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Abstract

Using molecular dynamics (MD) and boundary element method (BEM), di↵erent

aspects of solidification in the aluminum silicon system are studied. The angular

embedding atom model (AEAM) was implemented on LAMMPS, and the necessary

potentials are developed. Firstly, a modified version of the Stillinger-Weber (SW)

interatomic potential for pure Si is proposed. The advantage of this potential is that,

in contrast to the original SW form, the modified version allows one to grow diamond

cubic crystal structures from the melt at high temperatures. Additionally, an Al-Si

binary potential of the AEAM type is able to accurately predict the experimental

enthalpy of mixing. It is also able to predict an Al-Si phase diagram with a eutectic

concentration for the liquid that agrees with experiment within 4 at% and a eutectic

temperature that di↵ers from experiment by only 13 K.

Considering the importance of step mobility and step free energy on the solidifica-

tion growth rate, chapters 3 and 4 are devoted to calculation of these concepts using

MD simulations. In chapter 3 the step mobility, which is the proportionality constant

between the velocity and driving force, was determined for the alloy with melt com-

position of Al-90%Si as a function of temperature and composition. It was found that

mobility decreases fairly rapidly with the addition of Al solute. Also, from the vari-

ation with temperature, it appears the mobility is proportional to the interdi↵usion
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coe�cient in the liquid. It is observed that for the Al-60%Si alloy di↵usion-controlled

growth is the dominant scenario, even for a few degrees of undercooling.

In chapter 4 equilibrium molecular dynamics (MD) simulations and the capillary-

fluctuations method (CFM) are employed to calculate crystal-melt step free energies

at three di↵erent melt compositions. Anisotropy of steps are investigated by setting

up the systems with di↵erent crystal orientations of steps on the high-symmetry

interface plane, (111) in this case. A complete isotropy of step free energy is observed

for Al-60%Si and Al-90%Si alloying systems, while CFM failed in determining step

free energy in Al-30%Si due to lack of step roughness.

In chapter 5 the BEM is utilized to numerically compute the concentration profile

in a fluid phase in contact with an infinite array of equally spaced surface steps. In

addition, under the assumption that step motion is controlled by di↵usion through

the fluid phase, the growth rate is computed and the e↵ect of step spacing, super-

saturation and boundary layer width is studied. BEM calculations were also used to

study the phenomenon of step bunching during crystal growth and it is found that,

in the absence of elastic strain energy, a su�ciently large perturbation in the position

of a step from its regular spacing will lead to a step bunching instability.
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Chapter 1

Introduction

Continually rising energy prices have inspired increased interest in weight reduc-

tion in the automotive and aerospace industries, opening the door for the widespread

use and development of lightweight structural materials. Chief among these materi-

als are cast Al-Si alloys which represent over 80 percent of all Al cast alloys and are

used extensively in pistons, cylinders and engine blocks in automotive and aerospace

applications [12]. Utilization of Al-Si alloys depends on obtaining a modified fibrous

microstructure instead of the intrinsic flake structure of silicon dendrites. Recent

experiments show unanticipated new behaviours in the modified alloying system [4] ,

and the relevance and interest in understanding the underlying physics has increased

with these events. It has been reported that in cast Al-Si alloys the morphology of the

nearly pure Si phase has a dramatic e↵ect on the mechanical properties [4]. For slow

cooled products a needle or plate shaped Si morphology is produced, which results

in low ductility and low tensile strength. By contrast, for fast cooled directionally

solidified material or for cast products with the addition of small amounts of certain
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elements, most notably Na and Sr, the Si phase adopts a fibrous form and the tough-

ness, strength and ductility is increased substantially [13]. Although the plate to fibre

transition has been studied for several decades the exact mechanisms controlling the

morphology are not fully understood and several nucleation based and growth based

models have been proposed. The objective of the this work is to utilize classical

molecular dynamics (MD) and boundary integral method (BEM) simulations, to in-

vestigate, for the first time, the atomic processes taking place at a solidifying Si-liquid

alloy interface. A quantitative description of the crystallization process derived from

MD simulations will provide important insights into the flake to fibre transition and

will help to reconcile the many models of the morphological transition that have been

proposed. To reach this goal an interatomic potential that can explain interactions

between atoms is developed. In the next step the atomic mechanisms taking place

at the Si-liquid interface in Al-Si, mainly step kinetic coe�cient and step free energy,

are investigated. Classical molecular dynamics simulations will examine growth pro-

cesses of Si crystals from the melt and the results will shed light on the phenomenon

of quench modification.

1.1 Literature Review

Aluminum is known for having high corrosion resistance, low density, and high

relative abundance. Although extremely soft and ductile as pure metal, aluminum

can achieve significant strength levels when alloyed.

Aluminum-Silicon alloy is one of the most important aluminum based systems,

forming the irregular eutectic at 12.6 wt% Si at 577�C. Irregular eutectics such

as Fe-C and Al-Si grow with non-isothermal solid-liquid interfaces. In other words,
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solubility of aluminium in silicon phase is almost zero and pure silicon dendrites form

during solidification process. Products of irregular eutectic transformation exhibit

large spacings and under coolings [14]. Aluminum-Silicon alloy, with the composition

range of 3-20% Silicon, is commonly used in the as-cast condition, eliminating the need

for extensive post-cast processing. They are desirable for their superior castability,

excellent corrosion resistance, low density, and good mechanical properties. The

superior castability attributed to eutectic alloys are related to their relatively low

solidification temperatures, high fluidity and small or nonexistent mushy zones. The

excellent corrosion resistance is from surface passivation due to the strongly adherent

oxide layers inherent to both aluminum and silicon. However, machinability and

mechanical properties of this alloy depend strongly on the mechanisms occurring

during the solidification process. While the traditional flake morphology observed in

pure Al-Si castings causes poor mechanical properties, a significant improvement in

strength and ductility is obtained with microstructural modification. Microstructural

modification techniques for Al-Si system can be classified into two main categories:

i) Quench modification transition, ii) Trace elements addition . Both methods result

in transition from bulky flake morphology to a more desirable fine fibrous morphology.

For better understanding the modification mechanisms it is necessary to under-

stand the formation and growth of silicon dendrites in an unmodified system. It

is considered in the first part of literature review (1.1.1). In the section 1.1.2, the

branching phenomenon, which plays a crucial roll in Al-Si system, will be explained.

Proposed mechanisms for explaining morphological modification will be reviewed for

both quench modified and chemical modified systems in section 1.1.3 and 1.1.4 . A
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brief explanation about simulation techniques including MD and BEM will be pre-

sented in sections 1.2 and 1.3

1.1.1 Unmodified Silicon flakes formation and growth mech-

anism

Silicon has a diamond crystal lattice structure, which is due to the hybridization

of s and p electrons and causes each atom to have four neighbours in order to form a

tetrahedron [15]. (001) and (111) faces of semiconductors, including silicon, are used

for growth. For such faces in specific directions, terraces separated by steps of atomic

hight are observable. This type of separation is more observable for (111) planes.

As it is shown in figure 1.1 these steps are not straight. They consist of straight

parts separated by kinks. There are some surface vacancies known as advacancies

which represent missing surface atoms. Crystal growth in diamond cubic structure
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Figure 1.1: Schematic illustration of steps, kinks and advacancies in (111) faces.

is completely anisotropic. The growth rate in the normal direction to the closest

packed (111) planes is slowest. Therefore, there is a strong tendency for the other

less close-packed planes to grow until the crystal surface consists only of (111) facets
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[16]. Growth of relatively long lath-like dendrites of silicon from undercooled melt,

presence of a (111) twinned structure, appearance of well developed {111} habit faces,
the unlimited propagation of the lattice in the <211> direction and the tendency for

branching in other coplanar <211> directions have been observed decades ago [17].

At a very early steps of crystal growth, silicon tetrahedra which is shown in figure

1.2(a) forms in the melt [18]. These tetrahedrons start aggregating and the subsequent

crystal form depends on the participation of these tetrahedrons. Aggregation results

in formation of embryos. An appropriate form of embryo is an assembly of two

tetrahedra, as in figure 1.2(b). If this grows to critical nucleus size by attachment of

single silicon atoms to the surfaces the faces can develop into favourable low energy

{111} facets while the central mirror plane becomes a {111} twin plane. If many

embryos such as figure 1.2(b) exist in the melt near the liquidus temperature, it can

be expected that some will attach to nucleant particles in the melt and grow to critical

size. The double tetrahedron shape is not ideal for minimizing surface area and the

surface-to-volume ratio can be further reduced as the nucleus grows if the two apices

are truncated to produce a more nearly spheroidal shape. As in figure 1.2(c), planes

parallel to the central twin plane would form readily, preserving the advantage of low

energy facets.

These new surfaces form suitable points of attachment for additional silicon tetra-

hedra from the melt, forming twin planes parallel to the first.

If two or more twin planes form in this way the condition is established for forma-

tion of a twin plane re-entrant edge, which was considered as the fundamental concept

for explaining the growth mechanism of facetted crystal in crystal-melt interface. This

mechanism was first proposed by Hamilton in 1960, identified in the crystal growth of
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Figure 1.2: a) Individual silicon tetrahedron form in liquid. b) Silicon tetrahedra with
{111} mirror plane. c) Truncated tetrahedra at later stage growth

germanium [1]. Regarding to structural similarities between germanium and silicon,

this mechanism was expanded to silicon as well. According to this mechanism, two

{111} planes of Si intersecting at a twin form a corner, which acts as a heterogeneous

nucleation site for the subsequent formation of new atomic planes. It results in rapid

growth along <211> directions within the twin plane. This mechanism is known as

Twin Plane Re-entrant Edge (TPRE). Based on this mechanism at least two twin

planes must be present in order to growth from these leads to a preferred directions

of continuous propagation and branching. Figure 1.3 shows how this mechanism can

explain preferred nucleation sites and crystal growth.

Another aspect that was the subject of discussion has been the e↵ect of inclusions

and impurities. Shankar et al. [19] proposed that, in commercial aluminium-silicon

foundry alloys invariably contain some amounts of iron, which play an important role

in the nucleation of the eutectic phases in these alloys. Relatively high iron contents

promote formation of the iron containing �(Al, Si, Fe) phase [2]. In unmodified hy-

poeutectic AlSi alloys, eutectic silicon nucleates on these �(Al, Si, Fe) particles before

the nucleation of eutectic Al, and this results in free growth of silicon into the eutectic

liquid with its typical plate like morphology. They proposed that nucleation of the
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Twin Planes 

FIG. 4. A crystal containing two twin planes is found to have 
six of the favored reentrant sites, 60° apart, located alternatively 
first at one twin plane and then the other. These lead to six equiv-
alent (211) preferred growth directions. 

sides of the ridges will require nucleation at these sites. 
But for the presence of a twin plane along one of the 
bounding faces, the geometry of these corners is identi-
cal with that which might occur in monocrystalline 
germanium. Furthermore, the twin plane does not 
bisect the nucleus. This second type of nucleation should 
certainly not be more difficult to accomplish than the 
first, and may be somewhat easier because of the more 
favorable geometry. The creation of new reentrant 
corners of type II is absolutely essential for the con-
tinuous propagation of the solid, for they relieve the 
nucleation problem across any ridges that may appear. 

Figure 6 shows a later stage in the growth sequence. 
It can be seen that although the solid has the original 
configuration of Fig. 4, it has increased in size by one 
layer thickness in the two (211) directions that were 
allowed to grow. The reentrant corners supporting nu-
cleation events of the type I, which "grew out" (Fig. 3) 
in the solid containing one twin, are regenerated by the 
<,lctivity at the second twin plane. In other words, it is 
no longer possible to entirely bound a solid containing 

II 

Twin Planes 

FIG. 5. Nucleation events (I) at two of the six reentrant corners 
of Figure 4 have been allowed to occur. Growth from these has 
resulted in the development of new corners L 109!0, marked II. 
These straddle ridge sites across which nucleation was previously 
difficult. 

Twin Planes 

FIG. 6. The growth cycle initiated in Fig. 5 at the original re-
entrant corners (I) is completed by growth from the new reentrant 
corners (II). The solid is back to its original shape, but has in-
creased in thickness in the directions in which growth was allowed. 

two twins with unfavorable ridge structures across 
which nucleation is difficult. Our model of the bicrystal, 
with its single twin, does not have this property. The 
crystal with two twins possesses self-perpetuating 
corners or steps which permit continued growth from 
favored sites. This crystal has a strong tendency to 
exhibit sixfold (211) propagation and branching, in 
agreement with experiment. 

More twins may be added to the system without re-
moving this essential feature. For example, if a third 
twin is introduced, three more reentrant corners are 
created and added to the six corners of the two twinned 
crystal. The details of growth are now considerably 
more complex, but the reentrancies are still perpetuated. 

IV. DISCUSSION 

Figure 7 shows an attempt to depict in a more real-
istic way the extreme tip of the solid-liquid interface of 
a (211) dendrite. This figure has been derived by 
allowing an increase in nucleation rate, relative to 
lateral growth rate, in the three type I reentrant 
corners. The plane side faces are retained in order to 

Twin Planes 

FIG. 7. By allowing an increased nucleation rate a solid is ob-
tained in which many steps are growing at once. It'is seen that a 
curved interface could result from these circumstances. The "flow" 
of growth about the interface is suggested in part of the 
figure, showmg how the reentrant corners are maintained by a 
growth step that "spirals back" on itself. 
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Figure 1.3: a) A crystal containing two twin planes is found to have six of the favourable re-
entrant sites. b) The growth cycle in part (a) at the original re-entrant corners is completed
by growth from the new re-entrant corner. c) Nucleation events (I) at two of the six re-
entrant corners. Growth from there has resulted in the development of the new corners
marked (II). d) By allowed an increased nucleation rate, a solid is obtained in which many
steps are growing at once [1].

eutectic phases in Al-Si hypoeutectic alloys proceeds as illustrated schematically in

figure 1.4a-d. During solidification, the primary aluminium phase forms as dendrites

at the liquidus temperature of the alloy. This is followed by the evolution of a sec-

ondary �(Al, Si, Fe) phase at some temperature between the liquidus temperature

and the eutectic temperature of the alloy depending on the concentration of Fe in the

alloy. At the eutectic temperature, and at an undercooling of 0.4 � 0.8�C, eutectic

silicon nucleates on the secondary �(Al, Si, Fe) phase in the solute field ahead of the

growing aluminium dendrites. Once nucleated, the eutectic silicon grows as flakes into

the eutectic liquid. The liquid surrounding the eutectic silicon flakes become enriched

with aluminium as it is being depleted of silicon; consequently, eutectic aluminium
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nucleates and grows on the edges and tips of the eutectic.

Energy dispersive spectroscopy. A Noran detector run
by ESVision v4.0 software was used to perform the
energy dispersive spectroscopy. Dead time was limited
to about 12% to ensure good peak-to-background ratio
with a collection time of 200 s to provide significant
counts/peak for quantitative analysis after ZAF cor-
rection. All TEM EDS work was performed on the

Hitachi HF2000 microscope, which has a resolution for
chemical microanalysis better than 20 nm.

Crystallography. Orienting the aluminum and silicon
crystals to low index planes allowed crystallographic
characterization. The various zone axes onto which each
of the aluminum and silicon phases was oriented were
B ¼ h100i, h110i, h111i, h012i, h113i, h122i, h013i,

α Al liquid α Al

(Al,Si,Fe)

(a) (b)

α Al 

Aleutectic

Sieutecticc

α Al

(c) (d)

Fig. 2. Sequence of events during nucleation of eutectic phases in Al–Si hypoeutectic alloys: (a) growth of Al dendrites, (b) Nucleation of
b-(Al, Si, Fe) phase, (c) nucleation of eutectic Si on the b-(Al, Si, Fe) phase in the solute field ahead of the primary aluminum, nucleation of eutectic Al
on eutectic Si, and growth of eutectic Al; (d) impingement of dendrites and eutectic Al grains resulting in arrest of the growth of dendrites and further
nucleation and growth of the eutectic phases.

Fig. 3. Isopleths from the Al–Si–Fe ternary phase diagram obtained from the commercial software Pandat!.

4450 S. Shankar et al. / Acta Materialia 52 (2004) 4447–4460

Figure 1.4: Sequence of events during nucleation of eutectic phases in AlSi hypoeutectic
alloys: (a) growth of Al dendrites, (b) Nucleation of �(Al, Si, Fe) phase, (c) nucleation of
eutectic Si on the �(Al, Si, Fe) phase in the solute field ahead of the primary aluminum,
nucleation of eutectic Al on eutectic Si, and growth of eutectic Al; (d) impingement of
dendrites and eutectic Al grains resulting in arrest of the growth of dendrites and further
nucleation and growth of the eutectic phases. [2].

1.1.2 Branching phenomenon

Branching phenomenon was another concept which was first explained by Kobayashi

and Hogan [3]. They did one of the most comprehensive crystallographical studies

on modified and unmodified silicon crystals in Al-Si alloy. It has been observed that

a given silicon plate usually grows straight for some distance, then may branch or

change direction through a large angle, in response to local conditions at the growth
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interface which occur by multiple twinning. Figure 1.5(a) shows all the possible crys-

tal growth directions for a specific crystal plane. Figure 1.5(b) illustrates {111} which

have formed due to special attachment of tetrahedrons. The geometry of tetrahedra

dictates the form at the edges and angle between the crystal layers. if {111} planes

are exposed at the growing tip, they would necessarily form the 141� re-entrant angle

shown, which is the condition for TPRE growth in the <121> direction. Base on

Hogan research, the plates tend to thicken in places by addition of a further twinned

layer, which would form the 109.5� growth step shown in figure 1.5(c). The original

crystal with alternate twins A and B branches by twinning at a {111} plane to give

a 70.5� direction change. The branch contains two crystal B and C in twin relation-

ship. Branching might start by nucleation of twinned crystal B on A and subsequent

formation of the crystal C in twin relationship with B. Branching cause the space be-

tween crystal tips to increase, therefore di↵usion distance between silicon growth tips

increase and they claimed that this is the driving force of Branching phenomenon.

In addition, regarding to the fact that growth direction of silicon fibers in impurity

modified alloy is (100) and (110) but rarely (121), they concluded that growth is

unlikely to be by the TPRE mechanism.

Experimental observations and scientific explanations, clarified that twin density

has a significant role in crystal growth and final morphology of the dendrites. There-

fore, establishing methods for increasing twin density, modification of microstructure

and more sophisticate explanation of the mechanisms were aimed subsequently.
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Figure 1.5: Schematic drawings of growth mechanisms in flake-type eutectic silicon. Pos-
sible nucleation points for the eutectic aluminium phase are indicated [3].

1.1.3 Quench modification transition

Modification of Al-Si eutectic promotes change from coarse flake eutectic silicon

to a fine fibrous form by fast cooling exceeding above 400 µms�1. Figure 1.6 illus-

trates the transition from flake to fibrous morphology by increasing the cooling rate,

observed by Hosch. et al. [4]. Microstructural modification results in improved me-

chanical properties and as they reported in table 1.1, the ultimate tensile strength

(UTS) increases by 37% with solidification rate over the full range of experiment.

Additionally, they found that elongation reaches rapidly to a maximum although a
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sudden decrease is observed at very high cooling rates. Base on their study, influ-

ence of solidification velocity on mechanical property is directly correlated with the

average eutectic spacing.

T. Hosch, R.E. Napolitano / Materials Science and Engineering A 528 (2010) 226–232 229

Fig. 2. Process of calculating composite stress–strain curve, showing the 1000 !m/s
Al–Si sample as an example. Experimental data from Kiser et al. [37] is used as a
baseline for the strength of the matrix. This data is converted to true stress and
true strain, and then fit to a similar hardening coefficient as the experimental data.
Dislocation strengthening is incorporated into the matrix stress–strain curve, then
the stress–strain behavior of the composite is calculated. When compared to the
experimental results, significant agreement is observed.

Fig. 3. Comparison between stress–strain curves calculated using the NC model [2]
and experimental stress–strain curves for the as-cast Al–Si specimens.

Fig. 4. The ultimate tensile strength of the Al–12 wt% Si alloy plotted as a func-
tion of the average eutectic spacing, showing both experimental results and
results calculated from the analysis of Nan and Clarke [2]. Calculated results were
taken from the flow stress at ! = 0.1. Experimental results have been converted
to true stress for comparison with calculations. The spacing relationship used
was " = 3.903 × 10−8V−0.5, which was obtained from the "A measurement data in
[1]. The tensile strength increases significantly with decreasing microstructural
scale (increasing solidification rate) throughout the velocity range studied. (A–C)
Microstructural masks for the velocities of 20, 250, and 950 !m/s, respectively. These
sections were taken in a direction transverse to the eutectic growth direction.

Through this spacing relationship, our application of the NC [2]
analysis to Al–Si eutectics predicts the increase in flow stress with
increasing solidification velocity very well, as shown in Fig. 3. In
addition, the predicted value of flow stress for ! = 0.1 agrees well
with experimentally measured UTS, as shown in Fig. 4. This cor-
relation is significant because the current flow stress model only
considers changes in the microstructural length scale, and does not
incorporate any morphological transitions that occur due to the
flake to fiber transition, which are readily apparent from the trans-
verse microstructural sections shown in Fig. 4 and the deep-etched
microstructural images shown in Fig. 5. The fact that the NC analysis
adequately predicts the flow stress in Al–Si eutectic alloys without
accounting for the significant microstructural changes associated
with the flake to fiber transition suggests that the change in ten-
sile strength with velocity in the Al–Si eutectic alloy is primarily a
function of the changing length scale and not strongly associated
with the underlying flake to fiber transition.

While the preceding analysis suggests that Al–Si morphology
does not significantly affect the tensile flow stress, the flake struc-
ture does appear to increase the variability of the tensile response.
It is reasonable to presume that mechanical failure of the Al–Si

Fig. 5. Al–Si eutectic structures after directional solidification at velocities of 20, 250, and 950 !m/s [1]. These structures represent flake (left), mixed flake/fiber (center),
and fiber (right) morphologies, respectively.Figure 1.6: Al-Si eutectic structures after directional solidification at velocities of 20, 250,

and 950 µm/s. These structures represent flake (left), mixed flake/fibre (center), and fibre
(right) morphologies, respectively [4].

Table 1.1: Tension tests performed on Al-Si eutectic samples solidified at di↵erent velocities
[4].

V (µm/s) UTS (MPa) El (%)
20 162 8.7
80 179 15
250 190 17.6
600 207 23.8
1000 222 12.5

Early modification studies [20, 21] concluded that course-fine transition is related

to massive increase in the density of twins in the silicon phase with progressive refine-

ment of the eutectic. However, another set of studies [22, 23] revealed that this is not

the case when Al-Si eutectic is quenched modified. Transmission electron microscopy

observations indicates that the density of twins in quenched-modified silicon dendrites

is very low and even some of them are twin free. Another theory proposed by Jackson
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[24] suggested that in quench modification the transition in shape occurred because

isotropic growth is dominant at high undercoolings. This is probably due to transition

from faceted to non-faceted behaviour. Khan and Elliot [25] performed directional

solidification experiments on Al-Si at growth velocities as high as 1000 µm/s. The

authors observed that the flake to fibre transition was accompanied by a drop in un-

dercooling and the measured velocity vs spacing relationship was similar to that of

normal eutectics. It was concluded that the flake to fibre transition is associated with

a change from faceted to non-faceted behaviour of the crystal-melt interface. They

proposed that quench-modified fibres retain the characteristics of flakes refined by a

large undercooling. However, the twin density is slightly higher than for flakes.

1.1.4 Chemical Modification mechanisms

The other modification method, that has been used extensively industrially since

about the 1970’s, is addition of some elements, most notably strontium (Sr), sodium

(Na) and antimony (Sb), to Al-Si alloys. Sr known as the most e↵ective addition.

Figure 1.7 illustrates the e↵ect of Sr on microstructure of the alloy [5].

Kazuhiro et al. [26] reported that morphology of silicon dendrites in alloys contain

50-150 ppm Sr changes from course plate-like structure to fine fibrous rod-like one.

They observed a significant improvement of mechanical properties of modified alloy

as a result of eutectic structure refining. However, they mentioned that for high Sr

level (Sr>700ppm), porosity characteristics alter and mechanical properties can not

improve furthermore.

Several theories have been proposed to explain the chemical modification mech-

anism. Basically there are six classes of theories about the mechanism of chemical

12
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interconnected plates if viewed in three dimensions. In
contrast, the modified alloy in Fig. 1c and d clearly shows
the fine fibrous morphology of the eutectic Si phase. The
three-dimensional (3-D) morphology of such eutectic Si
phase in similar Sr-modified Al–12 wt.% Si and Al–
15 wt.% Si alloys has recently been studied by focused
ion beam tomography [31,32].

3.1. Co-segregation type I

Fig. 2a displays 3-D elemental maps of Sr (red dots) and
Al (blue dots) atoms in the eutectic Si phase in a volume of
20 ! 20 ! 500 nm3, which is only a part of the entire ana-
lysed volume. Si atoms are omitted for clarity. We observe
a heterogeneous distribution of Sr within this volume in
contrast to earlier published results obtained by X-ray fluo-
rescence spectroscopy (l-XRF) [9]. The volume extending
from 0 to "300 nm from the left shows largely homoge-
neously distributed Sr, whereas from 300 to 500 nm enrich-
ments of Sr and Al are visible. The latter part was
investigated in more detail and Fig. 2b presents the map-
ping of the Sr atom distribution only. In Fig. 2c, Al atom

positions (blue) are superposed over those of Sr (red).
The compositional correlations between Sr and Al atoms
visible here become even clearer in concentration depth
profiles along the z-axis, see Fig. 2d. It was surprising to
detect Al in the eutectic Si phase because there has been
no hint of Al segregation from any of the previous mea-
surements described in the literature. The measured con-
centration of Al within the eutectic Si phase is much
higher than that of Sr. In order to calculate more quantita-
tively the chemical composition of Sr in the co-segregation,
concentration profiles were calculated utilising the proxim-
ity histogram (proxigram) method [33]. The region with co-
segregation is captured by an iso-concentration surface
drawn at a 0.6 at.% Sr concentration threshold, Fig. 2e.
The proxigram concentration profile is then calculated with
respect to distance from that surface, with positive dis-
tances pointing towards the interior of the Al- and Sr-rich
region, see Fig. 2f. In three dimensions, the morphology of
such co-segregations is rod-like with a diameter up to 4 nm
and a length up to 40 nm. A representative concentration
of the co-segregation regions was obtained by averaging
over the region 1.0–1.7 nm from the iso-surface. The

Table 1
Chemical composition of unmodified and Sr-modified Al–10Si casting alloy measured by optical emission spectrometry.

Alloy Al Si Fe Cu Mn Mg Cr Ti Ni Ga V P Sr

(wt.%) (ppm)

Unmodified 89.1 10.1 0.1 10 20 10 11 61 38 41 102 3 <1
Sr-modified 89.1 10.0 0.1 10 20 10 11 60 38 42 102 4 200

The amounts of main elements Al, Si and Fe are given in wt.%, whereas the additional trace elements are in ppm.

Fig. 1. Optical micrographs of Al–10 wt.% Si–0.1 wt.% Fe alloy showing a eutectic microstructure: (a and b) unmodified alloy, (c and d) alloy modified by
200 ppm Sr.

3922 M. Timpel et al. / Acta Materialia 60 (2012) 3920–3928

Figure 1.7: Optical micrographs of Al-10 wt.% Si alloy showing a eutectic microstructure:
(a and b) unmodified alloy, (c and d) alloy modified by 200 ppm Sr [5]. A clear change in
the size of pure silicon dendrite and transition from plate-like to fibrous one is observed as
a result of adding a trace of Sr.

modification as follows;

1) restricted growth theory: In a classic model of chemical modification, Lu and

Hellawell [27] observed that normal flake silicon grows anisotropically and has low

twin density while quench modified fibrous silicon is essentially twin free and grows

isotropically which cause a non-faceted dendritic growth. in addition, for the case

of a sodium modified silicon, which contains a very high twin density and faceted

fibres, TPRE is the dominant growth mechanism. They claimed that the impurity

modifiers poison steps by accumulation of add-atoms at su�cient density to create a

”tra�c problem”, which cause the step sources being temporarily halted. However, a

question arises that why continued propagation should be in a twin configuration after

reactivation of a pinned step? In another research they [28] explained that impurities
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with a large atomic size relative to the radius of a Si atom that has segregated to

the growth interface can force newly deposited Si atoms onto unfavourable sites on

the (111) plane. In particular, a large Sr or Na atom will push, for example, C type

atoms onto A sites in the normal ABCABC stacking of (111) planes and, therefore,

will trigger the formation of a new twin variant. Lu and Hellawell argue that the

most favourable radius ratio of impurity to Si is 1.65 and qualitatively the model is

consistent with experiment as the potent modifiers Sr and Na are close to the ideal

ratio.

In 2004 Nogita, McDonald and Dahle [29] studied the solidification of Al-Si with

the separate addition of 14 rare earth elements, each with an atomic size ratio close

to the ideal value. In only one instance (Eu) was Si modification observed. Based on

their observation that elements within the range of radii, mentioned by Lu-Hellawell,

behave di↵erently they concluded that the criterion is insu�cient on its own to de-

termine and predict the e↵ectiveness of a modified element and further developments

of the modification mechanism are required.

2) Ternary eutectic theory: Hedge [30] considered this problem as a complete ther-

modynamic problem. He showed that sodium forms a ternary alloy with aluminum

and silicon and hypothisised that the regular morphology of this ternary eutectic is

the morphology that is observed in modified system.

3) Restricted nucleation theory: In 1991, Qiyang and co-workers [31] proposed that

conventional Na additions enhance the activity of aluminum, causing it to nucleate at

a higher temperature and to develop into primary phase. Eutectic aluminum grows

epitaxially from Al without need for re-nucleation. Na adsorbs on the twin reentrant

groove or growing surfaces of eutectic Si. By neutralizing part of the hanging bonds
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on the Si surface and causing structural discontinuity of the Si crystal lattice, the

adsorption of Na will decrease the activity of the growing surface of Si. Thus, Na will

poison the Si embryos during eutectic nucleation and restrict the Si growth during

eutectic growth.

In another study, Nogita and Dahle [26] employed electron backscattered di↵rac-

tion (EBSD) to examine crystallographic orientation relationships in unmodified Al-Si

and alloys modified with 70ppm Sr. They compared the orientation of the aluminum

in the eutectic to that of the surrounding primary aluminum dendrites and deter-

mined the growth mode of eutectic. Based on mapping results, they claimed that

in unmodified alloys the eutectic grows from the primary phase and thus have the

same orientation as the surrounding primary dendrite. It means that, in this case,

aluminum dendrites are preferred sites for nucleation of eutectic aluminum. However,

when the eutectic is modified by strontium, eutectic grains nucleate separately from

the primary dendrites and there is no orientation relationship between the aluminum

and the surrounding dendrites. In other words, the role of Sr lies in the nucleation

mechanism and not in twin formation during growth. The authors argue that eutec-

tic grains in Sr modified alloys are nucleated and grow in the interdendritic channels,

totally independent of the primary phase where delayed nucleation will cause the Si

to grow along the tortuous paths characteristic of the interdendritic region and to do

so will require twin formation, whereas under rapid nucleation conditions the Si is

allowed to grow freely in the melt. They believed that it is the only mechanism which

can explain the porosity formation in Sr- modified alloy. In addition, they claimed

that the other e↵ect of modifying elements include Sr, Na and Eu is significant de-

pression of the eutectic nucleation and growth temperatures. They counted this e↵ect
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as the other reason of morphology variation in chemically modified Al-Si alloys.

4) Surface energy theory: Based on this theory, surface energy of aluminum-silicon

changes in presence of modifier results in change in morphology of silicon eutectic

dendrites. It was suggested that crystal growth rate depends on a balance between

the rate of heat flow from the liquid to the solid through the interface and the latent

heat of fusion released during solidification. For chemical modification, a decrease

in surface energy of the aluminum-silicon solid interface upon the addition of the

chemical modifier increases the interface angle. This in turn suppresses growth of the

silicon crystal and causes modification of the eutectic structure and undercooling.

5) Di↵usion control theory: This theory is based in the observation that solubility

of sodium in solid aluminum and silicon are low [3]. This in turn, implies that sodium

would segregate ahead of the growing interface, which could restrict the di↵usion of

silicon in the melt. Sodium reduces the di↵usion rate of silicon, results in change in

morphology of silicon.

6) Multi e↵ect theory: In 2012 Timpel et al. [5] conducted very accurate APT(atom

probe tomography is used for determination of concentration and phase distribution)

and TEM observations in order to investigate the role of strontium in modifying Al-

Si alloys. They claimed that contrary to main assumption of previous mechanisms

include TPRE and impurity induced twinning mechanisms, modifying atoms can not

be considered as individual atoms which have distributed homogeneously interacting

with twins and dendrites. Therefore, they tried to determine strontium distribu-

tion and characterize its form and influence on microstructure of the alloy. They

observed heterogeneous distribution of Sr that forms two types of co-segregations of

Sr with Al or Si in eutectic silicon phase. Nano size segregations that form due to
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high density twinning during crystal growth in di↵erent crystallographic directions

and courser segregations that restrict Si crystal growth and controls branching phe-

nomenon. Earlier published results reported homogenous distribution of modifiers in

the structure[26]. In addition, according to this study, geometrical size factor (atomic

radius of impurity elements) which is known as the dominant parameter, does not

play a major role and chemistry of co-segregation determines how e↵ective a modifier

is. Figure 1.8 illustrates size and position of segregations schematically.

!
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Figure 1.8: Schematic representation of (011) plane projection of eutectic Si phase: (a)
type I SrAlSi co- segregation which promotes twinning by changing the stacking sequence.
(b) locations of type II Sr AlSi co-segregations within the eutectic Si phase at the re-entrant
edges or growing surfaces [5].

7) Poisoning the inclusions: As it was mentioned in section 1.1.1 inclusions in a

commercial Al-Si alloy play an important role on the nucleation of eutectic phase.

Therefore, some researches focus on the interaction between the inclusions and mod-

ifiers. In chemically modified hypoeutectic Al-Si alloys, at the temperature near the

end of solidification of the mushy zone, the modifier concentration in the eutectic

liquid within the interdendritic regions reaches relatively high levels. The chemical

modifier increases the viscosity of the eutectic liquid, therefore its surface tension,
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ahead of the Al dendrites. Thus, the growth of eutectic phase on the �(Al, Fe, Si) in-

clusion is halted resulting in a large number of equiaxed eutectic Al grains nucleating

before nucleation of eutectic silicon, and hence, silicon is forced to grow in between

the eutectic Al grains acquiring a fibrous, broom like morphology. This growth pat-

tern is aided by silicons ability to twin easily and growth proceeds with the twin

plane re-entrant edge mechanism [19]. However, Nogita et al. [32] questioned this

theory and pointed out that apart from � phase other potent nuclei like AlP will be

present for the silicon nucleation. To support their arguments Shankar et al. [33]

performed experiments on low phosphorus containing alloys with di↵erent Fe content

and observed that the solidification morphology changed with the Fe content.

In another research McDonald et al. [34] showed that the grain size in modified

Al-Si is increased dramatically from the unmodified alloy and this observation is also

consistent with the notion of fewer nucleation events. The authors suggest that Sr

poisons the phosphorous based nucleants (AlP) present in the melt.

1.2 Molecular Dynamics

1.2.1 Theory of Molecular Dynamics

Molecular dynamics (MD) is a computer simulation of physical movements of

atoms and molecules. The atoms are allowed to interact for a period of time, giving

a view of the motion of the atoms. New positions of the atoms are determined with

respect to Newton equation of motion with an interaction specified within a cuto↵

distance around each atom. For a system of N particles with coordinates x and mass

of m, the following pair of first order di↵erential equations may be written in Newton’s
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notation as follows:

F (~r) = �rE(~r) = mẍ(t) (1.1)

where F is the force between the interacting atoms at distance r, E is the interatomic

potential. For every timestep, each particle’s position and velocity may be calculated.

Based on Eq.1.1, as long as the interatomic potential field, the initial positions (e.g.

from theoretical knowledge) and velocities (e.g. randomized Gaussian) are available,

we can calculate all future (or past) positions and velocities. Therefore, the potential

energy function is the basic and fundamental necessity of each MD simulation. Any

potential energy function describing interactions among N analytical particles can

be written in general as Eq.1.2, which includes 1-body two-body 3-body and higher

order interactions.

E(1, · · ·, N) =
X

i=1

�
1

(i) +
X

i<j

�
2

(i, j) +
X

i<j<k

�
3

(i, j, k) + · · ·+ �N(1, · · ·, N) (1.2)

where the first term represents the e↵ect of external forces that for periodic bound-

ary condition is zero and the higher orders interactions converge to zero very fast.

According to the type of components of a system and the nature of bonding the

global potential energy equation simplifies. A brief description of two major methods

relevant to this study is given below.

1.2.2 Embedding Atom Method

Daw and Baskes introduced a semi-empirical, many-atom potential for computing

the total energy of a metallic system in 1984 [35]. In this approach, they viewed
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the energy of the metal as the energy obtained by embedding an atom into the local

electron density provided by the remaining atoms of the system. This method has

enabled a semi quantitative and, in some cases, even quantitative investigation of

many phenomena including point defects, melting, alloying, fracture, crystal growth

and many others [36]. The energy of atom i in EAM method is given by Eq.1.3.

Ei =
1

2

X

j 6=i

�↵�(rij) + F↵(
X

j 6=i

f�(rij)) (1.3)

where F is the embedding energy which is a function of the partial electron density

contribution f, � is a pair potential interaction, and ↵ and � are the element types

of atoms i and j. The multi-body nature of the EAM potential is a result of the

embedding energy term. Both summations in the formula are over all neighbors j of

atom i within the cuto↵ distance.

1.2.3 Stillinger-Weber Potential

In 1984 Stillinger and Weber proposed a potential energy function comprising

both two and three atom contributions to describe interactions in solid and liquid

forms of Silicon [37]. Considering the fact that the Si crystal consists of atoms held in

place by strong and directional bonds, their model approximated by the combination

of pair and triple potentials as:

Ei =
1

2

X

j 6=i

�
2

(rij) +
X

j 6=i

X

k>j

�
3

(rij, rik, ✓ijk) (1.4)

�
2

(rij) = Aij✏ij[Bij(
�ij
rij

)
p
ij � (

�ij
rij

)
q
ij

] exp(
�ij

rij � aij�ij
) (1.5)
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�
3

(rij, rik, ✓ijk) = �ijk✏ijk[cos ✓ijk�cos ✓
0ijk]

2 exp(
�ij�ij

rij � aij�ij
) exp(

�ik�ik
rik � aik�ik

) (1.6)

where �, ✏, �, � and a are parameters. ✓
0

is the ideal tetrahedral angle and cos ✓
0

=

�1

3

, �
2

is a two-body term and �
3

is a three-body term. The summations in the

formula are over all neighbours j and k of atom i within a cuto↵ distance equal

to aij�ij. Figure 1.9 illustrates the variation of these potentials at di↵erent atomic

distances and bond angles.
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Figure 1.9: (a) Pair potential vs distance. (b) Three body potential with respect to distance
and angle between bonds.

As is shown in figure 1.10, based on the SW potential, diamond structure is the

preferred one in comparison with BCC, FCC and SC crystal structures and the lattice

parameter is exactly the same as what is expected.

So far many simulations have been conducted using Stillinger-Weber potential

which verified good agreement of the results of this potential with experimental re-

sults. For example Xu et al. [38] studied Si
(1�x)Ge

(x) epitaxial growth on Si(100)
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Figure 1.10: Lattice energy (per atom) vs number density in reduced unit base on Si
potential for di↵erent crystal structures (simple cubic (SC), body-centred cubic (BCC),
face-centred cubic (FCC) and diamond (DIA) crystal structure).

substrate and in a similar study Lampinen [39] and Zhang [40] studied Molecular

beam epitaxy on a Si(100) substrate and determined the e↵ects of substrate tem-

perature and atomic species flux ratios on epilayer morphology utilizing the Still-

ingerWeber potential. Buta et al. [8, 41], used classical MD and Stillinger-Weber

potential to study the interface between the liquid and the (111) faceted, as well as

vicinal, surface in pure Si. The simulations yielded an accurate value of the step

kinetic coe�cient, the growth rate vs undercooling for the step nucleation controlled

growth of (111) and the atomic structure vs position through the interface. In a

very recent study Hale et al. [42] simulated compression of silicon nanospheres with

the Stillinger-Weber potential and observed several defects that cause the yielding,

including dislocations, stacking faults and phase transformations [43]. Timonova [44]

used the Stillinger-Weber potential to identify the atomistic details of relaxation and

crystallization dynamics. This potential has been used to determine the heat con-

duction in silicon by Srinivasan [45] and in a similar study, Skye et al. [46] elucidate
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thermal transport in SiGe alloys. As an example of two component simulation Li

et al. [47] employed the StillingerWeber three-body potential to simulate the silicon

substrate and the Born-Mayer-Higgins potential to compute the interactions between

Aluminum cluster and Silicon substrate and found interesting results about changing

substrate temperature, cluster energy and cluster size.

1.2.4 Angular-EAM

Since the bonding in pure Al and pure Si is governed by very di↵erent mathe-

matical formulation, it is not immediately obvious how the two approaches can be

combined to develop an Al-Si alloy potential. However, in 2009, Dongare et al. [48]

developed the angular-EAM (AEAM) interatomic potential model, which is specifi-

cally designed to model alloys of a metal species combined with a semiconductor (Si,

Ge, etc). The lack of an explicit three body term in EAM, makes this model inappro-

priate for covalently bonded materials. Therefore, rewriting the equations in order

to extract three-body term from the original EAM and retaining all the properties of

the pure components as predicted by SW and EAM potentials was the main goal of

this method. For this purpose, a linear sum of partial electron density contributions

is used and is expressed through the sum of products of partial electron densities as

below:

⇢i = [[
X

j 6=i

fj(rij)]
2]

1
2 = [

X

k 6=i

X

j 6=i

fj(rij)fk(rik)]
1
2 (1.7)

The sum on the right-hand side of the above equation includes two-body terms with

identical pairs of atoms (j=k) and three-body terms (j 6=k) that was separated from

each other. And finally they wrote the three-body terms in forms of a sum over
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unique triplets of atoms (i, j, k):

⇢i = [
X

j 6=i

[fj(rij)]
2 + 2

X

j,k⇢T
i

fj(rij)fk(rik)]
1
2 (1.8)

where in the first(two-body) term under the square root the summation is over all

atoms interacting with atom i and in the second (three-body) term the summation is

over all pair of atom j and k that form unique triplets with atom i. Therefore, for an

alloy system containing both metal and Si atoms, they formulated a combined poten-

tial that reduces to the conventional SW and EAM potentials for pure components

as follows:

Ei =
1

2

X

j 6=i

�↵�(rij)+F↵[[(1��i)
X

j 6=i

f↵�(rij)+ci
X

j,k⇢T
i

fj(rij)fk(rik)(cos ✓ijk�cos ✓
0ijk)

2]ni ]

(1.9)

where �i, ci and ni are constants and depend on type of atom i. With respect to this

formulation, they determined a number of properties of Au-Si alloy like ground state

energy, cohesive energy, bulk modulus, enthalpy of mixing and phase diagram and

the values predicted by the model agrees quite well with experiment. In addition, in

2012 Dongare et al. [6] proposed a potential for Al-Si system where all the calculated

terms except the phase diagram are close to experimental measurements.

Considering the time and size scale of the simulation in Molecular Dynamics, which

is nano second and nano meter respectively, simulations are very expensive compu-

tationally. Thus the first step of this project was implementing the AEAM method

into the LAMMPS code. LAMMPS (Large-scale Atomic/Molecular Massively Paral-

lel Simulator) is an open source classical molecular dynamics code and runs on single

processors or in parallel using message-passing techniques and a spatial-decomposition
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of the simulation domain. Figure 1.11(a) shows simplified and basic algorithm that

LAMMPS follows. Necessary codes for making crystal structure, determination of

velocities, temperature, pressure and new position of atoms and printing the output

are common for all potentials. Therefore, we needed to focus on calculation of forces

and potentials regarding to AEAM potential that can be seen in figure 1.11(b). It was

tried to develop LAMMPS very sophisticatedly and design in a way to minimize the

computation costs. Forming the neighbour list and dividing the domain between the

processors (link-cell binning) are two main issues that are considered in LAMMPS

code. Therefore, developers of LAMMPS believe they have one of the fastest MD

algorithms[49, 50]. In the combined method, atoms are only binned once every few

timesteps for the purpose of forming neighbour lists. A shell around the interacting

sphere is assumed and the new neighbour list forms when the movement of the atoms

is more than the shell thickness. The other time saving method in many of MD codes

including LAMMPS is based on Newton’s third law by only computing a force once

for each pair of atom rather than once for each atom in the pair. Since the cuto↵

distance of di↵erent atom types are not equal and partial density contribution equa-

tions are not the same for atoms in cross interactions, taking advantage of Newton’s

third law is not possible in AEAM method.

1.3 Boundary integral method

The time scale of the MD simulations is in the range of nano second and sim-

ulations of system larger than a few hundred nano meter is computationally very

expensive. Therefore, it is necessary to use an alternative for the cases that bigger

system size or longer simulation time is needed.
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Figure 1.11: a) Simplified algorithm of Molecular Dynamics. b) Simplified algorithm of
interaction calculation part.

The alternative that we have used is the boundary element method (BEM), which

is a numerical computational method of solving linear partial di↵erential equations.

During the last few decades, BEM has gradually evolved to become one of the few

widely used numerical techniques for solving boundary value problems in engineering

and physical sciences. This method have been formulated as integral equations. The

integral equation is the exact solution of the governing partial di↵erential equation.

The boundary element method attempts to use the given boundary conditions to fit

boundary values into the integral equation. Once this is done, in the post-processing

stage, the integral equation can then be used again to calculate numerically the

solution directly at any desired point in the interior of the solution domain. This

method is applicable to problems for which Green’s functions can be calculated [51].

The convection-di↵usion mass transfer problem is a basic phenomenon in many

physical processes, such as crystal growth that can govern by a partial di↵erential

equation. The approach that is explained in chapter 3 uses a variable transformation

to reduce the di↵usion problem to a Helmholtz equation. In this case the exact

integral solution and corresponding Green’s functions can be calculated. Therefore,

26



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

for this case we can take advantage of low computational cost and accuracy of this

method.

1.4 Goals of this research

Despite numerous studies of solidification of Al-Si alloys the precise mechanism

of modification due to impurity additions has not been identified. Some of proposed

mechanisms such as surface energy theory and di↵usion control theory related to in-

formation about these terms in unmodified Al-Si system to be compared with the

same terms in chemically modified system. In addition, if one considers the modifica-

tion that occurs at high growth rates, then the origin of the flake to fibre transition

becomes even more unsettled.

The so-called microscopic solvability theory of dendrite growth predicts that a

dendrite tip radius and growth velocity are sensitive functions of two crucial mate-

rials parameters, the crystal-melt interfacial free energy and the kinetic coe�cient.

Therefore, in this study we employed MD to calculate mobility of steps (chapter

3) and step free energy (chapter 4). In order to do so, AEAM model implemented

on open source MD code (lammps) and an appropriate potential for describing the

interatomic forces in Al-Si system is developed (chapter 2). For the case of di↵usion-

controlled scenario BEM employed to investigate the e↵ect of geometrical parameters

of this system on the growth rate of steps. In addition, step bunching phenomenon

is studied in this system. Furthermore, a mathematical model for solving di↵usion

equation in the stagnant case is proposed (chapter 5).

27



Chapter 2

An Angular Embedded Atom

Method Interatomic Potential for

the Aluminum-Silicon System

A modified version of the Stillinger-Weber (SW) interatomic potential for pure Si

has been developed. In contrast to the original SW form, the modified version allows

one to grow diamond cubic crystal structures from the melt at high temperatures.

The modified SW potential has been then combined with an embedded atom (EAM)

description of pure Al developed by Mendelev et al. to formulate an Al-Si binary

potential of the angular EAM type. The Al-Si potential reproduces quite well the

experimental enthalpy of mixing in the liquid. It also predicts an Al-Si phase diagram

with a eutectic concentration for the liquid that agrees with experiment within 4 at%

and a eutectic temperature that di↵ers from experiment by just 13 K.
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2.1 Introduction

Lightweight structural materials such as cast Al-Si alloys are used extensively

in high technology applications. Several studies have investigated various structure-

properties relationships in cast Al-Si alloys including, the mechanical properties of

Al-Si alloys as a function of the size, form and distribution of second phase silicon

particles, dendrite arm spacing, eutectic morphology and grain structure [4, 52]; nu-

cleation of the eutectic phase [19]; crystallographic orientation relationships [23, 3];

the e↵ect of quench modification on Si morphology [25, 34]; and the mechanism of

Si morphology transition in the presence of modifier agent [29, 26, 27, 5, 32]. It is

now firmly established that superior mechanical properties are observed in Al-Si al-

loys that exhibit a fibrous Si phase morphology, rather than a flake-like form [30].

However, despite the importance and widespread use of cast Al-Si, the factors con-

trolling the flake to fibrous transition remain elusive and a detailed investigation for

the atomic processes taking place at the solid-liquid interface may provide important

insights into the mechanism.

Atomistic scale simulation methods, such as molecular dynamics (MD) and Monte

Carlo, can provide important insights into interfacial properties and atomistic ki-

netic processes, such as the excess free energy and mobility of solid-liquid interfaces

[53, 54, 55], grain boundaries [56, 57] and interphase boundaries [58, 59]; the structure

and kinetics of faceted crystal-melt interfaces [8, 41]; and equilibrium solute segre-

gation to interfaces [60, 54, 61]. However, the results of classical MD simulations

rely on the quality of the employed models for the interatomic potentials. Cen-

tral force Embedded Atom Method (EAM) potentials have been used extensively for

studying metallic systems [35] whereas, covalently bonded systems, described by pair
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and three body terms, have been simulated using the SW potential [37], the Terso↵

potential [62, 63] and Lenosky potential [64]. To date many simulations have been

conducted using the SW potential. The SW description has been successful in studies

of epitaxial growth of Si
(1�x)

Ge
(x)

on Si(100) substrate[38]; the e↵ect of dislocations,

stacking faults and phase transformations on yielding of Si[43], liquid-liquid phase

transition[65], the homogeneous nucleation and crystallization process of silicon [66],

defects and plasticity of silicon [67], crystal-melt interface stresses in the Si-Ni system

[68], etc.

In a recent study of the step energy of (111) facets on the crystal-melt inter-

face, Frolov and Asta [69] concluded that, at high temperatures, SW solidifies into

wurtzite, rather than the experimentally observed diamond cubic phase. Starting

with MD simulation cells consisting of circular diamond cubic islands at the (111)

crystal melt interface, the authors observed consumption of the preexisting islands

by wurtzite islands. In addition, other MD simulations reported random mixture

of stacking sequences during solidification with (111) oriented solid-liquid interfaces

using SW Si potential[70, 18]. Thus, despite the success of previous MD studies, it

appears the SW potential is not optimal for the study of solidification phenomena.

For MD simulations of the Al-Si binary system, an interatomic potential that can

capture accurately both metallic and covalent bonding is needed. One option is the

modified embedded atom method (MEAM) developed by Baskes [71]. The MEAM

formulation has been employed successfully in modelling several metal-semiconductor

systems such as Mo-Si[72], Ni-Si[73] , Au-Si-O[74], Au-Si [75] and Al-Si [76]. However,

MEAM potentials are computationally rather expensive because of the many body

angular screening function, which is used to limit the interaction range in MEAM.
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An alternative potential scheme for systems with mixed type of bonding has been de-

veloped by Dongare and co-workers [48] and is known as the angular EAM (AEAM).

A distinct advantage of the AEAM method is the fact that existing EAM potentials

for the metallic component and the SW description of pure Si (or Ge) can be imple-

mented and only the cross species interaction needs to be formulated. The AEAM

has been used to develop interatomic potentials for Au-Si, Au-Ge [48] and Al-Si [6].

In the case of Al-Si, the Dongare et al. potential reproduces quite accurately the en-

thalpy of mixing for di↵erent compositions and ground state energies of the L1
2

and

B1 structures compared with the results of GGA and LDA methods. However the

predicted phase diagram exhibits some deviation from the experimental Al-Si phase

diagram. For example the eutectic composition and temperature are 9 at% Si and

38K larger than the experimental measurements, respectively.

The purpose of the present study is twofold. First, we propose a slight modification

of the SW potential for pure Si that reproduces the ground state cohesive energy

di↵erence between wurtzite and diamond cubic as computed from first principles

density functional theory. Furthermore, from MD simulations of crystallization along

the (111) direction, it is shown that the diamond cubic structure is also the favoured

phase at high temperatures. Second, we construct an interatomic potential of the

AEAM type for the Al-Si system where the pure Al EAM potential developed by

Mendelev et al. [77] is used. It will be shown that the new potential accurately

predicts the enthalpy of mixing vs composition for the liquid, the formation energies

for the L1
2

and B1 ordered compounds and the eutectic temperature and composition.
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2.2 Potentials

2.2.1 Formulation of modified SW

Considering the fact that the Si crystal exhibits strong and directional bonds,

Stllinger and Weber described the energy of an atom as a combination of pair and

three body potentials:

Ei =
1

2

X

j 6=i

�
2

(rij) +
X

j 6=i

X

k>j

�
3

(rij, rik, ✓ijk) (2.1)
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(rij) = Aij✏ij[Bij(
�ij
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)
p
ij � (

�ij
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)
q
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] exp(
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rij � aij�ij
) (2.2)
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�ij�ij

rij � aij�ij
) exp(

�ik�ik
rik � aik�ik

) (2.3)

where �, ✏, �, � and a are parameters. ✓
0

is the ideal tetrahedral angle and cos ✓
0

=

�1

3

, �
2

is a two-body term and �
3

is a three-body term. The summations in the

formula are over all neighbours j and k of atom i within a cuto↵ distance equal to

aij�ij and in the original SW formulation the cuto↵ range, for both the two-body

and triplet interactions, extends to first neighbour only. The wurtzite and diamond

cubic crystal structures have identical first and second neighbour configurations. As

a result of the short range SW cuto↵ the ground state energy of the two structures

is degenerate. The results of Frolov and Asta [69] indicate that either the bulk free

energy or the step free energy of wurtzite is lower in comparison to the diamond
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cubic phase, leading to the formation of wurtzite in layer-by-layer solidification simu-

lations starting with a seed of the diamond cubic structure with solid-liquid interfaces

oriented normal to [111].
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Figure 2.1: Coordination number and distance of neighbouring atoms in the a) diamond cu-
bic crystal structure and b) wurtzite crystal structure. The atomic coordination is identical
for the first and second neighbour shells.

As shown in fig.2.1 the wurtzite structure (shown in b) is characterized by a third

neighbour shell consisting of one Si atom located at a distance similar to the second

neighbour shell. Furthermore, the fourth neighbour of wurtzite and the third neigh-

bour shell of diamond cubic correspond to the same distance, but the coordination for

diamond cubic is larger. Therefore we propose a modification to the SW pair inter-

action term that exhibits a shallow minimum at the position of the third neighbour

diamond cubic shell, ie. approximately 4.5Å. The form of the modified potential is

given by:
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�
2

(rij) = Aij✏ij[Bij(
�ij
rij

)
p
ij � (

�ij
rij

)
q
ij

] exp(
�ij

rij � aij�ij
) + dij exp(�(Zij(rij))

2) (2.4)

where dij is a constant that represents the depth of the well located at the distance

determined by Zij. Notice the added potential is of a Gaussian type. However, in

order to allow more flexibility in the potential description the term Zij was considered

as a cubic polynomial in the distance variable rij. Thus:

Z(rij) = c
1

(rij �D)3 + c
2

(rij �D)2 + c
3

(rij �D) (2.5)

where c
1

, c
2

and c
3

are constants that determine the level of asymmetry of the well

and D that represents the location of the well centre.

A limited search over six parameters ✏ij,Aij, pij, c1, c2 and c
3

was carried out to

identify an acceptable choice of �
2

(rij). Three main components of this search were

considered. Firstly, ground state lattice energies were evaluated to ensure that the

diamond structure is more stable than other crystal structures for a reasonable range

of pressure, among most probable alternatives including wurtzite. In particular the

energy di↵erence between wurtzite and diamond cubic as predicted by density func-

tional theory [78, 79] was used as a fit parameter. Secondly, the melting temperature

of silicon obtained with the new potential should be at least as accurate as the melting

temperature derived from the original SW potential. Finally, the first component of

elastic constants tensor (C
11

) was another target parameter.

Although only C
11

was used as a fit parameter in the potential optimization, the

three independent elastic constants C
11

, C
12

and C
44

were computed using a procedure

34



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

described by Clancy et al. [80]. First note that in general an element of the elastic

constant tensor, Cijkl, can be written as a partial derivative of a stress component

with respect to strain as:

Cijkl =
@�ij
@"kl

|T,"̇ (2.6)

and, from a prescription described by Karimi et al.[81], one can write C
11

= C
1111

,

C
12

= C
1122

and C
44

= C
2323

/4. In this work, for the calculation of C
11

, a uniaxial

positive deformation is applied in the [100] direction of the periodic boundary cell

in a canonical ensemble (NVT). The two other cell dimensions remain unchanged

during the simulation. A 24 ⇥ 6 ⇥ 6 unit cells system of silicon in the diamond

structure containing 6912 atoms at 1K was used to conduct this simulation. Tensile

deformation was applied over a simulation period of 1ns with a relative deformation

rate of 1⇥ 106s�1. As indicated in the stress tensor equation, the slope of a given

component of stress tensor plot vs corresponding relative strain will yield the elastic

constant in that specific direction. From the same simulation, we extracted the normal

strain in the [0 1 0] direction, which was then used for the calculation of C
12

. For the

calculation of C
44

, we used the same strain rate, ensemble, temperature and system

size. However, a shear deformation was applied to the (1 0 0) plane instead of a

normal deformation and the corresponding shear stress was calculated.

The melting point of pure Si was computed using the coexistence method first

proposed by Morris and Song [82]. In the present application of this technique a

system with the size of 30⇥ 5⇥ 5 unit cells, containing both a solid and liquid phase

is equilibrated at the estimated melting temperature, which, for the present study is

the melting point of the original SW potential. Subsequently, simulations for 400ps in

an isoenthaplic or the NPzAH ensemble were performed. The ensemble maintains zero
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normal pressure along the direction normal to the two crystal-melt interfaces; while

the dimensions in the two directions parallel to the interfaces remain unchanged. In an

isoenthaplic ensemble, if the temperature of the system is initially higher (lower) than

the melting temperature, then a fraction of the solid phase will melt (solidify) and

due to latent heat absorbtion (release) the temperature will decrease (increase). Thus

the system will eventually approach and stabilize at the actual melting temperature.

The coexistence method relies on a crystal-melt interface that is mobile for very

small departures from the melting point, that is, a rough interface. Therefore, the

simulation cells used for the melting point computation were oriented with the (100)

crystallographic direction perpendicular to the interface.

2.2.2 The Al-Si AEAM potential

In 2009, Dongare et al. [48] developed the AEAM interatomic potential model,

which is specifically designed to model alloys of a metal species combined with a

semiconductor (Si, Ge, etc). The lack of an explicit three body term in EAM, makes

this model inappropriate for covalently bonded materials. Therefore, rewriting EAM

potential to include three-body interactions and retaining all the properties of the

pure components as predicted by the SW and EAM potentials were the main goals

of the AEAM method.

In the AEAM description the density contribution is written as:

⇢i =

"
X

j 6=i

[fij(rij)]
2 + 2

X

j,k⇢T
i

fij(rij)fik(rik)

# 1
2

(2.7)

where in the first(two-body) term under the square root the summation is over all
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atoms interacting with atom i and in the second (three-body) term the summation

is over all pairs of atoms j and k that form unique triplets with atom i. Therefore,

for an alloy system containing both metal and Si atoms, the AEAM formulation uses

a combined potential that reduces to the conventional SW and EAM potentials for

pure components as follows:

Ei =
1

2

X

j 6=i

�ij(rij)+

Fi

("
(1� �i)

X

j 6=i

fij(rij) + ci
X

j,k⇢T
i

fij(rij)fik(rik)(cos ✓ijk � cos ✓
0ijk)

2

#n
i

) (2.8)

where �i, ci and ni are constants and depend on type of atom i.

With the AEAM formulation, a number of properties of the Au-Si system, such as

ground state energies, cohesive energies, bulk modulus, enthalpy of mixing and phase

diagram were reported and the values predicted by the model agree quite well with

experiment. In addition, in 2012 Dongare et al. [6] proposed a potential for the Al-Si

system where all the predicted terms except the phase diagram are predicted well.

However, a suitable potential for the simulation of solid-liquid interface properties

should predict critical compositions and temperatures (e.g. melting temperatures,

eutectic composition and temperature) as accurately as possible. Therefore, in the

current work we have developed a new interatomic potential for the Al-Si system the

phase diagram over the entire range of composition was defined as a target value.

In addition, we used the potential developed by Mendelev [83] for pure aluminum

and modified-SW potential for pure silicon. These choices ensured that, on the one

hand, the calculated melting temperature of the pure components is close to the

experimental values and, on the other hand, the stable crystal structures are FCC

37



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

and diamond cubic for aluminum and silicon respectively.

One problem of using the Mendelev et al. aluminum potential was the di↵erent

scaling of the electron density contribution in comparison with the formulation of

Dongare. For solving this problem we used the scale invariance of the embedding

functional in the EAM scheme, which has been applied in previous works for devel-

oping potentials in binary systems [84]. It has been shown [85] that the energy and

forces in an EAM system are invariant to the following transformations:

fij(rij) ! gfij(rij) (2.9)

F (⇢) ! F

✓
⇢

g

◆
(2.10)

where fij is the partial density contribution, F is the embedding contribution of the

total energy, g is an arbitrary scale factor. It should be noted that this transforma-

tion does not a↵ect the properties of the pure element. However, it does e↵ect the

behaviour of the alloy. Therefore, the parameter g is treated as a fitting variable, in

the Al-Si potential development procedure, which can be varied without changing the

Al potential.

For the next step we focused on the potential functions for Al-Si cross interactions.

The pair energy term is defined as:

�ij(rij) = f�(rij)
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AC exp
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where AC , BC , �C , �C , �C , PC , QC and RM are fitting parameters. The formalism

for pair energy is similar to the one defined by Dongare et. al. [6] with an extra

coe�cient f�(rij). This function is used to apply a local and smooth increase in the

pair potential to avoid interstitial solubility of Silicon in solid Al in the FCC crystal

structure and is defined as,

f�(rij) =

8
>>>>>><

>>>>>>:

1 rij < R�1

1 + C�

⇣
1� cos

⇣
2⇡
⇣

r
ij

�R
�1

R
�2

�R
�1

⌘⌘⌘
R�1 < rij < R�2

1 rij > R�2

(2.12)

where C�, R�1 and R�2 are constants. The partial electron density contributions from

Si to Al and Al to Si are defined as,

fSi!Al
ij (rij) = fAl

e exp

✓
��Al

C

✓
RM

rij �RM

◆◆
(2.13)

fAl!Si
ij (rij) =


fSi
e exp

✓
��SiC

✓
RM

rij �RM

◆◆�
ff (rij) (2.14)

where fAl
e , �Al

e , fSi
e and �Sie are fitting parameters.The density contribution of an Al

atom on a neighbouring Si atom (eq.2.14) is very close to the density contribution of

a Si atom on an Al neighbouring atom(eq.2.13). A slight di↵erence in the current for-

mulation is the function ff (rij) which is introduced to avoid substitutional solubility
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of Si in Al in the solid state. The function is given by:

ff (rij) =
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where Cf , Rf1 and Rf2 are constants. Therefore, according to this formulation, the

partial electron density contribution is based on the type of the neighbouring atom

and not the type of bonds. A primary goal of this work is the development of a

potential that accurately reproduces the Al-Si phase diagram. Determination of a

phase diagram using MD is a three step procedure. For the first step the melting

temperatures of the pure components, in this case Al and Si are calculated. The next

step is the calculation of the free energy di↵erence between solid and liquid phases

of pure Al and Si. For this purpose, we used the Gibbs-Helmholtz equation, which

defines a thermodynamic relation between the enthalpy and free energy of the solid

and liquid phases at di↵erent temperatures:

�G = T

Z T

T
M

HL(T 0)�HS(T 0)

T 02 dT 0 (2.16)

where �G = GL � GS. GL and GS denotes the free energy of liquid and solid and

H is the enthalpy. The enthalpy of both the solid and liquid phases were computed

using simulations in the (NPT) ensemble on 10⇥ 10⇥ 5 unit cells system for a series

of eleven temperatures in the range of T
M

±400K for Al and Si. Since liquid and solid

were not stable at high supercoolings, we assumed that heat capacity is constant in

the relevant range of temperature. In other words the enthalpy di↵erence was least
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squares fit to a straight line vs temperature.

The last step in the phase diagram determination is the calculation of the Gibbs

free energy of mixing for the whole range of compositions at a specific tempera-

ture and zero pressure. This calculation involves the use of MD simulations and the

Semi-Grand-Canonical technique [86, 87]. Based on this technique, at fixed tem-

perature, pressure, total number of atoms and composition the chemical potential

di↵erence between the species, �µ(xSi, T ) = µAl � µSi, is calculated. For calcula-

tions of �µ(xSi, T ), we carried out a series of virtual switches in the species type of

a randomly selected Si atom to Al. The switch results in a change in the potential

energy of the system and after a large number of switches, and assuring that the

change in the potential energy �USi!Al and average of the corresponding Boltzmann

factor exp
⇣
��U

Si!Al

k
B

T

⌘
is converged, we used the following equation to calculate the

chemical potential di↵erence between Al and Si.

�µ(xSi, T ) = �kBT ln

⌧
NSi

NAl + 1
exp

✓
��USi!Al

kBT

◆�
(2.17)

where kB is the Boltzmann constant, NAl and NSi are the number of Al and Si

atoms and �USi!Al is the potential energy changes due to the virtual switch in

the atom type. Eq.3.9 includes the term �kBT ln
⇣

N
Si

N
Al

+1

⌘
which is the ideal mixing

contribution to the chemical potential and ln
D
exp

⇣
��U

Si!Al

k
B

T

⌘E
is the excess chemical

potential [87].

From the knowledge of �µ at di↵erent compositions and temperatures, the free

energy vs composition can be determined by using the Gibbs-Duhem equation and
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integrating the chemical potential function,

✓
@G

@xSi

◆

P,T

= �µ(xSi, T ) (2.18)

where G is the Gibbs free energy and xSi is the atomic percent of Si atom in the

system. For su�ciently small concentrations the chemical potential di↵erence will

approach negative infinity (for xSi ! 0) or positive infinity (for xSi ! 1). There-

fore, for integration of the Gibbs free energy, we followed the method discussed by

Ramalingam [60] and separated the ideal and excess part of the chemical potential

and fitted eq.3.9 to the following form:

�µ(xSi, T ) = �kBT ln

✓
NSi

NAl + 1

◆
+

nX

i=0

Aix
i
Si (2.19)

where the second term on the right-hand side is a polynomial fit in concentration

with coe�cients Ai.

The Gibbs free energy of the liquid phase was calculated by integrating eq.3.11

as:

G(xSi, T ) = G(xSi = 0, T ) + kBT [xSi ln xSi + xAl ln xAl] +
nX

i=0

Aix
i+1

Si

i+ 1
(2.20)

where G(xSi = 0, T ) is the reference state and is taken as zero for the liquid state. An

important feature of the Al-Si system is a near zero solubility of Al in diamond cubic

Si and a small solubility (about 1.5%) of Si in FCC Al at the eutectic temperature.

Therefore, one of the main assumptions in developing this potential and the one

developed by Dongare et al. [6] is lack of solubility in the solid state. Therefore
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we defined solubility level as one of the target values in developing this potential.

Two 10 ⇥ 10 ⇥ 10 unit cells systems of silicon in the diamond structure and Al in

the FCC structure at 850K was used to verify a low solubility. A random Al/Si

atom was substituted with a Si/Al atom and the change in energy of the system was

calculated. This process repeated for all atoms in the system. The average energy

change represents the enthalpy of mixing in the solid state. Summation of the ideal

free energy and the enthalpy of mixing represents the Gibbs free energy of mixing. It

was found that the energy change on adding a single Al impurity to diamond cubic Si

increases the energy by 1.698eV/atom for the new interatomic potential and therefore

the solubility is essentially zero. For Si added to FCC Al the increase in energy is

0.497eV/atom and the G vs x
Si

curve exhibits a minimum at less than 1%. However,

for the potential developed by Dongare et al. [6], although adding an Al to Si in

diamond cubic structure increases the energy by 2.28eV/atom, which guarantees zero

solubility in solid silicon, adding a Si impurity to Al in the FCC crystal structure

decreases the energy by 0.72eV/atom . Therefore, the solubility of Si in Al in FCC

appears to overestimate the experimental value. In fig. 2.2 variation in free energy on

adding a Si impurity to Al at 850K for the present potential and the one in reference

[6] are compared.

In the results to follow we assumed zero solubility of Si in Al (and vice versa) in

the solid state for the whole range of temperature. Based on this approximation we

constructed the common tangent between the Gibbs free energy of the pure Al and

Si phases and the G� x
Si

curve for the liquid at a given temperature. By repeating

the above procedure at several temperatures, the phase diagram was constructed.
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Figure 2.2: E↵ect of adding a Si atom to Al in the FCC crystal structure at 850K on
the free energy of the system using (a) present potential and (b) potential developed in
reference [6]

The accuracy of a potential in the prediction of properties depends upon the po-

tential parameters which establish the interaction between atoms. Modification of the

AEAM potential refers to changes in those parameters which will optimize the prop-

erties of the Al-Si alloy. To modify this potential, six AEAM parameters describing

the pair and embedding functions were targeted. The chosen parameters were AC ,

BC , �C , RM , C� and Cf . A small change in any of the six parameters will vary all

of the resulting material properties of the AEAM Al-Si. The properties chosen to

be evaluated where enthalpy of mixing in the liquid state for the Al� 50%Si and

Al� 40%Si systems
�
�Hmix

50%

/�Hmix

40%

�
, eutectic composition

�
CEu

�
, eutectic tempera-

ture
�
TEu

�
and the composition in which �Gmix for solution of Si in FCC Al and Al

in diamond Si is minimum
�
�Gmix

Si!Al

/�Gmix

Al!Si

�
. To assess the property changes a se-

ries of simulations were performed where one parameter is altered by a small amount

(approximately 5%) and the resulting property changes were computed. Changes

in the six materials parameters just described are related to the six target AEAM

parameters by the following six by six matrix:
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2

666666666666664

�TEu

�CEu

��Hmix
50%

��Hmix
40%

��Gmix
Al!Si

��Gmix
Si!Al

3

777777777777775

=

2

666666666666666664

@T
Eu

@A
C

... ... ... ... @T
Eu

@C
f

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

@�Gmix

Si!Al

@A
C

... ... ... ...
@�Gmix

Si!Al

@C
f

3

777777777777777775

2

666666666666664

�AC

�BC

��C

�RM

�C�

�Cf

3

777777777777775

The matrix is then inverted to obtain any desired change in the properties.

2.3 Results

2.3.1 Pure Silicon

To confirm that the modified SW potential proposed here predicts a stable dia-

mond cubic phase at high temperatures, we first observed coexistence of diamond and

wurtzite crystal structures by running a simulation of solidification using the original

SW potential at 1660 K in the NPzT ensemble, under fully periodic boundary con-

ditions. The simulation box size was 5⇥ 5⇥ 18 unit cells with zero pressure in the

direction normal to the liquid-solid interface and the growth direction was (111).

After completion of solidification the system temperature was cooled down to

zero Kelvin to avoid atomic vibrations and allowed for an accurate determination of

the neighbors of a given atom up to the fourth neighbour shell. An analysis of the

local atomic configuration verified that both diamond and wurtzite crystal structures
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existed in the final solid that had crystallized from the liquid. Fig.2.3 shows the

distribution of the two stacking sequences with green(red) lines represents layers of

the wurtzite(diamond cubic) structure. The results indicate that the wurtzite crystal

structure is dominant. However atom planes exhibiting the diamond cubic structure

are formed randomly, too. The results shown in fig.2.3 are in agreement with the

results of Frolov and Asta [69] where simulations were performed at T=1670K (smaller

undercooling) and almost pure wurtzite was observed.
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Figure 2.3: The distribution of two crystal structures forming during MD solidification
of pure Si using the original SW potential. Green lines represent regions exhibiting the
wurtzite crystal structure and the red lines represent the diamond cubic crystal structure.

The crystallization simulation described above was repeated using the modified

SW potential. Fig.2.4 shows the potential energy vs time during the solidification

process. Clearly evident is a series of nearly equal potential energy plateaus separated

by abrupt decreases in energy. The step like pattern is indicative of a crystallization

process characterized by the nucleation, and subsequent rapid spreading, of islands

of the emerging solid. The behaviour seen in fig.2.4 therefore confirms that, as with

the original SW, the (111) interface is facetted.

Analyzing the distance and number of neighbouring atoms shows that diamond

cubic is the stable phase and the results are shown in fig.2.5. The top panel of the

fig.2.5 (a) represents a view along the [1̄10] direction whereas (b) shows a view along

[112̄]. Panel (c) is coloured to illustrate the di↵erent crystal structures formed and it

is clear that diamond cubic is preferred. It should be noted that small wurtzite regions
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Figure 2.4: The potential energy variation during the solidification process using the mod-
ified SW potential.

.

have been detected at the very final stages of crystallization. From the inset however,

it is concluded that the structure is actually a twinned diamond cubic structure.

Table 2.1: Optimal parameters for the modified SW potential and a comparison, where
applicable, with the original SW potential.
potential ✏ A B p q a d c

1

c
2

c
3

D
SW 2.1672 7.0496 0.6022 4 0 1.80 � � � � �

MSW 2.1428 7.3835 0.6140 3.5496 0 1.80 0.0081 5 -1 2.4259 4.5014

Overall, the most satisfactory parameter set for the modified SW is listed in table

2.1 and a comparison with the original SW is provided. The cohesive energy per atom

versus number density (in reduced units) is compared for several crystal structures,

including wurtzite, in fig.2.6.

The minimum of the ground state energy curve for the diamond lattice occurs at

⇢�3 = 0.46 where the length unit, �, was introduced by Stillinger and Weber for com-

putational convenience [37]. From the minimum of the curve the lattice parameter
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Figure 2.5: Atomic arrangement after crystallization using the modified SW potential. a)
The view along the [1̄10] direction. b) The [112̄] direction. Panel (c) is coloured as in fig.2.3
to show the distribution of crystal structures and the inset to (b) shows two twins of the
diamond cubic structure that formed late in the solidification process.

.

corresponds to a = 5.431Å, which is exactly the same as the experimentally deter-

mined value [88]. At this lattice parameter the binding energy per atom in diamond

cubic is 0.0122eV more negative than the wurtzite structure, which is the same as the

value calculated using density functional theory [79]. Fig.2.7 plots the pair potential

part of the interatomic potential as a function of distance for both the original and

modified SW potentials. The inset depicts the very shallow minimum, described by

eq.2.4, added to the modified potential.

In addition to stabilizing the diamond cubic structure, the modified SW form

proposed here exhibits a melting temperature that is as accurate as the original

SW model, within the statistical uncertainties of the simulation. In table 2.2 the

melting point of the modified potential, 1686 K, is compared with the original SW and

experimental value. Also, shown in table 2.2 is a comparison of the elastic constants

predicted by the two Si potentials. Although the C
12

value is overestimated and C
44
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Figure 2.6: Ground state lattice energy (per atom) vs density base on modified Si potential
for di↵erent crystal structures.

is underestimated for both potentials, an improvement in the C
11

value has been

achieved with the modified form.

Table 2.2: Comparison with experiment of the melting temperature and elastic constants
from the Stillinger-Weber and modified Stillinger-Weber. Elastic constants are in units of
(1011 dyn

cm2 ) Simulations temperature is 1K and the experimental results are calculated by
extrapolation of values from [10].

Method Melting Temperature C
11

C
12

C
44

MSW 1686± 10�C 16.47 7.39 5.20
SW 1691± 10�C 14.98 7.47 5.23

Experiment 1686�C 16.7 6.4 8.2

2.3.2 Aluminum-Silicon

Fig.2.8 shows the embedding energy functional vs. density contribution for Al and

Si. The form of the embedding energy term for Si is the same as the one introduced

by Dongare et al. [6].

The embedding energy of Al, which is based on the EAM formulation by Mendelev

[83], is more negative in comparison with embedding energy used by Dongare [6] and,
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!
 (

e
V

)

 

 

0.00813 ev

Figure 2.7: The pair potential vs distance for the modified SW potential (blue) compared
to the original SW (red) . The inset shows a magnified portion of the modified potential
in the vicinity of the distance of the third neighbour in the diamond cubic structure. The
pair potential contribution is zero beyond a cuto↵ of r = 3.77Å.

the density contribution corresponding to the minimum embedded energy is skewed to

higher values of density. Fig.2.9 shows the two body terms and partial electron density

contribution terms for the pure and cross interactions. As was mentioned above, we

applied modifications to both pair interaction term and partial electron density. The

pair potential for the Al-Si cross interaction is less negative in comparison with the

one proposed by Dongare et al. [6]. The values of the constants which yield the

optimized Al-Si potential are given in table 2.3.

Table 2.3: Constants of Al-Si potential
Parameter Value Parameter Value
AC(eV) 2.4 R�1(Å) 1.65
BC(eV) 4.17 R�2(Å) 2.6
↵C -0.555 fAl

e 1
�C -0.555 fSi

e 1
�C(Å) 2.2 �Al!Si

C 0.86
RM(Å) 4.28 �Si!Si

C 0.86
PC 4 Cf 0.11
QC 0 Rf1(Å) 2.45
C� 0.18 Rf2(Å) 3.5
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Figure 2.9: a) The pair potentials and b) Partial electron density functions for Al-Al, Al-Si
and Si-Si of the modified AEAM potential.

Representative results for the semi-grand canonical technique using MD for deter-

mining �µ vs composition are shown in fig.2.10. The data refers to the liquid phase

and two temperatures, 837 K and 1400 K, are depicted.

In fig.2.11 the enthalpy of mixing vs composition results from the model is com-

pared to the experimental values. It should be stressed, however, that the experi-

mental curve depicted in the figure is an assessment of several experiments [7], but

in fact there is a considerable variation in the experimental values [89]. For example

comparison of the results reported from reference [90] with [91] shows that, using the
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same experimental technique, and only a 4K di↵erence between temperature, �Hmix

is 3.1kJ/mol more negative in reference [91]. Even a positive enthalpy of mixing has

been reported [92, 93]. Therefore, we conclude that the potential, despite predicting

and overestimate of �Hmix by over 1kJ/mol (at x
Si

= 0.5) provides an adequate de-

scription of �Hmix. In addition, similar to experimental observations this potential

predicts a reduction in the enthalpy of mixing and a shift in the minimum to the

Al-rich side with decreasing temperature [7].

It should be emphasized that the main target value of this study has been the

phase diagram of Al-Si in the whole range of composition. Despite the fact that

enthalpy of fusion of Si, calculated by modified SW, is closer to the experimental

measurements, in comparison with the original SW, it is still 0.185eV/atom less than

the experimental values. Therefore, we had to accept a less negative enthalpy of

mixing in order to obtain a more accurate phase diagram.
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Figure 2.10: Chemical potential di↵erence vs composition for the liquid phase determined
using the semi-grand canonical technique. Two temperatures are shown: a) 837K and
b)1400K

.

Fig.2.12 illustrates the common tangent procedure for determining the Al-Si phase

diagram from atomistic simulations. Panel (b) shows the free energy of mixing vs
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Figure 2.11: Comparison between the calculated enthalpy of mixing at 1700K with exper-
imental results [7].

composition, as determined from the integration of the chemical potential functions

of fig.2.10, for the liquid curve at a temperature of 1400 K. Also shown are the free

energy di↵erences between solid and liquid for pure Si and Al. As mentioned above

the solubility in either solid phase is very low. At this high temperature the solid Al

phase is not stable for any composition, whereas a two phase mixture of liquid plus

pure solid Si is found for Si compositions greater than 68 at% Si. The left hand panel

of fig.2.12 shows the common tangent construction at a temperature of 837K. The

common tangent now intersects all three phase and hence 837 K is our best estimate

for the eutectic temperature in the model Al-Si system.

The Al-Si phase diagram computed for the AEAM Al-Si potential is shown in

fig.2.13. Consistent with experiment [11], the model system exhibits a eutectic and

as discussed above, almost complete lack of solubility of the two pure components. In

addition, the experimental value of the eutectic composition is 12.2 at% Si whereas

the new potential predicts a composition of 16.1 at% Si (see fig.2.13). The eutectic

temperature is also in good agreement. Experiment reports a eutectic temperature of

850 K as compared to the 837 K found here. A summary of the experimental vs model

Al-Si eutectic and melting points is provided in table 2.4. Notice the considerable
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.

improvement over the previous AEAM formulation. Because the heat of mixing

behaviour is similar for the current and Dongare et al. potential it can be concluded

that the improvement shown here arises primarily due the more accurate melting

point for pure Al provided by the Mendelev et al. potential.

In order to assess the stability of the diamond structure in presence of Al atoms

in the melt, we ran a simulation at 1570 K for a system with a crystal in the diamond

cubic structure in contact with a liquid of composition Si10%Al. The amount of un-

dercooling is small so the e↵ect of kinetics on formation of new phase is minimized.

The results are shown in fig. 2.14. Since the composition of liquid changes during

the simulation, the driving force of the transformation decreases and solidification

stops after formation of a few layers of solid. Based on these results we can con-

clude that the diamond crystal structure has stabilized using the present potential

while a wurtzite crystal structure is still dominant using the previous potential. The

very good agreement with the experimental results suggests that the new potential

function should be a reliable one for studying solidification and related phenomenon,
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such as nucleation, interface properties etc, in the entire range of compositions and

temperatures.
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Figure 2.13: Phase diagram of the Al-Si system calculated by the AEAM potential.

Table 2.4: The melting temperatures of the pure components, the eutectic composition and
temperature in the Al-Si system obtained experimentally [11], calculated using the AEAM
potential [6] and the results of this study.

AEAM[6] Experiment[11] Present Study
TAl

M (K) 1100 926 929
TSi

M (K) 1691 1686 1686
TEu(K) 887 850 837
xEu
Si 0.21 0.121 0.161

In the original AEAM study of Al-Si, Dongare et al. compared ground state ener-

gies for L1
2

and B1 structures with those predicted from first principles calculations.

In this work we have chosen not to carry out such a comparison. A more reliable

test of the accuracy of a classical MD interatomic potential is the compound forma-

tion energy, rather than the ground state energy itself, and the ab-inito computed

formation energies have not been reported for these compounds.
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Figure 2.14: Simulation of solidification at T=1570 K. a) Initially the simulation box
contains a crystal in the diamond structure in contact with Al-90%Si liquid. b) newly
formed crystal layers are in diamond crystal structure while c) the wurtzite crystal structure
is dominant (green part) using Al-Si potential from ref. [6]

2.4 Conclusion

A modification was applied to the three body SW Si potential such that the

correct diamond cubic crystal structure was found to form at high temperatures.

Recent simulations have shown that the wurtzite structure forms at temperatures in

the vicinity of the melting point and thus the modified SW represents an important

improvement for atomistic simulations of crystallization processes. In addition the

modified SW predicts a more accurate melting temperature and elastic constants.

A potential for the Al-Si binary system was developed using the Angular-EAM

method where the potential for pure Al was taken from the work of Mendelev et al.

and the modified SW potential was used to describe pure Si. The new Al-Si model

predicts a phase diagram in very good agreement with experiment. The eutectic

temperature is within 13K of experiment and the eutectic composition agrees to
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within 4 at% Si.
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Chapter 3

Atomistic simulation of the step

mobility at the Al-Si(111)

crystal-melt interface using

molecular dynamics

Molecular dynamics simulations and an angular Embedded Atom Method descrip-

tion of interatomic forces have been utilized to compute the mobility of steps on the

facetted (111) crystal-melt interface in the binary alloy Al-Si. Two systems were

studied: an Al-90%Si alloy in the temperature range of 1560-1580 K and Al-60%Si

at T=1190-1220 K. It was determined that the higher Si content alloy exhibited at-

tachment controlled growth of steps whereas for the lower temperature, higher Al

concentration alloy step growth is characterized by a di↵usion controlled or mixed

mode mechanism. The step mobility, which is the proportionality constant between
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the velocity and driving force, was determined for the Al-90%Si alloy as a function

of temperature and composition. It was found that mobility decreases fairly rapidly

with the additional of Al solute. Also, from the variation with temperature, it appears

the mobility is proportional to the interdi↵usion coe�cient in the liquid.

3.1 Introduction

In the quantitative morphological modelling of solidification, one of the crucial

materials parameters is the mobility of interface crystalline. Theories of interface

motion in crystal growth classify the rate controlling parameter according to two

systems: di↵usion-controlled, and/or interface-controlled. In the case of a di↵usion-

controlled system, solute transfer to the surface may be limited by mass transfer or

di↵usion through the bulk solution. For such systems many analytical solutions are

available [94, 95, 96, 97, 98, 99]. However, in the case of an interface-controlled system,

some rate-controlling events occur on the surface which control the mobility of the

interface during solidification [100, 101, 102], and thus it is essential to investigate

di↵erent properties of crystal-melt interfaces. Predictions of the so-called microscopic

solvability theory of dendritic growth shows that the anisotropy of interfacial free

energies and kinetic coe�cients has a significant e↵ect on growth velocity and dendrite

tip radius [103, 104].

Despite the importance of the kinetic coe�cient in the modelling of solidification

microstructures, very few experiments have successfully measured this term in metals

and alloys [105]. Most of our knowledge about the physics of crystallization kinetics

has been obtained from molecular dynamics simulations [106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 8] using Lennard-Jones, hard-sphere, repulsive power-law
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and embedded atom method potentials, as well as Stillinger-Weber for pure Silicon.

Of the di↵erent methods, free-solidification is known as the most convenient technique

[111]. In nearly all these studies the interface is rough, and atom attachment to the

growing phase occurs readily at any point on the boundary. Central force Embedded

Atom Method (EAM) [35] potentials have been used extensively in the study of

metallic systems. However, in some systems a crystal will grow with a faceted interface

from its melt, which means atomic attachment occurs at steps which are energetically

favourable. Thermodynamic, structure and kinetic properties of steps at crystal-

vapor interfaces[118] and crystal-melt interfaces[119, 8] have been considered in some

studies.

More specifically for the case of silicon, Landman et. al. [120] observed the for-

mation of {111} faceted planes and short range ordering in the melt close to the

interfaces using MD simulations. In a di↵erent study, Luedtke [121] observed dis-

continuous growth of {111} layers in Si. In a related field of research Jackson [122]

investigated the growth of silicon crystals from the amorphous phase. In addition,

Buta et al. [8] used non equilibrium MD simulations of crystal growth to calculate

the step kinetic coe�cient at crystal melt interfaces, as well as the e↵ect of step

separation on the kinetic coe�cient. In all these studies, the Stillinger-Weber (SW)

potential [37] has been used to approximate the interactions between silicon atoms.

Although a detailed understanding of the properties of solid-liquid interfaces be-

tween chemically dissimilar materials is important for the description of a number of

technologically important phenomena, relatively few fundamental studies have been

carried out on alloying systems [123, 124]. Furthermore, to the knowledge of the

authors, there have been no molecular dynamics study of the kinetic coe�cient for
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a mixed type bonding system, such as a metallic species alloyed with a covalently

bonded element. The main reason for the lack of data in such systems is that the

classical MD interatomic potentials for mixed systems are di�cult to model. How-

ever, in 2009, Dongare et al. [48] developed the angular-EAM (AEAM) interatomic

potential model, which is specifically designed to model alloys of a metal species com-

bined with covalently bonded materials such as silicon. In 2014 Saidi et al. used this

model for the case of Al-Si to develop a potential which reproduces quite accurately

the enthalpy of mixing for di↵erent compositions and ground state energies of the

L12 and B1 structures. Moreover, the predicted phase diagram is very close to the

experimental Al-Si phase diagram. For example, the eutectic concentration for the

liquid agrees with experiment within 4 at% and the eutectic temperature di↵ers from

experiment by just 13 K. Another important feature of this potential is zero solubility

of Si in Al (and vice versa) in the solid state for the whole range of temperature. An

advantage of this potential is that, in contrast to the original Stillinger-Weber (SW)

potential where pure silicon stabilizes in the correct diamond cubic structure, a re-

cent MD simulation of nucleation of solid circular islands on a liquid terrace frolov[69]

showed the formation of the wurtzite crystal structure.

The current work is devoted to the study of the structure and kinetic properties

of steps using an AEAM potential for Al-Si. However, in the first part of this paper

we reproduce the results of Buta et al, [8] for pure silicon to assure that, despite the

modification of SW potential, the satisfying capabilities of the original SW potential

in reproducing silicon properties are preserved. For this purpose, the magnitude of

the step kinetic coe�cient, Mstep, is defined as the proportionality constant between

crystal growth rate and undercooling determines for silicon.
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In the remainder of the paper, we change the composition of the melt in contact

with the silicon crystal. Some important features such as the di↵usivity of compo-

nents in the Al-Si melt and the range of undercooling in which a reaction-controlled

scenario is dominant are investigated. The nonequilibrium MD simulations are em-

ployed to calculate the e↵ect of composition and step separation on the step kinetic

coe�cient from interfaces vicinal to the (111) plane. In this case the driving force of

the transformation is the di↵erence in chemical potential of Si between the solid and

liquid [125], where the chemical potential change due to changes in liquid concentra-

tion in the liquid must be accounted for. At each temperature, the driving force as

a function of composition is calculated using the Semi-Grand-Canonical technique,

whereas the interface velocity during transformation is determined at each composi-

tion. The computed kinetic coe�cients and related results are presented, followed by

a discussion and conclusion.

3.2 Methodology of atomistic simulation

By definition, the step kinetic coe�cient, Mstep, of a crystal-melt interface is the

constant of proportionality between the growth velocity, and the driving force of

the transformation. Driving force for the solidification in pure systems is typically

expressed in terms of the undercooling �T = Tm � T and for alloying systems it is

the di↵erence between the chemical potential at each component from the equilibrium

chemical potential �µ = µEq � µ [126]. The step velocity, then, can be written as:

vstep (T,C) = Mstep�µ (T,C) (3.1)
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where both driving force and velocity are dependent on the temperature and compo-

sition of transformation. Thus, to determined the mobility, the interface velocity and

driving force of solidification should be calculated at each point during the transfor-

mation.

The interactions between the components of this system are approximated by the

angular embedding atom method (AEAM) empirical potential [127]. Morris’ coexis-

tence technique [128, 82] was employed to prepare systems with coexistence of a pure

silicon crystal in contact with a pure or alloying liquid. Since the crystal orientations

are high index directions the size of the the system should be calculated accurately

to avoid very small distances between atoms under periodic boundary conditions. In

order to prepare steps with di↵erent terrace lengths the crystal is rotated around the

[1̄21̄] or [101̄] directions, which results in the formation of steps along the [1̄21̄] and

[101̄], respectively. Table 3.1 shows the list of the vicinal orientations used in this

study.

Table 3.1: Dimensions and orientations of the MD simulation systems. LT is the length
of terraces, Ly is the length of simulation cell in the direction perpendicular to the steps.
L

[111]

is the initial length of the simulation box in the [111] direction, which changes during
solidification. The minimum possible size of the system for the corresponding crystal ori-
entation specified in the column ”Natoms”. In the column ”system” P stands for the pure
system and A stands for an alloying system.

Vicinal plane Step direction LT

�
Å

�
Ly

�
Å

�
L

[111]

�
Å

�
Natoms System

(321) [1̄21̄] 7.8 53.50 122.58 16128 P
(543) [1̄21̄] 15.5 53.50 135.13 16800 P
(765) [1̄21̄] 23.16 53.50 114.52 16220 P-A
(987) [1̄21̄] 30.89 93.14 152.10 65184 P-A
(787) [101̄] 49.04 50.19 104.24 12636 P-A

System preparation starts with the equilibration of pure silicon in the solid state

using an NPT ensemble at the desired temperature T and pressure P = 0. The
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output of this level of simulation is used as the initial condition for the subsequent

step. However, in the case of alloying systems, the type of some atoms changes

to reach the corresponding composition of the liquid in contact with solid silicon

crystal. The melt-solid system is prepared by employing the NAyzPxT ensemble.

This means that the system size is fixed in the y and z directions, and the pressure is

controlled by changes in the x direction, which is perpendicular to the vicinal plane.

The portion of the system that is melted increases to a temperature well above the

melting temperature, then the temperature decreases gradually to the temperature

of interest and is held constant until equilibration is established. Subsequently the

system is quenched and the progress of solidification is captured. The amount of

undercooling is determined with respect to the liquidus line in the phase diagram

of Al-Si, whereas for the pure silicon system it is the melting temperature of silicon

(TM = 1682 ± 1K). Snapshots of the system were saved every 50 ps during this

simulation. The snapshots contained positions of atoms, energies, and stresses, and

were used for post processing.

Based on Eq. 3.1 the interface velocity and the driving force of transformation

should be calculated for all independent snapshots. In the case of a pure silicon

system, the crystal growth rate in the vicinal direction (vvicinal) is proportional to the

rate of energy release,
�
dE
dt

�
, during solidification:

vvicinal =
1

2Ayz�Hm

dE

dt
(3.2)

where �Hm is the latent heat of melting per volume in the silicon diamond crystal

structure and Ayz is the fixed cross sectional area of the simulation box perpendicular

to the crystal/melt interface. According to the geometry of the periodic system there
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are two solid-melt interfaces, and therefore the denominator will carry a factor of 2.

However, in the case of alloying systems, the average velocity of interfaces in the

vicinal direction is calculated from the rate of conversion of silicon atoms from liquid

state to the solid state by passing through the interface
⇣

dNL!S

Si

dt

⌘
[129].

vvicinal =
⌦

2Ayz

✓
dNL!S

Si

dt

◆
(3.3)

where ⌦ is the atomic volume of silicon atoms in the solid state at the corresponding

temperature. Converting
⇣

dNL!S

Si

dt

⌘
using the mass conservation principle for a closed

system, vvicinal can be reformulated as:

vvicinal =
⌦NAl

2Ayz

✓
1

1� C

◆
2

✓
dC

dt

◆
(3.4)

where C is the composition in the liquid
⇣
C =

N l

Si

N l

Si

+N
Al

⌘
, NAl is the number of Alu-

minum atoms in the system and
�
dC
dt

�
is the rate of composition variation in the

liquid. Considering the assumption of complete solute rejection from the silicon crys-

tal, NAl is a constant for each system. However, N l
Si decreases by attachment of Si

atoms to the crystal, thus, the composition decreases until equilibrium is achieved

and solidification stops.

An exponential equation with the form of C = (C
0

� CEq) exp (�Bt) + CEq is

fitted to the liquid C vs solidification time, t, where CEq is the equilibrium melt

concentration at the corresponding temperature, C
0

is the initial liquid composition

and B is a positive fitting parameter. The form of this equation comes from the

knowledge that the C = C
0

at t = 0 and C = CEq at t ! 1. Therefore, the rate

of composition variation would be dC/dt = B (C � CEq), which shows a linear trend
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with respect to �C = C � CEq, which is very useful in simplifying further analysis.

We should point out that the term B, which represents the frequency of atom

attachment from the melt to crystal, is dependant to the geometry of the system.

Therefore, we rescale B in a way to be independent of geometry. These geometry

parameters are i) the length of steps in the system (lstep): steps are sinks of Si atoms

from the melt. The longer the steps, the higher the frequency of attachment. ii)

the length of the liquid region (lliq). The longer the melt region the lower the rate

of composition variation. iii): the cross sectional area of liquid region (Aliq): The

bigger the cross section, the more atoms need to be attached, thus, the lower the

rate of composition variation. Therefore, we define B = � l
step

A
liq

l
liq

= f� where f is the

geometry factor and � is the rescaled attachment frequency term.

Growth velocity along the faceted interface direction v
[111]

and the average velocity

of the step is geometrically related to the vicinal velocity as follows:

v
[111]

=
vvicinal
cos ✓

vstep =
vvicinal
sin ✓

(3.5)

where ✓ is the angle between the vicinal direction and the high symmetric direction,

here [111]. Therefore the final from of the step velocity is:

vstep (C, T ) =
⌦⇢Al⇢step
2 sin ✓

✓
1

1� C

◆
2

� (C � CEq (T )) (3.6)

where ⇢Al =
N

Al

A
liq

l
liq

is the density of Al atoms in the melt and ⇢step = l
step

A
yz

is planar

density of the steps at the interface.

In order to calculate the composition of melt during solidification and capturing

the crystal growth velocity, the state of all atoms in the system are determined using
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the order parameter proposed by Buta [8] for diamond crystal structures. Once the

discriminator values are calculated for each atom, the position of the crystal-melt

interface can be calculated accurately. This criterion is based on the symmetry of the

second neighbour atoms of each individual atom and four first nearest neighbours.

The discrimination function  (i) of atom i defined as:

 (i) =

�����
1

ZNq

X

q
i

ZX

j=1

exp (�iqi · rj)
�����

2

(3.7)

where Z is the number of neighbouring atoms found in a sphere of radius 2.8Å sur-

rounding atom i. rj is the vector from atom i to the immediate Nq = 12 atoms out

of the cut of distance of first nearest neighbours, and qi are the reciprocal lattice vec-

tors in a perfect diamond cubic crystal structure. By design,  (i) = 1 for a perfect

diamond crystal structure and  (i) ⇡ 0 for an atom in a liquid phase. The accuracy

of the discrimination factor is improved by calculating the average order parameter

 ̄ for each atom with the order parameter of the Z nearest neighbours:

 ̄ (i) =
1

Z + 1

 
 (i) +

ZX

j=1

 (j)

!
(3.8)

Based on eq. 3.1 the other term that should be calculated is the driving force of

crystal growth from the melt, which for pure systems is the undercooling. However,

for alloying closed systems, the composition of the liquid changes, thus the driving

force, which depends on composition as well as temperature, varies. The driving force

at any composition is the di↵erence between the chemical potential of the solidifying

component from the equilibrium chemical potential (�µ = µEq � µ).

�µ is calculated using the Gibbs free energy of mixing for the whole range of
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compositions at the temperature of interest and zero pressure. This calculation in-

volves the use of MD simulations and the Semi-Grand-Canonical technique [86, 87].

Details of this method are explained in some studies (read refs. [127, 48]). However,

as a brief explanation, at fixed temperature, pressure, total number of atoms and

composition, the chemical potential di↵erence between species µSi�µAl is calculated.

For calculations of µSi � µAl, a series of virtual switches in the species type of a ran-

domly selected Si atom to Al are carried out. The switch results in a change in the

potential energy of the system and after a large number of switches, ensuring that

the change in potential energy �USi!Al and average of the corresponding Boltzmann

factor exp
⇣
��U

Si!Al

k
B

T

⌘
have converged, the following equation was used to calculate

the chemical potential di↵erence between Al and Si:

µSi(CSi, T )� µAl(CSi, T ) = �kBT ln

⌧
NSi

NAl + 1
exp

✓
��USi!Al

kBT

◆�
(3.9)

where kB is the Boltzmann constant, NAl and NSi are the number of Al and Si

atoms and �USi!Al is the potential energy changes due to the virtual switch in

the atom type. Eq.3.9 includes the term �kBT ln
⇣

N
Si

N
Al

+1

⌘
which is the ideal mixing

contribution to the chemical potential and ln
D
exp

⇣
��U

Si!Al

k
B

T

⌘E
is the excess chemical

potential [87]. It is shown in [127] that the solubility of Si in Al (and vice versa) in

the solid state is zero for the entire range of temperature. Therefore, the semi grand

canonical method was applied only to the liquid system to calculate the Gibbs free

energy of mixing, while for the pure components in solid state chemical potential

was calculated using the Gibbs-Helmholtz equation, which defines a thermodynamic

relation between the enthalpy and free energy of the solid and liquid phases at di↵erent
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temperatures.

From the knowledge of µSi � µAl at di↵erent compositions and temperatures, the

free energy vs composition can be determined by using the Gibbs-Duhem equation

and integrating the chemical potential function,

✓
@G

@CSi

◆

P,T

= µSi(CSi, T )� µAl(CSi, T ) (3.10)

where G is the Gibbs free energy. For su�ciently small concentrations the chemical

potential di↵erence will approach negative infinity (for CSi ! 0) or positive infinity

(for CSi ! 1). Therefore, for integration of the Gibbs free energy, we followed the

method discussed by Ramalingam [60] and separated the ideal and excess part of the

chemical potential and fitted eq.3.9 to the following form:

µSi(CSi, T )� µAl(CSi, T ) = �kBT ln

✓
NSi

NAl + 1

◆
+

nX

i=0

AiC
i
Si (3.11)

where the second term on the right-hand side is a polynomial fit in concentration

with coe�cients Ai.

The Gibbs free energy of the liquid phase was calculated by integrating eq.3.11

as:

G(CSi, T ) = G(CSi = 0, T ) + kBT [CSi lnCSi + CAl lnCAl] +
nX

i=0

AiC
i+1

Si

i+ 1
(3.12)

where G(CSi = 0, T ) is the reference state and is taken as zero for the liquid state.

For determining the form of �µ for fitting the numerical values we use the form

that can be resulted from the ideal binary solution. In this case the variation of
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chemical potential from an initial non-equilibrium to equilibrium composition follows

the form of �µ = kBT [ln (CEq/(1� CEq)� ln (C/(1� C))]. Considering the fact

that the system is not dilute and the range of composition variation is not wide,

after taylor expansion of the logarithms it can be simplifies to the form of �µ =

kBT (C � CEq) /C (1� C). Therefore the driving force is fit to the equation in the

form of

�µ =
SDFkBT (C � CEq)

C (1� C)
(3.13)

where SDF represents the deviation of the solution from the ideal behaviour. Substi-

tuting �µ and eq. 3.6 in eq. 3.1, the mobility of step is:

Mstep =
⌦⇢Al⇢step
2 sin ✓

�

SDFkBT

✓
C

1� C

◆
(3.14)

3.3 Results and discussions

3.3.1 Calculation of driving force

Calculation of the driving force for solidification is one aspect of step mobility cal-

culation. The driving force of step mobility in a pure system is �H
m

�T
T
m

, proportional

to undercooling, whereas for an alloying system is the chemical potential di↵erence

at each composition from the equilibrium chemical potential.

Fig. 3.1 illustrates the free energy of mixing vs composition, as determined from

the integration of the chemical potential functions resulting from the Semi-Grand-

Canonical technique for the liquid curve at a temperature of 1190 K. Based on both

the experimental phase diagram of the Al-Si system and the AEAM potential used

70



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.09

−0.08

−0.07

Silicon fraction

∆
 G

m
ix
 (

eV
/a

to
m

)
c

0
c

Eq µ
Si(c

Eq
)

µ
Si(c

0
)

Figure 3.1: Free energy of mixing vs. composition in the Al-Si system at T=1190 K. The
common tangent construction is indicated for determining the equilibrium composition, and
another dashed line indicates the chemical potential corresponding to the initial composi-
tion. The driving force for transformation is the di↵erence between these two chemical
potentials, which is zero at equilibrium.

in this study [127], the solubility in silicon crystal is almost zero. Therefore, for each

temperature the equilibrium composition is calculated from the common tangent

procedure between the liquid free energy curve and chemical potential of pure silicon

in the solid state. The direction of chemical potential and corresponding composition

variation is determined using the red arrows.

Fig. 3.2 shows the driving force as a function of composition deviation from equilib-

rium at three temperatures of interest. Considering the narrow range of composition

variation, and the fact that the liquid composition is not dilute, �µ can be estimated

with Eq.3.13. For all cases the driving force is zero at equilibrium and is higher

for the higher deviation of composition from the equilibrium. The rate of variation

is larger for higher temperatures. However, based on the phase diagram of Al-Si for

hypo-eutectic compositions, the lower the temperature, the wider the range of allowed

composition variation in the two phase solid-liquid region. As noted in section 4.2 the
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driving force of these systems are fit to the equation of form Eq.3.13. The advantage

of this formulation is that the term (C � CEq) cancels out from two sides of eq. 3.1,

thus, the step kinetic coe�cient will be independent of CEq and �C in eq. 3.14.
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Figure 3.2: Diving force for step mobility vs the deviation of the liquid concentration from
equilibrium. Over the range of temperatures studied the trend is approximately linear

3.3.2 Structure of the interface

The range of initial step separation L changes from 7.8 Å to 49 Å and from 23 Å

to 49 Å for pure and alloying systems, respectively. The longer terrace lengths were

chosen for the alloy system to avoid interaction between steps and to consider the

net e↵ect of the rate controlling parameter in simulations. Fig. 3.3 illustrates three

di↵erent views of the crystal-melt system from a snapshot in the MD simulation. The

vicinal direction is [987] and the step is along [1̄21̄].The solid silicon particles (blue)

in contact with Si (yellow) and Al (red) in the melt. Panel (a) depicts a large scale

view of the system, whereas panel (b) shows an individual layer where the rough step

separating the crystal and liquid can be clearly seen. Fig. 3.3 (c) is a cross section

of the system showing only the crystalline atoms and the array of steps along the
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interface is indicated by the red line. The sequence of silicon planes in the crystal

is (A AB BC CA) and the bilayer nature of the steps is observable in all simulation

systems.

!
!
!
!
!
! !

(a) (b) 

(c) 

[111] 

Figure 3.3: a) The coexistence of crystal and melt in the Al-Si system. The vicinal direction
is [987] and the step is along [1̄21̄]. Atoms are coloured based on their type and state. Blue
for Si in solid, yellow for silicon in liquid and red for Al atoms. b) An individual bilayer
step with a rough crystal-melt interface. c) Cross section of the system showing only atoms
in solid state.

3.3.3 Interaction of crystal/melt, solute trapping and inter-

di↵usion coe�cient

Before calculating the step kinetic coe�cient, it is helpful to understand the struc-

ture of an equilibrium interaction and the interaction of aluminum atoms with a silicon

crystal. In order to assess the interaction of the diamond cubic structure and the liq-

uid in the presence of Al atoms in the melt, a simulation was run with a system size
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of 10⇥ 5⇥ 5 unit cells, with a faceted (111) silicon crystal interface in contact with

liquid of composition Al-90at.%Si, equilibrated at 1570 K. The amount of undercool-

ing is small so the driving force is not high enough to overcome the nucleation energy

barrier for crystallization in the time frame of the simulation.
!
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Figure 3.4: Concentration profile at the crystal-melt interface for coexistence of the (111)
silicon crystal with a liquid of composition Al-90at.%Si equilibrated at 1570 K. The range
of repulsive interaction is shown by arrows in front of the silicon layers.

The concentration profile of 128 snapshots were averaged for time intervals of 100

ps and the results are shown in Fig. 3.4. A region of Al atom depletion is observed at

both solidification fronts, which represents a repulsive interaction between the silicon

crystal and Al atoms. The range of repulsive interaction is about 4Å, which is greater

than the first nearest neighbour distance but less than the second nearest.

When choosing an appropriate driving force to apply during the MD simulations

it is tempting to choose a large driving force since the total time of the simulation

will be relatively short. However, at large driving forces a complicating factor is the

observation of solute trapping (see for example [124]). It has been observed that

by increasing the transformation driving force and deviation from the equilibrium

condition, the concentration of the Al in silicon in the solid state increases. Fig. 3.5,
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shows a system of (321)silicon/Al-90at.%Si melt at 1350K using an undercooling of

�T = 240K. The top figure is the initial configuration and the bottom panel shows

the same system after 64ps. At this high undercooling the system shows a very fast

progress of solidification and a substantial level of solute trapping. In the results to

follow the driving force was chosen to be su�ciently small such that solute trapping

was avoided. !

(a)$

(b)$

Figure 3.5: Solute trapping e↵ect for a (321)silicon/Al-90at.%Si melt at 1350K.

The other e↵ect of increasing the undercooling is that the driving force of transfor-

mation increases whereas the di↵usion rate decreases. Therefore, gradually a transi-

tion from reaction-controlled to di↵usion-controlled systems occurs. There is a specific

undercooling beyond which the transition will be di↵usion-controlled. However, one

of the main assumptions of reaction-controlled transformations is that the undercool-

ing is small enough so that there is no composition gradient in the melt, thus, the

transformation is not controlled by di↵usion of solute atoms in the melt.
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For a more comprehensive understanding of the dominant mechanism of transfor-

mation, the interdi↵usion coe�cient in the liquid was calculated for four alloying sys-

tems Al-90at.%Si, Al-80at.%Si, Al-70at.%Si and Al-60at.%Si. Simulation systems of

the size 10⇥ 10⇥ 10 unit cells were equilibrated at the temperature of interest using

the NPT ensemble. The mean-squared displacement of similar atoms were summed

and averaged, where all e↵ects due to atoms passing through periodic boundaries was

included and the e↵ect of any drift in the centre-of-mass of atoms was subtracted out

before the displacement of each atom was calculated. The link between the mean

square displacement (R2

n) and the di↵usion coe�cient of individual species is well es-

tablished ([130]) as R2

n = qDt, where Rn is the mean distance from the starting point

that an atom will have di↵used in time, t and q is a numerical constant depending

on a dimensionality equal to 6 for three dimensional di↵usion. The interdi↵usion

coe�cient, D̂, is then calculated using D̂ = XAlDSi+XSiDAl where XAl and XSi are

the mole fraction of Al and Si.

5 6 7

x 10
−4

−18.6

−18.4

−18.2

−18

−17.8

1/T (K−1)

Ln
 D

 (
m

2 s−
1 )

 

 

Al−90%Si
Al−80%Si
Al−70%Si
Al−60%Si

Figure 3.6: Natural logarithm of di↵usion coe�cient vs inverse of temperature for Al-
90at.%Si (1560K  T  1860K) and Al-60at.%Si (1410K  T  1710K) in the liquid state.
At a constant temperature the di↵usivity is higher for compositions where the atom is more
likely to be surrounded with dissimilar atoms.
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The di↵usion coe�cient was calculated at three di↵erent temperatures over a

range of 300 K starting from 1560K, 1510K, 1460K and 1410K for Al-90at.%Si, Al-

80at.%Si, Al-70at.%Si and Al-60at.%Si, respectively. The results are presented in

Fig. 3.6. As expected, the natural logarithm of the di↵usion coe�cient shows a linear

trend with respect to inverse of temperature. In all cases the di↵usivity of Al in the

Al-Si melt is faster than Si. However, the di↵erence between the di↵usion coe�cient

of two components is the most for Al-90at.%Si and it is the least for Al-60at.%Si. In

addition, at a specific temperature, the di↵usivity increases by increasing the amount

of aluminum atoms in the system. In other words, the higher the probability of

coordination by a dissimilar atom, the higher the di↵usivity of the atom in the liquid.

For the Arrhenius-type equation D̂Al�Si = D
0

exp
�� Q

RT

�
the values of D

0

and Q
R
are

reported in table 3.2.

Table 3.2: Activation energy and di↵usion constant results from gradient and intercept of
ln D̂ vs 1/T graph.

Composition Al� 90at.%Si Al� 80at.%Si Al� 70at.%Si Al� 60at.%Si

D
0

(m2s�1) 1.38⇥ 10�7 1.06⇥ 10�7 1.16⇥ 10�7 1.27⇥ 10�7

Q/R(K) 4316.6 3633.8 3592.1 3572.7

3.3.4 Mobility of Pure Silicon

As mentioned in the introduction the interatomic potential used in this study

involves a slight modification of the pure Si SW potential. Therefore, to check if the

modification produces a significant change in the step mobility we have repeated the

step mobility computation for pure Si. Fig. 3.7 illustrates the variation of potential

energy vs solidification time for five di↵erent step separations. Although deviation

from linearity is observable in some cases, the trend of variation is mostly linear.

77



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

Therefore, for a specific undercooling the rate of energy release is the highest and

lowest for the [321] and [787] vicinal directions, respectively.
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Figure 3.7: Potential energy during crystal growth for MD simulations of pure Si. Re-
sults for all 5 systems, which correspond to di↵ering step separations, are shown and the
undercooling used is 22 K.

Using the slope of line fitted to the graphs in Fig.3.7 and eq.3.5, the crystal growth

rate in the high symmetry direction, here [111], is plotted in Fig. 3.8. A clear linear

dependance of the growth rate on undercooling for �T < 32 K is observable and the

kinetic coe�cient can be determined from the slope. The results for all simulations

are summarized in Fig. 3.9, which is a plot of the step kinetic coe�cient vs. the

step separation. The results are compared with those reported by Buta [8], using the

original SW and it is clear that the modified Si potential is in excellent agreement

with the original SW formulation.

3.3.5 Mobility of steps in Al-90at.%Si

Al-90at.%Si is the first set alloying system beyond the pure silicon system we

considered to study the e↵ect of composition on the mobility of the steps on the
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Figure 3.8: Solidification rates in the [111] direction for 5 solid-melt interfaces and for 12,
22 and 32 K undercoolings.

reaction controlled scenario. Fig. 3.10 shows the non-linear potential energy variation

during solidification for a system including silicon crystal with a vicinal interface in

contact with melt of initial composition Al-90at.%Si. Release of energy is fastest at

the beginning of the transformation and converges to a specific value which is dictated

by the undercooling applied to the system.

Based on eq. 3.6 the final step velocity equation is a function of composition.

Composition variation during transformation is shown in Fig. 3.11 where again the

results correspond to (787) Si-Al with initial melt composition of Al-90at.%Si 1. The

composition variation follows a nonlinear trend and, depending on the amount of

undercooling applied to the system, the composition in the melt converges to the

corresponding equilibrium composition. Since there exists local fluctuations in the

composition over short time intervals we are unable to determine the instaneous

variation in composition. Therefore, as explained in the previous section, the results

are fit to an exponential function of the form C = (C
0

� CEq) exp (�f�t)+CEq where

1Since the composition is determined by a random number generation algorithm implemented on
the molecular dynamics code, the initial composition might deviate from the target value.
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Figure 3.9: Step kinetic coe�cient vs average terrace length for 5 vicinal orientations. The
results are compared with the results of Buta et al. [8].

f = l
step

A
liq

l
liq

is the geometry factor and the values of CEq and C
0

are determined by

the phase diagram and are reflected in the graph directly. An alternative method

for calculating the equilibrium composition beside the composition that the curves in

Fig. 3.11 are converging to, is using SGC method. As it was explained in section 3.3.1,

the equilibrium composition was calculated from the common tangent between the

free energy curve of melt and chemical potential of solid at the temperature of interest.

The results of both techniques are very close to each other. The fitting parameter

�, which represents the rate of composition variation with time, is determined for

each case, as well as the composition di↵erence from the equilibrium composition,

(C � CEq(T )).

Using eqs. 3.4 and 3.5 the growth velocity along the high symmetry direction,[111],

as a function of composition deviation from equilibrium for Al-90at.%Si alloy at

1572K, is presented in Fig. 3.12. The velocity converges to zero as composition

in the liquid side of the interface reaches equilibrium. As expected, the velocity in

[111] direction depends on the step separation and decreases by increasing the terrace
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Figure 3.10: Total potential energy vs. time for an Al-Si alloy with initial liquid concen-
tration of Al-90at.%Si. The vicinal interface is (787) and three di↵erent temperatures are
shown.

length. This pattern was observed all undercoolings.

The velocity of the steps as a function of composition deviation from equilibrium is

calculated using eq.3.6 at three di↵erent temperatures and three solid-melt interfaces.

The results are shown in Figs. 3.13. It was observed that at a specific composition

and temperature, the calculated vstep for di↵erent vicinal directions are very close to

each other. In addition, there is no consistency in the order of the curves depicted in

the three graphs of Fig. 3.13.

Considering these results it was concluded that for this alloying system, the min-

imum step separation is large enough to avoid the interaction between steps, thus,

the assumption was made that the step velocity is independent of solid-melt inter-

face direction in the range of step separation of this study. Therefore, the averaged

step velocities over di↵erent interface orientations vs �C is calculated for mobility

calculations. The step velocity is maximized at the initial composition and decreases

while silicon atoms attach to the crystal. The molecular dynamic system is closed,
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Figure 3.11: Melt composition variation during solidification for the (787) vicinal direction
for three undercoolings in the Al-90%Si alloy. An exponential decay, dashed lines, is fitted
to the results.

therefore, the composition in the liquid becomes more rich with Al atoms by progress

of solidification. Thus, the composition variation in the melt results in a gradual

decrease in the step velocity until solidification ceases at equilibrium composition.

Deviation of initial composition from the equilibrium composition (�C) depends on

the temperature of transformation or the amount of undercooling. Thus, as it is ob-

served in the graph for a certain initial composition, the range of �C is wider at lower

temperatures. The summary of the constants related to the velocity, the driving force

constant , averaged for all orientations and corresponding temperatures are tabulated

in table 3.3.

The main results of this study are the kinetic coe�cient of steps shown in Fig. 3.14

for Al-90at.%Si. Both the crystal growth rate and driving force are decreasing as the

melt composition approaches equilibrium. However, for an isothermal curve, variation

of melt composition a↵ects the rate of velocity more than driving force, thus, the

mobility of steps decreases gradually. The variation of mobility with respect to Al

concentration is fairly strong, for instance, for a 3% change in composition during
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Figure 3.12: Crystal growth rates in the [111] direction vs composition deviation from
equilibrium, at three solid-melt interfaces and for systems with initial liquid composition
Al-90at.%Si.
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Figure 3.13: Step velocity vs composition deviation from equilibrium, for three solid-melt
interfaces and three undercoolings. The initial liquid composition Al-90at.%Si.

solidification, mobility decreases 25%. Influence of composition on the mobility is

more significant at more Si-rich composition.This dependency on composition can

explain why mobility in the alloying system is one order of magnitude smaller than

pure case.

The other parameter which a↵ects the mobility of the system is temperature of

transformation. For a similar deviation of composition from equilibrium, the mobility

of steps increases with increasing temperature. There are several analytical models
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Table 3.3: Driving force and average velocity parameters for the Al-90at.%Si alloy at
temperatures of the simulated systems. Velocities are calculated from the composition
equation with the form of C = A exp (�f�t) + C

Sim
Eq where constant A is equivalent to

C

0

� CEq, f is the geometry factor and C

Sim
Eq is the equilibrium composition results from

simulations. D̂ is the interdi↵usion coe�cient at the corresponding temperature and initial
composition.

T (K) A⇥ 10�2

� ⇥ 10�9

⇣
m2

s

⌘
C

Sim
Eq ⇥ 10�2

SDF D̂ ⇥ 10�9

⇣
m2

s

⌘

1560 4.5 13.3 85.7 1.110 8.70
1572 2.8 13.7 87.1 1.119 8.90
1580 1.8 14.0 88.0 1.125 9.02
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Figure 3.14: Kinetic coe�cients for steps at initial melt compositions Al-90at.%Si at three
di↵erent undercoolings.

[106, 111, 115]. for the crystal/melt interface migration suggesting that the kinetic

coe�cient is a function of temperature and, more specifically, the di↵usion coe�cient

[131, 132]. Based on the results in table 3.3 the terms � and SDF are tempera-

ture dependent and can reflect the e↵ect of temperature. Constant � represents the

frequency of atom attachment to the interface from the melt to the crystal at the

interface. It has the same units as the interdi↵usion coe�cient. The trend of � with

temperature is the same as the di↵usion coe�cient for Al-90at.%Si. If we fit � to

an Arrhenius-type equation � = �
0

exp
⇣
�Q

�

RT

⌘
we find Q�/R = 6360K. This value
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is higher than the Q/R = 4316K results from the interdi↵usion coe�cient for Al-

90at.%Si but of the same order of magnitude. Thus, we tentatively conclude that the

solid-liquid interface mobility in the case of an alloy also depends on the di↵usivity

in the liquid.
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Figure 3.15: Composition profile in the liquid side of the crystal/melt interface for a Al-
90at.%Si alloy. The bin spacing used in the averaging procedure corresponds to 3.5Å.

The mobility results quoted above assume that the growth is reaction controlled

and it is important to validate this assumption. The first piece of evidence is the

observation that the interface velocity is independent of the step spacing (for large

enough spacings). In a purely di↵usion controlled growth mechanism it is know that

the velocity will depend on terrace length [99]. To further justify the assumption

of reaction control, the composition profile in the melt side of the interface was de-

termined. The average composition profile regardless of interface fluctuations does

not capture the exact composition profile. Therefore, the crystal/melt interface is

descretized within the y � z plane and the position of the interface is determined for

each small portion. This procedure is done for both interfaces. In the next timestep

the position of the discretized interface is shifted so that the interface has the same

85



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

position for all slices. Finally, the concentration profile is averaged over all descritized

regions. In addition, the composition profiles are averaged over the snapshots from

initial composition until it reaches to (C
0

� CEq) /2. Results are presented in Fig.

3.15. The width of each bin is 3.5Å and by increase of bin number the distance from

the interface increases.

The concentration of aluminum in each bin is normalized by the average concentra-

tion of Al at the corresponding composition. Therefore, for a complete homogeneous

distribution of atoms in the melt, CAl/CAl
ave is equal to unity. For the case that there

is accumulation of Al atoms this ratio will be more than one. As Fig. 3.4 suggests,

the normal interaction between Si crystal with the melt results in a depletion of melt

from Al atoms at the interface. Using the method explained above in Fig. 3.15 a con-

centration profile is plotted for Al-90at.%Si and as can be seen a slight increase in the

Al concentration is observed at the interface. Nevertheless the percentage increase in

CAl is relatively small (see below) and the absolute Al composition at the interface

remains low. The di↵erence between Q�/R and activation energy of interdi↵usion

can be explained using this small deviation of composition at the interface.

3.3.6 Mobility of steps in Al-60at.%Si

The second set of alloying system we have studied is Al-60at.%Si. Similar to Al-

90at.%Si, the variation of potential energy as well as composition of melt is non-linear

during solidification. Figs. 3.16 illustrates the velocity of the steps as a function of

composition deviation from equilibrium for Al-60at.%Si at three di↵erent temper-

atures and for three solid-melt interfaces. In contrast with the Al-90at.%Si alloy

independence of vstep and terrace length can not be concluded and it is observed that
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step velocity increases with an increase of step separation. This observation suggests

that the lower temperature and composition simulations are characterized by di↵usion

controlled growth.
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Figure 3.16: Step velocity vs composition deviation from equilibrium, at three solid-melt
interfaces and three undercoolings. The initial liquid composition is Al-60at.%Si.

The constants related to the velocity and driving force calculations for Al-60at.%Si

are summarized in table 3.4.

Table 3.4: Driving force and average velocity parameters for Al-60at.%Si alloy at orien-
tations and temperatures of the simulated systems. The constants are the same as table
3.3.

Orientation T (K) A⇥ 10�2

� ⇥ 10�9

⇣
m2

s

⌘
C

Sim
Eq ⇥ 10�2

SDF D̂ ⇥ 10�9

⇣
m2

s

⌘

(787) 1190 4.8 7.6 55.2 1.06 6.26
(787) 1205 4.2 11.4 56.3 1.07 6.51
(787) 1220 1.8 13.2 57.8 1.08 6.75
(987) 1190 4.7 7.2 55.9 1.06 6.26
(987) 1205 3.9 11.2 57.0 1.07 6.51
(987) 1220 1.8 13.1 57.7 1.08 6.75
(765) 1190 5.2 7.0 55.0 1.06 6.26
(765) 1205 4.1 10.9 56.6 1.07 6.51
(765) 1220 2.2 12.7 57.3 1.08 6.75

Based on these the term �, which represents the frequency of atom attachment

to the crystal, increases by increasing the temperature, as well as step separation.

However, the rate of variation of the constant � with temperature is much faster
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than the variation of interdi↵usion coe�cient. In other words if we fit the � values

to an Arrhenius-type equation, related activation energy is one order of magnitude

higher than the activation energy of interdi↵usion coe�cient. This also suggests

that the change of temperature has influenced the mechanism of transformation. In

addition, as was shown In a previous study [99] for di↵usion-controlled crystal growth,

the solidification velocity depends significantly on the step separation and consistent

with the results found here the velocity increases with increasing step separation.
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Figure 3.17: Composition profile in the liquid side on crystal/melt interface for Al-60at.%Si.

Using the same approach explained in section 3.3.5 composition profile at the

melt side of the interface calculated which illustrated in fig. 3.17. It is observed

that for Al-60at.%Si, the concentration of Al atoms at the interface is much higher

than average and more pronounce than the Al-90%Si alloy. It can be concluded that

the dominant mechanism of the transformation is not complete reaction-controlled

growth and it is instead the mixed scenario. This e↵ect is more significant at higher

undercoolings in which the initial driving force of transformation is higher.
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3.4 Conclusion

Molecular dynamics simulations have been proven to be an e↵ective tool for com-

puting the mobility of rough solid-liquid interfaces in both pure metals and alloys and

for obtaining the mobility of steps at facetted crystal-melt interfaces in the case of

pure Si. In this work we have extended the use of MD to determine the step mobility

for the case of a facetted interface in an alloy system. In the two compositions and

temperature ranges studied we have determined that the lower temperature, higher

Al content Al-Si alloy exhibits di↵usion or mixed controlled growth of the steps on the

(111) interface. Therefore, we have determined the mobility at lower concentrations

of Al and at higher temperatures. We find that the mobility decreases fairly rapidly

with increasing Al content and the mobility follows the same trend with temperature

as the interdi↵uion coe�cient in the liquid. Finally, the mobility for Al-90%Si in the

range T=1560-1580 K is roughly an order of magnitude less than that computed for

pure Si.
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Chapter 4

Atomistic computation of step free

energy in Al-Si

Molecular-dynamics simulations using interatomic potentials of the angular em-

bedded atom method have been performed on Al-Si to compute step free energy which

is necessary for continuum modeling of dendritic solidification. The solid-liquid step

free energy was obtained by monitoring equilibrium fluctuations in the interface posi-

tion for Al�87.4at.%Si and Al�59.4at.%Si at two step orientations. No anisotropy

was observed for these two alloying systems. For the case of Al� 30at.%Si the capil-

lary fluctuation method could not capture the step free energy due to smoothness of

the steps.

4.1 Introduction

Mechanical properties of casting and welding products depend significantly on

the dendritic microstructure and morphology. Interface motion of crystal-melt is
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a key process in microstructural evolution, and therefore the thermodynamics and

kinetics of interface are of both fundamental and practical importance. As microscopic

solvability theory of dendrite growth predicts [104, 103], a dendrite tip radius and

growth velocity are sensitive functions of the anisotropy in the crystal-melt interfacial

free energy, �, as well as the kinetic coe�cient. The crystal-melt interfacial free

energy, defined as the reversible work required to form a unit area of interface between

a crystal and a coexisting fluid, has been the subject of many studies for rough

interfaces.

Direct experimental measurements of crystal-melt free energy are quite di�cult

and relatively few in number[133]. They typically involve contact angle studies and,

with the exception of a small number of studies on transparent organic materials[134,

135], are not precise enough to capture anisotropy. This inherent di�culty associ-

ated with direct experimental measurements motivated the development of a variety

of novel computational methods to determine � via molecular simulation. These

methods include ab initio method, [136], classical nucleation theory based models

[137], free energy integration method [138, 139], cleaving wall molecular dynamics

simulation method [140, 141, 142] and analysis of equilibrium capillary fluctuations

in interfacial position for complicated molecules[143], grain boundaries [144] pure

metals[145, 146, 147, 117, 114, 148], binary [149, 150, 151, 152] and ternary [153]

alloying systems.

In classification of interfaces, beside the rough interface, where atom attachment

to the growing phase occurs readily at any point on the boundary, faceted interfaces

form some energetically favourable sites for adatoms. These smooth interfaces are

identified by the presence of immobile terraces separated by steps of roughly atomic
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height. This kind of system has addressed in a very few studies [8, 69]. In these

studies, Buta et al. [8] used non equilibrium MD simulations of crystal growth to

calculate the step kinetic coe�cient at crystal melt interfaces, as well as the e↵ect

of step separation on the kinetic coe�cient and Frolov and Asta [69] used classical

nucleation theory based model for two dimensional nucleation of silicon liquid pools to

calculate the step free energies ,�
step

at faceted crystal-melt interfaces from equilibrium

MD simulations. In both of these studies, the Stillinger-Webr (SW) [37] potential has

been used to approximate the interactions between silicon atoms. However, Frolov

and Asta [69] observed that SW Si potential solidifies in wurtzite crystal structure,

rather than the diamond cubic structure. They predicted that it might be due to

the lower step free energy of wurtzite crystal structure compare to the diamond

cubic crystal structure. Beaucage and Mousseau [66] had been reported formation of

random mixture of stacking sequences of silicon layers using SW as well. In order to

solve this problem Saidi et al. [127] extended the cut o↵ distance of pair interaction

in original SW up to the second nearest neighbour and stabilized the diamond crystal

structure in compete with wurtzite crystal structure.

Systems that include chemically dissimilar components are another class of sys-

tems that despite their technologically importance, in relatively few fundamental

studies have been considered [123, 124]. This gap of investigation is more significant

for a mixed type bonding alloying systems. The main reason is the lack of a reliable

model to include all types of interactions in such a system as well as an authentic

interatomic potentials. in 2009, Dongare et al. [48] developed the angular-EAM

(AEAM) interatomic potential model, which is specifically designed to model alloys

of a metal species combined with covalently bonded materials such as silicon. Using
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this model, Saidi et al. [127] developed a potential for the case of Al-Si, which repro-

duces quite accurately the phased diagram with almost zero solubility of components

into each other in solid state, which is an important feature of this alloying system.

Using this potential they predicted the kinetic coe�cient of silicon steps [99].

In the present study we employ equilibrium molecular dynamics (MD) simulations,

AEAM based Al-Si potential and the capillary-fluctuations method (CFM) to calcu-

late crystal-melt step free energies at three di↵erent melt compositions. Anisotropy

of steps investigates by setting up the systems with di↵erent crystal orientations of

steps on the high-symmetry interface plane, (111) in this case. Using these results,

will discuss the range of composition and temperature that level of crystallinity and

fluctuations of steps is not in the range to use CFM to calculate the step free energy.

4.2 Methodology of atomistic simulation

In the CFM, step free energies are derived through an analysis of equilibrium step-

height fluctuations obtained from MD simulations for coexisting crystal-melt system

that includes an active step. This method is based on the relationship between the

static height-fluctuation spectrum of a rough step and its e↵ective Hamiltonian [154].

⌦|A (k
n

)|2↵ = k
B

T
Eq

l
step

�
�
step

+ �00
step

�
k2

n

(4.1)

where A (k
n

) is the Fourier amplitude of the step height fluctuation with wave num-

ber k
n

= 2⇡n
lstep

where n = �N/2 + 1,�N/2, . . . ,�1, 0, 1, . . . , N/2 , k
B

is Boltzmann

constant, T
Eq

is the equilibrium temperature of coexistence of crystal and melt at

the composition of interest and l
step

is the length of the fluctuating step. The term
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�
�
step

+ �00
step

�
corresponds to the step sti↵ness, where �00

step

is the second derivative of

step e↵ective Hamiltonian as a function of the angle between the instantaneous and

average step normal.

Equation 4.1 is derived starting from an e↵ective Hamiltonian for the step and

by applying equipartition of energy. strictly speaking it does not include entropic

contributions to the true step free energy. This subtle point has been discussed in

previous studies (Fisher). recently, Freitas et al have derived a correction to the

CFM formulation that captures the true step free energy. Assuming lack of crystal

orientation dependancy (isotropy) for the step, the authors calculated the step free

energy per unit length as

�Modified

step

= �
step

2

41 +
✓

kBTEq

�
step

l
step

◆ n=(N�1)/2X

n=1

ln

"✓
�
step

l
step

⇡kBTEq

◆✓
2⇡n

N

◆
2

#3

5 (4.2)

In the subsequent section we will present results for the step energy using both eqs.

4.1 and 4.2

In this study the interactions between the components of the Al-Si system are

approximated by the (AEAM) empirical potential developed by Saidi et al[127]. In

order to prepare systems with an active step at coexistence of a pure silicon crystal in

contact with an alloying liquid, a non-orthogonal box is considered which is periodic

in three dimensions. A non-orthogonal coordinate system allows us to prepare the

system in such a way that the component of stress in the step plane remains zero and

thus does not a↵ect the fluctuation of the step. Fig. 4.1 shows the crystal and melt

and two interfaces, each one including one active step. The xz plane of simulation

box is tilted around the step axes in a way that guarantees a displacement at the
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periodic image is equal to the height of the step (h). System preparation starts with

the equilibration of pure silicon in the solid state using the NPT ensemble at the

desired temperature T and pressure P = 0. After equilibration of the system, the

identity of some atoms, which are meant to be in the liquid state, changes to reach

the corresponding composition of the liquid in contact with solid silicon crystal. The

liquid region develops in a way that two steps form. The output of this level of

simulation is used as the initial condition for the subsequent simulations. In the next

level an NAxzPyT ensemble is employed, which means that the system size is fixed

in the x and z directions, and the pressure is controlled by changes in the y, ([111]),

direction.
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Figure 4.1: Illustration of the geometry of the simulation cells employed in CFM calcula-
tions of the step free energies. Si atoms are colored blue and Al atoms, which appear in the
liquid only, are red.

Table 4.1 shows the list of the systems which were considered in this study. Three

liquid compositions at three temperatures dictated by the phase diagram were se-

lected. For each temperature, steps are designed in two orientations, [1̄10] and [112̄].

The time step of the simulations were 1 fs and snapshots of the systems were saved

every 50 ps during this simulation. 200 snapshots were saves for each system, which

contained positions of atoms, energies, and stresses, and used for post processing.

In order to capture the fluctuations of the step, we need to determine the position
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Table 4.1: Compositions, dimensions, temperature and orientations of the MD simulation
systems. l

step

is the length of the system along the steps, lz is the length of simulation cell
in the direction of the step fluctuations. l

[111]

is the initial length of the simulation box in
the [111] direction perpendicular to the interface plane, which changes during solidification.
The number of the atoms in each system is ”Natoms”. The composition of the liquid and
the temperature of interest are chosen based on the Al-Si phase diagram for the AEAM
potential.
Composition Step direction l

step

�
Å

�
lz

�
Å

�
l

[111]

�
Å

�
Natoms Temperature (K)

Al-87.4at.%Si [1̄10] 92.65 142.66 113.48 73704 1570
Al-87.4at.%Si [112̄] 133.74 92.65 113.48 69120 1570
Al-59.4at.%Si [1̄10] 92.65 142.66 113.48 73704 1230
Al-59.4at.%Si [112̄] 133.74 92.65 113.48 69120 1230
Al-30at.%Si [1̄10] 92.65 142.66 113.48 73704 920
Al-30at.%Si [112̄] 133.74 92.65 113.48 69120 920

of the interface between crystal and melt. Therefore the state of all atoms in the

system are determined using the order parameter proposed by Buta [8] for diamond

crystal structures. This criterion is based on the symmetry of the second neighbour

atoms of each individual atom and four first nearest neighbours. The discrimination

function  (i) of an atom i defined as [8] :

 (i) =

�����
1

ZNq

X

q
i

ZX

j=1

exp (�iqi · rj)
�����

2

(4.3)

where Z is the number of neighbouring atoms found in a sphere of radius 2.8Å sur-

rounding atom i. rj is the vector from atom i to the immediate Nq = 12 atoms found

within the cut-o↵ distance of first nearest neighbours, and qi are the vectors where we

expect to observe the neighbouring atoms in a perfect diamond cubic crystal struc-

ture. By design,  (i) = 1 for a perfect diamond crystal structure and  (i) ⇡ 0 for

an atom in a liquid phase. The accuracy of the discrimination factor is improved by

calculating the average order parameter  ̄ for each atom with the order parameter

of the Z nearest neighbours. Fig. 4.2 shows the atoms coloured based on their state
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and type. 4.2 (a) is the illustration of a simulation box where a silicon crystal (blue

part) is in contact with the melt on two sides where yellow particles represent silicon

in liquid state and red particles are aluminum. 4.2 (b), (c) and (d) are snapshots

of atomic planes containing individual steps in contact with melt with compositions

Al-30at.%Si, Al-59.4at.%Si and Al-87.4at.%Si respectively.
!

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4.2: a) Results of applying discrimination factor to the atoms of a simulation box.
Blue particles are Si in solid state. Yellow atoms are Si in liquid state and red ones are Al
atoms. (b), (c) and (d) are showing individual steps where the melt includes 30%, 59.4%
and 87.4% silicon, respectively.

Results of the order parameter calculation during fluctuation of steps shows that

small solid islands on the melt side of the interface and puddles of liquid in the

crystalline step are identified. These local regions are not stable for more than 1 ps.

The solid islands remelt very quickly while the liquid puddles solidify. Therefore, in a

subsequent step in the post processing analysis, the bilayer active steps are separated

and the state of these local parts modifies in order to avoid the errors associated to

these local defects in calculation of interface position. Di↵erent steps of this procedure

are depicted in Fig. 4.3.

Fig. 4.3(a) shows the view perpendicular to a step after applying the discrimina-

tion factor to each atom. The domain is divided into discrete counterparts. Discrete
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Figure 4.3: Di↵erent steps of state modification for discretized domain. a) Colouring the
atoms according to their state. b) Discretizing the domain and determining the state of each
counterpart based on the average order parameter of the involved atoms. c) Changing the
state of the liquid puddles according to the state of the neighbouring counterparts in a way
that a continuous solid part without liquid puddles forms. d) Changing the state of the solid
islands according to the state of the neighbouring counterparts so that a continuous liquid
part without solid islands forms. e) Utilizing the continuous parts of last two steps as the
liquid and the solid parts f) Altering the state of the horizontal branches in each column
of counterparts and determining the exact position of the interface in the corresponding
column.

domains are rectangles with the side size of 0.8a and 0.5a along and perpendicular to

the step, respectively, where a is the lattice parameter of silicon in diamond crystal

structures.This size guarantees that there is at least one atom in each domain and

that it is smaller perpendicular to the step direction, which allows a more precise

determination of interface position. As shown in Fig. 4.3(b) the state of each domain

is determined based on the average order parameters of all atoms contained in the

domain. Starting from the solid side of the system (lower left corner of the system),

an ID is assigned to each region and the state of the regions are checked. If it is in
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liquid state but the neighbouring regions with smaller IDs are in solid state, the state

of the respective region is changed to solid. The result of this modification is shown

in Fig. 4.3(c), eliminating liquid puddles within the continuous solid. The algorithm

then assigns new IDs, starting in the top-right corner, and eliminates solid islands

from the continuous liquid region; solid islands are changed based on neighbouring

liquid regions with lower IDs. The results are shown in Fig. 4.3(d). Fig. 4.3(e) shows

the merged output of the algorithm. If there was no state change in b, c, and d then

the state did not change. If liquid became solid from b to c solid was assigned to that

region for part e. Similarly, if solid became liquid from b to d liquid was assigned to

that region for part e. In the final step, each column of domains is descended until

crossing the liquid to solid boundary, establishing the interfacial position. In this way

all horizontal branches are eliminated. The position of the interface mapped from the

original atoms position and atoms state is shown in Fig. 4.3(f).

After calculating the position of the interface, the amplitudes A (k
n

) are obtained

through a Fourier transform of the interface location. This is performed for each

snapshot and the results are time averaged to obtain
⌦|A (k

n

)|2↵. A fit of
⌦|A (k

n

)|2↵,
versus 1

k2n
is then used to derive values for the step free energy.

4.3 Results and discussions

Fig. 4.4 shows the fluctuation spectra,
⌦|A (k

n

)|2↵ l
step

vs k
n

, on a log-log scale for

(a) Al � 59.4at.%Si and (b) Al � 87.4at.%Si. Results include both [1̄10] and [112̄]

step orientations. Standard errors for the quantity
⌦|A (k

n

)|2↵ are also shown by the

error bars in the graphs. The solid lines in these graphs represent slopes of -2 , which

is the value predicted by Eq.4.1. For almost all cases the curves show a levelling o↵
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for small values of kn.

One of the advantages of the CFM is its application to determine the anisotropy

in �
step

to a higher precision than is possible in other methods, including cleaving.

This is due to the fact that the CFM determines directly the interfacial sti↵ness,

�
step

+�00
step

, which is much more anisotropic than �
step

itself. For a weakly anisotropic

system and steps with a six fold symmetry, the relationship between the sti↵ness with

✓ follows �
step

+�00
step

= �
0

(1� ↵ cos 6✓). In this study two independent sti↵ness value

are measured to parameterize �. The calculated sti↵ness are presented in table4.2.

Using these results we find ↵ < 0.03. Considering the standard deviation in the

calculation, which is about 6%, the values calculated for di↵erent orientations are

equal within statistical uncertainty. In other words, the step free energy is invariant

with respect to direction.
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k(Å�1)

h|A
(k

)|2
il s

t
(Å
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Figure 4.4: Log-Log plot of the fluctuation spectra,
D
|A (k

n

)|2
E
l

step

vs k

n

, for (a) Al �
59.4at.%Si and (b) Al � 87.4at.%Si alloys in the [1̄10] and [112̄] step orientations. The
solid line indicates a slope of -2. These graphs illustrate the e↵ect of crystal orientation on
the sti↵ness of steps. The prediction of the CFM is the same for both step orientations and
indicates the steps are isotropic in this system.

As explained in Section 4.2, the classical capillary fluctuation method is based
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on the step-e↵ective Hamiltonian. A full statistical mechanics treatment of the fluc-

tuation problem results in a modified step free energy given in Eq. 4.2. The only

assumption of this equation is the isotropy of step free energy. Using this assumption

the modified value of step free energy per unit length is reported in the last column

of table 4.2. This correction coe�cient can be up to 30% for the results in this study.

Table 4.2: Calculated sti↵ness values before and after modification as a function of interface
orientation for a Al-87.4at.%Si and Al-59.4at.%Si alloy. Error bars represent estimated 95%
confidence levels associated with statistical sampling.
Composition Step direction T

Eq

(k)
�
�

step

+ �

00
step

�⇥ 10�11

�
J
m

�
�

Modified

step

⇥ 10�11

�
J
m

�

Al-87.4at.%Si [1̄10] 1570 1.78± 0.12 2.12
Al-87.4at.%Si [112̄] 1570 1.67± 0.11 2.18
Al-59.4at.%Si [1̄10] 1230 2.61± 0.13 3.29
Al-59.4at.%Si [112̄] 1230 2.60± 0.16 3.35

Fig. 4.5 illustrates the e↵ect of composition on the slope of the fit and the fluctua-

tion spectra. The results indicate that the CFM can predict successfully the sti↵ness

of the steps in the Al� 59.4at.%Si and Al� 87.4at.%Si alloys. Using classical nucle-

ation theory, Frolov and Asta computed the value of �
step

= 1.03±0.05⇥10�11 (J/m)

for the step free energy of pure silicon. Based on the results of this study we conclude

that the step free energy increases with decreasing temperature and/or increasing

concentration of Al in the liquid. Previous studies have indicated that the excess free

energy of rough solid-liquid interfaces (Spaepen) increases with increasing tempera-

tures, that is, the opposite as that observed here. This suggests that the role of Al

additions is playing a crucial role in the step free energy of steps.

However, for the low temperature, high Al content alloy (Al � 30at.%Si), a line

with slope -2 can not be fitted to the
⌦|A (k

n

)|2↵ l
step

vs k
n

results. This behaviour

develops gradually. For the case of Al�87.4at.%Si the best fit line agrees well with a

slope of -2, however for the Al�594at.%Si alloying system, the slope of the best fit to
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Figure 4.5: Log-Log plot of the fluctuation spectra,
D
|A (k

n

)|2
E
l

step

vs k

n

, for (a) [1̄10]

and (b) [112̄] for Al � 87.6at.%Si, Al � 59.4at.%Si and Al � 30at.%Si alloying systems at
1570 K, 1230K and 920K, respectively. For the last system the results do not follow the
predicted slope of -2.

the amplitude vs wave number results is less than -2. As a fundamental assumption,

the CFM can be used only for cases where the step is rough. Based on the Al-Si phase

diagram, this alloy shows a single eutectic point at 12.6 at% Si. Therefore, the liquidus

line decreases by adding Al to the melt and the equilibrium temperature decreases

for more Al-rich compositions. Based on these results it can be concluded that at

lower temperatures or higher Al concentrations, the step behavior can no longer be

considered rough. However, this observation does not necessarily imply the step is

undergoing a roughening transition. Results from previous theoretical studies [119]

indicate that in the solid on solid model a roughening transition cannot occur, but

the equilibrium kink density can decrease significantly with decreasing temperature.

Chernov concluded high surface energies and low temperatures lead to a low density

of kinks on steps, which is the case, e.g., in low-temperature epitaxy. A decreasing

kink density may also account for the results shown in Fig. 4.5.
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4.4 Conclusion

Through an analysis of capillary fluctuations in the interfacial position, we have

determined the step free energy for a binary Al-Si mixture at three compositions and

two crystal orientations. In addition, a recent correction to the calculation of step free

energy was applied to the results as well. Our results for the anisotropy in �
step

show

complete isotropy of step free energy. The CFM could not lay on the appropriate

slope in the fluctuation spectra, vs k
n

graphs for Al � 30at.%Si. We concluded that

the steps are no loner rough at 920 K, which is the liquidus temperature of the

Al � 30at.%Si system.
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Chapter 5

Di↵usion Controlled Growth Rate

of Stepped interfaces

For many materials, the structure of crystalline surfaces or solid-solid interphase

boundaries is characterized by an array of mobile steps separated by immobile ter-

races. Despite the prevalence of step-terraced interfaces a theoretical description of

the growth rate has not been completely solved. In this work the boundary element

method (BEM) has been utilized to numerically compute the concentration profile in

a fluid phase in contact with an infinite array of equally spaced surface steps and, un-

der the assumption that step motion is controlled by di↵usion through the fluid phase,

the growth rate is computed. It is also assumed that a boundary layer exists between

the growing surface and a point in the liquid where complete convective mixing oc-

curs. The BEM results are presented for varying step spacing, supersaturation and

boundary layer width. BEM calculations were also used to study the phenomenon

of step bunching during crystal growth and it is found that, in the absence of elastic
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strain energy, a su�ciently large perturbation in the position of a step from its regu-

lar spacing will lead to a step bunching instability. Finally, an approximate analytic

solution using a matched asymptotic expansion technique is presented for the case of

a stagnant liquid or equivalently a solid-solid stepped interface.

5.1 Introduction

The mobility of interphase boundaries plays a crucial role in the description of

many important processes, from the growth of protein crystals to the heat treatment

of alloys. In studying the motion of interfaces, the first level of classification is the dis-

tinction between rough and faceted (smooth) interfaces. For a rough interface atom

attachment to the growing phase occurs readily at any point on the boundary and

rough interfaces are characteristic of solid-liquid interfaces in most metals and alloys.

On the other hand faceted interfaces are identified by the presence of immobile ter-

races separated by steps of roughly atomic height. The description of crystal growth

from the vapor as the lateral motion of steps across the surface was first introduced

by Frankel [94] and Burton, Cabrera and Frank [95]. In many alloy systems the inter-

face between a precipitate and the matrix phase can also be described by a series of

mobile steps. Thus Aaronson [155] extended the ideas of Burton et al and proposed

the so-called ledge mechanism in solid-solid systems. To date, electron microscopy

studies, most notably, those employing the scanning tunnelling microscopy (STM)

technique [156] confirmed the ledge mechanism in many systems such as pure Si [157]

grown from the vapour, and alloying systems [158, 159] including steels [160, 161] and

Aluminum alloys [162, 163, 164, 165, 166, 167, 168].

The other set of classification in crystal growth theories are di↵usion-controlled
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and/or interface-controlled systems. In the latter case, most theories assume some

rate-controlling event to occur on the surface, either as a result of nucleation rates or

some process such as adsorption, surface di↵usion, step incorporation, etc [102, 101,

100]. Another real possibility is that the solute transfer to the surface may be limited

by mass transfer or di↵usion through the bulk solution. Despite the importance of

di↵usion controlled growth only a limited number of analytic solutions are available.

For a planar, rough interface growing in an infinite system the concentration profile

can be obtained and the solution has been utilized in the well known Mullins and

Serkerka instability theory [169, 170]. The di↵usion controlled growth of a paraboidal

shaped dendrite has been solved exactly by Ivantsov [171] under the assumption of

no capillarity e↵ects. The more general case has been the subject of many theoretical

studies and has lead to the solvability criterion of velocity selection for dendritic solid-

ification. In many alloy systems plate-like precipitates with approximately parabolic

tips are observed and several studies have been conducted to predict the precipitate

growth rate from the Ivantsov approach [96, 97, 98]. In these studies the relationship

between the velocity of the plate tip and supersaturation at a specific tip curvature

was predicted. However, the predictions of these models usually show a significant

deviation from experimental results [172]. In order to explain this discrepancy several

authors examined factors such as anisotropy of the surface energy [173], non-ideal so-

lution [174] and, most importantly, inability of a smooth parabola to represent the

step-terrace geometry [175].

For faceted interfaces, reliable modelling of the di↵usion controlled ledge mech-

anism needs a geometry in which mobile steps, as sinks of solute, are positioned at
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discrete locations along the interphase boundary. This geometry di↵ers from classi-

cal models where a uniform flux along the rough interface is assumed. For the case

of smooth interfaces, the most general form of the di↵usion equation would be the

following:

Dr2c� vK
@c

@x
� vS

@c

@y
� vD

@c

@z
= 0 (5.1)

where vK , vS and vD are kink, step and surface velocities, respectively, D is the

di↵usion coe�cient in the matrix phase and c is the concentration. The solution of Eq.

5.1 with di↵erent simplifying assumptions has been considered in the literature. One

of the first models developed by Burton et al. [95], known as the BCF model, assumed

that steady growth occurs only at energetically favourable kinks. In addition, it was

assumed that the relative motion of any sinks such as kinks or steps is negligible when

compared with the bulk di↵usion fluxes. Therefore they solved Dr2c = 0. Using a

set of geometric approximations, and defining the influence region for kinks, steps

and the solidification front, they calculated the interface velocity for systems with

equally spaced steps.

When the ledge mechanism is dominant, attachment of the adatom can happen

anywhere along the step, which is itself rough. Therefore, in this case, kink formation

is unnecessary for the progress of crystal growth. Thus, the term in Eq. 5.1 that in-

cludes the kink velocity can be eliminated. Chernov [176] modified the BCF di↵usion

model. He made the simplifying assumption that the distance between two successive

kinks is so small that one can consider a step as a long sink, and thus the concen-

tration profile is merely dependent on two dimensions perpendicular to the step line.

Instead of using an approximate solution by a geometrical division of the domain (as
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was done by BCF), Dr2c = 0 was solved analytically, using a conformal mapping

technique, in two dimensions for an infinite and periodic array of steps. However,

Chernov used an attachment limited boundary condition at the steps, rather than a

di↵usion controlled condition. In the Chernov approach each step is a source point

and the height of the step is negligible in comparison with the length of the terraces.

Besides simple mass transfer limitations, Ohara [171] considered the e↵ect of heat

evolution (or absorption) at the crystal interface and derived an equation to account

for the simultaneous transfer of heat and mass and they concluded that simultaneous

heat transfer e↵ects are negligible. In another study by Jones and Trivedi [9], the

height of the step was considered explicitly and di↵usion control was assumed. The

analytic solution was obtained in the limit of zero Peclet number and is valid for

a single isolated step. Atkinson further improved the previous method by calculat-

ing the concentration profile in the case of small Peclet numbers by utilizing Fourier

transformations, multiple scale analyses and a singular perturbation method for an

isolated step [177], multiple steps [178] and steps close to an external surface [179]. In

addition, a finite-di↵erence based di↵usional growth model has been used for numer-

ical modelling of the ledge density e↵ects, ledge nucleation kinetics and the presence

of multiple precipitates on solute buildup in the matrix. [180, 181, 182, 183, 184, 185]

The other phenomenon that can be addressed by solving the di↵usion equation is

step bunching, which refers to the tendency of a regular spaced step train to become

unstable and to form regions of closely spaced steps separated by long terraces. For

the case of crystals grown from deposition through a vaopr phase step bunching has

been well studied. In an early treatment of step bunching, Frank explained this

phenomenon using an impurity mechanism [186]. A more recent stability analysis
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[187] has shown that step bunching can occur due to an asymmetric flux to a step

arising from the Ehrlich-Schwoebel barrier [188, 189].

For crystals grown from the melt the asymmetry in flux and hence step bunching

can be provided by flow in the liquid. For a far field liquid flow in the direction of step

motion the regular array is stabilized against bunching, whereas flow in the direction

counter to the step growth direction acts to destabilize the interface. In several studies

Bredikhin and co-workers [190, 191, 192, 193] have studied step bunching and they

conclude that, even in the absence of liquid flow, a regular train of steps is inherently

unstable due to the interaction between traveling inhomogeneities of step density and

di↵usion in the solution. The BEM computations performed here will help address

step bunching during di↵usion controlled growth.

The purpose of the present work is to provide numerical and analytic solutions

to a growth process of facetted interfaces not yet considered, that is, the di↵usion

controlled growth of an infinite train of equally spaced steps. We begin by introducing

the boundary element technique for the case where a boundary layer is assumed in

the liquid adjacent to the crystal-melt interface and determine the concentration field

and growth velocity as a function of step separation and boundary layer width. In

addition, we examine the instability of equally spaces train of arrays by apply a

perturbation to a single step and calculating the velocity of the neighbouring steps

to determine the final stable arrangement of a train of steps. Finally, we present an

approximate analytic solution based on a matched asymptotic technique for the case

of no boundary layer, which is valid for the case of growing precipitates in alloys.
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5.2 Boundary Integral Formulation

Consider a coordinate system in which the steps are moving at constant velocity

in the direction x and the interface as a whole migrates in the y direction. If the step

spacing is large it is reasonable to neglect the velocity in y and the di↵usion equation

can be rewritten as:

Dr2c+ vx
@c

@x
= 0 (5.2)

where vx is the step velocity, D is the di↵usivity in the matrix, liquid or vapour

phase, and c is the concentration. The 2D geometry also assumes that the steps are

straight. Further we assume that the steps are energetically favourable sites for atom

attachment and no surface adsorption at the terraces is allowed.

For convenience we can re-write Eq. 5.2 in a dimensionless form by defining a

Peclet number px = v
x

h
D

which is scaled by the step height h and a scaled concentration

given by the form used by Atkinson: u = c�c0
c
e

�c0
. The scaled variables yields the

following:

r2u+ px
@u

@x̃
= 0 (5.3)

The value of scaled concentration varies between zero for the far field limit and

unity for the equilibrium condition. For developing the boundary element formulation,

we employed the method used by several authors [194, 195, 196, 175], which relies on

a variable transformation in order to reduce the problem to a Helmholtz equation.

The variable transformation has the form u = �e�
p

x

2 x̃. After substituting the final

Helmholtz equation obtains as
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r2��
⇣px
2

⌘
2

� = 0 (5.4)

The fundamental solution corresponding to Eq. 5.4 should satisfy the equation:

r2G (r, r0)�
⇣px
2

⌘
2

G (r, r0) = �� (r, r0) (5.5)

where r and r0 are vectors representing field and boundary points respectively, �

is the Dirac delta function and G (r, r0) is the Greens function for the corresponding

Helmholtz equation and is expressible as a function ofK
0

, the modified Bessel function

of the second kind of order zero i,e.:

G (r, r0) =
1

2⇡
K

0

⇣⇣px
2

⌘
|r� r0|

⌘
(5.6)

where the Peclet number is defined as a positive quantity.

From Greens theorem, the boundary integral formulation is established:

↵u (r)�
Z

u (r0)
@G (r, r0)

@n0 e
p

x

2 (r0
x

�r
x

)d� (r0)

+
px
2

Z
G (r, r0) u (r0)

@r0x
@n0 e

p

x

2 (r0
x

�r
x

)d� (r0)

= �
Z

G (r, r0)
@u (r0)

@n0 e
p

x

2 (r0
x

�r
x

)d� (r0)

(5.7)

where the parameter ↵ is a constant and its value depends on the location of r.

When r lies inside the domain ↵ takes the value of unity and when r lies on a smooth

boundary ↵ takes the value 1

2

. In the above equation @
@n0 is the directional derivative

of the corresponding function in the direction of the outward pointing normal n0 to
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the surface element d� .The derivative of the fundamental solution appearing in the

first integral is:

@G

@n0 =
px
4⇡

K
1

⇣px
2
|r� r0|

⌘
· (r� r0) · n0

|r� r0| (5.8)

where K
1

is the modified Bessel function of the second kind of order one.

For boundary integral implementation we follow the procedure explained in detail

in [51] and used in several studies [194, 196]. Equation 5.7 can be rewritten as

↵u+

Z

�

uq⇤d� �
Z

�

qu⇤d� = 0 (5.9)

where we have taken q⇤ as the coe�cients of u and u⇤ is the coe�cients of q = @u(r0)
@n0 .

The boundary � is discretized into N straight line segments where uj and qj are

respectively approximated as constants, such that they can be removed from the

integrals. This yields:

1

2
ui +

NX

j=1

0

@
Z

�

q⇤d�

1

Auj �
NX

j=1

0

@
Z

�

u⇤d�

1

A qj = 0 (5.10)

After integration the whole set of equations can be expressed in matrix form as:

[A] {Y} = [F] (5.11)

where Y is the vector of unknowns u’s or q’s. For each case the total number of

unknowns should be equal to the number of the possible equations for the whole

domain. Therefore, we can find the value of scaled concentration and flux for every

element on the boundary of the domain. In a post processing step one can calculate
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the concentration at any point in the interior from the known boundary terms.

It is common to employ numerical methods such as Gaussian quadrature for the

integrals appearing in Eq. 5.10 and the matrix elements of [A] [175]. However, sin-

gularities occur when r = r0. The singularity problem is usually solved by estimating

the Bessel functions in the limit of small r = r0, which results in integrable functions.

However, In order to avoid this di�culty we utilized the analytical integration results

developed by Ang [197]. Here the integral over any element, including the singular el-

ements, cane computed without resorting to the more expensive Gaussian quadrature

or similar numerical integration schemes.

Using the mass conservation principle for the step element we can calculate the

relationship between flux, concentration and velocity as:

D
@c

@x
= vx (c� cs) (5.12)

where x is perpendicular to the step element and cs is the concentration in the solid.

After scaling x with the step height h and using the dimensionless concentration in

equilibrium condition we have:

@u

@n0

����
step

= px

✓
1� 1

�

◆
� pxu (5.13)

where @u
@n0

��
step

is the flux at the step and � = c
e

�c0
c
e

�c
s

is the supersaturation. Therefore,

since scaled concentration is unity under equilibrium conditions, @u
@n0

��
step

= �p
x

�

rep-

resents the linear relationship between supersaturation and Peclet number under the

assumption of local equilibrium at the step face.
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5.3 Results and discussions

Fig. 5.1 shows the geometry of the domain we consider in this study. The in-

terface consists of a series of steps of uniform height as well as terraces, which is

the characteristic geometry of the ledge mechanism. Fig. 5.1 is a snapshot from a

molecular dynamics simulation [198] of pure Si (the red atoms) solidifying into an

Al-Si liquid. The faceted interface is a vicinal 111 boundary.
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Figure 5.1: The geometry of the computational domain and the boundary conditions used
in the boundary integral formulation. The periodicty in the x direction is given by � and
the length along y is boundary layer thickness �. The equilibrium concentration is assumed
along the step face and a zero flux condition is applied at the immobile terraces.

In this study we assumed that steps are equally spaced. Therefore a domain whose

bottom boundary includes a single step and has a length equal to the half distance of

neighbouring terraces can represent the whole system. The computational domain in
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the vertical direction extends up to the length (�). By setting the scaled concentration

to zero all along the top boundary we are assuming that there exists a boundary

layer of dimension � after which convective mixing fixes the liquid composition at

its average value. Clearly, the e↵ect of convection limits the solution to solid-liquid

or solid-vapor systems and the stagnant case, valid for alloys, will be treated in a

subsequent section. Since the height of the step is on the order of atomic height, we

assume the concentration along the step is constant and the step is in equilibrium

(u = 1). In the previous conformal mapping solution by Jones and Trivedi the

concentration along the step varies considerably and an advantage of the BEM is the

ability to maintain a fixed value of u = 1 along the step face.

To set the boundary conditions along the two sides of the computational domain

we exploit the fact that the system is periodic in x. Therefore, we solve the Helmholtz

equation subject to the following:

u

✓
��
2
, y

◆
= u

✓
�

2
, y

◆

@u

@n0

����
x=��

2

= � @u

@n0

����
x=�

2

(5.14)

Here we must distinguish the actual step spacing � with the x dimension of the

computational domain, which has been denoted by T . A simple geometric expression

relates the two quantities: � = T cos ✓ + h
2

sin ✓ where ✓ is the angle between the

terrace and periodicity direction. There are several di↵erent ways to apply the above

boundary condition in a boundary integral code. We followed the method explained

in detail by Ang [197], which requires the addition of two sets of unknowns, rather

than one, for each element at the sides of the domain, and at the same time two sets

of constraint equations based on periodic boundary conditions given above.
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In the results to follow all elements were the same length, which was set equal

to the length of the step face. Thus, the total number of nodes is in proportion

to the terrace length and �. That is, T/h + 1 and T/h along the bottom and the

top boundaries of the domain respectively and �/h on the two vertical sides. As

mentioned above, all integrals in the BEM procedure were evaluated analytically.

The value of the Peclet number for solidification where the di↵usion coe�cient in

liquid phase is in the order of 10�5

cm2

s
and for a system like Al-Si, with step height of

h = 3.15⇥10�8cm, would be in the order of 10�6. Therefore the velocity of the step is

negligible when compared with the bulk di↵usion flux and the term including Peclet

number in Eq. 5.2 could be ignored. Thus, Helmholtz equation reduces to Laplace

equation. The equivalent boundary condition would be zero flux for side boundaries,

which is similar to the boundary condition used in other studies [95, 176]. The range

of validity of the Laplace equation assumption will be investigated below.

The scaled concentration and flux along the boundary of the domain are shown

in Figs. 5.2 and 5.3, respectively, for a domain with terrace length of T = 10 ⇥ h

and di↵usion length of � = 10⇥ h. A range of Peclet numbers are summarized in the

plots.

The origin of the domain is the upper left corner, therefore regions (I) to (IV)

represent the left, bottom, right and top sides of the domain, respectively. Therefore,

region (II) includes two half size terraces and the step. We can observe a nearly

linear variation of concentration along the side edges, from zero to a value between

zero and unity. However, the concentration profile along terraces is neither linear nor

symmetric. For Peclet numbers less than 10�3 the e↵ect of velocity can be ignored.

However, for higher Peclet numbers the concentration di↵erence along the terraces
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Figure 5.2: Concentration profile along the four boundaries for a system with dimensions
T = 10⇥ h and � = 10⇥ h. The position of the step is the centre of domain II.

decreases. Fig. 5.3 shows that the flux along the left and right boundaries is almost

zero and across the step the flux decreases for higher Peclet numbers.

Fig. 5.4 shows the concentration profile in the liquid surrounding the step where

T = 10⇥ h, � = 80⇥ h and px = 10�3.

In these results we can see the asymmetry of the concentration profile with re-

spect to the step. The asymmetry is a result of treating the step explicitly in the

computation. In cases where the step is considered as a source point [95, 176] the

concentration field is radially symmetric about the step. In addition, a fast drop in

concentration with increasing distance normal to the step is captured and again we

did not make the assumption of variable concentration along the step as was done in

previous studies [9, 178].

Fig. 5.5 Shows the concentration profile for a case where T = 10⇥h and � = 50⇥h

and a Peclet number an order of magnitude than that shown in Fig. 5.4, px = 10�2. As

expected, at higher velocities concentration profile is closer to equilibrium along the

terraces. It should be noted that we ignored the solute trapping during transformation
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Figure 5.3: Flux across for all boundary nodes boundary for a system characterized by
T = 10⇥ h and � = 10⇥ h.
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Figure 5.4: Concentration profile for an isolated step with px = 10�3. The dimension of
the domain are: T = 10⇥ h, � = 80⇥ h.

in this study and assumed that concentration along the step is in equilibrium. In

addition, comparison between concentration isolines shows that asymmetry of the

concentration profile increases by increasing the velocity.

As was shown in Eq. 5.13 we can define a relationship between Peclet number, su-

persaturation and flux at the step where under the assumption of equilibrium concen-

tration along the step face it simplifies to the relationship @u
@n0

��
step

= �p
x

�

. If the step

velocity is su�ciently low and the dimensions of the domain are such that Laplaces
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Figure 5.5: Concentration profile for an isolated step with px = 10�2. (T = 10 ⇥ h and
� = 50⇥ h)

equation is a good description of the concentration profile, then the derivative @u
@n0

��
step

is a constant and a linear relationship is predicted between the Peclet number and

the supersaturation. In the results of Figs. 5.6 and 5.7 the BEM computed velocities

are compared with this linear prediction.

In Fig. 5.6 we show the e↵ect of terrace length on the relationship between

supersaturation and scaled velocity. At a constant supersaturation, the scaled velocity

is higher for larger step spacing. However, the e↵ect of terrace length can be ignored

when the terrace length is more than a critical value, which is roughly T = 40 ⇥ h.

However, this critical value is a function of boundary layer dimension and for a system

with longer � this critical value increases. It is also evident from Fig. 5.6 that

the linear relationship between step velocity and supersaturation is obeyed for small

�, but deviates sub-linearly for higher �. The value of the supersaturation where

the departure from linearly begins appears to decrease slightly with increasing step

spacing.

The other geometric parameter a↵ecting the relationship between scaled velocity

and supersaturation is boundary layer width, the relationship of which is shown in
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Figure 5.6: The Peclet number vs step spacing showing the e↵ect of step separation on
the kinetics of the transformation. The width of the boundary layer for all simulations is
constant and equal to 50⇥ h

Fig. 5.7. This graph suggests that for a certain supersaturation, the scaled velocity is

higher for the systems with smaller layer widths. In addition, deviation from linearity

occurs at lower Peclet numbers, for the systems with longer �. For a system with a

very small boundary layer, even at a Peclet number around 0.04, the linear relation

between px and � is still valid.
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Figure 5.7: E↵ect of boundary layer size on the growth kinetics of transformation. Step
separation for all simulations is constant and equal to 10⇥ h
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5.4 Step bunching

In this part we are use the technique and results we obtained in the previous

section in order to test whether the step bunching phenomenon can occur in di↵usion

controlled crystal growth. From experimental observations It has been suggested that

equally spaced steps are inherently not stable and step trains tend to form bunches

of steps close to each other, where each of these bunches are separated with a long

terrace. The problem of bunching in crystals is very important, since it is closely

related to the problem of defect formation. A rigorous treatment of the step bunching

problem would entail a linear stability of the equal step spacing geometry. That is,

the step spacing is perturbed by an infinitesimally small amplitude perturbation with

some prescribed wavelength. The change with time is then formulated and if the

amplitude increases with time the interface is unstable. However, since the base

state of the problem cannot be solved analytically, the linear stability investigation is

di�cult. Therefore, in this study we will take a simplified approach which will yield

the increase of flux to each step after a after a single step is repositioned by some

amount along the interface. Although the procedure is not able to determine if the

step array is linearly stable or not, it will show that perturbations of su�cient size

can lead to step bunching.

The procedure adopted can be illustrated with reference to Fig. 5.8, which shows

the central portion of three separate systems. The total number of steps in each

computation is 25, the di↵usion boundary length is taken as � = 50⇥ h and all other

boundary conditions are the same as described above. The top portion of Fig. 5.8

shows the step separation when all steps are equally spaced by T = 8⇥h. The middle

figure shows a perturbation, equal to h, of the center step in the negative x direction

121



PhD Thesis - Peyman Saidi McMaster - Materials Science and Engineering

and the bottom figure shows the case of a 2h perturbation. In each case the BEM

calculation provides the flux, and hence velocity, of each step. If the center step and

those trailing it exhibits a velocity that is lower than the equally spaced case and the

steps leading the center step show an increased velocity, then the interface is unstable

with respect to step bunching.

!
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!
!

!
!

!
!
!
!
!
!

!
!

We!considered!two!sets!of!systems!with!25!steps.!The!terrace!lengths!are!initially!(T=8h)!
and! (T=12h).! The! length! of! the! two! immediate! terraces! at! two! sides! of! the! central! step!
changes!at!each!level.!As!shown!above,!at!each!stage!we!decrease!the!size!of!the!previous!
terrace!by!one!unit!of!length!and!add!one!unit!to!the!next!terrace.!The!value!of!flux!of!the!
array!of!the!steps!is!calculated.!The!results!are!shown!below.!!
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Figure 5.8: Geometry of the system in the vicinity of central step. Top figure corresponds
to no perturbation, whereas the middle and bottom figures correspond to perturbations of
the central step equal to 1h and 2h respetively.

Fig. 5.9 shows the result of the analysis. The left plot corresponds to the case

where the unperturbed system consists of steps spaced by 8 ⇥ h and the notation

in the legend lists the length of the leading terrace used in each calculation. As

expected the step velocity is equal for the equally spaced steps. However, the results

clearly show a tendency to step bunching with the trailing steps slowing down and

the leading steps speeding up after the perturbation is introduced. In this case the

influence of the perturbation extends over roughly five steps to either side of the

central step. Furthermore, as the perturbation increases in magnitude the e↵ect is

amplified, which implies the step bunching will grow after the initial perturbation.

The right plot of Fig. 5.8 shows the same procedure for the case of an initial 12⇥ h

spacing of steps. The qualitative trend is equivalent to T = 8⇥ h result.

For a better comparison of the e↵ect of a perturbation on step bunching behavior

for di↵erent terrace lengths, we perform a series of BEM calculations in which the
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Figure 5.9: Scaled flux at each step at di↵erent terrace length perturbations for the systems
with initial terrace lengths of a) 8⇥ h and b) 12⇥ h. A boundary layer of � = 50⇥ h was
used for all computations.

perturbation is kept fixed at 10% of total terrace length. In other words, for the

system with terrace length of 10 ⇥ h the perturbation is 1 ⇥ h and for the case of

T = 100⇥h perturbation is 10⇥h. Furthermore, in order to accurately compare the

change in step velocity in each computation, the flux at each sets is normalized by

the baseline flux obtained from the case of equally spaced steps. As above, in each

computation the total number of steps is 25 and � = 50⇥h. The results are presented

in Fig.5.10 and the data show that for equal percentage of perturbation, the change

in flux of steps is increased for smaller terrace lengths. The numerical results suggest

that an interface with closely spaced steps is more susceptible to step bunching than

interfaces with longer terraces. In the long wavelength limit, i.e. infinitely spaced

steps, the interface appears to be neutrally stable. It is important to note that

the computations presented here neglect any elastic interaction between steps, which

will e↵ect the equilibrium concentration at the step face [199]. It is expected that

the inclusion of elastic energy will tend to stabilize the system for small wavelength

perturbations (small step spacings).
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0

is the scaled flux of steps in an equally spaced system.

5.5 Analytic solution, stagnant case

As mentioned in the proceeding section, the assumption of a boundary layer im-

plies convective mixing occurs in the liquid phase. In this section we formulate an

analytic solution to the di↵usion controlled growth of a step-terraced interface for

the case of no convection. The solution will be applicable to the growth of stepped

interfaces in solid-solid systems.

To proceed we note that as the boundary layer width � increases the concentration

gradient at the step decreases linearly with the distance y and eventually the growth

rate will approach zero. However, in the computation we have neglected the velocity

of the interface in the y direction. Inclusion of a vy term, no matter how small, will

guarantee a finite flux and growth rate in the limit � ! 1 [200, 201]. The above

discussion implies that an approximate solution can be developed using a matched

asymptotic expansion. A similar approach has been employed by Atkinson [177].

Now we can consider the more complicated case where the velocity in any x
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or y direction cannot be ignored. Therefore the di↵usion equation in the unscaled

coordinates would be:

Dr2u+ vx
@u

@x
+ vy

@u

@y
= 0 (5.15)

To obtain an ”outer” solution note that su�ciently far from the interface (y ⇠ T )

all variations of u in the x direction become vanishingly small. The di↵usion equation

reduces to @2u
@y2

+ vy
@u
@y

= 0 and the outer solution is given by:

uout (x̃, ỹ) = A0 exp (�pyỹ) + B0 (5.16)

where, anticipating the inner solution, we have rescaled all lengths by x̃ = x/h, ỹ =

y/h and �̃ = �/h. In the above solution, the boundary condition u (x̃, ỹ ! 1) = 0

forces B0 to be zero.

To formulate the inner solution we identify a small parameter as h the step height

and rescale all length variables in the di↵usion equation. The result is simply r2u = 0

where all terms of order of the Peclet number have been neglected. An approximate

general solution to Laplaces equation for a periodic step train has been derived by

Chernov using a conformal mapping procedure. Assuming a step spacing much larger

than the step height, the general solution is given by:

uin (x̃, ỹ) =
A

2
ln

✓
sin2

✓
⇡

�̃
x̃

◆
+ sinh2

✓
⇡

�̃
ỹ

◆◆
+B (5.17)

Chernov completed the problem by applying a kinetically limited boundary con-

dition at the step. Here we apply a di↵usion controlled condition. Noting that the

solution assumes the steps are represented by point sources of solute, we apply the
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boundary condition u(1, 0) = u(0, 1) = 1, which means, on the surface of a half

cylinder surrounding the step with radius equal to the height of the step, the com-

position is equal to the equilibrium composition. Applying this boundary condition,

the constant B can be obtained as:

B = 1� A ln

✓
⇡

�̃

◆
(5.18)

So far we have determined the solution of the di↵usion equation for the inner

and the outer regions. However, there are two constants remaining in Eqs. 5.17

and 5.16. To complete the problem we apply a formal matching procedure, which

is given by uout(ỹ ! 0) = uin(ỹ ! 1). For the inner region (Eq.5.17) the sin term

can be neglected relative to the sinh term and, using the definition of sinh
⇣

⇡
˜�
ỹ
⌘
=

exp(⇡

�̃

ỹ)�exp(�⇡

�̃

ỹ)
2

, the limits become:

uin (x̃, ỹ) = A

✓
⇡

�̃

◆
ỹ � ln

✓
2⇡

�̃

◆�
+ 1 (5.19)

uout (x̃, ỹ) = A0 (1� pyỹ) (5.20)

A solution for the concentration field, valid over the entire domain, can be obtained

via u (x̃, ỹ) = uin + uout � umatch, where umatch is the value of the field under the

matching procedure. Therefore the final result reads:

u (x̃, ỹ) =
A

2
ln

✓
sin2

✓
⇡

�̃
x̃

◆
+ sinh2

✓
⇡

�̃
ỹ

◆◆
+B+A0 exp (�pyỹ)�A0 (1� pyỹ) (5.21)

where A = � p
y

˜�

⇡�p
y

˜� ln( 2⇡
�̃

)
, A0 = ⇡

⇡�p
y

˜� ln( 2⇡
�̃

)
and B is determined based on Eq 5.18.
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The concentration profile resulting from Eq. 5.21 for x̃ = 0, which represents the

profile from the step into the liquid, is shown in Fig. 5.11. Notice, the inner solution

decreases linearly and without bound as ỹ tends to infinity, whereas the matched

asymptotic solution exhibits the correct exponential decay for large ỹ.
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Figure 5.11: Results of the matched asymptotic analysis showing the inner and outer
regions, and the final composition profile. The profile is shown as a function of ỹ and x̃ is
set equal to the step position, i.e.. x̃ = 0.

Our ultimate goal is to determine the growth rate from the analytic solution to

the concentration field. Recall the step is treated as a semicircle with radius equal to

the step height. Thus, for calculation of the flux it is easier to transform Eq. 5.21 to

cylindrical coordinates, which is given by:

u (r,�) =
A

2
ln

✓
sin2

✓
⇡

�̃
r cos�

◆
+ sinh2

✓
⇡

�̃
r sin�

◆◆

+B + A0 exp (�pyr sin�)� A0 (1� pyr sin�)

(5.22)

For su�ciently small r, that is in the vicinity of the step, the next to last term

can be expanded in a Taylor series and, when combined with the last term, leads

to a contribution of order p2y, which will be neglected. With this simplification, the
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concentration does not vary with � in the region near the step. In other words,

@u
@�

���
r!1

= 0. In addition, the gradient of the concentration in the radial direction is

equal at all angles including � = ⇡
2

. Using these assumptions we obtain:

@u

@r

����
r=1, any �

=
@u

@r

����
r=1, �=⇡

2

=
A⇡

�̃

0

@
cosh

⇣
⇡
˜�

⌘

sinh
⇣

⇡
˜�

⌘

1

A� A0py (exp (�py) + 1) (5.23)

Applying the mass conservation principle, the flux into the inner semicircle with

the area of ⇡h, is equal to the flux at the step with height of h. In scaled coordinates,

⇡ @u
@r

= @u
@n0 . Combining Eqs. 5.13 and 5.23 and noting that u = 1 at the step, the step

velocity is then given by:

px =
⇡��̃

2⇡2�� �̃⇡ ln
⇣

2⇡
˜�

⌘ (5.24)

where the py term appearing in the constant A was converted using py = pxsin(h/�) ⇡
px/�̃. Also, the terms involving the hyperbolic functions were simplified under the

assumption of large �̃.

The above approximate result predicts that the step velocity in the x direction

decays to zero as the inter step spacing �̃ increases. Unfortunately, this behavior

contrasts with the analytic results obtained by Jones and Trivedi and Atkinson for

the case of an isolated step. However, the decrease in px with spacing predicted by

the above result is characterized by a slowly varying logarithmic dependence. Fig.

5.12 shows the scaled velocity vs. supersaturation for di↵erent step spacing values

computed using Eq. 5.24. Based on this model, for a specific supersaturation, the

step velocity is higher for a smaller step spacing. The variation with �̃ is large for
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step spacings that are relatively small, as is evident from the curves labeled �̃ = 10 to

50. For larger spacings the variation is much slower with a small di↵erence observed

for the order of magnitude change from �̃ = 100 to 1000. For comparison the Jones

and Trivedi result is shown by the open circles and the two results compare favorably

in the vicinity of �̃ = 100.
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Figure 5.12: Scaled velocity of the step vs. supersaturation for di↵erent �s. The results of
Jones and Trivedi [9] are compared with the calculation of the present study.

5.6 Conclusion

The boundary element method has been used to compute the growth rate and

concentration profile for the case of an infinite and periodic array of mobile interface

steps separated by immobile terraces. An important assumption in the numerical

study is the existence of a boundary layer at the interface, beyond which there exists

complete mixing in the fluid. The BEM results therefore describe the case of vicinal

surfaces growing into a liquid or vapor. Growth rates have been computed as a

function of two important variables: the step spacing and the boundary width. The
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computations indicate that the step velocity varies linearly with supersaturation for

low supersaturation and deviates below linear at high �. The departure from linear

behavior occurs at lower supersaturation for increasing boundary layer width. The

BEM computations were also used to study the e↵ect of geometry of the system on

the tendency for step bunching. We have investigated the special case where the

position of one central step is perturbed. It was concluded that the equally spaced

steps are not stable to su�ciently large perturbations and the system tends to form

separated bunches of steps.

For the case of a stagnant liquid or a step-terraced interface separating two crys-

talline phases, an approximate analytic solution has been derived. The solution is

based on a matched asymptotic expansion technique and the solution valid in the

vicinity of the step is formulated from a conformal mapping procedure. The results

predict that for a given supersaturation the step velocity decreases with increasing

step spacing.
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Chapter 6

Conclusions

In this dissertation we simulated several related solidification phenomena using

Molecular Dynamics (MD) and Boundary Element Method (BEM). Using MD re-

quires implementing the appropriate model which represents all the interactions in

the system. For this purpose we implemented the Angular-EAM model on Lammps,

which is the MD code we used in this study. This model is capable of considering

both metallic and covalent bonds, as well as cross-interactions between Al and Si.

In the next step, corresponding potentials based on the AEAM model were de-

veloped. First, a modification was applied to the three-body SW Si potential such

that the correct diamond cubic crystal structure was found to form at high tempera-

tures. This modification improved the classical SW potential which solidifies into the

wurtzite structure at temperatures in the vicinity of the melting point, and thus the

modified SW represents an important improvement to atomistic simulations of crys-

tallization processes. In addition, the modified SW predicts a more accurate melting

temperature and elastic constants.
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A potential for the Al-Si binary system was also developed using the Angular-

EAM method where the potential for pure Al was taken from the work of Mendelev

et al. [77] and the modified SW potential was used to describe pure Si. The advantage

of new Al-Si model is the relatively accurate prediction of phase diagrams and the

close to zero solubility of aluminum in silicon crystal.

Considering the importance of the step kinetic coe�cient and the step free en-

ergy on the crystal growth rate, we devoted two chapters of this study to these two

concepts.

In addition to the mobility of steps at faceted crystal-melt interfaces in the case

of pure Si we also extended the use of MD to determine the step mobility for the case

of a faceted interface in an alloy system. In the two compositions and temperature

ranges studied we have determined that the lower temperature, higher Al content

Al-Si alloys exhibit di↵usion or mixed controlled growth of the steps on the (111)

interface. Therefore, we have determined the mobility at lower concentrations of Al

and at higher temperatures. We find that the mobility decreases fairly rapidly with

increasing Al content and the mobility follows the same trend with temperature as

the interdi↵uion coe�cient in the liquid. Finally, the mobility for Al-90%Si in the

range T=1560-1580 K is roughly an order of magnitude less than that computed for

pure Si.

Based on the results of chapter 3 it can be concluded that the dominant scenario

of crystal growth for eutectic reaction of Al-Si system is di↵usion-controlled crystal

growth. Based on Al-Si phase diagram, eutectic transformation happens at 850 K.

This temperature is much lower than the liquidus temperature of Si-rich alloys. For
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the reaction-controlled scenario interdi↵usion should be fast enough that the compo-

sition all over the melt, including the melt part of the interface, remain constant. For

this to happen, activation energy of the interdi↵usion coe�cient should decrease with

the increase of Al atoms in the system in order to have faster transportation of solute

atoms to the interface. However, it is observed that the rate of decrease of activation

energy from 90% to 60% has not been fast enough. Therefore, a significant pile up

of Al atoms at the interface, even for small undercoolings around 10K, results in the

growth scenario change from reaction-controlled for 90% to mixed case for 60%. Con-

sidering the trend of interdi↵usion coe�cient and the eutectic temperature it can be

concluded that the interdi↵usion in the system with eutectic composition will not be

fast enough to form a melt with zero composition gradient from the interface to the

melt and. Therefore, the di↵usion-controlled scenario is more probable for eutectic

composition.

Utilizing molecular dynamics (MD) simulations and the capillary-fluctuations

method (CFM), the crystal-melt step free energies at three di↵erent melt compo-

sitions were calculated. The anisotropy of steps was investigated by setting up the

systems with di↵erent crystal orientations of steps on the (111) interface plane. A

complete isotropy of step free energy is observed for Al-60%Si and Al-90%Si alloying

systems, while the CFM failed to determine step free energy in Al-30%Si due to lack

of step roughness. Using these results a clear transition from rough steps to smooth

(faceted) step was observed. In other words, for the alloying systems with eutectic

composition, we predict that the steps are not rough.

Despite the applications of the MD in calculation of micro state terms, the simu-

lation time and system size scale is limited to nano second and a few hundred nano
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metres, respectively. Therefore, di↵usion-controlled crystal growth cannot be exam-

ined using MD. However, the BEM is a fast and accurate simulation method which

was used to compute the growth rate and concentration profile for the case of an

infinite and periodic array of mobile interface steps separated by immobile terraces.

Growth rates were computed as a function of two important variables: the step spac-

ing and the boundary width. The computations indicate that the step velocity varies

linearly with supersaturation for low supersaturation and deviates below linear at

high �. The departure from linear behavior occurs at lower supersaturation for in-

creasing boundary layer width. The BEM computations were also used to study the

e↵ect of system geometry on the tendency for step bunching. We have investigated

the special case where the position of one central step is perturbed. It was concluded

that the equally spaced steps are not stable at su�ciently large perturbations, and

the system tends to form separated bunches of steps.

For the case of a stagnant liquid or a step-terraced interface separating two crys-

talline phases, an approximate analytic solution has been derived. The solution is

based on a matched asymptotic expansion technique and the solution valid in the

vicinity of the step is formulated from a conformal mapping procedure. The results

predict that for a given supersaturation the step velocity decreases with increasing

step spacing.
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Chapter 7

Future Work

Considering the importance of twins on the crystal growth of silicon dendrites in

the Al-Si system, calculation of mobility and step free energy at the presence of twins

could be considered as a next step to this research. In addition, the e↵ect of twins on

the critical nucleation size could also be studied.

As mentioned in the introduction, one of the chemical modification theories is the

complete geometrical e↵ect of Sr on the active Si steps. Since this mechanism ignores

the interaction between Sr atoms with other components of the system, validity of

the mechanism can be examined by defining a noninteracting particle at the interface

to observe possible passivation of the step or formation of twins.

In addition, the validity of surface energy theory can be examined by calculating

the surface energy at the presence of the modifier.
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Appendix A

Semi Grand Canonical Method

Formulation

For a binary solution at constant temperature an pressure the separate contribu-

tions of components A and B on total free energy can be summed:

�G0|T,P = µA�nA + µB�nB (A.1)

In the Semi Grand Canonical Method the type of a B atom switches to A type.

Therefore, �nA = 1 and �nB = �1. Thus:

�G0|T,P = µA � µB (A.2)

On the other hand total free energy change can be written based on internal energy

and entropy of the system.

�G0|T,P = µA � µB = �H 0 � T�S 0 (A.3)
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The total change of enthalpy of the system at P = 0 is �H 0 = �U 0 + P�V +

V�P = �U 0, which is the total variation of internal energy of the system.

The other term is total variation of entropy of the system due to the switch of

type of an atom. By definition

�S 0|T,P = kB (ln!
2

� ln!
1

)

= kB

✓
ln

(nA + nB)!

nA!nB!
� ln

(nA + 1 + nB � 1)!

(nA + 1)! (nB � 1)!

◆

= kB ln

✓
nB

1 + nA

◆
(A.4)

Substituting Eq. A.4 in Eq. A.3, the di↵erence between the chemical potential of

components is:

µA � µB = �U 0 � TkB ln
nB

nA + 1
(A.5)

For calculating this term using molecular dynamics we need to statistically average

results of Eq. A.5:

µA � µB = �TkB ln

⌧
nB

nA + 1
exp

✓
�U 0

kBT

◆�
(A.6)
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Appendix B

Step Free Energy modification

B.1 Step Excess Free Energy

Consider the free energy of the system with a flat surface F
surf

= �k
B

T lnZ
surf

an

the free energy of the system with a surface with a step on it is F
step

= �k
B

T lnZ
step

.

The step excess energy can be defined as

[F ] ⌘ F
step

� F
surf

= �k
B

T ln

✓
Z

step

Z
surf

◆
= �k

B

T lnQ
step

) [F ] = �k
B

T lnQ
step

(B.7)

where Q
step

= Z
step

/Z
surf

. Alternatively, we can also write the excess step free energy

as

[F ] ⌘ �
step

L
0

(B.8)
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where �step is the free energy per unit box length, and extensive thermodynamic

variable. In thermodynamic integration (TI) we compute [F ] ⌘ F
step

� F
surf

. Thus,

if we want to obtain �
step

we have to divide the TI method result by the box length

L
0

, as shown in Eq. B.8.

B.2 Step Partition Function Coarse Graining

We are going to separate (in Z
step

) the step degrees of freedom from the bulk and

surface degrees of freedom. Denoting R ⌘ {Ri} with i = 1, . . . , N the step degrees

of freedom and r ⌘ {rj} with j = 1, . . . ,M the non important degrees of freedom

(build and surface) we can write

Z
step

=

Z
dNRdMr exp [��H (R, r)] =

Z
dNR exp [��H

cg

(R)] (B.9)

where

H
cg

= �k
B

T ln

⇢Z
dMr exp [��H (R, r)]

�
(B.10)

This equation, as written in Eq. B.10, can be interpreted as the free energy of the

non important degrees of freedom r. Alternatively, it is also the Hamiltonian that

generates the step dynamics on the system, as seen clearly by Eq. B.10. Because of

this, H
cg

is also known as the potential of mean force, i.e., it is the potential acting

on the step that arises from the mean contribution of the bulk and surface degrees of

freedom.

Our next goal is to define the excess step free energy within this coarse-graining

formalism. If we now substitute Eq. B.9 in the equation for Q
step

we obtain
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Q
step

=
Z

step

Z
surf

=
1

Z
surf

Z
dNR exp [��H

cg

(R)]

= e+�Fsurf

Z
dNR exp [��H

cg

(R)]

=

Z
dNR exp [�� [H

cg

(R)� F
surf

]]

=

Z
dNR exp [��H

step

(R)]

(B.11)

where we have defined a step e↵ective Hamiltonian H
step

⌘ H
cg

� F
step

. The excess

free energy can now be obtained from Eq.B.7.

[F ] = �k
B

T ln

⇢Z
dNR exp [��H

step

(R)]

�
(B.12)

from where it becomes clear that H
step

is the Hamiltonian describing the step dynam-

ics, removing the mean contribution due the bulk and surface.

B.3 Step E↵ective Hamiltonian

Everything we have done so far is exact, thus Eq.B.12 is exact. The only thing

we have done is interpreted specific parts of the step partition function. It is possible

now, using our interpretation of the equations above, to introduce a model for the

step e↵ective Hamiltonian, H
step

, according to something we think should describe
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the forces on the step. A reasonable model is to assume

H
step

=

Z

⇣

↵ (✓) ds (B.13)

where ↵ (✓) is the step tension and the integral is over the curve ⇣ describing the step

physical length.

In Eq. B.13 the step length as function of the position along the x axis can be

expressed as

ds =
p
dx2 + dy2 =

q
1 + y0 (x)2dx (B.14)

and we can rewrite the step Hamiltonian as

H
step

=

Z L0

0

↵ (✓)
q

1 + y0 (x)2dx (B.15)

In the small slope approximation we have y0 (x) = tan ✓ ⇡ ✓. Using this approxima-

tion we can expand the terms inside the integral of Eq. B.15 in powers of ✓:

↵ (✓)
q

1 + y0 (x)2 =


↵
0

+ ↵0
0

✓ +
1

2
↵00
0

✓2 + . . .

� 
1 +

1

2
✓2 + . . .

�

= ↵
0

+ ↵0
0

✓ +
1

2
(↵

0

+ ↵00
0

) ✓2 +O �✓3�
(B.16)

where the zero subscript like in ↵0
0

denotes a function evaluated at ✓ = 0. Using

this expression in Eq. B.15 we obtain
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H
step

=

Z L0

0

↵ (✓)
q
1 + y0 (x)2dx

= ↵
0

Z L0

0

dx+ ↵0
0

Z L0

0

✓dx+
1

2
(↵

0

+ ↵00
0

)

Z L0

0

✓2dx

= ↵
0

L
0

+
1

2
(↵

0

+ ↵00
0

)

Z L0

0

y0 (x)2 dx

(B.17)

where ↵
0

L
0

is the contribution due to a flat interface, and we have defined the step

sti↵ness as (↵
0

+ ↵00
0

). We have also used that
R L0

0

✓dx = y (0)�y (L
0

) = 0 due to the

periodic boundary conditions. with this result we can finally rewrite the step e↵ective

Hamiltonians as

H
step

= ↵
0

L
0

+
1

2
(↵

0

+ ↵00
0

)

Z L0

0

y0 (x)2 dx (B.18)

We now expand the height of the interface, y (x), in a Fourier expansion. The wave

vectors are given by kn = n
⇣

2⇡
L0

⌘
with n = �N/2 + 1,�N/2, . . . ,�1, 0, 1, . . . , N/2

and the expansion in written as

y (x) =
N/2X

n=�N/2+1

An exp (iknx) (B.19)

where the amplitude of the mode is found as usual by multiplying both sides by
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exp (ikmx) and integrating over x:

Z L0

0

y (x) exp (ikmx) dx =

Z L0

0

N/2X

n=�N/2+1

An exp [i (kn � km) x] dx

=
N/2X

n=�N/2+1

Z L0

0

An exp [i (kn � km) x] dx =
N/2X

n=�N/2+1

AnL0

�nm = AmL0

(B.20)

) An =
1

L
0

Z L0

0

y (x) exp (iknx) dx (B.21)

Using Eq.B.20 we can compute the integral in Eq. B.19. We start by computing the

derivative of Eq. B.20

dy

dx
= i

N/2X

n=�N/2+1

Ankn exp (iknx) (B.22)

Now we compute the squire of y0 (x)

y0 (x)2 = y0 (x) [y0 (x)]⇤ =
N/2X

n=�N/2+1

N/2X

m=�N/2+1

AnA
⇤
mknkm exp [i (kn � km) x] (B.23)
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and integrate over x

Z L0

0

y0 (x)2 dx =
N/2X

n=�N/2+1

N/2X

m=�N/2+1

AnA
⇤
mknkm

Z L0

0

exp [i (kn � km) x] dx

=
N/2X

n=�N/2+1

N/2X

m=�N/2+1

AnA
⇤
mknkmL0

�nm

= L
0

N/2X

m=�N/2+1

k2

n |An|2

(B.24)

and we can finally rewrite the step e↵ective Hamiltonian as

H
step

= ↵
0

L
0

+
1

2
(↵

0

+ ↵00
0

)L
0

N/2X

n=�N/2+1

k2

n |An|2 (B.25)

where An are the step degrees of freedom (i.e., amplitudes of the Fourier modes).

B.4 Capillary Wave Fluctuation Method

Computing the complex conjugate of Eq.B.21 results in A⇤
0

= A�n and thus |An| =
|A�n|. Using these results we can write Eq. B.25 as

H
step

= ↵
0

L
0

+ (↵
0

+ ↵00
0

)L
0

N/2�1X

n=1

k2

n |An|2 + 1

2
(↵

0

+ ↵00
0

)L
0

k2

N/2

��AN/2

��2

= ↵
0

L
0

+ (↵
0

+ ↵00
0

)L
0

N/2�1X

n=1

k2

n< (An)
2 + (↵

0

+ ↵00
0

)L
0

N/2�1X

n=1

k2

n= (An)
2

+
1

2
(↵

0

+ ↵00
0

)L
0

k2

N/2<
�
AN/2

�
2

(B.26)
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where we have used that = �AN/2

�
2

= 0, which is a result of y (x) being real, but

which can also be seen in Eq. B.21 by using kN/2 = (N/2) (2⇡/L
0

) and x = L
0

m/N

with m = 0, 1, . . . , N � 1.

The theorem of the equipartition of energy says that each quadratic degree of

freedom in the Hamiltonian of a system at constant temperature T contributes kBT/2

to the average energy. We now apply this theorem to the equation above. Notice that

each mode amplitude An appears quadratically in the Hamiltonian, and that the real

and imaginary parts of An are independent. Therefore

(↵
0

+ ↵00
0

)L
0

k2

n

⇥⌦< (An)
2

↵
+
⌦= (An)

2

↵⇤
= (↵

0

+ ↵00
0

)L
0

k2

n

⌦|An|2
↵
= kBT (B.27)

⌦|An|2
↵
=

✓
kBT

(↵
0

+ ↵00
0

)L
0

◆
1

k2

n

(B.28)

where h. . .i indicated a canonical ensemble average.

B.4.1 Step Free energy

if we substitute the e↵ective step Hamiltonian, Eq.B.25, in the expression for the

excess free energy of the step, Eq. B.12 , we can compute the excess free energy. To

simplify the notation we denote < (An) ⌘ xn and = (An) ⌘ yn. The e↵ective step

Hamiltonian can be written as
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H
step

= ↵
0

L
0

+ (↵
0

+ ↵00
0

)L
0

N/2�1X

n=1

k2

n

�
x2

n + y2n
�
+

1

2
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+ ↵00
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2

N/2
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0
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0
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1

2
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2

N/2

(B.29)
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with (↵
0

+ ↵00
0

)L
0

k2

n. The step partition function is
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and the free energy is
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Now we divide everything by L
0

to obtain �
step

.

�
step
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Finally, assuming isotropy we have (↵
0

+ ↵00
0

) = ↵
0

and the step free energy per

unit length is
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