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CHAPTER. I

INTRODUCT ION

The energy of nuclear levels can be inferred by two
general methods. The first is the study of &, /3 and Y-
spectramof radioactive nuclides. The transitions involved
are subject to selection rules so that only certain levels are
populated. Furthermore the Q - values associated with such
transitions place an upper limit of a few MeV on levels which
can be observed by these methods. The second methacd is the
study of reactions such as (p, p'), (4, p) and (n, X ) by
which level structures can be observed up to higher
excitations.

For a set of energy levels of a nucleus -{Ei} , Where
i =1 ton, let us define the level spacing to be

D(E) = Ei+1 - Ei ,

Ei+l + Ei
—— -
correlation between the spacing D and the average excitation

where E = It is cf interest to investigate the

energy-E. For this reason it is convenient to introduce a

_ AN(E)
dE
number of levels between E and E + dE. For a set of discrete

level density, defined as /D(E) , where AN(E) is the

levels, the density can be represented as a sum of Dirac

i

delta-functions:

¢ (E - E4).

Il
1M

/} (E)



We shall, however, consider the density to be a smooth function
of excitation energy given by the reciprocal of the spacing:

/9 (E) = 1/D(E). Energies will be handled in units of keV,
-1

so the density will be given in units of keV

It is difficult to obtain from experimental data the
exact form of the function D(E) because the spacing D is a
random variable. Functional forms of D(E) can be derived
containing certain parameters for nuclear models of various
degrees of sophistication. Then assuming some distribution
in the spacings, one can form estimates for these parameters
from data and assign accuracies to the estimates. It is
desireable also to have statistical criteria to measure the
"goodness of fit" of the suggested spacing functions to actual
data.

This thesis will be concerned with fitting spacing
functions to data. Functional forms of the spacing - excit-
ation correlation will be examined and a useful form chosen.
The distributions of the spacings will be considered, and then
the treatment of data to form estimates of the parameters
involvéd. The statistical properties of the estimates are
investigated. The level structure of Mn°® is used as an example
to illustrate the treatment of data and its application to

resolution losses in capture gamma spectra.



CHAPTER II

THEORY

Level Densities

The basic experimental facts are the following:
The first excited states of medium and heavy nuclei
typically occur in the order of hundreds of kilovolts
about the ground state. This is edquivalent to a level
density, the reciprocal of level spacing, of the order
of .01 per keV. The spacings of neutron resonances
observed at excitations of 6 - 8 MeV are much smaller
than those near the ground state, and indicate densities
of the order of hundreds per keV in spite of the fact
that only certain levels are excited because of angular
momentum and‘parity selection rules. The density of
levels is seen to change four orders of magnitude over a
few MeV of excitation energy, and so is anticipated to

be an exponential function of enerqgy.

It has been observed that log N(E), where
N(E) = th /D(E')dE', the number of levels up to energy E,
o
when plotted against E, is quite linear over several MeV.

As the level density increases with energy, one finds

" that log N(E) falls below the straight line initially

observed. This effect can be attributed to missed levels



and arises because of the finite experimental resolution.
‘A pairing effect is also evident in these plots, for the
straight lines are displaced from each other for neigh-

boring odd and even nuclei (3).

Level density is known to be dependent on shell
structure. The density of neutron resonances of magic
or nearly magic nuclei is orders of magnitude smaller
‘than between the shells at the saﬁe excitation (5). To
be successful, a theory of nuclear level densities should

i

explain and predict the features mentioned above.

It has often been fruitful tc¢ wmake analogies
between different physical systems in spite of an apparent
dissimilarity. A gool example is Bethe's conception (1, 2)
of the nucleus as a mixture of two Fermi gases, one of
- protons and one of neutrons, constrained within a box.

Much of the theoretical work done on nuclear level densities

is based on this original idea.

It is useful to consider a simple model as a
first approach in order to gét gome general results -
specifécally the exponential increase of level density
with egergy which is observed in experiments. Consider
then a nucleus, whenlA is not too small, as an ensemble
of free protons and neutrons which behave as a perfect gas
of fermions enclOSed in a box in a state of degeneracy.

!



The gas "heats up" when it is excited, and the energy of
excitation E, can be related to a "temperature" T' by
the following (4): | | "

E =a (kT'), (2.1.1)
where k is Boltzmann's constant, and a is a constant
which iepends on A and Z, the atomic weight and number
reépecéively. The density of nuclear states /D(E) is

related to the nuclear entropy S by the approximate

relation:
S =k log ( £{E) )
e
wherei/Qo = 2(0) . The density is then

S/k -
/Q(E) = /90 e (2.1.2)

The thermodynamical definition of entropy is:

E
s (s) = J <& (2.1.3)
’ o]

Substituting from (2.1.1), we get:
S (T') =2 ax” ‘SfT TAT' = 2 a ko T
S (E) = 2 k J[aE
Putting this result in egquation (2.1.2) we get the density:
pE) = poe? FE
Experimental data has been used to find values of the
constants [90 and a. For example, at A = 63, the values

of /90 and a are 0.3 MeV and 2 MeV (6) respectively.

There is some experimental evidence from N (E) - E

curves (3) and reactions (7) that the nuclear temperature T,



which has units of energy and is related to temperature*
T' of the nucleon gas by T = kT' is constant below about
10 MeV. This suggests that the nucleus is undergoing a
f irst order phase change or a "melting". The excitation
energy added to the system does not raise the temperature
but goes into disrupting ordered pairs which arise as in
a superconductor due to large pairing forces (3). Then,

according to equation (2.1.3) the entropy is:

E o

From equation (2.1.2) we get the level density:

PIE) = po E/T | » (2.1.4)
where T is the temperature in the energy units of E,’keV.

These two densities, one proportional to e2¢5§;
and the other to eE/T, are likely the two extremes.
Gilbert et al (8, 9) have devised a method of analyzing
densities in terms of both forms. The constant temperature
representation is uséd at low energies, and the Fermi gas
is used at higher excitations.

Exact theories of level densities which predict
actual numbers of states per energy interval require
sophisticated models including shell effects and pairing
energies, and are reviewed in reference 5. This thesis
is concerned, however, with the process of estimating

parameters of density functions from experimental data.

¥ "Nuclear Tem/oe"afw’e” is defined as: T = [;{E_ In fp(EI)]-'



We restrict ourselves further to level spacings below
the neutron binding energy, so that the constant temperature

E/T

density ~ e will be empldyéd rather than the Fermi gas
form which is more reasonable at higher excitations.

" Level densities are functions of spin and parity
as well as energy.  Experimental level densities include
levels of only certain spin and parity values. For a

given angular momentum J of the nuc.eus, the density of

states of spin J is given approximately by (3):

_ 2
P£rE) = (23 + 1) eI T+ 1) /267 5 g
- where 02 is related to the nuclear moment of inertia I
by 62 = 1T/n2, and /9(E) is the density given by equation
(2.1.4). This theory associates a rotation energy
n2J (5 + 1)/2I with the spinning nucleus. Assuming either

parity is equally probable, we get an observed densgity:

2
o_(E) @2__ > (20 + 1) e

where the summation occurs over all observable spin-parity
combinations. For example in an (n, K ) reaction, the
sﬁmmation would be from Jo - 1 to Jo + 1, where J, is the
spin of the capture state. Since mainly El transitions
are involved only one parity need by considered-in the
summation.

The constant temperature form of the spacing
function D (E) is given by the reciprocal of equation

(2.1.4):



D (E) = Dg & E/T (2.1.5)

where Dy = l/f>o- The spacing as a function of
excitation and spin will then be

Do e'E/T
S(23 + 1) o-J (T + 1) /252

Dobs (E)

Distributions of Level Spacings

When a projectile nucleon impinges upon a target
nucleus, it may simply be deflected by the nuclear
potential in a process called direct elastic scattering,
or may collide with a target nucleon. It the energy of
the projectile or the struck nucleon exceeds its separation
energy, we have a direct reaction. If, however, these
nucleons undergo further collisions spreading their energy
over the whole nucieus until a statistical equilibrium is
reached, then a "compound nucleus" is formed. It can
de-excite by ejectior. of one or more particles or by gamma
emission. Reactions may also occur before equilibrium is
established and direct reactions and the compound nucleus

are the limiting cases of the mechanism involved.

Slow neutron resonances in a heavy element like
uranium have widths |' from hundredths to several eV (10),

which correspor’ to lifetimes, T° /A, of 107%% to 10716 sec.

¢

" These states are long-lived on a nuclear scale, and

indicate the formation of a compound nucleus. By comparison,

the time for a 25 MeV nucleon to cross the nucleus is



around 10'22 sec., which we can associate with direct
reactions. The compound nucleus at excitations around
‘the neutron separation energy lives long enough for
electro-magnetic transitions to compete with particle
emission.

The compound nucleus reaction mechanism is the
basis for statistical models of the nucleus. The compound
states can be represented by the elements of a random
matrix. The eigenvalues of this matrix (which correspond
to energy levels) are consequently randomly distributed.
The distribution of the spacing between adjacent energy
levels of the same spin and parity is given approximately

by the Wigner distribution (10):

£(S) = TS exp (-TT82)

2D? 4D2
where S is the spacing between levels, and D is the mean

spacing or expectation of S, E(S):

©0

p= [ £(s)sas = E (s)
o

For a set of energy levels comprising all spins
and parities, the effects of the Wigner distribution become
much less pronounced. Each subset of levels having common
spin and parity belongto a Wigner distribution. As many
such subsets are superimposed, the totality of energy .
levels can be described as random, and the spacings between

them belong to a distribution which is essentially exponential:
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£ (8) =% eS/D gg¢g<coo

=0 . o2 <S<0
where D is the mean spacing, E(S). The distribution is

normalized, so that
[~
Jﬂ £(s)ds = 1.
o)

Evans (11) derives the analogous distribution of the time
intervals between successive random decays of the nuclei
of a radioactive source. The probability of an interval

of duration between t and t + 4t is shown to be:

f(t) dt = ae~at

dt,
where a is the mean rate of events, or l/a is the mean

time between successive events.

" Maximum Likelihood Estimation for Spacing Parameters

We have seen that a spacing S between consecutive
energy levels is a randomly distributed variable, whose
mean D is assumed to be an exponential function of energy

~ Dg e_E/rII

, wﬁere Dy = l/f7o- In order to fit this
function to data, the constants Dy and T are considered
parameters which can be evaluated by the statistical
theory of estimation.

The general problem is to find "good" estimates

for the parameterse<; in a given correlation y = £ (x,o(i).

Observations consist of a set of statistically independent
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samples (Xj , yj'), 3 =1 to n. The x4y are known exactly,
and the yj' are sampled from distributions p (yj') such
that the mean E (yj') sétisfies: E (yj') =vy5 = f(Xj ,OCi).
For each sampled yj', the distribution p (yj') is a
function of the parameters <; and will be written

P (yj' ,eX;). Since the observations are independent,

thé probability density function for sample is:
n
L(O(i):pl P(Yj' ,O(i),

where L (O(i) is the likelihood function.
When L (c(i) is maximized according to the equations

QL)

< = 0,
oc(i

then the solutions oK.' are maximum likelihood (M. L.)
estimates of the parameters ol;. This method (12) -gives
estimates with certain dosireablie properties to be

discussed later. For example, if p (yj‘) is the normal

distribution —L1___  exp S (yj' - y-)2 , whose
27T O 20 ]

mean yj is assumed a function of x linear in the parameters

ya = a x4 + Db, the likelihood function for a sample
{xj . yj-} (3 = 1 to n) is: )

n T
Lo(ab) = (=2=] e - L > (v

- axjy - b)2J .

Partial derivatives of L (a, b) lead to the normal equations

of least squares methods in this case.
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The spacings between consecutive enerqgy levels

with corresponding mean energies form a sample (E; , S.),

i
i =1ton, where each S bélongs to a distribution
o) (Si) =-%. e—si/Di, whose mean D, satisfies the equation:
i
D; = Do e Bi/T. The likelihood function is:
n
L (Do, T =TT p(s))
i=1
=TT &/t exp( - Sie )
i=1 DO DO
n
12 Ej n E. /T
1 T i=l 1 i
=—5 e exp| - 5 Si e
DO O l=l

N\
The parameters D, and T are the zero energy spacing and
the nuclear temperature, respectively, in keV. Since L
'is a maximum if log L is a maximum, we can write the M. L.

equations more conveniently as:

d1n L(Dg , T)

= 0
3 Do
dln L(Dy , T) _ 0
oT
n o n E;/T
where 1n L(DO , T) =.% . E; - n 1ln Dy —.% ;Zj S; e
L oi=1 o i=1
Then we get:
i T:"
dDo Do D02 1
N H < El/T
- o E; + 1 z_SlEle = 0
ST 72 D T2
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Simultaneous solutions to these equations give the estimates

Do' and T' for the parameters Do and T: .
_ E‘/T‘ .
] l 1 . :
Do' = L) S;e : (2.3.1)
E:/T!
Do' > E; =5 SiE; e (2.3.2)

It is seen that an analytic sclution is not possible,

for on eliminating D ', we get

JEi/T! E;/T'

% (283 ) (ZE;) =X8iE; e (2.3.3)

Consequently, the properties of the joint estimaﬁes Dy'
and T' are indeterminable. Three different cases will
be investigated. As a first approach, we will assume °
that the true temperature T is known. On a semi-log plot,
the spacing function (2.1.5) is a straight line of slope
- 1/7 and intercept InD . We are then estimating the
intercept of a line of known slope from a series of measure-
ments of D as a function of E. An explicit theory of the
propert;es of the estimate DO' is then possible which
serves %o test Monte Carlc methods used in less simple
aéproaches.

The second approach is to eliminate the temperature
as a parameter. If the spacing is known accurately at
some energy, then we can get a relation T =T (DO), and
the likelihood function is a function of only Dg. The
straight line mentioned above is being forced to go

through one known point. Monte Carlo methods are used to
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investigate the properties of the single estimaté Dy'.
The third approach is the joint estimation of

the slope and intercept.of thé function D(E). A Monte

Carlo calculation gives some indicatibn of the properties

of the estimates Dy' and T'.

Properties of the Estimates

Since values for any estimates of parameters
depend ?n the sample, it is clear that Dy' and T' will
generafly be different for different samples, and belong
to some distribution themselves. An estimator D' is

unbiased if its expectation E (Do') is equal to the true

value D,, and this is obviously a desireable property

since, K it means there is no "systematic" error or bias in
our estimates.
The gquestion then arises as to what exactly are

the distributions of our estimates Do' and T' and their

variances, for these indicate the accuracy of our estimates.

There is a theorem (12) which states that the variance of
unbiased estimators is bounded from below for a given
sample size. In the case of a likelihood function L with

one parameter ¢{ the minimum variance is given by:

52 _ 1
min B (d2 ln L (s0)°
dect ’

An estimate with this mi..imum riance is said to be


http:approach.is

(1)

15

efficient. If the variance is a minimum as the sample
size goes to infinity, the estimate is said to be
asymtotically efficient; Efficiéncyris clearly desireable
in an estimator because it implies that maximum accuracy
is attained.

Most maximum likelihood estimators have the
following property (12). As the sample size n-2oo, the
likelihood equation gé%%

¢

probability tending to one, and the probability that

= 0 has the solution «' with

fex'! ~¢|>€ >0 for a given € tends to zero. The solution

' is also asymtotically normal with mean &, and is an
asymtotically efficient estimate of &, i.e. with a

variance equal to the lower bound given above.

Estimation of Dy fcr Xnown Temperature

If we consider estimating only the parameter Dg, .
then the M. L. conditions reduce to equation (2.3.1) in

which T' is replaced with the known temperature T:

n E: /T
— l
l—zl Sl e (2.4.1)

SR

The expectation is

E (Dg") =E(

I

5 {4
L=
I_.I\.
=
]

()

o
r
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. -BE./T . .
since D; = D, e 1/ . The estimate DO' is therefore

unbiased independently of n.
The distribution of Dé' can be derived by writing

equation (2.4.1) as:

b+ = Do & (2.4.2)
O - Lnmead 3z - -
n i=1 7
where x; = Si/Di' Since the probability density function
—-8: /D=
of S; is p (Si) = Dl e 1/ 1, then the probability
i
density of x.: is f:(x.) = (x:D:) dS;
Y i il®y P AXiYy Tx:
-2
=e 7t (2.4.3)

n
Consider the sum z = .2% x; in equation (2.4.2).
1=

If n = 1, then the probabil’ 7 density function (abbreviated

&

p.d.f.) of z. is simply e ?1, For n = 2 the sum

zy = %Xy + X5, where the p.d.f. of Xy and X, are given by

equation (2.4.3), has the p.d.f. {(13}:

by (25 ) = \? £1 (x1) £ (25 - x7) dx3
o
- jﬂe"xl TF2 %y dx,

py (25) = =z e”%2
For n = 3, we consider the sum z3 =z, + X3 and get
P3 (23) = ~% 232 e %3 . Inspection ;uggests the general
p.d.£f.

Py (z,) = (nll)' znn_1 e “n . (2.4.4)
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For =z = Z_ +

0+l a ¥ ¥pp1 » with the assumption that pp (zn)

is given by equation (2.4.4), we can write

Zn+1
Pre1 (Zppq) = £ Pnlzn) f41 (2pp1 - 2,) dzp
1 n-1 -zn -(z2p41-24)
= ?E:ITI 4 zn e e dzn
n
1 o Aptl znadl
T (n-1)! n
1 (1’1+l)—l —'Zn+l
= Zn+l €
({(n+1)-1)!

This is precisely the ecuation for pn(zn) with n + 1 in

place of n, so that the general p.d.f. for the sum Zn

given by (2.4.4) has been proven by induction for all

n 2 1. Since D' =.%? zp, then Dy' has the p.d.f.:

n 1 (nDo') n-1 _ngg;

5 .y e
Do {n"-i-> : Jo

p (Dg")

n
n ,n 1 n-1 -35 Do
= (2 . (Dg') e
Do/ (a-1): (2.4.5)
This is called a gamma distribution, which is identical

in form to the generalized n - fold interval distribution

(11). It is normalized because

oo o5 o n-1 _MPo
' - 1 nDo D Do
g' p(D,')dD " = T g' ( B ) e Yo d{ nD2 )
_ ()

(n=-1)!

= 1
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The variance of this distribution is given by
62 =E [D,' - E (Dy")] 2

(-4 .
6? = [ (Do - Do)2 p(Do') dDo’

0

2
62 = Do” , (2.4.6)
n

The likelihood function can be written in terms of

the estimate Dy':

1 Ei/T

L, TXEj -{zXSie

L = s e. . e
Don i

iIn(p.~™) 'T];ZE n 20

L = e o e 1 Do
nDg' -n

FLE; - Zp2+ In (D7)

L =e e o

There is a theorem (14) which states that if the likelihood
function can be written in this for&% then the M, L,
estimate‘Do' is efficient, so that the variance given by
equation (2.4.6) is the minimum for all unbiased estimates
of Dg,.

Thus we have shown that D,' as given by equation
(2.4.1) is an unbiased efficient estimate of D, and have

given expressions for the p.d.f. and variance of Do'.

(ii) Elimination Oof T

The second case to be considered in solving the

M. L. equations is the case in which the nuclear temperature

¥ The genera/ form required in the theorem is : L = H(E) exp [A (Dy) D! +B(D,)]
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can be considered a function of D,. Suppose that at the

neutron separation energy, . E the level spacing, D is

nl nl

accurately known. Typical values would be 70 eV spacing

~En/T
e n/T

at 8 MeV. From D, = Dg ,

we get
T = En/ln(DO/Dn). The likelihood function can

then be written as a furction of Dy only:

1SE; E. /T,
1 1 i \
L(DO,T)=_1H e T exp(—ﬁaZSie J
Do
(E./E,) In(Do/Dn)]
L (D) = —D_l_ﬁ exp{—EJ;r ln(Do/Dn)ZEi - DLZSJ-_ e T
o] | N (@]
(2.4.7)
o1ln -(TAx_l . N . .
Then 232 - djkl = 0 gives the maximum likelihood
Do ao

estimate Dé'. This ecuation cannot be solved explicitly,
so numerical methods must be used.

It is not possible to investigate directly as in
case (i) the kias, efficiency, variance or distribution
of the estimate D,'. A Monte Carlo type of calculation
was therefore performed. For each of many samples of

1

spacings {Si} , an estimate D, 5 was found. The set of

all;’
5l

in histogram form the distribution of Dy'. A sample mean

such estimates {DO' constitute a sample which illustrates
and variance can be calculated znd a bias detected if it

is appreciable. Such a Monte Carlo calculation does not
give general results, but does give an indication of the
distibutions involved for certain initial values oOf Dy

and T.
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(1iii) Joint Estimation of Dy and T

‘The third caée in fhat in which estimates of
both Dy and T are to be made. The conditions for maximum
likelihood (2.3.1l) and (2.3.2) lead to the transcendental
equation (2.3.3) for the estimate T'. This equation is
solved numerically. The estimate D,' is then given by
equation (2.3.1). The estimates belong to a two-
dimensional distribution £ (Dy' , T') which can be rep-
resented by a surface. The intersection of this surface
with the plane T' = T wilil form a curve which ig the gamma
distribution of equation {2.4.5). This is all that is
known of the surface £ (DO' , T') because of the absence
of explicit solutions of the M. L. equations. The ~ross
features of the joint distribution were illuminated by a
Monte Carlo calculation. A histogram was generated from

a large number of joint estimates, each pair of which

was obtained from a different sample of gpacings.



CHAPTER III
MONTE CARLO CALCULATIONS

The Generation of Level Spacings

In order to get many estimates for DO‘(and T)
from a Monte Carlo calculation, it is necessary to be
able to generate many sets of level spacings which are
exponentially distributed. In this section a method for
doing this is given starting from a set of pseudo-random
numbers which were generzated in a computer subroutine.

-

A particular set of 9 such numbers taken as an example

is followed fhrough their trarnsformat .on to a set of
spacings in order to show the algorithm.

Let us originally choocse :come reasonable values
for/oo = l/DO and T. Then if there are N energy levels
between zero and E5 keV, the probability of a level of

energy between E and E + dE if E is less than E4 and

greater than zero is:

@ (2)4E = _P(E)dE
N

The level density /O(E) is the exponential function given
by equation (2.1.4) for _ow excitations. For consistency,
we must have

E

.-

o
f’ (E)dE

21
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It is easy to generate pseudo-random numbers vy
between zero and 1.0 by the multiplication of large
.integers followed by suitabié truncagions. The probability
of such a number being between y and y + dy is

Q/(y} dy = dy 0 £y &1
Equating these two probabilities we get

E/T
/70 e dE = dy

Integration gives the solution:

~ M
4 H
<o

)
From a set of numbers fyi} drawn from the uniform distri-
- i

; N
E =T In (= + 1) (3.1.1)

bution W (y), it is therefore possible to form a set of
numbers {Ei} which are exponentially distributed. This
latter set represents a set of energy levels with the
exponential density 19(3). Then by definition we can

form a set of spacings{éi} where S; = Ej.1 -Ej, énd S5

is considered a function of the average energy (E;. +E;)/2.
For a sample of n spacincs, N levels were generated from

a set of N values of y, and N itself was sampled from a
ndrmal distribution with a mean of approximately n + 30

and a variance 62 = n + 30. This insured an initial
sample {yi} of a size which was always bigger than the

number of spacings desired but never large enough to waste
much computational time. For example, for the generation
of forty spacings, N was sampled from the normal distribu-

tion of mean 81 and variance 81, so the probability that
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N 2 40 was almost one. One such sample had N = 69, and

the frequency histogram for the uniformly distributed
numbers -{yi} (i=1, 2, ;.. 69) is shgwn in Figure 1.

The distribucion VW (y) is also shown suitably normalized

to the area under the histogram. The irregularities of
such a ;mall sample are somewhat smoothed in the cumuiative

distribation ﬁ?(y) in Figure 2, where

- Y
Viy) = [7 W (y)ay! o<y<1
@]

=Y
The pseudo-random numbers .{yi} appear uniformly distributed
J

from zgro to one.

Each y; is now transformed by equation (3.1.1)
to an energy level E. which belongs to an exponentially
distributed set. The initial values of /)o and T were
0.005 kev-1 and;lOOO keV respectively. In Figure 3 is
shown the histogram of the levels obtained from the
pseudo-random numbers of Figure 1. The exponential level
density /O(E)AJeE/T is also shown with suitable normal-
ization. In Figure 4 the total number of levels up to
some energy E is plotted and can be compared to the integral
of level density given by

{-E
N(E) = | (E')aE"
o P

A BT
= [)O e de'
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E/T
= FOT (e -1)

It is séen from Figures 3 énd 4 that the random sample
of energy levels {E;} (i =1, 2, ... 69) does exhibit
an exponential density. No statistical criteria are
given here to test how well the histograms f£it the smooth
curves of theory. In making comparisons, it must be
remembered that the number of levels in each energy
interval is quite smail and it is not unreasonable to
assign an uncertainty of the order of the square root
of the number of levels counted in each energy interval
in Figure 3. The number of levels counted up to some
energy E in Figure 4 can also be given this uncertainty.
The curves P(E) and N(E) then fall within the limits of
uncertainty of the plotted points in most cases.

From this typical set of energy levels {Ei}
(1 =1, 2, ... G5, was formed the set of level spacings
-{Si} according to §; = E; 7 -Ej. Each spacing S; is a
random variable whose mean D. can be calculated from the
average excitation (Ej;3 + E;)/2 by equation (2.1.5).
Wé can now form the set of ratios {xi} (1 =1, 2, ... 69)
where x; = S;/D;. In section (2.4) it was shown that
such ratios should be distributed as e~ ¥, and Figure 5
shows that the frequency histogram of the set x. does

resemble an exponential probability density. In Figure 6

it 1s shown the set {x&} has the cumulative distribution
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given by

CF(x) =J\ e dx ' O $xX< @
o)

1l
—
I
0

We therefore have a method of generating random exponent-
ially distributed level spacings S; whose means D; are

an exponential function of energy. In Figure 7 is
plotted the set of spacings use.l in our example. The
straight line is the spacing function corresponding to
the initial values of the parameters Dy and T from which
the spacings were generated. From this set of "data
points", estimates D ' and T' can be made which won't
usually be the same as the true values Dy and T. By
generating many different such sets of spacings and
forming estimates from each set, the statistical properties

of the estimates are studied.

i

Monte Carlo Calculation Ffor Xnown Temperature

When only D is estimated by maximum likelihood,
and the temperature T is considered known, the eétimaté
D;' has been shown to have an explicit solution which
is unbiased and efficient according to section (2.4).

The estimate also belongs to a gamma distribution given
by ecuation (2.4.5).( A Monte Carlo calculation was done
because in this case there is an explicit theory to which

results can be compared. Validity of Monte Carlo methods
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in this instance warrants its use in two further'cases
in which the properties of .the estimates are not explicitly
available.

Lecording to the method of section (3.1),‘N pseudo-
random numbers were generated m times. For each set, N
was sampled for a normail distribﬁtion of mean 121 and
variance 121. The pseudo-random numberé were transformed
by equation (3.1.1) into N'energy levels, so that on the
average§12l levels wefe available to form n spacings. For
each se% of levels, four estimates Do' were made: the
first from the first ten spacings (n = 10); the second

with the first twenty spacings (n = 20); the third with

ct

he first forty {(n = 40); and the fourth and last with the
f.rst,eighty (n = 80). One hundred (m = 100) sets of

leveié were generated, so that one hundred estimates Do'

were found for each of our values of n. The initial

values of the parameters were 200 keV for Dy and 1000 keV

for the temperature T. The estimates are shown in histograms

as a function of n in Figure 8 to 1l1. The smooth curves

in these figures are the gamma distributions £ (Dg') given
by equation (2.4.5) which have been normalized so that

the integral of £ (Dy') from zero to infinity is equal to
the area under each histocram. The numbers of estimates
falling in each interval of D' are quite small, and within

an uncertainty given by the root of these numbers, the

histograms acree with the gamma distributions. The only
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exception is in Figure 11, where the histogram seems
unusually high.

Let the set of m estimates be represented by

f. 3 . . .
1Poljf , (3 =1, 2, ... m). This set constitutes a
sample from the distribution £ (DO'), whose eXxXpectation

E (Dg') is Dgy. It is easy to show that the sample mean
Do’ is an unbiased estimate of the true mean Dy. The
sample mean is by definition:

m

2 Dy
J=1

!
=T

j.

2 i5 21so0 an unbiased estimate of

The sample variance s
the variance ¢? of the distribution £ (DO'), and is given

by 2_ 1 ¢ Ty 2

The results of the scts of one hundred estimates are shown
in Takle I for different values of n. The sample means
do not show a bias, since Dy' is an unbiased estimate of
Dys. The sample variances vary almost as 1/n as shown in
Figure 12. This is in agreement with the wvariance g2
faund in equation (2.4.6;.
Figures 8 to 11 demonstrate how increasing the
number of level spacings affects the accuracy of the estimate
Dy'.  They alco demornstrzte the t.ieorem ~entioned in
section (2.3) that meximum likelihood estimates have

asymtotically normal distributions. It is seen that £ (Dg')

becomes less skewed as n increases until at n = 80, it
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appears nearly Gaussian in shape. -

The conclusion to he drawn from these Monte Carlo
calculations is that they fﬁfnish a means to generate the
approximate form of the distributions of the estimates Dj'.

In the next two sections this is the only means available.

TABLE I

Monte Carlo Results for T Known

Zxpectation Number Sample Sample Standard

Value of Mean Variance s Deviation s
Spacings .
E(Dy') = Dy n Dy "
200 keV 10 192.2 keV 3144 kev?2 56 keV
200 20 198.6 1347 37 |
200 " 40 201.0 638 25
200 80 200.0 208 14

-~

Monte Carlo Fesults for Elimination of T

A spacing ¢ Dpn = 70 eV was assumed at an
excitation Ey = 8 MeV in orxder to make the temperature T
a function of Dy. Then the likelihood function given by
(2.4.7) is a function of only D, but no explicit solution
ig possible.: The maximum likelihocod estimator was found

by forming the derivative EL&%TE and evaluating it at
\ o

a series of test values Dy which converged on .he point

D.' at which the derivative is zero. The function 1ln L (DO)

o]
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if plotted aé a function ¢f 1ln D, appears almost parabolic.
The simple method of solution by test evaluations was
possible because of the speed of the McMaster IBM 7040
with which all calculations were made.

For each of one hundred sets of pseudo-random
nunmbers {yi} (1 =1, 2, ... N), a set oi energy levels
{Eif (1 =1, 2, ... N) and n N spacings {Si were formed
and an estimate D,' found for Dy. The histograms of
estimates are plotted in Figures 13 to 16 for the number
of spacings n egqual to 10, 20, 40 and 80. The sample
means'ﬁgT and sample variances s? were calculated as per
Table Ii. The compari son ~F the assumed value of Dy and
the sam%le mean show that tne M. L. estimates D' are
essentially unbiased. The variances s? are plotced against
i/n in Figure 17 and show the same linear behaviour as in
section (3.2). The estinates in a sense become more precise
as the distribution £ (Do') becomes narrower with increasing
n.

It is importaat to recall the motivation for these
Monte Carlo calculations. The likelihood function is a
statistic, thatjis, a fur .on of the "observations” {Si},
and gives an esfimator at its maximum value. It further
contains the lower limit of accuracy of any unbiased

estimator, maximum likelihood or otherwise, as given by

the minimum variance in section (2.3). The quantity
2

In L)

g (-2 1n L)

5 where ¢l is the parameter, is called Fisher's
S
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amount of information {(12). There is a temptation to

draw more than this amount. of information from the like-
lihocd function. Muradyan éﬁd Adamchuk (15) for exanple
assert that the probability density function of an estimate
is proportional to the likelihood function, and use its full
width half maximum as a variance. This has been disputed
byuSlavinskas and Kennett (16). onte Carlo methods can
give some insight into the distributions of estiﬁates

without over-interpreting the significance of the likelihood

function.
TABLE II
Results of 100 Estimates
Dy' for Different Sample Sizes
Assumed no= ample Sampilie 5 Standard
Value Sample Mezi. Variance s Deviation
of Dy Size of
Spacings S. oot
208.7 keV 10 198.1 keV 3228.2 keV? 56.8 keV
208.7 20 201.6 1615.5 ‘ 40.2
208.7 40 2G1.9 565.4 29.4
1 208.7 80 205.5 340.0 18.4

Monte Carlo Results for Estimation of Dy and T

The estimates belong to some probability density
function £ (Dg', T') whose £7 2 is not known except for

the cross-section throuch T°' -~ T, Since a surface and not

]
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merely a curve is to be built up by the Monte Carlo
method, a very great number of joint @stimates must be.
calculated. By the method of'sectioﬂ (3.1), four thousand
and £f£ive hundred set: of forty spacings were generated
from sets of pseudo-random numbers and estimates D,' and
.T' were made for each set. The parameters D, and T were
givén values of 200 keV and 1000 keV resgpectively. The
transcendental eguation {(2.3.3) whose solution is T' was
solved.by test evaluations in an interval which converged
on T', The set of estimates {bo'i , Ti}- (i =1, 2, ... 4500)
was sorted into a thirty-two by thirtv-two matrix formed
by dividing the 34' - T' plane into intervals of iO keV
along the Dy' axis and of 50 keV along the T' axis. A
scatter-plot is si.own in Figure 18. The points given by
the coordinates (Dy', T') were plotted uniformly over the
areas into which they Zell. The height of the histogram
is then proporticnal to the density of pointé. Figure 19
shows a series of cross-sections of the scatter plot with
constant intervals on the Dy' axis indicated by the arrows.
Figure 20 shows a series 0L cross-sections of constant
interval on the T' axis. For each D5, a sample variance
could be calculated for T' and vice versa. The scatter
plot shows that the regression of DO' on T' or of T' on D, '
is not linear. The points falling between T' = 950 and
1050 keV are shown in a separate histogram in Figure 21

in order to compare it with the gamma distribution which it
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should and does resemble.

These calculationz were done only for forty
gspacings because this ié a féasonablé number of spacings
which are observed by (n,d ) studies. Consider the
regression of T' on Dj'. For any value of D, ', the mean
~temperature is

(2]

'e
E (T') = J £ (D', T') T' dT' =g (Dy")
o}

The function g is not linear. 1In order to calculate

a correlation coefficient, a transformation must be
effected to make g a linear function. The choice of such
é Lransformation is, however, difficult to make. An

constant x Dg'

exponential ~e was tried, and the scatter
iy 4

plot is re-drawn in Figure 22 in a semi-log representation

-

which is still non-linear. Dolby (17) gives a quick
. 2% b

method for choosing a transformation. His method suggests
a function of the general form a + b (¢ + DO')E), where

a, b, ¢ are constants and from our data, p 1is about 3.



CHAPTER .IV
APPLICZTION TO Mn>6

The gamma radiation from the °° Mn (n, § ) °° Mn
reaction has been studied using a Ge (Zi) spectrometer and a
Ge (Li) - Nal coincidence spectrometer (18). The number of
levels N(E) is shown as a function of the excitation E in
Figure 23. The decreasing slope of the curve is characteristic

-

of levels undetected hecause of finite resolution. The constant

temperature spacing function Oy e_E/T wag agoumed and maximum

likelihood estimates were macde for the parameters Dy and T.

The estimates were 268 keV and 1080 keV respectively. Contours

of constant likelihhod are shown in relative units in Ficure 24.
The estimates provide a useful measure of resolution

losses in gamma spectra. Consider transitions from the capture

state at the neutron separzticn energy Sy to adjacent levels

at an average energy E. If the spacing at this energy is less

than the detector resolution, 15 keV, the gzmma rays are not

resolved. The probability of a spnectral multiplet is therefore

/..15 —S/D
™ Y — l f
P (E‘ )] = —B J e ds,

where E. is the energy of the gamma ray, and D = Dj e_(sn_EK )/T.

For the Mn°® spectrum, this probability is 0.17 for a 6 MeV
gamma ray, and is 0.69 for a 4 MgV gan.ia ray. The fraction of
unresolved gamma rays therefore becomes quite appreciable as

the gamma ray energy decreases.

33
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