispersion.

5.3.4 The Effect of Tidally Under-filling Clusters

Previously we have assumed that all simulated clusters are tidally filling, as

it allows for a straightforward calculation of rL and rh for each cluster. But

not all observed GCs are expected to be tidally filling (Gieles et al., 2010).

Therefore we added the filling parameter RF = rL
rt

to the simulation, where
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rL is the limiting radius (essentially, the observed outer radius) and rt is the

theoretically permitted tidal radius. The simulation allows for all GCs to be

tidally under-filling by the same amount (RF = constant) in order to explore

the effect that tidally under-filling GCs have on the exponent α. With the

exception of Section 5.4.3 RF is always set equal to 1.0.

5.3.5 Observational Constraints

Finally, we introduce a minimum rh cut-off set equal to the smallest measurable

value from the resolution limit of our observations. The simulation already

includes a tidal dissolution time and dynamical friction infall time cutoff of 10

Gyr as described in Webb, Sills, & Harris (2012).

5.4 Comparing Theory and Observations

To match the observations, populations of 10000 clusters were simulated fol-

lowing the real spatial profile such that the total number of clusters within 10

kpc of M87 is the same as the observed dataset. The ratio of number of blue

clusters to red clusters was set equal to 3 : 2, in agreement with the profiles

in Harris (2009b). The only difference between red and blue clusters in our

simulation is which radial distribution profile in Table 5.2 is used to determine

cluster position.

5.4.1 The Isotropic Case

The first comparison between theory and observations was done for a model

population with an isotropic distribution of orbits (β = 0) and RF = 1. The
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Figure 5.7 rh and log Rgc of each simulated GC (blue) for β = 0. The dashed
black line marks the median rh calculated with radial bins containing 50 GCs
each. For comparison purposes we also plot the observed clusters (red) and
median (solid black line) from Figure 5.5. Error bars represent the standard
error σ/

√

(n) as given by Harris et al. (2010).

rh of both model (blue) and observed (red) clusters are plotted in Figure 5.7

as functions of Rgc.

Figure 5.7 indicates that an isotropic distribution of orbits produces

a larger distribution of cluster sizes than observed, particularly at large Rgc.

While the observations suggest α = 0.14, the model predicts α = 0.41± 0.01,
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in closer agreement with basic tidal theory. Therefore this ”baseline” model

strongly disagrees with the data, either in terms of the trend or the total

scatter.

It should be noted that the assumption that all clusters are tidally filling

is likely to be safest in the inner regions of the galaxy where the tidal field is

strong (Alexander & Gieles, 2013). Outer clusters, for which rt is considerably

larger, are more likely to be tidally under-filling. The clear disagreement

between the observations and the isotropic model suggest that either outer

GCs are severely tidally under-filling, have preferentially radial orbits, or a

combination of both.

5.4.2 Anisotropic Cases

We first explore how much a non-isotropic distribution of orbits can minimize

both the distribution of cluster sizes and the value of α in our model cluster

population. In Figure 5.8 we show the median rh as a function of galacto-

centric distance for models with different values of β. Very large values of

β are required in order to bring the median model cluster size down to the

level of the observations. A β of 0.99, which corresponds to a mean orbital

eccentricity of 0.9, produces the closest agreement. In Figure 5.9, which shows

the actual distribution for β = 0.99, the scatter in the simulated data points

about the median line is greatly reduced and is more comparable to the ob-

servations than the β = 0 case. However the corresponding value of α, equal

to 0.21 ± 0.01, is still higher than the observed value of 0.14. Furthermore,

while median cluster sizes are comparable in the mid to outer regions of M87,

the β = 0.99 simulation underestimates cluster size in the inner regions of
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M87. These discrepancies suggest that β likely increases with galactocentric

distance. Previous observational and theoretical studies of M87 (Côté et al.,

2001; Webb, Sills, & Harris, 2012), NGC 3379 and NGC 821 (Weijmans et al.,

2009) , the Milky Way (Prieto & Gnedin, 2008) and dark matter halos (Zait,

Hoffman, & Shlosman, 2008; Ludlow et al., 2010) draw similar conclusions,

although none of the existing data are consistent with such a high mean β.

Our simulation explicitly allows for the population to have an anisotropy

profile β(Rgc). However, in order to put constraints on the profile as was done

in Webb, Sills, & Harris (2012), we first need to know the likely distribution of

tidally filling and under-filling clusters in M87. Then the simulated rh profile

will represent the observed profile as opposed to being an upper limit.

5.4.3 The Effect of Tidally Under-filling Clusters

We next explore how much the existence of tidally under-filling clusters can

minimize both the distribution of cluster sizes and the value of α in our model

cluster population. A recent study by Alexander & Gieles (2013) demonstrated

that unless all clusters form tidally filling, a present day cluster population will

be made up of a mix of tidally filling and under-filling clusters. They were

able to reproduce a relationship between rh and Rgc similar to the Galactic

GCs by assuming the population formed under-filling and then evolved in a

Milky Way-like potential. Allowing clusters to be tidally under-filling would

not require such high values of β as found in Section 5.4.2 or as steep an

anisotropy profile. We illustrate this statement in Figure 5.10 by simulating

cluster populations with the same static values of β as Figure 5.8, but with

the filling parameter RF equal to 1 (top left panel, same as Figure 5.8) ,
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Figure 5.8 Relationship between median rh and log Rgc for simulated GC
populations with different values of β. Median rh are calculated with radial
bins containing 50 GCs each. The solid red line is the observed median effective
radius From Figure 5.5.
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Figure 5.9 rh and log Rgc of each simulated GCs (blue) for a population with
β = 0.99. The dashed black line marks the median rh calculated with radial
bins containing 50 GCs each. For comparison purposes we also plot the ob-
served clusters (red) and median (solid black line) from Figure 5.5. Error bars
represent the standard error σ/

√

(n) as given by Harris et al. (2010).

171



Ph.D. Thesis, Ch. 5 - J.J. Webb McMaster - Physics & Astronomy

Observations
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Figure 5.10 Relationship between median rh and log Rgc for simulated GC
populations with different values of β and RF = rL

rt
. Different values of β are

colour coded as indicated by the top left panel. The fraction by which clusters
fill their tidal radii (RF ) is indicated in each panel. Median rh are calculated
with radial bins containing 50 GCs each.

0.9 (top right panel), 0.7 (bottom left panel), and 0.5 (bottom right panel).

While assuming all clusters under-fill their rt by the same amount must be

unrealistic, it serves to illustrate the effect that under-filling clusters have on

the relationship between rh and Rgc.

As clusters become more and more under-filling the median rh decreases
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at all galactocentric distances; similar to the effect of increasing β. Addition-

ally, decreasing RF can also decrease the theoretical value of α. Therefore

some degeneracy exists between β and RF .

Realistically it is likely that clusters have a distribution in RF , and that

the distribution changes with Rgc. Alexander & Gieles (2013) found that the

majority of inner clusters are tidally filling, while outer clusters range between

tidally filling, near tidally filling, and tidally under-filling. The radial trend

of clusters becoming tidally under-filling with Rgc is also in agreement with

observations of Galactic GCs. Baumgardt et al. (2010) found that inner GCs

(Rgc < 8 kpc) were primarily tidally filling with 0.1 < rh
rt

< 0.3 while outer GCs

(Rgc > 8 kpc) can be separated into two groups of tidally filling and tidally

under-filling ( rh
rt

< 0.05) clusters. We will expand on this interpretation in a

following paper.

5.4.4 Red and Blue Globular Clusters

Finally, we use our simulation to search for any evidence suggesting that the

red and blue GCs in M87 may differ by more than just their radial distribu-

tions and metallicities. Observational works show that blue GCs have effective

radii that are on average 20% (∼ 0.4 pc) larger than red GCs (e.g. Kundu &

Whitmore, 1998; Kundu et al. , 1999; Larsen et al., 2001; Jordán et al., 2005;

Harris , 2009a; Harris et al., 2010; Paolillo et al., 2011; Blom et al., 2012;

Strader et al., 2012; Woodley, 2012; Usher et al., 2013). The size difference is

also observed in our study, with mean blue cluster size being 28% (∼ 1.0 pc)

larger than the mean red cluster size. We suggest that the size difference we

find is bigger than in other galaxies because our sample extends out to beyond
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100 kpc: since clusters can reach large sizes in the outer regions of galaxy,

and since the outer regions are dominated by blue clusters, the mean size dif-

ference will be larger due to the abundance of large blue clusters. Leading

explanations of why this size difference exists suggest that red and blue clus-

ters have different formation, dynamical and stellar evolution histories (e.g.

Kundu & Whitmore, 1998; Jordán, 2004; Jordán et al., 2005; Harris , 2009a;

Sippel et al., 2012; Schulman et al., 2012). Here we explore the possibility that

the size difference may be due to different orbital anisotropy profiles.

Figure 5.11 shows the sizes of the observed blue and red GC populations

in the left and right panels. The blue and red populations have the same values

of α, equal to 0.11± 0.01 and 0.11± 0.02 respectively, but their rh profiles are

offset by approximately 1 pc. The size difference does not change with Rgc, in

agreement with recent studies (Usher et al., 2013, e.g.). The different radial

profiles of the red and blue clusters cause the global α ∼ 0.14 to be larger than

the α’s of the two sub-populations.

The identical values of α but different mean rh between the red and

blue populations cannot be explained by orbital anisotropy alone. The offset

could be explained if outer red clusters are preferentially under-filling and

have less eccentric orbits than outer blue clusters. If the blue population has

been accreted from in-falling satellite galaxies then they should now be on

highly eccentric orbits. Accreted blue clusters may also have larger rh than

red clusters if the mean tidal field they experienced as a member of the satellite

galaxy is weaker than the mean field experienced by red clusters. Our future

study which combines the effect of orbital anisotropy and tidally under-filling

clusters will shed more light on this issue.
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0 0.5 1 1.5 0 0.5 1 1.5 2

Figure 5.11 rh versus log Rgc for observed blue GCs (left panel) and red GCs
(right panel). The solid black lines indicate the median rh for red and blue
clusters respectively, and are calculated with radial bins containing 50 GCs
each. Error bars represent the standard error σ/

√

(n) as given by Harris et al.
(2010).
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5.5 Summary and Conclusions

We present brand new HST observations of the halo regions of M87, and

perform size measurements and photometry on all identified GCs. Combining

this dataset with Archive images of the central regions of M87 allow us to probe

the relationship between rh and Rgc out to Rgc ∼ 100 kpc with over 2000 GCs.

We find that rh scales as R0.14
gc , consistent with studies of most other giant E

galaxies. We attempt to explain this very shallow relationship by invoking the

presence of both orbital anisotropy and clusters that are tidally under-filling.

To develop this interpretation we simulate many GC populations orbiting in

the tidal field of M87, having a different orbital anisotropy parameter (β) or

filling their tidal radii by different amounts.

Comparisons between our simulations and observations suggest that if

all clusters are tidally-filling, inner clusters may have a near-isotropic distri-

bution of orbits but outer clusters must have extremely radial orbits β = 0.99.

Such high values of β are not supported in the literature.

However, allowing for the existence of tidally under-filling clusters re-

laxes the constraints on β as tidally under-filling clusters serve both to decrease

mean cluster size and flatten the theoretical relationship between rh and Rgc.

We also apply these results to the red and blue cluster sub-populations sepa-

rately to explain why blue clusters are on average larger than red clusters. In

our observational dataset, red and blue clusters both scale as rh ∝ R0.11
gc , but

blue clusters are on average 1 pc larger. The only way we could theoretically

reproduced this trend in our simulation is to assume outer red clusters are

preferentially under-filling and have a more isotropic distribution of orbits.

Therefore, if both orbital anisotropy and the effect of tidally under-
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filling clusters are present in our simulation, we can reproduce the power-law

proportionality between rh and Rgc for both the cluster population as a whole

and the red and blue cluster sub-populations. Future studies will employ the

use of MCMC formalism to properly explore the degeneracy between increasing

orbital anisotropy and tidally under-filling clusters, as both serve to decrease

rh. Furthermore, as previously indicated neither β or RF are expected to be

fixed values but are more likely functions of Rgc.

The question of why orbital anisotropy is present in the cluster pop-

ulation and why some clusters are tidally under-filling remain open. Issues

regarding whether or not initial cluster populations are under-filling and what

portion of the present day population could have been accreted make con-

straints on the orbital anisotropy profile and filling parameter difficult. Nev-

ertheless, all conclude that the evolution of clusters with different initial sizes

and orbits as well as the accretion of satellite galaxies and their cluster pop-

ulations are key to understanding the characteristics of present day cluster

populations.
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C.E., Castillo, D.J. 2007, AJ, 134, 195



Ph.D. Thesis, Ch. 5 - J.J. Webb McMaster - Physics & Astronomy
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Chapter 6

Globular Cluster Scale Sizes in

Giant Galaxies: Orbital Anisotropy

and Tidally Under-Filling Clusters

in M87, NGC 1399, and NGC 5128

Jeremy J. Webb, Alison Sills, William E. Harris, Mat́ıas Gómez, Thomas H.

Puzia, Maurizio Paolillo, Kristin A. Woodley

6.1 Introduction

The tidal field of a galaxy influences its globular cluster (GC) population by

imposing a maximum size that each cluster can reach (e.g. von Hoerner , 1957;

King , 1962; Innanen, Harris, & Webbink, 1983; Jordán et al., 2005; Binney &

Tremaine, 2008; Bertin & Varri, 2008; Renaud et al., 2011). This maximum
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size is often referred to as the tidal radius rt, the Jacobi radius, or the Roche

lobe of the cluster. In all cases, it marks the distance from the cluster at which

a star will become unbound as it feels a stronger acceleration towards the host

galaxy than it will towards the GC. von Hoerner (1957) predicts that the rt

of a GC on a circular orbit at a three dimensional galactocentric distance of

rgc depends on the cluster’s mass (Mg), and the enclosed galactic mass (M)

via:

rt = rgc(
M

2Mg

)1/3 (6.1)

Under the assumption that a galaxy can be approximated by an isother-

mal sphere (Mg(rgc) ∝ rgc) out to large distances, we expect rt ∝ r
2

3

gc. A

similar relationship is also found when galaxies are modelled by a NFW pro-

file (Navarro,Frenk & White, 1997). Taking into consideration that only the

projected galactocentric distance Rgc can be determined for extragalactic pop-

ulations, the relationship between size and distance takes the form rt ∝ Rα
gc,

where α ∼ 0.4 − 0.5 for typical radial distributions (cluster density ∝ R−2
gc ).

Since there is no observational evidence that cluster central concentration c

has any dependence on either rgc or Rgc, the mean effective (half-light) radius

rh will follow the same scaling relation as rt.

For the Milky Way, which gives us the only cluster population for which

we have three dimensional positions and solved orbits, we find rh ∝ r0.46±0.05
gc

(positions and effective radii from Harris 1996 (2010 Edition) and orbits from

Dinescu et al. (1999); Casetti-Dinescu et al. (2007, 2013)). This is a notable

discrepancy from the nominal value of 2
3
when three dimensional distances

are known. Observations of projected cluster populations also disagree with
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theoretical predictions. From a study of six giant elliptical galaxies, Harris

(2009a) found the combined dataset was best fit by an α of 0.11. This value is

in agreement with observational studies of NGC 4594 (α = 0.19±0.03 (Spitler

et al., 2006; Harris et al., 2010a)), M87 (α = 0.14±0.01, (Webb et al., 2013b))

and NGC 1399 (α = 0.2±0.01 (Puzia et al., 2014)). Looking at the metal poor

(blue) and metal rich (red) cluster sub-populations in NGC 5128 separately,

Gómez & Woodley (2007) found α = 0.05 ± 0.05 for the blue clusters and

α = 0.26± 0.06 for the red clusters. Only the cluster population of the giant

elliptical galaxy NGC 4365 in the Virgo cluster has a measured α of 0.49±0.04

that is comparable to Equation 6.1 (Blom et al., 2012), which may indicate the

galaxy has a different dynamical age or has undergone a different formation

scenario than the galaxies listed above.

The discrepancy between Equation 6.1 and observed values of α can be

attributed to assuming that all GCs have circular orbits in a spherically sym-

metric tidal field and fill their theoretical rt. The first assumption is required

in order for the tidal field experienced by the cluster to be static. However it

is clear that no GCs have a truly circular orbit (Dinescu et al., 1999; Casetti-

Dinescu et al., 2007, 2013). Eccentric orbits are subject to tidal heating and

tidal shocks which can provide outer stars enough energy to escape the clus-

ter and energize inner stars to larger orbits (e.g. Kupper et al., 2010; Renaud

et al., 2011; Webb et al., 2013a; Kennedy , 2014). Clusters on eccentric orbits

are also able to re-capture temporarily un-bound stars since the cluster’s in-

stantaneous rt is also time-dependent. N -body models of GC evolution have

shown that despite spending the majority of their lifetimes at apogalacticon,

clusters with eccentric orbits lose mass at a faster rate (Baumgardt & Makino,

2003) and appear smaller (Webb et al., 2013a) than clusters with circular or-

185



Ph.D. Thesis, Ch. 6 - J.J. Webb McMaster - Physics & Astronomy

bits at apogalacticon. Hence incorporating the effects of orbital eccentricity on

cluster evolution will reduce the discrepancy between theoretical and observed

values of α. The situation will be complicated further if the cluster has an

inclined orbit in a non-spherically symmetric potential (Madrid et al., 2014;

Webb et al., 2014) or if the cluster has been accreted by the host galaxy via

a satellite merger such that its current orbit does not reflect the tidal field

in which it formed and evolved (Miholics et al., 2014; Bianchini et al., 2015;

Renaud & Gieles, 2015).

The second assumption, that all clusters fill their theoretical rt, we now

understand is also unrealistic. While a GC will naturally expand due to two-

body interactions (Henon, 1961), it is possible that certain clusters formed

compact enough such that they have yet to expand to the point of filling their

rt. Observationally this indicates that a cluster’s limiting radius rL, the radius

at which the cluster’s density falls to zero, could be less than rt. Observations

of Galactic GCs show that only approximately 1
3
of the population are tidally

filling, in the sense that rL ∼ rt (Gieles et al., 2011). The remaining clusters

in the Milky Way are still in the expansion phase and are considered to be

tidally under-filling. There is also evidence of under-filling clusters in NGC

4649, where Strader et al. (2012) found no evidence for tidal truncation for

clusters beyond 15 kpc and in NGC 1399, where Puzia et al. (2014) find

no evidence for truncation beyond 10 kpc. Alexander & Gieles (2013) were

able to reproduce the observed size distribution of Galactic GCs by assuming

that all clusters form initially compact and then expand naturally via two-

body interactions until they become tidally filling. After 12 Gyr of evolution,

inner clusters which experience a strong tidal field and have small tidal radii

have expanded to the point of being tidally filling. Outer clusters, with large
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tidal radii, still remain tidally under-filling after 12 Gyr. Allowing clusters to

become more under-filling with increasing Rgc offers a second explanation as

to why observed values of α are noticeably less than theoretical predictions.

Understanding how the factors discussed above can influence α allows

us to use the size distribution of GC populations to constrain many properties

of their host galaxy, including its mass and orbital anisotropy profiles. In

two previous studies of the giant elliptical galaxy M87 (Webb et al., 2012,

2013b), we explored the effects of orbital anisotropy and tidal filling on its GC

population out to 110 kpc. We found that it was possible to reproduce the

observed relationship between rh and Rgc in M87 by allowing cluster orbits to

be preferentially radial. However the degree of radial anisotropy in the outer

regions of M87 was much higher than kinematic studies suggest (Côté et al.,

2001; Strader et al., 2011). We were also able to match theory and observations

by allowing all clusters to be under-filling, however we only explored the effects

of clusters being under-filling by the same amount at all Rgc. More generally,

we can allow orbital anisotropy and tidal filling to be functions of Rgc (e.g.

Côté et al., 2001; Prieto & Gnedin, 2008; Zait, Hoffman, & Shlosman, 2008;

Weijmans et al., 2009; Gnedin & Prieto, 2009; Ludlow et al., 2010; Kruijssen

et al., 2012; Alexander & Gieles, 2013). The next step is to incorporate these

two parameters into our model as functions of Rgc and to apply our approach

to other giant galaxies in order to compare the best-fit orbital anisotropy and

tidal filling profiles.

In this study, we consider the combined effects of orbital anisotropy

and tidal filling on GC populations in the giant galaxies M87, NGC 5128,

and NGC 1399. Since we are focused on giant elliptical galaxies which are

spherically symmetric, orbital inclination is not a contributing factor. How-
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ever, inclination will have to be considered in future studies if our approach

is to be applied to spiral galaxies. We also assume that all clusters in a given

population have spent their entire lifetimes in the host galaxy. Miholics et al.

(2014) showed that after a cluster is accreted by a host galaxy its size responds

to its new potential within a few GC relaxation times and evolves as if it has

always orbited in the host galaxy. The structural parameters (which is the

focus of this study) of accreted clusters will therefore not retain a signature of

the accretion process, but will instead reflect their current orbit in the host

galaxy. The orbital distribution of a globular clusters however can provide

information regarding the formation and merger history of a galaxy.

In Section 6.2 we introduce the three observational datasets used in

our study and in Section 6.3 we re-introduce the theoretical model used to

reproduce the observations. The best fit theoretical model for each galaxy is

discussed in Section 6.4 and the results of all three galaxies are compared in

Section 6.5. We summarize our findings in Section 6.6.

6.2 Observations

In the following sections, we summarize the observational GC datasets for M87,

NGC 1399, and NGC 5128 used in this study. While the colour and luminosity

ranges of the M87 and NGC 1399 datasets are both throughly covered, only

the colour range of clusters in NGC 5128 is comparable. In NGC 5128, the

dataset is incomplete for GCs fainter than the luminosity function turnover.

However as we discuss in Section 6.3.3, this incompleteness is factored into our

model. The main parameter extracted from each dataset is GC effective radius.

Even though cluster sizes are being measured in different wave bands, many
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studies have found that there is minimal differences when comparing sizes

measured with different filters (e.g. Harris , 2010b; Webb et al., 2013b). Hence

the observational datasets are as homogeneous as possible and comparisons

between GCs in each galaxy will be unaffected by any differences.

6.2.1 M87

M87 is a giant elliptical galaxy located at the centre of the Virgo cluster, with

a distance modulus of (m−M) = 30.95 (Pierce et al., 1994; Tonry et al., 2001).

Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) / Wide

Field Camera (WFC) images of the central 12 kpc of M87 in the F814W (I) and

F606W (V) filters are taken from program GO-10543 (PI Baltz). The more

recently completed program GO-12532 (PI Harris) provided a combination of

8 ACS and WFC3 fields of view in the F814W and F475W filters of the outer

regions of M87 ranging from 10 kpc to 110 kpc. See Webb et al. (2012) and

Webb et al. (2013b) for a detailed description of how cluster candidates are

selected and sizes are measured.

6.2.2 NGC 1399

NGC 1399 is a giant elliptical galaxy located at the centre of the Fornax cluster,

with a distance modulus of (m−M) = 31.52 (Dunn & Jerjen, 2006; Blakeslee

et al., 2009). In this study we utilize archive HST images of NGC 1399 from

program GO-10129 (PI Puzia). The 3 x 3 ACS mosaic in the F606W filter

covers approximately 10’ x 10 ’ out to a projected distance of approximately

50 kpc. A description of how cluster candidates are selected and how sizes are

measured can be found in Puzia et al. (2014).

189



Ph.D. Thesis, Ch. 6 - J.J. Webb McMaster - Physics & Astronomy

6.2.3 NGC 5128

NGC 5128 (Cen A) is a giant galaxy that is found in relative isolation, with

a distance modulus of (m − M) = 27.92 (Harris , 2010b). We make use of

Magellan/IMACS images of NGC 5128 to study its GC population out to a

projected distance of approximately 40 kpc (Gómez & Woodley, 2007). A de-

scription of how cluster candidates are selected and how sizes are measured can

be found in both Gómez & Woodley (2007) and Woodley & Gómez (2010a).

6.3 Model

Our model (first introduced in Webb et al. (2012) and modified in Webb et al.

(2013b)) generates a mock GC population that has the same distributions in

projected distance, velocity and mass as the observed dataset. The central

concentration distribution and mass to light ratios of model clusters are set

equal to the Milky Way cluster population (see Webb et al. (2012)). Since

our model has been recently modified to be applicable to any galaxy, we will

re-introduce it here.

The projected radial distribution of clusters in each galaxy is obtained

by first fitting the observed number density profile (n(Rgc)) with a modified

two-dimensional Hubble profile:

n(Rgc) =
n0

1.0 + (Rgc

R0

)2
(6.2)

Equation 6.2 is then transformed to obtain a three dimensional radial

distribution (Binney & Tremaine, 2008). Each model cluster is then assigned

a three dimensional velocity based on the observed global line-of-site velocity
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dispersion. One of our two free parameters is the anisotropy parameter (β),

which controls the degree of orbital anisotropy within the GC system and is

defined as (Binney & Tremaine, 2008):

β = 1−
σ2
θ + σ2

φ

2σ2
R

(6.3)

where σR, σθ, and σφ are the velocity dispersions for each spherical coordinate.

In all cases, σθ and σφ are assumed to be equal. The isotropic case (β = 0)

means σR = σθ = σφ. If β increases from zero then σR increases while σθ

and σφ decrease such that the projected σ still matches the observations and

orbits become preferentially radial. The opposite occurs if β decreases from

the isotropic case and orbits become preferentially circular. Model clusters

are assigned masses based on the observed luminosity function of the dataset.

The mass to light ratio of the model clusters is assumed to be equal to the

mean value of M
L V

= 2 found by McLaughlin & van der Marel (2005) for Milky

Way GCs. The central concentration (c) distribution is also assumed to be

the same as Milky Way GCs (Harris , 1996), which is Gaussian with a mean

of c = 1.5 and dispersion of 0.4.

Once each model cluster has been generated, the mass profile of the

selected galaxy (see Figure 6.1 and Sections 6.3.1- 6.3.3) is used to calculate

the gravitational potential field and the orbit of each individual cluster can

be solved given its initial position and velocity (Binney & Tremaine, 2008).

Using the formalism of Bertin & Varri (2008), we first calculate each cluster’s

rt at perigalacticon Rp. For clusters with eccentric orbits we use their orbital

frequency Ω at Rp to calculate rt as opposed to Ω = ((dΦG(R)/dR)Rp
/Rp)

1

2

which assumes the cluster has a circular orbit at R (Moreno et al., 2014). We
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M87
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0

NGC 1399

NGC 5128

Figure 6.1 Total enclosed mass as a function of Rgc for M87 (black), NGC 1399
(blue), and NGC 5128 (red).

then determine rL at Rp based on our second free parameter Rf = rL
rt
, also

known as the tidal filling parameter. Rf is a measure of how filling a cluster

is at Rp, with clusters that fill only a fraction of their permitted rt having

Rf < 1.

We next assume that each model cluster can be represented by a King

(1962) model, such that the limiting radius at Rp and the previously assigned
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central concentration set the cluster’s surface brightness profile. However,

the rh corresponding to the surface brightness profile is only valid when the

cluster it located at Rp. We therefore correct rh values for orbital eccentricity

following Webb et al. (2013a) and Webb et al. (2013b).

Finally, to best match the observed datasets, we apply magnitude and

size cutoffs to the simulated dataset such that the model does not produce

GCs that may exist but would not be observed. We check to make sure the

simulation does not produce any clusters with evaporation or infall times due

to dynamical friction less than any observed clusters. Our model also allows

for metal rich and metal poor GCs to have separate radial profiles and velocity

dispersions. The individual input parameters and mass profiles of each galaxy

are discussed in Sections 6.3.1 - 6.3.3.

6.3.1 M87

The radial profile and luminosity function of our M87 dataset are listed in

Table 6.1, along with the velocity dispersion parameters assigned to our theo-

retical cluster population. In a kinematic study of the GC population of M87,

Côté et al. (2001) find that blue clusters have a mean velocity (minus the

galaxy’s systemic velocity) of -36 km/s with a dispersion of 412 km/s while

red clusters have a mean velocity of 7 km/s and a dispersion of 385 km/s.

They also find that the velocity dispersion increases with Rgc. However a

more recent study by Strader et al. (2011) finds that the global velocity dis-

persion stays relatively constant with Rgc. Due to the larger dataset of Strader

et al. (2011) and their more rigorous treatment of outliers, we will assume the

velocity dispersion of M87 is constant at all Rgc.
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Table 6.1: Simulated M87 Globular Cluster Population Input Pa-

rameters

Parameter Value Reference

Number of Clusters

Blue 1124

Red 1211

Radial Distribution Modified Hubble Profile

Blue Population

σ0 37.95 arcmin−2

R0 1.08’

Red Population

σ0 95.7 arcmin−2

R0 0.83’

Angular Distribution Spherically Symmetric

Luminosity Function Gaussian

〈MV 〉 -7.6

σMV
1.0

Velocity Dispersion Côté et al. (2001)

Blue Population

〈v〉 -36 km/s

σv 412 km/s

Red Population

〈v〉 7 km/s

σv 385 km/s

The galactic potential of M87 is taken directly from McLaughlin (1999)

and has the form:
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Mtotal(r) = Mstars(r) +Mdark(r) (6.4)

Mstars(r) = 8.10× 1011 M⊙ [
(r/5.1kpc)

(1 + r/5.1kpc)
]1.67 (6.5)

Mdark(r) = 7.06× 1014 M⊙ × [ln(1 + r/560kpc)− (r/560kpc)

(1 + r/560kpc)
] (6.6)

The stellar mass component (Equation 6.5) was determined by fit-

ting model mass density profiles for spherical stellar systems (Dehnen, 1993;

Tremaine et al., 1994) to B-band photometry (de Vaucouleurs & Nieto, 1978),

assuming the stellar mass-to-light ratio of M87 is independent of radius. The

dark matter component of M87 (Equation 6.6) was determined by combining

x-ray observations of hot gas in the extended M87 halo, dwarf elliptical galax-

ies, and early-type Virgo galaxies to generate a Navarro-Frenk-White (NFW)

dark matter halo (Navarro,Frenk & White, 1997). The overall mass profile

is in general agreement with the more recent kinematic study of M87 per-

formed by Strader et al. (2011), though the latter find evidence for a larger

dark matter component within 20 kpc. With the Strader et al. (2011) dataset,

Agnello et al. (2014) also derive stellar and dark matter mass profiles for M87

by separating its cluster population into three sub-populations and noting

their distinct radial distributions and velocity dispersions as a function of Rgc.

The total mass of M87 as determined by Agnello et al. (2014) is compara-

ble to McLaughlin (1999), however Agnello et al. (2014) find a more gradual

increase in dark matter mass than McLaughlin (1999). As noted by Strader

et al. (2011), more extensive modelling of M87 and Virgo is required in or-

der to better constrain its dark matter halo. Considering that the differences

between the mass profiles above are minimal, and the fact that our model con-
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tains two cluster sub-populations with constant velocity dispersions, we will

utilize the mass profile as determined by McLaughlin (1999).

6.3.2 NGC 1399

The radial profile and luminosity function of our NGC 1399 dataset are listed

in Table 6.2, along with the velocity dispersion parameters assigned to our

theoretical cluster population. From the most recent kinematic dataset of the

NGC 1399 GC population, Schuberth et al. (2010) found that blue clusters

have a mean velocity of 11 km/s with a dispersion of 358 km/s and the red

clusters have a mean velocity of 31 km/s with a dispersion of 256 km/s. To stay

consistent with our model for M87, we will also assume these values remain

constant with Rgc.

Table 6.2: Simulated NGC 1399 Globular Cluster Population Input

Parameters

Parameter Value Reference

Number of Clusters

Blue 558

Red 668

Radial Distribution Modified Hubble Profile

Blue Population

σ0 17 arcmin−2

R0 1.1’

Red Population

σ0 50 arcmin−2

R0 0.8’

Angular Distribution Spherically Symmetric
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Luminosity Function Gaussian

〈MV 〉 -7.3

σMV
1.3

Velocity Dispersion Schuberth et al. (2010)

Blue Population

〈v〉 11 km/s

σv 358 km/s

Red Population

〈v〉 31 km/s

σv 256 km/s

The galactic potential of NGC 1399 was derived from ROSAT High

Resolution Imager data by Paolillo et al. (2002). X-ray emission from hot gas

in NGC 1399 was used to make enclosed total mass (stars and dark matter)

estimates at various distances. Since we require a functional form for the mass

profile of each galaxy in order to solve the orbits and calculate the size of each

model cluster, and since the data does not reflect a standard NFW profile, we

fit the mass profile from Paolillo et al. (2002) with a quadratic function:

Mtot(r) = 2.74× 1011 M⊙ + 3.73× 1010 M⊙ × r + 1.87× 108M⊙ × r2 (6.7)

6.3.3 NGC 5128

The radial profile and luminosity function of our NGC 5128 dataset are listed

in Table 6.3. It is important to note that we have incorporated into our model

the fact that our NGC 5128 cluster dataset is only 60% complete fainter than
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the luminosity function turnover. The velocity dispersion parameters assigned

to our theoretical cluster population (also in Table 6.3) are taken fromWoodley

et al. (2010b). In a kinematic study of over 600 GCs, they determined that

blue GCs have a mean velocity of 26 km/s with a dispersion of 149 km/s and

red clusters have a mean velocity of 43 km/s with a dispersion of 156 km/s.

Similar to M87 and NGC 1399, we again assume these values remain constant

with Rgc. It is interesting to note that the velocity dispersions of the NGC

5128 cluster populations are approximately a factor of two smaller than in

M87 and NGC 1399. This difference may have to do with M87 and NGC 1399

being at the centre of large galaxy clusters while NGC 5128 is more or less in

isolation. We will discuss the impact of environment further in Section 6.5.

Table 6.3: Simulated NGC 5128 Globular Cluster Population Input

Parameters

Parameter Value Reference

Number of Clusters

Blue 278

Red 310

Radial Distribution Modified Hubble Profile

Blue Population

σ0 0.2 arcmin−2

R0 3.7’

Red Population

σ0 0.2 arcmin−2

R0 4.0’

Angular Distribution Spherically Symmetric

Luminosity Function Gaussian
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〈MV 〉 -8.0

σMV
1.0

Velocity Dispersion Woodley et al. (2010b)

Blue Population

〈v〉 26.0 km/s

σv 149.0 km/s

Red Population

〈v〉 43.0 km/s

σv 156.0 km/s

The galactic potential of NGC 5128 is taken from enclosed total mass

estimates from Woodley et al. (2010b) based on the kinematics of the NGC

5128 cluster population. The mass profile is in agreement with previous esti-

mates taken from studies of HI gas shells (Schiminovich et al., 1994) and other

cluster datasets (Peng et al., 2004). We have fit the total mass estimates with

a NFW profile (Navarro,Frenk & White, 1997):

Mtot(r) = 1.74× 1014 M⊙ × [ln(1 + r/8.2kpc)− (r/8.2kpc)

(1 + r/8.2kpc)
] (6.8)

6.4 Results

6.4.1 The Isotropic and Tidally Filling Case

We first compare our observed datasets to models generated assuming each

cluster population has an isotropic distribution of orbits and that all GCs are

tidally filling. In Figure 6.2 we have plotted the measured rh of observed GCs
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M87

0 0.5 1 1.5 2

NGC 5128

NGC 1399

Figure 6.2 rh vs log Rgc for observed globular clusters (black) and model clus-
ters (red) in M87 (Top), NGC 1399 (Middle), and NGC 5128 (Bottom) assum-
ing clusters have an isotropic distribution of orbits and are all tidally filling.
The solid lines represent the median rh calculated with radial bins containing
5% of the observed cluster population each.

(black) and theoretically determined rh of model clusters (red) in all three

galaxies. The solid lines show the median rh as a function of Rgc.

In all three cases, by allowing clusters to have an isotropic distribution

of orbits, as opposed to just circular orbits, we have pushed tidal theory closer

to matching observations compared to assuming all cluster orbits are circular.
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In the cases of M87 and NGC 1399, α equals 0.43 and 0.51 respectively. In

the case of NGC 5128, the observations are surprisingly well matched by the

isotropic case with α = 0.31, with the model only slightly over-estimating

cluster sizes at large Rgc. Unfortunately, especially in the cases of M87 and

NGC 1399, an isotropic distribution of orbits does not fully eliminate the dif-

ference between observed and theoretically predicted vales of α. Furthermore,

kinematic studies of these galaxies do not support the idea of cluster popula-

tions being isotropic. As previously discussed in this study and in Webb et al.

(2013a), α can be further decreased by allowing either the anisotropy param-

eter β to increase or the tidal filling parameter Rf to decrease. However, in

Webb et al. (2013a) we only studied the effects of static values of β and Rf

on GC sizes. Studies of galaxy formation and structure suggest that cluster

orbits become preferentially radial and clusters become more tidally under-

filling with increasing Rgc. We explore the effects of these two parameters in

the following sub-sections.

6.4.2 Orbital Anisotropy and Tidally Underfilling Clus-

ters

In order to allow the values of β and Rf to be functions of Rgc, it is important

to first establish the generic profiles. We assume the orbital anisotropy profile

of a given galaxy is of the form:

β(Rgc) =
1

1 + ( βα

Rgc
)2

(6.9)

where the anisotropy radius βα replaces β as the first free parameter

in our model. This form of β(Rgc) is in agreement with theoretical and ob-
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servational studies which find that inner cluster orbits are primarily isotropic

while orbits become preferentially radial with Rgc (e.g. Gnedin & Prieto, 2009;

Ludlow et al., 2010; Kruijssen et al., 2012). While Equation 6.9 does not sup-

port negative values of β, negative values will only serve to overestimate mean

cluster sizes even more than the isotropic case (Webb et al., 2012, 2013b).

Similarly, the tidal filling profile is also of the form:

Rf (Rgc) = 1− 1

1 + (
Rfα

Rgc
)2

(6.10)

where the filling radius Rfα is now our second free parameter. This

form of Rf ensures clusters become less tidally filling as the tidal field becomes

weaker (Alexander & Gieles, 2013).

With these two free parameters in place, we re-run our simulations for

0 < βα < 100 kpc and 0 < Rfα < 100 kpc in search for the combination

which provides the strongest agreement between our theoretical and observed

cluster populations. To compare theory and observations, we first determine

the median effective radius in radial bins containing 5% of the total observed

cluster population. A mean effective radius is also calculated for each mock

GC population using the same radial bins as the observations. To find the

model which best reproduced the observed dataset, we first find the mock GC

data set which minimizes χ2:

χ2 =

N
∑

i

(rh,obs(Rgc,i)− rh,mod(Rgc,i))
2

rh,obs(Rgc,i)
(6.11)

where N is the total number of bins (20), rh,mod(Rgc,i) is the median effective

radius of the model in the ith radial bin and rh,obs(Rgc) is the median effective

radius of the observations in the ith radial bin. For all values of χ2 within
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M87

0 0.5 1 1.5 2

NGC 5128

NGC 1399

Figure 6.3 rh vs log Rgc for observed globular clusters (black) and model clus-
ters (red) in M87 (Top), NGC 1399 (Middle), and NGC 5128 (Bottom). Model
clusters have anisotropy and tidal filling profiles as given by Equations 6.9 and
6.10, with the best fit values of βα and Rfα indicated in each panel. The solid
lines represent the median rh calculated with radial bins containing 5% of the
observed cluster population each.

10% of the minimum χ2, we then search for the model with the most similar

dispersion about the mean effective radius profile as the observations. The

best fit models are illustrated for each galaxy in Figure 6.3.

The best fit models to M87 and NGC 1399 are very similar, with both
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suggesting Rfα is a more influential parameter than βα. So while cluster orbits

still become more radial with Rgc, it appears that the increase in β is relatively

gradual, reaching values of 0.5 at 82 kpc and 100 kpc for M87 and NGC 1399

respectively. At the same time, clusters in each galaxy become 50% filling by

approximately 14 kpc and 22 kpc in M87 and NGC 1399 respectively. The

fact that Rfα is so small suggests that clusters must form extremely compact

such that only the innermost clusters are filling their rt while outer clusters

are for the most part under-filling.

The best fit model to NGC 5128 is quite different from M87 and NGC

1399. With respect to βα, our model suggests cluster orbits in NGC 5128

are slightly more radial than in M87 and NGC 1399. Additionally we find

a much larger best fit value for Rfα (74 kpc) suggesting that the majority

of cluster are tidally filling with only the outermost clusters becoming tidally

under-filling. Both the best fit anisotropy radius and tidal filling radius are

surprising considering how well NGC 5128 was fit by a tidally filling cluster

population with an isotropic distribution of orbits. We attempt to explore

this discrepancy by isolating the metal rich and metal poor sub-populations

in each galaxy in the following section.

6.4.3 Separating the Metal Rich and Metal Poor Sub-

Populations

In the previous section, we made the initial assumption that all clusters in a

single galaxy share the same β and Rf profiles. However, it has long been

known that GC populations in many types of galaxies can be divided into at

least two sub-populations based on colour (e.g. Zepf & Ashman, 1993; Larsen
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et al., 2001; Harris , 2009b; Peng et al., 2006). Colour bimodality within cluster

populations is often attributed to metallicity, with metal poor clusters being

bluer than metal rich clusters (e.g. Zepf & Ashman, 1993; Brodie & Strader,

2006). Since this bimodality is observed in all but the smallest of galaxies, it is

believed that the production of a two (or more) component GC population is

an important step inherent to all galaxy formation and evolution mechanisms.

Galaxies form through the hierarchical merging of dwarf galaxies that

combine to form a central massive galaxy(Kravtsov & Gnedin, 2005; Tonini

, 2013; Li & Gnedin, 2014; Kruijssen, 2014). The first globular clusters that

form will initially have low metallicities and therefore represent the blue cluster

population. Once the first stars in blue clusters go supernovae and the cen-

tral host galaxy has accreted enough mass, more metal rich (redder) clusters

will begin to form. Once globular cluster formation ends, the central galaxy

will consist of both blue and red clusters, with the blue cluster population

continuing to grow in number as satellite galaxies merge with the host and

their cluster populations are accreted. It should be noted that some studies

suggest the bimodality is a product of non-linear colour-metallicity relations

(Cantiello & Blakeslee, 2007; Cantiello et al., 2014). For the purposes of this

study we assume the bimodality is due to metallicity.

Observational studies have identified many structural and kinematic

differences between these two sub-populations. A common observation within

GC populations (including the populations presented here) is that red GCs

have effective radii that are on average 20% (∼ 0.4 pc) smaller than blue

GCs (e.g. Kundu & Whitmore, 1998; Kundu et al., 1999; Larsen et al., 2001;

Jordán et al., 2005; Harris , 2009a; Harris et al., 2010a; Paolillo et al., 2011;

Blom et al., 2012; Strader et al., 2012; Woodley, 2012; Usher et al., 2013).
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The size difference is likely due to the red and blue sub-populations having

different formation, dynamical and stellar evolution histories (e.g. Kundu &

Whitmore, 1998; Jordán, 2004; Jordán et al., 2005; Harris , 2009a; Sippel et al.,

2012; Schulman et al., 2012). And since it is known that red and blue sub-

populations have noticeably different radial profiles and velocity dispersions,

there is no strong reason that the sub-populations will have the same β and Rf

profiles. Hence we have elected to repeat the fitting process, but with the red

and blue clusters fitted separately. The final comparison between our models

and observations is illustrated in Figure 6.4.

For M87, our model suggests that red clusters in M87 have a relatively

isotropic distribution of orbits, but become tidally under-filling very quickly

with Rgc. The blue cluster sub-population has a slightly higher degree of

orbital anisotropy, with blue clusters also being more tidally filling than red

clusters. The latter point is in agreement with observational studies that find

blue clusters are on average larger than red clusters. As in M87, blue clusters

in NGC 5128 have a higher degree of radial anisotropy than red clusters.

However unlike M87, our models suggest that red clusters in NGC 5128 are

more tidally filling than blue clusters.

The best fit models to red and blue clusters in NGC 1399 are surpris-

ingly quite different from the total population. While the NGC 1399 models

are consistent with the M87 and NGC 5128 fits in the sense that blue clusters

have preferentially more radial orbits than red clusters, the best fit values of βα

are much lower for the total population fit in Figure 6.3. Furthermore, while

NGC 1399 is similar to M87 in that blue clusters are more tidally filling than

red clusters, the best fit Rfα is significantly higher than the total population

fit. A closer look at the βα - Rfα parameter space in the following section
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0 0.5 1 1.5 2

NGC 5128

NGC 1399

Figure 6.4 rh vs log Rgc for observed globular clusters (black) and model clus-
ters (red) in M87 (Top), NGC 1399 (Middle), and NGC 5128 (Bottom). Model
clusters have anisotropy and tidal filling profiles as given by Equations 6.9 and
6.10, with the best fit values of βα and Rfα for the metal rich and metal
poor clusters indicated in each panel. The solid lines represent the median rh
calculated with radial bins containing 5% of the observed cluster population
each.
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will help explain this apparent discrepancy and identify the need to invoke ad-

ditional observational constraints when applying our models to observational

datasets.

6.4.4 Degeneracy Between β and Rf Profiles

The key issue that prevents us from putting stronger constraints on the pro-

files of each galaxy is the degeneracy between β and Rf . Increasing β serves

to decrease cluster sizes as it results in cluster orbits being preferentially ra-

dial, bringing them deep into the galactic potential of the galaxy. Decreasing

Rf results in clusters being compact and tidally under-filling, such that their

observed size is less than rt and they evolve as if they were in isolation. In

Figure 6.5, the χ2 value between our model and the observations is shown for

the entire βα and Rfα parameter space tested in Section 6.4.2.

6.4.4.1 M87

For M87, the populations can be fit by either a radially anisotropic distribu-

tion of cluster orbits or a very tidally under-filling population. In order to

distinguish between possible best fits it is important to consider kinematic

studies of these GC populations. As previously mentioned, Strader et al.

(2011) found that the cluster population of M87 likely has a value of β equal

to approximately 0.4. This result immediately rules out low values of βα where

β increases very quickly, suggesting that the best fit presented in Figure 6.3 is

probable. This conclusion is also supported when model fits within 25% and

50% of the minimum value, as well as two-dimensional χ2 tests (Rejkuba et al.,

2011), are taken into consideration. Unfortunately, Strader et al. (2011) could
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Figure 6.5 Degeneracy between βα and Rfα for fits to the total cluster popu-
lations of M87 (left), NGC 1399 (middle) and NGC 5128 (right). The colour
scale corresponds to the χ2 between our theoretical model and observations.

not place strong constraints on the red and blue sub-populations due to the

existence of an intermediate population. However, observations do not suggest

that either the red and blue sub-populations have significantly different values

of β indicating our fits to the sub-populations in Figure 6.4 are also the most

probable.

6.4.4.2 NGC 1399

For NGC 1399, the degeneracy is larger than in M87 because the observational

dataset contains almost half as many GCs and spans only 1
3
the range in

Rgc. Schuberth et al. (2010) modelled the cluster populations with β values
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up to and including 0.5, again ruling out the need for low values of βα and

consistent with the best fit model in Figure 6.3. These observations do however

rule out the best fit models to the sub-populations in NGC 1399, especially

the blue sub-population with a βα of 8 kpc that yields an average value of

β much higher than 0.5. The second best fit to the median rh profile of

blue clusters in NGC 1399, with a χ2 only 0.015 larger than the best fit,

suggests a much higher βα of 98 kpc and a Rfα of 18 kpc, significantly closer

to the fit of the total population. Similarly for the red sub-population, the

next best fit to the median has a χ2 only 0.003 larger and equals the best

fit to the global population, with βα equaling 100 kpc and Rfα equalling 22

kpc. The secondary fits are compared to the initial fits in Figure 6.6, and

indicate that both sets of models produce nearly identical median rh profiles.

Unfortunately, the kinematic work of Schuberth et al. (2010) does not allow

us to distinguish between these model fits any further. And since the cluster

population is primarily under-filling (Rfα < 20 kpc), it is difficult to use

structural parameters to trace orbital anisotropy as cluster evolution is for the

most part unaffected by the surrounding tidal field.

6.4.4.3 NGC 5128

Finally, in NGC 5128 the degeneracy is less clearly defined because the clus-

ter population is already well fit by tidally filling clusters with an isotropic

distribution of orbits. Hence any combination of large values of both βα and

Rfα will provide a match between theory and observations. In a kinematic

study of NGC 5128, Woodley et al. (2010b) also found that clusters could be

approximated as having an isotropic distribution of orbits, with only a minor

degree of radial anisotropy in the outermost regions (if at all).
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Metal Poor Clusters

Metal Rich Clusters 

Figure 6.6 rh vs log Rgc for best fit (black) and second best fit (red) models
to metal rich globular clusters (top panel) and metal poor globular clusters
(bottom panel) in NGC 1399. Error bars represent the standard error σ/

√

(n)
as given by Harris et al. (2010a).
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6.5 Discussion

Our model represents a realistic GC system by allowing cluster orbits to be-

come more radial with Rgc, letting clusters become less tidally filling with Rgc,

and modelling the red and blue cluster sub-populations separately. We now

discuss the best fit profiles in further detail.

6.5.1 M87

The fact that the best fit model for blue clusters suggests the population

is more radially anisotropic than red clusters is in agreement with the idea

that while some blue clusters form early in the small halos which eventually

make up the host galaxy, most of the blue sub-population has been added

via accretion of dwarf galaxies (Schuberth et al., 2010). Accreted clusters will

expectedly have radial orbits, resulting in blue clusters being more radially

anisotropic. Kruijssen et al. (2012) demonstrated that after a galaxy merger,

the surviving cluster population will have increasing orbital anisotropy with

Rgc. Their results find that β values can even reach 0.9 by 100 kpc. Our

model also suggests that inner blue clusters are tidally filling, in agreement

with the work of Miholics et al. (2014) who found that the size of accreted

clusters respond to their new potential within 2-3 half-mass relaxation times.

Metal rich clusters also fit this paradigm as the sub-population of clusters that

formed in the original central galaxy in Virgo. One would then expect the red

population to be primarily isotropic in the inner regions as it formed and

evolved in a single galaxy for 12 Gyr. In order to reproduce the size-distance

relationship, red clusters must also form more compact such that are still very

under-filling today.
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This interpretation is in agreement with the recent kinematic study

of M87 performed by Strader et al. (2011). They find the GC population

has preferentially radial orbits corresponding to β = 0.4, and note outer GCs

(specifically metal rich ones) may have highly radial orbits in agreement with

our best fit models. Furthermore, Strader et al. (2011) and Romanowsky et al.

(2012) find evidence that a massive merger occurred in M87 less than 1 Gyr

ago. The identification of shells, arcs, and streams of kinematically distinct

GCs in M87 suggest that the outer regions of M87 have been built up via

a continuous infall of material that is still ongoing today (D’Abrusco et al.,

2013, 2014a,b, 2015; Longobardi et al., 2015). The authors also suggest that

clusters beyond 40 kpc undergo dynamical interactions with nearby galaxies

which disrupt their orbits. So while one would expect outer clusters with radial

orbits to have naturally been pulled towards the centre of a galaxy, continuous

disruption results in the majority of outer clusters being forced into radial

orbits. Hence the outer cluster population is still in the process of assembly.

Our model slightly underestimates cluster sizes at large Rgc, as it pre-

dicts a flattening in the rh - Rgc profile that is not observed in M87. This

is likely a direct result of our choice in the functional form of the β profile

in Equation 6.9 and its inability to accurately model the outskirts of M87.

Since M87 is still in the process of being built up via the continuous infall of

material and outer clusters are still being disrupted by nearby galaxies, the

anisotropy profile of globular clusters at large Rgc will not be smooth. It will in-

stead vary from region to region, as the kinematically distinct sub-populations

which make up the outer halo will have a range of different β values depending

on the details of how they were accreted. Evidence of kinematically separate

sub-populations in M87 have even been reported by Strader et al. (2011) and
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Romanowsky et al. (2012).

The functional form of our β profile is also at odds with the results of

Agnello et al. (2014). In their study of M87, based on data from Strader et al.

(2011), they identify three potential sub-populations in M87. The traditional

red population is found to have primarily tangential orbits in the inner region

of the galaxy before becoming radial at larger Rgc, as we find. However they

suggest the blue population has mostly isotropic orbits in the inner regions

and the orbits actually become preferentially tangential in the outskirts. Such

a profile would reproduce the increase in cluster size at large Rgc that our cur-

rent model does not. Agnello et al. (2014) argue that this is consistent with the

adiabatic contraction of a DM halo. Assuming M87 accretes mass on slow time

scales, then the outer regions should be dominated by clusters with tangential

orbits as radial orbits are more efficiently pulled inwards towards the centre

of the galaxy (Goodman & Binney, 1984; Lee & Goodman, 1989; Cipolina

& Bertin, 1994). However Agnello et al. (2014) also identify an intermediate

population between red and blue clusters that has an overall β of approxi-

mately 0.3, much closer to our best fit model to the blue sub-population. It

is possible that by restricting our M87 dataset to two sub-populations we no

longer recover the decreasing β profile found by Agnello et al. (2014) for blue

clusters. Additionally, in their model of M87, the velocity dispersion for each

sub-population changes as a function of Rgc. Future applications of our model

will take into consideration the existence of more than two sub-populations,

radially dependent velocity dispersions, and different function forms of the β

profile in search for structural evidence of the Agnello et al. (2014) result.
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6.5.2 NGC 1399

The initial best fit models to the red and blue sub-populations in NGC 1399

were at odds with the fit to the total cluster population. However, after taking

into consideration the degeneracy between Bα and Rfα and using observational

studies to constrain our model, cluster orbits in NGC 1399 are better fit by

models that are more isotropic than M87. However, we still find that blue

clusters have a higher degree of radial anisotropy than red clusters, consistent

with blue clusters forming in dwarf galaxies before merging with a central

host. The model fits are also in agreement with kinematic studies of NGC

1399 which suggest that the cluster population is closer to isotropic than M87

(Strader et al., 2011). Similar to M87, our model also predicts a flattening

in the rh-Rgc profile at large distances, however the observational profile of

NGC 1399 also supports this trend. Since M87 and NGC 1399 are both at the

center of a galaxy cluster, differences between model fits lead to the question

why the anisotropy and filling profiles of red and blue clusters in the two

galaxies are not more similar. Strader et al. (2011) suggests that while M87

has been built up via the continuous infall of galaxy halos, the more isotropic

population of NGC 1399 could have been assembled during an initial fast

accretion phase (e.g. Biviano & Poggianti, 2009). With no visual evidence for

a recent merger event in NGC 1399 (Tal et al., 2009), the initial fast accretion

scenario appears likely. With no recent major accretion events, any accreted

clusters on plunging radial orbits will have already fallen into the galaxy centre

resulting in a more isotropic distribution of cluster orbits. Furthermore, the

Fornax cluster is less massive than Virgo and contains fewer galaxies, which

means the outer clusters in NGC 1399 will experience fewer disruptive events
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resulting in a more isotropic population. Hence the anisotropy profile at large

Rgc may still in fact be smooth, which is why our model does a better job of

modelling outer clusters in NGC 1399 than in M87.

The general case of orbits becoming more radial and clusters becoming

more under-filling with Rgc is still prevalent in both M87 and NGC 1399. The

fact that both galaxies are at the centre of large clusters is likely the common

factor, as neighbouring galaxies are continuously disrupting the outer cluster

populations. Hence the outer regions of these galaxies cannot truly reach

equilibrium. As we will see for NGC 5128 in the following section, a galaxy in

isolation may in fact come closer to some sort of dynamical equilibrium.

6.5.3 NGC 5128

The degeneracy between Bα and Rfα in NGC 5128 is quite different from

either M87 or NGC 1399. Differences between galaxies can be attributed

to NGC 5128 having a differently shaped mass profile (as previously shown

in Figure 6.1) and velocity dispersion compared to M87 and NGC 1399. A

more gradual increase in enclosed mass with distance in NGC 5128 results

in theoretical cluster sizes increasing at a shallower rate. A smaller velocity

dispersion minimizes the chances of generating clusters with highly eccentric

orbits. Hence we find that both red and blue cluster populations are primarily

isotropic and tidally filling. A primarily isotropic population suggests that

NGC 5128 may have also formed during an initial fast accretion phase and

has undergone few recent major mergers. However, an analysis by Rejkuba

et al. (2011) of the ages of stars in NGC 5128 finds that almost 1
4
of the

stars in the halo are 2-4 Gyr old, signifying a recent merger has occurred
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in the galaxy. Since our model indicates the red and blue sub-populations

in NGC 5128 are nearly isotropic, it is likely that either the recent merger

was a minor one that occurred on a relatively long timescale or NGC 5128

contains an intermediate cluster population. If the merger event implied by

the observations of Rejkuba et al. (2011) was a singular and slow event, any

accreted clusters with radial orbits would also be efficiently pulled towards

the centre of the galaxy. And similar to our discussion regarding the results

of Agnello et al. (2014), modelling a potentially three component population

as a two component population could result in the loss or blending of the

intermediate populations orbital and tidally filling characteristics.

It is also important to note that since NGC 5128 does not have any

massive galaxies or satellites nearby, the outer cluster population is not being

disrupted. The lack of disruption could be the main factor for NGC 5128

showing a lesser degree of orbital anisotropy. Since the halo is no longer in the

process of assembling, GCs with preferentially radial orbits will have been left

to naturally decay.

6.6 Conclusions and Future Work

We have successfully reproduced the distribution of GC sizes in three giant

galaxies (M87, NGC 1399, and NGC 5128) by allowing cluster orbits to become

more radial and clusters to become more under-filling with Rgc, in line with

models and observations of galaxy structure and cluster populations. For M87

and NGC 1399, both galaxies that are located at the centre of a galaxy cluster,

the global cluster populations have a mild degree of radial anisotropy at larger

Rgc and are primarily under-filling beyond 15 kpc. Our findings are consistent
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with kinematic studies of each galaxy (e.g Côté et al., 2001; Schuberth et al.,

2010; Strader et al., 2011; Woodley et al., 2010b,c), the assembly of giant

galaxies via mergers and dwarf galaxy accretion (e.g Schuberth et al., 2010;

Kruijssen et al., 2012), and the evolution of GC populations (Alexander &

Gieles, 2013; Webb et al., 2013a). NGC 5128 on the other hand appears to

be nearly isotropic and tidally filling out to large Rgc. Since NGC 5128 is a

relatively isolated galaxy, a lack of recent major majors or nearby neighbours

to disrupt outer GCs has allowed clusters on radial orbits to decay.

Separating the cluster populations of each galaxy into red and blue

sub-populations reveals additional information. In all cases we find that blue

clusters have a higher degree of radial anisotropy than red clusters. The more

radial orbits of blue clusters lends credence to the idea that blue clusters are

accreted via mergers with satellite galaxies and the more isotropic red clusters

supports their formation within the central host. However both red and blue

clusters in NGC 1399 are closer to having an isotropic distribution of orbits

than cluster in M87, suggesting that despite being located at the centre of large

galaxy clusters the two galaxies have undergone different formation scenarios.

For example, Strader et al. (2011) suggests that M87 has likely been assembled

via the continuous infall of galaxy halos and NGC 1399 likely formed via an

initial fast accretion phase such that cluster sub-populations have had time to

mix. This statement is supported by the fact that the Fornax cluster is less

massive and contains fewer galaxies than the Virgo cluster.

The best orbital anisotropy and tidal filling profiles of NGC 5128 are

much different from either M87 or NGC 1399 as they predict a nearly isotropic

and tidally filling population of GCs. Similar to NGC 1399, NGC 5128 could

have formed via a fast accretion phase. A fast-accretion phase, combined with

218



Ph.D. Thesis, Ch. 6 - J.J. Webb McMaster - Physics & Astronomy

the fact that NGC 5128 is an isolated galaxy with no major satellites to disrupt

the outer cluster population, could result in an isotropic distribution of cluster

orbits at all Rgc.

It is difficult to put strong constraints on the orbital anisotropy or filling

profiles of either of these galaxies due to the strong degeneracy between βα

and Rfα. Both parameters serve to decrease cluster size with Rgc. For M87

and NGC 1399, both datasets can be fit be either a low βα - high Rfα or low

Rfα - highβα model. Kinematic studies of both galaxies allow us to rule out

the low βα - high Rfα cases, and we can interpret both cluster populations

as having orbits that become moderately radial with Rgc and are primarily

under-filling beyond 15 kpc. Since NGC 5128 is best fit by a high βα - high

Rfα model, the degeneracy is not a factor. Unfortunately, kinematic studies of

the red and blue sub-populations within each galaxy are less conclusive, and

while the best fit models presented above for each galaxy are supported by

past kinematic studies we cannot rule out some of the degenerate solutions.

More detailed kinematic models of cluster sub-populations, which take

into consideration how velocity dispersion changes a function of Rgc, are re-

quired in order for us to place stronger constraints on βα. Measuring cluster

sizes and velocity over a larger range in Rgc will help minimize the degeneracy

between βα and Rfα. In order to better constrain Rfα, evolutionary models of

clusters and cluster populations in giant galaxies are needed, including clusters

that have been accreted via mergers.

Ultimately, what we can say with more certainty, is that best fit mod-

els to M87, NGC 1399, and NGC 5128 are telling us that giant galaxies can

undergo different formation mechanisms and merger histories such that their

respective GC populations evolve in significantly different environments. Ini-
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tial fast accretion, continuous mergers (slow and violent), recent mergers, and

neighbouring galaxies all leave an imprint on the cluster population in the

form of orbital anisotropy and tidal filling profiles.
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Chapter 7

Summary and Future Work

Globular clusters represent one of the key building blocks in the Universe, as

they play pivotal roles in the formation of both galaxies and stars. They are

found throughout the Universe and typically as members of a larger globular

cluster population, ranging from just a few clusters in dwarf galaxies to tens

of thousands of clusters in giant elliptical galaxies. Having formed at the same

time as their host galaxy, clusters provide a window into what the Universe

was like when the first galaxies began to form. Furthermore, having undergone

∼ 12 Gyr of evolution within the gravitational field of a given galaxy, clusters

can also provide clues as to how galaxies evolve from formation to present

day. Tidally under-filling clusters, which have essentially evolved in isolation,

provide insight into the conditions of the galaxy when globular clusters first

form. The orbits and structural properties of tidally filling globular clusters

are both sensitive to the distribution of matter in the host galaxy, with the

distribution of cluster orbits likely containing information of how a galaxy was

assembled. An understanding of how exactly globular clusters evolve allows

for the present day properties of clusters to be used to constrain both the
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conditions under which globular cluster form and the dynamical history of

their host galaxy. While the dynamical evolution of a globular cluster that

is effectively in isolation has been long understood (Henon, 1961), the role

that environment plays is still unclear. With approximately 1
3
of the globular

clusters in the Milky Way being found to be tidally affected (Gieles, Heggie &

Zhao, 2011), environment will play a very important role in setting the global

properties of a galaxy’s globular cluster population. This thesis is particularly

focussed on developing an understanding of how environment, primarily the

tidal field of a host galaxy, affects globular cluster evolution.

Historically, theoretical studies of globular cluster evolution have fo-

cussed on idealized globular clusters which experience a static external tidal

field. Many observational properties of globular cluster populations can not be

explained by assuming clusters experience static tidal fields. Globular clusters

in the Milky Way are all known to have non-circular orbits (Dinescu et al.,

1999; Casetti-Dinescu et al., 2007, 2013), which likely applies to extragalac-

tic populations as well. Additionally, galaxies are not spherically symmetric,

consist of substructure, and grow in time via merger events. These points

all illustrate that globular clusters evolve in non-static tidal fields. Computa-

tional simulations have only recently begun to directly model globular clusters

in non-static tidal fields with an array of different initial conditions.

N -body simulations of star clusters with eccentric orbits in spherically

symmetric potentials find orbiting in a non-static tidal field injects additional

energy into a cluster, redistributing stellar orbits within a cluster and even

helping some stars escape (Baumgardt & Makino, 2003; Kupper et al., 2010;

Renaud et al., 2011). Prior to the work presented in this thesis, the long term

effects of these processes on the dynamical evolution of globular clusters had
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yet to be explored. The effects of a non-spherically symmetric potential also

need to be explored as there is no evidence that any galaxy is the Universe

is truly spherically symmetric, including the Milky Way. Understanding how

directly observable parameters evolve in a non-static tidal field will in turn

give another way for globular clusters to be used to place constraints on a

host galaxy. Understanding how cluster properties like rh and rL change as

a function of their orbit allows for the radial distribution of these properties

in observations of globular cluster populations to be used to constrain the

distribution of cluster orbits and the distribution of matter, both baryonic

and dark, within a host galaxy.

The purpose of this thesis is to extend dynamical evolution theory to

a more advanced level of understanding, independent of generalizing assump-

tions, that can be applied to any globular cluster orbiting in any tidal field. We

begin by first making use of N -body simulations of star clusters to study the

effects of a non-static tidal field on globular cluster evolution. These studies

are followed by an application of our theoretical results to observed globular

cluster populations.

7.1 Theoretical Studies of Globular Clusters

in Tidal Fields

This thesis marks the most extensive study on the effects of eccentricity and

initial size on globular clusters to date, and the first systematic study of glob-

ular clusters orbiting in a Milky Way-like potential over a range of inclined

orbits. In Chapter 2 we use a suite of N -body simulations which model tidally
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filling and under-filling clusters over a range of circular and eccentric orbits

to test the historical assumption that the tidal radius of a cluster is imposed

at perigalacticon. We find that the historical assumption is incorrect, and

that after a perigalactic pass a cluster is able to re-capture many of the stars

which were tidally stripped at perigalacticon. Furthermore, the tidal shock at

perigalacticon and tidal heating over the course of the cluster’s orbit are able

to energize inner stars to wider orbits, effectively replacing stars that are per-

manently stripped at perigalacticon. We conclude that a cluster’s size instead

reflects its current position in a galaxy, and propose a correction factor to

tidal radii calculated at perigalacticon which takes into consideration orbital

eccentricity and the cluster’s orbital phase.

Chapter 3 extends our study to the cluster’s dynamical evolution. Our

models demonstrate that compared to a cluster with a circular orbit at peri-

galacticon, increasing orbital eccentricity slows the dynamical evolution of a

cluster because it experiences a weaker mean tidal field. However, tidal shocks

at perigalacticon and tidal heating can compensate for the decreased mean

tidal field by injecting additional energy into the cluster. We find that the cir-

cular orbit Rcirca which best mirrors the evolution of a cluster on an eccentric

orbit is a significantly smaller radius than the eccentric cluster’s semi-major

axis or time averaged galactocentric distance Rgc. Hence clusters which appear

dynamically old at large Rgc are explainable by invoking a highly eccentric or-

bit. We illustrate how the stellar mass function of a cluster, which serves as

a tracer of its dynamical age, can be used to constrain the orbits of globular

clusters given their current Rgc.

In Chapter 4 we continue our study of clusters in non-static tidal fields

by specifically focussing on the effect of orbital inclination on mass-loss rates
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and cluster structure. We find that a non-zero inclination leads to tidal heat-

ing and tidal shocks during disk passages that will help remove stars from a

cluster, increasing the mean mass-loss rate. However, as the strength of the

disk potential decreases with Rgc, outer clusters with inclined orbits are less

affected by tidal heating and shocks, and can even have a lower mass loss rate

than a cluster orbiting in the plane of the disk. Clusters with orbits that are

both inclined and eccentric will be subject to increased tidal heating due to

a constantly changing potential, weak tidal shocks when passing through the

disk near apogalacticon, strong tidal shocks when passing through the disk

near perigalacticon, and an additional tidal shock during a perigalactic pass.

However, since clusters with eccentric orbits spend the majority of their life-

time near apogalacticon, the effects of orbital inclination decrease as orbital

eccentricity increases since the cluster will spend more time at large Rgc.

In terms of cluster structure, limiting radii fluctuate wildly as a cluster

with an inclined orbit travels near and through the galactic disk. We find

that the limiting radius is best approximated by the tidal radius of the cluster

when it is farthest from the disk, as the cluster has a significant amount of

time to respond to the tidal field when at apogalacticon. Effective radii on the

other hand appear to be unaffected by the additional tidal heating and shocks

experienced by clusters with inclined orbits. Hence in extragalactic studies of

globular cluster structure, where rh is the only robust observable parameter,

measurements of cluster size will not be sensitive to orbital inclination.
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7.2 Application to Observed Globular Cluster

Populations

The next step was to apply our results to observational studies of globular clus-

ter populations. Chapters 5 and 6 represent the application of our theoretical

studies to observations of globular clusters in giant galaxies. We specifically

focussed on testing whether the distribution of cluster sizes in giant galaxies

could be reproduced by assuming cluster populations consisted of both tidally

filling and under-filling clusters with non-circular orbits.

In the first application of our work on clusters in non-static tidal fields,

we aimed to reproduce the relationship between rh and Rgc for clusters in the

giant elliptical galaxy M87. As discussed in Chapter 5, new Hubble Space Tele-

scope (HST) observations allowed us to study the cluster population beyond

100 kpc. While clusters in giant galaxies will not all have circular orbits, we

found that the cluster population could also not be modelled with an isotropic

distribution of orbits unless all clusters were severely under-filling. Instead we

suggest that cluster orbits must become radially anisotropic with Rgc and that

clusters become more tidally under-filling with Rgc in order to reproduce the

observed rh - Rgc relationship. Focussing on metal-poor and metal-rich clus-

ters separately, we find that the size difference between red and blue clusters

can be explained by both sub-populations having different anisotropy profiles.

More specifically, we find evidence for blue clusters having a higher degree of

radial anisotropy and being more tidally filling than red clusters.

In our culminating study, we extend our application of the evolution

of clusters in non-static tidal fields in M87 to include the giant galaxies NGC

1399 and NGC 5128. When comparing all three galaxies, we find that M87 and

233



Ph.D. Thesis, Ch. 7 - J.J. Webb McMaster - Physics & Astronomy

NGC 1399 can be modelled by clusters that quickly becoming tidally under-

filling and have orbits that become moderately radial with increasing Rgc.

NGC 5128 on the other hand is well fit by clusters that are primarily tidally

filling and have an isotropic distribution of orbits. Differences between the

three populations can be attributed to the differing mass profiles of their host

galaxies. Further constraints can be made on the formation and merger his-

tory of each galaxy by studying the metal poor and metal rich sub-populations

separately. In all cases, we find that blue clusters have a higher degree of radial

anisotropy, consistent with the idea that giant galaxies form via the hierarchi-

cal assembly of smaller galaxies. While red clusters represent a sub-population

that was built early by the host galaxy, blue clusters are continuously being

accreted such that outer blue clusters will have preferentially radial orbits as

they fall inwards. The fact that the red sub-populations of NGC 1399 and

NGC 5128 are more isotropic than M87 allows us to further constrain their

formation process, as an isotropic population suggests the galaxy formed via

an initial fast accretion phase and clusters with the most radial orbits have

since had their orbits efficiently decay via dynamic friction (Goodman & Bin-

ney, 1984; Lee & Goodman, 1989; Cipolina & Bertin, 1994). We also find that

the local galaxy environment can influence cluster populations, as dynamical

interactions with nearby galaxies have likely increased the degree of radial

anisotropy in the outer regions of M87 and NGC 1399 by forcing outer clus-

ters onto radial orbits. The more isolated NGC 5128 cluster population on the

hand remains isotropic at large Rgc. However, degeneracy between the effects

of orbital anisotropy and tidally under-filling clusters on the distribution of

cluster sizes in a galaxy prevent us from using our best-fit models to place

strong constraints on the formation conditions and present day properties of

234



Ph.D. Thesis, Ch. 7 - J.J. Webb McMaster - Physics & Astronomy

each galaxy.

These studies provide clear examples of how advancing our under-

standing of clusters evolution to include the effects of a non-static tidal field

has allowed for observations of globular clusters to help interpret the orbital

anisotropy profile, mass profile, and formation / merger history of a galaxy.

Our study illustrates that differing galaxy formation and merger histories lead

to globular cluster populations having different orbital distributions and struc-

tural properties from one galaxy to the next. None of this would have been

possible had we been forced to assume all globular clusters have circular orbits

in spherically symmetric potentials.

7.3 Future Work

Completion of this thesis has identified many potential observational and the-

oretical projects that will be pursued in the future. The final application of

our model to the globular cluster populations of M87, NGC 1399, and NGC

5128 has revealed improvements that can be made to our model so it can be

used to study additional galaxies, which include:

• Allowing for the existence of a continuum of globular cluster sub-populations

Many studies of globular cluster populations are identifying the possible

existence of three sub-populations based on colour, spatial distribution,

and kinematics (Strader et al., 2011; Blom et al., 2012). Incorporating

multiple sub-populations will allow for our model to better represent the

observed properties of a globular cluster population.
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• Allowing for velocity dispersion to change as a function of Rgc

Detailed kinematic studies of globular cluster populations are finding

that mean cluster velocity and velocity dispersion changes with Rgc (e.g.

Agnello et al., 2014), our model must incorporate this factor as well.

• Placing observational constraints on our model of how cluster evolution

is related to a non-static tidal field.

The results of our studies on how cluster structure is affected by a non-

static tidal field are based on knowing the mass, three dimensional posi-

tion, and three dimensional velocity of each star in a cluster. These seven

parameters are necessary in order to calculate whether stars are ener-

getically bound to a cluster or not, which is not possible observationally.

To better compare to observational studies, we aim to perform simulated

observations of our N -body clusters to determine how our findings are

reflected in observations of globular clusters.

• Adding the results of our study on the effects of orbital inclination on

cluster evolution

Our current model only allows for the study of cluster populations in

spherically symmetric potentials. Hence it cannot be applied to spiral

galaxies or tri-axial elliptical galaxies. With the completion of our study

on the effects of orbital inclination on cluster evolution, we can incorpo-

rate the effects of a non-spherically symmetric potential into our model.
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This final point will be extremely useful as we can begin to study the

globular cluster population of the Milky Way, the only population for which we

have three dimensional positions and are beginning to measure proper motions.

With such detailed information on the Milky Way and its cluster population,

the tidal field can be kept as a free parameter and our model can be used to

map the distribution of matter in the Milky Way.

Perhaps the most interesting future application of our model, other

than to the Milky Way, will be to galaxies which do not show the same shal-

low increase in rh with Rgc as the galaxies presented here. Specifically NGC

4365, where Blom et al. (2012) measures that rh ∝ R0.49±0.04
gc , is dramatically

different than M87, NGC 1399, and NGC 5128. Some dwarf galaxies, despite

their relatively small globular cluster populations, have also been shown to

have steeper rh profiles (Georgiev et al., 2010). Both cases may be a result of

these galaxies not being subject to repeated mergers, such that clusters with

initially radial orbits have decayed and the distribution of cluster orbits is ei-

ther isotropic or even tangentially biased. Such a distribution of orbits will

result in a steeper rh profile since cluster orbits do not pull them deep inside

the tidal field and a lack of recent mergers means their structural properties

will have had sufficient time to respond to the current tidal field which they

experience. Observations of these types of galaxies that provide accurate mea-

surements of cluster size and velocity will allow for our model to be used to

study their orbital anisotropy profiles, which may even reveal a tangentially

anisotropic population.

Future work in theoretical globular cluster studies will focus on the fi-

nal assumption made by globular cluster studies that is not addressed in this

thesis. Specifically, we wish to study the evolution of globular clusters in time
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dependent tidal fields. While the N-body simulations presented in this thesis

have significantly advanced our understanding of the dynamical evolution of

globular clusters on eccentric orbits and inclined orbits in spherically sym-

metric and non-symmetric tidal fields, they assume the gravitational field is

smooth and constant in time. They ignore that the distribution of mass within

a galaxy is built up over time via the hierarchical merger of smaller galaxies

(Springel et al., 2005) and that dark matter halos consist of a collection of

sub-halos as opposed to being smooth isothermal halos (Stadel et al., 2009).

They also ignore the possibility that some clusters have only recently been

accreted by a galaxy. It is not clear whether these effects will leave a lasting

mark on globular clusters such that their complete history can be inferred

from present day observations. While recent studies have begun to explore

these effects through simplified models (Miholics et al., 2014; Madrid et al.,

2014; Bianchini et al., 2015; Renaud & Gieles, 2015), the next major step in

theoretical globular cluster studies will be the combination of N -body cluster

simulations with large-scale cosmological simulations. Cosmological simula-

tions do not have the same limitations as stellar N -body codes, as they allow

galaxies to form and evolve with time, and even predict the formation sites

of GCs. However, in these large-scale simulations GCs appear only as point

sources and their internal structure cannot be modelled. Performing N -body

simulations of clusters in cosmological simulations will yield the most realis-

tic model of globular cluster evolution to date. Such a combination will be

the first step towards being able to individually model every globular cluster

within a galaxy from formation to dissolution, no matter how complex its dy-

namical history, and truly understand how galaxies and the stars within them

form and evolve.
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