A STUDY OF LEVELS POPULATED IN $^{166}_{\text{Er}}$ BY THE ($^3\text{He},d$) REACTION
A STUDY OF LEVELS POPULATED IN ^{166}Er BY THE ($^3\text{He},d$) REACTION

BY

HIDEO KUBO, B.Sc.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Master of Science

McMaster University
(October) 1968
TITLE: A Study of Levels Populated in 166Er by the (3He,d) Reaction.

AUTHOR: Hideo Kubo, B.Sc. (Tokyo Institute of Technology)

SUPERVISOR: Professor D.G. Burke

NUMBER OF PAGES: vi, 57

SCOPE AND CONTENTS:

The reaction 165Ho (3He,d) 166Er was studied using the University of Rochester Tandem Van de Graaff accelerator and an Enge-type split-pole magnetic spectrograph. The observed cross sections for the ground state rotational band and the gamma vibrational band were consistent with predictions based on the unified nuclear model. The population of the 1574 keV level was consistent with that expected for the $K^\pi=4^-$, $7/2^{-}\{523\} + 1/2^+\{411\}$ assignment obtained from decay scheme studies. The $K^\pi=2^-$ octupole vibrational band based on the 1460 keV state was not populated as strongly as expected, indicating that the admixture of the $7/2^{-}\{523\} - 3/2^+\{411\}$ two proton state into this vibration is only about one-fifth as large as predicted by Soloviev et al.
ACKNOWLEDGMENTS

I would like to express my thanks to my supervisor, Professor D. G. Burke, for his initiation of this work, his help and correction of my English.

I also extend my appreciation to my friend, D.E. Nelson, for his hospitality and for his useful comments.
TABLE OF CONTENTS

DESCRIPTIVE NOTE ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES v

LIST OF TABLES vi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: THEORETICAL CONSIDERATIONS 5
 2.1 Unified Nuclear Model 5
 2.1.1. Introduction 5
 2.1.2. Nilsson model 10
 2.2 Theoretical Cross Sections 11
 2.2.1. Spectroscopic factor 11
 2.2.2. DWBA theory 13

CHAPTER 3: EXPERIMENTAL PROCEDURE AND RESULTS 16

CHAPTER 4: INTERPRETATIONS OF THE SPECTRA 29
 4.1. Introduction 29
 4.2. Ground State Rotational Band 29
 4.3. Gamma Vibrational Band 33
 4.4. Octupole Vibrational Band 33
 4.5. $K^\pi = 4^-$ Rotational Band 36

CHAPTER 5: CONCLUDING REMARKS 42

APPENDIX 44

BIBLIOGRAPHY 56
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angular Momentum Diagram</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Enge-Type Split-Pole Magnetic Spectrograph</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Block Diagram for the Counting Circuit</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Elastic Scattering of 3He-ions on 174Yb</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Deuteron Spectrum from the 165Ho (3He,d) 166Er Reaction</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Angular Distributions of the Ground State Band</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Angular Distributions of the $K^\pi=4^-$ Band</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Interpolation of Angular Distributions for $g=2$</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Q-Value Dependence of the DWBA Calculations</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Interpolation of the Cross Section $\phi_{g=2}$ for the Present Study at $\theta=30^\circ$</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Interpolated ϕ_{τ} for Various τ-Values</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>The Excitation Energies and Cross Sections</td>
<td>28</td>
</tr>
<tr>
<td>Table 2</td>
<td>The Intensity Ratios for the Octupole Band</td>
<td>35</td>
</tr>
<tr>
<td>Table 3</td>
<td>High Excited States Observed by Other Groups</td>
<td>37</td>
</tr>
<tr>
<td>Table 4</td>
<td>Cross Section $\phi_{\xi=2}$ at 30 Degrees for Sm, Yb and W</td>
<td>51</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Most investigations of the nuclear structure of heavy deformed nuclei have been done by beta and gamma decay studies. Such studies often involve measurement of gamma-ray transition probabilities, branching ratios, internal conversion coefficients, gamma-gamma and beta-gamma coincidences. Spins and parities of many states below 2 MeV excitation and of some higher states have thus been established. However, many states still remain unexplained.

In spite of the fact that beta-gamma techniques are well established methods of obtaining nuclear structure information, some limitations to their usefulness exist. Firstly, some levels are not populated or are populated very weakly in the decay scheme studies because of the selection rules of beta and gamma decay processes. These selection rules are stronger than those of the nuclear reactions. Most of the beta decays in heavy nuclei are allowed or first forbidden, which means that a maximum of one or two units of angular momentum are transferred. In a typical \((^3\text{He},d)\) reaction, such as studied in the present work, observable cross sections are obtained when five or six units of angular momentum are transferred. Also in a beta decay study, the Q-value is small enough so that only a limited range of excitation energy can be populated. In cases where the Q-value is greater the number of de-exciting gamma-rays is very large and an analysis becomes complicated.
It is now technically possible to carry out reaction studies on heavy nuclei with sufficient precision to obtain results complementary to those provided by the decay scheme studies. The word "complementary" should be stressed, because some states can be populated by the beta decay and not by the reactions and vice versa.

The Coulomb barrier has provided one of the difficulties encountered in carrying out reaction studies in heavy nuclei, because the older accelerators which were capable of energies sufficient to overcome the Coulomb barrier did not have well defined beam energies. As a result, the closely spaced levels commonly found in heavy nuclei could not be resolved. The development of the Tandem Van de Graaff accelerator has almost removed this difficulty. The model MP (so-called "Emperor" Tandem) accelerators which are installed at several institutions accelerate Helium-ions up to 30 MeV with an energy spread of ± 3 KeV.

Another technical problem has been the design of a detector system with high resolution to analyze the reaction products. At present, the newest magnetic spectrographs offer the best resolving power for this type of study.

Up to now the levels in 166Er have been investigated by means of decay scheme studies using sources of 166Ho ($J^\pi=7^-$) (1,2), 166mHo ($J^\pi=0^-$) (2) and 166Tm ($J^\pi=2^+$) (2,3), and spins and parities of many states have been established. In addition, Coulomb excitation (4), (d,d') (5) and (d,t) (6) reaction studies have been used to study the levels in this nucleus. So far, in spite of the large number of data available, there is still considerable uncertainty concerning the interpretation of some of the levels.
In the present work, the \((^3\text{He},d)\) reaction has been used to provide further information in hopes of clarifying some of the uncertainties. It is to be noted that the \((d,t)\) reaction transfers a neutron and thus can be used to populate two-neutron states in \(^{166}\text{Er}\) whereas the \((^3\text{He},d)\) reaction transfers a proton and thus can populate two-proton states. In this respect these two single particle transfer processes are complementary.

The level structure of this nucleus is usually explained within the framework of the unified nuclear model\(^{7,8}\), which has been quite successful in this mass region. On the basis of this model the differential cross section for a single nucleon transfer reaction leading to a member of a rotational band can be calculated using the theory of Satchler\(^{9}\), a single particle cross section obtained from a DWBA\(^{10}\) (Distorted Wave Born Approximation) calculation and the Nilsson wave functions\(^{8}\).

Soloviev\(^{11}\), Bé\(^{12}\) and co-workers have made extensive microscopic calculations for the vibrational states in deformed nuclei. Whereas the vibrational states have been commonly described as superpositions of large numbers of single particle components each with a small amplitude, the calculations have shown that certain of the amplitudes can sometimes be fairly large. In an even-even nucleus the vibrational states consist mainly of superpositions of two quasi-particle states. It is not uncommon to find amplitudes as large as 0.7 or 0.8. In particular the calculations have shown that the \(K^\pi=2^-\) octupole vibration in \(^{166}\text{Er}\) should contain a large two-neutron component and a large two-proton component.
The first of these has been verified experimentally by the use of the \((d,t)\) reaction \((6)\). One of the main reasons for carrying out the present experiment was to look for the predicted two-proton component.
CHAPTER 2

THEORETICAL CONSIDERATIONS

2.1 Unified Nuclear Model

2.1.1. Introduction

The Nuclear shell model has successfully explained the magic numbers, ground state spins, magnetic moments, etc., but it could not explain the quadrupole moments which were observed in many nuclei. In the strongly deformed region, these are $10 \sim 100$ times larger than the values calculated on the basis of the single particle model. It could also not explain the strong enhancement of E2 transitions which are a conspicuous feature of many nuclei (13).

To account for the large quadrupole moment which shows that nucleus is no longer spherical, N. Bohr and J.A. Wheeler (14) introduced the liquid drop model. This model also has shortcomings, however. It predicts too few levels and these are too widely spread.

A. Bohr and B. Mottelson (7) combined the nuclear shell model and the liquid drop model into a single "unified model". They studied a system consisting of a few nucleons moving in a field provided by a nuclear drop.

They postulated the following two properties;

1) The existence of non-spherical equilibrium shape.
2) The separability of the nuclear wave functions.

The property (1) comes from the experimental evidence of the large quadrupole moment which indicates the deformation of the nucleus. The second property is the so-called adiabatic assumption which implies that
the rotation of the nucleus is very slow compared with the rotation of individual particles in their orbits, so that one can treat the nuclear rotation adiabatically.

One writes the nuclear Hamiltonian
\[H = H_{\text{vib}} + H_{\text{rot}} + H_{\text{int}} + H_{\text{coup}}. \]
Where \(H_{\text{vib}} \) and \(H_{\text{rot}} \) are the energy operators of vibrational motion and rotational motion, respectively. \(H_{\text{int}} \) is the internal motion, independent of the rotation of nucleus. \(H_{\text{coup}} \) represents any coupling interaction. Therefore, the total wave function is of the form of
\[\psi = \psi_{\text{vib}} D \chi. \]
The function \(\psi_{\text{vib}} \) describes the nuclear shape and its state of vibration. The function \(D \) describes the orientation of the shape, and the deformed shell model wave function \(\chi \) describes the nucleon's motion in the deformed potential well.

Since the potential is no longer spherical, the quantum numbers \(j \) and \(\ell \) of each nucleon are no longer constants of motion. However, the axial symmetry of the lowest states of the deformed nucleus is preserved and therefore, \(\Omega_j \), the projection of \(j \) on the symmetry axis remains a good quantum number for each orbit.

The rotational motions of the deformed nucleus are well described in a number of references \(^{(15)}\) and therefore only a few remarks are made here. As shown in Fig. 1, the total angular momentum \(\mathbf{I} \) is a vector sum of a rotational operator \(\mathbf{R} \) and an internal angular momentum operator \(\mathbf{J} \);
\[\mathbf{I} = \mathbf{R} + \mathbf{J} \]
\[\mathbf{J} = \sum_{\mathbf{j}} \mathbf{j} \]
\(\mathbf{J} \) is not a good quantum number, but its projection on the symmetry axis \(Z' \) is a good quantum number. One writes this quantum number \(\Omega(=\sum_{\mathbf{j}} \Omega_{\mathbf{j}}). \)
FIGURE 1

Angular momentum diagram for a deformed nucleus. Z and Z' stand for the space fixed axis and the symmetry axis, respectively.
The projections of \(\mathbf{I} \) on the symmetry axis and on the space fixed axis
are K and M, and they are also good quantum numbers.

When one takes into account the interaction between the rotational
and vibrational motions, one obtains the following expression for the
total energy;

\[
E_{\text{tot}} = \varepsilon_{\text{IK}} + A[I(I+1) - K(K+1)] + B[I^2(I+1)^2 - K^2(K+1)^2].
\]

Here A and B are constants within a band and are usually determined by
the experiment.

In recent years, many calculations of the microscopic structure
of the vibrational motions have been carried out by Soloviev \((11)\), Bés\((12)\)
and co-workers. The properties of these states were studied under the
assumption of the superconducting pairing correlations \((16)\) plus quad­
rupole-quadrupole, octupole-octupole, and other interactions which are
responsible for the collective properties of nuclei.

Therefore, the interaction between nucleons in the nucleus is
described by a Hamiltonian of the form;

\[
H = H_{\text{av}} + H_{\text{pair}} + H_{\text{coll}}.
\]

\(H_{\text{av}} \) describes the average nuclear field. The interaction \(H_{\text{pair}} \) leads to
the superconducting pair correlations which are described by a super­
position of various two-quasiparticle states in the case of an even-even
nucleus. The solutions for the problem are derived by means of second
quantization, that is, two-quasiparticle states are obtained by a
canonical transformation of Bogolyubov operating on the single particle
Nilsson states. It is assumed that \(G \) in \(H_{\text{pair}} = -G \sum_{ss',s_+s_-} A^+_{s_+s_-} A^+_{s_-s_+} \) is
constant. \(A^+ \) and \(A \) are a creation and annihilation operator, respectively,
for the Fermi particle, while \(A_{s_-} \) stands for the time reversal operator
of \(A_{s_+} \) and vice versa.
Energies and wave functions for the vibrational states of strongly deformed even-even nuclei were calculated by solving a secular equation derived by a variational principle. As discussed in the Introduction in Chapter I, the results of these calculations show that some of the two-quasiparticle components making up the vibrational motion have rather large admixtures. Some of these components have been measured by means of single particle transfer reactions and good qualitative agreement between experiment and theory has been obtained in many cases (17).

2.1.2. Nilsson Model

The Nilsson model (8) has proven to be very successful in predicting many aspects of nuclear structure. The model assumes a single particle Hamilton representing the interaction of one nucleon with the nuclear field provided by the rest of nucleons;

\[H = \frac{\hbar^2}{2m} + V(\hat{r}, \beta) + C\hat{\alpha} \cdot \hat{s} + D\hat{\alpha}^2 \]

where C, D and \(\beta \) are adjustable parameters. A further substitution is made:

\[\kappa = -\frac{C}{2\hbar^2 \omega_0} \]

\[\mu = \frac{2D}{C} \]

The values of \(\kappa \) and \(\mu \) have been fixed so as to make the isotropic levels (zero deformation) coincide with those of the shell model as closely as possible.

The wave function \(\chi \) in the body fixed axis is expanded in terms of the shell model wave functions which are the eigenfunctions of
angular momentum.

2.2. Theoretical Cross Sections

2.2.1. Spectroscopic Factor

The stripping reactions were originally discussed by Butler who used the plane wave Born approximation. As the name implies, this approximation treated the incoming beam and the reaction products as plane waves. These reactions have been shown to be very useful for studying nuclear structure. Both theory and experiment showed unique angular distribution patterns for the various l-values and in many cases one could determine the parity and the orbital angular momentum of states in the final nucleus. It was in the spirit of this theory to neglect the excitation of the target nucleus before capture and of the final nucleus after capture. In general the plane wave theory was successful in predicting the position of the first maximum in the angular distributions for reactions on light nuclei. However, it did not yield accurate values for the absolute cross sections or the correct shapes for the angular distributions.

The plane wave theory has now been replaced by the more sophisticated distorted wave theory which takes into account effects of the Coulomb and nuclear forces which "distort" the incoming and outgoing "plane waves".

The reactions in this work are considered to be direct reactions, in which a nucleon is transferred from the projectile to the target nucleus and the remaining nucleons in the projectile continue on their way. It is assumed that there is no formation of a compound nucleus.
French and Raz (18) have given the following cross sections for such "stripping" reactions:

\[\frac{d\sigma(\theta)}{d\Omega} = \frac{2I_i + 1}{2I_f + 1} \sum S_{j\lambda} \phi_{j\lambda}(\theta) \]

(2)

\(I_i \) and \(I_f \) are the total angular momenta of the initial and final nucleus, respectively. \(\theta \) is the angle between the incident beam and the observed reaction products. \(\phi_{j\lambda}(\theta) \) is the single particle reaction cross section for angular momentum transfer \(\lambda \) at an angle of \(\theta \). This quantity can be obtained by means of the DWBA calculations (10) as discussed in the next section. The spectroscopic factor \(S_{j\lambda} \) is determined by the nuclear structure only, and is thus independent of angle \(\theta \), Q-value, etc. If one uses the Nilsson wave functions, the value of \(S_{j\lambda} \) for a transition to a rotational state in a deformed nucleus is;

\[S_{j\lambda} = \sum_{j\lambda} 2 \]

\[\theta_{j\lambda} = g \sqrt{\frac{2I_i + 1}{2I_f + 1}} \langle I_i | j^{\pm K_{\lambda}} \Delta K | I_f \rangle < c_{j\lambda} < \psi_i | \psi_f > \]

The \(c_{j\lambda} \) values (19) are characteristic of the orbital into which the proton is stripped and are related to the Nilsson coefficients \(A_{\lambda\Lambda} \) by means of the Clebsch-Gordon transformation;

\[c_{j\lambda} = \sum_{\Lambda} A_{\lambda\Lambda} < \frac{1}{2} \Lambda | j \Omega > \]

where the quantities \(\Lambda, \Sigma, K \) and \(\Omega \) are the same as those used by Nilsson. \(K_i \) and \(K_f \) are the spin components parallel to the symmetry axis in the initial and the final nucleus, respectively. \(\Delta K \) is the K-value of the orbital into which the nucleon is stripped. \(< \psi_i | \psi_f > \) is the overlap integral for the initial and the final states of core and is expected to be nearly unity if the nuclear deformation does not vary greatly.
factor g is equal to $\sqrt{2}$ if $K_i = 0$ or $K_f = 0$, and is otherwise equal to unity.

The pairing effects\(^{(16)}\), which are a common feature in heavy nuclei, were taken into account simply by multiplying the cross section, eg. (2) by an emptiness factor U^2(or a fullness factor V^2), so that one has;

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{2I_f+1}{2I_i+1} \sum_\ell S_\ell \phi_\ell(\theta) \frac{U^2}{V^2}$$

A simple explanation for this is that the cross section for putting a particle into a given state is proportional to the probability of the state being empty. However, V^2 should be used when the final state is the ground state of an even-even nucleus, since the probability of finding the unpaired proton in the target ground state orbital v is unity, and the cross section for putting a proton in this state is given in eg. (2). Following this process there is a condition of two protons in the state v which, however, is not the ground state of the even nucleus, since the latter has only a probability $V^2(\nu)$ of state ν being full. Hence, the cross section eg.(2) should be multiplied by the factor $V^2(\nu)$, which is the overlap between these two cases.

2.2.2. DWBA Theory

The DWBA theory of calculating direct nuclear reaction cross sections has become widely used during the last several years. In this approximation, the transition amplitude is calculated as a first-order matrix element between initial wave functions and final wave functions. That is, for the $A(a,b)B$ reaction, the transition amplitude is;

$$T_{ba} = (\psi_B^* \psi_b \chi_b (-) (\vec{K}_b, \vec{r}_b), V \psi_A^* \chi_a (+) (\vec{K}_a, \vec{r}_a))$$

(4)
\(\psi_B, \psi_b, \psi_A \) and \(\psi_a \) are the internal wave functions for the noninteracting, separated particles \(B, b, A \) and \(a \). The interaction \(V \) is the interaction whose off-diagonal matrix elements are responsible for the transition. Here \(\vec{r}_a \) is the displacement of \(a \) from \(A \), and \(\vec{r}_b \) is the displacement of \(b \) from \(B \). The functions \(\chi_a \) and \(\chi_b \) are the "distorted waves". They are elastic scattering wave functions which describe the relative motion of the pair \(a, A \) (asymptotically, with relative momentum \(K_a \)) before the collision, or of the pair \(b, B \) (with \(K_b \)) after the collision. Asymptotically the \(\chi \) have the form of plane wave and scattered wave; in the absence of a Coulomb field when \(r \) becomes large, the \(\chi \) approaches the right hand side of the following equation;

\[
\chi^{(+)}(\vec{K}, \vec{r}) \to \exp(\text{i} \vec{K} \cdot \vec{r}) + f(\theta) \frac{\exp(\text{i}Kr)}{r}
\]

The superscript \((+)) \) or \((-)) \) denotes the usual outgoing or ingoing wave boundary conditions. It is convenient to first isolate in eq.(4) the matrix element of the interaction, taken between the initial and the final states;

\[
< Bb | V | Aa > = \int \psi_B^* \psi_b V \psi_A \psi_a d\xi
\]

\(\xi \) represents all the co-ordinates independent of \(\vec{r}_a \) and \(\vec{r}_b \). Generally, the calculations of eq. (5) are fairly easy. In terms of this matrix element, the calculation of the transition amplitude is completed in the form,

\[
T_{ba} = \int d\vec{r}_a \int d\vec{r}_b \chi_b^{(-)}(\vec{r}_b, \vec{r}_b) \chi_a^{(+)}(\vec{K}_a, \vec{r}_a) < Bb | V | Aa >
\]
Several approximations other than the first order perturbation theory were made in the calculation of eq. (6). Certain interactions, which depend on the type of the reaction, are neglected. For example, in the \(^3\text{He},d\) reaction, the interaction between the deuteron and the target nucleus, and some exchange terms are neglected. In addition to these, the DWBA calculations consider only direct processes and compound processes are neglected.

Uncertainties in the calculated DWBA cross sections depend mainly upon the following factors;

1. Insufficient knowledge of Helium-3 potential and deuteron potential.
2. Radius \(R_0\) where proton is captured.
3. If one uses cut-off, "how", "where" and "how much".
CHAPTER 3

EXPERIMENTAL PROCEDURE AND RESULTS

Targets of 165Ho were bombarded with beams of 28 MeV 3He-ions obtained from the Model MP Tandem Van de Graaff accelerator at the University of Rochester. The scattered particles were analyzed with an Enge split-pole broad range magnetic spectrograph using Kodak NTB nuclear-emulsions 50µ thick to record the deuteron groups. An Aluminum foil 0.83 mm thick was placed in front of the emulsions to stop triton groups which had the same magnetic rigidity as the deuterons being observed. The energies of protons, deuterons, Helium-3 and alpha-particles resulting from the 3He-induced reactions with the 165Ho targets were low enough, so that these particles could not interfere with the deuteron groups being studied. At small angles, however, some peaks in the spectra were obscured by deuterons from (3He,d) reactions on the 13C in the carbon backing. Two 165Ho targets with thickness of approximately 100µg/cm2 evaporated on carbon backings were purchased from Fodor Accelerator Targets of Pittsburg, Pennsylvania. Other 165Ho targets were made in this laboratory by vacuum-evaporating 165Ho from a crucible on carbon foils which were 10 to 30 µg/cm2 thick.

The desired beam of particles obtained from the Tandem Van de Graaff was deflected 90 degrees by the analyzing magnet which selected the particles with the required energy. The beam then passed to the magnetic spectrograph. Magnetic quadrupole lenses were located at the various points along the beam line to focus the beam to a small spot.
The properties of the Enge-type split-pole magnetic spectrograph (20) used in this study are similar to those of the Elbek-type (21) magnetic spectrograph. The advantage of these spectrographs over the previously designed magnets is that they have completely eliminated second order aberrations over the full momentum range. The usable momentum range is \(P_{\text{max}} / P_{\text{min}} \) and is 2.5 for the Elbek magnet and 2.8 for the Enge magnet. A cross sectional view of the Enge-type magnetic spectrograph is shown in Fig. 2.

A monitor counter located in the spectrograph target chamber was used to count the \(^3\)He-ions which had been elastically scattered through an angle of 90 degrees. The monitor counter consisted of a 1 mm thick NaI scintillator and a photomultiplier. Pulses from the monitor were amplified and sent to a multichannel pulse height analyzer and a single-channel pulse height analyzer simultaneously. A typical block diagram is shown in Fig. 3. Pulses corresponding to the elastic scattering events were selected by the single-channel pulse height analyzer and sent to a scaler. The scaler readings were used to normalize the intensity of the deuteron peaks recorded on nuclear emulsions. The multichannel pulse height analyzer was used to observe the whole spectrum from the monitor counter while the experiment was in progress and to check whether the spectrum appeared to be reasonable.

The camera assembly included a six sided rotatable drum so that six sets of emulsions could be loaded at the same time. The photographic plates were scanned by counting the tracks in strips, 0.25 mm wide, using microscopes.
FIGURE 2

Enge-type split-pole magnetic spectrograph and the target chamber. Two pole pieces are shown by dashed curves.
FIGURE 3

Block diagram for the counting circuitry.
The conventional Faraday-Cup and the current integrator were used to obtain the absolute value of the integrated current or the charge, that is, the total number of \(^3\)He-ions which passed through the target. This information was used to estimate the target thickness.

Slits were used at the entrance to the magnetic field region of the spectrograph to limit the entrance aperture and define the solid angle.

The reaction cross sections were determined by comparing the intensities of the observed deuteron groups with that of the elastically scattered \(^3\)He peak in the monitor counter. The ratio of the solid angles for the spectrograph and the monitor counter was determined from the geometrical dimensions of apertures. The cross section for the groups thus observed is:

\[
\frac{d\sigma}{d\Omega}_{\text{spectrograph}} = \frac{d\sigma}{d\Omega}_{\text{monitor}} \cdot \frac{d\Omega_{\text{monitor}}}{d\Omega_{\text{spectrograph}}} \cdot \frac{N_{\text{spectrograph}}}{N_{\text{monitor}}}
\]

\(d\Omega\) and \(N\) refer to the solid angle and the number of counts observed, respectively.

In order to determine \(\frac{d\sigma}{d\Omega}\) elastic, it was assumed that the cross section for small angle scattering approaches the Rutherford cross section, since for the small angle scatterings the projectile does not come close to the nucleus. By measuring the angular distributions of elastically scattered \(^3\)He and equating the small angle values to the Rutherford cross sections, the elastic scattering cross sections at large angles could be determined. The angular distributions were thus normalized to the absolute values. This procedure was not carried out for the \(^{165}\)Ho target, but was interpolated from similar data for \(^{174}\)Yb and \(^{182}\)W targets.
A typical angular distribution showing the elastic scattering for 174Yb is presented in Fig. 4. For the 165Ho experiments, the elastic scattering cross section at $\theta = 90$ degrees was taken to be $\approx 6.0\%$ of the Rutherford cross section or $\approx 7.8\ mb/sr$.

Energy calibration of the spectrograph was carried out using 6.0498 MeV and 8.7864 MeV alpha-particles from an active deposit of ThB placed in the target position. The α-particle momentum is proportional to the magnetic rigidity $B\rho$, where ρ is the radius of the trajectory of the α-particles in a magnetic field of strength B. By selecting a set of values for the magnetic field, the α-particles of certain energy take on a set of values for ρ and hence a set of peaks at various positions along the focal plane are obtained. In this way, one can establish a mathematical relation between ρ and the distance along the focal plane, D.

The deuteron spectra were measured at angles of 15, 22, 29.5, 45, 53, 60, 65 and 70 degrees and the observed spectrum at the angle of 53 degrees is shown in Fig. 5. The interpretations shown for some of the levels are described in Chapter 4. The excitation energies and absolute cross sections for many of the states populated in the present reaction are presented in Table 1. As the ground state was not populated very strongly, the excitation energies were measured relative to that of the 265 keV state whose position was well known in the decay scheme studies.

The Q-value for the present reaction is estimated from the mass tables 22 to be 1902 keV with an uncertainty of 34 keV. The experimental Q-value obtained in our reaction study is 1880 keV and the error is ± 50 keV. The error is large since the energy of the incident beam has not been measured precisely.
Elastic scattering of ^3He-ions on ^{174}Yb. Circles indicate the experimental values of $\left(\frac{d\sigma}{d\Omega}\right)_{\text{elastic}} / \left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}}$.
ELASTIC SCATTERING OF ^3He ON YTTERBIUM
FIGURE 5

Deuteron spectrum from the 165Ho (3He,d) 166Er reaction at the angle of 53 degrees.
\[^{165}\text{Ho}(^{3}\text{He},d)^{66}\text{Er} \]

\[E_{3\text{He}} = 28 \text{ MeV} \]

53°
TABLE 1

THE EXCITATION ENERGIES AND THE OBSERVED CROSS SECTIONS (ub/sr)

<table>
<thead>
<tr>
<th>Energy Present (keV)</th>
<th>Energy Previous (keV)</th>
<th>K, I<sup>κ</sup></th>
<th>Mode</th>
<th>15° #</th>
<th>22°</th>
<th>29.5°</th>
<th>45° #</th>
<th>53°</th>
<th>60°</th>
<th>65°</th>
<th>70°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 a)</td>
<td>0,0<sup>+</sup></td>
<td>A</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.05</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>81 a)</td>
<td>0,2<sup>+</sup></td>
<td>A</td>
<td>1.05</td>
<td>1.34</td>
<td>0.86</td>
<td>0.73</td>
<td>0.40</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>265 a)</td>
<td>0,4<sup>+</sup></td>
<td>A</td>
<td>3.8</td>
<td>4.4</td>
<td>3.4</td>
<td>2.3</td>
<td>2.1</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>545 a)</td>
<td>0,6<sup>+</sup></td>
<td>A</td>
<td>2.1</td>
<td>2.1</td>
<td>1.7</td>
<td>1.22</td>
<td>1.15</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>788</td>
<td>787 a)</td>
<td>2,2<sup>+</sup></td>
<td>B</td>
<td>0.26</td>
<td>0.30</td>
<td>0.33</td>
<td>0.20</td>
<td>0.09</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>860 a)</td>
<td>2,3<sup>+</sup></td>
<td>B</td>
<td>0.33</td>
<td>0.20</td>
<td>0.14</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>957</td>
<td>957 a)</td>
<td>2,4<sup>+</sup></td>
<td>B</td>
<td>0.29</td>
<td>0.11</td>
<td>0.08</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1573</td>
<td>1574 a)</td>
<td>4,4<sup>-</sup></td>
<td>C*</td>
<td>23.5</td>
<td>21.9</td>
<td>26.8</td>
<td>7.8</td>
<td>9.9</td>
<td>6.8</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>1658</td>
<td>1662 b)</td>
<td>(4),5<sup>-</sup></td>
<td>C*</td>
<td>6.6</td>
<td>6.0</td>
<td>8.2</td>
<td>5.7</td>
<td>3.1</td>
<td>3.1</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>1686</td>
<td>1688 b)</td>
<td>(4),5<sup>-</sup></td>
<td>C*</td>
<td>10.7</td>
<td>9.9</td>
<td>11.2</td>
<td>7.2</td>
<td>6.6</td>
<td>4.6</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>1785</td>
<td>1785 b)</td>
<td>(4),6<sup>-</sup></td>
<td>C*</td>
<td>2.6</td>
<td>1.22</td>
<td>2.9</td>
<td>1.6</td>
<td>1.07</td>
<td>0.70</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>1825</td>
<td>1825 b)</td>
<td>(4),6<sup>-</sup></td>
<td>C*</td>
<td>5.3</td>
<td>3.3</td>
<td>6.5</td>
<td>3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>1916</td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
<td>11.6</td>
<td>18.8</td>
<td>11.5</td>
<td>9.3</td>
<td>6.4</td>
<td>4.6</td>
<td>3.6</td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td>36.7</td>
<td>45.2</td>
<td>50.5</td>
<td>28.8</td>
<td>24.8</td>
<td>17.7</td>
<td>13.8</td>
<td>10.8</td>
</tr>
<tr>
<td>2054</td>
<td></td>
<td></td>
<td></td>
<td>43.2</td>
<td>51.8</td>
<td>52.0</td>
<td>33.8</td>
<td>25.2</td>
<td>20.4</td>
<td>12.9</td>
<td>10.9</td>
</tr>
<tr>
<td>2137</td>
<td></td>
<td></td>
<td></td>
<td>33.3</td>
<td>49.8</td>
<td>49.8</td>
<td>32.4</td>
<td>23.3</td>
<td>19.1</td>
<td>15.0</td>
<td>11.7</td>
</tr>
<tr>
<td>2221</td>
<td></td>
<td></td>
<td></td>
<td>19.5</td>
<td>30.0</td>
<td>35.6</td>
<td>20.1</td>
<td>14.4</td>
<td>12.5</td>
<td>8.2</td>
<td>8.1</td>
</tr>
<tr>
<td>2604</td>
<td></td>
<td></td>
<td></td>
<td>72.5</td>
<td>139</td>
<td>75.5</td>
<td>45.4</td>
<td>35.9</td>
<td>26.1</td>
<td>23.8</td>
<td></td>
</tr>
</tbody>
</table>

a) Reference (3)
b) Reference (1)
* See discussion in 4.5
A Ground State Rotational Band
B Gamma Vibrational Band
C K^κ=4⁻ Rotational Band

Experimental data at 15° and 45° were divided by a factor of 1.7 in order to make the angular distributions smoothly varying functions of angles at 15° and 45°. This normalization is necessary partly because these data were taken on a different day using different apertures for the monitor and spectrograph. Other experimental data obtained with the same geometrical conditions at the same times indicate that a correction of 1.25 should be applied.
CHAPTER 4
INTERPRETATIONS OF THE SPECTRA

4.1. Introduction
For some \(^{(3}\text{He},d)\) reactions on heavy even-even nuclei \((23)\), the angular distributions have been found to give some indications of the \(\ell\)-value, but with 28 MeV \(^3\text{He}\)-particles the patterns are not nearly so unique as for many studies on light nuclei. As mentioned in Chapter 2, the cross sections to each state of \(^{166}\text{Er}\) can have contributions from several different \(\ell\)-values. Even if the calculation predicts that some levels have predominantly one \(\ell\)-value, it is quite difficult to determine the \(\ell\)-value definitely, because of inevitable errors in the cross section and the similarity of the angular distributions for various \(\ell\)-values. Detailed discussions on the observed cross sections for several rotational bands are made in the following sections.

DWBA calculations for the reaction studied in this work have not been carried out. However, the calculations were available for Samarium and Wolfram targets. An interpolation of these calculations has been performed to obtain estimates of theoretical cross sections for Holmium. The justification and procedure for this interpolation is discussed in an Appendix.

4.2. Ground State Rotational Band
The ground state configuration of the odd-Z nucleus \(^{165}\text{Ho}\) has been confirmed to have proton in the \(7/2^-\) \([523]\) Nilsson orbital \((22)\). The five lowest levels of \(^{166}\text{Er}\) constitute a rotational band with \(K=0\),
7/2-[523] in agreement with Bohr and Mottelson's unified nuclear model. A member of this band can thus be populated with the \(^{3}\text{He,d}\) reaction by transferring one proton into the 7/2-[523] orbital. For this Nilsson state, the calculated \(C_{j+k}^2\) coefficient is largest for \(j = 11/2 (\lambda=5)\). The \(C_{j+k}^2\) coefficients for \(j = 7/2 (\lambda=3)\) and \(j = 9/2 (\lambda=5)\) are 30\text{~}40 times smaller than for \(j = 11/2\). The single particle cross section \(\phi_{k=5}\) is fairly small, so it is expected that this band will be populated rather weakly, though substitution of these values to eq. (2) show that the 4\(^+\) and the 6\(^+\) states are expected to have the largest cross sections.

As shown in Fig. 5, the cross sections for this band are small, especially to the ground state and the fourth excited state (8\(^+\)), so that the statistical errors are large. If some unwanted particles mix in the peak, they change the cross sections appreciably. At the angles of 15 and 22 degrees almost all the peaks of this band were obscured by the strong intensity of deuteron groups from Carbon and other impurities.

The angular distributions of this band are shown in Fig. 6. Good agreement is not obtained for the ground state transition because of poor statistics. However, good agreement for the 265 keV state (4\(^+\)) and the 545 keV state (6\(^+\)) are obtained. The 81 keV state (2\(^+\)) shows a fairly good agreement.

It should be mentioned that the theoretical values were multiplied by a factor of 0.9 to fit the experimental data. In other words, the fullness factor, \(V^2\), for the 7/2-[523] Nilsson orbital in the ground state band in \(^{166}\text{Er}\) is 0.9. The value 0.9 is somewhat larger than normally expected for this orbital, because a state near the
Angular distributions of the ground state rotational band. The theoretical curves are all multiplied by a factor of 0.9.
GROUND STATE BAND

CROSS SECTION

\(\frac{\mu b}{\text{sr}} \)

\(\times 10 \)

ANGLE (degrees)

15 30 45 60 75 90

0^+ 2^+ 4^+ 6^+
Fermi level would be expected to have v^2 equal to about one-half. However, the probable error in deduced value of v^2 is large because of poor statistics and uncertainties in the theoretical cross sections with which experimental values were compared.

4.3. **Gamma Vibrational Band**

The rotational band based on the gamma vibrational state at 787 keV has been studied by other groups $(1,2,3)$, and has been found to be in good agreement with theoretical predictions by Bohr and Mottelson's unified nuclear model.

Microscopic calculations of the structure of this band show no large quasi-particle component which could be populated in the (3He,d) reaction.

Indeed, in the spectrum of the (3He,d) reaction, the cross sections to the members of the gamma vibrational band are small. As we have no assurance that the observed cross sections are, in fact, due to a direct reaction process, no further discussion concerning this band will be made.

4.4. **Octupole Vibrational Band**

Żylicz et al (3) have suggested that levels observed in the decay scheme study at 1460, 1516 and 1784 keV form the 2^-, 3^- and 6^- members of the $K^{π}=2^-$ octupole band. The octupole nature of this band was confirmed by Tjöm and Elbek (5) who performed the inelastic deuteron scattering experiment and observed a large $B(E3)$ value connecting the 3^- member of this band to the ground state.

The microscopic calculations of Soloviev (11) predict that the rotational band based on the $K^{π}=2^-$ vibration has two relatively
large two-quasiparticle components; the two-neutron configuration \(7/2^+\) - 3/2\(^-\) with an admixture of \(\approx 58\% \), and the two-proton configuration 7/2\(^-\) - 3/2\(^+\) with an admixture of \(\approx 36\% \). The two-neutron component was confirmed in the (d,t) reaction (6) with an admixture of \(\approx 50\% \) in agreement with prediction.

One of the major reasons for undertaking the present experiment was to search for the two-proton configuration 7/2\(^-\) - 3/2\(^+\). This component should contribute to cross sections of the octupole states in the \(^3\)He,d reaction with an intensity of \(\approx 36\% \) of those indicated by eq. (3). However, the experimental data show no strong population for the 1460 keV level, the band member, which is expected to have the largest cross section. There are not enough counts to make meaningful measurements of peak positions and intensities. However, an attempt can be made to set an upper limit on the observed cross section for the 1460 keV level. The results are shown in Table 2 where the entries in column 3 are the numbers of tracks observed in an energy interval corresponding to a peak width at 1460 keV. The cross sections corresponding to these numbers are shown in column 4. The cross sections which would be expected for this state can be obtained from eq. (3) using a value of \(U^2 \approx 15\% \). This estimate of \(U^2 \) is based on an analysis such as that shown in Fig. 23 of reference 24, assuming that \(\Delta \approx 800 \) keV (25) and that the 3/2\(^+\) state (22) in the \(^{165}\)Ho target is found at the excitation energy 360 keV.

As discussed above, this result should also be multiplied by a factor of 0.36, because the two-proton component being populated is expected to make up this fraction of the states. The predicted cross sections obtained in this manner were shown in column 2 of Table 2.
<table>
<thead>
<tr>
<th>Angles (degree)</th>
<th>Expected Cross Sections</th>
<th>A Number of Counts Observed</th>
<th>Corresponding Maximum Cross Sections</th>
<th>Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.00</td>
<td>obscured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.84</td>
<td>obscured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>1.16</td>
<td>obscured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.69</td>
<td>7</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>53</td>
<td>0.43</td>
<td>7</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>60</td>
<td>0.32</td>
<td>not observed</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>0.26</td>
<td>5</td>
<td>0.059</td>
<td>0.23</td>
</tr>
<tr>
<td>70</td>
<td>0.21</td>
<td>5</td>
<td>0.044</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Ratios of experimental values to theoretical estimates are given in the last column. Their average is ~0.18 and indicates that the two-proton configuration \(\frac{7}{2}^- |523\rangle - \frac{3}{2}^+ |411\rangle \) has an admixture ~7% in the \(K^\pi=2^- \) octupole vibration; not ~36% as the microscopic calculations of Soloviev predict.

4.5. \(K^\pi=4^- \) Rotational Band

In an even-even nucleus the level density above the first single particle state increases rapidly as the excitation energy, so that experimental studies on these states become complicated. Very little knowledge about the physical nature of these states has been obtained. With more sophisticated methods, people have made attempts to investigate the nature of these high excited states.

Indeed in \(^{166}\text{Er}\), above the level at 1574 keV, many states are populated in the present reaction studies. Before discussing in detail some of the levels populated in the \((^3\text{He},d)\) reaction, it is important to review the investigations done by other groups. The results of these attempts are listed in Table 3.

Some of the levels listed in Table 3 have been discussed in connection with the \(K^\pi=2^- \) octupole band. Zylicz et al\(^{(3)}\) suggested that the 6\(^-\) state at 1784 keV belonged to the octupole band and from the \(I(I+1) \) rule they predicted 4\(^-\) and 5\(^-\) states should be located at 1589 and 1679 keV. Two 5\(^-\) states have previously been observed at 1662 and 1688 keV. Zylicz et al suggested that the 1688 keV level did not belong to the octupole band, but to a \(K^\pi=4^- \) band based on a 4\(^-\) level at 1574 keV. As discussed in 4.4, in the inelastic
TABLE 3

<table>
<thead>
<tr>
<th>(keV)</th>
<th>Žylicz et al</th>
<th>Reich and Cline</th>
<th>Burson et al</th>
<th>Tjøm and Elbek</th>
<th>(d,t)</th>
<th>Present Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation Energy</td>
<td>I°</td>
<td>Excitation Energy</td>
<td>I°</td>
<td>Excitation Energy</td>
<td>I°</td>
<td>Excitation Energy</td>
</tr>
<tr>
<td>1574.</td>
<td>(4)°</td>
<td>1572</td>
<td>4°</td>
<td>1571</td>
<td>1573</td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td>(4°)</td>
<td>1663</td>
<td>1°</td>
<td>1662</td>
<td>1657</td>
<td>1597</td>
</tr>
<tr>
<td>1662</td>
<td>(5°)</td>
<td>1693</td>
<td>(5°)</td>
<td>1698</td>
<td>1693</td>
<td>3°</td>
</tr>
<tr>
<td>1687</td>
<td>(5°)</td>
<td>1704</td>
<td>(3°,4°)</td>
<td>1719</td>
<td>3°</td>
<td>1686</td>
</tr>
<tr>
<td>1787</td>
<td>(6°)</td>
<td>1784</td>
<td>6°</td>
<td>1787</td>
<td>6(+)</td>
<td>1785</td>
</tr>
<tr>
<td>1787</td>
<td>(6°)</td>
<td>1825</td>
<td>(6°)</td>
<td>1828</td>
<td>(5,6)</td>
<td>1787</td>
</tr>
<tr>
<td>1787</td>
<td>(6°)</td>
<td>1831</td>
<td>1°</td>
<td>1830</td>
<td>1°</td>
<td>1825</td>
</tr>
</tbody>
</table>

I and π in parentheses indicate tentative assignment.
deuteron scattering experiment the strongly excited level at 1516 keV was confirmed to be the spin 3 member of the octupole band. However, the proposed 5\(^{-}\) state around 1679 keV was not observed and possible 5\(^{-}\) states of the octupole band were found at 1662 keV and 1698 keV.

Żylicz et al have assigned the K\(^{π}=4^{-}\) band with 4\(^{-}\), 5\(^{-}\) and 6\(^{-}\) members at 1574, 1688 and 1825 keV to be the two-proton configuration. However, in view of the uncertainties which are still present, it can not be clearly said which 5\(^{-}\) or 6\(^{-}\) states belong to the octupole band and which to the K\(^{π}=4^{-}\) band. In principle the stripping and the pickup reactions should be useful in resolving this ambiguity. For instance, the rotational band based on the above two-proton configuration should not be populated in the (d,t) reaction \(^{(6)}\) which transfers a neutron. The 1574 keV was indeed populated only very weakly in the (d,t) reaction. However, weak peaks were found in the (d,t) spectrum at or near the energies expected for both the 5\(^{-}\) and for both the 6\(^{-}\) states, so it was not possible to decide which 5\(^{-}\) and 6\(^{-}\) states belonged to the octupole band from that reaction.

One might expect that the \(^{(3}\text{He},d)\) reaction would solve this problem. As seen in last section, the 2\(^{-}\) member of the octupole band was essentially not populated in this reaction. Since the 2\(^{-}\) member was expected to have the largest cross section, it is logical to assume that any cross sections for higher spin states in this band would be negligible. As the 4\(^{-}\), 5\(^{-}\) and 6\(^{-}\) members of the band based on the K\(^{π}=4^{-}\) two-proton state should have appreciable cross sections in the \(^{(3}\text{He},d)\) reaction, one might hope to isolate them from the corresponding members of the octupole band. However, two peaks with approximately
the same intensity appear in the \(^3\text{He},d\) spectrum with the energies roughly corresponding to the two previously known 5\(^-\) states. Similarly two peaks with comparable intensity are found with energies at or near the two 6\(^-\) states. This does not mean, for example, that both 5\(^-\) states have been populated. The density of levels is such that some other state (or states) could be near one of the 5\(^-\) states. The energy resolution and precision in the present experiment is poor enough so that any state within 15 keV of a given energy could not be discerned as being distinct. In fact, there is a known 1\(^+\) level at 1663 keV and 1\(^-\) state at 1831 keV. The net result is that one still can not decide which 5\(^-\) and 6\(^-\) levels belong to the octupole band and which to the \(K^\pi=4^-\) band.

The angular distributions of the observed levels at 1573, 1658, 1686, 1785 and 1825 keV are shown in Fig. 7, where the relative theoretical cross sections calculated using the proposed two-proton configuration are shown. As discussed above, the two possible 5\(^-\) groups have nearly same magnitude, so that both levels are eligible as a member of the \(K^\pi=4^-\) rotational band. On the other hand, the 1825 keV state seems to be the preferred choice for the 6\(^-\) member of the band, but the existence of the level at 1831 keV (1\(^-\)) weakens this preference, because it is impossible to separate these levels in the present reaction. Again it is not possible on the basis of the angular distribution to decide which of the observed peaks are the members of the \(K^\pi=4^-\) rotational band.
Angular distributions of the $K^+=4^-$ band. Theoretical curves are multiplied by a factor of 0.43. This gives a good fit to the data. Black circles show the level at 1573 keV. Crosses and white circles show the possible 5^- state at 1658 keV and 1686 keV, respectively. Triangles and squares indicate the levels at 1785 keV and 1825 keV, respectively.
$K^\pi = 4^{-}$ ROTATIONAL BAND

CROSS SECTION $(\mu b/\text{sr})$

ANGLE (degrees)

(x_{10})

4^{-}

5^{-}

6^{-}
CHAPTER 5

CONCLUDING REMARKS

The 165Ho (3He,d) 166Er reactions have been performed and the results were compared with predictions based on the unified model of nuclear structure. The observed cross sections for the ground state rotational band and the gamma vibrational band were consistent with theory.

The admixture of the two-proton configuration $7/2^-\{523\} - 3/2^+\{411\}$ in the $K^T=2^-$ octupole band should have been observable if it had been approximately 36% as predicted by Soloviev. However, in this study, the 1460 keV state was populated very weakly and an upper limit of approximately 7% was placed on this admixture. It is not possible to decide which of two previously known 5$^-$ states belong to the $K^T=4^-$ rotational band based on the 1574 keV state, since both states have similar cross sections. For the same reason it is still not known which of the two previously known 6$^-$ states belong to the $K^T=4^-$ rotational band.

At about 2600 keV excitation, a very intense peak appears. Its cross section at $\phi = 53$ degrees is ~ 45 µb/sr, a value so large that it could be obtained theoretically only by $\ell=0, 1, 2$ or 3 transitions. The angular distribution favors an $\ell=0$ or $\ell=2$ transition.

It should be pointed out that the DWBA calculations used were interpolated from calculations carried out for nearby nuclei. This interpretation is justified by the fact that the structure of the two sets of calculations was quite similar. It was an unfortunate feature of the angular distributions that the cross sections dropped off with
increasing angle at about the same slope for all values. Thus it was
difficult to determine \(\lambda \)-values from the angular distributions.

The ambiguity of level structures at the excitation energy
about 1500 keV to 1800 keV could be removed by carrying out more
sophisticated experiments.
APPENDIX

No DWBA calculations of ϕ_ℓ for the present 165Ho (3He,d) 166Er reaction have been done, but the results of the DWBA calculations for the 152Sm (3He,d) 153Eu and the 182W (3He,d) 183Re reactions were available.

In the present work an interpolation between the two sets of available data were carried out in order to obtain the shapes of the angular distributions. These cross sections were then normalized to fit existing experimental data for well known transitions from targets of Sm and Yb. The justification for the above interpolation is based on the fact that the shapes of the predicted angular distributions for Sm and W are quite similar - corresponding maxima and minima for the two curves occur at the same angles. A typical example for $\ell = 2$ is shown in Fig. 8. The similarity between the curves results because ϕ_ℓ is expected to be a slowly varying function of atomic number 9 due to the geometrical aspects of the reaction. Since the atomic number of Ho is close to the average of Sm and W, the interpolation was carried out by taking the mean values for the Sm and W curves at each angle.

This procedure was carried out for each ℓ - value, which means that the cross sections obtained have the mean ℓ-dependence predicted by DWBA for the Sm and W cases. This is reasonable because relative intensities for various ℓ-values can be predicted quite well with DWBA. This is because relative intensities are also smoothly varying functions of ℓ-values.

Since the DWBA calculations have not always been successful in
Angular distributions calculated by DWBA for Sm and W and the interpolated curve. Value shown up is $\ell = 2$.
\[
\begin{align*}
&1000 \quad \text{DWBA} \quad ^{152}\text{Sm}(^{3}\text{He},d)^{153}\text{Eu} \\
&100 \quad \text{INTERPOLATION} \\
&10 \quad \text{DWBA} \quad ^{182}\text{W}(^{3}\text{He},d)^{183}\text{Re}
\end{align*}
\]
predicting the absolute cross sections, the angular distributions obtained in the above manner have been normalized using experimental \((^3\text{He},d)\) data for some well known \(l=2\) transitions.

The experimental values used for normalization were cross sections in the \(^{152}\text{Sm}\ (^3\text{He},d)\) \(^{153}\text{Eu}\) reaction leading to the 172 keV state in \(^{153}\text{Eu}\) \(^{(23)}\) and the \(^{172}\text{Yb}\ (^3\text{He},d)\) \(^{173}\text{Lu}\) reaction leading to the 357 keV state in \(^{173}\text{Lu}\) \(^{(26)}\). In each case the data at \(\theta=30\) degrees were used. These states correspond to the \(5/2\ 3/2^+[411]\) and the \(5/2\ 5/2^+[402]\) configurations. Both of these states have large values of \(C^2_{j\ell}\), therefore, large cross sections.

Only the case of the state in Eu will be discussed in detail. For an even-even target nucleus, eq. (3) simplifies to

\[
\frac{d\sigma}{d\Omega} = 2C^2_{j\ell} \phi_{\ell} U^2
\]

because of the fact that \(J_i = 0\) and \(J_f = j\). Thus one has

\[
\frac{d\sigma}{d\Omega} = 2C^2_{j\ell} \phi_{\ell} U^2 = 230 \ \mu\text{b/sr} \quad \text{(observed)}
\]

\[
C^2_{j\ell} = 0.79 \quad \text{(19)}
\]

\[
U^2 \approx 0.85 \quad \text{(estimated in a similar manner as the octupole state)}
\]

Hence,

\[
\phi_{\ell=2} = 179 \ \mu\text{b/sr}
\]

In a similar manner, one has

\[
\phi_{\ell=2} = 91 \ \mu\text{b/sr} \quad \text{for the Lu case.}
\]
The Q-value dependence of ϕ_2 for the $^{152}\text{Sm} \ (^{3}\text{He},d) \ ^{153}\text{Eu}$ reactions obtained from the DWBA calculations is shown in Fig. 9, where ϕ_2 is normalized to unity at $Q=\pm 1.000$ MeV.

Assuming that the Q-value dependence does not vary rapidly as mass number, Fig. 9 was used to normalize other data. The ϕ_2 values for the $^{182}\text{W} \ (^{3}\text{He},d) \ ^{183}\text{Re}$ were calculated at $Q=\pm 1.210$ MeV, so one has to multiply them by 0.96 to normalize to $Q=\pm 1.000$ MeV. The Q-values to the states at 172 keV in ^{153}Eu and at 357 keV in ^{173}Lu are 0.238 MeV and -0.842 MeV respectively. Therefore, they must be multiplied by 1.30 and 1.03 to be normalized to $Q=\pm 1.000$ MeV.

The last column of a Table 4 shows the cross sections obtained at 30 degrees both from experiment and theory after a Q-value correction. These values are plotted against atomic number in Fig. 10. At $Z=67$ (atomic number of ^{165}Ho) the experimental points show $\phi_2=2$ is $\approx 130 \mu$b/sr which corresponds nearly to the midpoint of the two theoretical predictions. Thus it is seen that the normalization to the experimental results is almost identical with that which would have been obtained assuming the absolute value of DWBA calculations.

The angular distributions thus interpolated for the present reaction are shown in Fig. 11.
FIGURE 9

Q-value dependence of the DWBA cross sections. Three cross marks indicate Q-value at which theoretical calculations have been done for the $^{152}\text{Sm} (^{3}\text{He},d) ^{153}\text{Eu}$ reactions.
TABLE 4

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Excitation Energy (MeV)</th>
<th>Q-value (MeV)</th>
<th>Q-value Factor</th>
<th>$(\frac{d\sigma}{d\Omega})_{\mu b/sr}$</th>
<th>$(\frac{d\sigma}{d\Omega})_{Q= -1.0MeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{152}\text{Sm (}^{3}\text{He,d})^{153}\text{Eu}$</td>
<td>0.172</td>
<td>0.238</td>
<td>1.30</td>
<td>179</td>
<td>232</td>
</tr>
<tr>
<td>$^{152}\text{Sm (}^{3}\text{He,d})^{153}\text{Eu}$</td>
<td>DWBA</td>
<td>-1.000</td>
<td>1.00</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>$^{172}\text{Yb (}^{3}\text{He,d})^{173}\text{Lu}$</td>
<td>0.357</td>
<td>-0.842</td>
<td>1.03</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>$^{182}\text{W (}^{3}\text{He,d})^{183}\text{Re}$</td>
<td>DWBA</td>
<td>-1.210</td>
<td>0.96</td>
<td>84</td>
<td>80</td>
</tr>
</tbody>
</table>
FIGURE 10

Interpolation of the cross section ϕ_2 for the present study at $\theta = 30$ degrees. Cross marks are experimental points for Sm and Yb while circles show theoretical predictions. Triangles are interpolated points.
\[
\frac{\mu}{\text{sr}}
\]

CROSS SECTION vs. Z-NUMBER

○ EXPERIMENT
× THEORY

Z = 67
Z = 68
FIGURE 11

Interpolated ϕ_2 for various λ-values.
BIBLIOGRAPHY

13. See, for example, Elliot, J.P. Lecture notes of Collective Motion in Nuclei (1958) Unpublished.

24. Burke, D.G., Zeideman, B., Elbek, B., Herskind, B. and Olesen, M.

26. Presently being analyzed at McMaster University.