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Lay Abstract

We investigate to what extent certain well-known results of classical computabil-

ity theory on the natural numbers hold in the context of generalised computabil-

ity theories on the real numbers.



Abstract

Several results from classical computability theory (computability over discrete

structures such as the natural numbers and strings over finite alphabets, due to

Turing, Church, Kleene and others) have been shown to hold for a generalisation

of computability theory over total abstract algebras, using for instance the model

of While computation.

We present a number of results relating to computation on topological partial

algebras, again using While computation. We consider several results from

the classical theory in the context of topological algebra of the reals: closure

of semicomputable sets under finite union (Chapter 4 Theorem 2, p.33), the

equivalence of semicomputable and projectively (semi)computable sets (Chapter

5 Theorem 7, p.45), and Post’s Theorem (i.e. a set is computable iff both it and

its complement are semicomputable) (Appendix B Theorem 9, p.53).

This research has significance in the field of scientific computation, which is

underpinned by computability on the real numbers. We will consider a “conti-

nuity principle”, which states that computability should imply continuity; how-

ever, equality, order, and other total boolean-valued functions on the reals are

clearly discontinuous. As we want these functions to be basic for the algebras

under consideration, we resolve this incompatibility by redefining such functions

to be partial, leading us to consider topological partial algebras.
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Many thanks to Professor Bröcker of Münster University for his input on

the properties of semi-algebraic and basic sets.

Thanks to the members of my M.Sc. committee, Dr. Wolfram Kahl and

Dr. Sanzheng Qiao for their careful and thorough review of the draft of my

thesis and for the valuable comments they provided.

Thanks to my dear wife, Sarah, who together with our daughter Callie is

the light of my life and the source of my joy. Thanks also to my parents, and to

my brother and my sister-in-law, for all their support throughout my studies.



Contents

Lay Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Generalising computability theory . . . . . . . . . . . . . . . . . 1

1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Signatures; Algebras; the While language 4

2.1 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Relations and projections . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Topological partial algebras . . . . . . . . . . . . . . . . . . . . . 9

2.5 The algebra R of reals . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 The algebra R∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 The While programming language . . . . . . . . . . . . . . . . . 13

2.8 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Semantics of the While language . . . . . . . . . . . . . . . . . . 16

2.10 While computability and semicomputability . . . . . . . . . . . 18

2.11 Extending While to WhileOR and While EN . . . . . . . . . . . 18



M.Sc. Thesis - M. Armstrong; McMaster University - Computer Science vii

2.12 Extending While , WhileOR and While EN to their starred versions 20

2.13 Encoding of syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Semantic disjointedness; Engeler’s Lemma 22

3.1 Engeler’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Canonical form for booleans over R . . . . . . . . . . . . . . . . 23

3.3 Semi-algebraic and basic sets . . . . . . . . . . . . . . . . . . . . 23

3.4 Positive and negative sets . . . . . . . . . . . . . . . . . . . . . . 24

4 While(R) semicomputable sets: Structure Theorem and failure

of closure under union 26

4.1 Partition Lemma for While(R) . . . . . . . . . . . . . . . . . . . 27

4.2 Structure Theorem for While(R) semicomputability . . . . . . . 32

4.3 Failure of closure of While(R) semicomputable sets under union 33

5 Classes of sets semicomputable by models based on the While

language 37

5.1 A set which is projectively While(R) semicomputable but not

While(R) semicomputable . . . . . . . . . . . . . . . . . . . . . 37

5.2 A set which is projectively WhileOR(R) semicomputable but not

WhileOR semicomputable . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Equivalence of projective While(R) and While EN(R) semicom-

putability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Classes of sets semicomputable by models based on the While

language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion and future work 46

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



M.Sc. Thesis - M. Armstrong; McMaster University - Computer Science viii

A The equivalence of While(R) and While∗(R) 50

B A counterexample to Post’s Theorem for partial algebras 53



Chapter 1

Introduction

1.1 Generalising computability theory

In classical computability theory, many formalisms have been presented and been

proven to be equivalent, including the formalism of Turing machines, λ- calculus,

and the µ-recursive functions, presented by Alan Turing [Tur36], Alonzo Church

[Chu36] and Stephen Kleene [Kle36] respectively during the 1930’s. These all

capture the informal notion of computation by a finite, deterministic algorithm

on N or on Σ∗ (the set of strings from a finite alphabet Σ).

We generalise the classical computability theory to other abstract structures,

especially the domain of real numbers R.

Our reason for generalising to abstract models is that scientific computation

is done largely on the reals, so we wish to apply the techniques of classical

computability theory to the set R of real numbers and similar sets.

An important difference between R and N is that real numbers can only

be constructed as infinite objects, for instance, as infinite sequences of rational

numbers. Thus when working with R, at least with concrete computation mod-
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els (described below), we must work with the ideas of finite approximations.

Further the topology of the reals gives us the idea of “nearness”, and the close-

ness of approximations. We will see that the topology of the reals is a crucial

concept in computation over the reals.

A model of computation is a mathematical model of some general method

of computing functions, or deciding membership of a set. We distinguish two

main kinds of such models: abstract and concrete.

For abstract models of computation, the data are taken as primitives, so the

programs and algorithms do not depend on representations.

Examples of abstract models of computation are high level programming

language, flow charts and register machines over any algebra.

For concrete models data are given by representations, and so the programs

and algorithms are highly dependent on the choice of representation. For ex-

ample, the reals may have finite representations by (indices of) effective Cauchy

sequences.

Examples of concrete models of computation are “tracking computability”

[TZ04, TZ05], Grzegorczyk-Lacombe computability [Grz55, Grz57] and Weihrauch’s

Type 2 computability [Wei00].

An important part of our work in this thesis is to consider whether certain

results from the classical theory still hold in the generalised computability theory.

We also show the equivalence and inequivalence of certain abstract models of

computation based on the While language over R.

1.2 Overview of the thesis

In Chapter 2 we review many-sorted structures and algebras, relations and pro-

jections, topological partial algebras (in particular the algebra R on R with the

ring structure of the reals), and the While , WhileOR and While EN program-
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ming languages over R, as well as the projective and “starred” versions of those

languages.

In Chapter 3 we give lemmas and definitions for the While language on R

that we use to present a Structure Theorem for While(R) in Chapter 4. Using

that Structure Theorem, we prove that the set of While(R) semicomputable

sets is not closed under union.

In Chapter 5 we present results regarding the equivalence of models of com-

putation on R based on the While language.

In Chapter 6 we present our conclusion, and some ideas for about future

work.

In Appendix A we prove the equivalence of the starred versions of models

based on the While language.

In Appendix B we show that another closure result from the classical theory,

Post’s Theorem, holds trivially in the case ofR, but does not hold more generally

for partial algebras.



Chapter 2

Signatures; Algebras; the

While language

We will study the computation of functions and relations by high level im-

perative programming languages based on the ‘ while’ construct, applied to a

many-sorted signature Σ. We give semantics for this language relative to a

topological partial Σ-algebra A, and define the notions of computability, semi-

computability and projective semicomputability for this language on A. Much of

the material is taken from [TZ00, TZ15], adapted to partial algebras.

We begin by reviewing basic concepts: many-sorted signatures and algebras.

Next we define the syntax and semantics of the While programming language.

Then we present several extensions to this language.
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2.1 Signatures

Definition 2.1.1 (Signature). A many-sorted signature Σ is a pair

〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of basic types called sorts s, s′,. . . .

(b) Func (Σ) is a finite set of basic function symbols

F : s1 × · · · × sm → s (m ≥ 0)

The case m = 0 gives a constant symbol ; we then write F : → s.

Definition 2.1.2 (Product Type). A product type ofA has the form s1 × · · · × sm,

where m ≥ 0 and s1, . . . , sm are sorts of A. We write u, v, ... for product types.

A function type has the form u→ s, where u is a product type.

Definition 2.1.3 (Standard Signature). A signature is called standard if it

includes the sorts and functions of the signature of the booleans:

signature Σ(B)

sorts bool

functions true, false : → bool

or, and : bool2 → bool

cor, cand : bool2 → bool

not : bool→ bool

All signatures used in this thesis are standard.
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Definition 2.1.4 (N-standard Signature). A signature is called N-standard if,

in addition to being standard, it includes the sorts and functions of the signature

of the naturals:

signature Σ(N )

sorts nat

functions 0 : → nat

suc : nat→ nat

eq, less : nat2 → B

All signatures used in our main results are N-standard1.

2.2 Algebras

Definition 2.2.1 (Algebra). For a signature Σ, a Σ-algebra A has, for each sort

s of Σ, a non-empty set As, called the carrier of sort s, and for each function

symbol F : s1 × ...× sm → s, a function FA : As1 × ...×As1 → As.

Notation 2.2.2. We write Σ(A) for the signature of an algebra A.

Notation 2.2.3. For a Σ-product type u = s1 × ...× sm, we write

Au =df As1 × ...×Asm

Definition 2.2.4 (Total and Partial Algebras). An algebra is total if fA is total

for all f ∈ Func (Σ); otherwise, it is partial.

1The signature used in Appendix B is not N-standard, for the sake of the simplicity of the
proof in that chapter.
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The (total) algebras of the booleans and the naturals are as follows:

algebra B

carrier B

functions trueB, falseB : → B

orB, andB : B2 → B

corB, candB : B2 → B

notB : B→ B

algebra N

carriers N

functions 0N : → N

sucN : N→ N

eqN, lessN : N2 → B

where the functions trueB, falseB, andB, orB, notB, 0N, SN, eqN and lessN have their

usual definitions, and the functions corB and candB are defined as in Definition

2.2.5.

We will often write ∨ and ∧ in place of or and and,
c
∨ and

c
∧ in place of

cor and cand and ¬ in place of not, and drop the superscripts ·B and ·N where

unambiguous.
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Definition 2.2.5. The semantics of the “conditional operators”2
c
∨ and

c
∧ are

as follows:

Jb1
c
∨ b2KBσ

aaaaaaaa
Jb1KBσ

Jb2KBσ trueB falseB ↑

trueB trueB trueB trueB

falseB trueB falseB ↑

↑ ↑ ↑ ↑

Jb1
c
∧ b2KBσ

aaaaaaaa
Jb1KBσ

Jb2KBσ trueB falseB ↑

trueB trueB falseB ↑

falseB falseB falseB falseB

↑ ↑ ↑ ↑

i.e., the operators
c
∨ and

c
∧ are “evaluated from the left”.

The definition of J·KBσ is given in Section 2.8.

Definition 2.2.6 (Standard Algebra). An algebra is called standard if it is an

expansion of B and any equality operators, for values on which they are defined,

they are the identity of their respective sorts.

All algebras in this thesis are standard.

Definition 2.2.7 (N-standard Algebra). An algebra is called N-standard if it

is an expansion of N .

All algebras used in our main results are N-standard3.

2The operators
c
∨ and

c
∧ are called conditional operators because they can be simulated

using conditional statements. Thus, in the While language, b1
c
∨ b2 can be simulated by “if

b1 then true else b2 fi” and b1
c
∧ b2 by “if ¬b1 then false else b2 fi”.

3See footnote 1.
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2.3 Relations and projections

Let Σ be any signature and A any Σ-algebra.

Definition 2.3.1 (Relation). A relation on A of type u is a subset of Au. We

write R : u if R is a relation of type u.

Definition 2.3.2 (Complement of a Relation). The complement of R in A is

the relation

Rc = Au\R = {a ∈ Au | a 6∈ R}

Definition 2.3.3 (Projection). LetR be a relation of type u = s1×...×sm where

m > 0. Let ~i = i1, ..., ir be a list of numbers such that 1 ≤ i1 < ... < ir ≤ m,

and let ~j = j1, ..., jm−r be the list {1, ...,m}\~i. Then the projection of R off of

i is the relation S : sj1 × ...× sjm−r such that:

S(xj1 , ..., xjm−r
) ⇐⇒ ∃xi1 , ..., xir : si1 , ..., sir , R(x1, ..., xm).

2.4 Topological partial algebras

Recall the definition of continuity of partial functions4:

Definition 2.4.1 (Continuity). Given two topological spacesX and Y , a partial

function f : X ⇀ Y is continuous if for every open V ⊆ Y ,

f−1[V ] =df {x ∈ X | x ∈ dom(f) and f(x) ∈ V }

is open in X.

Definition 2.4.2 (Topological partial algebra). A topological partial algebra is

a partial Σ-algebra with topologies on the carriers such that each of the basic

Σ-functions is continuous. The carriers B and N, if present, have the discrete

topology.

4For more information on topologies, topological spaces and continuity, refer to any stan-
dard topology text, such as Rudin’s Principles of Mathematical Analysis.
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Remark 2.4.3 (Continuity of computable functions; the continuity principle).

The significance of the continuity of the basic functions of a topological algebra

A is that it implies continuity of all While computable function on A [TZ99,

TZ00].

This is in accordance with the Continuity Principle which can be expressed

as

computability =⇒ continuity .

This principal is discussed in [TZ99, TZ04].

2.5 The algebra R of reals

In the following sections, we work mostly with the following topological algebra5:

algebra R

carriers R,B,N

functions 0R, 1R : → R

plusR, timesR : R2 → R

0N : → N

sucN : N→ N

true, false : → B

or, and : B2 → B

cor, cand : B2 → B

not : B→ B

eqN, lessN : N2 → B

eqR, lessR : R2 → B

5In [Fu14], this algebra was called R0; R was the algebra which also included the inverse
operation for the reals.
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where the functions 0R, 1R, plusR, timesR, 0N, SN, trueB, falseB, andB, orB, notB,

eqN and lessN have their usual definitions, the functions cor and cand are defined

as in Definition 2.2.5, and the function eqR and lessR are defined as in Remark

2.5.1.

We will often write = and < in place of eqR and lessR, and drop the super-

scripts ·R, ·B and ·N where unambiguous

The signature Σ(R) can be inferred from the above, with real as the sort of

R.

Remark 2.5.1. R is a partial algebra, with the basic partial functions eqR and

lessR, where for x, y ∈ R:

JeqR(x, y)KRσ '


↑ if JxKRσ = JyKRσ

false o/w

and

JlessR(x, y)KRσ '


true if JxKRσ < JyKRσ

false if JxKRσ > JyKRσ

↑ o/w.

The definition of J·KRσ is given in section 2.8.

By contrast, the basic functions eqN and lessN on N, are total.

Notation 2.5.2. The symbol ‘'’ denotes Kleene equality, where the two sides

are either both defined and equal, or both undefined.

Discussion 2.5.3 (Motivation for use of partial functions). We present our

motivation for using partial functions in two ways. The first is a discussion of

continuity of comparison operators on R. The second is a Gedankenexperiment

involving concrete models of computation.
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(1) The total versions of the comparison operators eqR and lessR on R are not

continuous. (By contrast any comparison operators on N are continuous,

because N has the discrete topology). Continuity of these comparison oper-

ators is important due to the Continuity Principle (Remark 2.4.3) and our

definition of topological partial algebras (Definition 2.4.2), which requires

all basic operators to be continuous.

(2) Consider now the task of determining whether for two real variables x and

y, x = y, in some concrete model of computation. For this example, let us

use as a representation of these real numbers effective Cauchy sequences of

rationals (r0, r1, r2, ...) and (s0, s1, s2, ...). We assume for our convenience

that the sequences are “fast”, i.e.,

∀n, ∀m ≥ n, |rn − rm| < 2−n,

and similarly for (sn). Now suppose that for n = 1, 2, 3, ... the inputs rn

and sn are observed (from some device) at n time units. Now x < y is

true at σ iff for some n, rn + 2 · 2−n < sn, and this can be determined

in a finite amount of time. Correspondingly, x = y is true iff for all n,

|rn − sn| < 2 · 2−n, but this cannot be determined in a finite amount of

time. So from this example it is natural for comparison operators on x and

y to diverge in cases when x = y.

Remark 2.5.4. Throughout the main results of our thesis we focus on functions

on R2. There are many problems to consider on R2 that are not present for

functions on R; for instance, While semicomputable sets on R are closed under

union6.

6This is clear from the characterization of sets on R given in [XFZ15].
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2.6 The algebra R∗

The algebra R∗ is formed from R by adding the carriers R∗, N∗ and B∗ (of

sorts real∗, nat∗ and bool∗ respectively) consisting of all finite sequences or

arrays of reals, naturals and booleans, together with certain standard constants

and operations for the empty array, updating of arrays, etc.

The significance of arrays for computation is that they provide finite but

unbounded memory. The reason for introducing the starred sort real∗ is the

lack of effective coding of finite sequences from R (unlike the case of N).

We make use of R∗ to simplify one of our results. However, despite the

convenience of the starred sort real∗, the use of R∗ is not essential as it is not

strictly stronger for computation than R (we outline a proof of this fact in

Appendix A). As such, we omit the precise definition of R∗, which can be

found in [TZ00, TZ15].

2.7 The While programming language

As has been mentioned, we will study the computation of functions and relations

by high level imperative programming languages based on the ‘ while’ construct.

For the remainder of this section, let A be a standard algebra with signature

Σ.

We begin with the syntax of Σ-terms.

Notation 2.7.1. We use ‘≡’ to denote syntactic identity between two expres-

sions.

Definition 2.7.2 (Σ-variables). For each Σ-sort s, there are variables xs, ys, ...

of sort s. Vars(Σ) is the set of variables of sort s, and Var(Σ) is the set of all

Σ-variables.
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Definition 2.7.3 (Σ-terms). Tm(Σ) is the set of Σ-terms: t, ... and Tms(Σ)

is the set of Σ-terms of sort s: ts, ... . We define this using modified BNF:

ts ::= xs | F (ts11 , ..., t
sm
m )

where F is a Σ-function symbol of type s1 × ...× sm → s (m ≥ 0).

Now we consider statements and procedures for the While language.

Definition 2.7.4 (Statements). Stmt(Σ) is the class of Σ-statements S, ...

generated by:

S ::= skip | x := t | S1;S2 | if b then S1 else S2 fi | while b do S0 od

where x := t denotes simultaneous assignment, i.e., for some m > 0,

x ≡ (x1, ..., xm) and t ≡ (t1, ..., tm) are variable and term tuples of the same

product type, with the condition that xi 6≡ xj for i 6= j; and b is a boolean term.

Definition 2.7.5 (Procedures). Proc(Σ) is the class of Σ-procedures P, ... of

the form:

P ≡ proc D begin S end

where the statement S is the body and D a variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input variables, output variables and auxiliary

variables respectively. We stipulate further:

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,

(ii) every variable occurring in the body S must be declared in D (among a,

b or c).

If a : u and b : v, then P has type u→ v, written P : u→ v.

For brevity, we will write Tm for Tm(Σ), While for While(Σ), etc.
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2.8 States

Definition 2.8.1 (State). A state is a family 〈σs | s ∈ Sort(Σ)〉 of functions

σs : Vars → As. State(A) is the set of states on A, with elements σ, ... .

Notation 2.8.2. We will write σ(x) for σs(x) when x ∈ Vars. We also write,

for tuples x ≡ (x1, ..., xm), σ[x] in place of (σ(x1), ..., σ(xm)).

Definition 2.8.3 (Variant of a state). Let σ be a state over A, and for some

Σ-product type u, let x ≡ (x1, ..., xn) and a = (a1, ..., an) ∈ Au (for n ≥ 1). We

define σ{x/a} to be the state over A formed from σ by replacing its value at xi

by ai for i = 1, ..., n. That is, for all variables y:

σ{x/a}(y) =


σ(y) if y 6≡ xi for i = 1, ..., n

ai if y ≡ xi

For t ∈ Terms, we will define the function

JtKA : State(A) ⇀ As

where JtKAσ is the value of t in A at state σ.

Definition 2.8.4 (Semantics of terms). The definition of JtKAσ is by structural

induction on Σ-terms t:

• JxKAσ = σ(x)

• JF (t1, ..., tm)KAσ '


F (Jt1KAσ, ..., JtmKAσ) if JtiKAσ ↓ for all i = 1, ...,m

↑ o/w

Notation 2.8.5. We write JtKAσ ↑ if it diverges and JtKAσ ↓ if it converges,

which we can think of as the computation of JtKAσ not halting and halting

respectively. We also write JtKAσ ↓ a to mean that the evaluation of JtKAσ

converges to a value a.
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As with Kleene equality at the meta-level (Notation 2.5.2), we make use of

Kleene equality on the meaning of terms.

Notation 2.8.6. Jt1KAσ ' Jt2KAσ means that either Jt1KAσ and Jt1KAσ both

converge to the same value, or both diverge (cf. [Kle52, §63]).

2.9 Semantics of the While language

In this section we define functions which give the meaning of While state-

ments S and procedures P , and some of the functions used to define those func-

tions. The definitions of these functions is standard [TZ00, §§3.4-3.6, §§3.14]

and lengthy, and so we only give descriptions, not definitions.

We will make use of the computation step function:

CompA : Stmt × State(A)× N⇀ State(A) ∪ {∗}.

CompA(S, σ, n) is the nth step, or the state at the nth time cycle, in the

computation of S on A, starting at state σ. The symbol ’∗’ indicates the com-

putation is over.

From the computation step function we can easily define another function

we will use, the computation length function:

CompLenA : Stmt × State(A) ⇀ N

as follows:

CompLenA(S, σ) =


least n such that CompA(S, σ, n) = ∗ if such an n exists

∞ o/w

.

We will also make use of the statement remainder function:

RemA : Stmt × State(A)× N⇀ Stmt .
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RemA(S, σ, n) is the statement about to be executed at step n of the com-

putation of S on A, starting at state σ (or skip when the computation is over);

this statement is called the “remainder” of S.

Now we may define the ideas of snapshots. We define the snapshot function:

SnapA(S, σ, n) : Stmt × State(A)× N⇀ ((State(A) ∪ {∗})× Stmt)

as

SnapA(S, σ, n) = (σn, Sn)

where

σn = CompA(S, σ, n) and Sn = RemA(S, σ, n).

SnapA(S, σ, n) is the snapshot of the computation of S at stage n, i.e. the

pair (σn, Sn) where σn is the nth step in the computation of S and Sn is the

statement about to be executed at state n.

From the snapshot function we may define the snapshot sequence generated

by S at σ:

(σ,S) = ((σ0, S0), (σ1, S1), (σ2, S2), ...)

(σ,S) is an infinite sequence of snapshots generated by S at σ. If S halts

on σ, then eventually the sequence repeats (σ′, skip).

The meaning of a While statement S, written JSKA, is a partial state trans-

formation on an algebra A:

JSKA : State ⇀ State .

Let l = CompLenA(S, σ); then:

JSKA(σ) '


CompA(S, σ, l) if l 6=∞

↑ o/w

.
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The meaning of a While procedure

P ≡ proc in a : u out b : v aux c : w begin S end u→ v

is written JP KA : Au → Av, and defined as follows. For a ∈ Au, let σ be any

state on A such that σ[a] = a. Then

JP KA(a) '


σ′[b] if JSKAσ ↓ σ′ (say)

↑ if JSKAσ ↑ .
.

2.10 While computability and semicomputabil-

ity

Definition 2.10.1 (While computable function). Let A be a standard algebra.

(a) A function f : Au ⇀ As is said to be computable (on A) by a While

procedure P : u→ s if f = PA.

(b) While(A) is the class of functions While computable on A.

Definition 2.10.2 (Halting set). The halting set of a procedure P : u→ v on

A is the set

HaltA(P ) =df {a ∈ Au | PA(a) ↓}

Definition 2.10.3 (While semicomputable set). A set R ⊆ Au is While

semicomputable on A if it is the halting set on A for some While procedure.

2.11 Extending While to WhileOR and While EN

In preparation for the theorems in Chapter 4 and Chapter 5, we give the seman-

tics of strong disjunction and infinite disjunctions to introduce the extensions

WhileOR and While EN extensions of the While language.
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The motivation of these extensions is that our model of While computation

on R, the partial operations leave us unable to implement interleaving or dove-

tailing. The problem is that when interleaving two processes, one may converge

and the other diverge locally (because of the partial operations). The resulting

process will then diverge, whereas we would want it to converge. Thus, as we

will see in one of the results of Chapter 4, the union of two semicomputable

sets is not necessarily semicomputable! In concrete models do not have this

deficiency. The extensions WhileOR and While EN correct this deficiency.

The WhileOR language is created from While by introducing the strong

(Kleene) disjunction operator ‘∇’, where b1∇b2 converges to true if either b1 or

b2 converge to true, even if the other diverges.

The While EN language is created from While by introducing a strong ex-

istential quantification construct over the naturals:

xb := Ez P (t, z)

where z : nat and P is a boolean valued procedure. Its semantics are as follows:

J Ez P (t, z)KAσ '


true if P (JtKAσ, n) ↓ true for some n

↑ o/w.

We also include the strong disjunction operator in the While EN language.

By means of these constructs, interleaving of processes may be simulated.

The WhileOR language allows for interleaving of an arbitrary but finite number

of processes, and the While EN language allows for interleaving of infinitely

many processes.
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2.12 Extending While, WhileOR and While EN to

their starred versions

Recall the algebra R∗ (section 2.6). We now construct the While∗(R),

WhileOR∗(R) and While EN∗(R).

Definition 2.12.1 (Simple and starred variables). We call the variables of sort

real, nat and bool simple, and the variables of sort real∗, nat∗ and bool∗ starred.

Definition 2.12.2 (The While∗(R) language). A While∗(R), WhileOR∗(R)

or While EN∗(R) procedure is respectively a While(R∗), WhileOR(R∗) or

While EN(R∗) procedure for which the input and output variables are simple.

However, the auxiliary variables may be starred.

2.13 Encoding of syntax

We assume given a family of effective numerical codings for each of the classes

of syntactic expressions over Σ. We write pEq for the code of an expression E.

We make the following assumptions about the coding:

• pEq increases strictly with the complexity of E, and so (e.g.), the code of

an expression is larger than those of its subexpressions.

• Sets of codes of the various syntactic classes, and of their respective sub-

classes, such as {ptq | t ∈ Term}, {ptq | t ∈ Terms}, {pSq | S ∈ Stmt},

{pSq | S is an assignment}, etc., are primitive recursive.

• We can go primitive recursively from codes of expressions to codes of

their immediate subexpressions and vice versa; thus, for example, pS1q

and pS2q are primitive recursive in pS1;S2q, and conversely.
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In short, we can primitive recursively simulate all operations involved in

processing the syntax of the programming language.



Chapter 3

Semantic disjointedness;

Engeler’s Lemma

3.1 Engeler’s Lemma

The following lemma is of vital importance to proving our Structure Theorem

for While(R) semicomputable sets [Eng68], [TZ00].

Lemma 3.1.1 (Engeler’s Lemma for While). If a relation R ⊆ Au is While

semicomputable over a standard partial Σ-algebra A, then R can be expressed

as the disjunction of an effective countable sequence of Σ-booleans1 over A.

i.e.,

x ∈ R ⇐⇒
∞∨
k=0

bk[x]

for an effective sequence for booleans (b1, b2, b3, ...).

We also need the following concept and lemma.

1That is, Σ-terms of sort bool.
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Definition 3.1.2 (Semantic Disjointedness). A sequence (b0, b1, b2, ...) of boolean

terms is semantically disjoint over A if for any state σ over A and any n,

JbnKAσ ↓ true =⇒ ∀i 6= n, JbiKAσ ↓ false.

The following lemma was proved in [XFZ15, §4].

Lemma 3.1.3 (Semantic Disjointedness Lemma). The sequence of computable

boolean terms generated from a While computation tree S by the construction

using computation trees in the proof of Engeler’s Lemma2 is semantically dis-

joint.

3.2 Canonical form for booleans over R

In our proof of our Structure Theorem for While(R) semicomputable sets, we

require a canonical form for booleans over R.

Lemma 3.2.1 (Canonical form for booleans over R). An R-boolean with vari-

ables of sort real only is effectively semantically equivalent to a boolean combi-

nation of equations and inequalities of the form:

p(x) = 0 and q(x) > 0

where p and q are polynomials in x of degree > 0.

The proof of Lemma 3.2.1 resembles that of a similar lemma for booleans

over ROR [Fu14, §§4.1].

3.3 Semi-algebraic and basic sets

We introduce the concepts of semi-algebraic and basic sets, which are funda-

mental to our results. We consider these sets on R2, though they can clearly be

generalised to Rn for any n ≥ 0.

2[XFZ15, Lemma 4.3.1]
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Definition 3.3.1 (Semi-algebraic set). A semi-algebraic set is a finite union of

sets of the form

{x ∈ R2 | p1(x) > 0, ..., pk(x) > 0, q1(x) = 0, ..., ql(x) = 0} (k, l ≥ 0)

where p1, ..., pk, q1, ..., ql are polynomials with integer coefficients.

Definition 3.3.2 (Basic set). A basic set3 is a particular kind of semi-algebraic

set, of the form

{x ∈ R2 | p1(x) > 0, ..., pk(x) > 0} (k ≥ 0)

where p1, ..., pk are polynomials with integer coefficients.

Remark 3.3.3. All basic sets are open.

Remark 3.3.4. Basic (open) sets are closed under intersection.

Lemma 3.3.5. Given a polynomial p(x) on R2, there are disjoint basic sets

B+, B− and a semi-algebraic set D, such that on B+, p > 0, on B−, p < 0,

and on D, p = 0, and B+ ∪B− ∪D = R2

Proof. Clear.

3.4 Positive and negative sets

Notation 3.4.1. For a pair of variables x ≡ (x1, x2) : real2, let Bool(x) be the

set of Σ(R)-booleans with no free variables other than x.

As mentioned in Remark 2.5.4, we focus entirely on functions over R2 through-

out this section.

We use the notions of positive, negative and divergent sets of booleans:

3In some texts, basic sets as we define them are called basic open sets; we work only with
basic open sets, and so often omit the “open”.
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Definition 3.4.2. For any b ∈ Bool(x), let:

PS(b) =df {x ∈ R2 | b[x] = true}

NS(b) =df {x ∈ R2 | b[x] = false}

DS(b) =df {x ∈ R2 | b[x] ↑}.

We call PS(b), NS(b) and DS(b) the positive, negative and divergent sets

of b respectively.



Chapter 4

While(R) semicomputable

sets: Structure Theorem

and failure of closure under

union

In this chapter we begin by extending the Partition Lemma for While(R) semi-

computability given in [Fu14], which we then use to give a Structure Theorem for

While(R) semicomputability. Then, using that Structure Theorem, we give an

example of two While(R) semicomputable sets whose union is not While(R),

semicomputable, thus disproving the closure of While(R) semicomputable sets

under union.
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4.1 Partition Lemma for While(R)

In addition to the lemmas given in chapter 3, we require one additional lemma

in order to prove our Structure Theorem for While(R) semicomputable sets.

This Partition Lemma is a strengthening of a similar lemma given in [Fu14,

§§4.3], made possible by restricting our attention to While .

Lemma 4.1.1 (Partition Lemma for booleans on R). Consider any boolean

b ∈ Bool(x).1 We may construct positive and negative sets2 for b expressed as:

PS(b) =
k⋃

i=1

B+
i

NS(b) =
l⋃

j=1

B−j .

where B+
i , B−j are basic (open) sets, and

B+
i ∩B

−
j = ∅ for i = 1, ..., k and j = 1, ..., l

B+
i1
∩B+

i2
= ∅ for i1 6= i2

B−j1 ∩B
−
j2

= ∅ for j1 6= j2

.

Remark 4.1.2. In [XFZ15] and [Fu14], basic sets for b were constructed such

that only the first of the intersection properties hold, but for our purposes,

considering the specific case of the While language, it is important to explicitely

have all three.

1Notation 3.4.1
2For our purpose, the form of the divergent set of b, DS(b), is unimportant.
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Discussion 4.1.3. Before giving the proof, we first consider some examples of

positive and negative sets in R2.

Consider the polynomials p1 = −x21 − x22 + 1 and p2 = −(x1 − 1)2 − x22 + 1,

and the booleans b1 ≡ p1(x1, x2) > 0 and b2 ≡ p2(x1, x2) > 0. Then:

B1 = PS(b1) = {(x1, x2) | p1(x1, x2) > 0}

B2 = PS(b2) = {(x1, x2) | p2(x1, x2) > 0}

Figure 4.1: B1 = PS(b1)
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Figure 4.2: B2 = PS(b2)
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B1 and B2 are basic sets, and can be easily be seen to be While(R) semi-

computable. They are pictured in Figures 4.1 and 4.2 respectively.
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Figure 4.3: PS(b1
c
∨ b2)
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Figure 4.4: PS(b1 ∨ b2)
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The sets PS(b1
c
∨ b2) and PS(b1 ∨ b2), pictured in Figures 4.3 and 4.4 re-

spectively, are easily seen to be semicomputable. These sets can be represented

as the union of two and three disjoint basic sets respectively3:

PS(b1
c
∨ b2) = {(x1, x2) | p1(x1, x2) > 0}

∪ {(x1, x2) | p2(x1, x2) > 0, p1(x1, x2) < 0}

PS(b1 ∨ b2) = {(x1, x2) | p1(x1, x2) > 0, p2(x1, x2) < 0}

∪ {(x1, x2) | p2(x1, x2) > 0, p1(x1, x2) < 0}

∪ {(x1, x2) | p2(x1, x2) > 0, p1(x1, x2) > 0}

3The proof of Lemma 4.1.1 serves as an algorithm for constructing such representations.
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We proceed to the proof of the Partition Lemma.

Proof of the Partition Lemma for booleans on R (Lemma 4.1.1). By struc-

tural induction on the canonical form of booleans on R.

Base case: b ≡ p(x) = 0 or p(x) > 0. Immediate from Lemma 3.3.5, because

in each case there is a single basic set for each of the positive and negative sets

respectively.

Induction step:

In what follows, suppose:

PS(b1) =
k1⋃
i=1

B+
1i

NS(b1) =
l1⋃
i=1

B−1i

PS(b2) =
k2⋃
j=1

B+
2j

NS(b2) =
l2⋃

j=1

B−2j

Now we consider the various cases based on the canonical form of b:

(i) b ≡ ¬b1. Then just exchange the positive and negative sets of b1; since all

three properties hold for both, they still hold after switching.

(ii) b ≡ b1 ∨ b2. Then

PS(b) = (
k1⋃
i=1

k2⋃
j=1

(B+
1i∩B

+
2j)) ∪ (

k1⋃
i=1

l2⋃
j=1

(B+
1i∩B

−
2j)) ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i∩B
+
2j))

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B
−
2j)

The outer union of PS(b) is disjoint, because B+
i ∩ B

−
j = ∅. Further,

the inner unions of PS(b) and the union of NS(b) are disjoint, because

B+
i1
∩B+

i2
= ∅ for i1 6= i2, and B−j1 ∩B

−
j2

= ∅ for j1 6= j2.

So PS(b) and NS(b) are finite unions of disjoint sets, all of which are basic,

as the intersection of any two basic sets is also basic (Remark 3.3.4).
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(iii) b ≡ b1 ∧ b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B

+
2j)

NS(b) = (
l1⋃
i=1

l2⋃
j=1

(B−1i∩B
−
2j)) ∪ (

k1⋃
i=1

l2⋃
j=1

(B+
1i∩B

−
2j)) ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i∩B
+
2j))

Similar to case (ii), we observe that PS(b) and NS(b) are unions of disjoint

basic sets.

(iv) b ≡ b1
c
∨ b2. Then

PS(b) =
k1⋃
i=1

B+
1i ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B
+
2j))

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B
−
2j)

Again similar to case (ii).

(v) b ≡ b1
c
∧ b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B

+
2j)

NS(b) =
k1⋃
i=1

B−1i ∪ (
k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B

−
2j))

Again similar to (ii).

Remark 4.1.4. The Partition Lemma for booleans on R (Lemma 4.1.1) does

not hold for WhileOR or While EN, where the ‘∇’ operator is available, because,

given any two booleans b1, b2 ∈ Bool(x), we cannot necessarily reduce the

positive set of b1∇b2 to a disjoint union, as we will see in section 4.3.
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4.2 Structure Theorem for While(R) semicom-

putability

From [Fu14, §§4.6], we have the following lemma4 for While(R) semicom-

putability:

Lemma 4.2.1. For subsets of R2,

(a) While(R) s/comp =⇒ countable union of effective disjoint sequence

of finite unions of basic sets

(b) countable union of effective disjoint sequence =⇒ While(R) s/comp.

of basic sets

We now strengthen this lemma by restricting the sequence in part (a) to

basic sets rather than finite unions of basic sets, which provides us with an

equivalence:

Theorem 1 (Structure Theorem for While(R)). For subsets of R2,

While(R) s/comp ⇐⇒ countable union of an effective disjoint sequence

of basic sets.

Proof. The ‘⇐= ’ direction is simply part (b) of Lemma 4.2.1

For the ‘ =⇒ ’ direction, we strengthen part (a) of Lemma 4.2.1 as follows:

If R ⊆ R2 is While(R) semicomputable, then by Engeler’s Lemma (Lemma

3.1.1), for all x ∈ R2,

x ∈ R ⇐⇒
∞∨
k=0

bk[x]

for an effective sequence (bk) of Σ-booleans in Bool(x). By the Partition

Lemma, each bk defines a finite union of effective disjoint basic sets.

4Lemma 4.2.1 was presented as a Structure Theorem for While(R) in [Fu14].
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By the Semantic Disjointedness Lemma (Lemma 3.1.3), the sequence (bk) is

semantically disjoint over R, and hence the positive sets for different bk’s are

disjoint.

Hence bk is a disjoint sequence of effective basic sets as desired.

4.3 Failure of closure of While(R) semicomputable

sets under union

For total standard algebras, we have the following lemma [TZ00, §§5.2], [TZ15,

§§6.1]:

Lemma 4.3.1 (Closure of While semicomputable sets under union for total

standard algebras). For any total standard algebra A, the class of While(A)

semicomputable sets is closed under finite unions.

We may use the Structure Theorem for While(R) (Theorem 1) to easily

give a counterexample to the closure of semicomputable sets under finite union

the partial algebra of the reals.

Theorem 2 (Failure of closure of While(R) semicomputable sets under union).

The class of While(R) semicomputable sets on R2 is not closed under finite

unions.

For the proof, we require the following discussion:

Discussion 4.3.2 (A union of two basic sets which is not basic). Consider the

overlapping basic sets:

B1 ={(x1, x2) | −x21 − x22 + 1 > 0},

B2 ={(x1, x2) | −(x1 − 1)2 − x22 + 1 > 0}

discussed in Discussion 4.1.3.
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Their union is clearly semi-algebraic, but not basic.

This follows from a more general result from [ABR96]:

If the boundaries of two semi-algebraic subsets of R2 intersect transversally at

some point, then their union is never basic5.

Proof of Theorem 2.

Figure 4.5: B1 ∪B2 = PS(b1∇b2)
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Recall again the sets B1 and B2 from Discussion 4.1.3. Consider

B1 ∪ B2 = PS(b1∇b2), pictured in Figure 4.5. It is a union of two semicom-

putable sets (pictured in Figures 4.1 and 4.2). If it is semicomputable, then by

the Structure Theorem for While it is an effective disjoint sequence of basic

sets. However, since it is open and connected, it must in fact be equal to a single

basic set. However, by Discussion 4.3.2, there is no way to represent B1 ∪ B2

as a single basic sets. So while B1 and B2 are semicomputable, their union is

not.

Note that with respect to WhileOR(R) and While EN(R), the set PS(b1∇b2)

is trivially semicomputable (cf. Remark 4.1.4).

5We thank Professor Bröcker (Münster) for clarifying this (personal communication).
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Discussion 4.3.3. While it is intuitively clear that B1 ∪ B2 is not basic, this

fact still requires a proof, as outlined in Discussion 4.3.2. To underline this, we

will now consider a brief example of a set which seems intuitively not basic, but

in fact is.

Consider the basic sets:

B3 =PS({(x1, x2) | −2 < x1 < −1 ∧ 1 < x2 < 2})

B4 =PS({(x1, x2) | 1 < x1 < 2 ∧ 1 < x2 < 2})

B5 =PS({(x1, x2) | −2 < x1 < −1 ∧ −2 < x2 < −1})

B6 =PS({(x1, x2) | 1 < x1 < 2 ∧ −2 < x2 < −1})

Figure 4.6: B3 ∪B4 ∪B5 ∪B6
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Their union, pictured in Figure 4.6, seems intuitively not basic (though

clearly it is semi-algebraic), if it is written in the obvious way:

B3 ∪B4 ∪B5 ∪B6 = PS({(x1, x2) | (−2 < x1 < −1 ∧ 1 < x2 < 2)

∨ (1 < x1 < 2 ∧ 1 < x2 < 2)

∨ (−2 < x1 < −1 ∧ −2 < x2 < −1)

∨ (1 < x1 < 2 ∧ −2 < x2 < −1)})

However, the union is, in fact, basic, since it can be written as:

B3 ∪B4 ∪B5 ∪B6 = PS({(x1, x2) | 1 < x21 < 4 ∧ 1 < x22 < 4})



Chapter 5

Classes of sets

semicomputable by models

based on the While

language

In this chapter we consider the equivalence or inequivalence of the classes of

While(R), WhileOR(R) and While EN(R) semicomputable sets, as well as the

semicomputable sets of the projective versions of those languages.

5.1 A set which is projectively While(R) semi-

computable but not While(R) semicomputable

We will show that projective While(R) semicomputability is strictly stronger

than While(R) semicomputability by giving a set which is projectively While(R)
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semicomputable but not While(R) semicomputable.

Figure 5.1: Domain of f0(x1, x2, y).
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Consider the three-dimensional boolean valued function:

f0(x1, x2, y) =


x21 + x22 < 1 if y > 1

(x1 − 1)2 + x22 < 1 if y < −1

↑ o/w

the domain of which is pictured in Figure 5.1.

The domain of f0 is easily seen to be While(R) semicomputable, and so its

projection off the third argument:

f(x1, x2) =df ∃y : R, (y < −1 ∧ x21 + x22 < 1) ∨ (y > 1 ∧ (x1 − 1)2 + x22 < 1)

is projectively While(R) semicomputable.
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We have seen this set previously in Figure 4.5, and we have seen that it is

not While(R) semicomputable (during the proof of Theorem 2), as it is not a

union of disjoint basic sets.

From this example, we have the following theorem:

Theorem 3. For subsets of R2,

While(R) s/comp =⇒
6⇐= proj-While(R) s/comp

Proof. The ‘ =⇒ ’ direction is clear from the definition of projective While(R)

semicomputability. The ‘⇐= ’ direction is clear from the above.

Note that this set is WhileOR(R) semicomputable, from the following the-

orem given in [Fu14, §§4.6]:

Theorem (Structure Theorem for WhileOR(R)). For subsets of R2,

WhileOR(R) s/comp ⇐⇒ countable union of an effective disjoint sequence

of finite unions of basic sets.

Hence we can also compare While(R) and WhileOR(R) semicomputable

sets:

Theorem 4. For subsets of R2,

While(R) s/comp =⇒
6⇐= WhileOR(R) s/comp
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5.2 A set which is projectively WhileOR(R) semi-

computable but not WhileOR semicomputable

We will now show a similar example which proves that projective WhileOR(R)

semicomputability is stronger that WhileOR(R) semicomputability.

Figure 5.2: Domain of g0(x1, x2, n).

n

x1

x2
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Consider the three dimensional boolean valued function:

g0(x1, x2, n) = (x1 − 2n)2 + x22 < 1

the domain of which is partially pictured from two viewpoints in Figure 5.2, for

x1 ≤ 4. This function describes an infinite sequence of disjoint discs of depth 1

whose projections overlap in the x1-x2 plane.
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Now, much as with the example of f0 in section 5.1, we can easily observe the

the domain of g0 is While(R) semicomputable, and hence is also WhileOR(R)

semicomputable. So the projection of its domain off the y axis:

g(x1, x2) =df ∃n : N, (x1 − 2n)2 + x22 < 1

is projectively WhileOR(R) semicomputable.

Figure 5.3: Domain of g(x1, x2).
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The domain of g is partially pictured in Figure 5.3, again for x1 ≤ 4.

Now consider whether the domain of g is WhileOR(R) semicomputable. By

the structure theorem for WhileOR(R) semicomputability (Theorem 5.1), that

would mean its domain is an effective disjoint union of finite unions of basic sets.

In this case, because the domain is connected, it must be a single semialgebraic

set. By an analysis of semi-algebraic sets, we can see that this is not the case:

Discussion 5.2.1. Consider the domain of g(x1, x2). Replace x2 by 0.9, to get

the one dimensional set:

{x ∈ R | g(x, 0.9) > 0}.

If the domain of g(x1, x2) is semi-algebraic, then this set should be semial-

gebraic.
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However, this set is consists of infinitely many intervals (the intervals on

which the horizontal line at x2 = 0.9 intersects the “top” of the discs), and

therefore is not semi-algebraic.1

So g is not semialgebraic, and therefore is not WhileOR(R) semicomputable.

Therefore, we have:

Theorem 5. For subsets of R2,

WhileOR(R) s/comp =⇒
6⇐= proj-WhileOR(R) s/comp

Proof. The ‘ =⇒ ’ direction is clear from the definition of projective WhileOR(R)

semicomputability. The ‘⇐= ’ direction is clear from the above.

Note that this set is While EN(R) semicomputable, from the following the-

orem given in [Fu14, §§4.6]:

Theorem (Structure Theorem for While EN(R)). For subsets of R2,

While EN(R) s/comp ⇐⇒ countable union of an effective sequence of

basic sets.

Hence we can also compare WhileOR(R) and While EN(R) semicomputable

sets:

Theorem 6. For subsets of R2,

WhileOR(R) s/comp =⇒
6⇐= While EN(R) s/comp

5.3 Equivalence of projective While(R) andWhile EN(R)

semicomputability

In [XFZ15, §§5.6], it was shown that While EN(R) semicomputability was equiv-

alent to projective While EN(R) semicomputability:

1Thanks again to Prof. Bröcker for pointing this out.
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Lemma 5.3.1. For subsets of R2,

proj-While EN(R) s/comp ⇐⇒ While EN(R) s/comp

Essentially, showing this involves replacing the projected arguments with

auxiliary variables of sort nat which are existentially quantified over. Because

of the continuity of While EN programs, quantifying over naturals suffices for

replacing real projected arguments.

We will show that further, While EN(R) semicomputability is equivalent to

projective While(R) semicomputability.

Lemma 5.3.2. For subsets of R2,

proj-While(R) s/comp ⇐⇒ While EN(R) s/comp

We need the following fact that follows definitions of the projective models:

Corollary 5.3.3. For subsets of R2,

proj-While(R) s/comp =⇒ proj-WhileOR(R) s/comp

=⇒ proj-While EN(R) s/comp

Proof. Follows from Theorem 4, Theorem 6 and the definition of the projective

models.

Remark 5.3.4. During the proof, we use the While∗ language in place of the

While language for simplicity. We require projection off an arbitrary but finite

list of naturals. We can easily represent such a list using a single natural number

argument for a While program, but to avoid tediousness we use the While∗

language for the proof.

Proof of Lemma 5.3.2. The ‘ =⇒ ’ direction follows from Lemma 5.3.1 and

Corollary 5.3.3.
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For the ‘ ⇐= ’ direction, consider any While EN(R) semicomputable set

which is the halting set of a While EN progrem P : R2.2

We will construct a While∗program P0 : R2 × N∗ such that the projection

of the domain of P0 off of N∗ is equal to the domain of P .

We construct P0 from P by replacing each line of the form:

xB := Ez P (t, z)

by the two lines:

xB := P (t, z[i])

i := i + 1

where i is a new auxiliary variable which is initialized to 0 at the start of the

program.

Then suppose that for some input values r1, r2 : R2, P (r1, r2) halts. Then

since P halted in finitely many steps, there exists a finite list of natural numbers

z1, ..., zn which are existentially quantified corresponding to the

‘xb := Ez P (t, z)’ lines. This gives an array of naturals z such that P0(r1, r2, z)

halts is given3. So the set While EN semicomputed by P is seen to also be

semicomputable by a projective While∗program and hence a While program

(see Remark 5.3.4).

5.4 Classes of sets semicomputable by models

based on the While language

We now consider the classes of sets semicomputable by the While , WhileOR

and While EN languages and their projective versions.

2As with all of our (main) results, we restrict our attention to functions on R2. Note that
this proof in particular is easily extendable to functions of any type.

3Note that the order of the naturals used in the existential quantification steps may have
little relation to the order of the xb := Ez P(t, z) lines in the code, due to loops and branches.
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We begin by combining the results discussed in the previous section:

Theorem 7. For subsets of R2,

proj-While(R) s/comp ⇐⇒ proj-WhileOR(R) s/comp

⇐⇒ proj-While EN(R) s/comp

⇐⇒ While EN(R) s/comp

Proof. Follows from Lemma 5.3.1, Lemma 5.3.2 and Corollary 5.3.3.

We have thus established the existence of three distinct classes of subsets of

R2, as shown in the following diagram:

While(R)

⇐
= 6=⇒

(Theorems 3 and 4)

WhileOR(R)

⇐
= 6=⇒

(Theorems 5 and 6)

proj-While(R) s/comp

⇐
⇒

proj-WhileOR(R) s/comp

⇐
⇒

proj-While EN(R) s/comp

⇐
⇒

While EN(R) s/comp

(Theorem 7)

We further have the equivalence of each model in the above diagram with

its respective starred version (as shown in Appendix A).



Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we investigated the generalisation of two results from classical

computability theory to the context of topological algebra of the reals: closure

of semicomputable sets under union and the equivalence semicomputable sets

of projectively (semi)computable sets. Both results were shown to not hold in

the context of the reals (Theorem 2 and Theorem 3 respectively).

In the process we also developed a Structure Theorem for While(R) semi-

computability (Theorem 1), and distinguished the classes of sets semicomputed

by While(R), WhileOR(R) and While EN(R) programs and their projective

versions (section 5.4).

In Appendix B, we show that another result from classical computability

theory, Post’s Theorem, holds trivially in the case of R, but does not hold more

generally for partial algebras.
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6.2 Future work

We have compared various classes of subsets of R2 by abstract models based

on the While language (section 5.4). Similarly, we would like to investigate

concrete models of computability (section 1.1), and compare them amongst

themselves and with abstract models. In [TZ04, TZ05], an equivalence was

found between certain abstract and concrete models. In [Fu14], several such

concrete models were shown to be equivalent.

An open problem in this area is the relationship of models considered in the

above papers with Weihrauch’s TTE (type two effective) model of computation

[Wei00].

The investigation of this problem is intended for a major part of the writer’s

PhD thesis.
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Appendix A

The equivalence of

While(R) and While∗(R)

We wish to justify our claims that the While(R) and While∗(R) are equivalent

in terms of computing power.

A similar result was shown in [TZ00, §4] for a total algebra of the reals, by

showing that:

(1) the total algebra of the reals has the “term evaluation property” (defined

below)

(2) for any N-standard total algebra A with the term evaluation property, a

universal While procedure may be constructed for While∗

(3) hence, for any N-standard total algebra A with the term evaluation property,

While(A) = While*(A).

We may use the same process to show that While(R) = While∗(R) (and

similarly for WhileOR and While EN). Steps (2) and (3) can be easily inferred

from the respective proofs in [TZ00, §4], as most of the proofs of those facts
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involve primitive recursive operations on the syntax of the While language,

and so the partiality of R is irrelevant. In these proofs, the only step during

the proofs that involves semantics is the use of term evaluation to traverse

a “computation tree” for the universal While(A) procedure for While∗(A)

programs. In that step, however, if a term which is evaluated diverges, the

While∗(A) program being simulated by the universal procedure would diverge

as well, and so the universal procedure behaves as expected.

So we proceed with a proof of Step (1), i.e. that R has the term evaluation

property (cf. [TZ00, Example 4.5]). Note that the partiality of R presents no

problems during the proof; it simply means that the term evaluation function

must be partial.

For the remainder of this Appendix, let A be any N-standard (possibly par-

tial) algebra, let u and v be product types of A, let x be a u-tuple of variables,

let Tmx(Σ) be the set of all Σ-terms with variables among x only, and for all

sorts s or Σ, let Tmx,s(Σ) be the class of such terms of sort s.

We define this term evaluation function on A relative to x

TEA
x,s : Tmx,s × State(A)→ As

by

TEA
x,s(t, σ) ' JtKAσ.

We represent the term evaluation function on A on relative to x by the

function

teA
x,s : pTmx,sq×Au → As

defined by

teA
x,s(ptq, a) ' JtKAσ,

where σ is any state on A such that σ[x] = a (this is well defined, by Lemma

3.4 from [TZ00]).
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Definition A.0.1. An algebra A has the term evaluation property (TEP) if for

all x and s, teA
x,s is While(A) computable.

Lemma A.0.2. R has the TEP.

Proof (outline).

We may give the following primitive recursive algorithm which shows the com-

putability of teRx,s; for instance, in the case that s ≡ bool:

teRx,bool(pts comp rsq, a) 'teRx,s(ptsq, a) comp teRx,s(prsq, a)

teRx,bool(pnotB(b1)q, a) 'notB(teRx,bool(pb1q, a))

teRx,bool(pb1 op b2q, a) 'teRx,bool(pb1q, a) op teRx,bool(pb2q, a)

where sort s is either nat or real, b1 and b2 are terms of sort bool, comp is a

comparison operator on s (one of eqN, lessN, eqR or lessR), and op is a binary

boolean operator.

We omit the corresponding definitions for the cases s ≡ real and s ≡ nat.

The equivalence of While(R) and While∗(R) now follows from the above

Lemma and the preceeding discussion.



Appendix B

A counterexample to Post’s

Theorem for partial

algebras

For total standard algebras, we have the following theorem [TZ00, §§5.2], [TZ15,

§§6.1]:

Theorem 8 (Post’s theorem for While semicomputability on total algebras).

For any relation R on any total algebra A,

R is While(A) computable ⇐⇒ R and Rc are While(A) semicomputable.

We will show that Post’s Theorem also holds on the partial algebra R, but

that there are some partial algebras on which it does not hold.

Theorem 9 (Post’s theorem for While(R) semicomputability). For any rela-

tion R on R,

R is While(R) computable ⇐⇒ R and Rc are While(R) semicomputable.



M.Sc. Thesis - M. Armstrong; McMaster University - Computer Science 54

Proof. The ‘ =⇒ ’ direction is obvious; if R is computable, then Rc is also

computable and hence semicomputable.

For the ‘⇐= ’ direction, recall that by the Structure Theorem for While(R),

if R and Rc are While(R) semicomputable then they are unions of effective

disjoint sequences of basic sets, and recall that those basic sets are open. Then

since any union of open sets is open, both R and Rc are open, and since the

complement of an open set is closed, they are in fact both clopen. Then since

the only clopen sets of the reals are the empty set and R2, R is one of those

two, and is clearly computable.

We now give an example of a standard partial algebra1 D such that Post’s

theorem does not hold for its While semicomputable subsets.

Define a signature ΣD:

signature ΣD

sorts data, bool

functions 0 : → data

F,G : data ⇀ data

eq : data2 → bool

and algebra D:

algebra D

carriers D,B

functions 0 : → D

FD,GD : D⇀ D

= : D2 → B

where D = {a, b, 0} is the carrier for sort data and FD and GD are defined as

follows:
1The proof for an N-standard algebra is a routine, but tedious, extension. To see this

observe that simply adding the naturals to the algebra gives us no additional computing
power with regards to the data sort.



M.Sc. Thesis - M. Armstrong; McMaster University - Computer Science 55

FD(x) =


x if x = a

↑ o/w

GD(x) =


x if x 6= a

↑ o/w

and =D is the equality operator for sort D.

Remark B.0.1. Any composition of the FD and GD functions is eliminable, in

that for any term t:

• FD(FD(t)) ' FD(t)

• GD(GD(t)) ' GD(t)

• FD(GD(t)) ↑

• GD(FD(t)) ↑.

We will prove:

Proposition B.0.2. Any boolean valued While(ΣD) program which halts on

inputs a and b must give the same output in both cases.2

Remark B.0.3. It follows from Proposition B.0.2 that {a} and {a}c = {b, 0}

are both clearly semicomputable, but neither is computable.

In preparation for the proof of Proposition B.0.2, we need two related no-

tions: compatible set of states and set of distinguished variables.

Definition B.0.4 (Compatible states; Distinguished variables).

Let A be a Σ-structure and s a Σ-sort. Suppose for some n ≥ 2, we have:

• n states σ1, ..., σn,

2It is certainly possible for a data valued program to give different outputs on a and b;
consider the identity function.
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• n distinct elements a1, ..., an of As and

• a finite set V of variables of sort s, such that

∀x 6∈ V , σ1(x) = ... = σn(x)

and

∀x ∈ V , σ1(x) = a1, ..., σn(x) = an.

We call {σ1, ..., σn} a compatible set of states with respect to V .

We call V the set of distinguished variables for these states.

Note that the set of distinguished variables is unique for any particular set

of compatible states.

Now (returning to the special case of A = D, s = data) take two compatible

states σa and σb over D with some set of distinguished variables V such that

for all v ∈ V

σa(v) = a, σb(v) = b.3

For the remainder of the section, we let S be any statement in While(ΣD)

for which the following assumption holds:

Assumption B.0.5. S halts on σa and σb.

In order to state and prove Lemma B.0.6 below, from which Proposition

B.0.2 will follow, we need to reason about the snapshot sequences (recall the

definition in section 2.9) generated by S at σa and σb.

We write:

(σa,S) = (σ0
a, S

0
a), (σ1

a, S
1
a), (σ2

a, S
2
a), ...

(σb,S) = (σ0
b , S

0
b ), (σ1

b , S
1
b ), (σ2

b , S
2
b ), ...

3For instance, the states which assign a and b respectively to all v ∈ V and 0 to every
other variable are good candidates for σa and σb.
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We may now state Lemma B.0.6:

Lemma B.0.6. The snapshot sequences (σa,S), and (σb,S) are isomorphic

in that for all n, Sn
a ≡ Sn

b , and σn
a and σn

b are compatible with a set V n of

distinguished variables which are assigned a and b when the starting states are

σa and σb respectively.

In fact, the set V n can be effectively identified given any σa, σb and n.

Lemma B.0.6 says, in effect, that the computations of S on σa and σb are

“essentially the same”. From this, Proposition B.0.2 follows.

The following Remark is central to the induction step of the proof of Lemma

B.0.6:

Remark B.0.7. Any subterm of a term which is evaluated at stage n of the

computation of S at σa or σb cannot have the form F(y) or G(y) where y is

a distinguished variable of the states σn
a and σn

b , since that would violate As-

sumption B.0.5.4,5 This essentially restricts our tests on the input variable to

boolean combinations of tests for equality; specifically, due to the lack of closed

terms for a and b, equality between variables or tests for zero.

The fact that tests on the input are limited to tests for equality between

variables and tests for zero will allow us to show that, restricting our attention

to states for which all variables of sort data are assigned the same values (such

as σa and σb) and statements S for which Assumption B.0.5 holds, branching

decisions on input states which only vary on their data values are the same

between those states, and can be trivially predetermined.

We now prove Lemma B.0.6 by giving an algorithm to find the compatible

variable set for σn
a and σn

b for any n.

4Recall by Remark B.0.1 that we can eliminate occurrences of F and G from other contexts
in S.

5The existance of compatible states and distinguished variables at stage n is given by
Lemma B.0.6
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Proof of Lemma B.0.6. By course of values induction on the computation

length of S at σa.6

Assume that for n, Lemma B.0.6 holds for any S such that

CompLenD(S, σa) < n. We show that it also holds for S such that

CompLenD(S, σa) = n. There are 5 cases to consider based on the form of S:

(1) S ≡ skip : Trivial (compare with (2)).

(2) S ≡ x := t : By CompLenD(S, σa) = n, we have n = 1, and so

CompD(S, σ, n) = 〈|S|〉D = σ{x/JtKDσ}.7 Consider sub-cases based on t:8

(i) t ≡ 0 : Then take V ′ = V \{x}, and observe that V ′ is an appropriate

set of distinguished variables.

(ii) t ≡ y : Then if y ∈ V , take V ′ = V ∪{x}, and otherwise take V ′ = V .

Then observe that V ′ is an appropriate set of distinguished variables .

(iii) t ≡ FD(y) where y is not a distinguished variable of σa, σb, and σc :

then take V ′ = V \{x}, and observe that V ′ is an appropriate set of

distinguished variables.

(iv) t ≡ GD(y) where y is not a distinguished variable of σa, σb, and σc :

similar to (iii).

(v) t ≡ FD(y) where y is a distinguished variable of σa : by Remark B.0.7,

such a term cannot appear in S.

(vi) t ≡ GD(y) where y is a distinguished variable of σa : similar to (v).

(vii) t ≡ FD(0) : by Assumption B.0.5, since FD
a (0) diverges at all states,

such a term cannot appear in S.

(viii) t ≡ GD(0) : similar to (vii).

6It will follow from the proof that the computation length of S at σa is the same as the
computation length of S at σb.

7By the definition of CompD given in [TZ00, §§3.4].
8Recall by Remark B.0.1 that we may limit the use of Fa and Fb to this finite set of cases.
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So for each which can appear in S, we have that σn
a and σn

b are compatible

with respect to some V ′. We also clearly have that Sn
a ≡ Sn

b ≡ skip.

(3) S ≡ S1;S2 : Let CompLenD(S1, σa) = k < n and

CompLenD(S2, σ
k
a) = l = n− k. By the induction hypothesis, since i < n,

Si
a ≡ Si

b and σi
a and σi

b are compatible with respect to a set of variables

V1. Now consider the snapshot sequences (σi
a,S

i
a) and (σi

b,S
i
b). By the

induction hypothesis, since j < n, Sij
a ≡ S

ij
b and σij

a and σij
b are compatible

with respect to a set of variables V2. Now note that Sn
a ≡ Sij

a and Sn
b ≡ S

ij
b ,

and σij
a = σn

a and σij
b = σn

b . So by taking V ′ = V2, we have that Sn
a ≡ Sn

b

and σn
a and σn

b are compatible with respect to V ′.

(4) S ≡ if tB then S1 else S2 fi : Note that the only boolean test for A is =, so

tb is a combination of tests of equality between variables or tests for zero9.

It is easy to see that JtbKDσa = JtbKDσb.10 Now our induction hypothesis

holds for the snapshot sequences (σa,S1), (σb,S1), (σa,S2) and (σb,S2).

And for the case that JtbKDσa = true, it is clear it also holds for the snapshot

sequences

(σa,S) = (σa, S), (σa,S1)

(σb,S) = (σb, S), (σb,S1)

The case that JtBKDσa = false is similar.

(5) S ≡ while tB do S0 od : As in (4), we have that tb is a combination of

zero tests or equality between variables, and JtbKDσa = JtbKDσb. Now our

induction hypothesis holds for the snapshot sequence (σa,S0). And for the

case JtbKDσa = true, it must also hold for the snapshot sequences

9See Remark B.0.7.
10By assumption B.0.5, tb does not diverge on any state.
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(σa,S) = (σa, S), (σa,S0;S)

(σb,S) = (σb, S), (σb,S0;S)

because although S0;S is a more complex program that S, by Assumption

B.0.5, the while loop must halt and so its computation length must be less,

hence we can apply the induction hypothesis.

The case that JtbKDσa = false is similar.

This proves Lemma B.0.6 and hence Proposition B.0.2, thus providing (by

Remark B.0.3) a counterexample to Posts Theorem on the algebra D.


