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In second order perturbation theory for nucleaf
matter, an exact treatment of the Pauli exclusion principle
is given from a geometrical point'of view. All thé
kinematic effects of the Pauli exclusion principle are then
-included in a function K(k,k',q), which is related to the

" "Euler's function through a double integration. With this
function K(k,k',q), we can treat the Pauli correction in
‘nuclear matter in a more exact way so that a check to the
conventional angular average approximation is obtained.
For separable core nuclear botential, this function
K(k,k',q) serves as a very cdnvénient appératus for the
perturbation calculation of the binding energy in nuclear
matter. | |
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CHAPTER 1

INTRODUCTION

The goal of nuclear structure theory is to
calculate the properties of real nuclei, given the two-
nucleon potential. The two problems are to find what
the potential should be and how to carry out nuclear
structure calculations. Infinite nuclear matter is one
of the simplest systems that can be studied and consider-
able labour.has been devoted to understanding it. The
binding energy, density, symmetry energy and compressi-
bility are the guantities which are usually calculated
and compared with the semi-empirical mass formulaf
‘Assuming that the methods of calculation are vaiid;'a
realistic two—nucleon force shotld give the correct binding
energy in nuclear matter, so this study serves either as

~a testing ground for many body methods or as a check on
the validity of two-nucleon forces.

>In the calculations of nuclear matter binding
energy, perturbation methods have been attempted several

(1)

times since Euler's first paper in 1937. 1In his
paper, he introduced the so called Euler's function to

the first and second order perturbation calculations for



local central potentials. After him, there have been
many attempts to apply perturbation theory to well-
behaved potentials. An infinite hard core in the two-
body potential, however, invalidates perturbation theory
in its simplest form. Also, the presence of such a core
introduces divergences in the self-consistent potential
of the Hartree-Fock method if the usual boundary condition
in the zero of the relative coordinates is used. 1In order
to apply the Hartree-Fock method, many other kinds of force
have been suggested. For examplé;errman tried to find
- a weak two-body potential which gave the same scattering
data as the hard core in order to avoid the difficulty of
estimating two-body correlations due to the strong repulsive
-core. Following Kerman's proposal,~Bressel(2) fitted a
static potential from scatteriﬁg data ﬁp to 350 MeV. This’
static potential has, instead of an infinite hard core,
a core with height 648 MeV and width 0.7 fm for the |
1

S, state. Although it is not weak enough, it leads us to

the hope that it is possible to remove the infinite hard core
_______ and do the standard Hartrée-Fock calculations and nuclear
matter perturbation calculations.

(3) oxtended the work of Euler to

-In 1965, Sprung
all types of potential used at that time. In his work,
Sprung brought-the-first and second order perturbation

theory into aipractical form by introducing a set of

"generalized Euler functions". From his work, one can


http:Although.it

obtain quickly and accurately contributions to the bind-
ing energy of nuclear matter in the first and second order
perturbation theory for any local, finite potential.

At the same time when the above work of Sprung was
carried out, Tabakin(4) fitted a completely hon—local,
separable potential from the scattering data. 1In the

16, which has Value about

binding energy calculation of 0
127 MeV, this potential binds too much while Bressel's
potential binds too little. So it seems likely that a
combination of these two potentials might give the right

- binding. The theoretical one pion exchange model gives a

local potential outside a radius 1.5 fm, while inside the

core non-local, many-pion effects cannot be ignored.

. Therefore it seems reasonable to use Tabakin's potential inside.
"the core and Bressel's potential, whiéh agrees witﬁ the

local part of the OPEP, outside the core. Kerman and

Levy(s)

thus proposed a potential which, like Bressel's,
is the same as Hamada Johnston at 1érge r bgt has a

seéarable core. ‘
In both standard perturbation theory(6) and

Brueckner-Goldstone's theory(7)

of a many-body system
such as nuclear matter, the Pauli exclusion principle
comes into play when we go to the second order term.
Because of the Pauli exclusion principle, the intermediate
states must bé outside the Fermi sea associated with this

system. As we will see later in Chapter II, this effect -



and the fact that all the initial states must be in the

Fermi sed show themselves as the two restrictions in the

following integral

) 7% )
e : lu

/

k'fg/<' /

v

/5By >/
where K is the center-of-mass momentum of the interacting
pair of nucleons while k and k' are, respectively, the
initial and the intermediate relative momentum of this pair.
To interpret this integral, We take a geometrical view by
saying that it's value is related to a certain volume
between four intersecting unit spheres. The conventional
method of treating this problem is either to use the Monte-
Carlo method of integration or to perform an angular average

(8) | We will not discuss the

over the whole~§ space
Monte-Carlo;method‘in this work but will discuss the angular
average method in some detail in Chapter III. As an
approximation, the angular average method has been extensive-
ly used by people in the calculation of nuclear maﬁter
binding energy. We believe that it is a good approximation
in certain cases, but this will be doubtful in other cases
like the calculation by using a separable core potential
which will be carefully discussed in Chapter IV. To prove

that what we have said is right, we first perform an

analytic evaluation of integral (1.1). The result is
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represented by an analytic but fairly complicated function

K(k/k',q) where q = |E'“£|- ‘Then we calculate the Pauli
correction in the "Reference Spectrum Method"* for nuclear

(9)

matter by using the angular average approximation and
also by making use of the function K(k,k',q). We have

found that the result obtained from the former doesn't differ
much from that obtained from the latter. This means that
the angular average approximation is a good approximation in
this problem. éut when we go to the discussion of the bind-
ing energy calculation of nuclear'matter for a separable
core potential, we are not sure if the angular average
approximation is still a good approximation or not as there-
are certain terms which may badly destroy this approximation.
However, we will see in,the last Chapter that the function
K(k,k',q) will be a very convehient'apbaratuS'for treat- -

ing these terms.

* : . '
From now on, it will be abbreviated as RSM.



- CHAPTER II

FORMALISM

In this chapter, we are going to discuss explicitiy
how the Pauli exclusion principle comes into the second
order term of the perturbation calculation for nuclear
matter, in what form does it appear, and how an exact
treatment.is possible and performed. As it was said before
iﬁ the introduction and will be shown later, all kinematic
effects can be summed up into a single function of three
variables K(k,k',q) with a very complicated form. But
it has a simple relation to the well-known Euler's
function (1) . The correctness of this relation guarantees
~that our treatment of Pauii effect is also cofréct. |

In what follows, we will first introdﬁce K(k,k',q)b
in Sec. 2-1. In Sec. 2-2,'we dérive this function from
a geometrical>point of view. Then we discuss the relation

between K(k,k',q) and the Euler's function.

2-1. Pauli exclusion principle in nuclear matter.

Nuclear matter is a hypothetical, infinitely
extended system of nucleons. Because of the translational
invariance of such a system, the wave function of each nucleon in

nuclear matter is just a plane wave
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where k is the wave vector which runs from 0 to kF' called the
Fermi momentum of nuclear matter. The number density

is then related to k. by

f

= A _ > Kf ' (2.2)
F S 372

In the standard perturbation calculation of the
binding energy per nucleon in nuclear matter, the second

order direct term is of the form

P / KLz/viab >L<ab fv/Lyr >
- -_2 » = = =
S o Fatbs —Ep —Ey
a6 >/
L =274

(2.3)

The factor 1/2 accounts for the double counting of the
interacting pairs. In the secona summatioﬁ over the inter—'
mediate states, the restriction that the wavé vectors must
be greater than Fermi momentum comes from the Pauli
exclusion principle and the fact that all the states in

the Fermi sea are occupied. It is these restrictions that

makes an analytic treatment of B(Z)

complicated.
Let us first evaluate the matrix element
<gm|v|ab> under the condition that' g + m = a + b.

Using Eg. (2.1), we have

*

Here we take k. as the unit of momentum.

£



- -ig-r, -im-x v
= ;% fd;ﬁfd3§mfd3§afd3£b e e ™ x | (2.4)
ié.ya i?'rb
x vlr,,r ,r . )e e
1f we perform the transformation
I =I,r r Ro= (x4 )/2
| - - | . .
' =xr,7r, - R (x tx,)/2

to the initial and the intermediate relative and center-of-

mass coordinates and also the transformation

2k =gm , 2K = gim (2.6)

' =ab , 2K =a
then Eq. (2.4) becomes

<zm|v|ab>

(2.7)
T VO TR B T
= £ J&rfa’r v, et TR
We define
3 LI LI
vik,k') = f% fd3;fd3§‘ v(g,;')el(k r'-k-x) (2.8) -
then Eq. (2.7) can be written as
4z '
<tm|v|ab> = == v(k,k') = (2.9)

From Eg. (2.6), the energy denominator in Eq. (2.3) is

. 2 . ‘
) _4ﬁ 73 o2
B +E -E, -EF =3 (Z'=£7) . (2.10)



Using the well-known relation

< . S ;:/3
< Yo X (2.11)
we then write
2275 B o T 7 Ll (2.12)

If we take k,k' and K as the independent variables and put

in the transformation Jacobian 8 , then Egq. (2.12) becomes

» &« o / 2 3 :l
B - 3% _sz_./ d%/c/ié[ﬂ’%‘ z ff’ }i} ' (2.13)
.2«775 A £ - (3] /Ri£/</ ﬁ/ '-i :
I&z287>1

The last integral in Eg. (2.13) contains all the-kinematic
"effects due to the Pauli exclusion pfiﬁciple in nuélear
matter. The above mentioned integral depends obviously on
k,k' and the angle between them ek.k. |

| To simplify Eq. (2.13), we take k' as the quantization

axis and define g by

(%=

f = K —& (2.14)

-

which has the physical méaning as the momentum transfer
between the initial and the intermediate relative momenta.

Eq. (2.14) implies that

& oo

ofza:se’ﬁ% =2z 7 ' - (2.15)



10
Using Eq. (2.15), we can replace the integral over ek'k
by an integral over g and write Eqg. (2.13) as
' BrE < / '
ro 7/ . 0‘(}5/{/
#Zf w) & ‘é/, ’ g;;é”-xfl T (2.16)

18- K/ VK 2RI/
[K2p7 >

L0 BB
L = 27

So we define

KR &8 =/ ok | (2.17)
N/ 277a% °
/,fffi’/?/

We see that the Pauli exclusion principle can be
treated by the function K(k,k',q) which is a function of
the initial relative momentum_&, the intermediate relative
momentum k', and the momentum transfer between them q.

. Once K(k,k',q) is evaluated, B(z)

can always be éa;culatéd
because we didn't specify the potential in our derivation.
So our formalism is a very general and exact one suitable
for both local and non-local potentials. In later parts of
this work, we will apply this formalism to the treatment of

separable core potentials as proposed by Kerman and Levy

at M.1.7. (5)

2-2. Function K(k,k',q) and its properties.

The function K(k,k',q) which we defined in the
last section has a geometrical meaning. For a given set
of k,k' and g, which satisfy the triangle condition

q = k' - k, the value of K(k,k',q) is the volume inside

-



the intersection of spheres A and B (the flying saucer),
Vgﬁémbutsidévbogh spherég%éwénaﬁg aé shown in Fig. 1
(which means there are bifes out of the saucer). All

the spheres’have a unit radius. Let the centers of these

spheres be A,B,C and D respectively, then the distances

between them are defined as

AB = 2k
CD = 2k' (2.18)
BC = ¢g
AC = X
where
x=k'+k | (2.19)

To evaluate K(k,k',q), we constfuct'all the possible
cases in Fig. 2 to Fig. 10. After analyzing these figures,
we arrive at Fig. 11 which shows the properties of function

K(k,k',q). These properties are summarized as follows:

(1) 0 <k <1l, 0 <k <k' <w, |k'-k|<g< k'+k (2.20)
(2) When k' < k, K(k,k',q) = 0 | o (2.21)

(3) When k = 1, K(k,k',q) = 0 (2.22) -
(4) Wwhen k' > 1 +./; ,2 org> 2

21 (1-k) 2 (2+k) (2.23)
3

K(klk'rq) =

(5) The values of K(k,k',q) at the different regions are
givén,by Eq.(2.24). The various possible situations are
illustrated in Fig.2 to Fig.1l0 and in Fig.ll we show.the
boundaries of the regions in kk'g space in which each of the

various alternatives is applicable.


http:Eq.(2.24
http:given.by
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Region (1) K(k,k',q) =0 - (2.24,.1)
Region (2) K(k,k',q)=VAB-2VABC+2VACD-VCD O (2.24.2)
Region (3) ‘K(k,k',q)=VAB-2VABC+VCD (2.24.3)
Region (4)R K(k,k',q)=VAB-2VCB+VCD  (2.24.4)
Region (4)L K(k,k',q)=VAB~2VAC+VCD (2.24.5)
Region (5)R K(k,k',q)=VAB-2VBC (2.24.6)
Region (5)L K(k,k',q)=VAB-2VAC (2.24.7)
Region (6) K(k,k',q) = VAB-2VABC - (2.24.8)
Region (7) K(k,k',q)=VAB (2.24.9)
Region (8) K(k,k',q)=0 o oo (2.24.10)
In the above formulas, VAB, VBC, VAC, VABC, and VACD have
-~the simple geometrical meanings as:
VAB: intersection volume between spheres A and B '
VBC: intérsection_volume between spheres B and'c
VCD: intersection volume between spheres C and D
VAC: 1intersection volume between spheres A and C
VABC: intersection volume between spheres A,B, and C
VACD: intersection volume between spheres A,C, and D
Explicitly, they are
VAB = 3§ (1-k) 2 (2+k) (2.25.1)
vBC = 22 (1-k,) 2 (2+k.,) (2.25.2)
3 2 2
veD = Ef (1-k') % (2+k") (2.25.3)
VAC =27 (1-k;) % (2+k,) L (2.25.4)
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) B (BFE £
AT (- B:2) % /

VABC = 5 M~2 = & (3-£7) cos”

=/

+ :§ﬁm/QW£wﬁbl) BFEFE -2 >0

(2.25.5)
K. g M kY 2 2, .
3&(”/'7 /}q"/“’r‘fz“ﬂfjl—z)f”// B i rE—2 <0
where
k, = k
k, =a/2 (2.25.6)
ky = %(2k' 242k%-q%)%
2 2 2. 2 2,2, 4., 4 4%
M= (2 “k, A2k 2k Aok k) 2ot fe, fe )

‘And VACD is similar to VABC and can be obtained from VABC
by replacing kl by k'. Equations (2.25.1) to (2.25.4) can
"be easily obtained. VABC, however, is difficult and will

~be derived in Appendix A.

2-3. Relation between K(k,k',q) and Euler's function P(u).
In section 2-1, K(k,k',q) was introduced into the
second order term of the perturbation series for a very
general potential. W¢ know, however, that for a local
central potential an exact evaluation of the second order
term has long been derived in Euler's paper and used in

many applications. The result there is*

Lo (2D : ﬁ,—’ ol )1/, e - S, - - . . .
L =-"5% el V) Pl (2.26)
07 ﬁ o ¢

* . R .
Only a direct term is considered.
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~where u = g/2 and P(u) is the well known Euler's function.
It's explicit form is
u</, Pw=pP= Ly (174) (%7 L et =500 2 L/{/
#2930 Log (1= (4~ £ ot # st - ZP) - (2.27.1)
-@qﬂﬂajz
U>r, /ngyzp%mo::@y(VﬁQ-{<f20q2~20u*¢«w{7ﬁ
3 o =) s BPRPE <
+4”7ugw¢.%7ﬂ{0 [4¢m%f_hnff4wju(zj7j)
7> 4%M4»[%v¢fi»5%f{/

From Sec. 2-1, for a local central potential, we have
‘(70 ] s
Ut 2)— zr(f)—_—/[ Jo (B8 U0 )72ctr (2.28)

Instead of Kk, if we take g as the quantization axis, then

we get an equivalent formula for B(z) as

g :
Fagy KOLELE)

2 £ £r4
%= - Z;i 2 [Tpap gere gig L 7
%\*Z/f -£7, é/
_ 8% q/ﬂ )l el e KOEESE)
= 77.:; Z—j‘ ‘V" (/,g 5 Kdi E/a £ . .
s spin ) 7724 (2.29)

The lower limit of the k' integral being Max(]q—k],k] is

justified by the fact that K(k,k',q) = 0 for k' < k from
Eg. (2.21). If we compare the above two expressions,
in Equations (2.26) and (2.29) , we then obtain the

following relation between K(k,k',q) and P(u)
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) s BRI KTEELE)
P) = /C/f e ) (2.30)
Aﬁ&ﬂ?’féfy

Since we know the analytic forms of both functions, it is
possible in principle to derive this relation directly.

But K(k,k',q) is a very complicated function unless q > 2;
only in that region does it have a simple form. We can thus
make an analytic check for q > 2 as is done in Appendix B.
For q < 2, we gsed a numerical method. The reéults are
shown in Table 1 where we can see the good égfeement between

the two sides of the above equation.



TABLE 1

u P (u) _ 0 (u)
0.10000 0.12174  0.12418
0.20000 0.47505  0.47617
0.30000 1.02465  1.02560
0.40000 1.71342  1.71375
0.50000 2.46496  2.46430
0.60000 3.18756  3.18573.
0.70000 3.77975  3.77719
0.80000 4.13846  4.13564
0.90000 4.17128  4.16834
1.00000 3.81929  3.81591
o) = & [fax fatk akt KRGOk
0 Maleq—kl,%j k' -k d 4

Evaluated by Simpson's rule with dk=dk' = 0.05000



CHAPTER III

APPLICATION TO THE PAULI CORRECTION

As we stated in the introduction, éo far all
calculations of the Pauli correction were done in an
approximate manner. In treating the integration over
the center of mass momentum whiéh aépeérs'here in the
same fbrm as in the_previous chapter on the second orderx
term in pertﬁrbétion theory, people either used numerical
Monte-Carlo computation or an angular average approxi-
mation(g). Since we know how to evaluate that integration
exactly, we will first calculate the Pauli correction
. in.our formalism, then repeat with the.angular anrage
'apéroximation. From these two results, we will know how
accurate the angular average approximation is.

Before going to the real calculation, we first
derive the Pauii correction bj'following a method which

is similar to that in BBP's paper(g) but differs from it

in certain places as shown in the following sections.

17
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3-1. Theory and an exact treatment of the Pauli

correction in Reference Spectrum method of nuclear

matter.
It is well known that the nuclear G matrix
satisfies

G = v-v 9-.G : - (3.1)
e

As defined in BBP's paper, the reference spectrum GR

matrix satisfies

R = v-v & 68 (3.2)
e‘ ) . .

The difference between these two matrices contains two
parts, they are called the "Pauli correction" and the

"Spectral correction" respectively. We are only interested

in the Pauli correction which is given in BBP's paper as

R+ R R

(G-GR)P =G _1.§ (1-0)e iﬁ- G (3.3)
e e

where Q is called the "Pauli operator”. In this work, we

consider only the triplet even states 381 and 3Dl. Let us denote

Mg

the state vector as [ﬂ :> or lﬂ?0;> for simplicity.
0

s=1,T=
The Pauli correction is then
<10l (G-6F) | ‘Z'Pilo>~ = <81, |GR+£§(1_Q) eR;;_}*_‘G'Rlﬂbld()> (3.4)
We define _
168> =I?Llf0> IR S

e
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then

M R, (M _ _ oM . .« Rin M
<Byol (G-GTIp 10 > = <Xl A-Q)e™ (X > (3.6)
Inserting intermediate states |K,k',M'>, we have

M R M . \ Riv 11 oo VM 2
<fiol (G-6T) |0 3= k.gM.<§,1§',M | (1-Q) e |K, k"' ,M >l<§',M payed

(3.7)

The effect of the Pauli operator Q in Eq. (3.7) is that

for a given 5;5' must satisfy the condition |Ktk'|[>1l. We
have dropped K in the expression ]<§CM'{X§O>I? because it
appears, both in the bra and the ket, as plane waves which

cancel each other when we take the scalar product. Using*

. (/ z/tf o
/s> =sm) P = Zf Xir Zigp A (3.8)

L)L’

(r/ﬂ M) = ({\f) (ﬁd %‘ f/ - /4”({/’) //——”}20/}1 (3.9)

— ls)

w’ 2 >
s [ Hor e > =80 (aé’-ﬁff)_ Ly oo

Hr (3.10)
v N At
where Az, mws ufw;f )
7y ) % '
Jl:j: (2P L1007 [t > (3.11)
(L)
and deflnlng the Bessel's transformation of ;{ by

(3.12)

T , - . / . (&)
= /z{’/-f/ = / B (B X L (Er) >
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then Eq. (3.7) becomes

NG /A
= > = (3272 (687) 7 S “l par e "
> S 32 7> fS_;f Jf Jiv ]/[,

£ oo

P = 2’7
- Y4
};/’ ’

X, (B 8 8) )T (R 9@27 (£=£) »

SEE M - ) ko, £ > (3.13)

To calculate the total Pauli correction, we must consider
all possible initial states. We thus sum over the spin
projection M and the initial momenta & and @; Using the
transformation Eqs. (2.5) and (2.6) defined'in'Chapfer II,‘
we are allowed to sum over the inifial relative and total
momenta k,K instead of g,m. Since the Jacobian of this
transformation is 8, we must multiply our new expression
by this factor. 1In addition to thié, we must also divide
the result by % to eli@inate the double counting of the
interacting pairs. 'Since the normalization volume here
is taken to be 1, we divide the result by p in érder to

obtain the Pauli correction per nucleon. We thus have
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365 42 [ /e (1 e e —
/QC.‘—'—“};,:}‘;;/;»’-O/E/# C/‘/C/«’(f = =

MM/ evert
L’

s

x X ,
> ]{;Jﬁf’ ]ij FIEE i (-0) R/

v

Yy —A ’
KL E 7S x E&/“f’é)/‘/y (BLK) «
A * g é) T 5, é@ (3.14)
) o@}v’k‘a/ga“) °@~'M(§' £/ L |
But the factor <§,5‘,M'I(l—Q)eng,g',M'> is independent
-of M' and the direction of X and k'. It's a function

of k,k' and K, and contains two parts. The first part

demands that we evaluate the K integration by

Zals

k2B <) (3.15)

only because all the initial states must be in the Fermi
sea. The second part, however, puts one more restriction

i.e.

~

3k

[EZE 1</

(528 > | (3 .16)
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If we take the average value of <k'K[eR(k)|k'K> over the
céntre of‘masé coordinate in our considerations, then ﬁhe-
whole integrahd is independent of K. (See Eq. (3.21)), |
The second integration is thus just K(k,k',q). The first
integration can be easily evaluated, the result is

3,
8 = a2 = k' (k) (3.17)

|K+k| <1

K' is the K-function when the Pauli principle is ignored.

Writing
k' K|eR ) [k K> = £(8 B kur) (3.18)

and restricting to J = A = 1 as we are dealing with triplet

even states, then Eq. (3.14) becomes

~ ) ) 3 3
po = SEL A (Lol [ (KK

w 2 “
S7s 71 E
¥ o )
ar’ ~7 ML Ve
g B kg ) X > f )[ £ F
< E(E R Kar) ﬁ%f Cue 0 e Ipy Jes
. £.L7
s

| , ,
X /—:&/ (82 8) [~ (£ %) =
* ﬂ@,»,lw (E—=%") @M/M (én'*éﬂ'/j (3.19)
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where L,L',y and u' can only have values 0 and 2. The
term on the bracket can be evaluated by first doing the
M and M' summation which is not difficult if we make use
of the symmetfies of those f's. After this, we do the
L,L',u, and ﬁ' summations term by term, which is fairly
tedious. This will be given in Appendix C. The final
expfession for this term is

{ = 3 [ (FL) (R (R ( o)jﬂ//{;if %

(3.20)
« (F (B (B T BRs ) (BoFa? 7 m)j

The explicit form of»e(k,k',Kav) in the calculations of

Banerjee(lo) is

& (1 Kor) = 3z (7477 24 = iz =) e "“//(3 21)

where
. 2
2 _ 34 _k
*
m. = effective mass in the Fermi sea/mp* (3.22)
m; = effective mass outside the Fermi sea
72 2 '
=y AkF = gap between the energy spectra of

occupied and unoccupied states, taken
at k = VaﬁkF , the average momentum of

occupied states.
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Note thét on the average, the term in (Eg. (3.21))
proportional to (-m - 1) hasAzero value; this is‘why'we
think it is reasonable to consider a(k,k',Kav) while

still treating the Pauli operator as a function of k,k' and

K. So the Pauli correction per nucleon in RSM is

3/:. 7 m——— g MY T
. _L_ 7 " & ( /R 7 k A SEE
P =8 b //‘K g WH j(3.23)

3-2. Angular average approximation of Pauli correction.

In the last section, wé have derived the formula
for the Pauli correction per nucleon in nuclear matter by
using the function K(k,k',q). In this approach, we have
made only one approximation of taking the average value
over the K-space for eR, but otherwise we treated the K
integration exactly. Conventionally, people have made
another approximation, i.e., taking the angular average
value for thevg integration. In this section, we discuss
briefly this approximation.

We know that the Pauli exclusion principle imposes
one restriction on the K integration, i.e., |Ktk'|>1.

The other restriction |Ktk|<l simply counts which states
are occupied. We can, howevér, replace these two conditions

by two "functions"

| C’D’A‘ — (5/( \/}Q( ~, Loy A £, /{ @‘»‘"
// £ // & Gepe ) R C m) (3.24)

IKZE 1</
[ELRT >/
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The first function Q(k',K ) is called "Pauli

lele
operator" which is zero unless |§:51> l. The second
function is called "Occupation operator" which is 1 if
|§t§f<l. The so called angular averadge approximation is

to replace the twobfunctions Q((k',K,0 } and

k'K
R(k,K,QkK ) in Eqg. (3.24) by their angular average
functions Qav(k‘,K) and Rav(k,K) respectively. So we

write

Ag,(ﬁﬁ?:i/;ﬁ% Qav (82 40 Rur (8, ) © (3.25)

for angular average approximation. It should be pointed
out here that, by treating Q in an average way, the angle
“between k' and K is left undefined. But then also the
angle between K and g»is’undefinéd so we have to freat R
in an average way as wéll. The. explicit form of these

two functions can easily be derived. The results are

Rav(k'K)=l when K<1l-k
1-k2-x2
= TTORR when 1l-k<K<v l—k2 (3.26)
=0 when K>/I-K2
and _
0 v(k',K)=0 when K</I“k'?%
2 ’k'2+K2—1 +2 :
= LR when vY1-k'“<K<l+k' (3.27.1)

=”1 when K>1+k'
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for k'<l.
Qév(k’,K) = 1 when K<k'-1
k' 24K%-1 (3.27.2)
= _—Z—T{rK_— when k'-1<K<k'+1 * *
= 1 when K>k'+1l
for k'>1.

With these expressions, we can calculate Kav(k,k').

The result, after a straightforward but tedious calculation,

is listed below.

(1) If k'<k<l K__=0 | . (3.28.1)

(2) If k<k'<l

_ 27
(a) ucy<x Kav™ Tk ¢

W2 2.2
(b) y<u<x Kv™ 3K7 (u™-y7)

"(15£Ef)[3(X5"u5)f5(x24y2)(x3-u3)+15x2y2(x—uﬂ

(3.28.3)
(3) If k<l<k!
_ 2u 1 2 o
{a) u<x<v Kav" —3(1 k) (2+k) (3.28.4)
_4n 3., m 2 2 22 2 _
(b) u<v<x Kav— 3 U +(§E)(V u’) (2x°=-u"-v7)

-(15;k')(3(X5”V5)+5(Y'2-X2)(x3~v3)—15x2y'2(x_vﬂ

x5—5x3y2+5x2y3—y5) (3.28.2)

(3.28.5)

(c) v<u<x K__= kil v3+(§%)(uz—vz)(Zy'2+u2+v2) -

= () B EPu) s (v 2ex?) 7wy -1k %y 2 (xw)

(3.28.6)
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where
x = (1-k%)*
y = (1-k'5H)% ¢ = k21’ . (3.28.7)
u = l-k , Vv =k'-1

Using this angular average function, the Pauli correction

per nucleon in RSM is written as

4 ,
. Z g a4 / S E(2 P e -
pc_zggr_{_;v_i}[‘(/g/fc/ﬁ (F~k & (B 5] K ) /(3.29)

where K', it will be remembered, is the volume of the

flying saucer given by Eq. (3.17).

3-3. Computations and comparisons

From Equ (3.23) and (3.29) we can calculate
numerically the Pauli correction. Since we are more
interested in comparing the results from these two methods,

we split the term {...}in Eg. (3.20) into two parts,

i.e.,

0} =3 BF;Z)%fwéz)zﬂFéo)zf(Féo)%] (3.30) .

@ =3 ity 2 M 22l el el gy
b= 3 1(Fa2) H5 (FoaF2*Fa0F 22

| | ol ey
+ (rloEl, + Fozeoq (3.31)
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In our more sophisticated method, bothvterms will
contribute to the Pauli correction. But in the angular
average approximation, only the first term will contribute,
the second term will vanish identically because it depends
on angle through Pz(cosgkk.) which has a zero angular
average value. ‘Hence this term did not occur in the paper
by. BBP.

"To perform the caiculation, we borrow the numerical
~results of those F's for Reidfsbéoft co:e potential from
Mr. Banerjee. Using Simpson's integration rule with
k' =0(0.05)5, k = 0(0.05)1, and g = (k'-k) (0.05) (k'+k),

we obtain the result as in Table 2.

TABLE 2
f{l}exact f{l}angular f{l}Baherjee I{Z}exactff{Z}angular~
average ‘ ‘ average
3.73 0.0

3.49354 3.50025 -0.0079%

Pauli correction per nucleon for 35-3D states in RSM by

using Reid's soft core potential. The unit is in MeV.

From the above table, we see that the angular
average approximation is a very good approximation in this

calculation.



CHAPTER IV

APPLICATION 7O THE SEPARABLE CORE POTENTIAL

For a nuclear potential with a hard core, a
perturbation calculation of the binding energy of a
nucleus leads to a divergence. To overcome this
difficulty, some people have fitted nuclear potentials
with soft cores. So far, all the soft cores are still too
strong to give a reliable perturbation calculation. As
stated in the Introduction, Kerman and Levy at M.I.T.
have recently proposed a non—loéal but separable cére for
the nuclear potentia;. For this type of nuclear potential,
there will be certain téchnical difficulties.associated
with the method of using the Euler function or the
angular average approximation. These difficulties will be
discussed in the following sections. However, if we make
use of our function K(k,k',q), then we can easily evaluate
the first order and second order terms in the perturbation
series. Since people hope that this kind of semi-dynamic
potential will make the perturbation series converge

quickly, we are satisfied with only these two terms.

29



30

In this chapter, we will deal with the central
potential in the lSo state only. In section 1, we
“introduce Kerman and Levy's potential for this state and
derive thevbésic matrix element in the perturbation theory.
In Section 2 and 3, we derive the first and second order
term, respectively. The same formulation can be extended
to tensor and spin-orbit forces} but we will not derive
- them here. The numerical calculation is not carried out

since we don't know Kerman-Levy's potential exactiy.

4-1. Kerman-Levy's potential.

Kerman-Levy's potential is taken to be, in the lSo
state,
'wv(r,r')v= v{x) v(r'") ~r,r'<c
| = w(r)a(r—ﬁ') ; r,r'>c = - ' -(4.1)
=0 - otherwise

For this type of potential, Eq. (2.8) becomes

- IS c e ’
V(B E) = —L_ 3y Bl yfr) .
V(R E) e Ziéch,J{/o’ﬂ (r)rr) e +

YRR A,
o [ [Ty we) Siern & FTEY
< (4

i

= €,/ s <
- j: &Jﬁf)bﬁﬁc)ylaéro dé(f*i)bﬁqf}r’200/+
: o
7 [ Jo (87 /Cr) roery

(4.2)



where g =ﬁ|k'—k|. We define
vg (k) = [®j (kr)v(x)r?a® (4.3)
0
vo @) = [ (ar) wr)riar | (4.4)
C

then Eq. (2.9) gives us the matrix element

¢

A
»
=
<
)
H o
v
i

& [vstvg k) + v @] (4.5)

4-2. First order perturbation theory.

31

In the first order perturbation theory, the binding

-energy per nucleon in nuclear matter is

s = L L mlvigmo-cmlvines) 0 4.6,
' . bt .

2R L,m

g, T
where o and 1 denote spin and isospin respectively. The
label g for a single particle states means gzﬁsx,rz and

all these enter summation.

From Eg. (4.5), we obtain

I <im|vigm= 2T { [Z v? (k)JD + LZ VL(D)]D} (4.7)
) A T ’

,» T

[ =N
=

4r MZTV; )] + G[ZTVL (ZR)J LJK (4.8)
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[ = w?ﬁ)]p - 9@5’*[;—2)]:3 [z/g*’(@]: 3[1/53(5’/J; [w @Jl 2.9)

- :gvgz(ﬁ/fgé—? [ag”[} 3[zf @J+3[zf l [?f”/"}

(4.10)

-

> w@|, = o[w] ez [0 s[r@] + [ue]

oz )0
[@ZL ) Pﬁ}JET_ ol v’ Pfj}‘rﬁ [W/y]+ 3[@’»’/2@] - {v//@l (4.12)

The superscripts on v are 25+1, 2T+l for the interacting
pair of nucleons. If we use Egs. (4.7), (4.8), (2.2) and

(2.11), then Eqg. (4.6) becomes

égut—'jﬁ? o2 j/>ddj/fk/in X

Z[‘; (75)] (z » (o/] [s /zs)] /zzz,’]JM 13)'

For the second term, we can easily evaluate and get the

result as
o 3

S (1 vo(o), | (4.14)
. T

g,

=

For the other terms, we use Egs. (2.6) and (3.17). The

result is

.
Bf I "ag B 1-E)* (27 F) ¢
T o AR

* { gw‘(@)«; - [@%‘ Lg?ﬁ)]g« [;; ZQ(J»?J]E} | (4.15)
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So we finally have

S22 77

BY = [2 U‘WJ + £E [/c/ﬁﬁl(/—}f)l[zfé)x

X g = > (f)J — Lz ?fl(lijj L[&f‘)] }

(4.16)

4-3. Second order perturbation theory.

The second order contribution to the binding energy

per particle is’

gl2) _ _ 1 ) <gm|v]ab><ab|v]|am>- <2mjyjab><ab[vlm2>
2A L + Lb - E - Em
a,b>1 (4.17)
2,m<l
g T

14

We take ke as the unit of momentum as before and atb=i+m .
is implied.

Making a similar transformation as we did in

(2.6)
| b-m=2k ,  b4m=2K
(4.18)
a-b=2k' , a+tb=2K'
. and also defining
k'-k=q ~, k'+k=x ' (4.19)

then we can follow the same method as used in sec. 2-1

(2)

to evaluate B . The results are

SEYL . ‘ §f’ < Pl _3 3 e ' .
B (.D:’Ii;(”?‘j-:: 7)7,6' / ('/(1 /’i/ o4 5‘-\ x

PN
-

xZ[ [z:jy*(gy} *2(3”?}“&)&"(1’)1)‘{?)] &3 [?)J J

(4.20)
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—

2. . .5 . / 2. . i .
8(,)(8‘.((:,/70)?/9)_. _____t;i__ ?[’C/ﬁfl C/)/:?[mo,ﬁg f,/}{ X

Xi bl e 0+ [ Gt ), + [F B@GE) 2]

' (4.21)
v (3 u@reo]: |

The total contribution is therefore given by their sum,

i.e.

& 35;* 77 / ~ 2 %
5:—“'———-;7; 4/03)”/ 34 )/

(;??7/—'5 -

\-.

x { (= 2(;)] + [ = zf*(fz) (f’)]
- [?z VY(E) a;‘l[;fQ]E + 2 (;z Vs (BDUs (B ZL(EJJJD—
[z Vi (8) o (£7) zﬁ[f}] [z V(20 (z:fmm]

4,22
—[Z_ 02 (8) 2 () é ‘ (4.22)
o2 p=3 ,

where the sum over spin and isospin is to be understood as
in the previous section and momentum conservation still
holds.

Looking at the‘above expression, there are many
terms in the integrand. For the first term we can use
Euler's function to evaluate the integrations. For the
second and third terms,‘the angular average approximation
may or may not give a good approximation as they do not

depend on g. For all the other terms, it's quite possible
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that the angular average method will be a poor approxi-
mation as they all depend on g. But all these térm; can
be treated exactly by making use of oui function
K(k,k',q). ~The method is strightforward as that used
in Sec. 2~i. First we notice that the relation

x=k'+k gives
, 3 ‘
X = [2(k'2+k2)-q2}2 (4.23)

Making use of the fact

1 1 o0 ™ " -
[Ta’s | d3m / d3§ =8 ["a%k' [ adx[ak (4.24)
0 0 0 0 Ktk|<1
Rek'|>1
then Eg. (4.22) becomes
;o
B = <>?77'3 4 B Z’o).

(g w5 s, -
P Zéa(f’/JE +2[Z By (5?2)‘(?}],“
(= zg(f)zf;'(f')wa@j_-(oza R G) 05 (6 L)
a. & 2 i

- \
[ > w@ (x}}‘g . |

(4.25)
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where x must‘be replaced by the right hand side of
Eq. (4.23) before the integrations are cartied out.

This is the final expression for a potential of
the Kerman—Lévy'type with a separable core in the lS
state.

With the above formulas, we can calculate the
binding energy per nucleon in nuclear matter for the
Kerman-Levy potential by a similar numerical method as
being used for calculating the Pauli correction in RSM.
We thus conclude that our function K(k,k',q) serves as
a very convenient énd accurate apparatus in treating

this new type of potential.



APPENDIX A

DERIVATION OF THE INTERSECTION VOLUME
BETWEEN THRBE IDLENTICAL SPHERES IN
THE PAULI EXCLUSION PRINCIPLE

The three identical spheres all have a unit
radius. Let their centers be A,B and C. The distances
between them are 2k, g and x for AB, BC and CA
respectively. We remember that g'= k'-k and
x = k'+k . These are shown explicitly in Fig. 12.
We see there that the intersection volume is divided
into six parts. They can all be treated in the same
way. Let us consider volume lf We draw this volume
in Fig. 13. The cross-hatched volume élement'ih Fig. l3
can be further considered as the superposition of the

shaded volume element in Fig. 14. From Fig. 14 we

calculate the cross—hatched volume element by

v = fR Adx (A.1)
But g = sin” % “R2~x2) ' (A.2)
(7
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A= ar?® 22 4 «.2Rsing

27 (a.3)
- w2y -5
= R°Y - x/ 22
v = IR {stin~l¢ 2 2 - X /“Q_XZ}dx (A.4)

ci—x/) R
a R2
The first integral can be evaluated by integration by

parts. The result is

L ) -
v = & %*-a?) 5 3wP-a?) Y artsin T T (2.5)
oy
2 . 2
But R = 1-(Dsin®) (A.6)
a = Dcos6 (A.7)

Using Egs. (A.5) to (A.7) ana Fig. 2, we have the volume

elenment 1

. . L . ;o :;,{2‘
= [C) (1= 237°0) (1=DYT - (1m0
o

o =t =T
e DCDE (I~ D°3IC) 5 "——{*‘—{i_“:" T©
V= P O

20

, s 3 E | L 2,34
= O (/-0 "L D100 (0~ 5290 -F(r-07) T -

2 1’”".’””{“‘””‘
D o 3¢ IR S St
— p (5O =B 57%6) 307 P

R N TRy
e _//ij?~(5ﬂh69-j5; s 6 /5 V/%lnp%i;;%y

'(A.S)'
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The "last integral in Eq. (A.8) can be simplified as

2

.2 D . 4
9 5 L sin 06— "§~51n 0
I =D“(1-D°)* | - ae | (7. 9)
1-D"sin”0

The integral part can be further integrated into

II = $(6-sinbeost) - 20 + 2o [ — I8 (A.10)
3D 3D 1-D"sind
The integral in Eq. (A.10) is
III = L tan”?1 (V7 2 tan0) (A.11)
) 1-D
1-D

Combining Egs. (A.8) to (A.11), we finally obtain the
volume as

A go“{7—12>/)

=3 _Sm@&m0~j)5r§(h«wamH§7‘

=D = =L ST ey
X 370 LR + 5 T (/1= Twe)

(=577 (A.12)

Applying Eqg. (A.12) to all the six partial volumes, we

get the total intersection volume
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e , e
X :‘)’/’?’) -+ = C?/} / TE y
u//i*—/? S, 3 7 ‘ )

(A.13)
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where D and Gi are shown in Fig. 15 and can be evaluated

in terms of_k,k', and g through the natural quantities

Ll,kz, and,k3. The result is
D = PN 2}2{l };2 k32 A A N (A.14)
~ i 1 e 1 3
(2kl k2 +2k2 k3 +2k3 hl Ll LZ 3 )
-1 &y
Gi = sin o (A.15)
where
kl = k
= (A.16)
k2 = q/2
D
ky =% (2k'“r2k%-g%)”
Making use of Egs. (A.1l4) to (A.l6), we can rewrite
Eg. (A.13) in the following way
5 5 O .2 ‘ /{: Eo (£ *ﬁk ”4/2 ]
Visgrr—g 2 A (3742 @ N A
R S ——g-w———) 2Lt f 2 > o
3T \ff}?lv‘bﬂ“ , ETTR T
4+
. ) -~/ N7 ) PP b 2 . e
<[ PO A 60 r XAy 2 X0
5 [/T-f‘ 7y R N; > , & 3
(2.17)
with ‘
e 2y 2,00 0202, .02 2 0 4. 4 4% S
M = (Zkl k2 +2k3 k3 +2L3 kl kl LZ k3 ) (A.18)

This is the formula we have made use of in Chapter II.



APPENDIX B

AN ANALYTIC CHLECK OF THE RELATION
BETWEEN FUNCTION K(k,k',g) AND
EULER'S FUNCTION P(u) FOR g»>2

We know from Eg. (2.23) that for g > 2

K(k,k',q) = -%'3‘-<1—k)2(2+k)' (B.1)

Substituting Eg. (B.1l) into the right hand side of

Eg. (2.30) then

A ‘ ; B ?('é .Zo “';f/
iS5 = wo [ £ G-£)CrE) [T
2 gZ-£ £ - £
’ . . s [7&a /’f/» X Vs
= @0 [ E(E) ) Gy (S (=)
= 2o z 5&-/‘ : / ( —'““—(,/"3-"0./"'—/— = )ﬁ,/ (125 )+

+ (j%ﬁ?“%/j%é/l ) ,; u <§
)

JQ,:A (0{7&/)[4‘—30&/ —20¢(l7 + - LotD 220+

(et~ o)r“éu#ﬁcna 2l Ll J#nﬁw T-(400(3~ékffj

o5

= P
The last step can be checked by Lq. (2.27.2). So we have

proved the relation in kg. (2.30) for the case g>2.
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APPENDIX C

EVALUATION OF SPIN SUM FOR THE

PAULI CORRECTION IN COUPLED 3Sl-"jDl STATES

The bracket {....} in Eqg. (3.20) represents

> > S f/”f"fu” Forl R (24 2)

R Iy ’
/‘{/&4' [eiay Vil

L.L
7 ~ s * 5 ¥ &;)/ A ~
— / 2 c/
x @Mw (E— 1) 2, (61

(C.1)
where
1
f”]f = i¥ (2n+1) F<nio0M| 11> (C.2)
14 .
L,L',y, and u' = 0,2 (C.3)
M,M' = -1,0,1 (C.4)

From Egs. (C.2) and (C.3), we see that all f's are real.
To evaluate Eqg. (C.1l), we choose k as the quantization
axis, then k' can be obtained from\g by the rotation
R(f6,0) in terms of the Euler's angles (d,ﬁﬁg). Then we

can write the D-natrix in the following form
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; : h

~i@ l+cos®d -if sind -ig l-cos®
e TyT— - e = e T S
' v~ 2
p{t)= 51:?—:% cos® - £ind 4 (C.5)
V2 V2 -
o1ff 1-cos® elﬁ sin® i@ lt+cos®
2 2 2
N

If we consider the summation over M and M', then we obtain,

by using Egs. (C.4) and (C.5),

»/f/ - 77 7 ’1
fz’/ J//r// ji/ J[/// ’ og)/"//”f/
! .

M,

(r1Ce)* JL "][ 71 "/][4 - ][ ’ f/ ][ ' /]
hocu ’—""‘Z—_M 207 /-7// ‘ /i /’/,/ e’/ Pard Lt ]f"//

5@

(A £ A
RS S5 A VS VIS S SO P
+ '"(‘{—'4:(367) [ g j{_r J{”/ N ]['/ S0 f’——’/ f”.’/

+ Co @ ;ﬁw j;z ji’ JCV
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Since
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<010-1|1-1>=<0100]10>=<0101]11>=1

€210-1]1-15=<2101]11>= —1- (C.7)
V10
_ 2
<2100]10>= - —=—
vV 10
we have
’ -1 _ .0 _ 1 _
for = fo1 = fon =1
el -
2
0 _
£21 = v7
But Eg. (C.8) implies
gt oo gt (C.9)
al al :

where a can be L,L',u,

reduce Eqg. (C.6) into

DI A T
— “Zt/ }/7// Z

/
S AT

and u'. Using Eq. (C.9) we can

(Cc.10)



So we write Eq. (C.1l) as

<
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e
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SR S A A

Making use of kEq.

-+ COOP

(C.8) and sunming over L,L'

for each term in Egq. (C.1ll), we obtain respectively

(C.11)

u, and p'
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Substituting Egs. (C.12) to (C.15) into Eg. (C.1ll), we
obtain the final result for the bracket {....}, i.e.,

{j( = 3 [[,I-“_;i_)l-ﬁ (Fi) 7 (FBL) + (/%6 )LJ

—+ 3 (Bce>r&—r) >

~f

f:;r(/:;g)# e (FdR r BB ) (BRI R

(C.16)



The cosb can be written in terms of k,k', and g by

i.e.,

cost= l{jfm}.(_.jj:;gi
T 2kk!
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using

(C.17)

(C.18)


http:cos8=-------(C.18

10.
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FIGURE 1

Four Intersecting Identical Spheres

FIGURE 2

Intersection Volume in Region (1) V=0
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FIGURE 3

Intersection Volume in Region (2)
V=VAB-2VABC+2VACD-VCD

FIGURE 4

Intersection Volume in Region (3)
V=VAB-2VABCtVCD
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FIGURE 5

Intersection Volume in Region (4)R
V=VAB-2VBC+VCD ‘

FIGURE ©
Intersection Volume in Region (4)L
V=VAB-2VAC+VCD



FIGURE 7 .
Intersection Volume in
Region (5)R
V=VAB-2VBC

FIGURE 8

Intersection Volume
in Region (5)L
V=VAB~-2VAC
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FIGURE 9

Intersection Volume in Region (6)
V=VAB-2VABC

FIGURE 10
Intersection Volume in Region (7)
‘ V=VAD
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FIGURE 11 Relation Between (k,k',q) and Different Regions
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FIGURE 12

Three Intersecting Identical Spheres
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FIGURE 13

A Part of the Intersection Volume
Between Three Identical Spheres

_ PIGURE 14
A Section of the Part of Fig. 13
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FIGURE 15

Various Quantities in the Three
Intersecting Spheres
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