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Abstract  

Almost every module or project needs to be optimized to get the best results and reduce 

costs. Multi-sensor, multi-input trackers require a huge number of parameters to run, 

which have an undefined or unknown to the output of the tracker. It becomes very 

difficult to manually initialize these parameters to get a good output and there was a need 

to automate the process of selecting the parameters, validating them and initialing the 

tracker. The optimizer built to cater for these issues uses heuristic genetic algorithms – 

Particle Swarm Optimization and Gravitational Search Algorithm to find the best 

solutions for the problem. The optimizer works with the help of a Parameter Evaluator 

(developed earlier) to study the output of the tracker and incorporate the multi objective 

(Pareto) aspect of the problem. The Optimizer can find solutions to any optimization 

problem if hooked to a corresponding evaluator or fitness function calculator. This feature 

makes the Optimizer not just another module to the tracker but an independent 

application that could be used for general purpose optimization solutions.  
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Chapter 1  

 

INTRODUCTION 

 

1.1 Evolutionary Algorithms 

Optimization is the process of finding the input parameters that will give the best output of a 

required problem. Mathematical optimization refers to either minimization or maximization of a 

function. It is practiced in many professions as they strive to achieve the best outcomes of their 

problems. For example when a doctor prescribes a medication to a patient he has to balance 

multiple parameters to cure the illness. These parameters include speed of recovery, 

effectiveness of the medicine, comfort of the patient and side effects from the medicine itself. 

The standard way of prescribing a dose is by the weight of the patient; medicines have a dosage 

factor which dictates the amount to be prescribed per Kg, so the total dose for a patient is the 

product of dosage factor and the total weight of the patient. In some cases where the patient’s 

liver or renal system is compromised the doctors have to optimise their medication to cater their 

slow excretion and metabolism. If the dose is too high, it reaches a receptor saturation point and 
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the excess is not metabolised, which is either passed out as it is or leads to toxicity. Therefore it 

is vital to optimize the dose of the drug so that the patient recovers fast and the drug performs 

well without causing damage to any other system in the body. Similarly in manufacturing plants, 

optimization is carried out to increase productivity and reduce costs.  

Some of these problems have a linear model and require optimization techniques that are simple 

and efficient; however in many cases the problem is not so simple. Most of these optimization 

problems have constraints that the parameters have to follow, which increases the complexity of 

the problem. If the problem cannot be written as a function of the parameters it becomes even 

more difficult to optimize it. Normally there are a number of possible solutions to a problem in a 

search algorithm, and finding the best solution in a limited time is challenging. If the number of 

valid solutions is small then less time is required to  find the optimal solution, but if the search 

space is large (as is the case in many real world problems) searching for an optimal solution 

becomes difficult and may not always be discovered by regular methods if the resources are 

limited. Evolutionary Computation is efficient to a great extent in such cases. This thesis 

discusses optimizing such problems using algorithms from Evolutionary Computation. 

In tracking a target, a good tracker-system and tracking algorithm do not essentially guarantee a 

good output. Initializing the tracker and choosing the best algorithm and its supporting variables 

for the given scenario are also essential. There are guidelines and theories relating to choosing 

these values but there is no specific law that will guarantee an optimal solution. Therefore there 

is a need to work on optimizing these values for the tracker under a specific scenario. Since the 

number of parameters for initialization is quite big and their ranges combined give an immensely 

large search space to find optimum values in, one has to look for techniques other than 

exhaustive searches.  

The tracker system in place needs to be setup for each specific scenario and target. The system is 

initialized by giving all details of the scenario, targets, sensors and tracking algorithm in multiple 

files. The tracker-system then begins tracking after initialization generates an evaluation report 

on the performance of the tracker. In most situations one has no control over scenario and 

sensors, and the only way to get the best results is to choose a suitable tracker and optimal 

parameters of initialization. Up till now the initialization process was carried out manually by 

choosing the parameter values by trial and error and a high level of skill was required to tune 
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these parameters, creating an urgent need to automate this process and make it faster, simpler 

and more efficient. Since the optimization of this tracker is a multi-dimensional, multi-objective 

problem with no discernible relations between inputs and outputs, very specific algorithms were 

required to deal with it. The tracker optimization is a complex problem where the function to 

optimize and its derivatives are unknown.  

This application automates the process of tuning the initialization of the tracker. The 

optimization of this tracker is a multi-dimensional, multi-objective problem; i.e. there are 

multiple variables that are to be tuned and multiple objectives to be achieved. The variables are 

tuned using the Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO), 

which are optimized based on a list of objectives given by the user, with each objective being 

given a certain weight to calculate the total ‘fitness’ of the solution.  

Two flavours of swarm based algorithms have been implemented in the application to solve this 

multi-dimension, multi-objective problem. The optimization techniques treat the tracker as an 

unknown function and then modify the inputs according to their algorithm to optimize the 

output. These algorithms include parallel searches from multiple starting points (solutions), 

where each point evaluates itself and then according to the algorithm explores and exploits the 

search area using the information provided by other points and the area surrounding its own 

position, respectively.  These algorithms are computationally expensive but since this optimizer 

would be run once before starting the tracker and is not used during the run time, the expense of 

time can be sustained. Similar sequential methods are also available which are faster but they do 

not provide the efficiency one can get with parallel search algorithms , and since speed is not a 

critical factor the selected methods provide better results. This application will save a significant 

amount of time and effort by automating the initialization and optimizing. 

Many deterministic optimization algorithms require gradient information; however due to the 

lack of such gradients, it was necessary to look for another approach. The Particle Swarm 

Optimization and the Gravitational Search Algorithms are population based stochastic 

optimization techniques which do not require gradient information derived from the error 

function. This makes them useful to optimize problems where these gradients are unknown or 

not easy to obtain, as is the case with this tracker optimization problem. 



Chapter 1. Introduction   4 

 

The PSO algorithm was initially introduced by Kennedy and Eberhart [1] as a means to simulate 

the social behavior of birds and fish in swarms. They then discovered that the algorithm had an 

optimizing behaviour and could be used for solving optimization problems. This method follows 

the principal that when birds (agents) are looking for an optimal location they start by scattering 

into the search space randomly and then communicate their positions and the fitness of their 

locations to the rest of the swarm. These agents then move around in the search space looking for 

better locations, based on their own best findings and the best location discovered yet by the 

entire group.  

The Gravitational Search Algorithm follows a similar principal as the PSO. In this method the 

agents are considered as masses, following Newton’s law, that every point mass attracts every 

other mass with a force proportional to the product of their masses and inversely proportional to 

the square of the distance between them. The mass of each agent is calculated based on its 

fitness.  

Regular optimization modules are designed to achieve a single objective, but since the quality of 

tracking is decided by multiple parameters, a  multi-objective optimizer was required. For multi-

objective optimization the ETFLab’s Performance Evaluator (PE) was used, which takes in track 

information from the tracker and evaluates its performance by calculating performance metrics 

of the tracker. The Optimizer uses the output of the PE to calculate the total score of the given 

tracking instance and then incorporates the information for its next iteration. The optimizer can 

be customized to improving certain performance metrics only and changing the weight of each 

metric. 

1.2 Organization of the Thesis 

The thesis is divided into eight chapters; here is the organization of the thesis. Chapter 2 

introduces Evolutionary Computation, with a focus on Evolutionary Algorithms and their 

applications. Chapter 3 discusses Target Tracking and the types of tracking algorithms. Chapter 

4 explains the Performance Evaluator used for the Optimizer and the performance metrics it 

supports. The main Optimizer module and its workings are explained in Chapter 5, it also 

explains how to use the Optimizer. The optimization techniques (Particle Swarm Optimization 

and Gravitational Search Algorithm) used in the program are described in Chapter 6. The results 

are contained in Chapter 7 while the Summary and future work are covered in Chapter 8. 



 

 

 

Chapter 2  

 

EVOLUTIONARY COMPUTATION (EC) 

 

Evolutionary Computation is a field of artificial intelligence based on Darwinian principles, 

since evolution is also an optimization process that aims to improve the ability of an organism to 

survive a continuously changing environment, the phenomena of natural selection, 

recombination, reproduction and mutation. EC uses algorithms inspired by biological evolution 

to solve mathematical optimization problems. The theory of ‘Natural Selection’ or ‘Survival of 

the Fittest’ suggests that all organisms that exist today are a result of continuous adaptation and 

evolution over the ages. The fitness of an organism suggests how well it has adapted to its 

environment; the organisms that survive are the ones that are able to adapt to, and bear the 

environment. The individuals that are more fit have a bigger chance to live longer and reproduce 

more, thus propagating their genotype to future generations. These processes of finding ways to 

survive better are the basis of algorithms used in Evolutionary Computation. [2] 

Evolutionary Computation has two main branches: 
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2.1 Evolutionary Algorithms 

Evolutionary Computation has a subset of algorithms called Evolutionary Algorithms, which are 

inspired by biological evolution such as reproduction, mutation, recombination and selection. 

These algorithms are generic population based metaheuristic and stochastic processes. All the 

algorithms in this field follow the same theme where candidate solutions for the optimization 

problem play the role of individuals or agents in a population and the quality of a solution is 

calculated by a ‘fitness’ function. These individuals evolve according to some criterion in an 

iterative process until a given satisfaction or limit is approached. [3] 

Evolutionary Algorithms provide good results in almost all types of problems as they ideally do 

not make any assumptions about the function to optimize. Therefore they have been successful in 

a variety of fields such as biology, genetics, engineering, economics, chemistry, physics etc. 

2.1.1 General Algorithm of Evolutionary Processes 

The general steps of the algorithm are as follows: 

1. Generate a random initial population (candidate solutions) of the swarm. These will be 

the first generation of individuals. 

2. Calculate the fitness of all the individuals in the population 

3. Repeat the following steps until a stopping criterion is met. The stopping criterion could 

be based on time, quality of solution etc. 

a. Select the best individuals (solutions with the best fitness values) for reproduction 

– these would be the parents of the next generation 

b. Breed new individuals through crossover and mutation to get the next generation 

c. Evaluate the fitness of the new offspring 

d. Replace the least fit population with new individuals 

In some algorithms the least fit populations are used for mutation and not replaced. 

2.1.2 Types of Evolutionary Algorithms 

The different types of evolutionary algorithms are given below. All these techniques follow the 

same evolutionary steps differing in only the way the next generation evolves.  

 Genetics Expressing Programming [4] 
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 Genetic Algorithm [5] 

 Evolutionary Programming [6] 

 Evolutionary Strategy [7]  

 Differential Evolution [8] 

 Differential Search Algorithm [9] 

2.2 Swarm Intelligence 

Swarm Intelligence (SI) deals with the behaviour of unsophisticated individuals in a self 

organized decentralized system, interacting locally with each other and the environment. The 

individuals in SI while working without a centralized control or global model cause coherent 

functional global patterns to emerge. These patterns of coordination without control can be used 

for problem solving in numerous fields [10]. Swarm Intelligence can be defined as: 

“Swarm Intelligence is a property of systems of non-intelligent robots exhibiting collectively 

intelligent behavior.”  [11] 

Swarms are behaviour based systems with algorithms inspired by the social behaviour of insects 

like ants and bees. These insects are simple individuals but have intelligent group behaviour. One 

of the books on Swarm Intelligence defines it as phenomenon that emerges from the behaviour 

of rule based particles. [12] 

2.2.1 Swarm Intelligence Models 

Swarm Intelligence Models are the types of SI algorithms that are used for different kinds of 

problem. The following are the few models inspired by the swarm systems in nature: 

 Particle Swarm Optimization [1] 

 Gravitational Search Algorithm [13] 

 Ant Colony Optimization [14] 

 Artificial Bee Colony Algorithm [15] 

 Bacterial Colony Optimization [16] 

 Differential Evolution [8] 

 Artificial Immune Systems [17] 

 Grey Wolf Optimizer [18] 
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 Bat Algorithm [19] 

 Altruism Algorithm [20] 

Some of the popular algorithms have been explained below. 

Particle Swarm Optimization 

Particle Swarm Optimization [21] [22] [1] is an optimization model which is evaluated by 

representing candidate solutions as particles in n-dimensional space and finding the fittest point 

in space. This model has been successfully applied in thesis for optimizing the tracker output 

where each parameter for optimization is modeled as a dimension in the search space. This 

model is discussed in detail in a later chapter. 

Ant Colony Optimization 

Ant Colony Optimization [23] [14] was first developed by Marco Dorigo and his colleagues for 

solving combinatorial optimization problems in the early 90’s. This technique is inspired by the 

search algorithm used in an ant colony to find the shortest path in a graph. In an ant colony, ants 

randomly explore the search space for food, when they find a source they return to the colony 

leaving trails of pheromones on their path. When other ants find such a path they tend to follow 

the trail and reinforce it if they eventually find food. These trails of pheromones evaporate with 

time and reduce the attractiveness of the path. Ants take more time following a longer path to 

home, giving the pheromones more time to evaporate. For a relatively short path, the ants get to 

make more trips on it in the same time as the long path, and they keep on adding their trails 

resulting in a higher density of pheromones on the path thus attracting more ants. The 

evaporation of pheromones saves the colony from converging to a local optima. 

Gravitational Search Algorithm 

The Gravitational Search Algorithm [13] is based on the Newtonian Law of universal 

gravitation, which states that any two bodies in the universe attract each other with a force that is 

directly proportional to the product of their masses and inversely proportional to the square of 

distance between them. GSA is an optimization technique that considers candidate solutions 

(agents) as bodies in an isolated system, where the mass of each agent represents the fitness of 

the solution and the position of the agent represents the solution of the problem in n-dimensional 

space. Agents with good fitness values have higher masses and they attract other agents toward 
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themselves while agents with weaker masses gravitate towards the heavier agents. This 

algorithm is also applied in the optimization of the tracker and is discussed in detail in a later 

chapter. 

2.2.2 Swarm Intelligence Principles 

In 2011 Alex Kutsenok developed a ‘General purpose swarm intelligence technique’ [24] to help 

engineers design new SI algorithms for their specific problems. He has identified and outlined 

the basic principles of modeling a new algorithm; this has also helped in classifying algorithms 

in Swarm Intelligence. Following are the basic principles: 

Principle 1:  Create a system of agents that work individually on a common problem  

The first principle of Swarm Intelligence states that a multi-agent system is used to provide a 

solution to the problem. The problem is then disintegrated into parts that are given to each 

independent agent in the system. Agents cannot be directly controlled by any other agent or 

central component and cannot be allowed to distribute tasks. The nature of the problem helps in 

dividing the problem in a logical way. Individual agents work on the tasks (sub-problems) 

assigned to them thus contributing to the global solution.  

Principle 2: Agents are simple, fast, and have a limited perspective  

In Swarm AI, agents are given a limited or local perspective of their environment. The less 

information an agent is given, the simpler it is to design that agent and the faster it will carry out 

the given task to reach a decision. For a good design the aim is to maximize the speed of an 

agent to perform the simple tasks assigned to it without worrying about the big picture. Agents 

do not think ahead or use heuristics to make decisions that take a significant amount of time.  

Principle 3: Indirect Simple Inter-Agent Communication  

Since the first two rules imply that agents are limited in their functionality because they focus on 

local data instead of the big picture, the third rule provides a way for the system as a whole to act 

globally. The final requirement of the system is that agents communicate with each other in a 

simple indirect method. These methods have to be simple as agents cannot interpret complex 

messages. One way of communication is the ‘stigmergy’ method in which agents communicate 

through the environment [24]. This happens when an agent changes the environment so that 

some other agent notices the change and alters its behaviour accordingly. Thus an indirect 
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communication is carried out by affecting the environment. The other type of communication is 

when an agent changes its own state like position or velocity so that other agents might notice 

and change their behaviour.  Direct communication is not allowed in SI algorithms as they tend 

to make the agents and the system more complex and also slow down the system.  

2.2.3  Swarm Intelligence Applications 

The following are a few of the applications of swarm intelligence as researched by Kevin 

Roebuck in his book ‘User generated content’ [25] 

 The U.S. military is working on Swarm Techniques for controlling unmanned vehicles 

 The European Space Agency is considering to use an orbital swarm for self-assembly and 

interferometry. 

 Its use is also being considered by NASA for planetary mapping. 

 Swarm Intelligence is used to select location for transmission infrastructure for wireless 

communication networks for maximum coverage. 

 M. Anthony Lewis and George A. Bekey in their paper proposed using swarm intelligent 

nano-robots inside the body to kill cancer tumours [26]. 

 Stochastic Diffusion Search was used by Al-Rifaie and Aber to locate tumours inside the 

body. [27] [28] 

 

http://en.wikipedia.org/wiki/M._Anthony_Lewis_(roboticist)
http://en.wikipedia.org/wiki/George_A._Bekey
http://en.wikipedia.org/wiki/Stochastic_Diffusion_Search


 

 

 

Chapter 3  

 

TARGET TRACKING 

 

In various field applications one faces a problem of locating and/or estimating the state of an 

object in an unknown environment. When the information available is not enough to exactly 

calculate the state of the object of interest (target), estimation and probability are used to track 

the target. Estimation is the process of calculating a parameter from indirect, inaccurate and 

uncertain observations; thus tracking can be described as the estimation of the current or future 

state of a dynamic system from uncertain and noisy data. It is defined as: 

“Target tracking is the estimation of the current state and prediction of the future states of a 

target based on measurement received from a sensor that is observing it." [29] 

Blackman and Popoli have traced the following essential steps for tracking a target [29] 

1. Collect sensor data from the search space containing the target(s). 
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2. Partition the sensor data into sets of observations or tracks produced by the same sources, 

eliminating the background and reducing false targets. 

3. Estimate the number of targets and their kinematics such as future position, velocity etc. 

Tracking is becoming increasingly popular in a wide range of applications.  In medicine it can be 

used to track abnormal cells or bacteria in  blood flow. In video or image processing applications 

target tracking is used to track vehicles on the road or people in an environment. Militarily 

application include tracking ground vehicles, ships, submarines, airplanes, rockets etc. 

There are several techniques available for estimation generally known as tracking filters. These 

filters get information from the sensors and predict the state of the target using some recursive 

estimation algorithm. Tracking filters are part of the Data Processing step in a general tracker 

system. The system can be divided into the following parts. 

Environment Sensor Array
Signal

Processor

Data 
Processing

Sensor 
Manager

Signal Measurement

Estimation Uncertainties

Control Signals

Electromagnetic or
Acoustic Energy

Target State Estimates

 

Figure 1 Tracker System 

3.1 Tracking Filters 

Filtering is the process of estimating the state of a dynamic target from noisy data. To analyze a 

target (dynamic system) at least two models are required. The book chapter Sensor Data Fusion 

with Application to Multi-target Tracking summaries the tracking filters as follows [30].  

System Model: A system model describes the evolution of the state of the target with time 

                      

Measurement Model: A measurement model relates the noisy measurements to the state of the 

target  
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where    and   are functions (generally nonlinear),      is the state of the target,      is the 

measurement vector,      is the process noise and      is the measurement noise at 

measurement time  .  

When using the Bayesian approach to estimate the state of the dynamic system the aim is to 

construct a posterior probability density function (pdf) of the state using all the measurements 

received till that time. If all the noises are white, the pdf is the complete solution for the 

estimation of the problem since it contains all the statistical information. In recursive filtering the 

received measurements are processed sequentially rather than as a batch, thus eliminating the 

need to store the complete measurement set or to process the existing measurements again if a 

new measurement becomes available. This kind of filtering has two stages: prediction and update 

[30].  

Prediction: In the prediction stage the filter uses the system model to predict the state of 

pdf from one measurement time step to the next time step. If the pdf at time   is  

           , where                   , this stage predicts the pdf at 

measurement     as 

                                              

Update: This stage updates the prior using Bayes’ formula with the latest measurement 

       

               
                             

            
 

In general the posterior cannot be determined analytically and this given recursive 

propagation is only a conceptual solution, which can only be applied in some limited 

cases.  

 

3.1.1 Kalman Filter 

The Kalman filter is an optimizing filter that predicts the future state of a dynamic system from 

inaccurate, indirect and uncertain measurements of the past states of the system. It is a recursive 
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process that estimates the internal state of the system by learning to differentiate between the 

noise and inaccuracies of the measurements and the truth. A Kalman filter is also known as an 

‘optimal estimator’ or a ‘linear quadratic estimator’ [31] [32] [30]. 

The basic assumption of the Kalman filter is that the state and measurement models of the 

system are linear i.e.                     where                    . It is also 

generally assumed that the initial state error and all the noises entering the system are Gaussian. 

The observation noise       is assumed to be white and Gaussian with covariance      and zero 

mean while the process noise      is assumed to be white and Gaussian with zero mean and 

covariance     . Considering these assumptions if             is Gaussian, it can be proved 

that                is also Gaussian and can be parameterized by a mean covariance [33]. 

The algorithm recursively process the information for the state of the system in the following 

manner [30]: 

                       

                                

                           

                                      

                                               

                                          

where  

                                 

If the above assumptions hold, the Kalman filter performs better than any other filter. Many 

different varieties of the filter have been developed for different problems.  

3.1.2 Extended Kalman Filter (EKF) 

Most real world problems are nonlinear but the simple Kalman Filter only caters for linear 

systems, therefore the Extended Kalman Filter was developed to estimate the state of nonlinear 
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systems. The EKF does not require the state transition and observation models to be linear but 

instead requires them to be differentiable. It defines the nonlinearity of a model by local 

linearization of the equations [30]. 

             

  
 
         

 

 

               

  
 
           

 

 

In the EKF the            function is approximated by a Gaussian and then the Kalman Filter is 

used for the linearized functions, while the state and measurement predictions are calculated 

using the original nonlinear functions.  

                       

                           

These equations are for a first order expansion of nonlinear systems, there are other EKFs for 

higher order systems but they are complex and do not perform as well as this one [30].  

3.1.3 Probability Hypothesis Density (PHD) Method 

When tracking multiple targets, target detection and data association are complicated by the 

uncertainties in the dynamics of maneuver and clutter, and it is a challenge to associate 

measurements with the targets that have generated them. The number of targets change also with 

time and therefore ordinary Bayesian statistics cannot be used to compare states. This problem 

can be solved using Finite Sate Statics (FISST) [34]. This algorithm gives good results but the 

problem is that its computational load increases exponentially with the number of targets making 

it computationally expensive when a large number of targets are present [30] [35].  

The book chapter [30] explains the PHD and its calculation as  a multi target filter that 

recursively estimates the number of targets and their states from given observations in an 
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environment where uncertainties, noise and false detections are present. The PHD is defined over 

the state space of one target instead of the full posterior distribution reducing the computational 

cost of propagation in time.  

The Probability Hypothesis Density          
   is the density which gives out the number of 

targets      contained in a search space   when integrated over that space. 

               
  

 

    

The first order statistical moment of the full target posterior can be recovered from the PHD as 

 

         
             

     

     

 

where    is the multi-target state. The ‘maxima’ of the PHD gives the approximate expected 

target states. 

Prediction: 

In a general multi target environment the number of targets changes due to target disappearances, 

target spawning and entry of new targets, therefore the predicted PHD incorporates these factors 

as: 

                           
                           

                 
                            

where               is the probability that a target with state      at time     will be alive at 

time    ,                 is the probability of a target with state      spawning at time  , 

       is the probability of new born targets at time   and                 is the single target 

Markov transition density. 
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Update: 

The predicted PHD is corrected with the available measurements    at time   to get the updated 

PHD. It is assumed that the number of false alarms is Poisson distributed with average spatial 

density    . The probability density of the spatial distribution of false alarms is given by       , 

and the detection probability of a target with state    is given by       . The updated PHD at 

time   is given by 

         
      

                 

                     
           

     

                   

where             denotes the single-sensor/single-target likelihood and       is the likelihood 

operator given by 

                                                     

3.1.4 IMM Filters 

A multiple model estimator is a filtering approach that realizes the different models of target 

manoeuvres. Targets may change their manoeuvres with time thus requiring a need to model and 

recognize all the manoeuvres inside a filter. In this approach a number of filters act in parallel for 

each target maneuver. The Interactive Multiple Model (IMM) [33] [36] [37] estimator uses a 

bank of different hypothetical target motions to estimate a dynamic system. This filter provides 

better results than a regular Kalman Filter, which works with a single model. The following is 

the algorithm for the IMM [30]: 

Assumptions: 

The base state model of IMM is given by: 

                               

                            

where      is the mode of the system at time     among the possible   modes 
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The structure of the system and statistics are different for every mode and are given by 

         

                   

The Mode jump process is characterized as a Markov chain with known transition probabilities 

                         

Algorithm 

The IMM filter has the following stages: 

Interaction: At this stage the previous cycle’s mode-conditioned state estimates and covariance 

are used to initialize the current cycle of each mode-conditioned filter using the mixing 

probabilities.  

The estimate and covariance for each model           are given by  

                                        

 

   

 

                            

           

                             

                             
 
 

 

   

 

Mode-conditioned filtering: At this stage the state estimates and covariances conditioned on the 

mode being in effect are calculated, and the likelihood function for the modes are evaluated. The 

Kalman Filter matched to each mode        uses the measurements      to calculate          

and        . The likelihood function is calculated as 

                                

Probability evaluation: The mixing and update probabilities are calculated in this stage 

Mixing probabilities for mode   and               
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where  

               

 

   

 

Mode probability for each mode         ) 

      
 

 
         

where  

           

 

   

 

Overall state estimate and covariance: The model-conditioned estimates and covariances are 

combined at this stage. 

                      

 

   

 

               
                                             

 
 

 

   

 



 

 

 

Chapter 4  

 

PERFORMANCE EVALUATOR 

 

As there are several kinds of tracking algorithms available and many developing with time, it is 

necessary to evaluate the efficiency of each method on a standard scale, here referenced as 

Measures of Performance (MOP) or Metrics. The MOPs are generally defined according to the 

type of performance that has to be evaluated or the availability of input data.   

MOPs can be related to the characteristics of the measurements of sensors or to the accuracy and 

quality of tracker estimates. Sensor related MOPs are independent of the tracking algorithm 

used. These might be helpful for evaluating scenarios with multiple measurement sensors but 

cannot be used to evaluate the type of tracker used. In most cases the main goal is to evaluate the 

tracking algorithm rather than the sensors. Consequently the tracker related evaluation consists 

of a large number of measures, which are divided into two classes: the measures specific to 

individual trackers and the measures that can be applied to any tracker.  
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There is a lot of literature on metrics defined to evaluate tracking algorithms. However there is 

no solid classification of MOPs that can be used for all tracking algorithm. A good classification 

of metrics is important and needed to measure the efficiency of trackers against each other. The 

evaluator used by the Optimizer is called the ETFLab- Performance Evaluator (PE) [38] and 

provides a sound and complete evaluation of the tracker. It divides the measures into sensor-

related and tracker related metrics based on their dependency on the tracking data. It mainly 

focuses on the tracker-related metrics, which are further classified into tracker-related and 

independent metrics.  

The ETFLab-PE takes inputs from the tracker and evaluates the track information using suitable 

MOPs. This PE is used to provide a good evaluation of the “Fitness” of the tracker at different 

parameters.  

The ETFLab-PE provides a common ground to test the performance of different tacking 

algorithms, helping the user to compare and understand the quality of trackers.  

The following are the classifications and types of performance metrics used by the evaluator. 

4.1 Measurements 

4.1.1 Sensor Related Measurements 

When no tracking information is available, the physical characteristics of the system are used to 

evaluate the tracker, which are basically the sensor related metrics. The type and specifications 

of sensors are vital to a tracker system. It is necessary to weigh the aspects of all types of sensors 

when using them to track targets. The evaluator has metrics specific to the sensors used by the 

tracking system. The following measures are used to evaluate a sensor. 

Dwell time per sensor 

Dwell time is the time that an antenna beam spends on a target. A radar’s performance can be 

evaluated based on the average time it spends to detect targets in a real scenario. 

For a multi-sensor system with    sensors and data received in      Monte Carlo runs, the 

metric is [39] 



Chapter 4. Performance Evaluator   22 

 

     
 

   
  

 

    
 

         
   

             

 

   

   

 

where     
   denotes the members of   that are available in the  -th time step and the  -th Monte 

Carlo run;             represents the set of dwell requests at time   and         
   

 is the 

corresponding  -th dwell time in the  -th run. 

 

Energy emitted per sensor 

The average energy emitted per sensor is an important metric to evaluate the efficiency of a radar 

system. If       is the peak power for the  -th sensor in the  -th run of a total of     Monte 

Carlo runs and      
   

 is the pulse width at the  -th run then the energy can be calculated as [39] 

     
 

   
  

 

    
 

           
   

             

 

   

   

 

 

Cumulative transmit dwell time/emitted energy over all sensors 

Apart from evaluating the each sensor separately on dwell time and energy emitted, the system 

can be evaluated based on the cumulative dwell time and energy emitted as [39]. 

        

 

 

        

 

 

 

4.1.2 Tracker Related Measurements 

The tracker related metrics evaluate the performance of the tracker. These metrics include 

algorithm independent and algorithm dependant metrics.  

Algorithm Independent 

Algorithm independent metrics are the ones that can be used to evaluate the tracker for any 

tracking algorithm. These metrics are categorized based on the availability of truth and tracks.  
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 Available truths and tracks 

When truths and tracks are available, the tracking results can be evaluated with the known truths. 

The metrics associated with this category can be classified according to the following measures: 

Track Cardinality Measures: This class of metrics deals with the statistics of the results, e.g. 

number of confirmed tracks, number of missed tracks, number of false tracks etc. However these 

metrics do not provide any information about the performance or time characteristics of 

individual tracks such as the consistency of tracks and the accuracy of estimation. 

Time (Durational) Accuracy Measures: This class of metrics deals with the time performance 

and persistence of the estimated tracks. They provide more useful information about the duration 

and persistence of the estimated tracks. Following is an example of time durational measure 

Track Probability of detection: It is a measure of trackers detection ability in estimating truth. 

Accuracy Measures: This is the most common measure used to evaluate the accuracy of the 

estimated values. Several measures are defined based on the difference between the estimation 

and truth, e.g. 

Root Mean Squared Error: RMSE is a common metric which uses a Mahanabolis distance to 

compute the error. 

 Available tracks and unknown truths 

In real scenarios there is often no information available about the truths. In such cases the 

consistency of tracking results may be checked. Common statistical tests may be made on the 

information received from innovation, which is considered the main source of information. 

Algorithm Specific 

The evaluator also has metrics specific to the algorithm of the tracker, which include metrics 

defined for IMM filters, assignment based tracking algorithms, dynamic programming, MHT 

trackers and IPDA algorithm. The evaluator also has metrics specific to the application of the 

tracker e.g. tracking people, sensor networks and vision based tracking.  
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4.2 Output 

The output of the evaluator is an xml file, which lists all the metrics with their respective values. 

The score of each metric is later calculated in the optimizer. Following is an example of the 

output. 

<overall_score_wieghts> 

  <root_mean_square_error>1.0</root_mean_square_error> 

  <average_euclidean_error>0.0</average_euclidean_error> 

  <median_error>0.0</median_error> 

  <missed_track>10.0</missed_track> 

</overall_score_wieghts> 

 



 

 

 

Chapter 5  

 

AUTOMATED TRACKER OPTIMIZER 

 

The goal of the application is to fine tune (and initialize) a scenario specific tracker for optimal 

results. The tracker receives several variables for its initialization and therefore the aim is to 

provide the tracker with the best parameters for a specific scenario. The problem with 

optimization of the tracker is that most of the key variables do not have a defined relationship 

with the tracker output. In different scenarios the variables have different effects on the output; 

therefore it is very difficult to initialize the parameters manually or by some generalized formula, 

to get optimal results. 

A mechanism to automatically initialize and optimize the tracker is presented here. The 

initialization part is done by the class ConfigManager, which is not discussed here in detail as it 

does not contribute to the optimization algorithm and is only a tool used to communicate with the 

tracker. The optimization is done by the class Optimizer.  
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The inputs of an optimizer are variables and their ranges, or specific values at which they should 

be tested. These are written in an xml file and the ranges are given in a MatLab range format.  

The output of the optimizer is a report consisting of the top solutions, and if requested 

initialization files of these solutions are also created.  

The optimizer works by first reading input files that provide information about the variable to 

optimize and what method to use for optimization. It then carries out the required optimization 

and saves the results in a Report file. Following steps are carried out: 

5.1 Initialization (Input) 

The optimizer has to be initialized before running. The initialization is the input part of the 

Optimizer. The optimizer takes the following inputs: 

5.1.1 Evaluator Callback 

The optimizer is given the pointer to the callback function, which calls the tracker and the 

evaluator, and returns the evaluator data. 

5.1.2 ConfigManager  

Depending on the type of initialization the pointer to the ConfigManager is required for saving 

and editing project files. If this is not given the optimizer constructs one for itself and hides it. 

Here is a brief description of the ConfigManager: 

The tracker is a complex application, which requires numerous inputs to run. In the past it was 

difficult to initialize and setup the tracker for a scenario, especially for users not skilled in the 

algorithms running with the tracker and the specifications of the tracker, since the tracker takes 

in complex xml files as inputs. There was a need to simplify the initialization process and also 

check the given inputs for errors and compatibility issues, thus eliminating the need to manually 

write the file.  

The ConfigManager is a class that has been specifically designed to initialize a tracker. It 

provides a graphical user interface (GUI) to input the initialization parameters then validates all 

the parameters by a previously defined guide (restrictions) and then generates an output xml 

containing the initialization parameters for the tracker. The input of the class is also an xml file 
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that provides a pseudo code to create the GUI, which also provides restrictions for the input 

variables.  

The ConfigManager class is basically used to provide a user-friendly xml file writing 

application. The ConfigManager allows a user to load, edit and save xml files as well as check 

the values input by the user.   

There are two types of files used with the ConfigManager: there is a Default file, which has all 

the details about the controls (variables) required to create the GUI and the Output file, which 

provides the output (values) of the GUI controls. The Default file is used independently, while 

the Output file needs the corresponding Default file to open.  

The Default file is the main file that creates the GUI. All the elements of the GUI i.e. controls, 

groups, sections and subsections that form and shape the structure of the GUI are defined in this 

file. It also contains the guide (restrictions) on acceptable values of controls and other effects that 

elements in the GUI might have on themselves or other elements. 

The Output file is the output of the Default file. It can be opened, modified and saved using the 

ConfigManager. This file contains all the values input by the user and is used to feed inputs to 

the tracker or any other application it is used with. 

The ConfigManager opens an input file which can be the Default or the Output file and displays 

all the variables as controls in it. The user is allowed to modify the values of these controls 

according to the restrictions provided by the Default file. The values are then checked for 

constraints and saved in the output xml, which is then fed to the tracker. The ConfigManager, 

although specifically designed for tracker initialization, can also be used to write xml files for 

other applications.  

The output of the ConfigManager is an xml file also known as the output file. This file contains 

the initialization information for the tracker. 

5.1.3 Configuration File 

The configuration file is an xml that gives the following information: 
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Method 

Default method of optimization for the tracker e.g. 

<Method>GravitationalSearch</Method> 
 

Method Parameters 

These are the default parameter values for PSO and GSA. 

 Particle Swarm Optimization 

The particle swarm needs the following parameters for initialization.  

Max Runs: Maximum number of iterations 

Samples: Population size 

  : Inertial weight; if the attribute ‘Reduce’ is yes, the value of   will decay with time. 

   : Cognitive factor 

   : Social factor 

<ParticleSwarm> 
  <MaxRuns>350</MaxRuns> 
  <Samples>25</Samples> 
  <w Reduce="yes">1</w> 
  <phiP>1</phiP> 
  <phiG>2</phiG> 
</ParticleSwarm>  

 Gravitational Search Algorithm 

The gravitational Search Algorithm needs the following parameters for initialization 

Max Runs: Maximum number of iterations 

Samples: Population size 

 : Gravitational decay constant 

  : Gravitational Constant 
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<GravitationalSearch> 
  <MaxRuns>350</MaxRuns> 
  <Samples>25</Samples> 
  <G0>100</G0> 
  <Alpha>20</Alpha> 
</GravitationalSearch> 

 

Language File 

This string gives the file path of the Language File that holds the message and error strings for 

user interaction. 

<LanguageFile Path_Type="RelativeToSelf"> 

common/Optimizer.lang</LanguageFile>  

Warnings 

This flag indicates whether to enable or disable warnings. 

<ShowWarnings>Yes</ShowWarnings> 
 

Save Top Files 

Flag to indicate whether to save the top files in the results folder or not  

<SaveTopFiles>no</SaveTopFiles> 

 

History Number 

Variable indicating the number of fitness tests to keep in history to avoid running the test on the 

same solution again.  

<HistoryNumber>1000</HistoryNumber> 

 

Original Files 

Information about handling the last saved (original files) of the project. 

<OrignalFiles> 

  <DeleteBackup>1</DeleteBackup> 

  <ReplaceWithOptimized>1</ReplaceWithOptimized> 

</OrignalFiles> 
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 Delete Backup: 

 This flag indicates whether to delete the backup of the original files at the end of optimization or 

not. 

 Replace With Optimized:  

This flag indicates whether to replace the original files with the optimized ones or not. 

 

5.1.4 Project File 

The project file is an xml that gives information about the project to optimize. 

Settings 

These are the settings for the optimizer 

 Method 

It is the method of optimization to use for the given project and the initialization parameters for 

the method.  

<Method Type="GravitationalSearch"> 

  <GravitationalSearch> 

    <MaxRuns>350</MaxRuns> 

    <Samples>25</Samples> 

    <G0>100</G0> 

    <Alpha>20</Alpha> 

  </GravitationalSearch> 

</Method> 
 

 Input 

The project for the optimizer needs the following inputs to run: 
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TopN: It is the number of top solutions to provide at the end of optimization for example, if 

TopN is 10, the optimizer will provide with solutions with the top 10 scores.  

Variables to Optimize: This gives the path to the file that specifies the variables to optimize for 

the project. 

Metrics: This gives the path to the file that specifies the performance metrics that were received 

from the evaluator.  

PE Weights: This gives the path to the file that specifies the weights given to each performance 

metric. 

PV Relations: This gives the path to the file that specifies the relation between the variables and 

the metrics. 

<Input> 
  <VariablesToOptimize>Variables.xml</VariablesToOptimize> 
  <Metrics Path_Type="RelativeToSelf">Metrics.xml</Metrics> 
  <PE_Weights Path_Type="RelativeToSelf">PE_Weights.xml</PE_Weights> 
  <PV_Relations Path_Type="RelativeToSelf">PV_Rel.xml</PV_Relations> 
  <TopN>100</TopN> 
</Input>  

Output 

This section of the file gives information on how to save the results of the optimization

<Output> 

  <Report Path_Type="RelativeToSelf"> 

  ../../results/optimizer/report.xml</Report> 

  <ResultsFolder Path_Type="RelativeToSelf"> 

  ../../results/optimizer</ResultsFolder> 

</Output> 
 

 Report  

This gives the path to the report file where the results are saved 

 Results Folder 

This gives the path to the folder where results are saved i.e. the report file and the TopN project 

files. 
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5.2 Preparation  

This part of the program deals with preparing the inputs for the optimizer and cleaning up the 

parameters. Following are the steps taken for the preparation of the data.  

5.2.1 Read Input Files 

In this step the following input files are read, for which the paths have previously been provided. 

Variables File 

This file gives the variables to optimize and the range or values at which they are to be tested. 

The ranges are given in MatLab range format i.e.                      or [start]: [end]. If the 

step is not given it is considered as 1. The multiple ranges mentioned for a single variable may 

not be continuous. The value for the variable is check for all the given constraints, e.g. if an 

integer range is 3:1:5 and 7:1:9 the valid solution for this variable would be 

                     If the variable supports a double value and PSO or GSA techniques are 

used, the step size does not matter and the valid range for v would be                

            . 

<File Name="../../projects/3d_spherical/tracker.xml" 

Path_Type="RelativeToSelf"> 
  <Control Name="track_confirmation_for_display_m"> 
    <Ranges> 
      <Range Name="Range_1">2:1:4</Range> 
    </Ranges> 
  </Control> 
  <Control Name="track_confirmation_for_display_n"> 
    <Ranges> 
      <Range Name="Range_1">2:1:4</Range> 
    </Ranges> 
  </Control> 

<Control Name="process_noise_scaling_factors"> 
    <Values> 
      <Value Name="Value_1">0.003:0.0005:0.006</Range> 

      <Value Name="Value_2">0.004:0.0005:0.005</Range> 

    </Values> 
</File> 

 

Weights File 

This file gives the weights of the performance metrics for score calculation.  
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<Weights> 
  <Metric Name="RMSE" Weight="1.0" /> 
  <Metric Name="FalseTrackRate" Weight="10" /> 
  <Metric Name="NumFalseTrack" Weight="0.0" /> 
  <Metric Name="CumBroken" Weight="0.0" /> 
  <Metric Name="Completeness" Weight="0.0" /> 
  <Metric Name="TrackFragment" Weight="0.0" /> 
  <Metric Name="ConfLatency" Weight="10" /> 
  <Metric Name="TrackPD" Weight="0" /> 
</Weights> 

 

5.2.2 Quiet Mode 

The ConfigManager is switched into Quiet Mode i.e. the user will not be able to see any 

messages from the ConfigManager. 

5.2.3 Load Project Files 

When the variables file is read, the parent files of all these variables are opened with the 

ConfigManager. The backup of these files are also created as the optimizer will try to change 

these files. 

5.2.4 Cleanup 

At the cleanup stage variables and parameters are cleaned up to make the optimization efficient, 

i.e. variables that have no effect on the output or that are not available in the Default file are 

removed from the ‘variables to optimize’ list.  

Metrics 

The following metrics are removed from the evaluation list: 

 Metrics with zero weight. 

 Metrics that have no effect on the score. 

 Variables 

The following variables are removed from the optimization list. 

 Variables whose parent files could not be opened. 

 Variables that were not found in their parent files 

 Variables that did not affect any of the performance metric. 
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5.2.5 Choose Best Method 

This step evaluates the variables and their ranges to decide which method of optimization would 

be best. If the number-variables are all integers and their ranges are not very wide so that the 

total number of required fitness tests is less than the default max runs for PSO and GSA, the 

optimizer chooses the exhaustive search, otherwise it optimizes with PSO or GSA. 

5.3 Optimization (Process) 

This is the part where optimization takes place. It has four steps: 

5.3.1 Calculate Solution  

Here the optimizer calculates a solution for the problem depending on the method selected. 

These methods are discussed below. 

5.3.2 Apply Solution 

The values calculated for all the variables by the above step are then written into their respective 

files using the ConfigManager. If the ConfigManager is successful in validating and saving the 

files the program moves forward otherwise it goes back to step one to find another solution. 

5.3.3 Run Tracker and Evaluator 

This part deals with running the tracker and getting the results from the evaluator. There are two 

ways to get the results: 

Callback Function 

In this method he results are obtained from the callback function. The pointer to this function is 

given during the initialization of the optimizer.  This function is calls the tracker and then the 

evaluator, returning the evaluation metrics.  

Exe Paths 

The results from the fitness function are read from a file in this method. The optimizer first runs 

the exe for the tracker and then for the evaluator. When the evaluator gives its output in the form 

of a file, the Optimizer reads the file for the evaluation metrics. 
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5.3.4 Score Calculation 

The score is calculated by adding the weighted sum of all metric values translated to score.  The 

individual score of each metric is calculated and then summed up based on their weights. The 

individual score of each metric is calculated by different methods based on the type of the 

metric. Below are the seven types of value to score relations and their calculation methods.  

 Linear Direct 

                   

 Linear Inverse 

                   

 Direct 

                   

 Inverse 

                                

 Log 

                         

 No Effect 

        

 Unknown 

        

Example:  

For the following three metrics: 

Name Relation  Weight Value 

A Linear Direct       

B Linear Inverse       

C Log       

  

The total score would be: 
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5.4 Results (Output) 

The output of the optimizer (saved in the results folder) consists of the following two 

components: 

5.4.1 Report 

The report is the final output of the optimizer. It lists in descending order the Top N solutions 

discovered; i.e. the solutions with the Top N scores.  

5.4.2 Project Files 

If requested the optimizer saves the project files for the tracker, with Top N solutions in separate 

folders. These can be later copied to the original folder for testing by the user.  

5.5 Modules: 

The application has been divided into the following modules: 

1. Tracker 

2. Optimizer 

3. ConfigManager 

4. Performance Evaluator 

The following flow charts show how the algorithm runs (Figure 3 Optimizer Flow Chart) and 

what part of algorithm is handled by each module (Figure 2 Modules). 
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Figure 2 Modules 



Chapter 5. Automated Tracker Optimizer   38 

 

Start

Configuration 
File

Initialize 
Optimizer

Prepare 
Data

Opttimizer 
Project File

Optimization 
Algorithm

Solution Configmnager

Tracker

Evaluator

Cleanup Data

Choose Best 
Method

Tracker 
Files

Tracks

Metrices Calculate Score
Stopping 
Criterion 

Met?

No

YesWrite Report

End

 

Figure 3 Optimizer Flow Chart 



 

 

 

Chapter 6  

 

OPTIMIZATION TECHNIQUES 

 

Regular optimization algorithms are not feasible with this tracker optimization problem since it 

has to deal with a higher dimensional search space where the variables involved have an 

irregular, nonlinear effect on the output and are also not differentiable functions. Also the search 

space increases exponentially with the increase in dimensions or range making exhaustive search 

very impractical. 

Heuristic methods are best applied for problems with multiple dimensions and large search 

spaces. There are many nature inspired algorithm like the Genetic Algorithm, Ant Colony Search 

Algorithm, Particle Swarm Optimization, Gravitational Search Algorithm etc. However these 

algorithms do not guarantee the optimal solution in all cases; different algorithms work best for 

different problems.  
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This Optimizer provides two of these heuristic methods and one exhaustive search algorithm. For 

smaller scale problems (smaller number of variables and short ranges) the Optimizer uses ‘All 

Combinations’ (exhaustive search), otherwise one of the heuristic algorithms is deployed. 

The following are the three available methods.  

6.1 Exhaustive  

6.1.1 All Combinations 

For this method the tracker is evaluated for every combination of values associated with each 

variable.  If there is a set of n variables                   and each    has    number of 

values, then the total number of combinations would be    
 
    . Each of the solution is 

evaluated and the ones with the top N scores are saved and written into the report. 

For example if there are the following values for the variables A, B and C: 

             

              

          

The tracker will be evaluated for the following 18 combinations: 
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The total number of combinations is                   

6.2 Heuristic Methods 

Heuristic methods are experience based programming methods that involve learning and 

discovery to find a solution that is not guaranteed to be optimal but adequate for a given set of 

goals. These methods are used where exhaustive search is not feasible.  

Many of the heuristic methods are nature-inspired, of which the Particle Swarm Optimization 

(PSO) and the Gravitational Search Algorithm (GSA) have been implemented in this application. 

These methods have a population of candidate solutions (multiple starting points) in the search 

space that work in parallel and communicate with each other to get an optimal position. There 

are two patterns of search involved: exploration and exploitation. Exploration is searching a 

broader region of the search space while exploitation is finding the optima around a good 

solution. Exploration increases the velocity of the agents and prevents from the optimizer from 

getting trapped in local optima. These methods facilitate exploration in the beginning of the 

algorithm and with time fade it out and fade in exploitation. The balance between the two is very 

essential for a good performance. 
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The members of population called particles in PSO and agents or masses in GSA go through the 

following steps:  

 Self-Adaptation: members try to improve their performance 

 Cooperation: members communicate and collaborate with each other  

 Competition. Members compete to survive 

Both of the mentioned algorithms have stochastic properties. All the heuristic methods provide 

satisfactory results but there is no method that is superior to all methods for all optimization 

problems. Different methods perform best for different solutions.  

6.2.1 Particle swarm 

Background 

The Particle Swarm Optimization (PSO) is used to optimize multi dimensional problems. The 

optimizer is inspired by the behaviour of social animals such as insects (ants, bees, and termites), 

fish, birds etc. It works the way these animals interact in swarms or colonies when looking for 

food. They spread out in the given space and look for good positions; they communicate the 

better positions with each other and also keep in memory the best ones they have discovered 

themselves. Based on this information all the individuals adjust their positions and velocities. 

The PSO is mostly applied in search engines and optimizers. The PSO was originally discovered 

by Kennedy and Eberhart [1] who were trying to simulate the social model of these creatures in 

their swarms, flocks or schools. They observed that this method was performing optimization.  

Introduction 

The PSO is an iterative, computational method that optimizes a problem by creating random 

feasible solutions in a search space and improves them iteratively using the quality information 

of each candidate.  

The PSO is useful for handling multi-dimensional, nonlinear problems as it is a pattern search 

method and does not require the problem to be differentiable. It is meta-heuristic as it makes no 

assumptions about the problem and can search very large spaces. The optimal solution is not 

guaranteed but the probability of finding one is high if the parameters for the optimizer are 
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correctly initialized. In conclusion PSO is suitable for problems that are noisy, partially irregular 

and change over time. 

Algorithm 

The PSO works by evaluating a population (swarm) of randomly chosen solutions (particles) for 

the tracker. It moves the particles around in the search space, with reference to the particle with 

the best position and the particle’s own best position through time, to find an optimal solution. 

These best positions (solutions with the highest evaluator score) act as guide for the particles and 

are updated if a position with a higher score is found. This process is repeated several times until 

the stopping criterion is met.  

The variables act as dimensions of the particle and the value of each variable is considered as the 

position of the particle in that particular dimension.  

The score (quality) of a particle at a certain position (candidate solution) is called the fitness of 

that particle and is denoted by the function  . The fitness function takes in a vector and gives out 

a scalar. The gradient of this function is not known and can be anything. Since the goal is to find 

a solution that gives the maximum evaluator score, the goal of the optimizer would be to find a 

solution   for which the fitness is greater than the fitness of all the positions in the search space 

( ) i.e. 

          where     

Let   be the number of particles in the swarm, and for each particle   has position vector     and 

velocity vector   in the search space  . Let    be the best known position of the particle and   be 

the best known position of the entire swarm.  

 Initialization 

1. The optimizer starts with initializing the position of each particle   in each dimension 

with a random uniform distribution based on the range of that particular dimension: 

            

where    and    are the upper and lower boundaries of the search space. 

2. The best known position    of each particle is initialized to its initial position: 
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3. If the fitness of the particle is greater than the global best(best one discovered yet by all 

particles) , the global best position is updated: 

If             ,       

4. Initialize the particles velocity  

                       

 Iteration  

These steps are repeated for each particle until a stopping criterion is met: 

1. Pick random numbers    and     

             

             

2. For each dimension   update the velocity  

                                               

where     and   are constants discussed below. 

3. Update the particles position 

         

4. If               update the particle’s best known position:  

      

5. And if             , update the swarms best known position  

     

 Velocity 

The velocity update equation has three parts: the momentum part        , cognitive part 

                    and the social part                 .  

Momentum Part: The momentum part of the velocity controls the local exploitation and the 

global exploration of the search. The constant   is called the inertia weight which determines the 

ratio between exploitation and exploration. A higher value of   would increase the velocity and 

thus provide with more exploration while a lower value would slow the particle down and make 

it exploit its local surroundings. The inertial weight   can be set to a higher value in the 

beginning for global exploration and then gradually decreased over time to refine the search. 
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Cognitive Part: The cognitive part of the velocity conveys the confidence of the particle i.e. how 

much the particle trusts its own findings. The coefficient    called the cognitive factor 

determines how much effect the particle’s own experience has on the velocity. It is also known 

as an acceleration coefficient. 

Social Part: The social part of the velocity guides the particles to the global best position. The 

social coefficient    determines how much the particle trusts the success of other particles. It is 

also known as an acceleration coefficient. 

If the calculated velocity of a particle in some dimension makes it go out of the search space it is 

adjusted to bring the next step right on the boundary of the space. 

PSO Applications  

The first practical application of PSO was in 1995 in the field of neural networks. The 

application was able to train and adjust the weights of a feed-forward multilayer perceptron 

neural network. The results of the algorithm were as effective as the conventional error back-

propagation approach. After that PSO became rapidly popular and due to its simple and efficient 

nature its applications were explored in several fields. Since then a lot of work has been done on 

the algorithm and many improvements and varieties have been introduced. These varieties have 

made PSO applicable to many different optimization problems from unconstrained, single-

objective or static problems to constrained multi-objective or dynamic problems. Following are a 

few applications of the PSO [40]: 

 Combinatorial optimization problems 

 Computational intelligence applications 

 Electrical and Electromagnetic applications 

 Signal processing  

 Graphics 

 Image analysis: IRIS recognition, face detection and recognition, image segmentation , image 

classification, defect detection, image retrieval, image registration , pixel classification , 

detection of objects, texture synthesis , microwave imaging , scene matching, , character 

recognition , shape matching , image noise cancellation .  
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 Video Analysis: MPEG optimization, motion estimation, object tracking, body posture 

tracking, traffic incident detection etc 

 Robotics 

 Bioinformatics  

 Medical applications. 

Flow Chart 

The following flow chart shows the algorithm of the PSO 
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Figure 4 PSO Flow Chart 
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6.2.2 Gravitational Field Search  

Background 

The Gravitational Search Algorithm (GSA) developed by Rashedi et.al in [13] is based on 

Newton’s law of universal gravitation, which states that any two masses in the universe attract 

each other with a force directly proportional to the product of their masses and inversely 

proportional to the square of the distance between them. The GSA is formulated on the principals 

of gravitation and it is assumed that the candidate solutions interact with each other the way 

masses in the universe attract each other.  

Let there be two masses    and    , separated by distance   , and the gravitational force by 

which they attract each other be F, then: 

   
    

     

Where   is the gravitational constant. 

Since the actual value of   decreases with the age of the universe, the following function is used 

to calculate the value of   with time. 

            
  
 
 
 

     

where      is the value of the gravitational constant at time  , and       is the value at the first 

cosmic quantum-interval of time   . 

According to Newton’s second law of motion, the acceleration of each particle will be 

  
 

 
 

There are three kinds of masses: 
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Active gravitational mass (  ) is the measure of an object’s gravitational field. Objects 

with small active gravitational mass have a weaker gravitational field than objects with 

greater active gravitational mass. 

Passive gravitational mass      is the measure of the gravitational field’s strength for a 

particular object. Objects with small passive gravitational experience a smaller force from 

the gravitational field than objects with greater passive gravitational mass. 

Inertial mass (  ) is the measure of an object’s inertia. Objects with large inertial masses 

resist more to forces, and change their states of motion slowly than objects with smaller 

inertial masses. 

For a collection of masses, the above equations can be re-written, as 

     
      

    and     
   

   
 

where     is the force that acts on mass   by mass  , and   is the acceleration of mass   due to the 

overall force acting on it.    ,     and     represent the active mass of  , passive mass of   and 

the inertial mass of  .  

Introduction 

The Gravitational Search Algorithm considers all particles as masses communicating through the 

gravitational field.  All the masses attract each other causing a global movement of all of them. 

The mass of each object is the measure of the quality of its solution. As acceleration is inversely 

proportional to the masses, the heavier masses move slowly giving us exploitation and the lighter 

masses move fast giving us exploration.  

Each mass have four aspects: position, inertial mass, active gravitational mass, and passive 

gravitational mass. The position of a mass provides the solution and the masses correspond to the 

quality of the solution. The algorithm adjusts the masses of all particles to find the optimal 

solution with all of them converging toward the heaviest mass.  

Algorithm 

Let N be the number of agents in this system and d be the number of dimensions (variables). 

Then   and    represent the position and velocity vector of the agent   respectively, and   
   and 
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  are the position and velocity (respectively) of the  -th agent in dimension  .    is the fitness 

function. 

 Initialization 

1. The optimizer starts with initializing the position    of each agent    in each dimension 

with a random uniform distribution based on the range of that particular dimension. 

               

where    and    are the upper and lower boundaries of the search space.  

2. Initialize the velocity of all particles: 

                       

3. Initialize the acceleration of all particles with zero:  

       

4. Initialize the force of all particles with zero:  

      

5. Calculate the fitness      of each particle. 

6. If the fitness of the particle is greater than the global best(best one discovered by all 

particles at the current time) , the global best position is updated: 

If                ,          

7. If the fitness of the particle is less than the global worst (worst one discovered by all 

particles at the current time), the global worst position is updated: 

If                 ,           

8. Update the all-time-global-best                                      position with the 

current global best calculated at the end of initialization. This is not part of the original 

algorithm but an addition that was brought in for this application. Its purpose is discussed 

later in the article. 

 Iteration  

These steps are repeated until a stopping criterion is met: 

1. Update the best and worst positions: 
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        ,          and All-time best        position in the search space are calculated 

as: 

           
         

      

            
         

      

           
                    

      

 

2. Calculate      

              decreases with time, it is calculated as  

             
 
   where   is the total number of iterations and   is normally taken as 

20. 

 

3. Calculate the mass       for all agents: 

It is assumed that all the three kinds of masses are equal for each particle  , i.e.: 

               

   is calculated by the fitness evaluation of the agent. If an agent has a higher mass then 

this means that it has a higher fitness value. Heavier agents walk more slowly than lighter 

ones.  

      
     

      
 
   

 

where       
                    

                      
  

If            is equal to            ,       is assumed as 1.  

If        is equal to zero, and the agent is accelerated toward the best position in that 

dimension with max acceleration.  

 

4. Calculate the force       for all agents : 

At time  , the force acting on mass   from mass   will be: 
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where        is the Euclidian distance between the two agents   and  , and   is a small 

constant preventing the denominator from becoming zero. 

To give a stochastic characteristic to the algorithm, the total force that acts on agent   in a 

dimension   is calculated as a randomly weighted sum of the  -th components of the 

forces from all other agents. 

  
            

    

 

       

 

Where    is a uniform random variable in the interval        

 

5. Calculate the acceleration       for all agents 

The acceleration can then be calculated as  

  
     

  
    

      
 

Calculate the velocity       and position       for all agents 

The velocity an agent is a fraction of the current velocity plus the acceleration 

   
             

       
     

where    is a uniform random variable in the interval      , which is used to give a 

randomized characteristic. If the velocity is large enough to make the particle exceed 

bounds it is reinitialized with a uniform random value inside the bounds. 

  
          

       
       

 K-Best 

To save computational costs and to exploit the best masses  the number of agents is reduced with 

time. Then only a set of agents with bigger masses apply forces to all the agents, and guide the 

weaker ones towards themselves. This method should be activated gradually and for the last few 

iterations so that the optimizer may not get trapped in local maximas.  
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  All Time Best 

Since the global best gives the best position of the current time, it is possible that the best 

position from the past is replaced by a lower one in the next iteration. So the all time best 

position in kept in memory and at the end of the algorithm it is presented as the optimal position. 

Flow Chart 

The following flow chart shows the algorithm of the GSA 
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 Figure 5 GSA Flow Chart 
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6.2.3 Discrete Variables 

Variables that have discrete values or variables with non-float values are rounded up before 

being used but they remain as float values in their algorithms.  

6.2.4 Population Size 

There is no guaranteed way to calculate the optimum population size based on the number of 

dimensions and search space but as a rule of thumb it is 3 or four time the number of variables. If 

the population size is too low, the purpose of using a population based algorithm would be killed. 

If the number is too high and the number of evaluator runs are fixed or the amount of time is 

fixed, the number of iterations would become low and the algorithm would not be able to 

properly explore or exploit the search space. 

6.2.5 GSA versus PSO 

GSA and PSO are both SI algorithms and follow the same basic process, but some of the 

principles they follow are different. Here are some of the important differences among the two 

algorithms observed by the authors of GSA [13]. 

 PSO calculates the direction of an agent using only the global and personal best positions 

while GSA’s calculation is based on the overall force obtained by all the other agents. 

 PSO updates the agents regardless of the fitness of their solutions while the GSA updates the 

force proportional to the fitness value. 

 PSO keeps the personal and global best in memory when updating the velocity while GSA is 

memoryless and involves only the current positions in the updating process. 

 PSO updates without including the distance between solutions into its calculations while the 

GSA takes distance into account as the force calculated is inversely proportional to the 

distance between the solutions. 

6.2.6 History 

The optimizer keeps a history of the last    solutions tested by the algorithm which prevents it 

from evaluating the same solution again. Ideally all the history should be maintained, however 

memory constraints allow only the last    solutions to be stored in memory. The number    is 

given by the configuration file of the optimizer.  



 

 

 

Chapter 7  

 

RESULTS 

 

The performance of the optimizer was evaluated with mathematical functions, images and the 

tracker. Below is a discussion of the results and a comparison of the methods. 

7.1 Images 

The methods were tested with images by using them as fitness functions for a 2D problem, i.e. 

the pixel intensity at each point was considered as the fitness of that point and the aim of 

optimization was to maximize the function by finding the brightest point in the image. Two kinds 

of images were used, one with only one global optimum (Gradient.jpg) and the other with 

multiple local and global optimum areas (X-Ray.jpg).  The plots have been plotted using data 

averaged over 50 simulations. The following images were used:  
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Figure 6 Gradient Image 

Single Global Optimum Area. Max Pixel Intensity 

is 216 

 
Figure 7 X-Ray Image 

Multiple local and Global Optimum Areas. Max 

Pixel Intensity is 255 [41] 
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If the number of iterations is the same for all tests, the following results are obtained for different 

sample sizes using Particle Swarm Optimization and Gravitational Search Algorithm on the 

Gradient Image.
1
 

 

 

 

Figure 8 Fixed number of Iterations (Gradient Image) 

                                                 

 

1 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value 

(216). 
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If the number of iterations is the same for all tests, the following results are obtained for different 

sample sizes using Particle Swarm Optimization and Gravitational Search Algorithm on the X-

Ray Image.
2
 

 

 

 

 

Figure 9 Fixed number of Iterations (X-Ray Image) 

                                                 

 

2 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value 

(255). 
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If the number of fitness tests is kept same, and the number of iterations are changed based on the 

sample size the following results are obtained for the Gradient Image using PSO and GSA
3
.  

 

 

 

Figure 10 Fixed number of Fitness Evaluations (Gradient Image) 

 

                                                 

 

3 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value 

(216). 
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If the number of fitness tests is kept same, and the number of iterations are changed based on the 

sample size the following results are obtained for the X-Ray Image using PSO and GSA
4
. 

 

 

 

Figure 11 Fixed number of Fitness Evaluations (X-Ray Image) 

                                                 

 

4 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value 

(255). 
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7.2 Tracker  

The Optimizer was run with the tracker to find the optimal solution for it, with the fitness 

evaluation done by the help of the Performance Evaluator. The Optimizer gave considerable 

improvements in many areas for the Tracker. Below are the results of the few performance 

parameters it was run to optimize. These results are averaged over multiple Monte Carlo runs. 

These bar plots show the product of the parameter value and the weight of the parameter used to 

calculate the scores.  

In this example, PSO was used as the optimization method with 10 samples and 10 Maximum 

runs i.e.10*10=100 fitness evaluations and                     

The variable to optimize was the “Process Noise Scaling Factor” and the allowed range was from 

0.01 to 1. 

  

Figure 12 Performance Evaluations 
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This above chart shows how much the tracker performance improved by using the Optimizer on 

one variable.   

Tests were performed to compare the two methods using the Tracker. The variable to optimize 

was the “Process Noise Scaling Factor” and the allowed range was from 0.01 to 1. Both Methods 

were given 10 samples and 10 Maximum runs i.e.10*10=100 fitness evaluations. For PSO: 

                   and GSA:            

The tracker gave improved results for both the optimization methods, but the score for GSA was 

slightly better than PSO. As it is a minimization optimization, lower scores are better. Score 

before optimization was 1213.73265,  while score with GSA: 522.72521, and the score with PSO 

was 523.43729. These results are an average of multiple Monte Carlo runs. 

 

 

Figure 13 Comparison of PSO and GSA 
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Figure 14 Tracker Ground Truth 

 

 
Figure 15 Tracks before Optimization 
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Figure 16 Tracks after Optimization 
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7.3 Observations 

By studying the plots it is observed that the PSO gives better results for simpler problems while 

the GSA is more effective for complex problems. Bigger population sizes give better fitness 

curves if the number of Fitness Evaluations (FEs) is not considered and iterations are kept the 

same. This is because for bigger populations, higher numbers of FEs are carried out. Normally 

the FEs are costly so if each population size is given a fixed allowance of FEs , it is observed that 

the populations with a medium size perform the best as they strike a good balance between 

iterations and population. The performance of GSA drops considerably with population sizes less 

than 5.  

The PSO and GSA perform differently in different circumstances. In some case the PSO 

performs better than the GSA and in some not. The cost and resource management of both the 

methods change with the scenarios. It has been observed that GSA is more costly w.r.t time 

while PSO is considerably faster than GSA. 

The fitness percentage is calculated as: 

                   
                       

              
      

Following are the bar plots comparing Fitness Percentages for the two methods over different 

Population Sizes. 
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Figure 17 Fitness Percentage 
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Chapter 8  

 

SUMMARY 

 

8.1 Conclusions 

Studying the results of the Optimizer from the Tracker, it can be seen that the Optimizer gives a 

significant improvement on the results. With the automation of the initialization and optimization 

of the tracker, and the assurance that the tracker is correctly initialized, the use of the Tracker has 

been simplified and improved to a great extent. Since this application is going to be used offline 

without having any issue of time, many parameters can be optimized in combination for the 

given scenario.  

The Optimizer is a separate module, independent of the tracker, therefore it can be easily used 

with any general optimization problem, and it can be set up to figure out the optimization method 

automatically if unsure about which one to use.  
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8.2 Future Work 

The optimizer is fully functional and supports all the features mentioned in earlier chapters 

however we have some future work in mind to improve it further. Following are the additional 

features we will be working on: 

8.2.1 Simulated Annealing (SA) 

The Simulated Annealing is a heuristic search algorithm, which starts the search from a single 

point and continues in a sequential manner. This might significantly reduce the number of fitness 

calculations carried out to find the optimal solution, since both the algorithms supported in the 

application are parallel search ones. 

8.2.2 MatLab Configurator 

There is work in progress on a C++ application that will take in a Default (template) file for a 

configuration manger and convert it into a MatLab (.m) file that generates a working GUI similar 

to the ConfigManager. This can then be used with the optimizer to process solutions. 

8.2.3 Fitness Approximation 

In most real EA applications the evaluation of the fitness function is the most computationally 

complex and expensive part of the algorithm. To lower the cost of computation fitness, 

approximation techniques could be applied to make the fitness function simpler. Fitness 

approximation techniques involve building a simpler fitness model from known fitness values by 

learning from them and interpolating them. These techniques include lowering the polynomial 

degree of the original fitness function, regression analysis, artificial neural networks, adaptive 

fuzzy fitness granulation etc. When working with high dimensional problems with limited 

number of training samples it is difficult to build an efficient approximate model of the fitness 

function and using them for evolutionary algorithms may result in the algorithm converging to a 

local optima. In some cases it is helpful to use a fitness function together with the approximate 

model but due to the complexity of the tracking problem fitness approximation was not 

applicable.   

Adaptive Fuzzy Fitness Granulation [42]  

Adaptive Fuzzy Fitness Granulation (AFFG) is a technique for approximating a model for the 

fitness function to reduce computational costs. In AFFG, a pool of solutions, represented by 
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fuzzy granules with finesses calculated by the original fitness function are maintained. If a new 

solution (granule) is sufficiently close to an existing fuzzy granule from the pool then the new 

granule’s fitness is approximated with the known granules fitness. Otherwise if the new granule 

is considerably different from the ones in the pool, it is added as a new fuzzy granule to the pool. 

The size of the pool as well as the radius of influence of each granule is adaptive and changes 

with the utility of each granule and the overall population fitness.  

To reduce the number of fitness evaluations the radius of influence of each granule is kept large 

in the beginning and is gradually reduced as time passes. This results in more fitness evaluations 

when the completion is fierce among similar and converging solutions. Granules that are not 

used are slowly removed from the pool to prevent it from becoming too big. 

This method might prove very helpful with the algorithms in this application and we will work to 

incorporate this to reduce our computational costs. 

 

  



 

 

 

Appendix A.  

OPTIMIZER FOR GENERAL USE 

The optimizer, although designed to optimize the tracker, can also be used for general purpose 

multi-objective, multi-dimensional optimization. The optimizer can be linked to fitness-evaluator 

function that can take in input values, test them and give out an array of evaluation parameters 

and their values. The pointer to the function can be specified in the configuration file. Since 

nothing in the optimizer is hard coded and all the input variables and evaluation parameters are 

read through input files, it can easily be used for any purpose. Following are the features and 

specification for the optimizer for general use. 

Fitness Calculator 

The function called to check the output value of the given solution is known as the fitness 

calculator. This function takes in the candidate solution, calculates the value of that solution, 

then runs an evaluation on it and sends back the evaluation parameters and their values in a list.  

By-Passing ConfigManager 

The ConfigManager is used by the optimizer to write the candidate solutions in their project xml 

files. However if a problem does not require the inputs through an xml file, the ConfigManager 

can easily be bypassed and the values can be sent to the fitness calculator function mentioned 

above. 

 

  



 

 

 

Appendix B.  

CONFIGURATION FILE 

<Optimizer> 

  <ShowWarnings>Yes</ShowWarnings> 

  <DeleteOldResults>Yes</DeleteOldResults> 

  <Method>GravitationalSearch</Method> 

  <SaveTopFiles>no</SaveTopFiles> 

  <OrignalFiles> 

    <DeleteBackup>1</DeleteBackup> 

    <ReplaceWithOptimized>1</ReplaceWithOptimized>     

  </OrignalFiles> 

  <GravitationalSearch> 

    <MaxRuns>350</MaxRuns> 

    <Samples>25</Samples> 

    <G0>100</G0> 

    <Alpha>20</Alpha> 

  </GravitationalSearch> 

  <ParticleSwarm> 

    <MaxRuns>350</MaxRuns> 

    <Samples>25</Samples> 

    <w>1</w> 

    <phiP>1</phiP> 

    <phiG>2</phiG> 

  </ParticleSwarm> 

  <LanguageFile Path_Type="RelativeToSelf">Optim.lang</LanguageFile> 

</Optimizer> 

 

 

  



 

 

 

Appendix C.  

INPUT FILES 

Project File 

<Project> 
  <Settings> 
    <Method Type="GravitationalSearch"> 
      <GravitationalSearch> 
    <MaxRuns>350</MaxRuns> 
    <Samples>25</Samples> 
    <G0>100</G0> 
    <Alpha>20</Alpha> 
      </GravitationalSearch> 
    </Method> 
  </Settings> 
  <Input> 
    <ConfigManager> 
      <DefaultFiles Path_Type="RelativeToSelf"> 
        ../config/default_tracker.config</DefaultFiles> 
      <MakeRelativePath Path_Type="RelativeToSelf" /> 
    </ConfigManager> 
    <TrackerPath Path_Type="RelativeToSelf"> 
      MultiTrack.exe</TrackerPath> 
    <TrackerProjectFile Path_Type="RelativeToSelf"> 
      3d_spherical/project.xml</TrackerProjectFile> 
    <PEPath Path_Type="RelativeToSelf"> 
      release/PerfEval_x32_release.exe</PEPath> 
    <PEProjectFile Path_Type="RelativeToSelf"> 
      projects/pe/project.xml</PEProjectFile> 
    <PEOutputFile Path_Type="RelativeToSelf"> 
      results/evaluation_results.xml</PEOutputFile> 
    <VariablesToOptimize Path_Type="RelativeToSelf"> 
      Variables.xml</VariablesToOptimize> 
    <Metrics Path_Type="RelativeToSelf">common/Metrics.xml</Metrics> 
    <PE_Weights Path_Type="RelativeToSelf">PE_Weights.xml</PE_Weights> 
    <PV_Relations Path_Type="RelativeToSelf">PV_Rel.xml</PV_Relations> 
    <TopN>10</TopN> 
  </Input> 
  <Output> 
    <Report Path_Type="RelativeToSelf">results/report.xml</Report> 
    <ResultsFolder Path_Type="RelativeToSelf">results</ResultsFolder> 
  </Output> 
</Project> 
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Weights File 

<Weights> 
  <Metric Name="RMSE" Weight="1.0" /> 
  <Metric Name="AveEucError" Weight="0.0" /> 
  <Metric Name="AveGeomError" Weight="0.0" /> 
  <Metric Name="AveHarmError" Weight="0.0" /> 
  <Metric Name="MedianError" Weight="0.0" /> 
  <Metric Name="FalseTrackRate" Weight="10" /> 
  <Metric Name="NumFalseTrack" Weight="0.0" /> 
  <Metric Name="CumBroken" Weight="0.0" /> 
  <Metric Name="Completeness" Weight="0.0" /> 
  <Metric Name="NumMissedTrack" Weight="0.0" /> 
  <Metric Name="RedundantTrackRatio" Weight="0.0" /> 
  <Metric Name="SpuriousTrackRatio" Weight="0.0" /> 
  <Metric Name="NumSpuriousTracks" Weight="0.0" /> 
  <Metric Name="TrackContinuity" Weight="0.0" /> 
  <Metric Name="TrackFragment" Weight="0.0" /> 
  <Metric Name="ConfLatency" Weight="10" /> 
  <Metric Name="TrackPD" Weight="0" /> 
  <Metric Name="CumSwap" Weight="0" /> 
</Weights> 

 

Variables File 

<Variables> 
  <File Name="tracker.xml" Path_Type="RelativeToSelf"> 
    <Control Name="track_confirmation_for_display_m"> 
      <Ranges> 
        <Range Name="Range_1">2:1:4</Range> 
      </Ranges> 
    </Control> 
    <Control Name="track_confirmation_for_display_n"> 
      <Ranges> 
        <Range Name="Range_1">2:1:4</Range> 
      </Ranges> 
    </Control> 
  </File> 
  <File Name="sensor.xml" Path_Type="RelativeToSelf"> 
    <Control Name="target_detection_probability"> 
      <Ranges> 
        <Range Name="Range_1">0.90:0.01:0.98</Range> 
      </Ranges> 
    </Control> 
  </File> 
</Variables> 
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Metrics File 

<Metrics> 

  <Metric> 

    <Name>RMSE</Name> 

      <LongName>root_mean_square_error</LongName> 

        <Type>LinearDirect</Type> 

        <IdealValue>0</IdealValue> 

        <Minimize>1</Minimize> 

    </Metric> 

    <Metric> 

      <Name>AveEucError</Name> 

      <LongName>average_euclidean_error</LongName> 

      <Type>LinearDirect</Type> 

      <IdealValue>0</IdealValue> 

      <Minimize>1</Minimize> 

    </Metric> 

    <Metric> 

      <Name>AveGeomError</Name> 

      <LongName>average_geometric_error</LongName> 

      <Type>LinearDirect</Type> 

      <IdealValue>0</IdealValue> 

      <Minimize>1</Minimize> 

    </Metric> 

    <Metric> 

      <Name>AveHarmError</Name> 

      <LongName>average_harmonic_error</LongName> 

      <Type>LinearDirect</Type> 

      <IdealValue>0</IdealValue> 

      <Minimize>1</Minimize> 

    </Metric> 

</Metrics> 
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PV Relations File 

<PV_Relations> 

  <RMSE> 

    <Unknown> 

      <File Name tracker.xml" PathType="RelativetoApplication"> 

        A;B;C</File> 

    </Unknown> 

    <Linear_D> 

<File Name tracker.xml" PathType="RelativetoApplication"> 

        D;E;F</File> 

    </Linear_D> 

  </RMSE> 

  <AveEucError> 

    <Unknown> 

      <File Name tracker.xml" PathType="RelativetoApplication"> 

        A;B;C</File> 

    </Unknown> 

    <Linear_D> 

<File Name tracker.xml" PathType="RelativetoApplication"> 

        X;Y;Z</File> 

    </Linear_D> 

    <Inverse> 

      <File Name sensor.xml" PathType="RelativetoApplication"> 

        J;K;L</File> 

    </Inverse> 

</PV_Relations> 
 

  



 

 

 

Appendix D.  

OUTPUT FILE 

Report 

<Optimizer> 

  <Combination Number="1" Score="10"> 

    <File Name="test2.xml" PathType="RelativeToApplication"> 

      <A>6.957507,6.964889</A> 

      <C>two</C> 

      <B>1</B> 

    </File> 

  </Combination> 

  <Combination Number="2" Score="9"> 

    <File Name="test2.xml" PathType="RelativeToApplication"> 

      <A>6.701281,6.627104</A> 

      <C>two</C> 

      <B>1</B> 

    </File> 

  </Combination> 

  <Combination Number="3" Score="8"> 

    <File Name="test2.xml" PathType="RelativeToApplication"> 

      <A>6.592305,7.000000</A> 

      <C>two</C> 

      <B>-1</B> 

    </File> 

  </Combination> 

  <Combination Number="4" Score="8"> 

    <File Name="test2.xml" PathType="RelativeToApplication"> 

      <A>6.682393,6.686016</A> 

      <C>two</C> 

      <B>1</B> 

    </File> 

  </Combination> 

    <Combination Number="5" Score="7.5"> 

     <File Name="test2.xml" PathType="RelativeToApplication"> 

      <A>6.534048,6.000000</A> 

      <C>three</C> 

      <B>1</B> 

    </File> 

  </Combination> 

</Optimizer> 
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