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In second order perturbation theory for nuclear 

matter, an exact treatment of the Pauli exclusion principle 

is given from a geometrical point· of view. All the 

kinematic effects of the Pauli exclusion principle are then 

included in a function K{k,k' ,q),·which is related to the 

-Euler's function through a double integration. With this 

function K{k,k' ,q), we can treat the Pauli correction in 

nuclear matter in a more exact way so that a check to the 

conventional angular average approximation is. obtained. 

For separable core nuclear potential, this function 

K(k,k',q) serves as a very convenient apparatus for the 

perturbation c~lculation of the binding energy in nuclear 

matter. 

'. 
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CHAPTER I 

INTRODUCTION 

The goal of nuclear structure theory is to 

calculate the properties of real nuclei, given the two­

nucleon potential. The two problems are to find what 

the potential should be and how to carry out nuclear 

structure calculations. Infinite nuclear matter is one 

of the simplest systems that can be studied and consider­

able labour has been devoted to understanding it. The 

binding energy, density, symmetry energy and compressi­

bility are the quantities which are usually calculated 

and compared with the semi-empirical mass formula • 

.	Assuming that the methods of calculation are valid; a 

realistic two-nucleon force should give the correct binding 

energy in nuclear matter, so this study serves either as 

a testing ground for many body methods or as a check on 

the validity of two-nucleon forces. 

In the calculations of nuclear matter binding .· 

energy, perturbation methods have been attempted several 

times since Euler's(l) first paper in 1937. In his 

paper, he introduced the so called Euler's function to 

the first and second order perturbation calculations for 

1 
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local central potentials. After him, there have been 

many attempts to apply perturbation theory to well-

behaved potentials. An infinite h~rd core in the two-

body potential, however, invalidates perturbation theory 

in its simplest form. Also, the presence of such a core 

introduces divergences in the self-consistent potential 

of the Hartree-Fock method if the usual boundary condition 

in the zero of the relative coordinates is used. In order 

to apply the Hartree-Fock method, many.other kinds of force 

hq.ve been suggested. For example·, Kerman t_ri.ed to find 

a weak two-body potential which gave the same scattering 

data as the hard core in order to avoid the difficulty of 

estimating two-~ody correlations due to the strong repulsive 

core. Following Kerman's proposal, Bresse1< 2 > fitted a 

static potential from scattering data up to 350' MeV. This 

static potential has, instead of an infinite har<l core, 

a core with height 648 MeV and width 0.7 fm for the 

1S state. Although.it is not weak enough, it leads us to
0 

the hope that it is possible to remove the infinite hard core 

and do the standard Hartree-Fock calculations and nuclear 

matter perturbation calculations. 

·In 1965, Sprung< 3 > extended the work of Euler to 

all types of potential used at that time. In his work, 

Sprung brought-the-first and second order perturbation 

the·ory into a practical form by introducing a set of 

"generalized Euler functions". From his work, one can 

http:Although.it
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obtain quickly and accurately contributions to the bind­

ing energy of nuclear matter in· the first and second order 

perturbation theory for any local, finite potential. 

At the same time when the above work of Sprung was 

carried out, Tabakin( 4 ) fitted a completely non-local, 

separable potential from the scattering data. In the 

016binding energy calculation of , which has value about 

127 MeV, this potential binds too much while Bressel's 

potential binds too little. So it seems likely that a 

combination of these two potentials might give· the right 

binding. 'l'he theoretical one pion exchange model gives a 

local potential outside a radius 1.5 fm, while inside the 

core non-local, many pion effects cannot be ignored. 

Therefore it seems reasonable to use Tabakin's potential inside. 

the core and Bressel's potential, which agrees with the 

local part of the OPEP, outside the core. Kerman and 

Levy(S) thus proposed a potential which, like Bressel's, 

is the same as Hamada Johnston at large r but has a 

separable core. 
.· 

In both standard perturbation theory< 6 > and 

Brueckner-Goldston~'s theory(?) of a many-body system 

such as nuclear matter, the Pauli exclusion principle 

comes into play when we go to the second order term. 

Because of the Pauli exclusion principle, the intermediate 

states must be outside t11e Fermi sea associated w·i th this 

system. As we will see later in Chapter II, this effect 
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and the fact that all the initial states must be in the 

Fermi sea show themselves as the two restrictions in the 

following integral 

(1.1) 

l(:t± IFt :>1 

where ~ is the center-of-mass momentum of the interacting 

pair of nucleons while ~and ~· are, respectively, the 

initial and the intermediate relative momentum of this pair. 

To interpret this integral, we take a geome.tr.ical view by 

saying that it's value is related to a certain volume 

between four intersecting unit spheres. The conventional 

method of treating this problem is either to use the Monte-

Carlo method of integration or to perform an angular average 

over the whole.K space (B) We will not disciu~s the· .... 

Monte-Carlo method in this work but will discuss the angular 

average method in some detail in Chapter III. As an 

approximation, the angular average method has been extensive­

ly used by people in the calculation of nuclear matter 
.· 

binding energy. We believe that it is a good approximation 

in certain cases, but this will be doubtful in other cases 

like the calculation by using a separable core potential 

which will be carefully discussed in Chapter IV. To prove 

that what we have said is right, we first perform an 

analytic evaluation of integral (1.1). The result is 
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represented by an analytic but fairly complicated function 
-·--------- ----- --~- --- ----- ------ --- -··--------···------··-"- ­

K(k;k' ,q) where q = lk'-kj. Then we calculate the Pauli 

correction in the "Reference Spectrum Method"* for nuclear 

9matter < > by using the angular average approximation and 

also by making use of the function K{k,k' ,q). We have 

found that the result obtained from the former doesn't differ 

much from that obtained from the latter. This means that 

the angular average approximation is a good approximation in 

this problem. But when we go to the discussion of the bind­

ing energy calculation of nuclear· matter f~r .a separable 

core potential, we are not sure if the angular average 

approximation is still a good approximation or not as there 

are certain terms which may badly destroy this approximation. 

-However, we will see in the last Chapter that the function 

K(k,k' ,q) will be a very convenient apparatus for treat- · 

ing these terms. 

.· 

*From now on, it will be abbreviated as RSM. 



CHAPTER II 

FORMALISM 

In this chapter, we are going to discuss explicitly 

how the Pauli exclusion principle comes into the second 

order term of the perturbation calculation for nuclear 

matter, in what form does it appear, and how an exact 

treatment is possible and performed. As it was said before 

in the introduction and will be shown later, ·all kinematic 

effects can be summed up into a single function of three 

variables K(k,k' ,q) with a very complicated form. But 

it has a simple relation to the well-known Euler's 

functl.. on (l) The correct ness o f th'is re1a t'ion guarant ees 

that our treatment of Pauli effect is also correct. 

In what follows, we will first introduce K(k,k',q) 

in Sec. 2-1. In Sec. 2-2, we derive this function from 

a geometrical point of view. Then we discuss the relation 

between K(k,k' ,q) and the Euler's function. .· 

2-1. Pauli exclusion principle in nuclear matter. 

Nuclear matter is a hypothetical, infinitely 

extended system of nucleons. Because of the translational 

invariance of such a system, the wave function of each nucleon in 

nuclear matte~ is just a plane wave 

6 
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.d. . / t'~. J: 
yrJ~J = ·- e 
- - ·-17L ---- .----(2-.-l) 

where 5 is the wave vector which runs from 0 to kF, called the 

Fermi momentum of nuclear matter. The number density _p 

is then related to kf by 

A ::i. 15/ (2.2)
f= n = ~~.i

../ (...- ~ /I 

In the standard perturbation calculation of the 

binding energy per nucleon in nuclear matter, the· second 

order direct term is of the form 

<-l~/V-/J,.?f? ><gf? /V-1~~7 >81-'-J=- _I_ > 
(2.3).if/l .R,m<t Ea -t- E6 - c.12 - Ej?l- ...... 

P~E ;>I 

.J! -nn = Cf t- J, 
~ .-'I. ......... 


The factor 1/2 accounts for the double counting of the 

interacting pairs. In the second summation over the inter­

rned~ate states, the restriction that the wave vectors must 

be greater than Fermi momentum comes from the Pauli 

exclusion principle and the fact that all the states in 

the Fermi sea are occupied. It is these restrictions that .· 
makes an analytic treatment of B( 2 ) complicated. 

Let us first evaluate the matrix element 

-<~~lvl~~> under the condition that 1 + ~ = a + b. 

Using Eq. (2.1), we have 

*Here we take kf as the unit of momentum. 
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-it•r -im•r 
= Q~ /a3~/d3~mfd3~afd3~b e - -R.e - -m x ( 2. 4) 

ie"!a ig·;:b 

x vC;: 1 ,~m'~a'~b)e e 


If we perform the transformation 

r = r -r 
~ -R. -m I 8 = <;:.e.+Em>/ 2 

(2.5) 
r' = r -r I ,!1' = C!:a+fb)/2- ~a ~b 

to the initial and the intermediate relative and center-of­

mass coordinates and also the transformation 

2k = R.-m ,- (2.6) 

2k' = a....:b 2K' = a+b 

then Eq. (2.4) becomes 

<~~lvl~e > 
(2.7) 

1 fa3 fd3 , < ') i(k'·r'-k·r)= o F ! v ! ,;- e - - - ­

We define 

-- _l /d3rfd3r' , i(k'•r'-k·r)v Ck. , k' ) v Cr_ , _r ) e - - - - (2.8).·
4n - ­

then Eq. (2.7) can be written as 

4n<&Ill Iv I§l!;? > = Q v (k, k I ) (2. 9) 

From Eq. (2.6), the energy denominator in Eq. (2.3) is 

. (2.10) 
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Using the well-known relation 

(2.11) 

we then write 

l/ :l(1?_, t ') 
~Ii._ ki (2.12) 

If we take ~,~' and ~ as the independent variables and put 

in the transformation Jacobian 8 , then Eq. (2.12) becomes 

(2.13) 

The last integral in Eq. (2.13) contains all the·kinematic 

effects due to the Pauli exclusion principle in nuclear 

matter. The above mentioned integral depends obviously on 

k,k' and the angle between them ek'k. 

To simplify Eq. (2.13), we take k' as the quantization.....,.. 

axis and define q 
"'"' 

by 
.· 

(2.14) 

which has the physical meaning as the momentum transfer 

between the initial and the intermediate relative momenta. 

Eq ~ (2 .14) .implies that 

(2. 15) 



- -
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Using Eq. (2.15), we can replace the integral over ek'k 

by an integral over q and write Eq. (2.13) as 

( 2 .16) 

So we define 

kr~_, ~,) ~/= I d3& 
(2.17) . );If±!/<! 

/}!tfi.'I;>/ 

We see that the Pauli exclusion principle can be 


treated by the function K(k,k' ,q) which is a function of 


the initial relative momentum ~' the intermediate relative 


momentum k', and the momentum transfer between them q. 


2 . Once K(k,k' ,q) is evaluated, B ( ) can always be calculated 
. . 

because we didn't specify the potential in our derivation. 

So our formalism is a very general and exact one suitable 

for both local and non-local potentials. In later parts of 

this work, we will apply this formalism to the treatment of 

separable core potentials as proposed by Kerman and Levy 

at M. I. T . ( S >. 

2-2. Function K(k,k' ,g) and its properties. 

The function K(k,k' ,q) which we defined in the 

last section has a geometrical meaning. For a given set 

of ~,~' and g~ which satisfy the triangle condition 

q = k' - ~' the value of K(k,k' ,q) is the volume inside 
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the intersection of spheres A and B (the flying saucer) , 

but outside both spheres C and D as shown in Fig. 1 

(which means there are bites out of the saucer). All 

the spheres have a unit radius. Let the centers of these 

spheres be A,B,C and D respectively, then the distances 

between them are defined as 

AB = 2k 

CD = 2k' (2.18) 

BC = q 

AC = x 

where 

x = k' + k (2.19)..... 

To evaluate K(k,k' ,q), we c6nstruct all the possible 

cases in Fig. 2 to Fig. 10. After ana~yzing these figures, 

we arrive at Fig. 11 which shows the properties of function 

K(k,k' ,q). These properties are summarized as follows: 

(1) 0 < k < 1, 0 < k < k' < 00 , lk'-kl<q< k'+k (2.20) 

(2) When k' < k, K(k,k',q) = ~ (2.21) 

(3) When k = 1, K(k,k' ,q) = O (2.22) .· 

(4) Whenk' >l+.11_k2 orq>2 

K(k,k 1 ,q ) = 211 (1-k) 
2 

(2+k) (2.23) 

3 

(5) The values of K(k,k' ,q) at the different regions are 

given.by Eq.(2.24). The various possible situations are 

illustrated in Fig.2 to Fig.10 and in Fig.11 we show the 

boundaries of the regions in kk'q space in which each of the 

various alternatives is applicable. 

http:Eq.(2.24
http:given.by
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IRegion (1) K (k 'k ,q) = 0 -- ( 2 • 24.t l ) 

Region (2) K(k,k' ,q)=VAB-2VABC+2VACD-VCD (2.24.2) 

Region (3) K(k,k' ,q)=VAB-2VABC+VCD (2.24.3) 

Region (4) R K(k,k' ,q)=VAB-2VCB+VCD (2.24.4) 

Region (4) L K (k ,k I ,q)=VAB-2VAC+VCD (2.24.5) 

Region (5) R K(k,k',q)=VAB-2VBC (2.24.6) 

Region (5) L K(k,k' ,q)=VAB-2VAC (2.24.7) 

Region (6) K(k,k' ,q) = VAB-2VABC (2.24.8) 

Region (7) K(k,k' ,q)=VAB (2.24.9) 

Region (8) K(k,k' ,q)=O (2.24.10) 

In the above formulas, VAB, VBC, VAC, VABC, and VACD have 

--the simple geometrical meanings as: 

VAB: intersection volume between spheres A and B 

VBC: intersection volume between spheres B and c 

VCD: intersection volume between spheres c and D 

VAC: intersection volume between spheres A and c 

VABC: intersection volume between spheres A,B, and c 

VACD: intersection volume between spheres A,C, and D 

Explicitly, they are 

2 1TVAB = (l-k) 2 (2+k) (2.25.1) 
3 

2 '?TVBC = (l-k2) 2 (2+k2) {2.25.2)3 
2 1TVCD = (l-k 1 ) 

2 (2+k') (2.25.3) 
3 

-VAC =--~ -·(l-k ) 2 (2+k ) (2.25.4)
3 3 3 
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//:- .-// M 
3T<?/J. !;6':..1t~.,_.,.~.._-2-

(2.25.5) 

4: . -e µ~fem (/f/f ti/'"-rfl/'--2)-r1l 
) 

where 


kl = k 


k2 = q/2 
 (2.25.6) 

~3 = ~(2k'2+2k2-q2)~ 

2 2 2M=(2k k +2k k 2+2k 2k 2-k 4-k 4-k 4 )~1 2 2 3 3 1 1 2 3 

And VACD is similar to VABC and can be obtained from VABC 


by replacing k by k'. Equations (2.25.1) to (2.25.4) can
1 

·be easily obtained. VABC, however, ~s difficult and will 

be derived in Appendix A. 

2-3. Relation between K(k,k' ,q) and Euler's function P(u). 


In section 2 -1, K(k,k' ,q) was introduced into the 


second order term of the perturbation series for a very 

.· 

general potential. We know, however, that for a local 


central potential an exact evaluation of the second order 


term has long been derived in Euler's paper and used in 


many applications. The result there is* 


.p .(( 
. . r~> · /Q..j )r11C·'.'.'> . - 1 ·-- - ·- -· l.(c/U V (U) p({/)B - ~ -1-.:i. (2.26)

/Oil 11 o 

*Only a direct term is considered. 
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where u = q/2 and P (u) is the well known Euler's function. 

It's explicit form is 

1U< I,) 	 P{ll)_"~ p /r_,!) = jJ~ (It'll). (1:. T ;:-- u -,:Si.-(3 +1 t.{Y -t 

-r :2'Ju.2-3 w .;.( ·-f- JJ5 (r-u) ·(.s< ·-f,_s W + S-U;,,·-1 u-J - (2. 2 7 .1) 

- .f<oa2 j}~.2 

it>f,, 	 p(u) ·= _p·7!(U) ·= .P~ (ctn)· ( «-.2C>l--f.2. -20lI~-f"«C--t-:/n 

From Sec. 2-1, for a local central potential, we have 

(2.28) 

Instead of~' if we take_3 as the quantization axis, then 

we get an equivalent formula for·B( 2 ) as 

B <-;;= 	- _diff.J-e.)?? 1[,~__.q'q r11Jc1Jf (!t~ .?fl,;.'.4/ u-Yf) 
e>7T3 	 1i~ " o~<6 Ji) ), P. ~,1_/l:a l<(~,,l~ff) 

"Had1t-£1,, ij 

The lower limit of.the k' integral being Max(lq-kl ,k] is 

justified by the fact that K(k,k' ,q) = 0 for k' < k from 

Eq. (2.21). If we compare the above two expressions, 

in Equations (2.26) and (2.29) , we then obtain the 

following relatio_n between K(k,k',q) and P(u) 
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t't/ 1<(£/;;~f/ 
;gr.:i. - ;f.2... (2.30) 

Since we know the analytic forms of both functions, it is 

possible in principle to derive this relation directly. 

But K(k,k',q) is a very complicated function unless q > 2; 

only in that region does it have a simple form. We can thus 

make an analytic check for q > 2 as is done in Appendix B. 

For q < 2, we used a numerical method. The results are 

shown in Table 1 where we can see the good agreement between 

the two sides of the above equation. 

.· 
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TABLE l 

u P (u) Q(u) 

0.10000 0.12174 0.12418 

0.20000 0.47505 0.47617 

0.30000 1.02465 1. 02560 

0.40000 1.71342 1. 71375 

0.50000 2.46496 2.46430 

0.60000 3.18756 3.18573 

0.70000 3.77975 3.77719 

0.80000 4.13846 4.13564 

0.90000 4.17128 4.16834 

1.00000 3.81929 3.81591 

Q(u) = .§.Q flak fq+k ~ ~k' kk'K(k,k',q) I q = 2u 
2 2 

n Max Uq-k I , kj k' - k0 

Evaluated by Simpson's rule with dk=dk' = 0.05000 



CHAPTER III 


APPLICATION TO THE PAULI CORRECTION 

As we stated in the introduction, so far all 

calculations of the Pauli correction were done in an 

approximate manner. In treating the integration over 

the center of mass momentum which appears here in the 

same form as in the previous chapter on the second order 

term in perturb'ation theory, people either used numerical 

Monte-Carlo computation or an angular average approxi­

mation (S). Since we know how to evaluate that integration 

exactly, we will first calculate the Pauli correction 

in our formalism, then repeat with the angular average 

approximation. From these two results, we will know how 

accurate the angular average approximation is. 

Before going to the real calculation, we first 

derive the Pauli correction by following a method which 

9is similar to that in BBP's paper < > but differs from it 
,• 

in certain places as shown in the following sections. 

17 
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3-1. Theory and an exact treatment of the Pauli 

correction in Reference Spectrum method of nuclear 

matter. 

It is well known that the nuclear G matrix 

satisfies 
Q. 

G = v-v - G (3. l)
e 

As defined in BBP's paper, the reference spectrum GR 

matrix satisfies 

(3. 2) 

The difference between these two matrices contains two 

parts, they are called the "Pauli correction" and the 

"Spectral correction" respectively. We are only interested 

in the Pauli correction which is given in BBP's paper as 

(3.3) 

where Q is called the "Pauli operator". In this work, we 

consider only the triplet even states and n • Let us denote3s1 
3

1M 
the state vector as 1~ 5 

. ) or lrJ~o> for simplicity. 
S=l,T=O ·· 

The Pauli correction is then 

(3.4) 

We define 

(3. 5) 
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then 

(3. 6) 

Inserting intermediate states jK,k' ,M'>, we have 
~ ~ 

(3. 7) 

The effect of the Pauli operator Qin Eq. (3.7) is that 

for a given ~K,~' mus"t7 satisfy the condition I~±~' j>l. We 

have dropped ~ ,in the expression I<~1,M' l::t~ 0 > 12
. because it 

appears, both in the bra and the ket, as plane waves which 

cancel each other when we take the scalar product. Using~ 

where 

"(3.11) 

.· 

and defining the Bessel's transformation of ;ri~1 by 

(3.12) 
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then Eq. (3.7) becomes 

.> 


(3.13) 

To calculate the total Pauli correction, we must consider 

all possible initial states. We thus sum over the spin 

projection M and the initial momenta &. and rrt· Using the 

transformation Eqs. (2.5) and (2.6) defined in· Chapter II, 

we are allowed to sum over the initial relative and total 

momenta k,K instead of t,m. Since the Jacobian of this
"""' - ........ ...-. 


transformation is 8, we must multiply our new expression 

by this factor. In addition to this, we must also divide 

the result by ~ to eliminate the double counting of the 

interacting pairs. Since the normalization volume here 

is taken to be 1, we divide the result by p in order to 

obtain the Pauli correction per nucleon. We thus have 
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p C. = ::s~ ;,2f i,c/t'f;, c/~Jcf36 i if;,, :,:,n 
L/.t._/ 

fl/' 

(3.14) 
x ~ ~ *r1~ iJ ~)4: i~ t~;J( 

. -Af'Hf . 

But the factor <.~ 1 ~',H' ICl-Q)eRl~d~-',11'> is indepen<lent 

-of M' and the direction of~ and~·. It's a function 

of k,k' and K, and contains two parts. The first part 

demands that we evaluate the K integration by 

(3.15) 

only because all the initial states must be in the Fermi 

sea. The second part, however, puts one more restriction 

i.e. 

(3.16) 
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If we take the average value of <k'KjeR(k)j k'K> over the 

centre of mass coordinate in our considerations, then the 

whole integrand is independent of K. (See Eq. (3.21)). 

The second integration is thus just K(k,k' ,q). The first 

integration can be easily evaluated, the result is 

Jd3~ = ;ncl-k) 2 (2+k) = K' Ck) (3.17) 

l!S+~l<l 

K' is the K-function when the Pauli principle is ignored. 

Writing 

(3.18) 

and restricting to J = A = l as we are dealing with triplet 

even states, then Eq. (3.14) becomes 

(3 .19) 
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where L,L 1
, µ and µ' can only have values O and 2. The 

term on the bracket can be evaluated by first doing the 

M and M' summation which is not difficult if we make use 

of the symmetries of those f's. After this, we do the 

L,L' ,µ, and µ' summations term by term, which is fairly 

tedious. This will be given in Appendix c. The final 

expression for this term is 

The explicit form of c:(k,k' ,K ) in the calculations of av 
Banerjee(lO) is 

c (..t? .P' // ) - _L (.,P,1_ l"i->-1 2-4 - /_L -I J /r_,,, ~-f '!' '--o. t)Jl 
c, fl_.)'.!_,. 1\o:r - Jn!'* R. . /J. cm,* ~<''<-Iv /cl. • ~ c3 • 21 > 

where 
2

v2 3 k 
~av= 5Cl-k) Cl+ 3(2+k) 

effective mass in the Fermi sea/mp * (3.22) 

.·= effective mass outside the Fermi sea 

t.k 2 = gap between the energy spectra of m F 

occupied and unoccupied states, taken 

at k = lo.6kF , the average momentum of 

occupied states. 
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Note that on the average, the term in (Eq. (3.21)) 

proportional to ( \ - 1) has zero value; this is- why we 
mr 

think it is reasonable to consider E{k,k' ,K ) while av 

still treating th~ Pauli operator as a function of k,k' and 

K. So the Pauli correction per nucleon in RSM is 

pc, 

3-2. Angular aver~e approximation of Pauli correction.• 

In the last section, we have derived the formula 

for the Pauli correction per nucleon in nuclear matter by 

using the function K(k,k' ,q). In this approach, we have 

made only one approximation of taking the average value 

Rb h.. - hover t h e ~-space f or e , ut ot erwise we treatea t e ~ 

integration exactly. Conventionally, people have made 

another approximation, i.e., taking the angular average 

value for the ~ integration. In this section, we discuss 

briefly this approximation. 

We know that the Pauli exclusion principle imposes 

one restriction on the~ integration, i.e., I~±~' l>l. 

The other restriction l~±~l<l simply counts which states 

are occupied. We can, however, replace these two conditions 

by two "functions" 

I c·/:31::. 
(3.24)

/f:: ±!f I< I 

fl<.tf!'! >I 
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The first function Q(k' ,K,9k 1 K) is called "Pauli 

operator'' which is zero unless I!S_±~ 'I> 1. The second 

function is called "Occupation operator" which is 1 if 

l~±~j<l. The so called angular average approximation is 

to replace the two functions Q(k' ,K,9k'K) and 

R(k,K,\K ) in Eq. (3.24) by their angular average 

functions Q (k' ,K) and R (k,K) respectively. So we av av 

write 

(3.25) 

for angular average approximation. It should be pointed 

out here that, by treating Q in an average way, the angle 

between t' and K is left undefined. But then also the 

angle between ~ and k is undef in.ed so we have to treat R 

in an average way as well. The. explicit form of these 

two functions can easily be derived. The results are 

Rav(k,K)=l when K<l-k 

2 2
l-k -K

= when l-k<K<ll-k2 (3.26)2kK 

= 0 when K>ll-k2 

and 

Q (k' K)=O when K</l-k'2 
av ' 

k' 2+K 2-l 
= 2k'K when ll-k12 <K<l+k' (3.27.1) 

= l when K>l+k' 
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for k' <l. 

Q~v (kt ,K) = 	 1 when K<k'-1 


k 12+K2
-l 	 (3.27.2)
= 	 when k'-l<K<k'+l2k 1 K 

= 1 when K>k'+l 

for k'>l. 

With these expressions, we can calculate K (k,k').av 

The result, after a straightforward but tedious calculation, 

is listed below. 

(1) If k' <k<l K =O 	 (3.28.1)av 

(2) If k<k I 	 <l 

(a) u<y<x K = 2n (xs_ 5x3y2+Sx2y3-y5) (3. 28. 2)av 15kk' 

1T 2 2 2
(b) y<u<x Kav= 2k' · (u -y ) ­

1T ( 5 5 2· 2 3 3 .. 2 2 )-< 1skk') 3(x -u >~sex +y) (x -u )+15x y (x-u) 

(3.28.3) 

(3) If k<l<k' 

(a) U<X <V K = ~(l-k) 2 (2+k) 	 (3.28.4)av 3 

(b) u<v<x .· 

1T r· 5 5 2 2 3 3 2 2 J-(lSkk') 3(x-v )+S(y' -x )(x -v )-15x y' (x-v) 

. (3.28.5) 

4 1T 3+ ( 'if ) ( 	 2 2) ( 2 I 2+ 2+ 2)(c) V<U<X K = ~ v ~ u -v y u v ­
av 3 2k 

1T (. 5 5 2 2 3 3 . 2 1 2 J . -:-<lSkk') 13 (x -u }+5 (y' -x ) (x -u. )-15x y (x-:-u) .. 
(3.28.6) 
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where 

x = (1-k 2 )~ 

y = (l-k 12 )~ (3.28.7)I 

u = 1-k 	 v = k'-1 

Using this angular average function, the Pauli correction 

per nucleon in RSM is written as 

6 

. ~~fG'" fj )_ ;: ·,/) 1;</1


P C = --- --
70 

cfk CtA: ( k"-iV Jxf_'(;f,£'; k.~"°J<(-·-J 

. 7T$ );J 't> c t~g. (3.29) 


where K', it will be remembered, is the volume of the 

flying saucer giyen by Eq. (3.17). 

3-3. Computations and comEarisons 

From Eqs. (3.23) and (3.29) we can calculate 

numerically the Pauli correction. Since we are more 

interested in comparing the results from these two methods, 

we split the term{ .•• }in Eq. (3.20) into two parts, 

i.e. , 

.· 

I 2 I 2. I 2 l 2){l} 	= 3 [( F 2 2) -+ (F 0 2) +(F 2 0) + ( F 0 0) ) (3.30) 


2 2 2

hk' +k -g 2 J[l I 2 1 I I I I{2} = 3 e< 2kk'. ) -l 4CF22> ft(F02F22+F20F22) 

+ (FboF~2 + F~2F~o~ 	 (3.31) 
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In our more sophisticated method, both terms will 

contribute to the Pauli correction. But in the angular 

average approximation, only the first term will contribute, 

the second term will vanish identically because it depends 

on angle through P 2 Ccos9kk') which.has a zero angular 

average value. Hence this term did not occur in the paper 

by BBP. 

·To perform the calculation, we borrow the numerical 

results of those F's for Reid's soft core potential from 

Mr. Banerjee. Using Simpson's integration rule with 

k' = O (0.05)5, k = 0(0.05)1, and q = (k'-k) (0.05) (k'tk), 

we obtain the result as in Table 2. 

TABLE 2 

f {l}exact f{l}angular f {l}Banerjee f {2 }exact f {2 }angular 
average average 

3. 49)-54 3.50025 3.73 0.0 

Pauli correction per nucleon for 3:> -3D states in RSM by 

using Reid's soft core potential. The unit is in MeV. 

From the above table, we see that the angular 

average approximation is a very good approximation in this 

calculation. 



CHAPTER IV 


APPLICATION TO THE SEPARABLE CORE POTENTIAL 

For a nuclear potential with a hard core, a 

perturbation calculation of the binding energy of a 

nucleus leads to a divergence. To overcome this 

difficulty, some people have fitted nuclear potentials 

with soft cores. So far, all the soft cores are still too 

strong to give a reliable perturbation calculation. As 

stated in the Introduction, Kerman and Levy at M.I.T. 

have recently proposed a non-local but separable core for 

the nuclear potential. For this type of nuclear potential, 

there will be certain technical difficulties assoc~ated 

with the method of using the Euler function or the 

angular average approximation. These difficulties will be 

discussed in the following sections. However, if we make 

use of our function K(k,k',q), then we can easily evaluate 

the first order and second order terms in the perturbation 

series. Since people hope that this kind of semi-dynamic 

potential will make the perturbation series converge 

quickly, we are satisfied with only these two terms. 

29 
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In this chapter, we will deal with the central 

1potential in the s state only. In section 1, we 
0 

introduce Kerman and Levy's potential for this state and 

derive the basic matrix element in the perturbation theory. 

In Section 2 and 3, we derive the first and second order 

term, respectively. The same formulation can be extended 

to tensor and spin-orbit forces; but we will not derive 

them here. The numerical calculation is not carried out 

since we don't know Kerman-Levy's potential exactly. 

4-1. Kerman-Levy's potential. 

Kerman-Levy's potential is taken to be, in the 1s 
0 

state, 

v{r,r') = v{r) v{r') r,r'<c 

= w(r)c(r-r') r ,r' >c ( 4 .1) 

= 0 otherwise 

For this type of potential, Eq. (2.8) becomes 

.· 

(4. 2) 
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where q = lk'-kl· We define 

Jc · 2 rv8 Ck} = ,1 (kr}v(r)r d 	 (4. 3}
0 

0 

VL (q} :::· r, cJ (qr) l;\)(r) r 2dr 	 (4.4)
0 

c 

then Eq. (2.9) gives us the matrix element 

(4. 5} 

4-2. First. order 	perturbation theory. 

In the first order perturbation theory, the binding 

energy per nucleon in nuclear matter is 

(4.6),
2A 

1 ~ ~~ c<~~ Iv I&Ill> - <&Ill I~ IIE~> > 
\1 , T 

where o arid 1 denote spin and isospin respectively. The 

label &for a single particle states means ~ 1 P ,1 and
1 1 

all these enter sununation. 

From Eq. (4.5), we obtain .· 

I <....t mI v I ......R. m> = 	 (4.7)-._ ~· i [l v~Ck>]o + U/L co>Jo}
(J 	 ) '£ ,


CJ I '£ 


4'1f 	 ~ 4. 8}I <&1!11 v I Ill& >= [JITv~(k)JE + 
CJ
[I

T 
VL(2k)J EJ 

fl I ' CJ I T 

where 
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(4.10) 

(4.11) 

(4.12) 

The superscripts on v are 2S+l, 2~+1 for the interacting 

pair of nucleons. If we use Eqs. (4.7), (4.8), (2.2) and 

(2.11), then Eq. (4.6) becomes 

For the second term, we can easily evaluate and get the 

result as 

For the other terms, we use Eqs. (2.6) and (3.17). The 

result is 

(4.15) 




- - -
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So we finally have 

{4.16) 

4-3. Second order perturbation theory. 

The second order contribution to the binding energy 

per particle is 

a,b>l (4.17) 
. ~,~<l 

C1 ' T 

..We take kf as the unit of momentum as before and a+b=~+~ · 

is implied. 

Making a similar transformation as we did in 

( 2. 6) 


... ''i+m=2K
1-m=2k- - - (4.18) 
a-b=2k' , a+b=2K' 

~ -
and also defining 

k'-k=q , k'+k=x ( 4. 19)- - .,. ......... ­
then we can follow the same method as used in sec. 2-1 

to evaluate a< 2 >. The results are 

._, . :!!Jff-'< )'YI I )<..1-1 3-;;I 3 JOO· 4B ;·-- (j)1;:oc r) = - . . ·~ a'')/ c/ '/?-1 cl- E ·~ 
_;?'hT 6 h ~ <> - o -- / .f .~ 

x) [ 2 Lf. 2(tf)tf(t} +- 2 ('> ?J;(tl.JzJ;(t1,;U;_{fJ1 f [?; VL.fi/1 J\_l o:z. s ~~ ·).D \o:z. . ).J> -- )p 

(4.20) 
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The total contribution is therefore given by their sum, 

i.e. 

( 4. 22) 

where the sum over spin and isospin is to be understood as 

in the previous section and momentum conservation still 

holds. 

Looking at the above expression, there are many 

terms in the integrand. For the first term we can use 

Euler's function to evaluate the integrations. For the 

second and third terms, the angular average approximation 

may or may not give a good approximation as they do hot 

depend on q. For all the other terms, it's quite possible 
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that the angular average method will be a poor approxi­

mation as they all depend on q. But all these terms can 

be treated exactly by making use of our function 

K(k,k' ,q}. The method is strightforward as that used 

in Sec. 2-1. First we notice that the relation 

x=k' +k .... - ..... 
gives 

(4.23) 


Making use of the fact 

0 0 0 

then Eq. (4.22) becomes 

<?-} '31lf~ »? I(/O .J)'dtl f't11c1£: IR;1.t~2ct9 K(liJ'tl~f) " ..B = .:X7T3 1j::i. )o R )<J . _jf!/-j/ 0 V ..;f12_k~ 

C2 . v;_ CtJv;__ (x;I _ J\ 
{/'. 2. ) Lo 

(4.25} 
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where x must be replaced by the right hand side of 

Eq. (4.23) before the integrations are carried out. 

This is the final expression for a potential of 

the Kerman-Levy· type with a separable core in the 1s 
0 

state. 

With the above formulas, we can calculate the 

binding energy per nucleon in nuclear matter for the 

Kerman-Levy potential by a similar numerical method as 

being used for calculating the Pauli correction in RSM. 

We thus conclude.that our function K(k,k' ,q) serves as 

a very convenient and accurate apparatus in treating 

this new type of potential. 

.· 




APPENDIX A 

DERIVA'I'ION OF 'rHE IN'l'ERSECTION VOLUME 

BETWEEN 'l'HIU:.E IDENTICAL SPHERES IN 


THE PAULI EXCLUSION PRINCIPLE 


The three identical spheres all have a unit 

radius. Let their centers be A,B and C. The distances 

between them are 2k, q and x for AB, BC and CA 

respectively. we remember that q· = k'-k .and 
""'"" 

x = k'+k • These are shown explicitly in Fig. 12. 

We see there that the intersection volume is divided 

into six parts. They can all be treated in the same 

way. Let us consider volume 1. We draw this volume 

in Fig. 13. 'l'he cross-hatched volume element· i°n Fig. ·13 · 

can be further considered as the superposition of the 

shaded volume element in Fig. 14. From Fig. 14 we 

calculate the cross-hatched volume element by 

v = JR Adx (A. l) 

a 

But $1 = sin (A. 2)
-1 tR:/J 

37 
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A = 1TR2 2J:1
2n - L 

'2 x·2Rsin,0 (A. 3) 

= R2,0 - x1R2--2 
-x 

v = (A. 4) 

The first integral can be evaluated by integration by 

parts. The result is 

(A. 5) 

2But R = l-(Dsine) 2 (A. 6) 

a = Dcos8 (A. 7) 

Using :Cqs. (A.5) to (A.7) anu Fig. 2, ~ve have the volume 

element 1 

(A. 8) 
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The·last integral in Eq. (A.8) can be simplified as 

2 . 2 n . 4
sin e- ·3· sin 9 

I = 02 (1-0 2 )~ f dB (A. 9)2 21-D sin El 

The integral part can be further integrated into 

II - !ce-sin0cos9) --~e + 2 f dG (A.10)
6 3D2 3n 2 l-D2sine 

The integral in Eq. (A.10) is 

tanEl) (A.11) 

Combining Eqs. (l'•• 8) to (A.11) , we finally obtain the 

volume as 

(A.12) 

Applying Eq. (A.12) to all the six partial volumes, we 

get the total intersection volume 

-r :- tnn-
1(~;;-;- /c?/}&)J 

(A .13) 
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. 

where D and 9. are shown in Fig. 15 and can be evaluated 

l 

in terms of k,k', and q through the natural quantities 

D = (A.14) 

(A.15) 

where 

kl 

k2 

k3 

= 

= 

= 

k 

q/2 

~ (2k 12+2k2-q 2 )~ 

{A. 16) 

Making use 

Eq. (A.13) 

of Eqs. {A.14) to (A.16), 

in the following way 

we can rewrite 

..l µ2-.,p.l2.
Jf, -f P-> Tf!~ - - .> 0 

{A. 17) 

with 

'i (2kl2k22+2k 2k 2 21 2k 2 k 4 J 4 k 4) !.2 (A. 18)
l' - 3 . 3 + (3 · 1 - ' 1 - ~ 2 - "3• 

This is the formula we have made use of in Chapter II. 



APPENDIX D 

AN ANALY'l'IC CHECK OF 11HE RELATION 
BE'l'VJEEN FUNC'l'ION K (k ,k 1 ,q) AND 

EULER'S FUNCTION P(~) FOR q>2 

We know from Eq. (2. 23) that for q > 2 

K() } I ) _2·1f(l-k)2(2+J~) (B. l)<., : ,q = 3 . 

S~bstituting Eq. (ll.l) into the right hand .side of 

Eq. ( 2 • 3 0) then 

. ' 
1

. t-r- fl_ !Z idJf /

f.?f/5 = -{<O ( cf/l fZ {1- t'Y'- (.2 -rt') ( . . _.,.;; i


Jo .Jg-ll Ii - Ii 

{/.S .~ .l . / ) ri / I ) . 
( 5~- - (.,.( --- lf --1- 5- ..VJ t (-t- Z:(, -t 

The last slop can be checked by Eq. (2.27.2). So we have 

proved the relation in l~q. (2.30) for the case q>2. 
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APPENDIX C 

EVALUATION OF SPIN SUivl 	 FOR 'l'HE 
3 3

PAULI COH.RECTION IN COUPLED s - D STATES
1 1 

'rhe bracket { .•.. } in Eq. (3. 2 0) represents 

(~Ue'f'f/1.{M r 
/..,LI 


)1,f' 


(C .1) 

where 

(C. 2) 

L, L' , µ, and µ' = 0, 2 (C. 3) 

M,M' == -1,0,l (C. 4) 

From Eqs. (C.2) and (C.3), we see that all f's are real. 

To evaluate Eq. (C.l), we choose k as the quantization 
~ -· 

axis, then ~· can be obtained from~ by the rotation 

ti f:'. 0 ) • f th ) 1 ( . Y)?1R ( 11, .... , in terms o e Eu.er 1 sang es lX,f,u • 'rhen we 

can write the D-matrix in the following form 

42 
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( 

-:-i }!e l+cose
-2­ -i>J sine e -­

12­
-i~ 1-cose e 

2 

D(l)= sine cose sine- --­ (C. 5) 
r2 ~ 

i}Je 1-cose
-2­ i~ sine 

e . .-2­ i~ l+.cos8 e 
2 

If we consider the summation over M. and M. 1
, then we obtain, 

by using Eqs. (C.4) and (C.5), 

( f-f Co;> 0) .L 
-----­

.:;: 

..... -. 2-G , -1 -1 0 c o 0 f -1 f - I 
~--- -+ - -fT ~-;; cL11 f;,l, fLf £1 i ,:_ 11£1 LI ..J'f 

/ I I 

i- i.1~ io 
/'fl 

f ! jp! -+ ill( i~I( f ~ i~ J/_ f Ll 

I ,,. I_(!~ C(J)(P)~ ( f-/ r-I i I i I _L fL~I f:; Jt- L.( . L 1 I ,,/7'( L. f /1f 
-+ £,, I:., 11 

~o io /"o i o 
·->- CcD 20 -l + ­

I _)~I I .}7 1/ j LI ,,/7/ 

(C. 6) 
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Since 

<010-ljl-l>=<OlOOjlO>=<OlOllll>=l 


1
<210-1 j l-1>=<2101 Ill>= - - (C. 7)
/Io­

2<2100!10>= ­ rro­
we have 

-1 0 1 
= = = 1f 01 f 01 f 01 


-1 1 1
-- (C. 8)f 21 = f 21 = ­
r2 

0 =f 21 ;-2 

But Eq. (C.8) implies 

-1
f (C. 9·) 
al 

where~ cah be L,L' ,µ, andµ'. Using Eq. (C.9) we can 

reduce Eq. (C.6) into 

fl'!; /.?if 

,LO !'- c _JC 
j L'! }>···; j L ( 

(C.10) 
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So we write Eq. (C.l) as 

&'f.IE>r, 

L-,; ....~,/-

/'.1f'i 

i- S,i):1~{9 

+ 

(J:/ioj; jo
L 

1I L f ./>II /'I 

ii~ j/ i'~I ;t~I 

F-- l 
~IL 

- i 
f-L,t. 

-It;,;r -t­

;--- i )
--rr,,•'/"7 

/ ~ 

!•laking use of 

for each term 

....f._'O j~D ,co 
Jc; t.. r JP'/ 

- I Ir,,,, Fu/'''.. <-<. / 

Eq. (C. 8) and summing over L, L' , µ, and 

in Eq. (C.11), we obtain respectively 

(C. 11) 

µ ' 

c·-\/t:>1• 
L;LJ 

/'~f' 

_(lf;___ f
_J L/I LI 

f! 
],,n·; 

j,rl 
.,..n / 

(C.12) 

. ,..-....... .. Ir.. / -'---1-- I · · ;· ..... ;.

~) "/ /:;·. -·. ·-f-.'> f_-. L-. )-I ..... I 1·-·· i. · 

-- .;- . i o-" ; j 2 . v .... -" o t ~',2 -- ..... fee· ;-_,, ·' ·- -'· /·c .l !_;l· 

(c. 13) 
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l-- -----1 - I -.. --//:--I hlf:?-1-- , -- --_,, ., - --) ­2.; 2 r2D 122 - fv.:, -1.2 -··· (..\,! •• v 

I- r· / r:·,. 
- V .2_ /?){) I c).:>. 

(C.14) 

and 

·-I 

j-L 1L 

L-1)-2 -. (,---/ )2-f.., (j::-1)2... rr·tj' 'l... 
- ~ ( 1 .;'.:>.- - -1· '-'<' f-02 _ _,., , 2i) T rvo 

(c. 15) 

Substituting Eqs. (C.12) to (C.15) into Eq. (C.11), we 

obtain the final result for the bracket{ .... }, i.e., 

/ ~ ( ( -- t -- I ( I) . r--/- I c --1 --/) l
· x --L (F'? - l -t -- fcof:n h2 r« . - .d/ (12 r !)0 ( /oc) hu 1 f-c-,;. /:2 o j'f 

(C.16) 
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The cos8 can be written in terms of k,k', and q by using 

q = k' - k (C.17) 
~A 

i.e. , 

k 2+k'2-q2 
cos8=------- (C.18)2kk' 

http:cos8=-------(C.18


48 

REFERENCES 

1. 	 H. Euler, Zeit Physik 105, 533 (1937). 

2. 	 C. Dressel, thesis, Physics Department, 


Massachusetts Institute of Technology (1965). 


3. 	 D. N. L. Sprung; Report No. MIT-2098-201. 

4. 	 F'. Tabakin, Ann. Phys. (New York) 3Q. {1964). 

5. 	 A. Kerman, M. Levy, private communication. 

6. 	 A. Messiah, Quantum Mechanics, p. 686. 

7. 	 K. A. Brueckner and c. A. Levinson, Phys. Rev. 


97 t 1344 (1955) • 


J. Goldstone, Proc. Roy. Soc. {London) A293, 

267 (1957). 

·a. 	 G. E. Brown and G. T. Schappert, Nuclear physibs 

56 (1964). 

9. 	 H. A. Bethe, B. H. Brandow, and A. G. Petshek, 

Phys. Rev. 129 (1964). 

10. 	 P. Banerjee, private communication. 



49 

FIGURE l 


Four Intersecting Identical Spheres 


FIGURE: 2 


Intersection Volume in Region (1) V=O 
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FIGURE 3 

Intersection Volume in Region (2) 

V=VAB-2VABC+2VACD-VCD 


c. 

FIGURE 4 

Intersection Volume in Region (3) 

V=VAB-2VA13Cf VCD 


McMASTER UNIVERSITY LIBRARY, 
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c 

FIGURE 5 

Intersection Volume in Region (4)R 
V=VAB-2VBC+VCD 

FIGURB 6 
Intersection Volume in Region (IJ:)L 

V=VAB-2VAC+VCD 
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in 

FIGUHE 7 

Intersection Volume 
Region (S)R 
V=VAB-2V13C 

FIGURE 8 

Intersection Volume 
in Region (5)L 
V=VAB-2VAC 
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c 

.D 

FIGURE 9 


Intersection Volume in Region (6) 

V=VAB-2VABC 


.A . 
c 

. 

B 

FIGURE 10 

Intersection Volume in Region (7) 


V=VAb 
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FIGURE 11 Relation Between (k,k' ,q) and Different Regions 

a =? k I ::::k-q 
b 9 k'=q-k 
c => k' ==k+q 
d =j k I :=k 


2 2 4 2 2 2

e => k 14 (1+2q 2 )-k 12 (2k

2+2q 2
-2k q +q )+(k -q ) =0 

f => k':.:l 

k I 
2=k 2+q 2 (l-k 2 ) t_qk ;-_--2 V.-2 g ~ . 1-k 4-q 

2 2 2
h ~ k' =q /2-k +2 


i 9 q=2 


. k'2=q2-k2. :J => 

II 
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FIGURE 12 


Three Intersecting Identical Spheres 
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FIGURE 13 

A Part of the Intersection Volume 

Between Three Identical Spheres 


FIGURE 14 


A Section of the Part of Fig. 13 
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FIGURE 15 


Various Quantities in the Three 

Intersecting Spheres 
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