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SCOPE AND CONTENTS:

The separation of a mixturc of glass spheres in water
using 2 inch hydrocyclones was studied. Three operating para-
meters were investigated: fced concentration, volume split and
feed flow rate. In addition, three design parameters were cone
angle, inlet diameter, and vortex finder length. The performance
criterion paramecters were the efficiency with which the solids
were separated from the liquid, and the energy required per unit
mass flowing through the hydrocyclone.

First the experimental data were analyzed by three
different statistical methods and the results compared in an
attempt to determinc which statistical method was most suitable
for this two criteria system. The three methods were principal
component analysis, canonical correlation analysis and multiple

regression analysis. The theory behind these methods is briefly
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outlined. Our conclusion is that using all threc methoas give
much more insight than could be obtained from any individual method.
Second, an analysis of the above eight hydrocyclone
parameters of hydrocyclones with cylindrical sections indicated
that for the range of parameters covered in this work, feed flow
rate and inlet diameter influenced the energy loss most; volume
split influenced the separation efficiency the most. Energy loss
and separation efficiency are quite independent; this means that
it is possible to design and run a hydrocyclone with high separation
efficiency and low energy loss. The dilute concentrations used ih
this work indicate that a hydrocyqlone of conventional design can
be used in waste water treatment. Vhen the parameters were
correlated, a power model gave more consistent interpretation
Athan a iinear model.
Thira, the effect of the three operating paraﬁeters on
hydrocyclones with three different body shapes suggested that
the most efficient cyclone was one with a straight cone and no
cylindrical section, The body shape dictated which parameters

would significantly affect performance.
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NOMENCLATURE

A = Py- component or p-component column vector
a = element of vector A

B = p, - component columﬁ vecotr

D = cyclone diameter

Dp = particle size

<DG> = geometric mean diameter

D1 = inlet diamecter =
D, = overflow diameter

D3 = underflow diameter

G = pressure loss factor

g = gravitational acceleration

H =  heigit of cylindrical section

L = overall vertical length of cone
L2 = vortex finder length

N = sample size

P1 = feed stream pressure

P2 = overflow stream pressure

P3 = underflow stream pressure

P = number of variates

P, = number of criterion variates

P, = number of predictor variates

xi



Ag

covariance matrix

canonical variates

feed stream velocity

overflow stream veclocity
underflow stream velocity

feed mass flow rate

overflow mass flow rate
underflow mass flow rate

wt, fraction of solid in liquid
independent variables
dependent variable

estimated value of dependent variable

random sample matrix

the coefficient of least square equation

estimated value of the coefficient of
least square equation

random error

angle of rotation; cone angle
separation efficiency

Lagrangian multiplier; eigenvalue
Lagrangian mu1£iplicr

micron

geometric standard deviation
energy loss

xii
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1. INTRODUCTION

Multiple regression analysis is a technique commonly used
to correlate a single dependent variate in terms of a set of
independent vaéiatcs. Since the regression analysis is restricted
to single response study, the application is quite limited. More
generally, the study of the correlations between a set of predictor
@independent) variates and a set of criterion (dependent) variates
(multiple responses study) is called canonical correlation analysis
(Hotelling, 1936). This may be considered as multivariate case of
a simple correlation. The regression analysis may be considered as
a special case of it. The basic approach in the canonical correlation
technique is to determine those linear functions of the predictor
variates and of the criterion variates which produée the maximum
correlation between these two sets. The canonical correlation
analysis was generalized by Roy (1957). 1t should be emphasized
that canonical correlation analysis is different from canonical
reduction used by Box (1954). (The form resulting from canonical
reduction is called canonical form, which is a standard process of
axes transformation from the origin to the center of the system in
coordiate geometry).

From the regressioﬁ‘analysis we understand that multiple

correlation demands that one response be dependent upon some or all



of the remaining variates. Similarly, for a canonical correlation
analysis the responses must be collected into two or more sets. All
these choices depend upon the nature of the responses and other
information external to the mere value of their correlations. There-
fore, the dependence structure will in turn depend upon those choices.
Furthermore, if the analyses are repeated for different choices of the
dependent or constant variates, the successive findings will hardly be
independent or contain mutually exclusive bits of information about
the structure.

A new class of technique will be required for picking apart
the dependence structure in an attempt to identify those hidden factors
which have generated the dependence or variation in the responses.
That is, the observable variates are represented as functions of a
smaller number of latent factor variates. Principal component analysis
is one technique among this field. It explains observed relations
among numerous variates in term of simpler relations. The simplification
consists of producing a smaller number of hypothetical variates (called
"principal com;onents” (Hotelling, 1933) or "principal factors" (Harman,
1967)). Therefore, this method gives a short representation of a random
sample from a population of multivariate measurements; the method searches
for the basic underlying influences. Principal component analysis
isolates and develops hypothetical constructs out of observed phenomena.
In statistical practice, the method of principal component analysis is
used to find the linear combinations with large variances. The methodo-

logy originated with Pearson (1901) as a means of fitting planes by



orthogonal least squares, but was proposed by iotelling (1933, 1936a).
In this part we consider first a brief description of these
three methods; then thesc methods are applied to a practical problem

to illustrate the different types of information that are produced.
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2.1

2.1.1

REVIEW OF THEORIES

Canonical Correlation Analysis

General Statement

Suppose we have a sample from a p-dimensional space.
In the canonical correlation analysis (Hotelling, 1936)
the search is for a linear function of the first pl-variates
and a linear function of the last pz—variates (p1+p2=p),
such that these two linear functions have the highest
possible correlation coefficient. Under the assumption of
normality, if the canonical correlation is zero, these two
sets are completely independent, and it is useless to
predict the dependent variates by means of the independent
variates. If the canonical correlation is unity, this
means that the dependent variates would be predicted
perfectly by means of the independent variates based on
the particular linear functions. For the special case in
which the number of dependent variates is equal to one,
the problem becomes simply one of multiple regression.

The assumption is that the observed variates are linear
functions of the canonical variates. Furthermore we assume

that the observed variates are normally distributed in order



‘to make a statistical inference on the dependence between
the two sets and to derive the probability distribution of
the canonical correlation coefficients.

A response surface which is an homogeneous expression
of a quadratic form is reduced to a linear combination of
only squares, the cross-product terms being eliminated.

A form of this type is said to be a canonical form. For
instance, the canonical reduction mentioned by Box (1954)
is algebraically equivalent to the canonical analysis of
Hotelling's method, but their underlying physical meanings
are cbmpletely different.

2.1.2. Theory

Suppose Zij (i=1,2,...,p, j=1,2,..,N,N>p) is a random
sample of size N from a p - dimensional distribution.
Suppose further that Zij has a covariance matrix, R, which
is known to be a positive definite, real, symmetric matrix.
Without loss of gencfality we may suppose that Zi has zero
mean.

We partition Z into two subvectors of Py and P,

components (p=p1+p2) respectively,
] 1)

For convenience we assume P1$P,- The covariance matrix

is partitioned into matrices as follows:

R11 R12

Row , i
R Ra2

] (2)



Where R11 is the correlation matrix for Zl’ R22 for ZZ’ and

_ew & : .
R12 = R21 is the correlation matrix between Z1 and 22. The
canonical variates U and V are defined by the arbitrary

linear combinations:

U=A'Z , V=B'Z, : (3)

We require A and B to be such that U and V have unit
variance, that is

1 =8 [U%)

'
A'R A (4)

E (V]

—
]

]
B'R,,B (5)

For this condition, we can obtain an expression for the
expected value of UV

E [UV] = A'R, B (6)
The problem is to find A and B to maximize Equation (6)
subject to the constraints of Equations (4) and (5).
Lagrangian multipliers, %-A and %—c,are introduced to

describe the constraints of Equations (4) and (5). The

composite equation is
1 1
= A = -1} = 'R..B-
v = A RIZB 2A(ARIIA 1) 5{(8 R22B 1) (7

We differentiate ¢ with respect to the variables A and B

and equate to zero. The results are:

Ri,B - A RjA =0 (8)

A



' - =
RIZA g R228 0 (9)

From Equations (8) and (9) we note that the Lagrangian

multipliers are equal, that is,

- - \J
A =1C=A RIZB (10)
Rearrangement of Equations (8) and (9) and use of Equation
(10) gives
AR LA + R,B =0 (11)
R21A - ARZZR =0 (12)
Solving for A we obtain
-1 -1 2
(R11 Ri5 Rys Ryp = 2 I) A=0 (13)
Where I is the identity matrix. The solution involves
finding eigenvalues, A% of the equation
-1 -1 2
| R1] Ryp Ry Ry = AT | =0 (14)

From Equation (10) we see that A = A'RlzB is the correlation
between U and V. The A's were called the canonical correlation
coefficient by Hotelling (1936). Values of A.1 in equation (3)
are the eigenvectors associated with Af. Solving for B from

equation (12), we have Bi for a particular Ai is given by

il
B, = Ry Ry Ay / &g | (A; ¥ 0) (15)

The terms Ai and Bi are normalized, so that we have

'
= ! =
Ai Ai 1 and Bi Bi 1 (16)



Then Ui and Vi are normalized linear functions of ?1 and ZZ’
respectively, with maximum correlation. '

Next we want to find other linear functions of Z1 and
Z,y, respectively, such that each of thes¢ two linear functions
has the maximum correlation and is uncorre-
lated with the first linear functions. This procedure is
continued with two linear equations being generated at each
step. At the r-th step we have obtained linear combinations

= A = R =" AY = s =
U1 = A1Z1’ V1 = BIZZ,...., Ur = A'Z.,V. =B with corres

]
rl1’r rZZ’

ponding correlations, A .,Ar. These values are called

17"
canonical correlation coefficients (canonical roots).
Following a similar line of argument to that used above,
we can obtain expressions for the méximum correlation. The
resulting equations for the ith equations turn out to be
Equations (11) and (12). The details are given by Anderson
(1958) p. 290 ff. Therefore, any li from the'p1 roots
satisfies the conditions of Equations (4) and (5) for
12 3, 45 3 suies Ty
A criterion which is useful in detecting the simultaneous
departure of several roots Ai from zero was suggested by
Bartlett (1939) for testing of significance.

2 1
. X = —[N—E-(pl+p2+1)] in A a7
1

Where A =1 a - Xi) follows approximately a chi-square
i:1+Y
distribution with (pl-y)(pz—r) degrees of freedom. The

assumption is that Z1 and 22 follow a multivariate normal



distribution with zero means.
A FORTRAN IV program was written (Lee, 1967) for this
analysis.

2.2 Multiple Regression Analysis

If a function which is linear in the independent variables is

used, the mathematical model can be written in matrix form simply as

Y = XB + ¢ (18)
Where X is the N x p matrix of independent variables and B is the
p x 1 vector of unknown parameters to be estimated. Let Y be the
N x 1 vector of observations.
Elements, € of e(nx1) are uncorrelated, gnobservable random
variables and are normally distributed with zero mean and variance of
5 .

0“. If the matrix X'X is nonsingular, least squares estimates of B,

called é, are readily obtained from the equation

~

B = [X'X] Ix'y (19)

It is then possible to construct a response surface of the predicted

value, Y, in terms of the independent variables X :

-~

Y = X8 (20)

-~

This surface, in the form of contours (loci of constant Y values),
can be studied visually to gain an appreciation of the relationship
between the variables X and the response Y. In this analysis, we

assume no error resides in X, and have considered only one response, Y.



2.3 Principal Component Analysis

2.3.1

General Statement

Consider a random sample of size N where two random variables
X, and Y have been measured in each individual in the sample.
This sample may be represented geometrically as a sample cluster
of N points in a 2-dimensional Euclidean space,
' Y
Y N

le

—X

If the X-Y coordinate system is rotated rigidiy into a new
position such that the X1 coincides with the long axis of the
sample cluster, whereas Yl is perpendicular to Xl’ then
X1 and Y1 are two nearly uncorrelated random variables.

The X1 axis accounts for the most variation (variance) of
the sample cluster, whereas the contribution to the sample

variation from Y, is nearly zero. The new axis, X,, is called

1 ) I
the principal axis or principal component (Hotelling, 1933), or
principal factor (Harman, 1967, p. 135). This bivariate case

can be generalized into the multivariate case. This rotation,

or more precisely, this orthogonal linear transformation, is the
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underlying concept in multivariate statistical analysis. In

this example, X, and Y, are linear combinations of X and Y,

1 1
such as
Cos0 -Sino®
(X1 Yl) =X Y) ¢ ) (21)
. Sin® Cos0
where Cos® -Sin@ Cos0 -Sino '
( )« ) =1
Sin@ Cos0@ Sin® Cos0

I is the identity matrix.
Principal components are linear combinations of these
measurements or random variables which have special properties
in terms of variances.' Most of the variations from observation
to observation may reside in fewer iinear combinations than
the number of variates the experimenter started with; then he can confine
his study to fewer quantities, because the other linear combi -
nations vary so little that one cannot detect variations from
- observation to observation.
2.3.2. Theory

Suppose (Zij’ i=1,2,...,p, j=1,2,...,N) is a sample of size
N>p from a p-dimensional distribution whose covariance matrix,
R, is positive definite. In developing the ideas, we do not
need to assume that Z is normally distributed, but the normality
assumption is needed to derive the sampling theory.

Let A be a p-component column vector such that A'A=1. The

variance of linear combination U=A'Z is
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E[A'Z]2 = E[A'ZZ'A] = A'RA (22)
To determine the ﬁormalized linear combination A'Z that has
the maximum variance, we must find a vector A, such that Equétion
(22) is maximized subject to the constraint A'A=1.

Introduce the Lagrangian multiplier A and Equation (22) becomes

0 = A'RA - A (A'A-1) (23)

Partial derivatives respect with A are set equalzero to give:

2RA - 2)A = 0 ’ (24)

In terms of the identity matrix I this becomes
(R-AI) A=0 (25)
The nontrivial solution to Equation (25) is

R = AI] =0 , (26)
Equation (26) is a polynomial in A of degree p. Multiplication

of Equation (25) by A' yields

A'R A = AA'A = 2 (27)

This means that if A satisfies Equation (25), then the variance
of A'Z is A (Combining Equation (7) with Equation (22)). Hence
for the maximum variance we should select the largest root Al.

Let A1 be a normalized solution of (R-AII) A =0 then U =A{ Z

1
is a normalized linear combination with maximum variance. We
can refer to this as the first principal component.

A similar analysis can be made for the second principal

component U, ; in fact, this can be continued up to p steps with
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p principal components, Ui = Aii, coresponding to p eigeﬁvalues
li(i =1,2,3 ... p). Anderson (1958) p. 274>ff discusses this in more
detail.
Let us summarize this process as: for the p-component
random vector Z with E[Z]=0 and E[ZZ']=R there exists an
orthogonal linear transformation
U=A"'Z . (28)

such that the covariance matrix of U is E[UU'] = A where

A0 ... 0
A=[0 xz...o] (29)

0 A

P

Where Alzlzz...axp;O are the roots of Equation (26). The

1 .
component Ui = AZ has maximum variance of all normalized
linear combinations uUncorrelated with Ul”"Ui 1

2.3.3. Interpretations

What an experimenter is looking fér is a physical meaning for

each principal component. Physical meanings can be obtained

by an examination of the elements of matrix A on each random
variable. It is easier to interpret the physical meaning

through rotation of matrix A like in factor analysis (Harman,
1967). One rotation method, varimax mecthod introduced by

Kaiser (1958), is used in the present study. The varimax

method attempts to produce numerous zero coefficients in each
principal component rather than in each random variable and

also attempts to maximize the differences between coefficients


http:corespondi.ng
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. for each principal component.
Two principal components are rotated at a time. After the
rotation of all possible pairs of principal components, the

varimax criterion, V, is evaluated as follows

P
V=N I I (aji/h') - I ('Z a / hj) (30)

Where‘aji are elements of matrix A.

hj is defined as

h? = a? + a? + *°- + a, (31)
j 1 32 jp
The rotation process is continued until the difference of two
successive varimax criteria is less than a predetermined value.
Principal component, may be obtained from either a correlation
matrix or a covariance matrix. If random variables have been
measufed in non-comparable units, the correlation matrix is
recommended (Anderson, 1963), because the correlation coefficients
may be regarded as constituting a standardized sample covariance
matrix. Conversely if the random variables are reasonably
comparable, the covariance form has a greater statistical
appeal (Anderson, 1963). Principal components do not necessarily
need to have any intrinsic physical meaning.
One problem is to determinc the number of statistical

significant principal components. A number of large-sample

distributional properties of component coefficients and



characteristic roots permits the construction of tests of
hypotheses and confidence intervals for the population
component structure. The tests are fully discussed by
Anderson (1963).. No tests are used in the present study.

A FORTRAN IV program was written (Lee, 1967a) for this
analysis according to the theory described in this chapter.

Also varimax rotation of principal components is included.

15



S AN EXAMPLE OF APPLICATION

3.1 Introduction

A hydrocyclone is a device used to separate solid/liquid
mixture. The usual criteria used to evaluate a Hydrocyclone are
the degree of separation that is attained, given by efficiency n
or a critical separation diameter of the barticle, (Dp)so; and
the amount of energy required to perform the separation, Ap.

Often, the better the separation, the more energy is required.
What we want is excellent separation for a minimum of energy.
Workers in this field have tended to generate expressions for
either of these single criterion parameters in terms of design
and operating paraméters.

The example used in the present work demonstrates how
the three statistical techniques can be applied to this hydro-
cyclone problem, illustrates the type of information that is
produced from these threec methods and discusses the implications
of the answers.

Based on a survey of the literature, conveniently condensed
in the text by Bradley (1965), three design and threce operating
parameters were selected as having the most important effect on
the two performance criteria. Some 52 runs (samples were observed
for the separation of glass beads (geometric mecan diameter, <D >=37

G

microns,  standard deviation of log-normal drop size distribution,

16
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o ,= 1.24) from water; the experiments were arranged on a three level, -
incomplete block design for a linear correlation model (Box (1960)).
Details are given in Part IIL. The parameters selected were:
Operating parameters: feed concentration, ratio of fluid flowing out
the overflow to fluid out the underflow (volume split) and the volumetric
feed flowrate. Design paramcters: cone angle, inlet diameter of feced
line, vortex finder length. Performancecriterion paramefers: separation
efficiency, n, andvthe energy loss per unit of mass flowing through the
hydrocyclone. |

The aim of this study was first, understanding the underlying
factors influencing the hydrocyclone performaﬁce, second, to find out
an overall concept of the influences of six predictor variates (three
operating parametérs and three design parameters) on two criterion
variates (two performance criterion parameters).

3.2, Statistical Analyses and Discussion

The principal component analysis, canonical correlation analysis
and multiple regression analysis were conducted on a set of experiment
data (sample size = 52, number of variates = 8). We will discuss the
results (by each analysis method) individually. Principal component
analysis tries to understaﬂd a group of observations, one normally
searches first for the underlying principles. Hence we discuss principle

component analysis first.
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From Principal Component Analysis

The.principal component analysis was condugted on
correlation matrix and eight eigenvectors were rotated
(Table 1). We expect that some of these factors will have
a low total eigenvalue and can be discarded. cherwise if
we start with eight variables and end up with eight factors
we have accomplished very little in learning about the
underlying factors. Of the eight factors, the last two in
the table were discarded because the eigenvalue was too
small. Of the remaining factors, factors 4, 5, and 6 have
almost zero factor loadings by all of the variates. Hence,
these were discarded. The whole analysis was repeated with
only‘the first three factors being retained. The results
are shown in Table 1.

Thus we have three factors. Consider the physical

significance of these factors by noting the magnitude of

the factor loadings in the table (the sign indicates the

direction in which the variates interact). For the first
factor the variates with the largest factor loading are the
inlet diameter, the cone angle, the flow rate and the energy
loss. Since we are interested in thecriterion of energy loss,
we could interpret this first factor as being indicative of
the energy loss. The inlet diameter and vortex finder length
are negative correlated with energy loss. On the contrary,

the flow rate, cone angle, and efficiency are positively

(

18



RESULTS

TABLE 1. OF PRINCIPAL COMPONLENT ANALYSIS FOR LINEAR MODEL
(FOR PART I STUDY)
ctor
Variates 1 2 3 5
Inlet diameter 1.00 -0.04 -0.05 0.01 0.00 -0.00 | -0.12 -0.14
Vortex finder length 0.80 0.60 -0.01 0.00 0.00 -0.00 | 0.23 0.04
!
Cone angle -0.99 0.14 -0.07 0.01 -0.00 0.00 i 0.02 -0.29
Flow rate -0.99 0.10° -0.02 0.00 0.00 -0.00 i 0.15 -0.01
Energy loss -1.00 0.02 0.00 | -0.00 0.00 -0.00 i 0.13. 0.07
Volume split 0.04 1.00 0.06 | -0.01 -0.00 0.00 | 0.21 -0.01
Efficiency -0.24 0.97 -0.03 0.01 0.060 -0.00 0.79 0.01
Concentration 0.00 0.02 1.00 | -0.00 | -0.00 0.00 0.01 | 0.00
Eigenvalue 2.08 1.55 1.00 1.00 1.00 1.00 0.26 0.10
or

Variate 1 3

Inlet diameter 1.00 | -0.03 -0.02

Vortex finder length 0.76 0.65 -0.01

Cone angle -0.99 0.14 -0.04

Flow rate -1.00 0.09 -0.01

Energy loss -1.00 0.01 -0.00

Volume split 0.03 1.00 0.01

Efficiency -0.25 0.97 -0.03

Concentration 0.01 -0.01 1.00

Eigenvalue 2.08 1.55 1.00

61
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correlated with energy loss. The contribution of volume

split and concentration to this factor is negligible.

To a certain degrec this grouping makes sense in that we

would expect a high correlation between inlet diameter and

feed velocity with energy loss. The effect of cone angle

and vortex finder length are surprising in that this dependence
has not been noted before. The iﬁteraction between the
criteria, energy loss and separation efficiency, is not strong
in this factor.

The second factor has high factor loadings for the
efficiency, the volume split and to a limited extent the
vortex finder length. Physically this is interpreted as
being tﬁe separation efficiency factor because we would like
to relate the efficiency criterion variate to one factor.

The factor loadings imply there is a high correlation between
efficiency and volume split, Burrill (1967) found similar
results for his study of a hydrocyclone is separate liquid-
liquid systems. The suggestion that an increase in vortex
finder length increases the efficiency could be justified by
arguments concerning the existence of a short circuit flow

of feed directly to the overflow without undergoing separation.
Nevertheless, this relatively strong dependence is surprising
considering the evidence published literature to date. The

-contribution of the other variates to this factor is negligible.
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The small effect of concentration found in this analysis
coincides with the findings of Burrill (1967).

The authors interpretd the third factor as a unique
factor that suggests the independence of the concentration
effect. It is unique because the factor loadings of all
but one variate are very small.

The above three mutually independent (orthogonal) factors
describe the main underlying influences of the hydrocyclone
performance. The first two factors are called common factors
which account for the most variance of the variates. The
third factor is called unique factor which accounts for the
remaining variance of that variate. The identification of
hidden relationships is the main value of principal component
analysis. It supplies a single means of reducing the number

of variates to be treated in more extcnsive studies.
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From Canonical Correlation Analysis

Results from canonical correlation analysis are listed in
Table 2. The influence of the six predictor variates (three
design parameters and threce operating parameters) on two
criterion variates (two performance criterion parameters) are
shown. The two canonical variates describe the‘overall concept
from two points of view. Iligh values of the canonical roots
(canonica1>corre1ation coefficients) indicate that the criterion
variates are predicted well by means of the predictor variates
based on the particular linear functions. Furthermore, the two
canonical variates are statistically significant at 1% level.
The first canonical variate has a high canonical root, and it
is predominated by the energy loss. It shows the relationship
that these predictor variates can increase the efficiency and
the energy loss or dccfease the efficiency and the energy loss
simultaneously<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>