BLADE VIBRATION MEASUREMENT TECHNIQUES
| ‘ AND
VIBRATION ANALYSIS OF PLATES



BLADE VIBRATION MEASUREMENT TECHNIOQUES
AND
VIBRATION ANALYSIS OF PLATES

BY

D.V.JAGANNATH, M.E.(Propulsion)

_.A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the .Requirements
for the Degree

Master of Engineering”

McMaster University.

March 1969



MASTER OF ENGINEERING (1969) McMASTER UNIVERSITY
(Mechanical Engineering) Hamilton, Ontario.

£

TITLE: Blade Vibration Measurement Techniques and
Vibration Analysis of Plates.

AUTHOR: Jagannath,DiV., M.E; (P}opulsion)'
SUPERVISCR: Dr.Dokainish, M.A.

NUMBER OF PAGES: viii, 95

SCOPE AND CONTENTS:

Literature on experimental techniques for measurement of

gas turbine blade vibration has been reviewed.

First natural frequency of a cantilever plate of thin uniform
rectangular cross seétion, with and without pretwist has been

obtained experimentally.

Free vibrations of cantilever plates of thin uniform
rectangular cross section have been analysed by Finite Element

Method. Computed values of natura]qfrequencies and mode shapes are

compared with other analytical results.



ABSTRACT
The present investigation deals with Gas Turbine Blade

Vibrations.

Literature oﬁ the tecﬁniques.employed for experimental
investigation of gas turbine blade vibration characteristics
has been summarised. Varijous steps have been exﬁ]ained by
reviewing the different techniques. Several causes for nossib]e
excitation of blades as well as damping methods to subppress ‘

the resulting vibrations are also included.

Attempts were made to determine experimentally the patura]
fréquencies of cantilever plates of thin uniform rectangular
cross section, with and without pretwist. First natura1 frequency
of the plate without.twist was in good agreement with the one

calculated from the plate formula.

Free vibration analysis of cantilever plates of thin,Qniform
rectangular cross section is made. anite E]ement Technique is
used to determine‘the elastic andngnertia1 pfoperties of a fully
compqtib]e triangular element. Computed values of natural freqg-

uencies and mode shapes are compared with other analytical results.
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NOMENCLATURE

( X,Y,Z2)
...Datum Coordinates.
ORI LRy (R
. Loca] coordinates for subtriangles a,b and c respectively.
u, ... Displacement normal to middle plane of the element.
Uy ... Displacement caused by rotation of norma]Ito the middle
plane about x-axis.
uy ... Displacement caused by rotation of normal to the middle
plane about y-axis.
U .... Nodal displacement vector.
U .... Nodal acceleration vector.
e .... Total strain.
e .... Elastic strain.
er .- Thermal stra{n.
. Initial strain.
su. .. Virtual sfrain energy.
éw ... Virtual work.
su ... Virtual displacement.
Se ... Virtual strain.
P .... External force vector.
K, » Iy, .0l
... Stiffness matrices of subtriangles a,b and é in their

respective local coordinates.
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..Mass matrices of subtriangles a,b and ¢ in their

4 resbectiVe local coordinates. ' i

kIL ..Stiffness matrix in local coérdinates of the set of three

| vsubtrianglés; : |

@ﬂL ..Mass matrix in local coordinates of the set of three
subtriangles.

O eenns Column vector of 27 Tocal coordinates.

[A]l ..Transformation matrix of size 27x9 relating the 27 local
coordinateé_to the 9 nodal displacements of the complete
triangle.

[kT... Stiffness mafrix of the complete triangle in datum
coordinates.

[5]... Mass matrix of the complete triangle in datum coordinates.

[K]... Condensed stjffness matrix for the entire structure.

[M]... Condensed mass matrix for the entfre structure.

E.... Young's Modu]us, 1bf/in2.

v .... Poisson's ratio.

p .... Weight density, 1bg/in3.

£ .... Plate length, in.

t .... Plate thickness, in.

w_ ... Natural frequency of undamped free vibrations, radians/sec.

B .... Natural frequency in non-dimensional form.

q .... Column vector of amplitudes of displacements U.
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1. INTRODUCTION

EY

Mechanical structures are subjected to vibrafiohs due
to the presencé of periodic or non-periodic forces acting on
them. The severity of vibration depends on the magnitude and

frequency of these forces.

In the aircraft and missile field, these forces are caused
internally in engihes4as we?] aslby air stream turbulence. A
critical revjew of various problems with present day jet aircraft
reveals that those associated with blades emerge high in order
of importance. A Bristol Siddely engineer said, "It is not
surprising when it is kea1ised that there are’some 2000 fixed
and rotating blades in an axial enéine and the failure of any one
of them can cause it to be sﬁut down in flight and score a black

mark for an unscheduled removal".

Gas turbine blades can féi1 if they are subjected to
alternating forces having frequencies, near their resonant frequ-
encies. The danger of blade resonance and consequential failure
due to fatigue is too well known to reguire amplification. If the

natural frequency of the blade is outside the operating frequency

range of the machine and does not coingide with the harmonic speeds,

fatigue-failure due to blade vibration could be avoided by a

suitable choice of design.



" Thus a need has arisen for pré;tiéa1'determinatjon of the
natural modes of vibrations of b]adeé.’But since the natural
frequencies of blades of the same row in some turbines have shown |
up to 20% scatter, and with different blade shapes in succeeding
rows, complete avoidance of resonance is a remote possibﬁ]ity and

necessitates studies on damping and use of dampers.

The blade engineer is interested in the data qf natural
frequencies and vibratory stresses, when the turbine blades are
performing in their normal environment. Experimental results are
not completely satisfactory due to tremendous problems while
simulating the actual conditions, iﬁ the Taboratories. Flight
tests also exhibit problems due to inaccessibility. There are,
no doubt, certain Timitations in analytical methods, while making
basic assumptions corelating the boundary conditions and the
system of disturbing.fbrces. As a compromise, perhaps, it is usual
practice to investigate the prob]emvexperimenta11y as we]]las
‘analytically to.achieve some satisfaction, if at all the two

results are in fair agreement.



2. LITERATURE SURVEY

2.1 Experimental Techniques

)

Consistént research has been carried out for more than .
‘two decades in the fie1d of turbine blade vibration by engineers
all over the world including leading aircraft companies like
Rol1s-Royce, Bristol Siddely, Pratt ahd Whittney and so on. Various
experimenta] techniques have been developed and theoritical investi-

gations carried out.

The importance of éxperimentation for determining blade
vibration and fatigue properties can be pointed out by stating that
the analytical methods based on theoritical behaviour of the blade,
are limited because of unknowns in:

(a) The boundary (mounting) conditions

(b) Aerodypamic stimuli '

(c) Blade quality (materials, tolerance variations etc.)

(d) B]ade vibratory response to aerodynamic or mechanical

excitation and their magnitudes.
The exact mathematical prediction of all natural frequencies of a
given blade of an aerofoil section with twist and taper is rather
a difficult matter. But approximate methods making simplifying
assﬁmptioné either in the derivation or in the solutions of the
mathematical equat%ons, have been suggested for practical purposes.

Uncoupled fféxura] frequencies have been calculated using Timoshinko



equations and extensfon of Myklestead's method, applying corrections
for shear, rotary'inerfié, taper and fwist. For ca]qu];ting the: o
| torsional frequencies, Timoshinko aﬁd Holzer's methods have been
.employed. The effect of twist on‘torsiona1 rigidity has been

neglected, but correction for increased stiffness has been applied.

The blade vibration problem consists of findjing natural
frequencies and nodal patterns of flexural vibration, torsional
vibration, coupled modes, effect of disc vibration and elasticity
of attachment, effect of damping, causes and nature of periodic

excitation and the vibratory stresses and fatigue endurance.

The most desirable experimental data of natural frequencies
and vibratory stresses would be the data which are obtained when the
turbine blades are performing in their normal environment. These
ideal experimental data are extremely difficult to obtain due
to inaccessibility. Te]emétry and airborne equipménts have been
~developed. They all have merits as well as demerits, in addition,
they are not always feasible. Therefore, environments have been
developed which will provide.realistic experimental data for
specific turbine blade structures. These environments are expected

to provide the best simulating conditions.

A rotating test loses its attractiveness since it is only



- possible to simulate:
(a) The centrifugal effect on blade natural frequency
(b) The B]édebattachment centrifugal load
(c) The temperature effecis.
 But it is not possible to simulate:
(a) The exact aerodynamic and mechanical excitation
(b) The normal vibratory and bending stresses due to

gas forces imposed on the blades.-

The basic disadvantéges of a nonkotatjng blade test
facility are,Athe inability to simulate the centrifugal and
exciting force fields. A centrifugaf field correction factor can
be applied to the high fundamental frequency blades. It has been
analytically and experimentally shown thatvthis correction is

negligible for short stiff blades.

Though an énormous amount of work has been done on
rotating as well as nonrotating blades in various types of
applications, namely, steam turbines, turbochargers and gas
ﬁurbines,as problems of more complex nature are being discovered in .
present day jet powered aircraft, sophisticated methods of assessing
‘blade vibration characteristics are still underway. Hence the
need for emphasis on further gas turbine blade vibratfon study in

the laboratory.



;Any blade vibration rig would consist of a mounting
device, an exciter and'appropriate instrumentation for observation
.and ana]yéis, whicﬁ normally cénsisﬁs of a.frénsdute;, signa]A
conditioners, cathode ray osci]]oséopes, recqrders; analysers, ‘
the specificatioﬁslof each one of these depending on the test

. P
requirements(1):

221.1,-B]ade mounting devices.

Carnegie (?Zﬁﬁdéveloped a dynamically isolated vibration
test rig by mounting the blade on a very heavy'c1amping block
resting on a sponge rubber to make the natural frequency:: of the
block/sponge system low relative to that of the blade, so that
the transmitted force (from blade te mounting) is only a small
fréction of the impressed force (on .the blade)- vibration isolation
theory. During rotating blade tests; conventional turbine discs have

been used, which completely eliminate errors due to blade mounting.

Earlier parts of the work (73) consisted of seme crude
~experiments with the blade fixed on a swage block. Based on the
results of these experiments, a blade mounting rig was developed.
-The block that holds the blade root can be of any shape to suit
the roof. The whole mounting was sufficiently heavy and rigid to

comply with the assumption of fixed end of the cantilever blade in

* Numbers in brackets designate References.



“the theoritical calculations.

Thomas Vuksta. (.4:) gave an experimental curve, showing the
effect of base mass to cantilever mass ratio on the fundamental
. frequencies of cantilevers. See Figufe 1. He concluded that the
fixture system has to be versatj]e to permit:insta11ation and
removal of blades with a minimum effort and it had to be rather
massive to permit vibration studies of heévy, high fundamental
frequency blades. In Qrder to minimise the physical size of the
fixture and fixture-blade mass effect, a 2000 1b. ;tee1 block was
selected and for this fixture, a blade or blades weighing up to
20 1bs. could be vibrated with a possible error of 0.5% at a mass
ratio of 100 to 1. An acceptable error of 1%would permit the blades
weighing approximately 25 1bs. to be vibrated in the fixture. Also
during blade rig fatigue tests carried out by Armstrong (.5) the

blade root was rigidly clamped in a massive steel block.

2.1.2 Excitation methods.

Various techniques have_been adopted in laboratories to

vibrate or fatigue the blades.

Excitation by bowing is quite obselete- the blade is set
in vibration by drawing a bow, such as a violin bow, across the

blade root. Complex modes cannot be excited this Way.
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Acoustic excitation employs a low voltage sonic driver
to direct sound(energy through a truncated cone to a localised area

of the blade. This is limited due to absorption of sound energy

in}the surroundfngs and low power output.

Electrostatic excitation forms the blade as one of the
electrodes of a condenser, the other electrode being a stiff piece
of metal (e.g.brass), the lowest natural frequency . .of which(6)
is above the range béiné investigated. An é]ternating vo]tagé of
about 5000 V between the two electrodes placed 1/10" apart causes
the blade to vibrate and-enab]es resonances to be detected. The
exciting voltage is produced by feeding a variable frequency signal
from an audio-oscillator through a 25 watt amplifier and step up
transformer. This is seldom used in laboratories because of low -

power output.

Pneumatic excitation directs high velocity air stream from
a nozzle towards. the blade tip and by suitably adjusting the
distance between nozzle and the blade successfully excites modes
‘up to 2000 cps. Mechanical difficulties arise while exciting higher
modes. To overcome these difficulties, pulsed air vibration
techniques have been employed. Air is passed through a slotted
| rotating wheel which is close to a stationary plate having identical

openings. This alternate opening and closing of the duct produces
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pulsations in the air and the frequencv of pulsations is
proportional to_thebspeed of rotation and the number of slots.

The vibration amp11tude‘is controlled by a valve on the air supply
line. The facility is also capab]e'of e1e§ated temperature operation
by heating the excitatioh air wfth a direct fired heater using

JP, fuel (7). This technique of pulsed air vibrafion has been
sﬁccessfu]]y used by Truman, Martin and Klint (:8) up to frequen-
cies of 15000 cps, for higher mode fatique fai]ures; both flexural
and torsional.

Blade resonant frequenties héve been pfoducéd by mechanical
excitation, using vibkation shaker tab1és, magnetostrictive metal
bars and crystal type transducers. The drawback is that the stress
distribution is affected and at higher frequencies, this force is

not sufficient to carry out fatigue tests(9).

An overall survey of exciters working on the electromagnetic
principle includes systems working on -
(a) Eddy current princinle (permanent magnet type and
D.C. electromagnet type)
(b) ’Hélf wave rectifier brinciple (solenoid type and
"U" shaped eiectomagnet type).
Though the permanent magnet type is generally employed for blade
vibration studies in aircraft industrjes, it has got its Timitations

for effecting peak starting pull at high resonant frequencies.
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"This rig is used for magnetic blades and‘if the blade is of
nonmagnetic material, a soft iron piece is insta]]ed at the b]ade
tip. The A.C. flux in the core alternates at the éet‘f?equéncy of
the oscillator and induces voltage on the blade surface. Since the
available power output is limited, this system is uﬁsuitab]e for

vibrating very stiff blades (10).

High starting force can be achieved by taking advantage
of the increased field in case of a D.C. electromagnet. Since D.C.
and A.C. flux paths are isolated except at the pole tips (where
suftab1e holes or slots are to be made to avoid transformer action
by cutting of fluxes) this method can be successfully used to

vibrate heavy nonmagnetic blades. See Figure 2.

Bench fatigue tests carried out by Voysey (11)on turbine:
blades by an electrqmagnetic exciter consisting of a moving coil .
speaker indicated a pull of =180 1bs. at the moving coil with
1000 watts input, due to interaction of A.C. in the éoi] with the
steady field of a 400 1b. D.C. magnet. This system could be used

“satisfactorily up to 3000 cps. ..

Electromagnetic exciters working on half-wave rectifier
principle, develoved by Canadian Pratt and Whittney (}Q), that are
capable of producing starting pu11s of the order of 400 1bs. or

more, can vibrate the blades at resonant frequencies of sevaral
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ki]ocycTés and with a maximum amplitude of 0.5" or more.

Half cycle voltage waves are applied to two solenoids
through rectfiers. The power is fed from a power amplifier driven
by an osci]latbr. The circuit capacitance is varied to decrease

“the line current af the resbnant frequency of the blade. The
vibrating head consists of transformer laminations which are
stacked inside two ebonite channel pieces. These are held rigidly
to the blade tip by a barrel nut and the space around the b{ade tip
between the ebonite channels is filled witthIastic cement, These
exciters working on half wave rectifier principle have been
successfully used to perform‘studies of nodal patterns and fatigque
failures, both flexural and torsional, of different types of blades

and vanes.

2.1.3 Instruﬁentation.

Each detail of operation must be given careful attent%on
‘in order to sucéessfu]]y measure turbine blade vibrafions.~As an
~example, in case of a turbocharger oEerating at speeds as high as
100,000 rpm, b]adés vibrate at frééuencies gfeater than 20,000 cps,
when the turbine wheel is operating in the exhaust gases at tempe-
rétures up to 1,400 deg. F. Under‘these conditions, signals are to
be produced and transmitted to recording equipment that will faith-

fully record the events as they occur(12).
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‘The first component in the instrumentation circuit of any
vibration test rig is the vibration pick up (detector). Depending on
the type of pick up used, its output can be used to measure vibration
amplitudes, stress distribution énd'visua1ise the actual phenomenon
on a cathode ray oscilloscope screen-and then the various mode shapes

could be traced.

“Detectors:

. In most rotéténg blade tests, strain gages have beeﬁ used
for strain measurements and to pick up vibrations. Bristol Siddely
in 1962 have developed frequency modulated grid technique and rédio
frequency methods.

In the frequency modulated_grid system, a zig zag conductor
in the stator casing and a magnet at a rotor blade tip generate a
series of electrical impulses at a constant frequency. If the blade
is vibrating, the f}eqqencv of the impulses will fluctuate and the
signal is proportional to the component of the blade alternating
_ velocity at'rigﬁt angles to the bars of the conductors. Blade
- calibration in the relevent modes to relate the measurement to thét
of the standard positfon of the 1eéding edge, allows the result to
‘be given in terms of (a x f), where f is the frequency and a is the
leading edge tip amplitude. The factor (a x f) is a direct function
of maximum stress. The radio frequency method employs a high

frequency signal (475 kc/s- Bristol Siddely) which is transferred
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- to the rator by an inductive slip ring. This signal supplies the
D.C. polarisation current for the gages. The gage signal is
amplified and then frequency multiplied with gage signals from
other channels prior to being transmitted to thebstator through

a single capacitive coupling ring.

"In case of nonrotating blade tests, the types of pick ups
used, other than resistance wire strain gages, {the pre of gage
depended on the range of temperatures and various forces on them-
for e.g.- during a rotating test, centrifugal force on the gage
was 40,000 times the weight of the gage), are of crystal type,

acoustic type, capacitor type and the optical type.

Barium titanate and lead zerconite have exhibited much
better piezoelectric properties than quartz and rochelle salt and
hence have been used as detectors as well as exciters in vibratioh‘
studies. Ferroe]ectfic ceramics such as barium titanate (sensitivity
=0.1 v/1076 unit of strain= a few thousand times that of a typical
wire resistance.gage) are piezoelectric after polarisation in an
~electric field and have very high diglectric constants, a few
hundred times that of quartz, but this property is temperature
dependant. At a certain critical temperature, usually about 100 deg.
centigrade, they disappear completely and hence need repolarisation

at a lTower temperature.

Blade vibration has been detected (2) by 1ightly placing
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the needle of a piezoelectric gramaphone pick up near the junction
of the blade and its root. The output from the pick up is then fed .
to a voltage amplifier. The limitation is the pick up sensitivity
at higher frequencies. This Has been employed to méke a traverse

-on the vibrating blade surface, while tracing the nodal patterns(22).

Capacitance type pick up, a noncontacting type of vibration
detector has been successfully used to trace the nodal patterns

and measure amplitudes.

Brittle lacquers to detect maximum stress regions and a
type of sand to visualise nodal patferns have been used. The optical
method of detecting blade vibration is carried out by illuminating
the vibrating blade with a stroboscope flash and using a micros-

cope to determine the dynamic reflection curves.

A noncontécting electro-optical instrument that has been
_very recently developed by "Physitech-Inc-Pa., U.S.A." produces
electric signa]g that may be recorded so as to measure vibratory
- movements including angular vibrations, fast, slow, big.or small.
It uses a special photomultiplier tube to electronically serve as

an optical discontinuity.(13).

Detector location and orientation:

One very important aspect to be considered while using a

wire resistance gage is its location and orientation w.r.t. blade.
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~ Other tybes of detectors do not pose much of problem in this

regard.

k]

During stress distribution studies, a number of gages
should be necessary. As many as 16 gages have been used on a single .
blade. But during a:fatigue-te§t, one is naturally interested in

the point of maximum stress.

Due to the complicated shape of a turbfne blade, especially
around the root section, it is not possible to locate the gage at
the point of maximum stress of a particular mode. Thus the gage
signal‘mUSt be calibrated in terms whfch can be related to the
fatigue strength of the material. By choosing a gage position where
the sigha] is approximately equal for amplitudes of vibration of
the same severity (a x f.value) in the four modes, it will be easier
to observe the amplitudes associated with each mode. But this reqUired.
that the gages be calibrated for each mode. It is not advisable to -
mount the strain gage at the point of maximum stress as this may

result in premafure fatigue failure of the gages themselves.

The blade vibration philosophy (14) developed by Bristol
Siddely gets rid of these gage location problems while determining
the maximum stress. Vibration has been specified in terms of the
total Teading edge tip amplitude 'a'.times the frequency of vibration
'f', since (a x f) is a direct function ofkmaximum stress for all

flexural modes of a uniform cantilever beam.
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o = constant x (axf)
max

Once an alternative position -is chosen, some form of>calibration
(static rig) is.done so that the test gage can be related to the .
blade tip amplitude as easily as thé output from another strain
gage. Static ca]ibrétion is dong with a microscope fitted with a

graticule focussed on the leading edge tip.

In selecting the gage position, one shdu]d %ind a position
where the output signal in the number of modes under consideration
is of similar Tevel per unit (a x f) and that fhis signal is large
enough compared with the electrical noise levels of the circuits.
This facilitates the monitoring of the amplitudes during tests and

also the detailed analysis of the test recordings.

During engine tests, amp]itﬁdes (a x f.values) have been
predicted ana1ytica11y by a thorﬁugh analysis of the air intake
characteristics, intake‘distortion and downstream obstructions,
involving three computer programs.The spanwise location of the maximum

stress being a function of the mode of vibration, one needs to chdose
a spanwise gagé 1ocatibn, in which fhe local sfress is an appreciable
fraction of the maximum. The following table gives the third

flexural mode stress distribution for standstill and for top speed

in a blade of actual interest. ( The results have been obtained by

numerical methods with an I.B.M. computer (15))
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Table 1
Gage Location‘ | Max. Stress/Local Stress(gage)
| % Span- Standsti11 | kTo; Speed
0 142 1.00
5 ' 1.96 o 1.4
10 3.19 2.33

20 : 8.88 33.30

Other factors on wh{ch‘the optimum gage location depended aré
(a) .Probable sources of excitation and their relative
-~ severity |
(b) Blade dynamic response characteristics
(c) Angular location of gages to detect for all
conditions, the highest fraction possible
of the local stresses'éand
(d) Strain gage survival.
When the angular orienfation 6 =90 deg. one may observe full
bending strain and fail to read torsion in this idealization,
~neglecting the end effects and coupling. See Figure 3. A gage
reading maximum torsion may read oh]y 1/3 of haximum bending. A
‘gage located at 65 deg. reads approximately 75% of maximum for

both bending and torsion.

"Fatigue tests have shown that (a x f) depends on the
material. Typical values for 107 reversals are Aluminium, 5.5 fps,

Steel, 6.5 fps, Titanium, 11 fps and Glass fibre Taminates, 13 fps.
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"~ For design purboses if (a x f) exceeds 2 fps, amplitudes of
vibration are considered to be serious (19).

The sevérity‘of vibration hds then’been spec;fied by é |
parameter "Amplitude Ratio" given by

measured amplitude (a x f)

Amp1litude Ratio =
failing amplitude (a x f) for 100

hour fatigue life

Fatigue test starts with (a x f) = #5 fps vibrated for 30
minutes at this level, before increasing the (a x-f) value by
0.5 fps for another 30 minutes and céntinues this way until
failure occurs. |

If the amplitude ratio is greater thaﬁ 100%, adequate
engine restrictions must be imposed until satiafactory'modifications
have been incorporated.

If it is bgtweén 50 and 100%, failure during long service .

use is expected and Tong term remedial measures are to be taken.

If the amplitude ratio is less than 50%, the vibration may )

be considered to be not serious for full service use.
Signal transmission:

When carrying out strain gage tests, it is Usual practice
to observe initially the signals from few blades '~per stage, the
Timiting factors being the slip ring and recorder capacities. During

the analysis, however, and subsequent testing of the engine, only
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the signals from the two blades showing the largest amplitudes
are transmitted, Nonrotéting testé are not too troublesome while

transmitting, since direct connectiaons are possible.

Rotating tests have incorporated several types of devices
for successful transmission of signals from the rotating parts.
Brush type slip rings, mercury slip rings and radio telemetry have

been used on a variety of tests. ' ’

Motsinger reviewed sﬁip ring instrumentation and compiled
an extensive Bib1iography o% tests relating to this subject, in his
paper "Rotating Instrumentatibn, a dfscussion and review of slip
ring instrumentation and design". Brush type slip rings are operating
up to 100,000 rpm. They generate noise in the signal, at high speeds
due to changes in the contact'resistance between the brush and the -
ring. Some employ as many as four slip ring channels for a single

information channel(16).

Mefcury type slip rings transmit signals at a lower noise
- level. They have gained more attraction.because they require only
two sl1ip ring channe1s>for each information channel, since this
reduces the overall size requirements and increases the speed

capabilities.

Radio telemetry has been successfully employed, mainly
during flight tests (17), since this technique is not essential during

ground tests.
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'Signal conditioning, Recording and Analysis:

The output frém the detector has got to be,conditioned,
e.g. the resistance change of the strain gage should be converted
to a voltage 1eve1_su1tab1e for observation of the vibration
phenomenon on the CRO screen, as well as for recording on the

magnetic tape.

The size of the equipment for signal conditioning, .
recording and analysis dépends on the fype of test, e.g., the
instruments required for a multistage compressbr test must necessa-
rily contain a high number of channels, yet be efficient and

reliable in operation.

A system employed at the General Electric Company, Ohio(19),
included: |

(a) Acceptance of 60 input signals simultaneously from
a wide vériety.of detectors '

(b) Simultaneous oscilloscope presentation ang magnetic

) tape recording of any 6 signals in any combination

.desired‘ |

(c) Six channels for recording the wave form on direct
writing oscillographs

(d) Auxiliary equipment necessary for operation such as

amplifiers, power supplies, etc. built in as an integral

part of the system, with strict adherence to the
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shieling and grounding procedures established

for the project.

>

Recording may be done on multichannel magnetic tape
recorders capable of receiving A.M. or F.M. signals. In order to
make an automatic Qaveform éna]ysis, the signal is made repetitive
by selecting a length of the tape and making a continuous loop
which can be played into an automatic recording'wave-ana1yser (18).
Tests of this nature have accurately indicated the frequency.and
amp]itudes of blade vibrations and therefore will be valuable in
providing results which are directly comparable with those obtained
by the manufacturers during production. An electronic wave analyser
requiring a frequency setting makes possible direct reading of
amplitude of a steady state signal with accuracy straight from the

meter provided in the unit(13).

The tape record could be anaiysed by replaying the tape
‘at a reduced speed into a medium speed camera, but this 1nv§1ves
a considerable amount of fj]ms. A continuous film camera uéed by
kRo11s Royce %, could investigate onTy first and second modes, As
another alternative, data acquisitioh systems may be used which
record analog information in digital form. To present the recorded
information in its most useful mediuh, choice of output recording .
devices are available. If the data is to be analysed by a computer,
it may be recorded on paper tape, punched cards or digital magnetic

tape, as appropriate.
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Observation:

Cathode ray oscilloscopes have been used in fhost cases
for visual observation of a vibration phenomenon. Blade natural
frequencies, which are directly read on the calibrated dials of
variab1e frequency generators, are easily detected by bringing the
blades to resonance. By suitable calibration, the magnitudes of

vibration amplitudes are also measured directly on the CRO screen.

Grinstead (29) reviewed the work of Chladni (1787),
originator of the sand patfern for rendering visible the different
vibratory motions of a resonént p1até. Chladni obtained 52 mode
shapes for a square plate, 43 for a circular, 30 for a hexagonal,

52 for a rectangular, 26 for an elliptical, 15 for a semicircular
and 25 for a triangular plate. Gringtead demonstrated that complex
nodal patterns obtained on turbine blades and impellers vibrating

at various modes, derive from consistent series of simpler modes and
that the frequencies of the latter, may be plotted in families of

curves, and thus has resolved them into their basic modes.

Observations have also been made in the experimental
techniques used by Belgaumker (3') that the predominately pure
modes could be obtained clearly by properly selecting the location

for exciting the blade.
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2.2 Cauées of Blade Vibration

The various reasons for excitation in a turbo-jet engine
are:

(a) Transmission of mechanical vibration through fixings

(b) Flutter excitation

(c) Fixed wake excitation

(d) Rotating stall cell éxcitation

(e) Random type of excitation.
The class of vibration and excitation mechanisms have been

studied(21,22). This leads to a meané of reducing the amplitude,

by various damping techniques.

Basic experimental work associated with flutter con&ucted
on cascades of blades showed fundamental flexural -and or torsional
modes, the mechanism‘of flutter being one of self excitation and
'is due to the 1ift characteristics of the blade. Change in angle
-of attack changes the aerodynamic force on the blade, Forcé
increases for a decrease in angle of attack and then the vibration
builds up. A detailed ana]&sis of -the straiﬁ»gage signals has
revealed that at moderate amplitudes, the blades vibrate at their
own natural frequencies. The peak amplitudes of different blades
usually occur at the same speed. Since flutter vibration occurs in
either the fundamental flexure or torsional modes, the most
responsive section is at the bTade tip. A change in rotor tip

stagger does, in fact, controls . vibration in either mode.
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A number of fixed vanes in the annulus of a compressor
supporting the bearings are responsible for wakes. The air flow
over these vanesAcreété wakes of 1ow.air vé1oc1ty coﬁpared to .
remainder of annulus. Aerodynamic force on the blade rotor is
reduced in these zones, the freéuency of pulses -would be the
number of reductions in air velocity times the spéed. If this
frequency is equal to one of the natural frequencies of the blade,
then a fairly large amplitude may build up. Blade vibration caused
by wake excitation exhibits all characteristics of a forced
resonance. The amp]itudés are fair]y‘steady with time for a set
speed. Excitation cauéed due to intake maldistribution may also

be included in this category.

During tests, it was found that the air flow at conditions
below the stall conditions of the first rotor blade broke up into
a series of stalled and unstalled patches (one to eight). The stalled
zone rotated in the same direction as the ;otor, but at approxi-
mately half the engine speed. In these stalled zones where low
velocity air exists, aerodynamic force on the rotor blade reduces
fhe stalled zone thus giving rise‘to a pu1sating force as it passes
the rotor blade. When thesé pulsations occur at a blade natural
frequency, severe vibrations occur. It has been observed that this

type of excitation is non-existant above about 80 percent of the

designed speed. Analysis of strain gage signal at any particular
speéd shows that the amplitude of each mode fluctuates rapidly

with time.
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In some experiments, the blade vibration present was not
caused by any of the above methods, but amplitudes in both
flexural and tdrsidné] ﬁodes wére possible; Thfs has Been consfdered '
to be due to random distukbances in the air flow. This type of 4
excitation is chafacterised by vibration with time and each blade
vibrates at its own natural frequencies. The amplitude distribution

of the strain gage signals has been found to posses the character

of filtered random noise.

2.3 Damping Methods.

Various damping methods are employed in order to reduce the
blade vibration amp]ifudes. They include:
(a) Internal damping of the blade material
(b) Mechanical damping of the .blade fixings
(c) Aerodynamic damping (when>a blade vibrates in an air
stream it imparts some of 1ts energy to the surrounding
air).
Hanson, Meyer and Manson(23) formulated in the fo11owin§ way:
Total damping = Material damping + Aerodynamic damping
+ Root damping
‘Material damping was determined by dropping a steel ball in such
‘a manner that it strikes the blade (rotating) near the tip. A plot
of log amplitude vérsus number of cycles is determined, the slope

of which gives material damping. Material damping is not enough
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~ for highvamp1itude vibration. Aerodynamic damping cannot fake

- care of flutter vibration, since its_éource'of excitafion itself

is aerodynamic instability. Total qnd aerodynamic damping have been'
separately formulated analytically in terms of the'1ogarthmic o

decrement. Root damping could then be determined by mere subtraction.

It was found that for tight blades, there is no root damping,
regardless of centrifugal force, because the tightness is already
induced by the fit rather than by centrifugal force. However; for
loosely mounted blades, appreciable damping occurs at low centri-
fugal forces, but at high centrifugal forces, the root damping
falls off essentially to zero,‘since at higher speeds, it is as
good as a tight blade. Root damping of loosely mounted blades
depends to some extent on the exciting force at high speeds. Some
root damping has been noted through experimental curves. The use
of a solid 1ubr1canf, such as molybdenum disulphide extended the
beneficial effects of looseness to much higher rotative speeds.
~ Hanson deVe]oped a pin type damper (24) applicable to axial flow
compressor blading which brought dpwn the vibratory stress by a
factor of ten. It is based on the principle of s]iding friction
between contacting metals involving centrifugally loaded pins tha£
contact tﬁe blade and the rotor. This means supplemented the
inherent damping of the blade system,. inherent damping sources
being internal friction of the materiai, dissipation to air,

dissipation to blade root and dissipation by mounting. See Figure 4.
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‘Experiﬁents carried out up to 1500 rpm using aif jet excita-
tion, strain gages and monel slip rings, helped study the iﬁf]uence
of variables such'as pin fit and material, blade proportions and
damper endurance. No systematic study was made to determine the
optimum pin size. Damping seems to be more effective after 20hours
of opefation due to'increasing friction and rate of wear as surface
contamination (oil etc.) weérs out. The smaller the ratio of neck
bto base thickness of the blade, the more effective the damper
operation would be. Stresses could be reduced to 1/10 value Qithout
~damper, by using hardened steel pins‘(0.0015” diametral clearance)
and cast inconel blade mounted in an aluminium rotor. Damping
induced by the pin damper remained consistently high with only a

small effect of centrifugal Toading.

The use of wires as a means of damping has been developed (25),
for application in varibus vibratory components including gas‘turbine
blades (vibrating due to flutter and stall) stationary as well as
rotating, with a good agreement between test dnd theory. The method
of damping through wires is based on the theory:

(a) 1In case of stationary btades, the vibration of blades
containing damper wires causes a $queezing action resulting ih -

rubbing of the wires, dissipating vibratory enekgy of the blade.
| (b) 1In case of rotating blades, wires adhere to a wall of
the blade due to a centrifugal action and the vibratory motion of

the b1ade causes relative motion between the blade wall and the
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- adjacent wires to absorb energy.

Analytical investigation starts with the calculation of work
done between two wires, finding the total work pér:cyéle and then |
equating it to the change in kinetic energy of the system per cycle,
‘thus obtaining an expression for ratio of the change in tip deflection
to the tip deflection (Ay/y). The 1ogarthh1c decrement (log(1/1-ay/y))
which could thus be related to that ratio, is a measure of damping.
Experiments have been carried out on a hollow stator vane filled
with Toosely packed 946 strands of 0.005" diameter copper wires.

One end of the vane was welded to a plate, fastened to a large
fixed mass to approximate to a cantilever beam and the resulting
signal was displayed on the CRO. The blade was excited by hand‘and
the observed decay wave on the CRO screen was photographed by a

polaroid land camera.

Tests on rotating blades were conducted at different speeds

to change the centrifugal componénts on the blade and hence their
lean angles and with different number of wire strands inside the
blade. High speed moving pictures of wires in a vibratory blade
(which had its tip opén) exposing&%ﬁgiends>of the wires, showed

the rubbing, squeezing and unsqueezing action of the wires.

It has been suggested that laboratory testing for the effect
of wiré diameter and material of the wire on damping ability should

be carried out.
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3. EXPERIMENTAL INVESTIGATION

The basic intention was to determine the natural frequencies
of pretwisted plates. It was also decided to conduct experiments
on plane cantilever plates in order to establish the effect of

pretwist.

Figure 5 shows a schematic diagram of the experimental set up.
A 6"x2"x1/16" mild steel ﬁ]ate was chosen for experimental purposes.
One end of the plate was fixed to a heavy steel block. This is shown i
in the overall view of the set up iﬁ Figure 5-a. The tip of the
cantilever was excited sinusoidally by an A.C. electromagnet, see
Figure 6, powered by an amplifier used to amplify the signals from
a frequency generator. The amp]itude of the exciting force was
maintained constant while changing the frequency. This constancy
was checked through an ammeter connected in series with the electro-

‘magnet.

Resonance was observed on the cathode ray oscilloscope screen
by using a proximity transducer of the capacitance type connected:
through an oscillator and a reactance converter to the oscilloscope.
- The electronic circuit converts the movement of the vibrating
cantilever into voltage signals which are fed to the Y-input of

the oscilloscope. The experimental set up did not pose any problem
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- while determining the first natural frequency. But higher natural
frequencies cou]d nbt be traced. No specific and concrete reasons
could be found out for this behaviour of the set up. Similar
procedure was carried out for the same plate but with a total pre-
twist at the tip of 20 degrees;»Twist was provided by using the

head stock of a machine shop lathe. The plate was checked for linear

variation of twist,(26,27).

The first natural frequency was found to be 54.5 cycles
per second for the plane plate and 59.5 cycles pe} second for the
twisted plate. The calculated value from the plate formula (28) for
the first natural frequency of the plane plate was 58.54 cycles

per second. The plate formula used is:

N 3.462 Dg
First Natural Frequency = cycles per second.

2TT pt24

Before chosing the electromagnet for providing the sinusoidal
exciting force, a Goodmén electromagnetic vibration shéker was
used as the force generator. Various configurations, shown in
Figure 6-a were-attempted while exciting the cantilever, but the

values of the natural frequencies so obtained were not reliable.
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4. THEORITICAL ANALYSIS

4.1 Introduction

Analysis of complex structural configurations lead to the
deve]opmént of approximate methods, since'the conventional methods,
although satisfactory when used on simple structures, were found
inadequate. Accurate analysis of structural prob]em§ is nécessavy,
capable of predicting any stress concentrations so that structural
fatigue failures might be avoided. Also speedy computations are
necessary to have comprehensive information on the structure,
sufficiently enough in the design cycle, so that modifications>
could be incorporated before taking a decision on the finé] design.
In order to achieve the most efficient design, a large number of
different structuqu configurations may have to be analysed

rapidly before a particular configuration is selected.

The method of analysis which meets the above said require-
ments use matrix algebra which is ideally suited for automatic
computation on hfgh—speed digita]kéd%puteré.'This is brecise]y
what the‘"Finite Element Technique" is. This technique has been

employed in the present study(29).

The essential feature of the finite element method is the
means by which the differential equations of equilibrium of the

~ elastic continuum are approximated by a set of algebraic equations.
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~ The actué] continuum is considered as an assemblage of discrete
elements, interconnected by a finite number of nodal points.
In this method, the digital computer is used not.6n1y,f0r the
solutioh of a1geb}aic equations but also for the whole process
of structural analysis from.the initial input data to the final

output which represents stress and'forCe distributions, deflections,

influence coefficients, natural frequencies and mode shapes.

4.2 Displacement Function

The most critical factor in the entire finite elehent
analysis is the selection of the element deformation functions.
The deformation functions assumed must be able to reproduce
distortions actually developed within the continuum. The function
used in the present investigation was suggested by T.K.Hsieh.
Tocher and Clough (3@) used thié while deriving the bending

stiffness matrix for a triangd]ar element. It reads as follows::
uz=u‘1+oi2x'+0§3y+0t4x2+a5x_y+0t6y2
+ay x3 + ag xy2 =+ ag y3 ~-==(4.1.1)

The first three terms represent the rigid body displacements,
without which the laws of statics Wi]1 be violated. The second
three terms represent strain states where as the last three
represent variation in strains.We are restricting ourselves to

nine constants namely aj, a2,... ag, since a maximum of nine
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- constants could be evaluated by means of nine algebraic equations
obtained by calculating the nine degrees of freedom present in a

>

triangular element in bending.

The term, a constant times x2y has been excluded from the
‘cubic polynomial with a purpose. Full slope and def]ectioﬁ
compatibility are achieved by dividing‘the triangular element in
question into three subtriangles and suitably chosing the sub-
element Tocal coordinate system as shown in Fiqure 7-b. That'is,
x-axis in the local coorainate system is always directed parallel
tovthe exterior side of the subelement. Slope compatibility along
the exterior boundaries is attributed to the exclusion of the
term in x2y as well as such é selection of the local coodinate
system for the subelements. This cqu]d be explained easily as follows.
Refering to Fiqure 7-b, for subtriangle a, fhe displacement |
function becomes
,2 ,

2+a5§y+a6y

uz = aj + op X+ a3y +ag X

2

e

+ oy 23 + og Xy< + dg y3

Normal slope at every point on the exterior boundary kj is 6u2/6§.
3U,/9y = a3 + 05 X + 2 O y'+‘2a8 Xy + 3 g y2

y being a constant all along the exterior boundary, slope all
along it is linear. It is this condition which ensures slope

compatibility.
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4.3 Mathematical Model

The mathematical formulation of the prob]em was done by
discretising the étructure. This provides with a finite number
of degrees of freedom upon which matrix algebra operations could

be performed.

Triangular elements are chosen for discretisatjon. These
are applicable to plane as well as shell type of structures. This
is because, curved surfaces could be better fitted with a triangular
coordinate area rather than with a rectangular coordinate area.
Convergence of the finite element procedure was studied using
different mesh sizes as showﬁ in Figure 10. A 6 x 6 mesh was chosen
for the final analysis of a square cantilever plate. The corres-
ponding results deviated from Dana Young's energy solutions (28) -

by a maximum of 2.1 percent.

4.4 Analysis

The structure under investigation is a cantilever plate of
thin uniform recténgu]ar Cross secE%;ﬁ.“It fs'required-tovderive
the stiffness and mass matrices to determine the dynamic response
of the structure. Stiffness and Maés.matrices represent respect-
ively the Elastic -and Inertial propertfes of the structure.

Stiffness matrix has been derived in this investigation by using the

principle of virtual work.
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"~ Only translational inertia of the plate is considered while
determining the mass matrix, thus neglecting the effects due to
fOtary inértia.'DerﬁQatibn of stiffness and mass matrices reduces
the problem to one of finding out tﬁe eigenvalues and eigenvectors
wHich represent the.natura] frequencies and mbde shapesiof the
structure.

Every triangular element is first divided into three
subtriangles a b and ¢ as shown in Figure 7-a. The e]astic
and inertial properties of each subtriéng]e are determined
| separately in the respective local coordinate system 7-b. While
attaching every set of three Subtriang1es to form the complete
element, compatibility is achieved of nodal displacements among
the subtriangles at the three -vertices and the centroid of the
complete element. Also the compatibility of normal slopes at
midpoints of the iqterior edges of the subtriangles is achieved.
Slope compatibility is ensured also along the exterior boundaries =
of every triangq]ar element. This is attributed to the triangu-
larisation of each element and so chosing the local coordinate
system that x-axis for subtriangle a is parallel to the exterior
side of a .The properties are then transformed into those ih
the datum coodinate system. The datum coordinates are shown in
Figufe 7-a.

Derivation of stiffness and mass matrices for a triangular
element in bending is discussed in appendix 1. While assembling

the stiffness and mass matrices to obtain the condensed properties
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- of the entire structure, the boundary conditions are satisfied
for the configuhatidn in question.

The method of détérmining the condensed matrices for the
entire structure could be exp]ained.by considering 1x1 mesh for
a cantilever, thus discretising it into two triangular elements
A and B. The bending stiffness matrix of size 9x9 for each of
these triangles could be partitioned into nine units as shown

.

below, each comprising an array of size 3x3.

[}
By114 B12 1813

\
Vis 37 .,
y 2 A B = Byl Byy i B3
. Y = S it I . LN Sl
B31: B3y § B33

Let us suppose the nodal stations of triangles A and B are
numbered anticlockwise as shown. With reference to the entire
cantilever, the nodgs corresponding to node 1 of triangle A and
node 1 of triangle B are inactive since they lie on the fixed
boundary. The condensed.matrix C of size 6x6 can now be written
as

C = --_-4:____
Where,C11?A22, C12=A23, C21=A32, and C22=A33+B33.

Disp1acemen£ patterr similar to equation (4.1.1) is

assumed for each sUbtriang]e.



46

- That is, for subtriangle b,

u, = aj + a, X +a3y +a, 32+ a Xy + og Ve

= ==2 : '
+ ay X3 + ag Xy + 0g y3

Displacements of the complete triangle involve 27 coordinates o

defined by
o = Otb
%¢c
where,
aa = 0‘1 s az S ceseer s 0‘9
ab = ulo s a].]. 3 e es s s aeras a18
and o, = 0G5 U9 s eeeeeaens Aoy

Eighteen of these are employed in satisfying internal compati-
bility requirements- between adjacent subelements and the remaining
nine are related to the nine discrete displacements U of the

element.

A relation between 27 coordinates.and 9 nodal displacements
is obtained by using compatibility equations. This relation is
‘helpful in finding the elastic and inertial properties of the

complete element in the datum coordinate system (X,Y,Z).

For every node in each subelement, deflections and slopes

are determined in the respeétive local coordinates and then
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transformed to the datum coordinates. The vector representing
deflection and slopes at corner k of subtriangle b is written

in the form - C ' o >

b
Ml =2y =AD @y an(44)
9 y . )
892
L_BX— /

Equation (4.4.1) represents a set of three algebraic equatiéns.
Fquations similar to (4.4.1) but without superscripts refer to

the nodal displacements of the complete element.The é]opes at
midpoints of the interior edges of every subtriangleare calculated.

The normal slope at p of subelement c¢ 1is written as:

C
(s;n)C=un"a ——-(4.4.2)
. p p p ¢

Equation (4.4.2) represents only one algebraic equation. Using
sets of equations in (4.4.1) and (4.4.2), all the comoétibility
equations are written in the matrix form as in equation (4.4.3).
Equation (4.4.3) represents 27 a]ggbraic equations in matrix form.
The first nine state that the nodal displacements in the complete
element cokrespond with the subelement displacements at the
appropriafe corners. Next fifteen define the equality of nodal
displacements in adjacent subelements at the corners i, j, k and

0. Last three equations impose slope cbmpatibi1ity along the

interior edges of the subelements.
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' — : -—
C
uﬂ 0 0 A
a
U ; A 0 0 ,
b.
U, 0 Ak_ 0
0 0 -At.) A S
1 1
o
a a
0 - A 0 -A @
< rC J Jj b
¢
a b c
0 Ay Ay 0
b c
0 0 Ay A
0 Al b 0
0 0 |
0 0 -AD A C
p- P
a c
0 A 0 - -A
q . q
0 ' Ad  aP 0 (4.4.3)
\. P ~: r- r 1 T t

Equation (4.4.3) is partitioned to relate the 9 local coordinates
of subelement a , that is, a 3 to the 9 nodal displacements,U

of the complete element. Equation (4.4.4) illustrates this.

---(4.4.4)
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where, ; . U,

w =1, ‘ and {a 0}{:‘:}

From equation (4.4.4) we have

U= Allota + A120(.0 - (4.4.5)

a +A, 0 --- (4.4.6)

0= Ay, *hya,

Equation (4.4.6) gives the relation:

o1 /
o = =A A21°La ---(4.4.7)

0 22
Substituting for o o in equation (4.4.5), we get

] a1,
U= Rypeg # hip PRy Ry o)

- -1
=(Ayq - App Rgp Appde
‘OY‘, U = [TIOLa ""“(4.4.8)

-where, -1

[T1= (Aq - App Ay )
o = [71-1 v ---(4.4.9)

Substituting for % in equation (4.4.7), we get

-1 =y-1 ' .
&g = Ay Ay [T U ---(4.4.10)
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Combinin§ (4.4.9) and (4.4.10), we can write

7ol L
a -
= -1 - =1 {U}
a o --A22 A21 T
or, &
a -1 , '
o = [A] 1} A . ---(4.4.11)
o _ )

where, U is a column.vector of nodal displacements of the

complete triangle, and

22 A21
The computed stiffness and mass matrices for subelement a

in its local coordinate system are designated as {k]a and [m]a
respectively. Similarly [k]b;[m]b and [k]c,[mlc represent the
stiffness and mass matrices for subelements b and ¢ in their

local coordinates.

Now the local stiffness and mass matrices IK}L ﬁﬁ}L for

every set of three subelements could be written as

'[k]L = k', T ---(4.4.12)

McMASTER UNIVERSITY LIBRARY
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[ml, = oy ---(4.4.13)

. =1, . '
The transformation matrix [A1 in equation (4.4.11) then serves
to transform the stiffness and matrices of the set of three
subelements din the local system to the desired nodal stiffness

and mass matrices of the complete element in the datum coordinate

system. That is,

[1= W7 Ik, '] | —o-(4.4.14)
SR U e (0.8.15)

[E]énd[ﬁ]represent the stiffness and mass matrices respectively

of the complete e]emént in datum coordinates.

Next step is to assemble these matrices of all. the triangh]ar
‘elements discretising the structure. The condensed stiffness and

mass matrices for the entire structure are designated respectively

as [K)and [M] . e

Free Vibrations:

In free vibrations, the only forces acting on the mass of

an elastic system are imposed by the internal elastic forces and
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by D'A]ehbert's principle, they are equa1 and opposite to‘}nértial‘

forces (31).

EY

External forces being absent for undamped free vibrations,

an extension of equation (A.1.12) in appendix 1, néme]y
[A1U} + [RJUY-= P

leads to the equation of motion for the entire structure. That is,

[M1e03 + [KJeUy = 0 —-=(4.4.16)
where,
[M] = Condensed mass matrix for the entire structure,-
[K] = Condensed stiffness matrix for the entire
structure,
{U} = Nodal acceleration Vector,
and {U}t = Noda1~disp1acement vector.

Assuming for the nodal displacements a solution of the form

{U} = {q} sin wut )  -—-(4.4.17)
where, {q} = cq1umn_vect0r of amo}jtudes'of disp]acements{ﬂL
o = natural frequency of free vibrations,
and t = time.

Inserting equation (4.4.17) in equation (4.4.16) we get
(- W2f+1K]) q = 0  ee(4.4.18)

Premultiplying equation (4.4.18) by -1 ( l/wn2 ), we get
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(/w1 =D MDD a3= 0

that is,
((1/¢n2)1'~[ﬂ])id}= 0 o li(4.8.19)
where, ' - - '
I is the identity matrix and{[D]is called the Dynamical
Matrix. ‘

1= 01 7 0 (4.4.20)

Equation (4.4.19) has a non-zero solution for q provided the

determinant:
(1/u 21 =01 = 0 C -(4.4.21)

The determinant in equation (4.4.21) when(expanded gives a
polynomial of degree n in l/wn2 , where n is the number of
degrees of freedom for the entire structure. The roots of this
polynomial give the eigenva]des of the Dynamical Matrix (DL
Reciprocals of the square root of these eigenvalues thus give
n number of natural ffequeméies of the system in radians per

second.

Computer program is made tvobtaih the highest ten values
of 1/wn2 in this study so that first ten natural frequencies

" are computed(32,33).

Corresponding to each of these eigenvalues, there will
be a solution of equation (4.4.19) of the form C qis where

9 is a non-zero vector of‘disp1acément amplitudes and C is an
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' arbitrary constant. These solutions are the eigenvectors which

represent the mode shapes.

Since the elements of an eigenvector are derived from a
set of homogeneous equations, the efements can be normalised
for convenience thus adjusting their sizes.In this study the
eigenvectors are so normalised that the numerically largest ele-

ment of each eigenvector is unity.

First ten natural frequencies and corresponding mode shapes
for a square cantilever plate are presented in Table 2 and Table 3

respectively.
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Table 2

FIRST TEN NATURAL FREQUENCIES OF A SQUARE CANTILEVER PLATE
OF THIN UNIFORM RECTANGULAR CROSS SECTION. '

NATURAL FREQUENCIES ARE EXPRESSED IN TERMS OF BETAe

3¢ 4334E4+00 S
8.5923E+00 - |
241512E+01

24 7920E+01

301829E+01

5.8517E+01

6048T9E+01

6 T689E+01

745918E+01

1e0356E+02



Table 3



3e4578E-02
3,1505E~01
7e4891E-01
442334E-02
3.2895E-01
7.5951E-01
444392E-02
343598E-01
Te6624E-01
4o4592E-02
3,3837E-01
746928E-01
4o4301E-02
3¢3739E-01
7.6877E-01
442856E-02
3.3250E-01
7e6466E-01
3,9108E-02
3.2216E-01
745720E-01

Te1862E-02
448297E~-01
8.6182E-01

560466E-02

342515E-01
5.8862E-01
204934E-02
1.6343E-01
3,0226E-01
-1.8191€-03
~145656E-03
345899E-03
~248547E-02
~146697E~01
~249554E-01
~546379E-02
- =342975E-01
~548347E~01
~845012E-02
~448924E-01
-846025E-01

CORRESPONDING MODE SHAPES.

MODE SHAPE FOR BETA=3.433E+00

1.3192E~02
1.8503E~02
1.2677E-02
4,0344E-03
Ge9669E~03
8.5774E-03
462804E~03
448563E-03
8e4678E~05
66 7650E~04
1,2708£~-03
-500226E-04
~245249E-03
~2e¢2676E~03
~202124E-03
~T7e2626E-03
-569105E-03
~-602358E-03
-1e3857E~02
~8e9800E~-03

MODE

~145910E-02
~145641E~01
~2e6944E~01
~242683E-02
~145959E-01
~2+7811E-01
-2.6183E~02
~1.6382E~01
~24946TE-01
~245803E~02
-1.6619E~01
~3,0260E~01
~246286E-02
~1.6483E-01
-2+9589E-01
~208410E~02
~1.6115E-01
~2.8078E-01
-246088E-02
~145857E~01
-2.7418E~01

~840697E-02
~169590E-01

~-2¢3165E-01,

-843622E-02
~1e9274E-01
-2¢2982E-01
-8 T7T663E-02
~109350E-01
~202932E-01
~-848361E~-02
~1e9419E-01
~202939E~-01
-84 7850E~02
-1.S417E~01
-202970E-01
~865256E~02
-1,9383E£-01
-243039E-01
-7+15632E-02

~169195E~-01

~2¢3159E~-01

1.4518E~01
502256E~01
968130E-01
1.5829£-01
De3499E-01
9,9071E-01
1.6373E-01
54217E~01
9969201
1,6508g~-01
54506E-01
1.0000E+00
1e6427E~01
504424E-01
9.9981E~-01
1.,6048E-01
503951E-01
9.9633E-01
145124€-01
563040E-01
948995E-01

1.8906E-02
1e5584E~02
1.0907E-02
865070E~03
945677E-03
Te5711E-03
27131E-03
4¢8502E-03
4+5580E-03
203465E~04
1.0289E-03
1.3318E~-03
~1e7260E-03
~245779E-03
~1e9727E-03
~548488E~-03
-6e8665E~03
~562365E~03
~1e3336E~02
-161502E-02

~7e¢7016E~03"

SHAPE FOR BETA=8,5923E+00

-1.6523E-01
~2¢1991E~01
~164841E-01
~1.0354E-01
-1.5036E-01
-1¢0916E~-01
~52762E-02
~Te7449E-02
~509552E-02
-50,6283E~04
—-1e3375E-03
~340989E-03
501985E-02
TeH64TE-02
503821E-02
1.0522E~01
1e4750E~-01
1,0463E~01
le4631E~-01
201938E-01
145097E-01

ch TOT

2,617T0E~01
69014E~01
1,0000E+00
147595E-01
4,6727E~01
609247E~01
8.7518E~02
2¢3737E~-01
366077E-01
~262948E~03
506083E-04
Te71276E-03
~962640E~02
~-26¢3660E-01
~3¢4656E~-01
~168303E~01
~4,6763E-01
~668210E-01
~2¢7169E~01
~6e9264E-01

~9,9689£~01"

0055

~802786E~-02
~2e¢2139E-01
~340036E-01
-8¢7486E-02
—202546E~01
~3.1835E-01
—~8+8940E-02
—2e¢3454E-01
-304702E--01
~9.0055E~02
~2e3924E-01
~3e45930E~-01
-9.0317E~-02
—~2+3551E~-01
-3e4791E~01
~9.0253E~02
—-2.2734E~01
~302131E~01
~846605E~02
~2e2414E-01
-3.0865E~-01

56

~1e4929E-01
~2021l74E~01
-2¢3289E~01
~1,4805€E~-01
~261871E-01
~2e3227E~-01
~145064E-01
~2+1846E-01
—2¢3182E-01
-165188E~01
~241872E-01
~203185E~01
-1.5137E-01
~-2,1896E-01
~203218E-01
—-164938E-01
-241951E-01
~2¢3278E~01
~1e4261E-01
-~202020E-01
—2¢3366E-01

~242070E-01
-1.8824E-01.
~1¢2304E-01
~1le4T714E-01

—~1e¢3259E-01

~968436E-02
~7e¢4057E-02
~6.9687E-02
~507956E-02
~4 ¢ 3TTLE~0O4
~262697E-03
-5.6010E-03
Te3514E-02
6e5377E~02
448696E~02
1e4490E~01
12886E-01
9¢4957E~02
201333E-01
1.9143E-01
1.2849E~01



148249E-01
749356E-01
1.8832E-01
1.6073E-01
5.9831E-01
“7.5059E-02
1e3968E-01
44 6737E-01
~2.6522E-01
1e¢3248E-C1
4,2467E-01
~3¢4107E-01
1e4554E~01
44,7836E-01
~2.8080E-01
16 7924E-01
6¢2187E-01
-1,0097E-01
2¢3296E-01
8.3339E-01
1e5545E~01

247875E-02
20¢8813E~C1
7.9066E-01
~363613E-02
~3¢5340E-02
2e3971E-01
~7e7927E-02
-2.9311E-01
~2.1401E~-01
~-8.8848E-02
~3e8197E-01
-4,0179E-01
-5.954TE~02
~2e5452€E~01
| =2.3688E-01
~6.0889E-04
3.4730E-02
2.0424E-01
607035E-02
3e8215E-01
7¢5871E~-01

MODE

~142894E~02
-2¢2452E~-01
~2¢9312E-01
~2+1699E-02
~1e7179E-01
~2+3703E-01
-1.6847E-02
~9.1238E-02
-~1e¢4345E-01
3e¢4703E~-03
4o,7037E-03
-9.3893E~-03
2¢3111E-02
1.0178E-01
1,2808E-01
4o h6T3E~02
1e8511E~01
202968E-01
6.0626E-02
204385E-01
208283E-01

 MODE

~6.4960E-02
-342838E-01
~5¢5773E~01
-565952E--02
-3.1632E-01
-5.4310E~01
~302411E~02
-1.9852E~-01
—~366158E-01
801543E~03
1¢8447E-02
~1.4150E~02
446413E~02
203195E~01
34012E-01
6eT925E-02
364267E~01
5¢3796E~-01
6e2537E-02
3e5126E~01

57087E~01-

SHAPE FOR BETA=2.1512E+01

~

~4,1069E-01
-2¢5676E-02
569757E-01
—361558E~-01
1e5X14E-02
5e9545E~-01
~27021E~01
602956E-02
60¢1025E-01
~2e5436E~01
8.2318E~02
642386E-01
~267699E-01
6.8950E~-02
6.2848E-01
~-3¢3642E-01
208984E~-02
6,2699E-01
~4e0054E-01
~5¢6004E~02
6.1811E~-01

507590E-01
605299E~01
-4 43595g~01
40,6332E~01

440818E~01

~70541E-01
3.8726E~01
263914E~01
~960950E~01
346400E~01
. 1.7823g~01
-1.0000E+00
4,0002E-01
2¢3951E~01
-9.4543E-01
4,9376E-01
4,1089£-~01
~7.6489E-01
6e¢3226E-01
665929E-01
-5,0816E~01

~142514E-01
-2+7900E~01
—209211E~01
-160068E-01

~261690E~01

~204382E-01
~541950E~-02
-102233E~-01
-~1e¢5590E-01
5¢5765E-03
~9,7145E~-04
~1e¢3735E-02
6.6322E-02
1.2182E-01
1¢3295E~-01
1,2130E-01
20.1983E-~01
243390E-01
1.6031E-01
2.8036E-01
2¢8225E~-01

SHAPE FOR BETA=2,7920E+01

~6¢5TUEE~02
~262153E-01
-2¢3533E-01
56 4924E~02
~8.0662E~-02
~1e5753E-01
le4483E-01
3.2551E-02
-7¢9672E-02
1,7183E-01
843157E~02
~361699E~02
1,2037E-01
4o 6648E-02
~3¢3681E~02
161288E~02
~640143E-02
~840053E-02
~160654E-01
~169458E-01
~1,5501E-01

Cb TOT

1.1943g~01
563288E-~-01
1.0000E+00
~648962E-02
8e2791E~02

307820E~0Y

~26¢1443E-01
~2e8166E-01
-165330E~01
~2¢5830E-01
-4 4207T4E-01
~3e9284E-01
~1o7584F-01
~2.6602E~-01
—-2e2711E~-01
~Te¢1168E=04
16142301
2¢5862E-01
200404E~01
5¢8231E~01
8. 7308F~-01

0052

~1.9276E~01
~445697E~01
~642521E-01
~148226E~01
~444155E=01
~642048E-01
~1.0941E~01
~248557E-01
~442311E-01
1.8360E-02
6+3669E-03
~2.4188E-02
1,4188E~01
2.9915E-01
348191E-01
200465E-01
4o5729E~01
509825€6~01
200292E-01
4e7892E~01
602937E~01

57

~3.5810E-01

- 3e5760E-01

60512201
~207788E~01
3e6497E-01
605803E-01
-2,1613E-01
3,9384E-01
6¢7188E-01
~1,9782E-01
4,1028E-01
608937E-01
~242050E-01
440735E-01
6+9758E-01
~2,7939E-01
3,9077E~01
6.9729E-01
~34844TE=01
3,4810E-01
6+9698E-01

-142884E-01
~2¢7202E-01
-147531E~01
142002E-02
~1e5427E-01
-1.2583E~-01.
1,2528E-01
~-563599E-02
~4¢8476E-02
1.6698E-01
~-1,0866E-03
1.3823E-02
1.1421E-01
~1e8271E-02
20537E-02
~941083E-03

~9e5865E-02

-2 4438E~-02
-16¢5566E-01
-2+0374E-01
-864165E-02



2.0787E-01
7.2370E-01
~1e7641E-01
1e4345E-01
446100E~01
~-2e¢0414E-01
607352E~-02
2,0876E~01
-1e6141E-01

~142888E-02

~248587E~02
~4otT9TE~02
-8.7148E~02
~244220E=01

1.1033E-01
~1.5659E-01
~443487E~01

2.4815E-01
~242850E~01
~6+2585E-01

343807E-01

2.9176E-01
7e4158E-01
~501887E-01
8+1980E-02
2e¢2639E-01
~1e2976E-01
~948664E~02
~2e6004E-01
1.8269E-01
~146058E-01

-4,9908E~-01

206108E-01
-5.0273E-02
~342344E-01
9,2188E-02
148292E-01
1.8962E-01
~1e8277E-01
444478E-01
840903E-01
- =443711E-01

MODE

-5e3541E-02
~-2¢7825E~01
~569466E~02
-6e5864E-02
~2.6058E-01

7¢3350E-04
-841074E-02
~2.5084E-01

Bel527E~02
"707292E"02
-203066E-01

1.4834E-01
~-7.0381E-02
-200269E-01

1,6047E-01
~669169E-02
~1.8840E~-01

1,1689E~C1
~-7+4056E~02
~2.0485E-01

6.5841E-02

MODE

-2.0457€-01
-5,0874E-01
3.8185E-01
-200504E-01
-5¢4682E-01
349789E-01
-15010E-01
~442B878E~-01
263128E-01
242691E-02
~4,4282E~02
~567699E-02
1.9075E~01
4,0161E-01
—20.6091E-01
2.7255E~01
662931E~01
~2.8306E-01
245018E-01
662577E-01
~-2¢3560E-01

SHAPE FOR BETA=3.,1829E+01

~4o,6231E-01
1.4351E-01
666156E-01
~248735E-01
962267E-02
4,9406E-01
~1¢3904E-01

569253E-02

2.7943E~01
1,3457E-02
9¢6435E-03
1,9797E~02
1e5645E~01
~4,8980E-02
~-2.4887E-01
268604E-01
_100443E*01
~448389E-01
3.8738E-01
~141648E-01
~-667710E-01

6,0894E-01
441439E-01
-8¢1759E~-01
349722E-01
243123E~01
~609792E-01
1.8540£~01
Bo0622E~-02
~4 ¢ 4834E~01
-243994E~02
~342507E-02
~Te2184E~02
-2,1915g-01
~1,1432E-01
345491E-01
~3+9694E-01
~1+48689E~01
~5,6837E-01
~2e 1494E-01
1.,0000E+00

-2¢1697E-01
~2¢0524E~01

T0e4620E-02
-201344E-01

~-1e7156E-01

1¢8131E-01
-241481E-01
~1e3566E-01
3.2779E-01
~200775E-01
-946186E-02
442830E-01
~1e8749E-01
~7e1422E-02
462185E-01
~1,7330E-01
~7¢6000E-02
3e1566E-01
~147996E-01
-1.0458E-01
242636E-01

SHAPE FOR BETA=5,8517E+01

-6,3395E-01
442332E-01
509278E~01

~1,8949E-01
143545E-01
1.2880E-01
1.6558E-01

4 g 644BE-02

~365691E-01
3,0341E~01

~765C92E-02
~6,0412E-01
1e1866E-01
5,9203E-02
~44,6273E-01
~249678E-01
2,7587E-01
~440487E~02
~742348E-01
4o 4304E-01
44e8214E-01

“CD TOT

7. 7455g-01

1,7608g-01

-=1+0000E+00
203533E~01
5.0818E-02

-201117E-01

~2e¢3472E~01

~1le1411E~01

53647E-01
~4¢2341E~01
~2¢5162E-01

Be6265E-01

-1.9745E-01
~2.5001E-01
5¢9199E~01
3.3764E-01
~843141E-02
~4 o 4339E~02
9e4514E-01
1.6804E~01
~7.41917E-01

0052

~5e4246E-01
~1.1306E-01
7e4955E-01
~545466E-01
-105038E-01
8e5423E-01
~349167E-01
~1.7738E-01
6+1402E-01

161228E-02
~Be3958E~02

~462360E~03
4¢3779E-01
1.0131E~01
-5.5811E£-01
663481E~01
2¢3719E~01
~7.0443E-01
660374E-01
2:6400E-01
-6.4183E~01

58

-249742E-01
563079E-01
6.0078E-01

-2,0401E-01
347505E-01
4,9103E-01

~8+9997E-02
2.0907E~01 "
2¢9634E-01
1.3023E-02
1.1851E-02
368939E~02
1,0689E~01

~1.9286E-01
~2¢3765E-01
1,8824E-01

-3 7742E-01

-4,7885E~-01
2¢9162E-01

~561691E~-01

-6e5626E-01

-2.3318E-01
7645916E~01
342047E~01

-941015E~02
202753E~-01
441238E~02.

. 140867E-01

~244150E~01

~3,5079E-01
241796E-01
~4,2874E-01
~661436E~01-
146869E-01
~262556E~01
~5¢5217E~01
~1¢6218E~02
243692E-01
~242558E~-01

-3,1312E-01
745062E-01
1.5303E-01



1.7338E-01
-607631E-02
~1¢5750E-02
241572E-01

443135E-03"

~8e9664E~02
2.4278E~01
7¢2599E-02
-149187E~01
2.5277E-01
161242E-01
~261548E~01
2e4074E-01
Be9571E~02
-1e4109E-01
262666E-01
~168816E~03
~7e¢2958E~02
2.3778E-01
-163356E-01
~1,0004E-01

2.1058E~02
-30.8806E~01
~7+0116E-01
160597E-01
1.0898E-C1
7¢6203E-02
9.9913E-02
2.6880E-01
3,4819E-01
341541E-03
163212E-02
~16105E£-02

~8e4752E-02.

-2e4443E~01
~-347376E-01
-863643E-02
~1.0861E-01
~T748952E-02
-2e5016E~02

3,2752E-01

T7¢3711E~01

MODE

508042E-02
605890E-02
~1¢9454E~02
3e7542E-02

Te2270E-02"

-1,1183E-01
2¢3556E-02
59970E-02

~867150E~02
27T675E-03
1.,1810E-02
349511E~02

-1.8816E-02

~6e5480E-02
1.0573E~01

-1.4089E~04

-1.2283E-01
3,0786E-02
365544E~-02

-1.5322E-01 -

~8.,2897E-02

‘MODE

1.1359E-01
566870E~01
869193E~01
56 T174E~02
4o1718E-01
6.6376E-01
~6e3570E-02
~943957E~02
-141454E-~01
~1e2450E~01
-44.0281E-01
~5o9012E~01
~5e34T76E~02
~1,0762E-01
-1,0828E~01
4o7875E~02
3.6772E-01
6e9116E~01
5e9576E-02
4¢9583E-01
9.3430E~01

SHAPE FOR BETA=6,4879E+01

~346513E~-01
5.3898E-01
~T7e6798E-01
~3¢9060E-01
5¢3698E-01
~549468E-01

~46¢3939E~01

5¢5919E~01
~446489E-01
~446248E-01

50694 TE~01
~441763E~01
~4 o 4408E-01

545290E-01
~4 4 8817E-01
~440976E-01

506038E-01
~643655E-01
~44007TE-01
643748E-01
~745557€~01

2.9676E~01
~3,7219E~-01
8,0815¢~-01
3¢5324E~01
~303545E-01
6,1066E-01
441591FE-01
~362337E~01
3¢8315E~-01
4 4494T7E~01
-3.0625E-01
3,1346E-01
4,2263E-01
~249373E~01
445739E-01
346453E-01
~3e4593FE~01
6eT4EBE~O1
341627E-01
~448470E~01
7.9834E-01

4,4760E~-02
663587E-02
~1e3892E--01
60173E~02
2¢0785E-02
~2e6407E~01
6e2165E-02
4,4,8206E~03
~168183E-01
4¢5925E-03
2.3687E-02
5¢9916E-02
~547668E-02
~644878E~03
2e3309E-01
~5e5530E-~02
—160429E-01
169024E~0Q1
~364013E-02
~168789E~01
445692E~02

SHAPE FOR BETA=6.7689E+01

~3¢3673E-02
4o1809E-01
~263251E-01
-1¢8740E~01
166937E-01
-2e1149E~01
~169226E~01
2,0215E~-02
~1.6287E-01
~149598E-02
1e 6470E~02
-2 7778E-02
165163E-01
262210E-02
162329E-01
145874E~01
-1,1851FE-01
1,7101E-01
5¢0733E~02
~3,7117E-01
7¢0037E-02

Cb TOT 0

~642105E~-02
~7.,0488E-01
-3,9918E~-01
2.0026E-01
-502392E-03
34602301
244035g~01
266228E~01
5¢6079E-01
1.9329€~02
-1.0324E-02
242071E~02
-19789E-01
~2.8025E~01
~-563716E-01
~1.6931E~01
~3e3777€E-01
4e1161E~02
6e5441E-01
500998E~01

054

361077E~01
7«9653E-01
848071E~-01
200432E-01
6e0252E-01
660926E~01
~1¢2091E~01
~6e1525E-02
~2¢8094E~-01
—-3e1254E-01
~466215E-01
-8.1382E~01
—-102461E-01
~6e4117E~-02
—263506E-01
1l.6724E-01
5¢8072E~01
7.0037E~-01
243991E-01
7+6096E~01
1.0000E+00
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2.0899E~-01
-3,5904E-02
-847129E-01
163289E~01
140860E-01
~748989E-01
160729E-01
2.0702E-01
~606997E~-01
8¢5460E-02
2e4799E~01
-661605E~01
943560E-02
169666E~01
~6+8039E~01
164725E-01
1.0495E~01
-803613E~01
1o 7655E-01
1.1659E-01
~1,0000E+00

26¢5300E-01
17151E-01
—-366155E-01
76 7868E-03.
4,5418E-02
~-363224E-01
-868398E-02
~3,1256E-02
~-27411E-01
-904708E“03
Be7264E~-03
-9.1171E-02
B8e6252E-02
- 5.2088E-02
1,8080E-01
261634E~02
-4 ¢2385€-02
365309E~-01
-1¢5045E-01
=26 1473E-01
365187E~-01



344171E~01
2.4167E~01
1e3405E~02
2.0787E-01
~141301E-02
~1e4921E~C1]
Te6286E-02
~1¢3310E-01
-147954E~01
~1e7655E~02
~3e94T76E-02
6e2508E-03
~9.¢5531E~02
1.0052E-01
1e7754E-01
~2.0746E~01
8¢234TE-02
1.1046E-01
~304888E-01
~6¢887T7E-02
~9¢5422E-02

2+9984E-03
~5,0278E-01
2.6757E-01
1e1493E-01
5¢8663E-02
~740682E~02
349171E-02
3.0189E-01
-1.6568E-01
-1.6831E-01
349432E~02
5¢7961E-02
~241804E-01
~2.7767E~01

2¢2500E-01

4o66T2E~02
~161671E~01
442660E-02
4o3339E~01
403014E“01
-3,4195E-01

'MODE

-1¢1630E~01
-2.7677E-01
-1e4569E-01

=1e3998E~01

*2.4083E-01
~165038E~-01
~-1¢1933E-01
~7e¢5428E-03
1,0466E~01
-Te3034E~-02
1.8697E~01
27278E-01
~8+7015E-02
9.2735E-02
Te3191E~02
~1le4243E~-01
-1.2015E-01
~2:0099E~-01

~1¢5083E~-01 .

-1.6589E~C1
~2¢0300E-01

MODE

147287E-01
6.0858E~01
~3¢5723E-01
4e6935E=02
541911E~01
~3.0550E-01
~149366E-01
~442439E-02
1,0031E~01
~241314E-01
~4.6968E-01
3.1588E-01
141100E~01
~143766E~01
1,0857E-02
4e1138E-01
446791E~01
~3.6026E-01
3.6091E~01
6¢2570E-01
~4el441E~01

SHAPE FOR BETA=7.5918E+01

~Te1544E-01
Teb6244E~01
~-7¢6901E-01

~349971E-01

5.6926E-01
~5.7771E-01
~144828E-01
342318E-01
-346182E-01
242507E-02
1e4868E-02
~8¢3821E-02
1e6126E-01
~249080E-01
2¢3614E-01
3449 T6E-01

~5,2010E-01.

5¢5390E~01
5.6769E~01
~609017E-01

7.8481E-01-

6.8899E~01
~2,5846E-01
8.2669E~01
3e5442E-01
~347450E-01
5,0086E-01
9,4384E~02
-342903E-01
202120E-01
~248690E-02
~349343E-02
9. T446E-02
-1.1311E-01
2.7596E-01
~843251E-02
~248799E~01
3,7596E~01
-5,0235F-01
~543230E~01
3,1168E-01
~1.0000E+00

-345011€E-01
-1.2603E-01
~208692E~01
~3e4424E-01

~8+3703E-02

~346855E-01
~1e9375E~01
18845E-01
~1¢7022E-01
~6¢9054E~02
3.9770E-01
~740357E=02
~141173E-01
2.4189E-01
~3,1123E-01
-244376E-01
~2¢4404E-02
-543784E-01
-2.5818E-01
~T e 6H4LLE=02
~4.4706E-01

SHAPE FOR BETA=1.0356E+02

241939E-02
241202E-01
-8.4755E~01
~149774E-01
241503E~01
~1e¢1945E~-01
~1.0006E-01
—4¢5543E-02
443430E-01
2.7039E-01
~347333E-01
369921E-01
440145E-01
~3,7132E~-01
166665E-02
~2e4101E-02
545093E-02
~165095£-01
~666835E-01
5e667TE-01
5¢1752E-02

Cb 107

-1.7012E-01

4 41257E~01

1,00C0E+00
169713E~01
~966453E~02
566162E-02
108246E-01
1.,8869E~01
~566633E-01
-242978E-01
24469E=01
~3,8625E~01
-4 o 44 56E~01
Te¢3084E-02
1.2276E-01
~14516E-02
~9¢2200E~02
1,9563E~01
745730F-01
-1,0981E~01
~241109E-01

0052

465342E-01
340139E-01
~9¢2467E~01
206414E-01
365484E~-01
~9.8007E-01
-2.9860E-01
200467E-01
~1.9726E-01
—5,0884E-01
~1.0034E-01
548299E-01
93057E-02
~262718E-01
3¢8197E-01
Te6449E-01
-8.944T7E-02
~28375E-01
749987E~-01
3e¢9802E-02
~542968E-01
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1.9101E-01
1.0028E-01
~-8e4889E~-01
145226E~01
1.1307E-01
~7¢1902E-01
1e4440E-01
44,1228E~-02
-4,3860E-01
2¢6654E-02
-3.0313E-02
=949 T4E-02
-161239E-01
~7¢1896E-02
247391E-01
-1.8683E-01
~6e4306E-02
6e4660E-01
-1.1852E-01
~143185E-01
9.7742E-01

3.8814E-01
~543990E-01
~5065841E~01
5¢4T62E-02
6a44T77TE-02
-163921E-01"
-1e7753E-01
2¢7051E-01
3e8691E-01
~1e57Y7E-01
~361053E~-02
5,2086E-01
3.0258E-02
~342375E-01
1s8965E-01
161628E-01
-140165E-01
~-1+6205E~-01
~660765E-02
409696E-01
-2e95318E~01
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Table 4

>

Comparison of Natural Frequencies of A Square Cantilever Plate

of Uniform Rectangular Cross-Section.

;/ 4
Values of B-wn Dg/pt

M .

0 Dana Zienkie- Present s *
d *% k% Rawtani Dawe

e Young wicz - Study - '

No. Energy 56 5x5___L_;_6x6.‘..153§av'>6x6'_ 3x3

1 3.494 3.469 3.436 3.433  3.445 3.45] 3.470
2 8.547 8.535 8.640 8.592 8.516 8.502  8.530

3 21.440  21.450 21.779  21.512 21.181 21.161 21.670

27.460 27.059 28.147 27.920 26.919 26.968 26.850

Y

(&) ]

31.170 ------  32.216  31.829 31.052 31.029 30.800

**  Structural idealization by triangular elements,

* Structural idealization by rectangular elements.



Table 5

Comparison of Natural Frequencies and Nodal Lines of Canti- '

‘levered Rectangular Plates.

1/2 1 2 5 Results of

3 3.508  3.494  3.472  3.450 B

\ b

\ 3.496  3.433  3.353  3.184 p
a

3 5.372  8.547 14.930 34.730 B

L e : .

\ 5.407  8.592 15,102  35.344 p

NI 21.960 21.440 21.610 21.520 B

¥ , .

R 23.138 21.512 21.133 20.078 L
I 10.260 27.460 94.490 563,900 B
NI o . .

\ 10.520 27.920 96.220  =--- p
S 7 24.850 31.170  48.710 105.900 B
N Y 25,954 31.828 49.974 110.627 p

B = Results of Bérton.
P = Results of Present Investigation.
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MESH SIZE |NO. OF NODES
2x2 6
3x3 12
4x4 20
5x5 30
66X 6 42
o\
O\OMODE 5
O\ © 031828 — 3LI7 (ENERGY)
O—r__.MODE 4
o © o 027.920 — 27.46 (ENERGY)
O~ MODE 3 |
O O 021512 — 2144 (ENERGY)
O—o0 OMODE 2 O O 8592 —— 8547 (ENERGY)
O——0 oMODE 1 4 O 3433 — 3494 (ENERGY)
| | | | |
6 12 20 30 42

——= NUMBER OF NODES

FIG.10 EIGENVALUE CONVERGENCE FOR A
SQUARE CANTILEVER PLATE
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5. RESULTS AND CONCLUSIONS

>

The.experimeﬁta11y deterﬁined.first ﬁdtufa] frequency fof‘
a 6"x2"x1/16" thick mild steel cantilever without pretwist is
54.5 cycles per sécbnd. This compares reasonably well with the
theoritically obtained value of 58.4 cycles per second. The plate
formula (28) for an aspect ratio of three has been used to find

this theoritical value.

It is difficult to achieve the ideal conditions for the
fixed end of the cantilever. This ultimately makes the cantilever
less rigid. Hence the experimental value is less than the calcu-
lated one.For the same boundary conditions, the same plate but
with a total pretwist at_the tip of-20 degrees, the cantilever
becomes stiffer due to the inérease.ﬁn its torsional stiffness.
This explains why the experimental first natural frequency of the
twisted cantilever is 59.5 cycles per second which is well above

that for the one without pretwist.

Table 2 and Table 3 show the compred values of first ten
natural frequencies in ascending order and the corresponding mode
-shapes respectively, for a square cantilever plate of thin uniform
rectangular cross(section. Computations were made by idealising
the square plate into a 6x6 mesh by triangular elements. Three
degrees of freedom at each node resulted in a total of 126 algebraic

simultaneous, homogeneous equations, while determining the elastic
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~and inertial properties of the entire cantilever.

Figure 10-shows'reasonab]e convergence of the eigenvalues -
at 6x6 mesh size. But no attempt was made to carry out the
cbmputations for a finer mesh. This is because of the 1imitafion
posed by the gtoragé capacity of the computer. Computations were

carried out on a CDC 6400 digital computer.

The results thus obtained are compared with re;ults obtained
by other researchers ih_Tab]e 4. They are found to be in good
agreement with a maximum of 2.1 percent error from Dana Young's
energy solution (28). But for the first natural frequency, all
frequencies are slightly higher than the energy results. This
discrepancy cannot be reasoned out very easily. Furthermore, no
researcher has yet solved the dynamic problem with fully
compatible triangles aﬁd hence cannot be checked. Dawe's results
(34) with rectangular elements also indicate a similar question
that why the third natural frequency (second flexural) is higher
‘than the energy solution? It is suspected that Zienkiewicz (35)
might have had similar doubts resulting in not publishing the

fifth natural frequency (second torsion).

Table 5 shows a comparison of natural frequencies and nodal
Tines of rectangular cantilever plates. The nodal patterns shown

in Figure 11 are in good agreement with other's results.
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It is seen that the phisical dimensions of canti]evers.chosén
for exberiments and theoritical investigation are quite different.
Since beam formula has been used to compare the theoritical
static deflection of the cantilever, a cantilever of a large
aspect ratio has been chosen. The experimental model was chosen
to be quite thin in'order thét not too high sinuéoida] exciting
force was expected from the shaker used. The Eigenvalue problem
was solved for a square cantulever plate so that the .results of
the present analysis could be easily compared with similar résu]ts

obtained by other investigators.

It is concluded that the structuka] idealisation through
fully compatible tfiang1es has the advantage of monotonic.
convergence as shown in figure 9. This triéngu]ar element provides
with satisfactory results when used in finite element analysis
of plate vibration.,further improvement seems possible by
employing additional nodal points in defining the degrees of

freedom of the structure.
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7. APPENDICES

APPENDIX 1: Derivation of Elastic and Inertial.

Properties of a Triangular Element

in Bending.
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" DERIVATION OF ELASTIC AWD INERTIAL PROPERTIES OF A—
TRIANGULAR ELEMENT IN BENDING. - ‘

>

The elastic and inertial properties of the idealised
structural element have been determined in this study by using
the pfincip]e “of Qirtual w§rk for. dynamic conditions.

The structural element considered is a'triangular plate
element as shown in Figure 8. It is assuhed thét thé»e?ement
properties are specified'for three z-deflections, three x-
rotations and three y-rotations. For convenience both deflections

and rotations will be referred to aé displacements.

The first assumption made is that the interior displace-
ments, u =‘{ux uy uz} can be expressed in terms of the discrete
displacements U =1{U1 Up ... Ug} by the approximate matrix
equation: ’ | o

u = at | ' --——(A.l.l)
where, 3@ = E(x,y,z), é'fgnction of 10ca1 coordinates; | u
| The total strains e, obtaineq'py differentiation of equation
(A.1.1) leads - fo matrix equatio;; |
| e =bU | —-(A.1.2)
At any particular instant of time; Qe can assume that the
displacements u acqu%re virtual displacements éu, which are'

infinetesimal and arbitrary, but compatible with the boundary

conditions on the body. Virtual displacements produce virtual
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FIG. 8. TRIANGULAR ELEMENT IN BENDING SHOWING

NINE DEGREES OF FREEDOM.
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- strains 8¢ from which, the virtual strain energy GUi can be

calculated for a known stress distribution. Virtual work in case

of a dynamic system includes the work done by inertia forces

along with the virtual work of exte}nal forces, if any.

By principle of virtual

Virtual strain energy =

That is, ' 8U;

Elastic strain

Total strain

That is, e =¢ + er + e
Se = 8¢ + Sey + Sej
Assuming sep = sey =0, e

work:

Virtual work + work done by inertia

W - 6p6uT u dv

forces

-—- KA.1.3)

+ Thermal strain + Initial strain

get e = &¢

--- (A.1.4)

Virtual displacements and virtual strains which could be obtained

from equations (A.1.1) and (A.1.2) are respectively

su = a su

and se = b &l

Sustituting for se from equation (A.1.4)

8e = b sU .

By definition, Virtual strain
sUy = 665T o dV.

By definition of Hooke's law

enekgy:

Stress o = Xe + &TXT

for a specified femperature distribution

--- (A.1.5)

- (A.1.6)
--- (A.1.7)

-—- (A.1.8)

T=T(x,y,2),

where, X represents the material stress strain relationships
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0
0

1-v S
2

~Eand v being the Young's modulus and Poisson's ratio. Also,
aTXy represents Stress necessary to_sUppress thermal expansion.
Substituting for e from (A.1.2) in (A.1.8) and substituting for

o- in (A.1.7), we get the virtual strain energy:

U; = ¢oUT BT X BU dv + sUT BT Xy oT dv == (A.1.9)
Virtual work = eW =sUT P . | == (A.1.10)
where, P is the external force vector
from equation (A.1.1),
work done by inertia forces = -fpsUT al 3 i dv ---(A.1.11)
Inserting equations (A.1.9), (A.1.10) and (A.1.11) in equation
(A.1.3) gives:

s6UT BT XBU dv + 65UT B X; oT dv = oU" - 6p5uT3Ta U dv

) . )
that is, [M){U} + [KIquy =P ---(A.1.12)
where,[M] = /ca'a dv - (A.1.13)

mass matrix of the equivalent discrete system.

[x]

| 65Tx5 dv o —-- (A.1.14)

stiffness matrix of the equivalent discrete system.
The element displace ments in the normal direction are expressed
in terms of assumed displacement patterns. In the present

investigation, it is:
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u,= ap + apX +azy +u4X2 +a, XY +a6y2 +oc7x3 +a8xy2 +a9v3 --(A.1.15)

5

for subtriangle a.

Equation (A.1.15) can be written in the matrix form:

al

s}

2

§uZ§ = [1 Xy x2 Xy y2 x3 xy2 y3] :
%9

J

or U= ca where ¢ = ¢(x,y,z)
element strains e are computed and put in the matrix form
e = do

where d is obtained by aporopriate differentiation of c.
The element bending stiffness k in its local coordinates can
now be computed by using (A.1.14)

[K]= 7a'xd av
In matrix form the disnlacement u, normal to the middle plane
of the element in datum coodinates is written

u, = aZU --- (A.1.16)
The disp]aceménts uy and Uy caused by rotations of normal to the
middle plane are calculated by differentiating the expression
for u, w.r.t x and y and can be put in matrix form
u, = a,U --—- (A.1.17)

a,u --- (A.1.18)

y Yy
Equations (A.1.16), (A.1.17) and (A.1.18) are combined to form

<
n

u=al --- (A.1.19)

Uy - f(ay
where, u = uv and a = ay
uz az
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~ Substituting (A.1.19) in (A.1.13), we get

- T . T T ‘
m = Joa,ay dv + Jfoajay, dv + fpaz2z év ---(A.l.zo)

First and second termé in equation (A.1.20) represent the rotary
inertia while the third term represénts the translational inertia
of the element. Negﬁecting the rotary‘inertia effects, the mass
matrix for the discrete element in its local coordinate system

becomes: . _ .

o T
m = ipazaz.dv.
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COMPUTER PROGRAM DOCUMENTATION

The input to the main prooram includes physical dimensions,

material properties and proper designation of the nodal stations
used to idealize the cantilever. It generates various coordinates
of the triangular elements and computes the transformation

matrix used to reduce the degrees of freedom from 27 to 9.
Following is the list of important subroutines:

1. Subroutine Nath computes the bending stiffness matrices

of subtriangles in their respective local coordinates.

" Call and Argument List:
CALL NATH (D1, XIISB, YIISB, XIIISB, YIIISB, POIS).
XIISB and YIISB are the coordinate of node 2 of sub-element
XIIISB and YIIISB are the coordinates of node 3 of the
sub-element in local coordinate system
POIS is POISSON's Ratio.
D1 is the Bending Stiffness Matrix of the sub-element.

2. Subroutine_ggég calculates the consistent mass matrices

of subtriangles in their respective local coordinates.

Call and Argument List:

CALL BHAT (EKB, Y2, Y3, X3,’AS, AY, AMASS).

EKB is dummy matrix of 7 x 7.

AX and AY are dummy vectors of size 6.

Y2 is Y local coordinate of node 2.

X3 and Y3 are X and Y local coordinates of node 3.

AMASS is the mass matrix for the subtriangles
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Subroutine Asembl condenses the stiffness and mass
matrices in bending of all the elements and stores
‘them separetely as Soft and Hard respectively as
column vectors, thus saving considerable core space

in the computer.

Call and Argument List:

CALL ASEMBL (BSTIF, SOFT, MEM, NELEM, NI).

BSTIF is 9 x 9 stiffness/mass matrix of an element

to be asﬁemb]ed.

SOFT is a vector of sizé 8001 in which thehlower triangular
portion of assembled matrix is stored. -
" MEM is the element number.

NELEM is twice the ﬁroduct of lengthwise and widthwise
divisions of cantilever plate.

NI is the matrix of size (NELEM, 3) in which node
number of all the elements are stored.

Subroutine Power finds out the first ten highest
eigenvalues, thus giving the first ten natural
frequencies of the cantilever. The method used is

the "Power" iterative process.

Call and Argument List:

CALL‘PONER (CKM, NR, MR, EY, EZ, ALPHA).

CKM is the square matrix whose eigenvalues are to be
determined. |
NR is the size of the matrix CKM.

MR is the number of eigenvalucs required.

EY and EZ are dummy vectors of size NR.



78b

ALPHA is the vector in which the eigenva1ues are
returned.

Subroutine Vector computes the corresponding ten
normalized eigenmodes which represent the mode shapes

of the vibrating cantilever.

Call and Argument List:

CALL VECTOR (CKM, EZ, S, NR, MR).

CKM is the matrix obtained by calling subroutine POWER.
EZ is the dummy vector of size NR. |

S is the vector containing MR eigenvalues obtained from

POWER subroutine,
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A4207sT10005CM14000050L.C100C,
RUN(59,99996000)'
REDUCE
LGOo.

' 6400 END OF RECORD
PROGRAM TST (INPUTaOUTPUT,PUNCHa?APE) IkPUTsTAPEé OUTPUT;TAPE?—

1 PUNCH)

PROBLEM.

>

FREE VIBRATION. AAALYSIS OF CANTILEVER BlADE OF CONSTANT THICKNESS

METHOD

APPLICATION OF FINITE ELFMENT 1ECHNIQUE TO A FULLY COHPATIBL&
TRIANGULAR ELEMENT.

NOTATIONS.

NLD=NUMBER OF LENGTHWISE DIVISIONSe
NWD=NUMBER OF WIDTHWISE DIVISIONS,
TTW=TOTAL TWIST IN DEGREES.
BL=BLADE LENGTH IN INCHESe.

BW=BLADE WIDTH IN INCHESe.

TH=BLADE THICKNESS IN INCHES.
POIS=POISSONS RATIO

YM=YOUNGS MODULUS IN PSIl.

2 NeXa¥akalaNalaNaNateRoRataNaNaeRaNataalaka

DIMENSION X(B)9Y(3)9XG‘3)9YG(3)926(3)$XP(3)9YP(3)9ZP(3)
CDIMENSION TLP{39353)sTRLP(35959)sTT(359:2)sPA(G39)+PPA(959)

DIMENSION A(959)sB(S518)9C(1859)sD(18518)sE(9518)sF(959)
’ . DIMENSION ABAR(959)sEE(1899)sEBAR(1859)sATAR(9527) sALPHA(1O0)
DIMENSION NI(T72s3)sSOFT(8001) sHARD(8001) sAKM(1265126)sEY(126)
DIMENSION EZ(126)sEXKRB(Ts7) sAX(6)sAY(6) s ABCM(959) sNLIT72)sML{26)
DIMENSION ATOBI(27s9)sATOBIT(9527)sBSTIF(9s9) sWORK(18)
DIMENSIONvPPB(999)9PPC(999)9D1(999)902(999)9D3(9’9)9AKBAR(27927)
DIMENSION SAU(9)sSAV(9)sSBT(9)sSCT(9)sSCU(9)sSBVI(9)sTRNS(35353)

READ(5511) NLDsNWD
READ(5521) TTWsBLsBWsTHsPOIS
NELEM=NLD*NWD*2
" READ(5+199) (NI(Isl)sI=1sNELEM)
READ(59199) (NI(Is2)sI=1sNELEM)
© READ(535199) (NI(I¢3)s1=1sNELEM)
.11 FORMAT (214) ‘
21 FORMAT(5F1204)
199 FORMAT(3612)
TTW=0,0
NR=(NWD+))*NLD*3
NW={NR-+1)%NR/2
MR:=10 , ‘ ,
KKKK=1 , ' .
MEM=1 .
DO 7771 1=1sNVW

N aNaNaNa!



SOFT(1)=060
HARD(I)=0,0

7771 CONTINUE
DO 1000 NSIT=1s2
COMPUTATION OF NODAL COORDINATES OF DISCRETE ELEMENTS IN THb
DATUM SYSTEMo
LN=NLD+1
INTB LN* (NWD- 1)+1 -
YNWD NWD ' : : ‘
Y(1)=~BW/YNWD~BW/2.0
DO 1000 NN=1sINTBsLN
YNN=NN ‘
KR=KR+1
IFINSIToEQe2) GO T06 333
Y(1)=Y(1)+BW/YNWD
Y(3)=Y(1)+BW/YNWD
Y(2)y=Y(1) _ :
GO TO 666 ) .

333 CONTINUE :

IF(INSITCEQo 2) e AND o (KKKkoFQ 2)) Y(1)=0.0
CJF(INSITeEQe2) o ANDs (KKKK«EQo3)) Y(1)=BW/YNWD "
IF((NSITeEQo2) s AND o (KKKKeEQe&)) Y(1)=2.0%BW/YNWD .
IF((NSIToEQo2) o ANDo (KKKKeEQe52) Y(1)=3c0%¥BW/YNWD
IF{(NSIT.EQe2) s ANDs (KKKKeEQo6)) Y(1)=400%BW/YNWD
Y(2)=Y(1)+BW/YNWD
Y(3)=Y(2)+BW/YNWD
Y{1)=Y(3)
KKKK=KKKK+1

666 CONTINUE
LZ=NN-1
LZ=L.Z-~KR
DO 1000 MM=1sNLD
XMM=MM
XNLD=NLD :
X{1)=(XMM=1e0)*BL/XNLD
X(2)=XMM*BL/XNLD
X{3)=X(1) . )
IFINSIT.EQe2) XI(3)=X(2)
DO 111 I=1s3
Tw=TTW*X(1)%3, 142/(180«XBL)
XG(I)=X(1)
YG(I)=Y(I)*COS(TW)

111 2G(I)=Y(I)*SIN(TW)
IFINSIToEQe2) GO TO 1 , :
XP{1)==(2s/3,)%(XG{2)~XG{1)) .
XP(2)= (1s/36)%(XG(2)=XG(1)) '
XP(3)=XP(2) |
YP(1)=~(16/30)%(YG(3)=YG(2))
YP(3)= (267/36)%(YG(3)~YG(2))

YP(2)=YP(1)
~ IFINSIT.EQel) GO TO 2
1 XP(1)=—~{10/3o)#(XG(3)~XG(1))
XP(3)= (26/30)%(XG(2)~XG(1))
XP(2)=XP(1)

YP(1)= (1e/36)%(YG(1)=-YG(2))
YP(2)==(2e/36)%(YG(1)=-YG(2))
YP(3)=YP(1)
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38

40

41

26

CONT INUE . : :
ZP(11=0,0 S o 80
ZP(2)=0,0 _
ZP(3)=0,0 .
COMPUTATION OF NODAL COORDINATES OF SUBELEMENTS IN THE LOCAL
COORDINATE SYSTEMo
A02=SQRT (XP (2)#%2+YP (2)%%2)
B32= SQRT((XP(B)—AP(Z))nw2+(Y°(3)~YP(2))**2)
C30=SQRT(XP(3)%%2+YP(3)3%2)
XITSB=(A02%%2+B32%%2~C30%%2)/(2.0%B32) .
YIISB=SQRT(ABS(A02%%2~X11SB¥*%2))
X111SB=-(B32-XI11SB)
YITISB=YI1SB
AO3= SORT(XP(3) %#24YP (3) %22
B13=SQRT((XP(3)=XP (1)) #%24+(YP(3)=YP(1))#%2)
CO1=SQRT(XP (1) %x2+YP(1)%%2)
XIIDB=(A03%324B13%%2~C01%%2)/(2.%B13)
YIIDB=SQRT(ABS(AQ3%%2~XIIDB*%#2))
XI111DB=~(B13~XI1DB)
YI1IDB=YIIDB
A20=SQRT (XP (2) %%2+YP (2)%%2)
B1O=SQRT(XP (1) ##24YP (1) %%2)
C12=SQRT(IXP(2)=XP (1)) %*2+(YP(2)=YP (1)) #*%2)
XI1TB= (BlUx%2+C1l2%3#2-A20%%2)/(24%C12)
YIITB= SQRT (ABS(B10O#*#2-X11TB#*%2))
YITITB=YIITB
XITITB=-(C12~XI1TB)
CALL NATH(D1sXIISBsYIISBsXIIISBsYILISBsPOIS)
CALL NATH(D2sXIIDB,YIIDBsXIIIDBsYIIIDBsPOLS)
CALL NATH(D3sXIITBsYIITBsXIIITBsYIIITBsPOIS)
TO FIND AKBAR (27%27).
AKBAR IS THE SET OF STIFFNESS MATRICES OF THE THREE SUBTRIANGLES
OF THE COMPLETE ELEMENT IN THE LOCAL COORDINATE SYSTEM.
YM=3000,0%10000,0

Z= (YMxTH* %3)/(12.*(1.~P015*w2))
22100 o
DO 38 1=1,27
DO 38 K=1527
AKBAR(T5K)=0,
DO 39 =159
DO 39 K=139
AKBAR(IsK)=Z*¥D1{1sK) '
DO 40 1=104+18 - L
DO 40 K=10518 o S

11=1-9 o :
KK=K-9 . ' )
AKBAR (15K)=2%D2 (11 5KK)
DO 41 1=19527
DO 41 K=19527

11=1~-18
KK=K~18
AKBAR (15K)=Z*D3(115KK)
LMN=1 -
J=1

IF(NSIT.EQes2) GO TO 26
THETA=0.5%3,1416
GO TO 27
THETA=3.1416~ ATAN((YP(B)—YP(Z))/(XP(B) -XP(2)))
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28
29

30
31

v
(6]

56

CONTINUE

CALL TRANS(THETAQTLP9TRLP9TT9LMN9J)

LMN=2

J=2

IF(NSIT.EQe2) GO TO 28

THETA=2,0%341416- ATAN((YP(B)“YP(I))/(XP(3)~XP(1)))
GO TO 29

THETA=2,0%3.,1416

CONTINUE

CALL. TRANS(THETAsTLPsTRLP TTsLMN»J)

LMN=3

J=3

IF(NSIT. EQ 2) GO TO 30

THETA=3.1416

GO TO 31 ,

THETA=3.0%3,1416/240

CONTINUE ' '

CALL TRANS(THFTAsTLP,TRLP’TTsLMNsJ)

NNN=1

CALL JAG(PA,TT,XIISB9YIISB»XIIISB9YIIISB,PPAsNNN)
NNN=2

CALL JAG(PAaTTaXIIDBsYIIDB,XIIIDBsYIIIDB,PPBaNNN)
NNN=3 -

CALL JAG(PA»TT:XIITB;YIITB»XIIITBaYIIITB,PPCaNNN)

COMPUTATION OF NORMAL SLOPES AT MIDPOINTS OF INTERIOR EDGES

OF SUBTRIANGLES.

XUSB=XT1SB/ 2.

YUSB=YIISB/ 2
THTA=ATAN(YIISB/X11SB)

CALL SLOPE(XUSBsYUSBsSAUsTHTA)
XVSB=XII1ISB/2.

YVSB=YII1SB/2.

THTA=361416-ATAN(ABS(YIIISB/XIIISB))

CALL SLOPE(XVSBsYVSBsSAV»THTA)

XVDB=XIIDB/ 2,

YVDB=Y11DB/ 2.
THTA=ATAN(YIIDB/XIIDB)

CALL SLOPE(XVDB»>YVDBsSBVsTHTA)
XTDB=X111DB/2.

YTDB=YII1DB/2.
THTA=3.1416-ATAN(ABS(YI]IDB/XIIIDB)).
CALL SLOPE(XTDB»>YTDB»sSBT»THTA)
XTTB=XI1TB/2

YTTB=YIITB/2.
THTA=ATANCYT1TB/X11T8)

CALL SLOPE (XTTB>YTTB5SCTsTHTA)
XUTB=XIT1TB/2.

YUTB=YITITB/2,
THTA=361416-ATAN(ABS(YIIITB/XITITB))
CALL SLOPE(XUTB»YUTBSCU>THTA)
MATRIX A=Alls

DO 55 I=1,9

DO 55 K=159

ALI5K)=0e

DO 56 I=436

DO 56 K=159

A(1sK)=PPA(I:K)

MATRIX B=Al2.

81
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58
59

60

61

62

63

46

64

65

43

44
45

66

67

68

69

DO 57 I=1,9
DO 57 K=1518

B{IsK)=0.

DO 58 1=133

DO 58 K=10518
I11=1+43

KK=K-9-
B(IsK)=PPC(IIsKK)
DO 59 1=7+9
DO.59 K=139
II=1~-3

B(IsK)=PPB(II5K)
MATRIX C=A21.

DO 60 I=1518

DO 60 K=159
ClIsK)=0e

DO 61 K=159
Cl15K)==SAV(K)
DO 62 I=234

DO 62 K=159
11=1-1 |
C(I»K)=PPA(IIsK)
DO 63 1=6+8
DO 63 K=1+9
I1=1+1
ClIsK)==PPA(IIsK)
DO 46 K=159
C(95K)=SAU(K)

DO 64 1=16118
DO 64 K=159
11=1-12
ClIsK)=PPA(11:K)

MATRIX D=A22.

DO 65 1=1+18
DO 65 K=1s18
D(IsK)=0s

DO 43 K=1+9
D(1sK)=SBV(K)
DO 44 1=2s4
DO 44 K=199
I11=1-1

D(IsK)==PPB(IIsK)

DO 45 K=1s9
D(5sK)=-SBT (K)
DO 66 K=10,18
KK=K-9 '
D(55sK)=SCT(KK)
DO 67 1=648
DO 67 K=119
I1=1-2

D(IsK)=PPB(IIK)

DO 68 K=10518
KK=K~9
D(9sK)==SCU(KK)
DO 69 1210512

DO 69 K=159'
11=1-3
D(IsK)==PPB(I1sK)

82
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70

71

72

13

18

19

84

85

86

DO 70 1=10,.12

DO 70 K=10U»s18

I1=1-6

KK=K-~9 .

D(T1sK)=PPC(I1]sKK)

DO 71 I=13915

DO 71 K=1+9

11=1-12

D(IsK)=PPB(II+K)
DO 72 1=13s15

DO 72 K=10,518

1I=1-12

KK=K~9

D(IsK)=~PPC(I]sKK)

DO 73 1=16+18

DO 73 K=10+18

11=1~-9

KK=K~-9 . .
D(I+K)==PPC(1]sKK) : .
INVERTING THE MATRIX De

CALL MINVSE(Ds18318s10E-8s1ERRsNLsWORK)
PRODUCT OF B(9%18) AND D(18%18) IS E(9%#18),
CALL PRODCT(BsDsFEs9+18s18)

PRODUCT OF E(9518) AND C(18+9) IS F(9+9).

CALL PRODCT(E+CsF9951859) .
SUBTRACTION OF F(9%9) FROM A(9%9) IS ABAR(9%9),
DO 78 1=1s9

DO 78 K=1s9

ABAR(T sK)=A(IsK}=F(IsK)

INVERTION OF ABAR.

- CALL MINVSE(ABARs9595100E~8s IERRsML s WORK)

PRODUCT OF ~DI(18+18) AND C(18s9) IS EE(1859)e
DO 79 1=1,18 . :

DO 79 K=1518

D(Is¢K)==D(1sK)

CALL PRODCT(DsCsEEs1851859) : '
PRODUCT OF EE(18%9) AND ABAR(9%9) 1S EBAR(18%9).
CALL PRODCT(EEsABARSEBAR$189949)

s

PUTTING ABAR(9%9) AND EBAR(18%9) AS A MATRIX OF ATOBI(27%9),

. DO 84 1=159

DO 84 K=139 S, o
ATOBI(IsK)=ABAR(IsK) ' - T
DO 85 1=10,27 : S
DO 85 K=119

11=1-9

ATOBI(1sK)=EBAR(II+K) -
TRANSPOSE OF ATOBI(27%9) IS ATOBIT(9%27).
DO 86 1=139

DO 86 K=1s27

ATOBIT(IsK)=ATOBI(KsI)

STIFFNESS MATRIX BSTIF(9#%9) OF THE ENTIRE TRIANGLE 1JK IN BENDINC

IS THE PRODUCT OF ATOBIT(9%27), AKBAR(27%27) AND ATOBI(27%9).
CALL PRODCT(ATOBITsAKBARSATAR9927327) :

CALL PRODCT(ATARsATOBIsBSTIFs9:27s9)

SOFT IS THE SUARE SYMMETRIC CONDENSED STIFFNESS MATRIX OF THE
ENTIRE STRUCTURE. :

CALL ASMBLIBSTIFsSOFTsMEMsNELEMsNI)

DO 6006 I=1+9



6006

7007

3311

3322

4411
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1000

" 3331

1919

DO 6006 K=139

D1(IsK})=0,0

D2(1sK)=0,0

D3(1sK)=0,0

Y2=X11SB-X111S8B

Y3=-X111SB

X3=Y11S8

CALL BHAT(EKB»Y25Y35X35AXsAY5D1)

Y2=X11DB-XI1IIDB

Y3=-XI11DB

X3=Y11DB

CALL BHAT(EKBeYZ,Y39X39AX9AYsDZ)

Y2=X11TB-XI11TB

Y3=-X111TB

X3=YI1TB

CALL BHAT(EKB»>Y2sY35X35AXsAY3D3)

DO 7007 1=1:27

DO 7007 K=1327 | . -
AKBAR(1sK)=0c0 | | i o
DO 3311 I=149 SR - : ;
DO 3311 K=139 .

AKBAR(1sK)=D1(1sK)

DO 3322 1=10,18

DO 3322 K=10s18

11=1~9

KK=K~9

AKBAR (1sK)=D2(11sKK)

DO 4411 1=19,27

DO 4411 K=19527

11=1-18

KK=K-18

AKBAR(1sK)=D3(11sKK)

CALL PRODCT (ATOBITsAKBARsATARs9927527)

CALL PRODCT(ATARSATOBIsABCMs932759) ' -
ABCM 1S THE MASS MATRIX OF THE ENTIRE TRIANGLE IJK IN BENDING.
HARD 15 THE SQUARE SYMMETRIC CONDENSED MASS MATRIX OF THE
ENTIRE STRUCTURE.

CALL ASMBL(ABCMoHARDeMEMoNELEMsNI)

MEM=MEM+1

CONT.INUE

84

"CALL INVSYM (SOFTsNRsIERR)

WRITE(653331) lERR

FORMAT(/s10X5134/) _
MULTIPLY K-INVERSE AND Mo ecocsoe (SOFTXHARD)
DO 1919 I=1sNR :

DO 1919 J=1sNR

AKM(1sJ)=060

DO 1919 L=1sNR ‘

IF(IeGEoL) K=I%(1-1)/2+L

IF(IoLTeL) K=L#(L~-1)/241

IF(LeGEeJ) Il=L%(L-1)/2+J

IF(LeLTed) Il=dx(J-1)/2+L
AKM(TsJ)=AKMITsJ)+SOFT(K)#HARD(I1)

ALPHA(J) ARE THE FIRST TEN HIGHEST EIGEN VALUES,
CALL POWER (AKMsNRsMRSsEYSsEZsALPHA)

CALL VECTOR(AKMsEZ s ALPHAsNRsMR) '

DO 1920 J=1sMR

ALPHA(J)=BL*%2/SQRT (ALPHA(J))



1920
459
462

461
93

CONTINUE

WRITE(65459)

FORMAT (//510Xs26H FIRST 10 EIGEN VALUES AREs
WRITE(65461) (ALPHA(I)s1=1510)

WRITE(75462) (ALPHA(I)sI1=1510)

FORMAT (1UXsE1204)

FORMAT(30X3E1566)

sToP

END

CO TOT 0416
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SUBROUTINE NATH(DIoXIISBsYIISB XIIISBsYIIISBsPOIS)
DIMENSION D1(959)

DO 18 I=1s9

DO 18 K=1,9

D1(TIsK)=0o

XIT=XI11IsB

YII=YIISB

XITI=XITISB

D1{bsty)=2e% (X1~ XIII)*YII'

D1{4+6)1=POIS%D1{494)

Dl(4sT)=3e%D1l(4s4)
01(498)"(29*P015/3e0)’YII*(XIIVkZ“XIII*”Z)
DI(4s9)= (4o #POIS)IH*(XII=-XITT)®{YII*¥2)
D1(595)=(1e=POIS)*(XII-XITT)*YII
D1(5:8)=(be%(1o~POIS)/3e ) ¥ (XII-XITIY®(YII¥%2).
D1(6s4)=D1(4s6)

D1(696)=D1{4s4)

DI(6s7)=3%D1(456)

D1(6s8)=(2, /3o)«YII*(XIIK*Z"XIII**Z)
D1(6991=D1(4-9)/P0OI1S

D1(T74)=D1(4s7)

D1(7+6)=D1(6s7)

DI(T7¢7)=9e%D1{4st)

D1(7+8)=3.%D1(4,8)

D1(759)=3c%D1(459)

D1(8s4)=D1(4+8)

D1(855)=D1(558)

D1(8:6)=D1(658)

D1(8+7)=D1(7s8)

D1{(8s8)=(1e/3e ) ¥YII®R{XI%%3~ XIII *¥3) 42 6% (XTI~ XIII)*
(1e~POISI®YI %3

D1(899)=0,5%(5%¥X][%#2~ XIII**Z)*YIIA*Z

‘DI(9e4)=D1(459)

D1(9s6)=D1(6+9)
DL(9s7)=D1(7s9)
D1(9s8)=D1(859)
D1(939G)=94%#(XII- XIII)%YII**3
RETURN

END

CD TOT _ 0039
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SUBROUTINE TRANS(THETA»TLP;TRLP,TTyLMNQJ)

DIMENSION TLP(39393)9TRLP(399’9)9TI(39999)

DO 777 I=1»3
DO 777 K=1»3
TLP(LMNsI1sK)=0,0
TLP{LMNsls1)=1.0
TLP(LMNs2+2)=COS(THETA)
TLP(LMNs293)=SIN(THETA)
TLP(LMNs352)=~SIN(THETA)
TLP(LNMNs3531=COS(THETA) .

DO 3 1=159

DO '3 K=1+9

TRLP(JsIsK)=0,0

DO 4 I=1.3

DO 4 K=143
TRLP(Js1+K)=TLP{LMNsIsK)
DO 5 I=4+6

DO 5 K=456

11=1-3

KK=K=-3 _
TRLP(J:I9K)—TLP(LMN9119KK)
DO 6 'I=759

DO 6 K=749

I11=1-6"

KK=K- 6
TRLP{JoT+sK)=TLP{LMNs1IsKK)
DO 7 I=1»9

DO 7 K=1199

TT(JsIsK)=TRLP(Js 1K)

RETURN
END

cD TOT
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SUBROUTINE JAG(PAsTT+XIISBsYIISBsXITISBsYITISBsPPASNNN)

DIMENSION PA(95S)sTT(399+9)sPPA(9+9)

DO 8 I=1s9
DO 8 K=1:9

" PA(IsK)=0e0

PA(1s1)=1.0
PA(253)=1.0
PA(392)==140
PA(451)=1.0
PA(4s2)=XIISB

PAl493)=YIISB

PA(4s4Y=PA(4e2)%%2
PA(4s5)=PA(452)%PA(4s3)
PA(4s6)=PA{4s3)%%2
PALL4sT)=PA(Ls2)%%3
PA{4s8)=PA(4s2)%PA(43)%%2
PA(4sG)=PA( 493 )%%3
PA(553)=1.0
PA(S5s5)=PA(4s2)

PA(Ss6)=2e%PA(493)

PA(598)=2%PA(4s2)%PA{4H3)
PA(559)=3c%PA(43)%%2
PA(6s2)==1e0
PA(G24)==2%PA(4s2)
PA(6s5)==1%PA(433)
PA(GsT)==3c%¥PAl4s2)%%2
PA(638)==1e%PA(L4s3)%*2
PA(T751)=1.0
PA(792)=X11158B
PA(7+3)=YI11S5B
PA(T+4)=PA(Ts2)%x%2

“PA(T795)=PA(T:2)%PA(T+3)

PACTs6)=PA(Ts3)%x2
PA(Ts7)=PA(Ts2)%%3 ,
PA(Ts8)=PALTs2)¥PA(T3) %2
PA(759)=PA(T53)%%3 .
PA(833)=100

PA(B3s5)=PA(T752)

. PA{B36)=2c%PA(T7+3)

PA(Q,S)—?»*PA(?oZ)’PA(?aB)
PA{Bs9)=3%PA(T7+3)%

PA(9s2)==1e

PA(G s )=-2%PA(T792)
PA(935)==1%PA(7s3)
PA(Gs7)=~3c%PA(Ts2)%%2
PA(9e8)==1o%PA(Ts3)%%2
DO 9 1=1s9

DO 9 K=159

SUM=0,

DO 10 L=1s9
SUM=SUM+TTINNNs I s L) ¥PA(LsK)
PPA(T sK)=5SUM

RETURN

END

CD TOT
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99

SUBROUTINE SLOPE(XUSBaYUstSAUvTHTA)
DIMENSION SAU(9)

SAU(1)=0.0

SAU(2)==SIN(THTA)

SAU(3)=COS(THTA)
SAU(4)==2oU%XUSB*SIN(THTA)
SAU())=~YUSP‘SIN(THTA)rXUSB”COS(THTA}
SAU(6)=2.%YUSB*COS(THTA)
SAU(T)==3OXSINITHTA)#XUSB*#2

SAU(S)”Z»U*XUSB*YUSB’COS(fHTA)—SlN(THTA)*YUSB*“Z'

SAU(9) =3, *COS(THTA)*YUSB**Z .
RETURN '
END

SUBROUTINE PRODCT(ABsBCsACsMsNsL)
DIMENSION AB(MsN)sBC(NsL)sACIMsL)

DO 1 LL=1sL

DO 1 MM=1sM

AC(MMsLL)=0,0

DO 1 NN=1sN

AC(MMsLL) = AC(MMsLL)+AB (MM 9NN)*BC(NN9LL)
RETURN

END

SUBROUTINE ASMBL (BSTIFsSOFTsMEMsNELEMsNI)
DIMENSION BSTIF(959)sNI(7253)sSOFT(8001)
DO 99 I=1s3 ’
LL=NT (MEMs 1)

IF(LL.EQ«O) GO TO 99

DO 98 J=1s3

MM=NI (MEMs J)

IF(MM.EQ.O) GO TO 98

11=(1-1)%3 :

S JII=(J-1)%3

M=(LL=-1)%3

N=(MM~1)%3

DO 96 IM=1s3

DO 96 JUM=1+3

IN=IM+I1

JN=IM+JJ

IL=IM+M

JL=JM+N

IF(JL.GToIL) GO TO 96
ILN=CIL*{IL-1)/2)+JL
SOFT(ILN)~SOFT(ILN)+BSTIF(IN»JN)
CONT INUE

CONTINUE

CONTINUE .

RETURN

END

CcD TOT 0056
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"SUBROUTINE BHAT(EKBsY23sY39X35AX2AY 9 AMASS)

DIMENSION EkB(7o7)9AX(6),AY(6)9AMASS(0s9)
AX(1)1=0,9324695142

AX(2)=-AX(1)

AX(3)=0,6612093864

AX(4)=~AX(3) ’

AX(5)=0,2386191860

AX(6)==AX(5)

AY(1)=0,1713244923 - . . ‘
AY(2)=AY (1) ‘ o : B SR
AY(3)=0,36U7615730 '

AY (4)=AY(3)

AY(5)=0,4679139345

AY(6)=AY(5) ’

DO 1 I=1s7

DO 1 JU=1s7

M=1--1

N=J-1

AM:M - B
AN=N ' : .
SUM=0,0 ' Co : S

DO 2 K=116 -

$S=0e5%AX(K)+045

FF=(1,0-55)%#M%( (1,0~ SS)AY3+SS*Y2)**N

SUM= SUM+AY(K)%fF%O 5

90

EKB(IsJ)= SUM®X3* (M+1)mY?/(AM+AN42 0)

CONT INUE

AMASS (151)=EKB(151)

AMASS(251)1=EKB(132)~Y3#EKB(1s1)

AMASS(351)=X3*EKB(1s1)~EKB(251)

AMASS (45 1) =EKB(193) =20 ¥Y3HEKB(152) +Y3X¥2%EKB(121)

AMASS (5511 =X3%EKB(192)~EKB(252)=Y3#X3%EKB(1s1)+Y3%EKB(2s1)
AMASS (651)=X3%%2%EKB(151) =20 ¥X3%¥EKB(251)+EKB(351)

CAMASS (7510 =EKB(154) =3 %Y3¥EKB(153)+30%Y3%%2¥EKB(152)~Y3%%3%
EKB(151)

AMASS (B51)=X3#%2KEKB (152) =24 X X3KEKB (292) +EKB(352) ~Y3%X35 ¢ 2 HEKG
191)+20%Y3%X3¥EKB(251)~Y3¥EKB(351)

AMASS (951)=X 3*A3*EKB(191)-3.»x3**2*EKB(791)+3.wx3wEKB(391)
~EKB(491)

AMASS (2521 =AMASS (431)

AMASS (3521 =AMASS(551)

AMASS (452)=AMASS(751)

AMASS (552)=X3%EKB(153) =20 ¥Y3#X3HEKB (152) +Y 3% 2% X3%EKB(1s1) —
EKB(233)+2¢%Y3#EKB(252)~Y3#¥2%EKB(251)

AMASS (652)=AMASS(841)

AMASS (752)=EKB(155) 4 ¥Y3%EKB(194) 4o %Y3%*¥3¥EKB(192) 460 ¥Y3X%2%
EKB(153)+Y3%%4%EKB(1s1)

AMASS (892) =X3#%2%EKB(193) =2 ¥X3%EKB(253) +EKB(353) =26 %Y3%X3 %% 2%
EKB(152)+4o¥Y3#X3XEKB(252) +Y 334 2%EKB(351)

“2,O%Y3XEKB(392) +X3¥H2XY3%#2EKB(191) =2 ¥Y 3¥¥ 2% X3¥EKB(251)
AMASS (95 2) =X3%%¥3%EKB(192) =36 0% X3%%¥2¥EKB(252)+3 0 0*¥X3*EKB(352)
CEKB (492) =Y 3%X3#X3¥EKB (191 )+300%Y 3% X3%% 2 ¥EKB (25 1) ~30 0% Y3%X3#EKB(
351 )+Y3*EKB(451) : S | |
AMASS (353) =AMASS(651)

AMASS (453) =AMASS(552)

AMASS (5531 =AMASS (6521

AMASS (653)=AMASS(9,51)

AMASS (753)=X3%EKB(194)~30#Y3HX3¥EKB (153)43,%Y3%%2%¥X3¥EKB(1+2)
~Y3HX3XX3XEKB(1s1)~EKB(224)+3 ¥ Y3¥EKB(253) =30 *¥Y35%2%EKB(252) +
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Y3%%3%EKB(2s1) . ‘ 91
AMASS (8531 =AMASS(952) ' ,
AMASS (953) =X3%¥4¥EKB (1) )=l o¥X3¥E3HEKB (2] )l o ¥X3HEKB (45 1)

6o XX3XX2HEKB (391 ) +EKB(591)

AMASS (454 )=AMASS (752)

AMASS (554)=AMASS (753)

AMASS (654) =AMASS (852) ' | -
AMASS (754 ) =EKB(1s6) =50 %Y3#EKB(1s5) +50%Y3%%4¥EKB(192)~1Q0%Y35%3%
EKB(1s3)+10c¥Y3%%2%EKB(194)~Y3¥X5%EKB(1s1)

AMASS (854 ) =X3%%2¥EKB (194 ) =3, ¥Y3XX3HA2¥EKB (] 93) 430 %Y 3K 28 X35 %
EKB(152)~Y33%%3%X3% %25 EKB (191 ) =20 ¥X3¥EKB(254)+60*Y3¥X3¥EKB(23)
—6e*Y3AUDANIXEKB (252142 ¥Y3HHFHXIHEKB (25 1) +EKB (3354 ) =30 ¥Y3*EKB(
393)4+3%Y3%%2%EKB(392)~Y3%¥¥3*EKB(341)

AMASS (996 ) =X3%%32EKB(193) =36 ¥X3%%2%EKB (253 )+30 ¥ X3¥EKB(353) —
EKB(453) =20 %Y3%X3%%3%EKB (192) 46 ¥Y3AXZHH2H¥EKB(252) =6 ¥Y3%XIHEKBI
392)42 XYBXEKB (492) +Y3%5 2% X3X%3HEKB(151) =30 #YFHH2RXFHX2KEKB(251)
43 XY3RA2KXZHEKB (351 ) ~Y3#%2¥EKB(4s1)

AMASS (555)=AMASS (694 )

AMASS (635)=AMASS(853) . .
AMASS (755) =X3%EKB (195)~4o ¥Y3¥X3%EKB (194 ) —4 o #Y3*¥X3¥X3%XEKB(12)

O HYBXAPHXBHEKB (133 ) +Y3¥%4¥XB¥EKB(1s1 ) ~EKB (255 ) +4e*YIXEKB(254)
4o ¥Y3*XBHEKB (252) =60 ¥YB3¥X2XEKB(293)~Y3#%4%EKB(2s1) |
AMASS (855)=AMASS(9s4)

AMASS (9551 = X3%¥4HEKB (152) =4 ¥X3%#32EKB (252 ) =4 e ¥XIHEKB(42) +6o%

s

‘X3**2*EKB(J92)+EKB(592)“Y34X3*X4%EKB(1!1)+QDMY3*XJX“3“EKB(291)4

4o¥Y 3% XB“EKB(asl)~6°¥Y3“X3X*2mEkB(3,1)“Y3%EKB(591)

AMASS (696)=AMASS(943)

AMASS (T56)=AMASS(834)

AMASS(836)=AMASS(9+5)

AMASS (95s6) =X3%*¥5%EKB(191)~5e%¥X3¥¥4*EKB (251 )45 ¥X3¥EKB(551) ~
10o%X3%%2%¥EKB (491 ) 410, %X3%%3%EKB(351)~EKB(651)
AMASS(Ts7)=EKB(1ls7)~6e¥Y3XEKB(156)~6o*Y3XX5XEKB(192)+15.%
Y3¥*&*EKB(193)+155*Y3*W2~EKB(1;5)—20a<Y3X*3 *EKB(194)+Y2*¥6*EKB
(1s1)

AMASS(B»?)*XB**?‘EKB(ls ) =L o ¥YBRXBHRK2HEKB (194 ) ~4 FYIHXJHXIRA2HERD
(152) 46, ¥YBXH¥2%X3HA2¥EKB (L 93) +YIHR4HX3%%2HEKB(151) =2 #X3XEKB(255)
+8e¥Y3RXBHEKB (254 )48 % Y3 H#3AUXIKEKB(292) 12 *#Y3%X%2%¥X3HEKB(243)

—2e %Y 3RHLEXIFEKB(291)+EKB(355) =4 o *Y2¥EKB(344)~40¥Y3%X3XEKB(3,2)

46 %Y3HX2¥EKB (393 ) +Y3%*4XEKB(341)

AMASS (99 T7) =X3%%3¥EKB(194) =26 ¥X3%¥2¥EKB (294 )+3¥X3¥EKB(354)~EKB(
G494 ) -3 ¥YIRXBAHZHXEKB(193)+FeXYBHXIAXR2HEKB(293) 9o FYIHXI%
EKB(393)43o%XY3XEKB(453) 43¢ %Y3%%2¥X3HRIUEKB(L22) -9 KYIHH2XXBRH2H
EKB(2352)49o%Y3%%2uX2XEKB(392) =3 #Y3#A2FEKB (492 ) -V 3XXIRXIXRZH
EKB(191) 43, %Y3%##3%X3%%2XEKB(291)~3eXYIHHXIAXZIFEKB(39]1 )+
Y3%x%3%xEKB(4s 1)

AMASS (898 =X3%%4%¥EKB(193) =40 ¥ X3%X3%¥EKB(293)~4 0 ¥X3¥EKB(493)+
6o¥X33%2XEKB(393)+EKB(593) =26 ¥Y3HXIHXL4XEKB(192)+Be*¥Y3XXFRHBHEKBI
292)4Bo¥Y3XX3HEKB(492)~12o%YIRXBHX2HEKB(332) -2 ¥Y3¥EKB(552)+
Y3%H2%XB3¥RAHEKB (191 ) =l o®Y3%K2X XBX*B“FKB(Z’l)“Qe“Y3“*2*XBKEKB(4a])
+6 e FYZHX2XXBUXK2KEKB (351 )+Y3%¥2% EKB(591)

AMASS (95 8)=X3%%5%FKB(192) =5 ¥X3¥*¥L¥EKB(292 )45 ¥X3¥EKB(592) ~
106%X3#%2%¥EKB(452) 410 ¥X3*¥%¥3%¥EKB(352)~EKB(6s2)-Y3¥X3¥*5XEKB(1y1)
5% Y3RXIANLFEKB(2s 1)~5o*Y3*X3*EKB(5=l)+1Oo*Y3*X3**2*EKB(491)"

10 %¥Y3%X3%%3%¥EKB(3¢1)+Y3XEKB(Os 1)

AMASS (9459 =X3%¥6% FKB(]91)“60*X3K*5*[KB(291)"6»*X3fEKB(691)F

156 ¥X3 %% 2¥EKBI501 ) 4+15¥X3 % %4 ¥EKB(351)~20¥X3¥X3XEKB(4 1),

+EKB(741)



1

NO R
not

3 1=1s8
K+1

DO 3 J=Ks9
AMASS(1sJ)=AMASS(Us1)
RHOTEE=0,28%TH/386,0
RHOTEE=1.0

DO 4 1=1%9.

DO 4 J=1s9
AMASS(1sJ)=RHOTEE*AMASS(IsJ)
CONTINUE ' :
RETURN

END

Cb TOT
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10

11

13

14

SUBROUTINE POWER (CKMsNRsMRsEYsEZsALPHA)

DIMENSION EY(NR)sEZ(NR) s CKM{NRsNR) s ALPHA(MRY) 93
NN=NR-+1 ’ :

DO 14 L=1sMR

NN=NN=-1

DO "1 1=1sNN

EY(I)=1,0

CONTINVE

BETA=1.0

- DO 2 I1=1sNN , .

EZ(1)=0eU
DO 2 K=1sNN

EZ(1)=EZ(T)+CKM(IsK)HEY(K)

ALPHA(L)=0.0 '

DO 3 I=1sNN . '
IF(ABS(EZ(I))oGToALPHA(L)) ALPHA(L)=ABS(EZ(1))

“CONTINUE

1E(ABS( (ALPHA(L)~BETA)/BETA) eLToleE~4) GO TO 6
BETA=ALPHA (L)

DO 4 I=1sNN
EY(I)=EZ(1)/ALPHA(L)
CONTINUE

GO TO 5

CONTINUE

BETA=EY(1)

DO 9 I=1sNN
EY(I)=EY(1)/BETA
CONTINUE

DO 12 J=1:sNN
EZ(J)=CKM(1sJ)
CONTINUE

DO 10 I=1sNN

DO 10 J=1sNN
K=NN+1-1
CKM(KgJ)»CKM(KsJ)"EY(K)*CKM(lsJ)
CONT INUE

DO 11 1=2sNN

DO 11 J=2,sNN

M=1~1

N=J-1
CKM{MsN)=CKM(TsJ) s
DO 13 J=2sNN .
I=J-1
CKM({NNsI)=EZ{J)

DO 14 I1=1sNN
CKM(TIsNN)=EY(I)

CONT INUE

RETURN

END

CD TOT 0049
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SUBROUTINE VECTOR(CKMsEZ3sSsNRsMR)
DIMENSION CKM(NRsNR)sEZ(NR)sS(MR)
DO 8 M=1+MR

N=MR-M

MM=N-+1

L=NR~N

DO 2 1=1sL

EZ(I)=CKM{IsL)

CONTINUE ' :

IFINeFQo0) GO TO 7

L=NR-N :

LL=L+1

CC=0.0

NN=N+1

DO 3 I=1sl

CC=CCH+EZ (T )*CKM(LLSs I)

CONT INUE

CC=(S(MM)-S({N))/CC

DO & TI=1sL

EZ(1)=EZ(1)%CC

CONT INUE

DO 5 I=1sL

J=L+2-1

NN=J-1

E?(J)“E7(NN)+CKM(JaLL)
Eé(l)“CKM(lsLL)

N=N-1

IF{N.GTo0) GO TO 6

CC=ABS(EZ(1))

DO 9 1=2sNR .
IF(ABS(EZ(1))eGTCC) CC=ABS(EZ(I))
CONT INUE - :
DO 10 I=1¢NR

EZ(1)Y=EZ2(1)/CC

CONTINUE

WRITE(6550) MM
FOQMAT(/:)XsléHEIGFN VECTOR NOo,1XsIZs1X92HIS’/)
WRITE(7s51) MM

FORMAT (5Xs16HEIGEN VECTOR NOes1XsI291Xs2HISS)
WRITE(G»I) (EZ(I)sI1=1sNR)
WRITE(7915) (EZ(I1)sI=1sNR)
FORMAT(5(5Xs6E16.697))
FORMAT(5X96E12¢4)

RETURN

END

CD TOT 0045
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APPENDIX 4: List of Equipment




List of Equipment

Micrometer proximit& transduﬁer ( type DISA 51D11 )
Oscillator ( Type DISA 51E02 462 )

Reactance converter ( Type DISA 51E01 )

Electromagnet ( Type Leybold SC-1004 )

Oscilloscope ( Type Tektronik 564 )

-6"x2"x1/16" thick M.S.plate with and without pretwist
Frequency Generator (0~11KCS)

Goodmans Vibration Shaker ( Model 790/419 )

Vibration Shaker Amplifier

CDC 6400 Digital Computer
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