

AUTOMATED OPTIMIZATION OF

MULTISENSOR - MULTITARGET

TRACKERS

AUTOMATED OPTIMIZATION OF MULTI

SENSOR – MULTI TARGET TRACKERS

By

NIMRA IFTIKHAR, B.Sc. (Eng.)
National University of Science and Technology, Pakistan (2009)

A Thesis

Submitted To The Department Of Electrical & Computer Engineering

And The School Of Graduate Studies

Of Mcmaster University

In Partial Fulfilment Of The Requirements

For The Degree Of

Master Of Applied Science

© Copyright by Nimra Iftikhar, September 2015

All Rights Reserved

ii

MASTER OF APPLIED SCIENCE

(2015)

MCMASTER UNIVERSITY

(Electrical And Computer Engineering) Hamilton, Ontario, Canada

TITLE Automated Optimization Of Multi Sensor – Multi Target Trackers For

Multi-Target Tracking

AUTHOR Nimra Iftikhar

 National University Of Science And Technology

 Pakistan (2009)

SUPERVISOR Dr. Thia Kirubarajan

NUMBER OF

PAGES

x, 80

iii

Abstract

Almost every module or project needs to be optimized to get the best results and reduce

costs. Multi-sensor, multi-input trackers require a huge number of parameters to run,

which have an undefined or unknown to the output of the tracker. It becomes very

difficult to manually initialize these parameters to get a good output and there was a need

to automate the process of selecting the parameters, validating them and initialing the

tracker. The optimizer built to cater for these issues uses heuristic genetic algorithms –

Particle Swarm Optimization and Gravitational Search Algorithm to find the best

solutions for the problem. The optimizer works with the help of a Parameter Evaluator

(developed earlier) to study the output of the tracker and incorporate the multi objective

(Pareto) aspect of the problem. The Optimizer can find solutions to any optimization

problem if hooked to a corresponding evaluator or fitness function calculator. This feature

makes the Optimizer not just another module to the tracker but an independent

application that could be used for general purpose optimization solutions.

iv

Dedicated to Farah Khala, who showered me with her relentless support and

unconditional love my eccentricity notwithstanding.

v

Acknowledgements

Praise be to Allah, who gave me the strength to undertake this challenging assignment

and granted me wisdom to complete it.

While the topic was interesting per se, I could not have completed this in the desired

manner without the painstaking efforts and guidance of Dr Thia Kirubarajan. He exposed

multiple dimensions of the problem statement and nudged me on to find an optimal

solution.

I am equally indebted to Dr R. Tharmarasa who helped bridge the gap between the very

high expectations for this project and my initial input. He was always forthcoming to

steer me out of these bottlenecks, to meet the goals within the stipulated time frame.

I would also like to thank my fellow graduate students in the ECE department, in

particular all my friends in labs 302 and 202 for their help and support. Further, my

sincere thanks are due to the ECE department staff, especially Cheryl Gies.

My family especially Farah Khala was the scarlet thread for this humble accomplishment;

without her emotional backup, this all would not have been possible.

vi

Contents

Chapter 1 Introduction ... 1

1.1 Evolutionary Algorithms ... 1

1.2 Organization of the Thesis .. 4

Chapter 2 Evolutionary Computation (EC) ... 5

2.1 Evolutionary Algorithms ... 6

2.1.1 General Algorithm of Evolutionary Processes .. 6

2.1.2 Types of Evolutionary Algorithms .. 6

2.2 Swarm Intelligence .. 7

2.2.1 Swarm Intelligence Models ... 7

2.2.2 Swarm Intelligence Principles ... 9

2.2.3 Swarm Intelligence Applications ... 10

Chapter 3 Target Tracking ... 11

3.1 Tracking Filters ... 12

3.1.1 Kalman Filter ... 13

vii

3.1.2 Extended Kalman Filter (EKF) .. 14

3.1.3 Probability Hypothesis Density (PHD) Method .. 15

3.1.4 IMM Filters .. 17

Chapter 4 Performance Evaluator .. 20

4.1 Measurements .. 21

4.1.1 Sensor Related Measurements ... 21

4.1.2 Tracker Related Measurements .. 22

4.2 Output .. 24

Chapter 5 Automated Tracker Optimizer... 25

5.1 Initialization (Input) .. 26

5.1.1 Evaluator Callback ... 26

5.1.2 ConfigManager .. 26

5.1.3 Configuration File .. 27

5.1.4 Project File ... 30

5.2 Preparation .. 32

5.2.1 Read Input Files ... 32

5.2.2 Quiet Mode .. 33

5.2.3 Load Project Files .. 33

5.2.4 Cleanup .. 33

5.2.5 Choose Best Method .. 34

5.3 Optimization (Process) .. 34

5.3.1 Calculate Solution .. 34

5.3.2 Apply Solution ... 34

5.3.3 Run Tracker and Evaluator .. 34

viii

5.3.4 Score Calculation ... 35

5.4 Results (Output) .. 36

5.4.1 Report ... 36

5.4.2 Project Files ... 36

5.5 Modules: .. 36

Chapter 6 Optimization Techniques .. 39

6.1 Exhaustive ... 40

6.1.1 All Combinations ... 40

6.2 Heuristic Methods ... 41

6.2.1 Particle swarm .. 42

6.2.2 Gravitational Field Search ... 47

6.2.3 Discrete Variables .. 53

6.2.4 Population Size .. 53

6.2.5 GSA versus PSO .. 53

6.2.6 History .. 53

Chapter 7 Results ... 54

7.1 Images ... 54

7.2 Tracker .. 60

7.3 Observations .. 64

Chapter 8 Summary ... 66

8.1 Conclusions ... 66

8.2 Future Work .. 67

8.2.1 Simulated Annealing (SA) ... 67

8.2.2 MatLab Configurator ... 67

ix

8.2.3 Fitness Approximation ... 67

Appendix A. Optimizer for General Use ... 69

Appendix B. Configuration File .. 70

Appendix C. Input Files ... 71

Appendix D. Output File .. 75

Bibliography ... 76

x

Table of Figures

Tracker System .. 12

Modules .. 37

Optimizer Flow Chart .. 38

PSO Flow Chart ... 46

GSA Flow Chart .. 52

Gradient Image ... 55

X-Ray Image .. 55

Fixed number of Iterations (Gradient Image) .. 56

Fixed number of Iterations (X-Ray Image).. 57

Fixed number of Fitness Evaluations (Gradient Image) .. 58

Fixed number of Fitness Evaluations (X-Ray Image) ... 59

Performance Evaluations ... 60

Comparison of PSO and GSA .. 61

Tracker Ground Truth .. 62

Tracks before Optimization ... 62

Tracks after Optimization .. 63

Fitness Percentage .. 65

Chapter 1

INTRODUCTION

1.1 Evolutionary Algorithms

Optimization is the process of finding the input parameters that will give the best output of a

required problem. Mathematical optimization refers to either minimization or maximization of a

function. It is practiced in many professions as they strive to achieve the best outcomes of their

problems. For example when a doctor prescribes a medication to a patient he has to balance

multiple parameters to cure the illness. These parameters include speed of recovery,

effectiveness of the medicine, comfort of the patient and side effects from the medicine itself.

The standard way of prescribing a dose is by the weight of the patient; medicines have a dosage

factor which dictates the amount to be prescribed per Kg, so the total dose for a patient is the

product of dosage factor and the total weight of the patient. In some cases where the patient’s

liver or renal system is compromised the doctors have to optimise their medication to cater their

slow excretion and metabolism. If the dose is too high, it reaches a receptor saturation point and

Chapter 1. Introduction 2

the excess is not metabolised, which is either passed out as it is or leads to toxicity. Therefore it

is vital to optimize the dose of the drug so that the patient recovers fast and the drug performs

well without causing damage to any other system in the body. Similarly in manufacturing plants,

optimization is carried out to increase productivity and reduce costs.

Some of these problems have a linear model and require optimization techniques that are simple

and efficient; however in many cases the problem is not so simple. Most of these optimization

problems have constraints that the parameters have to follow, which increases the complexity of

the problem. If the problem cannot be written as a function of the parameters it becomes even

more difficult to optimize it. Normally there are a number of possible solutions to a problem in a

search algorithm, and finding the best solution in a limited time is challenging. If the number of

valid solutions is small then less time is required to find the optimal solution, but if the search

space is large (as is the case in many real world problems) searching for an optimal solution

becomes difficult and may not always be discovered by regular methods if the resources are

limited. Evolutionary Computation is efficient to a great extent in such cases. This thesis

discusses optimizing such problems using algorithms from Evolutionary Computation.

In tracking a target, a good tracker-system and tracking algorithm do not essentially guarantee a

good output. Initializing the tracker and choosing the best algorithm and its supporting variables

for the given scenario are also essential. There are guidelines and theories relating to choosing

these values but there is no specific law that will guarantee an optimal solution. Therefore there

is a need to work on optimizing these values for the tracker under a specific scenario. Since the

number of parameters for initialization is quite big and their ranges combined give an immensely

large search space to find optimum values in, one has to look for techniques other than

exhaustive searches.

The tracker system in place needs to be setup for each specific scenario and target. The system is

initialized by giving all details of the scenario, targets, sensors and tracking algorithm in multiple

files. The tracker-system then begins tracking after initialization generates an evaluation report

on the performance of the tracker. In most situations one has no control over scenario and

sensors, and the only way to get the best results is to choose a suitable tracker and optimal

parameters of initialization. Up till now the initialization process was carried out manually by

choosing the parameter values by trial and error and a high level of skill was required to tune

Chapter 1. Introduction 3

these parameters, creating an urgent need to automate this process and make it faster, simpler

and more efficient. Since the optimization of this tracker is a multi-dimensional, multi-objective

problem with no discernible relations between inputs and outputs, very specific algorithms were

required to deal with it. The tracker optimization is a complex problem where the function to

optimize and its derivatives are unknown.

This application automates the process of tuning the initialization of the tracker. The

optimization of this tracker is a multi-dimensional, multi-objective problem; i.e. there are

multiple variables that are to be tuned and multiple objectives to be achieved. The variables are

tuned using the Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO),

which are optimized based on a list of objectives given by the user, with each objective being

given a certain weight to calculate the total ‘fitness’ of the solution.

Two flavours of swarm based algorithms have been implemented in the application to solve this

multi-dimension, multi-objective problem. The optimization techniques treat the tracker as an

unknown function and then modify the inputs according to their algorithm to optimize the

output. These algorithms include parallel searches from multiple starting points (solutions),

where each point evaluates itself and then according to the algorithm explores and exploits the

search area using the information provided by other points and the area surrounding its own

position, respectively. These algorithms are computationally expensive but since this optimizer

would be run once before starting the tracker and is not used during the run time, the expense of

time can be sustained. Similar sequential methods are also available which are faster but they do

not provide the efficiency one can get with parallel search algorithms , and since speed is not a

critical factor the selected methods provide better results. This application will save a significant

amount of time and effort by automating the initialization and optimizing.

Many deterministic optimization algorithms require gradient information; however due to the

lack of such gradients, it was necessary to look for another approach. The Particle Swarm

Optimization and the Gravitational Search Algorithms are population based stochastic

optimization techniques which do not require gradient information derived from the error

function. This makes them useful to optimize problems where these gradients are unknown or

not easy to obtain, as is the case with this tracker optimization problem.

Chapter 1. Introduction 4

The PSO algorithm was initially introduced by Kennedy and Eberhart [1] as a means to simulate

the social behavior of birds and fish in swarms. They then discovered that the algorithm had an

optimizing behaviour and could be used for solving optimization problems. This method follows

the principal that when birds (agents) are looking for an optimal location they start by scattering

into the search space randomly and then communicate their positions and the fitness of their

locations to the rest of the swarm. These agents then move around in the search space looking for

better locations, based on their own best findings and the best location discovered yet by the

entire group.

The Gravitational Search Algorithm follows a similar principal as the PSO. In this method the

agents are considered as masses, following Newton’s law, that every point mass attracts every

other mass with a force proportional to the product of their masses and inversely proportional to

the square of the distance between them. The mass of each agent is calculated based on its

fitness.

Regular optimization modules are designed to achieve a single objective, but since the quality of

tracking is decided by multiple parameters, a multi-objective optimizer was required. For multi-

objective optimization the ETFLab’s Performance Evaluator (PE) was used, which takes in track

information from the tracker and evaluates its performance by calculating performance metrics

of the tracker. The Optimizer uses the output of the PE to calculate the total score of the given

tracking instance and then incorporates the information for its next iteration. The optimizer can

be customized to improving certain performance metrics only and changing the weight of each

metric.

1.2 Organization of the Thesis

The thesis is divided into eight chapters; here is the organization of the thesis. Chapter 2

introduces Evolutionary Computation, with a focus on Evolutionary Algorithms and their

applications. Chapter 3 discusses Target Tracking and the types of tracking algorithms. Chapter

4 explains the Performance Evaluator used for the Optimizer and the performance metrics it

supports. The main Optimizer module and its workings are explained in Chapter 5, it also

explains how to use the Optimizer. The optimization techniques (Particle Swarm Optimization

and Gravitational Search Algorithm) used in the program are described in Chapter 6. The results

are contained in Chapter 7 while the Summary and future work are covered in Chapter 8.

Chapter 2

EVOLUTIONARY COMPUTATION (EC)

Evolutionary Computation is a field of artificial intelligence based on Darwinian principles,

since evolution is also an optimization process that aims to improve the ability of an organism to

survive a continuously changing environment, the phenomena of natural selection,

recombination, reproduction and mutation. EC uses algorithms inspired by biological evolution

to solve mathematical optimization problems. The theory of ‘Natural Selection’ or ‘Survival of

the Fittest’ suggests that all organisms that exist today are a result of continuous adaptation and

evolution over the ages. The fitness of an organism suggests how well it has adapted to its

environment; the organisms that survive are the ones that are able to adapt to, and bear the

environment. The individuals that are more fit have a bigger chance to live longer and reproduce

more, thus propagating their genotype to future generations. These processes of finding ways to

survive better are the basis of algorithms used in Evolutionary Computation. [2]

Evolutionary Computation has two main branches:

Chapter 2. Evolutionary Computation 6

2.1 Evolutionary Algorithms

Evolutionary Computation has a subset of algorithms called Evolutionary Algorithms, which are

inspired by biological evolution such as reproduction, mutation, recombination and selection.

These algorithms are generic population based metaheuristic and stochastic processes. All the

algorithms in this field follow the same theme where candidate solutions for the optimization

problem play the role of individuals or agents in a population and the quality of a solution is

calculated by a ‘fitness’ function. These individuals evolve according to some criterion in an

iterative process until a given satisfaction or limit is approached. [3]

Evolutionary Algorithms provide good results in almost all types of problems as they ideally do

not make any assumptions about the function to optimize. Therefore they have been successful in

a variety of fields such as biology, genetics, engineering, economics, chemistry, physics etc.

2.1.1 General Algorithm of Evolutionary Processes

The general steps of the algorithm are as follows:

1. Generate a random initial population (candidate solutions) of the swarm. These will be

the first generation of individuals.

2. Calculate the fitness of all the individuals in the population

3. Repeat the following steps until a stopping criterion is met. The stopping criterion could

be based on time, quality of solution etc.

a. Select the best individuals (solutions with the best fitness values) for reproduction

– these would be the parents of the next generation

b. Breed new individuals through crossover and mutation to get the next generation

c. Evaluate the fitness of the new offspring

d. Replace the least fit population with new individuals

In some algorithms the least fit populations are used for mutation and not replaced.

2.1.2 Types of Evolutionary Algorithms

The different types of evolutionary algorithms are given below. All these techniques follow the

same evolutionary steps differing in only the way the next generation evolves.

 Genetics Expressing Programming [4]

Chapter 2. Evolutionary Computation 7

 Genetic Algorithm [5]

 Evolutionary Programming [6]

 Evolutionary Strategy [7]

 Differential Evolution [8]

 Differential Search Algorithm [9]

2.2 Swarm Intelligence

Swarm Intelligence (SI) deals with the behaviour of unsophisticated individuals in a self

organized decentralized system, interacting locally with each other and the environment. The

individuals in SI while working without a centralized control or global model cause coherent

functional global patterns to emerge. These patterns of coordination without control can be used

for problem solving in numerous fields [10]. Swarm Intelligence can be defined as:

“Swarm Intelligence is a property of systems of non-intelligent robots exhibiting collectively

intelligent behavior.” [11]

Swarms are behaviour based systems with algorithms inspired by the social behaviour of insects

like ants and bees. These insects are simple individuals but have intelligent group behaviour. One

of the books on Swarm Intelligence defines it as phenomenon that emerges from the behaviour

of rule based particles. [12]

2.2.1 Swarm Intelligence Models

Swarm Intelligence Models are the types of SI algorithms that are used for different kinds of

problem. The following are the few models inspired by the swarm systems in nature:

 Particle Swarm Optimization [1]

 Gravitational Search Algorithm [13]

 Ant Colony Optimization [14]

 Artificial Bee Colony Algorithm [15]

 Bacterial Colony Optimization [16]

 Differential Evolution [8]

 Artificial Immune Systems [17]

 Grey Wolf Optimizer [18]

Chapter 2. Evolutionary Computation 8

 Bat Algorithm [19]

 Altruism Algorithm [20]

Some of the popular algorithms have been explained below.

Particle Swarm Optimization

Particle Swarm Optimization [21] [22] [1] is an optimization model which is evaluated by

representing candidate solutions as particles in n-dimensional space and finding the fittest point

in space. This model has been successfully applied in thesis for optimizing the tracker output

where each parameter for optimization is modeled as a dimension in the search space. This

model is discussed in detail in a later chapter.

Ant Colony Optimization

Ant Colony Optimization [23] [14] was first developed by Marco Dorigo and his colleagues for

solving combinatorial optimization problems in the early 90’s. This technique is inspired by the

search algorithm used in an ant colony to find the shortest path in a graph. In an ant colony, ants

randomly explore the search space for food, when they find a source they return to the colony

leaving trails of pheromones on their path. When other ants find such a path they tend to follow

the trail and reinforce it if they eventually find food. These trails of pheromones evaporate with

time and reduce the attractiveness of the path. Ants take more time following a longer path to

home, giving the pheromones more time to evaporate. For a relatively short path, the ants get to

make more trips on it in the same time as the long path, and they keep on adding their trails

resulting in a higher density of pheromones on the path thus attracting more ants. The

evaporation of pheromones saves the colony from converging to a local optima.

Gravitational Search Algorithm

The Gravitational Search Algorithm [13] is based on the Newtonian Law of universal

gravitation, which states that any two bodies in the universe attract each other with a force that is

directly proportional to the product of their masses and inversely proportional to the square of

distance between them. GSA is an optimization technique that considers candidate solutions

(agents) as bodies in an isolated system, where the mass of each agent represents the fitness of

the solution and the position of the agent represents the solution of the problem in n-dimensional

space. Agents with good fitness values have higher masses and they attract other agents toward

Chapter 2. Evolutionary Computation 9

themselves while agents with weaker masses gravitate towards the heavier agents. This

algorithm is also applied in the optimization of the tracker and is discussed in detail in a later

chapter.

2.2.2 Swarm Intelligence Principles

In 2011 Alex Kutsenok developed a ‘General purpose swarm intelligence technique’ [24] to help

engineers design new SI algorithms for their specific problems. He has identified and outlined

the basic principles of modeling a new algorithm; this has also helped in classifying algorithms

in Swarm Intelligence. Following are the basic principles:

Principle 1: Create a system of agents that work individually on a common problem

The first principle of Swarm Intelligence states that a multi-agent system is used to provide a

solution to the problem. The problem is then disintegrated into parts that are given to each

independent agent in the system. Agents cannot be directly controlled by any other agent or

central component and cannot be allowed to distribute tasks. The nature of the problem helps in

dividing the problem in a logical way. Individual agents work on the tasks (sub-problems)

assigned to them thus contributing to the global solution.

Principle 2: Agents are simple, fast, and have a limited perspective

In Swarm AI, agents are given a limited or local perspective of their environment. The less

information an agent is given, the simpler it is to design that agent and the faster it will carry out

the given task to reach a decision. For a good design the aim is to maximize the speed of an

agent to perform the simple tasks assigned to it without worrying about the big picture. Agents

do not think ahead or use heuristics to make decisions that take a significant amount of time.

Principle 3: Indirect Simple Inter-Agent Communication

Since the first two rules imply that agents are limited in their functionality because they focus on

local data instead of the big picture, the third rule provides a way for the system as a whole to act

globally. The final requirement of the system is that agents communicate with each other in a

simple indirect method. These methods have to be simple as agents cannot interpret complex

messages. One way of communication is the ‘stigmergy’ method in which agents communicate

through the environment [24]. This happens when an agent changes the environment so that

some other agent notices the change and alters its behaviour accordingly. Thus an indirect

Chapter 2. Evolutionary Computation 10

communication is carried out by affecting the environment. The other type of communication is

when an agent changes its own state like position or velocity so that other agents might notice

and change their behaviour. Direct communication is not allowed in SI algorithms as they tend

to make the agents and the system more complex and also slow down the system.

2.2.3 Swarm Intelligence Applications

The following are a few of the applications of swarm intelligence as researched by Kevin

Roebuck in his book ‘User generated content’ [25]

 The U.S. military is working on Swarm Techniques for controlling unmanned vehicles

 The European Space Agency is considering to use an orbital swarm for self-assembly and

interferometry.

 Its use is also being considered by NASA for planetary mapping.

 Swarm Intelligence is used to select location for transmission infrastructure for wireless

communication networks for maximum coverage.

 M. Anthony Lewis and George A. Bekey in their paper proposed using swarm intelligent

nano-robots inside the body to kill cancer tumours [26].

 Stochastic Diffusion Search was used by Al-Rifaie and Aber to locate tumours inside the

body. [27] [28]

http://en.wikipedia.org/wiki/M._Anthony_Lewis_(roboticist)
http://en.wikipedia.org/wiki/George_A._Bekey
http://en.wikipedia.org/wiki/Stochastic_Diffusion_Search

Chapter 3

TARGET TRACKING

In various field applications one faces a problem of locating and/or estimating the state of an

object in an unknown environment. When the information available is not enough to exactly

calculate the state of the object of interest (target), estimation and probability are used to track

the target. Estimation is the process of calculating a parameter from indirect, inaccurate and

uncertain observations; thus tracking can be described as the estimation of the current or future

state of a dynamic system from uncertain and noisy data. It is defined as:

“Target tracking is the estimation of the current state and prediction of the future states of a

target based on measurement received from a sensor that is observing it." [29]

Blackman and Popoli have traced the following essential steps for tracking a target [29]

1. Collect sensor data from the search space containing the target(s).

Chapter 3. Target Tracking 12

2. Partition the sensor data into sets of observations or tracks produced by the same sources,

eliminating the background and reducing false targets.

3. Estimate the number of targets and their kinematics such as future position, velocity etc.

Tracking is becoming increasingly popular in a wide range of applications. In medicine it can be

used to track abnormal cells or bacteria in blood flow. In video or image processing applications

target tracking is used to track vehicles on the road or people in an environment. Militarily

application include tracking ground vehicles, ships, submarines, airplanes, rockets etc.

There are several techniques available for estimation generally known as tracking filters. These

filters get information from the sensors and predict the state of the target using some recursive

estimation algorithm. Tracking filters are part of the Data Processing step in a general tracker

system. The system can be divided into the following parts.

Environment Sensor Array
Signal

Processor

Data
Processing

Sensor
Manager

Signal Measurement

Estimation Uncertainties

Control Signals

Electromagnetic or
Acoustic Energy

Target State Estimates

Figure 1 Tracker System

3.1 Tracking Filters

Filtering is the process of estimating the state of a dynamic target from noisy data. To analyze a

target (dynamic system) at least two models are required. The book chapter Sensor Data Fusion

with Application to Multi-target Tracking summaries the tracking filters as follows [30].

System Model: A system model describes the evolution of the state of the target with time

Measurement Model: A measurement model relates the noisy measurements to the state of the

target

Chapter 3. Target Tracking 13

where and are functions (generally nonlinear), is the state of the target, is the

measurement vector, is the process noise and is the measurement noise at

measurement time .

When using the Bayesian approach to estimate the state of the dynamic system the aim is to

construct a posterior probability density function (pdf) of the state using all the measurements

received till that time. If all the noises are white, the pdf is the complete solution for the

estimation of the problem since it contains all the statistical information. In recursive filtering the

received measurements are processed sequentially rather than as a batch, thus eliminating the

need to store the complete measurement set or to process the existing measurements again if a

new measurement becomes available. This kind of filtering has two stages: prediction and update

[30].

Prediction: In the prediction stage the filter uses the system model to predict the state of

pdf from one measurement time step to the next time step. If the pdf at time is

 , where , this stage predicts the pdf at

measurement as

Update: This stage updates the prior using Bayes’ formula with the latest measurement

In general the posterior cannot be determined analytically and this given recursive

propagation is only a conceptual solution, which can only be applied in some limited

cases.

3.1.1 Kalman Filter

The Kalman filter is an optimizing filter that predicts the future state of a dynamic system from

inaccurate, indirect and uncertain measurements of the past states of the system. It is a recursive

Chapter 3. Target Tracking 14

process that estimates the internal state of the system by learning to differentiate between the

noise and inaccuracies of the measurements and the truth. A Kalman filter is also known as an

‘optimal estimator’ or a ‘linear quadratic estimator’ [31] [32] [30].

The basic assumption of the Kalman filter is that the state and measurement models of the

system are linear i.e. where . It is also

generally assumed that the initial state error and all the noises entering the system are Gaussian.

The observation noise is assumed to be white and Gaussian with covariance and zero

mean while the process noise is assumed to be white and Gaussian with zero mean and

covariance . Considering these assumptions if is Gaussian, it can be proved

that is also Gaussian and can be parameterized by a mean covariance [33].

The algorithm recursively process the information for the state of the system in the following

manner [30]:

where

If the above assumptions hold, the Kalman filter performs better than any other filter. Many

different varieties of the filter have been developed for different problems.

3.1.2 Extended Kalman Filter (EKF)

Most real world problems are nonlinear but the simple Kalman Filter only caters for linear

systems, therefore the Extended Kalman Filter was developed to estimate the state of nonlinear

Chapter 3. Target Tracking 15

systems. The EKF does not require the state transition and observation models to be linear but

instead requires them to be differentiable. It defines the nonlinearity of a model by local

linearization of the equations [30].

In the EKF the function is approximated by a Gaussian and then the Kalman Filter is

used for the linearized functions, while the state and measurement predictions are calculated

using the original nonlinear functions.

These equations are for a first order expansion of nonlinear systems, there are other EKFs for

higher order systems but they are complex and do not perform as well as this one [30].

3.1.3 Probability Hypothesis Density (PHD) Method

When tracking multiple targets, target detection and data association are complicated by the

uncertainties in the dynamics of maneuver and clutter, and it is a challenge to associate

measurements with the targets that have generated them. The number of targets change also with

time and therefore ordinary Bayesian statistics cannot be used to compare states. This problem

can be solved using Finite Sate Statics (FISST) [34]. This algorithm gives good results but the

problem is that its computational load increases exponentially with the number of targets making

it computationally expensive when a large number of targets are present [30] [35].

The book chapter [30] explains the PHD and its calculation as a multi target filter that

recursively estimates the number of targets and their states from given observations in an

Chapter 3. Target Tracking 16

environment where uncertainties, noise and false detections are present. The PHD is defined over

the state space of one target instead of the full posterior distribution reducing the computational

cost of propagation in time.

The Probability Hypothesis Density
 is the density which gives out the number of

targets contained in a search space when integrated over that space.

The first order statistical moment of the full target posterior can be recovered from the PHD as

where is the multi-target state. The ‘maxima’ of the PHD gives the approximate expected

target states.

Prediction:

In a general multi target environment the number of targets changes due to target disappearances,

target spawning and entry of new targets, therefore the predicted PHD incorporates these factors

as:

where is the probability that a target with state at time will be alive at

time , is the probability of a target with state spawning at time ,

 is the probability of new born targets at time and is the single target

Markov transition density.

Chapter 3. Target Tracking 17

Update:

The predicted PHD is corrected with the available measurements at time to get the updated

PHD. It is assumed that the number of false alarms is Poisson distributed with average spatial

density . The probability density of the spatial distribution of false alarms is given by ,

and the detection probability of a target with state is given by . The updated PHD at

time is given by

where denotes the single-sensor/single-target likelihood and is the likelihood

operator given by

3.1.4 IMM Filters

A multiple model estimator is a filtering approach that realizes the different models of target

manoeuvres. Targets may change their manoeuvres with time thus requiring a need to model and

recognize all the manoeuvres inside a filter. In this approach a number of filters act in parallel for

each target maneuver. The Interactive Multiple Model (IMM) [33] [36] [37] estimator uses a

bank of different hypothetical target motions to estimate a dynamic system. This filter provides

better results than a regular Kalman Filter, which works with a single model. The following is

the algorithm for the IMM [30]:

Assumptions:

The base state model of IMM is given by:

where is the mode of the system at time among the possible modes

Chapter 3. Target Tracking 18

The structure of the system and statistics are different for every mode and are given by

The Mode jump process is characterized as a Markov chain with known transition probabilities

Algorithm

The IMM filter has the following stages:

Interaction: At this stage the previous cycle’s mode-conditioned state estimates and covariance

are used to initialize the current cycle of each mode-conditioned filter using the mixing

probabilities.

The estimate and covariance for each model are given by

Mode-conditioned filtering: At this stage the state estimates and covariances conditioned on the

mode being in effect are calculated, and the likelihood function for the modes are evaluated. The

Kalman Filter matched to each mode uses the measurements to calculate

and . The likelihood function is calculated as

Probability evaluation: The mixing and update probabilities are calculated in this stage

Mixing probabilities for mode and

Chapter 3. Target Tracking 19

where

Mode probability for each mode)

where

Overall state estimate and covariance: The model-conditioned estimates and covariances are

combined at this stage.

Chapter 4

PERFORMANCE EVALUATOR

As there are several kinds of tracking algorithms available and many developing with time, it is

necessary to evaluate the efficiency of each method on a standard scale, here referenced as

Measures of Performance (MOP) or Metrics. The MOPs are generally defined according to the

type of performance that has to be evaluated or the availability of input data.

MOPs can be related to the characteristics of the measurements of sensors or to the accuracy and

quality of tracker estimates. Sensor related MOPs are independent of the tracking algorithm

used. These might be helpful for evaluating scenarios with multiple measurement sensors but

cannot be used to evaluate the type of tracker used. In most cases the main goal is to evaluate the

tracking algorithm rather than the sensors. Consequently the tracker related evaluation consists

of a large number of measures, which are divided into two classes: the measures specific to

individual trackers and the measures that can be applied to any tracker.

Chapter 4. Performance Evaluator 21

There is a lot of literature on metrics defined to evaluate tracking algorithms. However there is

no solid classification of MOPs that can be used for all tracking algorithm. A good classification

of metrics is important and needed to measure the efficiency of trackers against each other. The

evaluator used by the Optimizer is called the ETFLab- Performance Evaluator (PE) [38] and

provides a sound and complete evaluation of the tracker. It divides the measures into sensor-

related and tracker related metrics based on their dependency on the tracking data. It mainly

focuses on the tracker-related metrics, which are further classified into tracker-related and

independent metrics.

The ETFLab-PE takes inputs from the tracker and evaluates the track information using suitable

MOPs. This PE is used to provide a good evaluation of the “Fitness” of the tracker at different

parameters.

The ETFLab-PE provides a common ground to test the performance of different tacking

algorithms, helping the user to compare and understand the quality of trackers.

The following are the classifications and types of performance metrics used by the evaluator.

4.1 Measurements

4.1.1 Sensor Related Measurements

When no tracking information is available, the physical characteristics of the system are used to

evaluate the tracker, which are basically the sensor related metrics. The type and specifications

of sensors are vital to a tracker system. It is necessary to weigh the aspects of all types of sensors

when using them to track targets. The evaluator has metrics specific to the sensors used by the

tracking system. The following measures are used to evaluate a sensor.

Dwell time per sensor

Dwell time is the time that an antenna beam spends on a target. A radar’s performance can be

evaluated based on the average time it spends to detect targets in a real scenario.

For a multi-sensor system with sensors and data received in Monte Carlo runs, the

metric is [39]

Chapter 4. Performance Evaluator 22

where
 denotes the members of that are available in the -th time step and the -th Monte

Carlo run; represents the set of dwell requests at time and

 is the

corresponding -th dwell time in the -th run.

Energy emitted per sensor

The average energy emitted per sensor is an important metric to evaluate the efficiency of a radar

system. If is the peak power for the -th sensor in the -th run of a total of Monte

Carlo runs and

 is the pulse width at the -th run then the energy can be calculated as [39]

Cumulative transmit dwell time/emitted energy over all sensors

Apart from evaluating the each sensor separately on dwell time and energy emitted, the system

can be evaluated based on the cumulative dwell time and energy emitted as [39].

4.1.2 Tracker Related Measurements

The tracker related metrics evaluate the performance of the tracker. These metrics include

algorithm independent and algorithm dependant metrics.

Algorithm Independent

Algorithm independent metrics are the ones that can be used to evaluate the tracker for any

tracking algorithm. These metrics are categorized based on the availability of truth and tracks.

Chapter 4. Performance Evaluator 23

 Available truths and tracks

When truths and tracks are available, the tracking results can be evaluated with the known truths.

The metrics associated with this category can be classified according to the following measures:

Track Cardinality Measures: This class of metrics deals with the statistics of the results, e.g.

number of confirmed tracks, number of missed tracks, number of false tracks etc. However these

metrics do not provide any information about the performance or time characteristics of

individual tracks such as the consistency of tracks and the accuracy of estimation.

Time (Durational) Accuracy Measures: This class of metrics deals with the time performance

and persistence of the estimated tracks. They provide more useful information about the duration

and persistence of the estimated tracks. Following is an example of time durational measure

Track Probability of detection: It is a measure of trackers detection ability in estimating truth.

Accuracy Measures: This is the most common measure used to evaluate the accuracy of the

estimated values. Several measures are defined based on the difference between the estimation

and truth, e.g.

Root Mean Squared Error: RMSE is a common metric which uses a Mahanabolis distance to

compute the error.

 Available tracks and unknown truths

In real scenarios there is often no information available about the truths. In such cases the

consistency of tracking results may be checked. Common statistical tests may be made on the

information received from innovation, which is considered the main source of information.

Algorithm Specific

The evaluator also has metrics specific to the algorithm of the tracker, which include metrics

defined for IMM filters, assignment based tracking algorithms, dynamic programming, MHT

trackers and IPDA algorithm. The evaluator also has metrics specific to the application of the

tracker e.g. tracking people, sensor networks and vision based tracking.

Chapter 4. Performance Evaluator 24

4.2 Output

The output of the evaluator is an xml file, which lists all the metrics with their respective values.

The score of each metric is later calculated in the optimizer. Following is an example of the

output.

<overall_score_wieghts>

 <root_mean_square_error>1.0</root_mean_square_error>

 <average_euclidean_error>0.0</average_euclidean_error>

 <median_error>0.0</median_error>

 <missed_track>10.0</missed_track>

</overall_score_wieghts>

Chapter 5

AUTOMATED TRACKER OPTIMIZER

The goal of the application is to fine tune (and initialize) a scenario specific tracker for optimal

results. The tracker receives several variables for its initialization and therefore the aim is to

provide the tracker with the best parameters for a specific scenario. The problem with

optimization of the tracker is that most of the key variables do not have a defined relationship

with the tracker output. In different scenarios the variables have different effects on the output;

therefore it is very difficult to initialize the parameters manually or by some generalized formula,

to get optimal results.

A mechanism to automatically initialize and optimize the tracker is presented here. The

initialization part is done by the class ConfigManager, which is not discussed here in detail as it

does not contribute to the optimization algorithm and is only a tool used to communicate with the

tracker. The optimization is done by the class Optimizer.

Chapter 5. Automated Tracker Optimizer 26

The inputs of an optimizer are variables and their ranges, or specific values at which they should

be tested. These are written in an xml file and the ranges are given in a MatLab range format.

The output of the optimizer is a report consisting of the top solutions, and if requested

initialization files of these solutions are also created.

The optimizer works by first reading input files that provide information about the variable to

optimize and what method to use for optimization. It then carries out the required optimization

and saves the results in a Report file. Following steps are carried out:

5.1 Initialization (Input)

The optimizer has to be initialized before running. The initialization is the input part of the

Optimizer. The optimizer takes the following inputs:

5.1.1 Evaluator Callback

The optimizer is given the pointer to the callback function, which calls the tracker and the

evaluator, and returns the evaluator data.

5.1.2 ConfigManager

Depending on the type of initialization the pointer to the ConfigManager is required for saving

and editing project files. If this is not given the optimizer constructs one for itself and hides it.

Here is a brief description of the ConfigManager:

The tracker is a complex application, which requires numerous inputs to run. In the past it was

difficult to initialize and setup the tracker for a scenario, especially for users not skilled in the

algorithms running with the tracker and the specifications of the tracker, since the tracker takes

in complex xml files as inputs. There was a need to simplify the initialization process and also

check the given inputs for errors and compatibility issues, thus eliminating the need to manually

write the file.

The ConfigManager is a class that has been specifically designed to initialize a tracker. It

provides a graphical user interface (GUI) to input the initialization parameters then validates all

the parameters by a previously defined guide (restrictions) and then generates an output xml

containing the initialization parameters for the tracker. The input of the class is also an xml file

Chapter 5. Automated Tracker Optimizer 27

that provides a pseudo code to create the GUI, which also provides restrictions for the input

variables.

The ConfigManager class is basically used to provide a user-friendly xml file writing

application. The ConfigManager allows a user to load, edit and save xml files as well as check

the values input by the user.

There are two types of files used with the ConfigManager: there is a Default file, which has all

the details about the controls (variables) required to create the GUI and the Output file, which

provides the output (values) of the GUI controls. The Default file is used independently, while

the Output file needs the corresponding Default file to open.

The Default file is the main file that creates the GUI. All the elements of the GUI i.e. controls,

groups, sections and subsections that form and shape the structure of the GUI are defined in this

file. It also contains the guide (restrictions) on acceptable values of controls and other effects that

elements in the GUI might have on themselves or other elements.

The Output file is the output of the Default file. It can be opened, modified and saved using the

ConfigManager. This file contains all the values input by the user and is used to feed inputs to

the tracker or any other application it is used with.

The ConfigManager opens an input file which can be the Default or the Output file and displays

all the variables as controls in it. The user is allowed to modify the values of these controls

according to the restrictions provided by the Default file. The values are then checked for

constraints and saved in the output xml, which is then fed to the tracker. The ConfigManager,

although specifically designed for tracker initialization, can also be used to write xml files for

other applications.

The output of the ConfigManager is an xml file also known as the output file. This file contains

the initialization information for the tracker.

5.1.3 Configuration File

The configuration file is an xml that gives the following information:

Chapter 5. Automated Tracker Optimizer 28

Method

Default method of optimization for the tracker e.g.

<Method>GravitationalSearch</Method>

Method Parameters

These are the default parameter values for PSO and GSA.

 Particle Swarm Optimization

The particle swarm needs the following parameters for initialization.

Max Runs: Maximum number of iterations

Samples: Population size

 : Inertial weight; if the attribute ‘Reduce’ is yes, the value of will decay with time.

 : Cognitive factor

 : Social factor

<ParticleSwarm>
 <MaxRuns>350</MaxRuns>
 <Samples>25</Samples>
 <w Reduce="yes">1</w>
 <phiP>1</phiP>
 <phiG>2</phiG>
</ParticleSwarm>

 Gravitational Search Algorithm

The gravitational Search Algorithm needs the following parameters for initialization

Max Runs: Maximum number of iterations

Samples: Population size

 : Gravitational decay constant

 : Gravitational Constant

Chapter 5. Automated Tracker Optimizer 29

<GravitationalSearch>
 <MaxRuns>350</MaxRuns>
 <Samples>25</Samples>
 <G0>100</G0>
 <Alpha>20</Alpha>
</GravitationalSearch>

Language File

This string gives the file path of the Language File that holds the message and error strings for

user interaction.

<LanguageFile Path_Type="RelativeToSelf">

common/Optimizer.lang</LanguageFile>

Warnings

This flag indicates whether to enable or disable warnings.

<ShowWarnings>Yes</ShowWarnings>

Save Top Files

Flag to indicate whether to save the top files in the results folder or not

<SaveTopFiles>no</SaveTopFiles>

History Number

Variable indicating the number of fitness tests to keep in history to avoid running the test on the

same solution again.

<HistoryNumber>1000</HistoryNumber>

Original Files

Information about handling the last saved (original files) of the project.

<OrignalFiles>

 <DeleteBackup>1</DeleteBackup>

 <ReplaceWithOptimized>1</ReplaceWithOptimized>

</OrignalFiles>

Chapter 5. Automated Tracker Optimizer 30

 Delete Backup:

 This flag indicates whether to delete the backup of the original files at the end of optimization or

not.

 Replace With Optimized:

This flag indicates whether to replace the original files with the optimized ones or not.

5.1.4 Project File

The project file is an xml that gives information about the project to optimize.

Settings

These are the settings for the optimizer

 Method

It is the method of optimization to use for the given project and the initialization parameters for

the method.

<Method Type="GravitationalSearch">

 <GravitationalSearch>

 <MaxRuns>350</MaxRuns>

 <Samples>25</Samples>

 <G0>100</G0>

 <Alpha>20</Alpha>

 </GravitationalSearch>

</Method>

 Input

The project for the optimizer needs the following inputs to run:

Chapter 5. Automated Tracker Optimizer 31

TopN: It is the number of top solutions to provide at the end of optimization for example, if

TopN is 10, the optimizer will provide with solutions with the top 10 scores.

Variables to Optimize: This gives the path to the file that specifies the variables to optimize for

the project.

Metrics: This gives the path to the file that specifies the performance metrics that were received

from the evaluator.

PE Weights: This gives the path to the file that specifies the weights given to each performance

metric.

PV Relations: This gives the path to the file that specifies the relation between the variables and

the metrics.

<Input>
 <VariablesToOptimize>Variables.xml</VariablesToOptimize>
 <Metrics Path_Type="RelativeToSelf">Metrics.xml</Metrics>
 <PE_Weights Path_Type="RelativeToSelf">PE_Weights.xml</PE_Weights>
 <PV_Relations Path_Type="RelativeToSelf">PV_Rel.xml</PV_Relations>
 <TopN>100</TopN>
</Input>

Output

This section of the file gives information on how to save the results of the optimization

<Output>

 <Report Path_Type="RelativeToSelf">

 ../../results/optimizer/report.xml</Report>

 <ResultsFolder Path_Type="RelativeToSelf">

 ../../results/optimizer</ResultsFolder>

</Output>

 Report

This gives the path to the report file where the results are saved

 Results Folder

This gives the path to the folder where results are saved i.e. the report file and the TopN project

files.

Chapter 5. Automated Tracker Optimizer 32

5.2 Preparation

This part of the program deals with preparing the inputs for the optimizer and cleaning up the

parameters. Following are the steps taken for the preparation of the data.

5.2.1 Read Input Files

In this step the following input files are read, for which the paths have previously been provided.

Variables File

This file gives the variables to optimize and the range or values at which they are to be tested.

The ranges are given in MatLab range format i.e. or [start]: [end]. If the

step is not given it is considered as 1. The multiple ranges mentioned for a single variable may

not be continuous. The value for the variable is check for all the given constraints, e.g. if an

integer range is 3:1:5 and 7:1:9 the valid solution for this variable would be

 If the variable supports a double value and PSO or GSA techniques are

used, the step size does not matter and the valid range for v would be

 .

<File Name="../../projects/3d_spherical/tracker.xml"

Path_Type="RelativeToSelf">
 <Control Name="track_confirmation_for_display_m">
 <Ranges>
 <Range Name="Range_1">2:1:4</Range>
 </Ranges>
 </Control>
 <Control Name="track_confirmation_for_display_n">
 <Ranges>
 <Range Name="Range_1">2:1:4</Range>
 </Ranges>
 </Control>

<Control Name="process_noise_scaling_factors">
 <Values>
 <Value Name="Value_1">0.003:0.0005:0.006</Range>

 <Value Name="Value_2">0.004:0.0005:0.005</Range>

 </Values>
</File>

Weights File

This file gives the weights of the performance metrics for score calculation.

Chapter 5. Automated Tracker Optimizer 33

<Weights>
 <Metric Name="RMSE" Weight="1.0" />
 <Metric Name="FalseTrackRate" Weight="10" />
 <Metric Name="NumFalseTrack" Weight="0.0" />
 <Metric Name="CumBroken" Weight="0.0" />
 <Metric Name="Completeness" Weight="0.0" />
 <Metric Name="TrackFragment" Weight="0.0" />
 <Metric Name="ConfLatency" Weight="10" />
 <Metric Name="TrackPD" Weight="0" />
</Weights>

5.2.2 Quiet Mode

The ConfigManager is switched into Quiet Mode i.e. the user will not be able to see any

messages from the ConfigManager.

5.2.3 Load Project Files

When the variables file is read, the parent files of all these variables are opened with the

ConfigManager. The backup of these files are also created as the optimizer will try to change

these files.

5.2.4 Cleanup

At the cleanup stage variables and parameters are cleaned up to make the optimization efficient,

i.e. variables that have no effect on the output or that are not available in the Default file are

removed from the ‘variables to optimize’ list.

Metrics

The following metrics are removed from the evaluation list:

 Metrics with zero weight.

 Metrics that have no effect on the score.

 Variables

The following variables are removed from the optimization list.

 Variables whose parent files could not be opened.

 Variables that were not found in their parent files

 Variables that did not affect any of the performance metric.

Chapter 5. Automated Tracker Optimizer 34

5.2.5 Choose Best Method

This step evaluates the variables and their ranges to decide which method of optimization would

be best. If the number-variables are all integers and their ranges are not very wide so that the

total number of required fitness tests is less than the default max runs for PSO and GSA, the

optimizer chooses the exhaustive search, otherwise it optimizes with PSO or GSA.

5.3 Optimization (Process)

This is the part where optimization takes place. It has four steps:

5.3.1 Calculate Solution

Here the optimizer calculates a solution for the problem depending on the method selected.

These methods are discussed below.

5.3.2 Apply Solution

The values calculated for all the variables by the above step are then written into their respective

files using the ConfigManager. If the ConfigManager is successful in validating and saving the

files the program moves forward otherwise it goes back to step one to find another solution.

5.3.3 Run Tracker and Evaluator

This part deals with running the tracker and getting the results from the evaluator. There are two

ways to get the results:

Callback Function

In this method he results are obtained from the callback function. The pointer to this function is

given during the initialization of the optimizer. This function is calls the tracker and then the

evaluator, returning the evaluation metrics.

Exe Paths

The results from the fitness function are read from a file in this method. The optimizer first runs

the exe for the tracker and then for the evaluator. When the evaluator gives its output in the form

of a file, the Optimizer reads the file for the evaluation metrics.

Chapter 5. Automated Tracker Optimizer 35

5.3.4 Score Calculation

The score is calculated by adding the weighted sum of all metric values translated to score. The

individual score of each metric is calculated and then summed up based on their weights. The

individual score of each metric is calculated by different methods based on the type of the

metric. Below are the seven types of value to score relations and their calculation methods.

 Linear Direct

 Linear Inverse

 Direct

 Inverse

 Log

 No Effect

 Unknown

Example:

For the following three metrics:

Name Relation Weight Value

A Linear Direct

B Linear Inverse

C Log

The total score would be:

Chapter 5. Automated Tracker Optimizer 36

5.4 Results (Output)

The output of the optimizer (saved in the results folder) consists of the following two

components:

5.4.1 Report

The report is the final output of the optimizer. It lists in descending order the Top N solutions

discovered; i.e. the solutions with the Top N scores.

5.4.2 Project Files

If requested the optimizer saves the project files for the tracker, with Top N solutions in separate

folders. These can be later copied to the original folder for testing by the user.

5.5 Modules:

The application has been divided into the following modules:

1. Tracker

2. Optimizer

3. ConfigManager

4. Performance Evaluator

The following flow charts show how the algorithm runs (Figure 3 Optimizer Flow Chart) and

what part of algorithm is handled by each module (Figure 2 Modules).

Chapter 5. Automated Tracker Optimizer 37

Ev
a

lu
at

o
r

O
p

ti
m

iz
e

r
C

o
n

fi
gM

an
ag

er
M

ai
n

Tr
a

ck
e

r

Start Initialize Run EndSuccess Yes

No

Choose Best
Method

Cleanup
Variables

Load Project
Files

Optimization
Algorithm

Solution

Modify Project Files

Run Tracker

Evaluator

Tracks

Tracker Project
Files

Metrics

Calculate Score

Stopping
Criterion

Met?

Write
Report

Yes

No

Figure 2 Modules

Chapter 5. Automated Tracker Optimizer 38

Start

Configuration
File

Initialize
Optimizer

Prepare
Data

Opttimizer
Project File

Optimization
Algorithm

Solution Configmnager

Tracker

Evaluator

Cleanup Data

Choose Best
Method

Tracker
Files

Tracks

Metrices Calculate Score
Stopping
Criterion

Met?

No

YesWrite Report

End

Figure 3 Optimizer Flow Chart

Chapter 6

OPTIMIZATION TECHNIQUES

Regular optimization algorithms are not feasible with this tracker optimization problem since it

has to deal with a higher dimensional search space where the variables involved have an

irregular, nonlinear effect on the output and are also not differentiable functions. Also the search

space increases exponentially with the increase in dimensions or range making exhaustive search

very impractical.

Heuristic methods are best applied for problems with multiple dimensions and large search

spaces. There are many nature inspired algorithm like the Genetic Algorithm, Ant Colony Search

Algorithm, Particle Swarm Optimization, Gravitational Search Algorithm etc. However these

algorithms do not guarantee the optimal solution in all cases; different algorithms work best for

different problems.

Chapter 6. Optimization Techniques 40

This Optimizer provides two of these heuristic methods and one exhaustive search algorithm. For

smaller scale problems (smaller number of variables and short ranges) the Optimizer uses ‘All

Combinations’ (exhaustive search), otherwise one of the heuristic algorithms is deployed.

The following are the three available methods.

6.1 Exhaustive

6.1.1 All Combinations

For this method the tracker is evaluated for every combination of values associated with each

variable. If there is a set of n variables and each has number of

values, then the total number of combinations would be

 . Each of the solution is

evaluated and the ones with the top N scores are saved and written into the report.

For example if there are the following values for the variables A, B and C:

The tracker will be evaluated for the following 18 combinations:

Chapter 6. Optimization Techniques 41

The total number of combinations is

6.2 Heuristic Methods

Heuristic methods are experience based programming methods that involve learning and

discovery to find a solution that is not guaranteed to be optimal but adequate for a given set of

goals. These methods are used where exhaustive search is not feasible.

Many of the heuristic methods are nature-inspired, of which the Particle Swarm Optimization

(PSO) and the Gravitational Search Algorithm (GSA) have been implemented in this application.

These methods have a population of candidate solutions (multiple starting points) in the search

space that work in parallel and communicate with each other to get an optimal position. There

are two patterns of search involved: exploration and exploitation. Exploration is searching a

broader region of the search space while exploitation is finding the optima around a good

solution. Exploration increases the velocity of the agents and prevents from the optimizer from

getting trapped in local optima. These methods facilitate exploration in the beginning of the

algorithm and with time fade it out and fade in exploitation. The balance between the two is very

essential for a good performance.

Chapter 6. Optimization Techniques 42

The members of population called particles in PSO and agents or masses in GSA go through the

following steps:

 Self-Adaptation: members try to improve their performance

 Cooperation: members communicate and collaborate with each other

 Competition. Members compete to survive

Both of the mentioned algorithms have stochastic properties. All the heuristic methods provide

satisfactory results but there is no method that is superior to all methods for all optimization

problems. Different methods perform best for different solutions.

6.2.1 Particle swarm

Background

The Particle Swarm Optimization (PSO) is used to optimize multi dimensional problems. The

optimizer is inspired by the behaviour of social animals such as insects (ants, bees, and termites),

fish, birds etc. It works the way these animals interact in swarms or colonies when looking for

food. They spread out in the given space and look for good positions; they communicate the

better positions with each other and also keep in memory the best ones they have discovered

themselves. Based on this information all the individuals adjust their positions and velocities.

The PSO is mostly applied in search engines and optimizers. The PSO was originally discovered

by Kennedy and Eberhart [1] who were trying to simulate the social model of these creatures in

their swarms, flocks or schools. They observed that this method was performing optimization.

Introduction

The PSO is an iterative, computational method that optimizes a problem by creating random

feasible solutions in a search space and improves them iteratively using the quality information

of each candidate.

The PSO is useful for handling multi-dimensional, nonlinear problems as it is a pattern search

method and does not require the problem to be differentiable. It is meta-heuristic as it makes no

assumptions about the problem and can search very large spaces. The optimal solution is not

guaranteed but the probability of finding one is high if the parameters for the optimizer are

Chapter 6. Optimization Techniques 43

correctly initialized. In conclusion PSO is suitable for problems that are noisy, partially irregular

and change over time.

Algorithm

The PSO works by evaluating a population (swarm) of randomly chosen solutions (particles) for

the tracker. It moves the particles around in the search space, with reference to the particle with

the best position and the particle’s own best position through time, to find an optimal solution.

These best positions (solutions with the highest evaluator score) act as guide for the particles and

are updated if a position with a higher score is found. This process is repeated several times until

the stopping criterion is met.

The variables act as dimensions of the particle and the value of each variable is considered as the

position of the particle in that particular dimension.

The score (quality) of a particle at a certain position (candidate solution) is called the fitness of

that particle and is denoted by the function . The fitness function takes in a vector and gives out

a scalar. The gradient of this function is not known and can be anything. Since the goal is to find

a solution that gives the maximum evaluator score, the goal of the optimizer would be to find a

solution for which the fitness is greater than the fitness of all the positions in the search space

() i.e.

 where

Let be the number of particles in the swarm, and for each particle has position vector and

velocity vector in the search space . Let be the best known position of the particle and be

the best known position of the entire swarm.

 Initialization

1. The optimizer starts with initializing the position of each particle in each dimension

with a random uniform distribution based on the range of that particular dimension:

where and are the upper and lower boundaries of the search space.

2. The best known position of each particle is initialized to its initial position:

Chapter 6. Optimization Techniques 44

3. If the fitness of the particle is greater than the global best(best one discovered yet by all

particles) , the global best position is updated:

If ,

4. Initialize the particles velocity

 Iteration

These steps are repeated for each particle until a stopping criterion is met:

1. Pick random numbers and

2. For each dimension update the velocity

where and are constants discussed below.

3. Update the particles position

4. If update the particle’s best known position:

5. And if , update the swarms best known position

 Velocity

The velocity update equation has three parts: the momentum part , cognitive part

 and the social part .

Momentum Part: The momentum part of the velocity controls the local exploitation and the

global exploration of the search. The constant is called the inertia weight which determines the

ratio between exploitation and exploration. A higher value of would increase the velocity and

thus provide with more exploration while a lower value would slow the particle down and make

it exploit its local surroundings. The inertial weight can be set to a higher value in the

beginning for global exploration and then gradually decreased over time to refine the search.

Chapter 6. Optimization Techniques 45

Cognitive Part: The cognitive part of the velocity conveys the confidence of the particle i.e. how

much the particle trusts its own findings. The coefficient called the cognitive factor

determines how much effect the particle’s own experience has on the velocity. It is also known

as an acceleration coefficient.

Social Part: The social part of the velocity guides the particles to the global best position. The

social coefficient determines how much the particle trusts the success of other particles. It is

also known as an acceleration coefficient.

If the calculated velocity of a particle in some dimension makes it go out of the search space it is

adjusted to bring the next step right on the boundary of the space.

PSO Applications

The first practical application of PSO was in 1995 in the field of neural networks. The

application was able to train and adjust the weights of a feed-forward multilayer perceptron

neural network. The results of the algorithm were as effective as the conventional error back-

propagation approach. After that PSO became rapidly popular and due to its simple and efficient

nature its applications were explored in several fields. Since then a lot of work has been done on

the algorithm and many improvements and varieties have been introduced. These varieties have

made PSO applicable to many different optimization problems from unconstrained, single-

objective or static problems to constrained multi-objective or dynamic problems. Following are a

few applications of the PSO [40]:

 Combinatorial optimization problems

 Computational intelligence applications

 Electrical and Electromagnetic applications

 Signal processing

 Graphics

 Image analysis: IRIS recognition, face detection and recognition, image segmentation , image

classification, defect detection, image retrieval, image registration , pixel classification ,

detection of objects, texture synthesis , microwave imaging , scene matching, , character

recognition , shape matching , image noise cancellation .

Chapter 6. Optimization Techniques 46

 Video Analysis: MPEG optimization, motion estimation, object tracking, body posture

tracking, traffic incident detection etc

 Robotics

 Bioinformatics

 Medical applications.

Flow Chart

The following flow chart shows the algorithm of the PSO

Start

Initialize Position

Initalize Velocity

Update Pbest and
Gbest

Update Velocity

Update Position

Caluclate Fintess

Update Pbest and
Gbest

Stopping
Criterion

Met?

Yes

End

No

Calculate Fitness

Figure 4 PSO Flow Chart

Chapter 6. Optimization Techniques 47

6.2.2 Gravitational Field Search

Background

The Gravitational Search Algorithm (GSA) developed by Rashedi et.al in [13] is based on

Newton’s law of universal gravitation, which states that any two masses in the universe attract

each other with a force directly proportional to the product of their masses and inversely

proportional to the square of the distance between them. The GSA is formulated on the principals

of gravitation and it is assumed that the candidate solutions interact with each other the way

masses in the universe attract each other.

Let there be two masses and , separated by distance , and the gravitational force by

which they attract each other be F, then:

Where is the gravitational constant.

Since the actual value of decreases with the age of the universe, the following function is used

to calculate the value of with time.

where is the value of the gravitational constant at time , and is the value at the first

cosmic quantum-interval of time .

According to Newton’s second law of motion, the acceleration of each particle will be

There are three kinds of masses:

Chapter 6. Optimization Techniques 48

Active gravitational mass () is the measure of an object’s gravitational field. Objects

with small active gravitational mass have a weaker gravitational field than objects with

greater active gravitational mass.

Passive gravitational mass is the measure of the gravitational field’s strength for a

particular object. Objects with small passive gravitational experience a smaller force from

the gravitational field than objects with greater passive gravitational mass.

Inertial mass () is the measure of an object’s inertia. Objects with large inertial masses

resist more to forces, and change their states of motion slowly than objects with smaller

inertial masses.

For a collection of masses, the above equations can be re-written, as

 and

where is the force that acts on mass by mass , and is the acceleration of mass due to the

overall force acting on it. , and represent the active mass of , passive mass of and

the inertial mass of .

Introduction

The Gravitational Search Algorithm considers all particles as masses communicating through the

gravitational field. All the masses attract each other causing a global movement of all of them.

The mass of each object is the measure of the quality of its solution. As acceleration is inversely

proportional to the masses, the heavier masses move slowly giving us exploitation and the lighter

masses move fast giving us exploration.

Each mass have four aspects: position, inertial mass, active gravitational mass, and passive

gravitational mass. The position of a mass provides the solution and the masses correspond to the

quality of the solution. The algorithm adjusts the masses of all particles to find the optimal

solution with all of them converging toward the heaviest mass.

Algorithm

Let N be the number of agents in this system and d be the number of dimensions (variables).

Then and represent the position and velocity vector of the agent respectively, and
 and

Chapter 6. Optimization Techniques 49

 are the position and velocity (respectively) of the -th agent in dimension . is the fitness

function.

 Initialization

1. The optimizer starts with initializing the position of each agent in each dimension

with a random uniform distribution based on the range of that particular dimension.

where and are the upper and lower boundaries of the search space.

2. Initialize the velocity of all particles:

3. Initialize the acceleration of all particles with zero:

4. Initialize the force of all particles with zero:

5. Calculate the fitness of each particle.

6. If the fitness of the particle is greater than the global best(best one discovered by all

particles at the current time) , the global best position is updated:

If ,

7. If the fitness of the particle is less than the global worst (worst one discovered by all

particles at the current time), the global worst position is updated:

If ,

8. Update the all-time-global-best position with the

current global best calculated at the end of initialization. This is not part of the original

algorithm but an addition that was brought in for this application. Its purpose is discussed

later in the article.

 Iteration

These steps are repeated until a stopping criterion is met:

1. Update the best and worst positions:

Chapter 6. Optimization Techniques 50

 , and All-time best position in the search space are calculated

as:

2. Calculate

 decreases with time, it is calculated as

 where is the total number of iterations and is normally taken as

20.

3. Calculate the mass for all agents:

It is assumed that all the three kinds of masses are equal for each particle , i.e.:

 is calculated by the fitness evaluation of the agent. If an agent has a higher mass then

this means that it has a higher fitness value. Heavier agents walk more slowly than lighter

ones.

where

If is equal to , is assumed as 1.

If is equal to zero, and the agent is accelerated toward the best position in that

dimension with max acceleration.

4. Calculate the force for all agents :

At time , the force acting on mass from mass will be:

Chapter 6. Optimization Techniques 51

where is the Euclidian distance between the two agents and , and is a small

constant preventing the denominator from becoming zero.

To give a stochastic characteristic to the algorithm, the total force that acts on agent in a

dimension is calculated as a randomly weighted sum of the -th components of the

forces from all other agents.

Where is a uniform random variable in the interval

5. Calculate the acceleration for all agents

The acceleration can then be calculated as

Calculate the velocity and position for all agents

The velocity an agent is a fraction of the current velocity plus the acceleration

where is a uniform random variable in the interval , which is used to give a

randomized characteristic. If the velocity is large enough to make the particle exceed

bounds it is reinitialized with a uniform random value inside the bounds.

 K-Best

To save computational costs and to exploit the best masses the number of agents is reduced with

time. Then only a set of agents with bigger masses apply forces to all the agents, and guide the

weaker ones towards themselves. This method should be activated gradually and for the last few

iterations so that the optimizer may not get trapped in local maximas.

Chapter 6. Optimization Techniques 52

 All Time Best

Since the global best gives the best position of the current time, it is possible that the best

position from the past is replaced by a lower one in the next iteration. So the all time best

position in kept in memory and at the end of the algorithm it is presented as the optimal position.

Flow Chart

The following flow chart shows the algorithm of the GSA

Start

Initialize Position

Initialize Velocity

Initialize acceleration
and force to zero

Calculate Fitness

Update Best, Worst
and All Time Best

Calculate G(t)

Calcualte Mass

Calculate Force

Calculate Accelertion

Calculate Velocity
and Position

Calcualte Fitness

Update Best, Worst
and All Time Best

Stopping
Criterion

Met

End

 Figure 5 GSA Flow Chart

Chapter 6. Optimization Techniques 53

6.2.3 Discrete Variables

Variables that have discrete values or variables with non-float values are rounded up before

being used but they remain as float values in their algorithms.

6.2.4 Population Size

There is no guaranteed way to calculate the optimum population size based on the number of

dimensions and search space but as a rule of thumb it is 3 or four time the number of variables. If

the population size is too low, the purpose of using a population based algorithm would be killed.

If the number is too high and the number of evaluator runs are fixed or the amount of time is

fixed, the number of iterations would become low and the algorithm would not be able to

properly explore or exploit the search space.

6.2.5 GSA versus PSO

GSA and PSO are both SI algorithms and follow the same basic process, but some of the

principles they follow are different. Here are some of the important differences among the two

algorithms observed by the authors of GSA [13].

 PSO calculates the direction of an agent using only the global and personal best positions

while GSA’s calculation is based on the overall force obtained by all the other agents.

 PSO updates the agents regardless of the fitness of their solutions while the GSA updates the

force proportional to the fitness value.

 PSO keeps the personal and global best in memory when updating the velocity while GSA is

memoryless and involves only the current positions in the updating process.

 PSO updates without including the distance between solutions into its calculations while the

GSA takes distance into account as the force calculated is inversely proportional to the

distance between the solutions.

6.2.6 History

The optimizer keeps a history of the last solutions tested by the algorithm which prevents it

from evaluating the same solution again. Ideally all the history should be maintained, however

memory constraints allow only the last solutions to be stored in memory. The number is

given by the configuration file of the optimizer.

Chapter 7

RESULTS

The performance of the optimizer was evaluated with mathematical functions, images and the

tracker. Below is a discussion of the results and a comparison of the methods.

7.1 Images

The methods were tested with images by using them as fitness functions for a 2D problem, i.e.

the pixel intensity at each point was considered as the fitness of that point and the aim of

optimization was to maximize the function by finding the brightest point in the image. Two kinds

of images were used, one with only one global optimum (Gradient.jpg) and the other with

multiple local and global optimum areas (X-Ray.jpg). The plots have been plotted using data

averaged over 50 simulations. The following images were used:

Chapter 7. Results 55

Figure 6 Gradient Image

Single Global Optimum Area. Max Pixel Intensity

is 216

Figure 7 X-Ray Image

Multiple local and Global Optimum Areas. Max

Pixel Intensity is 255 [41]

Chapter 7. Results 56

If the number of iterations is the same for all tests, the following results are obtained for different

sample sizes using Particle Swarm Optimization and Gravitational Search Algorithm on the

Gradient Image.
1

Figure 8 Fixed number of Iterations (Gradient Image)

1 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value

(216).

0 5 10 15 20 25 30 35 40 45 50
160

170

180

190

200

210

220

Iterations

F
it
n
e
s
s

Particle Swarm Optimization

3

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50
150

160

170

180

190

200

210

220

Iterations

F
it
n
e
s
s

Gravitational Field Search

3

5

10

15

20

Chapter 7. Results 57

If the number of iterations is the same for all tests, the following results are obtained for different

sample sizes using Particle Swarm Optimization and Gravitational Search Algorithm on the X-

Ray Image.
2

Figure 9 Fixed number of Iterations (X-Ray Image)

2 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value

(255).

0 5 10 15 20 25 30 35 40 45 50
120

140

160

180

200

220

240

260

Iterations

F
it
n
e
s
s

Gravitational Field Search

3

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50
140

160

180

200

220

240

260

Iterations

F
it
n
e
s
s

Particle Swarm Optimization

3

5

10

15

20

Chapter 7. Results 58

If the number of fitness tests is kept same, and the number of iterations are changed based on the

sample size the following results are obtained for the Gradient Image using PSO and GSA
3
.

Figure 10 Fixed number of Fitness Evaluations (Gradient Image)

3 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value

(216).

0 200 400 600 800 1000 1200
100

120

140

160

180

200

220

Iterations

F
it
n
e
s
s

Gravitational Field Search

3

5

10

15

20

0 200 400 600 800 1000 1200
100

120

140

160

180

200

220

Iterations

F
it
n
e
s
s

Particle Swarm Optimization

3

5

10

15

20

Chapter 7. Results 59

If the number of fitness tests is kept same, and the number of iterations are changed based on the

sample size the following results are obtained for the X-Ray Image using PSO and GSA
4
.

Figure 11 Fixed number of Fitness Evaluations (X-Ray Image)

4 The legend shows the Sample sizes while the red horizontal line on the top represents the global maximum value

(255).

0 200 400 600 800 1000 1200
60

80

100

120

140

160

180

200

220

240

260

Iterations

F
it
n
e
s
s

Particle Swarm Optimization

3

5

10

15

20

0 200 400 600 800 1000 1200
60

80

100

120

140

160

180

200

220

240

260

Iterations

F
it
n
e
s
s

Gravitational Field Search

3

5

10

15

20

Chapter 7. Results 60

7.2 Tracker

The Optimizer was run with the tracker to find the optimal solution for it, with the fitness

evaluation done by the help of the Performance Evaluator. The Optimizer gave considerable

improvements in many areas for the Tracker. Below are the results of the few performance

parameters it was run to optimize. These results are averaged over multiple Monte Carlo runs.

These bar plots show the product of the parameter value and the weight of the parameter used to

calculate the scores.

In this example, PSO was used as the optimization method with 10 samples and 10 Maximum

runs i.e.10*10=100 fitness evaluations and

The variable to optimize was the “Process Noise Scaling Factor” and the allowed range was from

0.01 to 1.

Figure 12 Performance Evaluations

Chapter 7. Results 61

This above chart shows how much the tracker performance improved by using the Optimizer on

one variable.

Tests were performed to compare the two methods using the Tracker. The variable to optimize

was the “Process Noise Scaling Factor” and the allowed range was from 0.01 to 1. Both Methods

were given 10 samples and 10 Maximum runs i.e.10*10=100 fitness evaluations. For PSO:

 and GSA:

The tracker gave improved results for both the optimization methods, but the score for GSA was

slightly better than PSO. As it is a minimization optimization, lower scores are better. Score

before optimization was 1213.73265, while score with GSA: 522.72521, and the score with PSO

was 523.43729. These results are an average of multiple Monte Carlo runs.

Figure 13 Comparison of PSO and GSA

Chapter 7. Results 62

Figure 14 Tracker Ground Truth

Figure 15 Tracks before Optimization

Chapter 7. Results 63

Figure 16 Tracks after Optimization

Chapter 7. Results 64

7.3 Observations

By studying the plots it is observed that the PSO gives better results for simpler problems while

the GSA is more effective for complex problems. Bigger population sizes give better fitness

curves if the number of Fitness Evaluations (FEs) is not considered and iterations are kept the

same. This is because for bigger populations, higher numbers of FEs are carried out. Normally

the FEs are costly so if each population size is given a fixed allowance of FEs , it is observed that

the populations with a medium size perform the best as they strike a good balance between

iterations and population. The performance of GSA drops considerably with population sizes less

than 5.

The PSO and GSA perform differently in different circumstances. In some case the PSO

performs better than the GSA and in some not. The cost and resource management of both the

methods change with the scenarios. It has been observed that GSA is more costly w.r.t time

while PSO is considerably faster than GSA.

The fitness percentage is calculated as:

Following are the bar plots comparing Fitness Percentages for the two methods over different

Population Sizes.

Chapter 7. Results 65

Figure 17 Fitness Percentage

3 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Population Size

P
e
rc

e
n
ta

g
e

Fitness Percentage (Gradient Image)

GSA

PSO

3 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Population Size

P
e
rc

e
n
ta

g
e

Fitness Percentage (X-Ray Image)

GSA

PSO

Chapter 8

SUMMARY

8.1 Conclusions

Studying the results of the Optimizer from the Tracker, it can be seen that the Optimizer gives a

significant improvement on the results. With the automation of the initialization and optimization

of the tracker, and the assurance that the tracker is correctly initialized, the use of the Tracker has

been simplified and improved to a great extent. Since this application is going to be used offline

without having any issue of time, many parameters can be optimized in combination for the

given scenario.

The Optimizer is a separate module, independent of the tracker, therefore it can be easily used

with any general optimization problem, and it can be set up to figure out the optimization method

automatically if unsure about which one to use.

Chapter 8. Results 67

8.2 Future Work

The optimizer is fully functional and supports all the features mentioned in earlier chapters

however we have some future work in mind to improve it further. Following are the additional

features we will be working on:

8.2.1 Simulated Annealing (SA)

The Simulated Annealing is a heuristic search algorithm, which starts the search from a single

point and continues in a sequential manner. This might significantly reduce the number of fitness

calculations carried out to find the optimal solution, since both the algorithms supported in the

application are parallel search ones.

8.2.2 MatLab Configurator

There is work in progress on a C++ application that will take in a Default (template) file for a

configuration manger and convert it into a MatLab (.m) file that generates a working GUI similar

to the ConfigManager. This can then be used with the optimizer to process solutions.

8.2.3 Fitness Approximation

In most real EA applications the evaluation of the fitness function is the most computationally

complex and expensive part of the algorithm. To lower the cost of computation fitness,

approximation techniques could be applied to make the fitness function simpler. Fitness

approximation techniques involve building a simpler fitness model from known fitness values by

learning from them and interpolating them. These techniques include lowering the polynomial

degree of the original fitness function, regression analysis, artificial neural networks, adaptive

fuzzy fitness granulation etc. When working with high dimensional problems with limited

number of training samples it is difficult to build an efficient approximate model of the fitness

function and using them for evolutionary algorithms may result in the algorithm converging to a

local optima. In some cases it is helpful to use a fitness function together with the approximate

model but due to the complexity of the tracking problem fitness approximation was not

applicable.

Adaptive Fuzzy Fitness Granulation [42]

Adaptive Fuzzy Fitness Granulation (AFFG) is a technique for approximating a model for the

fitness function to reduce computational costs. In AFFG, a pool of solutions, represented by

Chapter 8. Results 68

fuzzy granules with finesses calculated by the original fitness function are maintained. If a new

solution (granule) is sufficiently close to an existing fuzzy granule from the pool then the new

granule’s fitness is approximated with the known granules fitness. Otherwise if the new granule

is considerably different from the ones in the pool, it is added as a new fuzzy granule to the pool.

The size of the pool as well as the radius of influence of each granule is adaptive and changes

with the utility of each granule and the overall population fitness.

To reduce the number of fitness evaluations the radius of influence of each granule is kept large

in the beginning and is gradually reduced as time passes. This results in more fitness evaluations

when the completion is fierce among similar and converging solutions. Granules that are not

used are slowly removed from the pool to prevent it from becoming too big.

This method might prove very helpful with the algorithms in this application and we will work to

incorporate this to reduce our computational costs.

Appendix A.

OPTIMIZER FOR GENERAL USE

The optimizer, although designed to optimize the tracker, can also be used for general purpose

multi-objective, multi-dimensional optimization. The optimizer can be linked to fitness-evaluator

function that can take in input values, test them and give out an array of evaluation parameters

and their values. The pointer to the function can be specified in the configuration file. Since

nothing in the optimizer is hard coded and all the input variables and evaluation parameters are

read through input files, it can easily be used for any purpose. Following are the features and

specification for the optimizer for general use.

Fitness Calculator

The function called to check the output value of the given solution is known as the fitness

calculator. This function takes in the candidate solution, calculates the value of that solution,

then runs an evaluation on it and sends back the evaluation parameters and their values in a list.

By-Passing ConfigManager

The ConfigManager is used by the optimizer to write the candidate solutions in their project xml

files. However if a problem does not require the inputs through an xml file, the ConfigManager

can easily be bypassed and the values can be sent to the fitness calculator function mentioned

above.

Appendix B.

CONFIGURATION FILE

<Optimizer>

 <ShowWarnings>Yes</ShowWarnings>

 <DeleteOldResults>Yes</DeleteOldResults>

 <Method>GravitationalSearch</Method>

 <SaveTopFiles>no</SaveTopFiles>

 <OrignalFiles>

 <DeleteBackup>1</DeleteBackup>

 <ReplaceWithOptimized>1</ReplaceWithOptimized>

 </OrignalFiles>

 <GravitationalSearch>

 <MaxRuns>350</MaxRuns>

 <Samples>25</Samples>

 <G0>100</G0>

 <Alpha>20</Alpha>

 </GravitationalSearch>

 <ParticleSwarm>

 <MaxRuns>350</MaxRuns>

 <Samples>25</Samples>

 <w>1</w>

 <phiP>1</phiP>

 <phiG>2</phiG>

 </ParticleSwarm>

 <LanguageFile Path_Type="RelativeToSelf">Optim.lang</LanguageFile>

</Optimizer>

Appendix C.

INPUT FILES

Project File

<Project>
 <Settings>
 <Method Type="GravitationalSearch">
 <GravitationalSearch>
 <MaxRuns>350</MaxRuns>
 <Samples>25</Samples>
 <G0>100</G0>
 <Alpha>20</Alpha>
 </GravitationalSearch>
 </Method>
 </Settings>
 <Input>
 <ConfigManager>
 <DefaultFiles Path_Type="RelativeToSelf">
 ../config/default_tracker.config</DefaultFiles>
 <MakeRelativePath Path_Type="RelativeToSelf" />
 </ConfigManager>
 <TrackerPath Path_Type="RelativeToSelf">
 MultiTrack.exe</TrackerPath>
 <TrackerProjectFile Path_Type="RelativeToSelf">
 3d_spherical/project.xml</TrackerProjectFile>
 <PEPath Path_Type="RelativeToSelf">
 release/PerfEval_x32_release.exe</PEPath>
 <PEProjectFile Path_Type="RelativeToSelf">
 projects/pe/project.xml</PEProjectFile>
 <PEOutputFile Path_Type="RelativeToSelf">
 results/evaluation_results.xml</PEOutputFile>
 <VariablesToOptimize Path_Type="RelativeToSelf">
 Variables.xml</VariablesToOptimize>
 <Metrics Path_Type="RelativeToSelf">common/Metrics.xml</Metrics>
 <PE_Weights Path_Type="RelativeToSelf">PE_Weights.xml</PE_Weights>
 <PV_Relations Path_Type="RelativeToSelf">PV_Rel.xml</PV_Relations>
 <TopN>10</TopN>
 </Input>
 <Output>
 <Report Path_Type="RelativeToSelf">results/report.xml</Report>
 <ResultsFolder Path_Type="RelativeToSelf">results</ResultsFolder>
 </Output>
</Project>

Appendix C. Input Files 72

Weights File

<Weights>
 <Metric Name="RMSE" Weight="1.0" />
 <Metric Name="AveEucError" Weight="0.0" />
 <Metric Name="AveGeomError" Weight="0.0" />
 <Metric Name="AveHarmError" Weight="0.0" />
 <Metric Name="MedianError" Weight="0.0" />
 <Metric Name="FalseTrackRate" Weight="10" />
 <Metric Name="NumFalseTrack" Weight="0.0" />
 <Metric Name="CumBroken" Weight="0.0" />
 <Metric Name="Completeness" Weight="0.0" />
 <Metric Name="NumMissedTrack" Weight="0.0" />
 <Metric Name="RedundantTrackRatio" Weight="0.0" />
 <Metric Name="SpuriousTrackRatio" Weight="0.0" />
 <Metric Name="NumSpuriousTracks" Weight="0.0" />
 <Metric Name="TrackContinuity" Weight="0.0" />
 <Metric Name="TrackFragment" Weight="0.0" />
 <Metric Name="ConfLatency" Weight="10" />
 <Metric Name="TrackPD" Weight="0" />
 <Metric Name="CumSwap" Weight="0" />
</Weights>

Variables File

<Variables>
 <File Name="tracker.xml" Path_Type="RelativeToSelf">
 <Control Name="track_confirmation_for_display_m">
 <Ranges>
 <Range Name="Range_1">2:1:4</Range>
 </Ranges>
 </Control>
 <Control Name="track_confirmation_for_display_n">
 <Ranges>
 <Range Name="Range_1">2:1:4</Range>
 </Ranges>
 </Control>
 </File>
 <File Name="sensor.xml" Path_Type="RelativeToSelf">
 <Control Name="target_detection_probability">
 <Ranges>
 <Range Name="Range_1">0.90:0.01:0.98</Range>
 </Ranges>
 </Control>
 </File>
</Variables>

Appendix C. Input Files 73

Metrics File

<Metrics>

 <Metric>

 <Name>RMSE</Name>

 <LongName>root_mean_square_error</LongName>

 <Type>LinearDirect</Type>

 <IdealValue>0</IdealValue>

 <Minimize>1</Minimize>

 </Metric>

 <Metric>

 <Name>AveEucError</Name>

 <LongName>average_euclidean_error</LongName>

 <Type>LinearDirect</Type>

 <IdealValue>0</IdealValue>

 <Minimize>1</Minimize>

 </Metric>

 <Metric>

 <Name>AveGeomError</Name>

 <LongName>average_geometric_error</LongName>

 <Type>LinearDirect</Type>

 <IdealValue>0</IdealValue>

 <Minimize>1</Minimize>

 </Metric>

 <Metric>

 <Name>AveHarmError</Name>

 <LongName>average_harmonic_error</LongName>

 <Type>LinearDirect</Type>

 <IdealValue>0</IdealValue>

 <Minimize>1</Minimize>

 </Metric>

</Metrics>

Appendix C. Input Files 74

PV Relations File

<PV_Relations>

 <RMSE>

 <Unknown>

 <File Name tracker.xml" PathType="RelativetoApplication">

 A;B;C</File>

 </Unknown>

 <Linear_D>

<File Name tracker.xml" PathType="RelativetoApplication">

 D;E;F</File>

 </Linear_D>

 </RMSE>

 <AveEucError>

 <Unknown>

 <File Name tracker.xml" PathType="RelativetoApplication">

 A;B;C</File>

 </Unknown>

 <Linear_D>

<File Name tracker.xml" PathType="RelativetoApplication">

 X;Y;Z</File>

 </Linear_D>

 <Inverse>

 <File Name sensor.xml" PathType="RelativetoApplication">

 J;K;L</File>

 </Inverse>

</PV_Relations>

Appendix D.

OUTPUT FILE

Report

<Optimizer>

 <Combination Number="1" Score="10">

 <File Name="test2.xml" PathType="RelativeToApplication">

 <A>6.957507,6.964889

 <C>two</C>

 1

 </File>

 </Combination>

 <Combination Number="2" Score="9">

 <File Name="test2.xml" PathType="RelativeToApplication">

 <A>6.701281,6.627104

 <C>two</C>

 1

 </File>

 </Combination>

 <Combination Number="3" Score="8">

 <File Name="test2.xml" PathType="RelativeToApplication">

 <A>6.592305,7.000000

 <C>two</C>

 -1

 </File>

 </Combination>

 <Combination Number="4" Score="8">

 <File Name="test2.xml" PathType="RelativeToApplication">

 <A>6.682393,6.686016

 <C>two</C>

 1

 </File>

 </Combination>

 <Combination Number="5" Score="7.5">

 <File Name="test2.xml" PathType="RelativeToApplication">

 <A>6.534048,6.000000

 <C>three</C>

 1

 </File>

 </Combination>

</Optimizer>

Bibliography

[1] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Proceedings of IEEE

International Conference on Neural Networks, vol. 4, pp. 1942-1948, Nov 1995.

[2] R. B. Devi, E. Barlaskar, O. B. Devi, S. P. Medhi and R. R. Shimray, "Survey on

Evolutionary Computation Tech Techniques and its Application in Different Fields,"

International Journal on Information Theory (IJIT), vol. 3, pp. 73-82, July 2014.

[3] W. Contributors, "Wikipedia," [Online]. Available:

http://en.wikipedia.org/wiki/Evolutionary_algorithm.

[4] C. Ferreira, "Gene Expression Programming: A New Adaptive Algorithm for Solving

Problems," Complex Systems, vol. 13, no. 2, pp. 87-129, 2001.

[5] D. Whitley, "A genetic algorithm tutorial," Statistics and Computing, vol. 4, no. 2, pp. 65-

85, 1994.

[6] L. O. A. W. M. Fogel, Artificial Intelligence through Simulated Evolution, John Wiley,

1966.

[7] H.-G. Beyer, The Theory of Evolution Strategies, Springer, 2001.

[8] R. Storn and K. Price, "Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces," Journal of Global Optimization , vol. 11, p. 341–359,

1997.

[9] P. Civicioglu, "Backtracking Search Optimization Algorithm for numerical optimization

problems," Applied Mathematics and Computation, vol. 219, pp. 8121–8144,, 2013.

[10] T. White, "Swarm Intelligence," [Online]. Available:

Bibliography 77

http://www.sce.carleton.ca/netmanage/tony/swarm.html.

[11] W. J. G. Beni, "Swarm Intelligence in Cellular Robotic Systems," in Proceed. NATO

Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989).

[12] J. E. R. C. S. Y. Kennedy, Swarm Intelligence, San Francisco: Morgan Kaufmann

Publishers, 2001.

[13] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, "GSA: A Gravitational Search

Algorithm," Information Sciences, vol. 179, no. 13, p. 2232–2248, 13 June 2009.

[14] M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, 2004.

[15] D. D. Karaboga, "An Idea Based On Honey Bee Swarm for Numerical Optimization,"

Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

[16] H. W. Ben Niu, "Bacterial Colony Optimization," Discrete Dynamics in Nature and Society,

vol. 2012, 2012.

[17] L. N. de Castro and J. Timmis, "Artificial Immune Systems: A New Computational

Intelligence Approach," Springer, 2002, p. 57–58.

[18] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering

Software, vol. 69, p. 46–61, 2014.

[19] X. S. Yang, "A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative

Strategies for Optimization," Studies in Computational Intelligence, vol. 284, pp. 65-74,

2010.

[20] V. K. Jiří Pospíchal, "A Study of Altruism by Genetic Algorithm," in Advances in Soft

Computing, Springer, pp. 507-520.

[21] S. Abraham, S. Sanyal and M. Sanglikar, "Particle Swarm Optimization Based Diophantine

Equation Solver," International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 100-

Bibliography 78

114, 2010.

[22] W. contributors, "Particle swarm optimization," 18 August 2014. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=Particle_swarm_optimization&oldid=621827390.

[Accessed 18 September 2014].

[23] M. Dorigo, V. Maniezzo and A. Colorni, "Distributed Optimization by Ant Colonies,"

ECAL91 - European Conference On Artificial Life, pp. 134-142, 1991.

[24] A. Kutsenok, "Swarm AI: A General-Purpose Swarm Intelligence Technique," Design

Principles and Practices: An International Journal, vol. 5, pp. 7-16, 2011.

[25] K. Roebuck, User Generated Content: High-impact Emerging Technology - What You Need

to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors, Emereo Publishing,

2004.

[26] M. A. Lewis and G. A. Bekey, "The Behavioral Self-Organization of Nanorobots Using

Local Rules," in In Proceedings of the 1992 IEEE/RSJ IROS, Raleigh, North Carolina,

1992.

[27] M. Al-Rifaie and A. Aber, " Identifying metastasis in bone scans with Stochastic Diffusion

Search," in Proc. IEEE Information Technology in Medicine and Education, ITME , 2012.

[28] M. M. Al-Rifaie, A. Aber and A. M. Oudah, "Utilising Stochastic Diffusion Search to

identify metastasis in bone scans and microcalcifications on mammographs," in IEEE

International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2012.

[29] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech

House Publishers, 1999.

[30] R. Tharmarasa, K. Punithakumar, T. Kirubarajan and Y. Bar-Shalom, "Sensor Data Fusion

with Application to Multitarget Tracking," in Handbook on Array Processing and Sensor

Networks, John Wiley & Sons, 2010 .

Bibliography 79

[31] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Journal of

Fluids Engineering :82, pp. 35-45, 1960.

[32] R. Tharmarasa, "Large-Scale Optimal Sensor Array Management for Multitarget Tracking,"

Hamilton, Ontario, Canada, 2003.

[33] Y. Bar-Shalom, X. Li and T. Kirubarajan, Estimation with Applications to Tracking and

Navigation, Wiley, 2001.

[34] R. Mahler, "An Introduction to Multisource-Multitarget Statistics and its Application,"

Lockheed Martin, 2000.

[35] M. Pace, B. N. V. (. Melbourne), D. L. (DCNS), P. D. Moral and F. Caron., "Multiple target

Tracking with PHD Filters," ALEA, [Online]. Available:

https://alea.bordeaux.inria.fr/index.php/phd-filters. [Accessed 14 07 2015].

[36] H. A. P. Blom, "A Sophisticated Tracking Algorithm for ATC Surveillance Data," in

Proceedings of International Radar Conference, Paris, 1984.

[37] H. A. P. Blom and Y. Bar-Shalom, "The Interacting Multiple Model Algorithm for Systems

with Markovian Switching Coefficients," IEEE Transactions on Automatic Control, vol. 33

, no. 8, pp. 780- 783, 1988 .

[38] Performance Evaluator - User Guide, 2012.

[39] R. A. Coogle and P. F. West, "MIMO radar benchmark: performance metrics," ONR Work-

shop on MIMO Radar, July 2009.

[40] H. Ahmed and J. Glasgow, "Swarm Intelligence: Concepts, Models and Applications,"

Kingston, Ontario, February 2012.

[41] T. White, B. Pöltl, D. Agrinz, A. Maier-Pilecky, M. Moser and T. Russold, "SFB Research

Center," University of Graz , [Online]. Available: http://math.uni-graz.at/mobis. [Accessed

07 09 2015].

Bibliography 80

[42] M.-R. Akbarzadeh-T, M. Davarynejad and N. Pariz, "Adaptive fuzzy fitness granulation for

evolutionary optimization," International Journal of Approximate Reasoning (Impact

Factor: 1.98), vol. 49, p. 523–538, 2008.

[43] U. Orguner, "Introduction to Target Tracking," Ankara.

[44] N. J. Gordon, D. J. Salmond and A. F. M. Smith, "Novel approach to nonlinear/non-

Gaussian Bayesian state estimation," in IEE Proceedings-F, Radar and Signal Processing,

1993.

[45] N. Amjady and H. Soleymanpour, "Daily Hydrothermal Generation Scheduling by a new

Modified Adaptive Particle Swarm Optimization technique," Electric Power Systems

Research, vol. 80(6), pp. 723-732, 2010.

[46] R. C. Eberhart and Y. Shi, "Comparing Inertia Weights and Constriction Factors in Particle

Swarm Optimization," Proceedings of IEEE International Congress on Evolutionary

Computation, vol. 1, pp. 84-88, 2000.

[47] N. Nedjah and L. d. Macedo Mourelle, Swarm Intelligent Systems, vol. 26, Rio de Janeiro:

Springer-Verlag Berlin Heidelberg, 2006.

	Chapter 1 Introduction
	1.1 Evolutionary Algorithms
	1.2 Organization of the Thesis

	Chapter 2 Evolutionary Computation (EC)
	2.1 Evolutionary Algorithms
	2.1.1 General Algorithm of Evolutionary Processes
	2.1.2 Types of Evolutionary Algorithms

	2.2 Swarm Intelligence
	2.2.1 Swarm Intelligence Models
	Particle Swarm Optimization
	Ant Colony Optimization
	Gravitational Search Algorithm

	2.2.2 Swarm Intelligence Principles
	Principle 1: Create a system of agents that work individually on a common problem
	Principle 2: Agents are simple, fast, and have a limited perspective
	Principle 3: Indirect Simple Inter-Agent Communication

	2.2.3 Swarm Intelligence Applications

	Chapter 3 Target Tracking
	3.1 Tracking Filters
	3.1.1 Kalman Filter
	3.1.2 Extended Kalman Filter (EKF)
	3.1.3 Probability Hypothesis Density (PHD) Method
	Prediction:
	Update:

	3.1.4 IMM Filters
	Assumptions:
	Algorithm

	Chapter 4 Performance Evaluator
	4.1 Measurements
	4.1.1 Sensor Related Measurements
	Dwell time per sensor
	Energy emitted per sensor
	Cumulative transmit dwell time/emitted energy over all sensors

	4.1.2 Tracker Related Measurements
	Algorithm Independent
	 Available truths and tracks
	Track Cardinality Measures: This class of metrics deals with the statistics of the results, e.g. number of confirmed tracks, number of missed tracks, number of false tracks etc. However these metrics do not provide any information about the performanc...
	Time (Durational) Accuracy Measures: This class of metrics deals with the time performance and persistence of the estimated tracks. They provide more useful information about the duration and persistence of the estimated tracks. Following is an exampl...
	Track Probability of detection: It is a measure of trackers detection ability in estimating truth.
	Accuracy Measures: This is the most common measure used to evaluate the accuracy of the estimated values. Several measures are defined based on the difference between the estimation and truth, e.g.
	Root Mean Squared Error: RMSE is a common metric which uses a Mahanabolis distance to compute the error.
	 Available tracks and unknown truths

	Algorithm Specific

	4.2 Output

	Chapter 5 Automated Tracker Optimizer
	5.1 Initialization (Input)
	5.1.1 Evaluator Callback
	5.1.2 ConfigManager
	5.1.3 Configuration File
	Method
	Method Parameters
	 Particle Swarm Optimization
	 Gravitational Search Algorithm

	Language File
	Warnings
	Save Top Files
	History Number
	Original Files
	 Delete Backup:
	This flag indicates whether to delete the backup of the original files at the end of optimization or not.
	 Replace With Optimized:
	This flag indicates whether to replace the original files with the optimized ones or not.

	5.1.4 Project File
	Settings
	 Method
	 Input
	TopN: It is the number of top solutions to provide at the end of optimization for example, if TopN is 10, the optimizer will provide with solutions with the top 10 scores.
	Variables to Optimize: This gives the path to the file that specifies the variables to optimize for the project.
	Metrics: This gives the path to the file that specifies the performance metrics that were received from the evaluator.
	PE Weights: This gives the path to the file that specifies the weights given to each performance metric.
	PV Relations: This gives the path to the file that specifies the relation between the variables and the metrics.

	Output
	 Report
	 Results Folder

	5.2 Preparation
	5.2.1 Read Input Files
	Variables File
	Weights File

	5.2.2 Quiet Mode
	5.2.3 Load Project Files
	5.2.4 Cleanup
	Metrics
	Variables

	5.2.5 Choose Best Method

	5.3 Optimization (Process)
	5.3.1 Calculate Solution
	5.3.2 Apply Solution
	5.3.3 Run Tracker and Evaluator
	Callback Function
	Exe Paths

	5.3.4 Score Calculation

	5.4 Results (Output)
	5.4.1 Report
	5.4.2 Project Files

	5.5 Modules:

	Chapter 6 Optimization Techniques
	6.1 Exhaustive
	6.1.1 All Combinations

	6.2 Heuristic Methods
	6.2.1 Particle swarm
	Background
	Introduction
	Algorithm
	 Initialization
	 Iteration
	 Velocity

	PSO Applications
	Flow Chart

	6.2.2 Gravitational Field Search
	Background
	Introduction
	Algorithm
	 Initialization
	 Iteration
	 K-Best
	 All Time Best

	Flow Chart

	6.2.3 Discrete Variables
	6.2.4 Population Size
	6.2.5 GSA versus PSO
	6.2.6 History

	Chapter 7 Results
	7.1 Images
	7.2 Tracker
	7.3 Observations

	Chapter 8 Summary
	8.1 Conclusions
	8.2 Future Work
	8.2.1 Simulated Annealing (SA)
	8.2.2 MatLab Configurator
	8.2.3 Fitness Approximation
	Adaptive Fuzzy Fitness Granulation [42]

	Appendix A. Optimizer for General Use
	Appendix B. Configuration File
	Appendix C. Input Files
	Appendix D. Output File
	Bibliography

