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SCOPE AND CONTENTS: 

A research programme is presented for assessing the 

capability of Hollow Structural Sections in Plastic Design. 

This investigation attempts to relate the flange slenderness 

and yield stress to the rotation capacity of Hollow Structural 

Sections subjected to both constant moment regions and to 

moment gradients. 

An experimental programme was performed on 31 differ­

ent cross sections to evaluate the moment-curvature relation­

ship which is of fundamental importance in Plastic Methods. 

The occurrence of local buckling for some sections in the 

compression flange and the consequent reduction in moment 

resistance is the critical factor which separates members 

into compact and non compact categories. 

The moment-curvature relations from tests are compared 

with analytical predictions. The plastic hinge rotations 

delivered by the present test sections are compared with the 

maximum practical requirements for plastically designed con­

tinuous beams. Theoretical elastic and inelastic buckling 
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solutions of plate elements are also presented to relate to 

possible local buckling of the flats of square and rectangu­

lar hollow structural sections. 

Plate ratios of compression flanges are then selected 

for use in plastic design of hollow structural sections. 

Such a separation permits segregation into compact and non 

compact categories and can be used in working stress or 

elastic design methods. 
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CHAPTER 1 


INTRODUCTION 

The elastic design of steel structures is based on the 

concept of a specified safety factor against nominal yielding 

of the most highly stressed fibers. This method is there­

fore satisfactory provided that the yield stress is reached 

without premature buckling. This approach is not strictly 

rational however since virtually all structural members 

have some residual stress locked in before they are sub­

jected to any external loads. Allowable stress based solely 

on a yield point criterion does not give a consistent margin 

of safety against failure. Present-day codes such as CSA 

Standards Sl6 attempt in part to take into account proper­

ties of the cross-section and continuity of the structure 

but still fall short of complete consistency. 

Plastic desi~n takes advantage of the ductile pro­

perty of a material of which the structure is made and 

proposes to base the design on the actual load-carrying 

capacity of the structure. The working loads are determined 

as a specified percentage of the ultimate load, which will 

be realized only if the members undergo plastic deformations 

at a number of sections without local buckling, producing 

a consequent fall-off in bending moment resistance. This 

process is generally referred to as the redistribution of 
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moments and formation of plastic hinges. 

Thus two necessary conditions must be satisfied in 

plastic design 

a) redistribution of moments in an indeterminate 

structure when the plastic moment M is reached at p 

the section of the first and subsequent hinges 

before collapse, 

b) maintenance of the resisting moment M at a p 

critical section until sufficient additional 

sections have yielded to produce a "mechanism". 

When the plastic moment M is reached at th~ first 
p 

hinge of an indeterminate structure it is assumed that rel­

ative rotation of the segments meeting the hinge can occur 

until sufficient additional sections have yielded to form a 

mechanism. This rotation for which the plastic moment is 

maintained is called the "rotation capacity". 

The rotation capacity at a plastic hinge may be re­

duced by local buckling at a rotation smaller than that 

required to form a mechanism in the structure. Cross-sections 

which satisfy the minimum rotation requirements are classi­

fied as "Compact Sections for Plastic Design". These 

sections are capable of developing their computed plastic 

moments to the minimum rotation requirements without the 

presence of local buckling. 

In structures designed by the allowable stress method 

the "compact sections" are capable of reaching only the 
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computed plastic moments without the presence of local buck­

ling. They do not need to satisfy the minimum rotation re­

quirement. 

Those which are capable of reaching only the com­

puted yield moment prior to local buckling are termed "Non-

Compact". 

Reduced stress sections are those which will buckle 

locally before they reach the computed yield moment M which y 

is defined as that moment at which yielding of the outer 

- fibers is initiated. 

The initial position of an idealized stress-strain 

(a-s) curve for cold-formed steel in tension or compression 

is shown in Figure 1.1. For strains below the yield strain, 

E , the material is elastic, with the slope of the stress­y 

strain curve defined as the elastic modulus, E. As the 

strain is increased beyond cy' the stress again begins to 

increase with the slope of the curve in this range, Est' 

the strain-hardening modulus. A strain of sy represents the 

onset of strain-hardening. 

In "simple plastic 11 theory, it is assumed that all 

elements of a given cross-section in a member subjected to 

flexure remain elastic up to the attainment of the "plastic 

moment", M, which is the moment corresponding to a stress p 


of ±p in all elements of the section. This state corre­
y 


sponds to Est/E+O. It is further assumed that, once the 


plastic moment has been reached, the moment at that cross­
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section remains constant for all further increases in cur­

vature. This assumed behaviour neglects the additional 

moment capacity due to the effects of strain-hardening, and 

assumes that the shape factor M /M is approximately unity.p y 

Figure 1.2 shows a plot of moment, M, non-dimension­

alized as M/M , vs curvature for a simple-supported HSS p 

beam. The curvature is equivalent to a ratio of the maxi­

mum strain in the outside fibers to half of the depth of 

the HSS. K = M /EI is the curvature which would corre­p p 

spond to a moment, Mp' if the beam were to remain completely 

elastic. The symbol I denotes the moment of inertia about 

the neutral axis of the beam. The dashed curve represents 

the behaviour assumed in simple plastic theory. The dot-and­

dashed curve includes the penetration of yielding through 

the cross-section and the effects of strain-hardening. This 

more exactly predicted curve does not take into account any 

residual stresses that might exist in HSS. The actual be­

haviour of a typical beam with residual stresses is shown 

by the solid curve in the figure. This curve departs from 

the predicted curve at the proportional limit of yielding 

and shows the influence of residual stresses of HSS. This 

feature will be described more fully in Section IV in Figures 

from 4.1 to 4.31. 

In some cases local buckling can occur within the 

yielded portion of the compression flange and this can 

precipitate a drop-off in moment capacity. This behaviour 
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is typical of beams subjected to loads producing moment 

gradients primarily. The "rotation capacity" of the beam is 

defined as 0 = K/K -1, where K is the rotation at which M p . 

drops below Mp. ':rhe absolute inelastic hinge rotation, 

K-Kp' of the full span will be denoted by the term "hinge 

capacity". 

Wide-flange beams subjected to moment gradient have 

been the subject of both analytical and experimental investi­

gations <31617> .The present investigation attempts to define 

the effect of moment gradient and constant moment on the 

rotation capacity for HSS. An attempt will be made to re­

late the flange slenderness ratio, b/t, to the hinge ca­

pacity of HSS beams. 

Because HSS beams subjected to moment gradient are 

influenced greatly by residual stresses, there is a definite 

need for more experimental studies in this area. 

Th e ASCE "Comentary on Plastic Design in Steel"(lS) 

assumes for A36 steel beams designed by plastic-design 

methods that unloading does not occur until the plastic 

rotation {the total rotation minus the rotation at M ) is p 

at least three times the hypothetical rotation calculated 

by an elastic analysis with M=Mp. This is equivalent to 

saying that unloading does not occur until the maximum 

plastic strain is at least three times the strain calculated 

by an elastic analysis with M=Mp. 

(16)The paper by Jombock and Clark was prepared 
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for a report summarizing information on the post buckling 

strength of flat plates in edge compression which would 

serve as background material for the preparation of a guide 

to design criteria for metal compression members. This 

paper examines the effect of local buckling of square tubes 

in compression. 

In the paper by Thurlimann(l?), the aspects con­

cerning inelastic instability of steel structures are 

presented. For plates, a solution for determining the be­

ginning of strain-hardening has been derived using the 

theory of orthotropic plates with appropriate moduli deve­

loped from theoretical and experimental considerations with 

respect to the effect of residual stresses. 

An investigation into the structural behaviour of 

stainless steel columns and beams is described by Johnson 

and Winter(lS). The mechanical properties are discussed 

including different stress strain curves in tension and 

compression, the pronounced effect of cold working, and the 

low proportional limit. An important problem in light gage 

metal construction is the post buckling behaviour of thin 

compression elements. 

A study at the U.S. Steel Applied Research Labora­

tory by McDermottCl9 ) was aimed at determining the require­

ments and capabilities of ASTM A514 steel in plastically 

designed structures. The curve for A514 steel has a linear 

elastic portion which is usually followed immediately by 
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an approximately linear strain-ha~dening portion. For cold­

formed steel of HSS, the stress-strain curve has the same 

shape. In conclusion of this paper regarding the required 

rotation capacity in plastically designed structures, it was 

indicated that a value of hinge rotation H=0.5 should be 

satisfactory for A514 steel beams which are generally de­

signed for uniform loads rather than for concentrated loads 

and H=l would presumably be satisfactory for steel columns 

in building frames and for other steel beam-columns subject 

to nearly linear variation of moment~ Because the deriva­

tions of H are not sensitive to the shape of the material 

stress-strain curve, these values of H should be applicable 

to structures of any steel. 

Lukey and Adams( 6 ) reported the results of an ex­

perimental investigation of the influence of the flange 

slenderness ratio on the rotation capacity of members sub­

jected to moment gradient. The tests were performed on 

rolled wide-flange beams, simply supported and subjected to 

a concentrated load at midspan. 

Analytical and experimental investigations, by Smith 

and Adams(?), have been attempted to define the effect of 

moment gradient on the rotation capacity and to separate 

the influence of moment gradient from that of the unbraced 

slenderness ratio. The tests were performed on simply 

supported, wide-flange beams subjected to a concentrated load 

at midspan. The results provide a design recommendation 

* Hinge rotation H = KP.L (Figure 2.11). 
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for the limitin9 flange slenderness ratio for compact 

sections used in structures designed by the allowable stress 

method. 
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CHAPTER II 

ANALYTICAL FORMULATION OF BEAM BEHAVIOUR 

2.1 Methods of Analysis 

A brief outline of the theoretical work associated 

with HSS beam behaviour follows. Two types of beams are 

studied: a simple span type and a three span statically 

indeterminate type. 

For the three span beam the distribution of moments 

shows the formation of plastic hinges. Maximum loads 

associated with the collapse mechanism are computed which 

were of· value in designing th~ loading system. Deflections 

are computed using conventional slope-deflection equations. 

Permissible hinge rotation is evaluated and a rotation 

requirement for plastic design is recommended. 

A brief review of earlier work in terms of 

_plastic hinge rotation requirements is included. This 

information is used to complement the limited structural 

forms that are considered in this work. 

For the case of the simple span, the calculated 

expression for deflection is used in a computer programme 

to predict the load-deflection behaviour. This information 
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2.11 Elastic Analysis 

The elastic moments were calculated for a designed 

loading condition for a simply-supported beam in Figure 

2.1 and three span beam in Figure 2.2a. The total load 

on the beam was P[kips] to simulate 2-point loading on 

a beam. For the three span beam, the negative moments at 

the interior supports were computed to have the value equal 

to 9.73 P[inch-kips] and the positive moments equal to 

5.28P[inch-kips]. The elastic distribution of moments 

shows the formation of the first plastic hinges at the 

interior supports. 

2.12 Plastic Analysis 

The work described herein is divided into 5 parts. 

The first pertains to the conventional plastic analysis to 

evaluate the collapse load. The second is associated with 

deflections at critical points which can become important 

for some structures. Thirdly, the hinge rotation requirement 

is computed for the beam described in Figure 2.2a. The 

fourth recommends the required rotation capacity of plasti­

cally designed structures from analytical studies which are 

performed in this part. 
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The last part pertains to the comparison of measured 

and predicted cutv4ture at the interior supp~rt. 

{A) Calculation dr Maximum toad~ 

These have been calculated on the assumption that 

mechanisms will develop at collapse. Figure 2.2(c,d) shows 

the bending moment distribution at collapse and the collapse 

mechanism for the three span beam. For the type of loading 

shown, the computed ultimate load P = M /7.S[kips], where 
u p 

Mp is in kips-inch. 

(B) Calculation of Deflection 

This part presents a method for computing the pre­

dieted deflections of a simple beam and the three span beam. 

These computed values are compared to test results in Chapter 

4. For the simple span, the deflections were calculated 

by assuming the nondimensional moment-curvature relationship 

in the computer program for the determination of the shape 

of load-deflection curve. For the three span beam, the 

idealized moment-curvature relation is assumed and the shape of 

the load-deflection curve is determined by the two points of 

deflection, at yield load and at ultimate load. 

(a) Simple Beam Case 

By assuming that the plastic hinge occurs at midspan, 

the conventional slope defl~ction equations are used to 

determine midspan deflection just at ultimate load. 

The following form of the slope deflection equations 

will be used, the nomenclature being as shown in Figure 2.3a 



13 


with clockwise moment and angle change being positive 

The quantity ¢ABF is the slope at end A due to a 

similar loading of a simply-supported beam. 

The equation for member 2.-1 in Figure 2. 3b is 

Now 

(From Reference 10, pp. 102). 

p F = (~)a the expression of ~ is then given by21 

23b ) 

FSubstituting this expression of ¢ and using the21 

condition that = O, the solution can be expressed as¢ 21 

follows 

M 1 b3 Q;0 = ma:<2b,Q, + - - 3b 2 ) + -+ 3EI(-Mp) = 0<P21 Q, 
,Q, 

M ,Q,2 b3 M 2 b22 _£acS ....2.[- ab + -]= EI 3 + 6~(2b.Q. + -Q, - 3b )] = EI[3 + 
2 

Using this expression and assuming the nondimensional moment-

curvature relationship, the deflection can be expressed at 

any step in loading. This is done in the computer program in 
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Appendix 1. 

For the beam of the dimensions a=30" and b=38" 

= 2160 Mp
0 EI 

(b) Three Span Beam Case 

It is shown in Figure 2.2 that the first hinge is at 1. 

The nomenclature of the slope-deflection equations is as 

shown in Figure 2.3a with clockwise moment and angle change. 

The expression below takes this into account and for member 

2-1 in Figure 2-4 

Using the condition that * =0, the solution can be expressed21

as follows 

M 1 b 3 2 l M 3 0 
Q, 

M pe__)+ __£ +-0 = m a(2b£ + - Q, 3b )- 2a m(b£ Q, ,Q,. 3EI (-Mp+2-) 

M .Q,2 3.Q,
0 = -E.[- + Ga(2.5b.Q, + e__ - 3b 2 )]

u EI 6 2£ 

To give quantitative values to the above dimensions 

as chosen which are representative of tests described in 

Figure 2.2 

M 
ou = 1724 fl 

Load-Deflection Curve for Three Span Beam 

Above the yield load, P , the slope of the load­
Y 
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deflection curve is the same as that of a simple beam 

(Figure 2.5). For deflection purposes the approximation 

can be used that at point 1 M % M • 
y p 

For the type of loading shown in Figure 2.2 

2160 M 
0AB = EI p {~P,) 

y 

'\J
where P ' % P with the approximation that M '\J M • 

y y y p 

The quantity ~P may be obtained as 

M M 
~p = p -P' = (4-3.08) -! = 0.92 -! . u y 

Thus 
M M
_£ 0.92 __£= 2160 = 6450AB EI(3.08) EI 

M M 
_E_0 (1724-645)....E.. = 10790 ' y = u- 0AB = EI EI 

and the corresponding approximate yield load 

p -~P 
_u____~ P = 3.08 P = O.?? PP' = y p u 4 u u 

u 

It is of interest to see whether or not the method 

given herein will predict actual load-deflection relationship : 

with a sufficient degree of accuracy. Although the agree­

ment between the theory based on idealized behaviour and 

the tests is by no means exact, it is considered adequate in 

view of the fact that the effect of residual stresses, stress-

concentrations, and the gradual plastification of the cross­
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section have been neglected in the theory. 

(C) Calculation of Permissible Hinge Rotation 

The rotation capacity characterizes the ability of 

a member to absorb rotations of near-maximum plastic moment. 

This capability is necessary for redistribution of moment 

in the continuous beam. The transfer of moment to point 2 

is only possible if the plastic moment is maintained at the 

first hinge to form at 1 while hinge 2 is developing in 

the beam. 

Local buckling may limit the rotation capacity of 

a section in which case the beam would be classified as 

non-compact. Only compact sections are those in which no 

such loss in moment resisting capacity results during build­

up of moments at other sections. 

The rotation capacity requirement is a function of 

the applied loading and the geometry. The plastic hinges 

at the supports will require a considerable amount of 

rotation -- enough to allow the load to increase. The 

hinge that will form at the center span of the beam requires 

no rotation capacity requirement since that hinge is the last 

to develop in forming a mechanism. 

The maximum rotation requirement for the three span 

beam loaded as shown in Figure 2.2 is obtained from the angle 

change ¢ -¢ at support 1.12 10 

The hinge angle H, will be equal to the change in 

slope at that section as shown in Figure 2.4. 
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The slope-deflection equation for member 1-2 in 

Figure 2.4 is 

F 1 F o £ 1 
= 	 - cf>12 + !cf>21 + ~ + 3EI(Ml2-~21) 

M 1 b3 1 . b3 2 8 £ M 
= 	_£_ -[ (bt--) +-( 2bt+--3b ) ] + ~ + -(-M +....£}

6EI a t 2 ~ 	 £ 3EI p 2 

The quantity o is known u 

Therefore, 

M b 
<P12 = 	4 

3 -h- . 
M c 

The angle change = ~ and the hinge angle¢10 

(.75b-.33c)M 
Hl = $12-¢10 = EI p • 

For the three span beam loaded as shown in Figure 2.2 

M 
Hl = 14.5 Et 

This equation may be nondimensionalized by dividing both 

sides by K £, givingp 
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This cannot be compared with the criterion that the 

section can be capable of rotating to the rotation capacity 

requirement, because all of the rotation occured at a point. 

The yield zone is distributed along the beam with strains 

varying all the way from the elastic limit and further beyond 

this limit into the plastic region. An approximate com­

parison may be made by computing the average unit rotation 

KA, on the basis that the total rotation is divided by the 

hinge length -- the length along the beam in which the 

moment is greater than the yield moment. 

Computation of the Hin~e Length for H.s.s. 

The hinge length for a simple supported beam (Figure 

2.6) applied to a solid rectangular cross-section is L/3, 

where L is the beam length. This length results from the 

shape factor being 1.5. For a wide-flange beam possessing 

a shape factor of 1.14 the hinge length is 
1 i:i~ 1L = 0.12L. 

For HSS the average shape factor is about 1.25 and 

thus M =0.8 M • . y p It follows then that the hinge length 

becomes 0.20 L. 

For the 3 span beam of Figure 2.2 the hinge length 

must be computed in the neighbo.urhood of the interior 

support. Since the moment changes are so rapid the value 

employed for a simple supported beam is not applicable. 

Figure 2.7 shows that the hinge length is 0.2c+O.la at 

incipient collapse. 

Thus ~L = 0.2c+O.la = 11.4 inches • 

http:0.2c+O.la
http:0.2c+O.la
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The 	average rotation 

= 1. 27 
M

Et 

or 	 = 1.27 . 

The yield zone must absorb a subsequent average 

rotation that is 1.27 times the value at the elastic limit 

for this loading and this geometry. 

(D) 	 Recommended Rotation Requirement in Plastic 
Design 

In order to determine whether the delivered hinge 

capacity of a given member is adequate, it is first necessary 

to know the hinge capacity required to form a mechanism in a 

particular structural situation. Analytical studies have 

been performed to determine maximum plastic rotation re­

quirements for practical structures. 

Kerfoot(l 2 ) has analyzed the symmetrical 3-span beam 

subjected to point loadings shown in Figure 2.10. The length 

ratio, a, and the load ratio, B, were varied in this study 

to provide a range of situations in which plastic hinge 

rotations were required both in regions of constant moment 

and of moment gradient. This study indicated that, only 

for very extreme values of a and S would the required hinge 

capacity at any point exceed K L, where K = M /EI and L {sp p p 

shown in Figure 2.10. 

Driscoll(l)) has presented the symmetrical 3-span 
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beam subjected to distributed load. Figure 2.11 presents 

some of the limitirt~ values of H/KPL Obtained as a resu1t of 

that study. The largest required plastic hinge rotation is 

0.425 K L for this structure. 
p 	 . (12) 

An analysis of frames has indicated that the 

largest required plastic hinge rotation for a single span 

rigid frame such as that shown in Figure 2.12a is 0.475 KPL 

when a=0.2 and the value of C is in range 0 .< C < 1.0. For 

a gable frame in Figure 2 .12b, this rotation is 1. 05 KPL in 

the rafter for 0 < C < 0.5. In more complex structures the 

theoretical hinge angle required to form a mechanism may 

be rather large<l3). However, it has been shown that, for 

such structures, a load close to the ultimate can be attained 

with much smaller hinge rotations. This is illustrated in 

Figure 2.13, taken from Reference (15). The load, P, non­

dimensionalized as P/P , is plotted against the plastic
u 

rotation, 0H, of the first hinge to form, represented non-

dimensionally as 8H EI/MPL. The structure considered is 

the two-span portal frame shown in the inset. The hinge 

angle at formation of a mechanism is 1.52 ML/EI, but 98% p 

of the ultimate load is reached at a rotation of 0.54 ML/EI.p 

Since the attainment of 98% of the calculated ultimate load 

would be considered satisfactory for design purposes, it is 

concluded that practical rotation capacity requirements need 

not be related to the large theoretical rotations encountered 

in highly redundant frames(lS}. 



21 

These analyses can be used to estimate the required 

rotation capacity of plastically designed structures. The 

plastic design would be considered satisfactory to form a 

mechanism. 

(E) Comparison of Measured and Predicted Curvature 

A comparison of measured curvature K at the support 

Q) agrees with the average KA over the hinge length and with 

the value of 8=4 as proposed is shown in Figure 2.9 for 

cold formed HSS-6.x4.x.437 of test No. 12. The assumptions 

for test comparisons are shown in Figure 2.8 and the ex­

planation of this is given below. 

Curve @of Figure 2. 9 does not take into account 

the influence of residual stresses for reaching M at the 
p 

last formed hinge. The curvature K =920xlo- 6 in-l at point~
p 

of Figure 2.7 assumes the predicted M-K relation (simple 

plastic theory) and the corresponding measured curvature K 

at point QJ has a value about 2200xl0- 6 in-l which is 2. 4 times 

of K . The change of curvature over the hinge length is 
p 

shown by the dot-and-dashed curve in Figure 2.9. 

A more realistic curve for comparison is the one 

labelled @which takes into account the influence of resi­

dual stresses. With the curvature K =llOOxl0- 6 in-l at 
p 

~ M calculated by the simple plastic theiry is reached. p 

The corresponding measured curvature K at point Q) reaches 

a value about 3500xl0-6 in-l which is 3.8 times K . 
p 
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In Figure 2.9 this curve is shown by the full line. 

The standard calculation omitting residual stresses 

is computed in Section 2.12(C) by the average rotatio:t\ 

method and the recommended rotation requirement in plastic 

design is also shown in Figure 2. 9 as lines @. 

This example shows that the actual curvature at a 

support is about twice that of the average curvature over 

the hinge length. The higher peak of curvature is due to 

residual stresses in the HSS since these stresses flatten 

the M-K relation earlier than anticipated. The plastic 

moment M at point~' the last hinge to form is reached 
p 

with this higher curvature than in the section free of re­

sidual stresses. 

2.2 	 Instability of Fully Plastic Square or Rectangular 
Beams 

Failure due to plastic instability is considerably 

more likely when the average strains are in the strain-

hardening range since the buckling stress is a function 

of the tangent modulus. 

The performance of such a beam can be illustrated 

by a load-deflection curve or by a moment-curvature relation­

ship such as in Figures 2.14 and 2.15. Both of these curves 

are typical of properly behaved beams in terms of plastic 

design. 

The plastic moment Mp is reached and maintained 

through a considerable deformation. The moment Mp is 
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maintained by the beam for an average plastic rotation o f 

about 4 times K p before the plastie hinge behaviour is 

terntihated by unloadthg. 'rhe c:t~use of tmloadihg in thi~ 

beam was due to the formation of a local bu ckle irt the 

compression flange. The mechanism of failure so described 

is typical of HSS beams with a high plate ratio of compression 

flange. 

2.21 Description of Behaviour Related to M-K Relationship 

The behaviour of a typical rectangular HSS beam in 

the plane of bending is shown in Figure 2.14 where . the moment 

M is plotted against the curvature at the center of the 

beam. A standard test description follows . 

At first the response of the beam was 
. 

elastic, as 

can be seen by the linear M-K relationship. Elastic be­

haviour was terminated when the sum of the bending stress 

and the residual stress first reached the yield stress. If 

no residual stress were present in the beam linearity would 

have been extended to M , the yield moment. As more and more y 

of the material in the constant moment region yields, the 

resistance of the beam to further load increases was reduced, 

so that finally no additional load could be carried. This 

load occurredwhen the tangent to the M-K curve became 

horizontal at a moment equal to M , slightly larger than max 

the plastic moment. The curvature corresponding to this 

ultimate load is a few times larger than the curvature at 
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initial yielding. 

As soon as Mmax was attained, local buckling of the 

compression flange was initiated. During this deformation 

the initial shape of the cross-section was distorted as 

shown in the photograph in Fig. 4.38. Unloading became 

significant when local buckling in the most strained compres­

sion flange was clearly observed. 

The photograph in Fig. 4.38· showsthe final deformed 

shapes and local buckles in the compression flanges of a 

number of beams. 

The test just described represents a fairly typical 

beam history. A number of other possibilities will be de­

scribed below. 

2.22 Possible Load-Deformation Curves 

Some idealized load-deflection curves are shown in 

Figure 2.15. 

The solid curve OAB corresponds to the case of a 

compact section where no local buckling occurs. This is an 

ideal condition seldom reached with compact sections. The 

situation described above for the test beam is given by curve 

OAC. Load-deflection curves are often idealized by the elastic 

portion OAD and a plastic hinge region DB. 

Curves OAEF and OAGH represent situations in which 

local buckling influences are more significant and occur 

after some portions of the beam have yielded. To classify 
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a section as compact sufficient deformation must be attained 

at a load greater than o~_ equal to th~t causing M. When p 

the load decreas~below that value the section is carrying 

a moment less than M • Thus, the curve OAEF may represent
p 

a section which is compact or non-compact depending on .the 

rotation criteria specified to transfer moment for the for­

mation of another plastic hinge. The curve OAGH is the 

typical load-deflection curve of a non-compact section and 

the curve OIJ is typical of local elastic buckling. In 

Figure 2.15 we have shown the best possible performance of 

beams (curve OAB) and we also have shown how actual beams 

fall short of this ideal. 

2.3 Elastic and Inelastic Buckling of Plate Elements 

2.31 Beam Behaviour 

Three major ranges of beam behaviour are shown 

schematically in Figure 2.16: 

i) the range in which full plastification is 

possible, 

ii) the range in which the resistance to buckling 

is impaired by partial yielding and 

iii) the range in which the capacity is controlled 

by elastic buckling. 

The three ranges of moment capacity for HSS are 

dependent on the plate slenderness, which controls local 

buckling. 
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In the first range, local instability of the fully 

plastified section limits the deformability but permits 

attainment of the full plastic moment. Beams suitable for 

use in plastic design are therefore selected from this 

category. In the other ranges neither full moment capacity 

nor adequate deformability exists, and those members can 

only be used in allowable stress design. 

The important fact for design are the relationships 

between the moment capacity and the geometry of the section. 

These relationships are entirely a function of instability 

and they cover the geometric requirements for behaviour which 

are needed for plastic design. Thus, the problem is to find 

for compact sections the maximum permissible ratio b/t of 

plate elements of the compression flange. 

2.32 Local Buckling of Plate Element of Beam 

The fundamental differential equation expressing 

equilibrium of a plate under the action of forces in its 

d . 1 	 . (2)me ian p ane is 

EI 


(1) 

where 	 w is the transverse deflection 

ax and ay are the normal stresses 

u is the shear stress xy 

t is the thickness of the plate 
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v is 	Poisson's ratio, assumed 0.3 

3and I= t /12 is the moment of inertia . 

If only a uniformly distributed compressive stress 

a exists and cry and u vanish then eq. (1) assumes thex xy 

simplified homogeneous form 

4 a4 4 	 2
EI a w 	 a w( ~ 	+ 2 2 2 + a ~) + a t ~-2 = o . (2)2(1-v 	 ) dX dX 3y 8y X dX 

This equation is valid only within the range of 

Hooke's law and has to be revised when a exceeds the pro­
x 

portional limit. Beyond this point the effective tangent-

modulus Est is assumed to apply in the x-direction while in 

the y-direction Young's modulus E remains valid. We thus 

assume anisotropic behaviour of the plate when the critical 

stress a lies above the elastic limit. 
c 

Let T = Est/E and the factor ET must be substituted 

for E when 0 exceeds the proportional limit. c 


Thus equation ( 2) becomes 


EI (--T
21-v 

(3) 

The appropriate expressions for the moments are 

M 
x 

(4) 


M = y 
* 

M in this~ction only relates to the y-axis as shown in Fig. 2.17 
tb avoid confusion with the yield moment. 

* 
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General Solution of the Differential Equation 

The solution of the partial differential equation (3) 

must satisfy the boundary conditions on all four edges. 

Now we will consider initially only B.t~ on the loaded 

edges. The condition of simple support on the loaded edges 

is assumed and requires 

w = 0 

M 0 . 
x 

The former condition necessitates that a2w/ay2 must 

be zero, and the boundary conditions become 

w = 0 and (5) 

The differential equation (3) and the boundary condi­

tion (5) are satisfied by the expression 

w = Y sin nnx (n = 1, 2, 3 4 a •• ) 

where Y is a function of y to be determined. 

Upon introducing this expression into the differen­

tial equation (3) and cancelling sin ~we obtain the ordin­a 

ary differential of the fourth order 

(6) 

where a is replaced by a , the unknown critical longitudinalx c 
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stress at which the plate buckles and 

EI
D=---2. 

1-v 

Introducing the dimensionless parameter 

2 
µ = (7) 

the differential equation (6) assumes the form 

(8) 

The solution of this differential equation together with 

the boundary conditions determines the parameter µ which 

by (7) leads to the formula for the critical stress 

= (£:!!.)2 DT 20 (Sa)c a t µ 

The general solution of equation (8) is 

where and are defined byk1 k 2 

~ /µ+l and k = _n_: (8b)
2 

The general solution of equation (3) is 

w = sin n~x(C 1coshk1y + c sinhk1y + c cosk2y + c sink y)2 3 4 2

• ( 9) 
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The constants c to c are to be determined such that
1 4 

the boundary conditions at all edges will be sati$fied. 

'!'he physical features pertinent to the above mathematical 

formulation are shown in Figure 2.17. 

If we assume equal elastic restraint by both web 

support edges, the deflection w corresponding to the smallest 

value of crc is a synunetric funqtion of y, and the terms c 
2 

sinhk1y and c4sink 2y in equation (9) van~sh. 

Thus equation (9) simplifies to 

(10) 

To determine the constants c and c we invoke the
1 3 

boundary conditions at the unloaded edges 

[w] = 0by=±­
2 (11) 

\jJ = lj) 

The first condition expresses the assumption that 

the edges y=±~ remain straight when the plate buckles. The 

second one is a condition of continuity which indicates that 

the angle of rotation ~ at the edge of the buckling plate is 

equal to the angle of rotation 1J; of the restraining web plate 

which is rigidly connected. 

Now 1J; and ~ must be expressed in terms of the def lec­

tion w. The bending moment My per unit length is proportional 

to the angle 1J;. 
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This elastic restraining condition can be expressed 

by 

My = - "[ ~ (12) 

where ~ is a factor depending upon the dimensions of the 

restraining plates, assumed constant along the edge. 

From equations (4) we have 

2 a2w 
MY = -D [a w2 + v/T -21 b • 

ay ax y=±2 

a2 
w - iSince -- 0 this equation reduces' to ax 2 ­

M y (13) 


Substituting into equation (12) 

But ,,, = + [ aw1't' - ay b •
y=±2 

Therefore the second boundary condition (11) takes the form 

[aw + !?. a 2 
w] = 0ay - - 2 b • 

~ ay y=±2 

It is convenient to introduce ~ a dimensionless number 

defined by 
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2 D 
~ = (13a)b"= . E; 

[aw b 2 
Thus ± 2 t; ~] = 0 . {14)ay 2 b ay y=±­2 

The parameter ~ is a function of the dimensions of 

the buckling and restraining plates and can be referred to 

as the coefficient of restraint. Theoretically ~ can assume 

values from 0 to When ~=O the plate is completely fixed00 • 

at the edges a, and when ~=00 , it is free to rotate about 

these edges. In the case of hollow structural sections this 

coefficient can be determined from the properties of the 

section and lies between the extreme values ~=O and ~=00 • 

Introducing the general form (10) into the boundary 

conditions (11) and (14) yields two equations 

Nonzero values, of these homogeneous linear equations, 

for c and c3 result only when the determinant ~=O. This
1 

gives rise to the stability condition which leads to the 

solution for the critical stress, i.e. 

(14a) 



33 

To normalize equation (14a) it is convenient to in~ 

atroduce the ratio B=b into equations (Ba) and (8b) to give 

(15) 


b nn 4v'T /µ+lkl 2- 2B 
• ( 16) 

b nn 4n /µ-1k2 2 = 2a. 

Consequently, the stability condition (14a) becomes 

44- '- n -vr-t 
/µ+1 tanh (~ /µ+l n BT) + ;µ::T tan<! /µ-1 - -)

6

n4v'L 
+ n ~ µ ~-B- = o • .( 17} 

This equation defines the relation between the para­

meter µ and the ratio n4v'L;s. 

00Introduci~g ~= into (17) we obtain the stability 

condition for a plate simply supported along its edges. 

The hyperbolic function assumes values only between +l and 

-1 and can simply be added to the absolute term. 

4 · 
Thus tan(~ /µ-1 n ~) = - "' • 

The smallest root satisfying this equation is 

n /µ _1 n 
4
!.ft = n

2 B 2 
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and lJ 2 = [ (-13-) 2 + 1 ] 2 • (17b) 

n'YT 
3

2 EtSubstituting µ and D = into (15) we get 
12(1-v2 ) 

0 = c (18) 

The only unknown in equation (18) remaining to be 

found is n, which indicates the number of half waves in 

which the plate buckles in the x-direction. To find this 

number of half waves for a given aspect ratio a we proceed 

as follows: For sufficiently short plates, i.e., for small 

values of a, buckling will occur in one half wave. Above 

a certain ratio a two half waves will be formed . . · For the 

limiting ratio at which there is the transition from one 

state of equilibrium to the other, i.e., when both cases 

are equally possible at the same buckling stress 0 , equation
0 

(18) will yield the same value of a whether we introduce 
c 

n=l or n=2. In the same way it will be possible to deter­

mine the limiting value of S for buckling in two or three 

half waves. Thus we can find the limiting ratio Sat which 

either n or n+l half waves can occur from the equation 

_L + n'YT = __s___,_ + (n +1) 4..y;r 

n'YT S (n+1> 'YT 8 

It follows that B = 4 ~ /n(n+l) 
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For n = 1, 2, 3, ... we have S/i.rr = /2, /6, /12, . . .. . 
In the elastic range when T=l, the number of half 

waves becomes independent of the nature of the material and 

the buckling occurs in one half wave up to B = ~ = 1.414 

and from B = 1.414 to S = 2.449 in two half waves. For long 

plates the length of the half waves approaches the width b. 

If T=l, equation {18) takes the form 

(18a)a = c 12(1-v2 ) 

where k is defined as the variable part of cr in (18a) and 
c 

is plotted as a function of S in Figure 2.18. 

Returning now to the general buckling condition (17) 

for elastically restrained plates, we find that the trans­

cendental form in which µ depends upon 8/ni.rr is inconven­

ient for applications. In the case of the simply supported 

plate just considered we have found an algebraic expression 

2(17b) for µ , namely, 

It is possible to express the relationship between 
2 . 4 

µ and S/n!../T defined by equation (17) approximately by a 

similar algebraic expression. With an error of less than 

1%, the values µ 
2 can be computed for different restrain 

conditions employing 

(19) 
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where p and q are factors depending on the coefficient of 

restraint ~. · 

The factors p and q were computed for various values 

of~ from the exact stability condition (17). Figure 2.19 

shows p and q plotted against ~-

Substituting the expression {19) into equation (15) 

and introducing D = Et3/12(1-v 2 ) and a= Sb is obtained 

TT 
2E .;:; t 2 4 '- 2 ° 2= T ~ ( -) [ ( n -v T ) + p+q (-µ-) ] ( 2 0 ) 

ac 12 (l-\J2) b -e- n~ 

This equation for ac is valid for all possible values 

of elastic restraint. 

Introducing the notation 

k = {n4..v:r) B )2+ p+q(---- ( 21)4B n~ 

the equation (20) assumes the form 

crc = (22) 

The value s0 for which crc reaches a minimum and upon 

which the design of long plates can be based is found from 
ao 

ccondition as-= O, namely 

Substituting 8 in equation (20) we get0 



37 

2
n E ITMin a = { !. ) 2 (p+ 2q) =.. - ( 23)c b 12(1-v2 ) 

an expression independent of n. The plate coefficient 

k = p + 2/q (24) 

becomes independent of T. This is important since it permits 

the use of precalculated values for the coefficient k which 

are applicable in the elastic ·and inelastic ranges of 

buckling. 

The limiting cases on the unloaded edges are shown 

in Figure 2.20. Note that the clamped edge case predicts 

critical stresses 1.74 times the simply supported regardless 

of the tangent modulus value. 

Determination of the Coefficient of Restraint 

When the cross-section distorts, it is assumed that 

the webs remain vertical up to a certain height. It is 

assumed in this analyses that the webs, between the com­

pressive flange and the neutral axis, are acted upon on both 

unloaded edges with one edge simply supported and the other 

fixed. Thus the half wavelength c is assumed for webs to have a 

value of 0.4 d as indicated in Figure 2.21. Each of the 

restraining webs of width c is acted on edges by moments M y 

per unit length. It can be inferred from equation (9) that 

My must be proportional to sin(nnx/a) where a is the length 

of the plate and ~ =a/n the length of a half wave. The 
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distribution of My along the edges a is sinusoidal as illus- . 

trated by Figure 2.21. Each panel between two straight 

nodal lines n-n represents a plate simply supported on all 

four edges and loaded symmetrically o_n two opposite ·edges 

by the variable moment My per unit length. Under the assump­

tion that no compressive forces are acting on the restraining 

_plate, it is possible to develop the following expression for 

the angle of rotation Was function of M • y 

The deflection wof the restraining plate can be deter­

mined from the differential equation (3). Due to the assump­

tion a =O the last~rm of this equation vanishes, but we x 


allow for the effect of the anisotropy produced by com­

pressive stresses a above the proportional limit by re­x 


taining the coefficients T and fi in the first two terms of 


the differential equation. 


For the loading condition considered here the 


deflection w can be expressed in the general form 


w = 

+ c y cosh 4-,r.rA'ITY)
4 

in which to c4 are constants which are defined by thec1 
given boundary conditions. When the four sides of the. 

plate are simply supported, the expression for wbecomes 

4 ~ - 4 ~ 
cA [~ cosh ~T n(y-c) + (1-~) cosh ~T nyw = 

, • ( 4 r:: 7ry/'\ ) c A. c A21TD sinh -vT I\ 
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sinh(~ TIY/A) + sinh 4-/:r n(y-c) 

A ] M 


s inh (4-_;:r TIY /A) y 


awUsing 1jj" = (-=)y=c leads to equation (25)
()y 

__A_ l tanh v. 1TC [l + v. ' 1fC/A ' ] M1jJ = 
24..v"To• n 2"' sinh(4-/:r nc/A) Y 

= ( 2 5) 

where o indicates that the ratio of the moment My to the1 

rotation ~ is constant along the edges, c and t are the in­
c . 

f lection point distance and the thickness of the restraining 

plate, D' =Et 3/12(1-v 2 ) the flexural rigidity of the c ' 

restraining plate and A. the length of the half wave of the 

buckling plate. 

For the sake of simplification we assume A. = 4..v"Tb which 

is for freely supported edges. 

Thus; the term (25) simplifies to 

4~ cIn Figure 2.22 p is plotted as a function of ~Tc/A.= 5 .1 

From equation (13a) and (12) the coefficient ~ is 

obtained 

2D 
~ = 

b°[ 
( 2 6) 

Now we must include the effect of the longitudinal 
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stress a on the stiffness of the effective width c of the 
x 

restraining plate. It can be done approximately by multi­

plying expression (26) by the factor 

1 r = 

This expression exactly satisfies the conditions 

which control the limiting cases en r arrl therefore ~ becomes 

infinite when t/b = tc/c, in which case both plates are 

simply supported without restraint. When, owing to high 

2 2 2rigidity of the restraining members, t c /tc2b is very 

small, r approaches unity, which is correct, as in this· 

case no modification of equation (26) is required. 

Introducing the expression r as a factor in equation 

(26) finally leads to 

(27) 


This equation applies when S < 1 and t - t . 
c 

( 27a)Thus 

The plate coefficient k can now be determined between 

the limits indicated in Figure 2.20. It is given with the 

aid of the diagram for p in Figure 2.22, the values of the1 

parameters p and q can be read from Figure 2.19. This 

permits computation of the factor k = p + 2/q, required to 
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determine a from equation (23). Discrete values are tabu­
c 

lated in the last column of Table 2.1. In Figure 2.23a k 

is plotted as a function of d/b. Some typical examples of 

the effective restraint provided by the webs of rectangular 

HSS to top flange buckling is given in Figure 2.23b. 

Determination of the Critical Stress in the 
Inelastic Range of Buckling 

The critical stress oc of long rectangular plates, 

loaded longitudinally by compressive forces may be com­

puted from equation (22) where k is independent of T. In 

the elastic range of buckling, when T=l, the critical stress 

crc can be directly computed from {22). In the inelastic 

range T, which depends on cr , is an unknown quantity. There­
c 

fore equation (22) is given in the form 

crc ~2E 
(t)2 k (28)= b •

/T 12{1-v2} 

We can precalculate the values a as function of 
c 

ac//'i for steel with · an assumed proportional limit crp and 

a yield strength FY. Such functions can be computed from 

T-values, which are given by the expression 

T = (29) 


For calculation it is convenient to provide a table 

of the T-values computed from equation (29) and the corre­

sponding function of cr /IT. For steel take a yield strength
0 
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F = 55 kips/in2 andanassumedprqx>rtional limit o =48 ksi. y p 

This proportional limit was based on results of tensile tests 

in Chapter 3. Such a table for these values is given as 

Table 2.2 where the T-values are computed by the expression 

(29) . 

In Table 2.2 it can be seen that for a T-value of 

0.1 the yield stress FY can be reached at the correct strain 

of 0.5%. The corresponding buckling stress a is about 
c 

0.99 FY and thus the designed T-value of 0.1 can be considered 

reasonable for calculation of the critical b/t ratio for a 

compact section in allowable stress design. To this T-value 

of 0.1 the corresponding value of crc//T is 200. From equation 

(28) this critical ratio for b/t can be calculated as 

(IT) = 28 a 
c 

where E = 29600 ksi 

\) = 0.3 

k = 5.8 for square section (Figure 2.23b) 

and 
0 c = 200 ksi. 
IT 

For a compact section in plastic design the ratio of 

1E t/E = 40 for the required plastic rotation of 4 can be used. 

To this value of T the corresponding value of crc//T is 350 ksi 

and the critical ratio of b/t using the dimensions above and 

equation (28) is 

5 
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2b 1r E k 
t = 

2 <IT> = 21(j .· 
12(1-v ) c 

a 
where c = 350 ksi 

IT 

It is expected that the ratio of b/t less than about 

21 adequately defines a compact section with a plastic ro­

tation 4 times the elastic rotation and that for a ratio 

higher than about 28 a compact section in allowable stress 

design can be defined. 

Application .of the .Plastic Theory to Inelastic Buckling 

Plastic design methods assume that · local buckling 

of f lang~s will not bccur during the formation of plastic 

hinges. Such conditions made the re-examination of the 

problem of plate buckling in the ·inelastic range necessary .. ·, 

The flanges must be able to . sustain strains .considerably 

larger than the yield strain and can be compressed beyond 

the yield point and for materials which can be modelled by 

Figure 2.24 into th~ strain-hardening range without buckling. 

For elastic design it is considered sufficient if the yield 

stress is reached without premature local buckling. 

The behaviour of .flange-plates that buckle in the 

intermediate range between the ~ proportional limit and the 

~train-hardening range is largely governed by the presence 

and distribution of residual stresses. The .sum of the pro­

portional limit stress and the largest residual stress com­

ponent in the longitudinal directidn is then equal to the 
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yield stress. Although no direct solution of this problem · 

has been developed, a reasonable transition curve can be 

given. 

During yielding the material changes its physical 

properties, so that at strain-hardening the initially iso­

tropic material is assumed to be orthotropic -- that is, the 

properties are direction-dependent. 

I) 

Thus aE: x 1 d£ x 1 
acr­x 

= 
E x 

'§"O 
y 

= 
Ey 

dE x 
'dcry = -

Vy 

Ey 
~ 
acr x 

= -
vx 
E x 

(29) 

ayxy 
-- 1 

au Gtxy 

where E and E are the tange:it moduli 
x y 

G is the tangent shear modulust 

\) and \) are coefficients of dilatation for 
x y 

increases in (J and (J 
x y 

y is the shear strain 

and \) is the shear stress . 
The relationships between the increments of strains 

and stresses can be written as follows 

1 
\) 

dE: da - ...Y dcr x = E x Ey yx 
\) 

de:y = -E
x dcr + 1 

dcry (30) 
x x Ey 

1 
dyxy = Gt duxy 
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The expressions for the bending moments and twisting 

moments in terms of the deflection, w, in the direction of 

the z-axis become 

E ! 2 2 
x ( d w (} w)M + \)= x 1-v \) 2 yx y ax ay2 

I 2 2 
M = 

El ( d w + \) L:=:.) (31)y ·1-v \) x 2 
x y ay2 ax 

and M .. - - 2Gt I a2w 
xy ~ x y 

in which I is the moment of inertia per unit width of plate 

and is equal to t 3/12, t denoting the thickness of the 

plate. 

The condition that the bent position be in equili­

brium can be expressed by 

(32) 

in which 

D x -
Ex 

1-v vx y 
D y = 

E y 
1-v v x y 

D 
xy 

= 
v E 

y x 
1-v v x y 

D yx = 
v E x Y. 

1-v \) 
x y 

and 2H = D xy + D yx + 4Gt • 

From these relationships can be derived the buckling 

strength. 
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Equating internal and external work is more amenable to 

the solu~ion of a than is equation (32) and therefore x 

When an appropriate deflection surface is assumed, 

equation (33) yields an approximate solution. 

In Figure 2.25 the plate is assumed supported at 

all four edges. The loaded edges, x=O and x=a, are hinged, 

and the edges y=±b 
2 have equal restraint against rotation 

(Figure 2.25). For this case the following deflection 

surface is used 

w = [Bn(~ - ;) + {A+B) cos TI~] sin TI~ • (34) 

The ratio B/A depends on the restraint. For elastic 

restraints, with M equaling the moment per unit lengthy 

required for un~t rotation, 

B M b 
t" = = ...,,¥,,___ (35)~ A 2D I . 

y 

Substituting w from equation {34) into equation (33) 

and integrating yields 

!. + t;2C1T2t2 (Cl + ;2)t; + 
a = [D (£) 2 + D (~) 2 4 3 + (D +D )

c 2 x ~ y b 2 xy yx12b !_ + l;C + t; c4 1 2 


1 + ~cl + ~2c .!. + ~c + ~2c

4 4 4 1 4]x + 4Gt (36)1
4+ ~cl + ~2c !. + t:Cl + t;2C

2 4 2 
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in which c = 0.09472 c = 0.009211 2 

= 0.04736 = 0.01139 .c3 c 4 

In the limiting case when the unloaded edges y=±b 
2 

are hinged, the minimum values of cr are {~=O)c 

crc = TI122 (bt)2 (2v'i)"'i)" + D + D + 4Gt) (37)
x y xy yx 

which is obtained when the half-wave length, A, satisfying 

( 3 8) 

For the determination of the moduli E , E , v , v x y x y 

and Gt, several theories of plasticity are available. The 

stress-strain law used by Handelman and Prager satisfies the 

above assumptions reasonably well. The moduli by this theory 

simplify to 

4E Est E 
2(l+v) 

(39) 

= Est(2v-l)+~ 2[Est(2v-l)+E] 
\) 

x 2E E+3Est 

The effective values of the moduli can be obtained 

from an incremental stress-strain relationship. From the 

average stress-strain curve for the strain-hardening range 

can be expressed 

(40) 
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2in which E t = 900 kips/in , K=21 and m=2. Thus the followings . 

values of the moduli were found to be applicable 

2D = 3000 kips/in D = 32800 kp/in 2 
x y 

(40a) 

2 2D = D = 8100 kp/in and Gt = 2400 kp/inxy yx 

The developed expression for the buckling strength 

of orthotropic plates can be applied only if all material 

is strained into the strain-hardening range beyond the inter­

mediate range. Figure 2.26 shows a typical stress-strain 

curve with elastic, intermediate and strain-hardening ranges. 

The sections contain residual stress of considerable 

magnitude in order that partial yielding will set in at an 

applied stress considerably below the yield stress. The 

elastic solution is valid only up to a limiting stress op 

which is determined in order that the sum of the applied 

stress, o , and the maximum residual compressive stress, oR,
p . 

equals the yield stress FY. The stress op corresponds to 

the effective proportional limit of the section. 

The elastic buckling stress of a perfectly plane 

plate of isotropic material is given by 

a = k (41)
c 12(1-v2 ) 

It can be written in a dimensionless form 

(42) 
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where a. = (43) 

This is valid for values of a larger than a limiting 

value a. as shown in Figure 2.27. In this figure av is 
p J. 

equal to the value of a at the point of strain-hardening. 
<J 

From the point (~) and ap a transition curve must be followed 
y 

to the point at which the buckling stress equals the yield 
crc 

stress, p-- = 1 (from 42)a 
y 

The transition curve can be taken as 

a-a 
(Ct -a. 

Y 
)

n 
] (44) 

p y 

and the limiting value of n is suggested 

( 4 5) 

Now we need to determine the value of a. and a . p y 

Equation (42) gives the value of a.p by substituting ac=ap, 

in which a is the effective proportional limit. For 
p 

structural wide-flange shapes it is conservative to take 
<J 
_.£. = 0.5 and thus a. = 12. The value of a. can be obtained
F p yy 
for the type of compression element; it is nearly inde­

pendent of the amount of restraint. For the plate supported 

along all four edges is a. = 0.58. 
. y 

The most important consideration is the determination 

of the corresponding values of b/t for this point of strain-

hardening. 
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We can calculate this value from equation (37) by 

substituting the given values of the moduli (40a) with the 

assumption that o = F . For calculation of value F can c y y 

be used the following consideration: The flanges will now 

be considered to be compressed 4 times the elastic limiting 

strain into the strain-hardening range without buckling. 

Thus for yield stress FY = 55 ksi can be computed from 

equation (40) the value of FY = 60.9 where the plastic strain 

reached 4 times the elastic strain. 

Thus F y (46) 

Introducing the values (40a) and f 
y 

= 60.9, equation (46) 

yields 

b < /31000 = 22 6 (47)t = 60.9 · . 

From this analysis, it is expected that the ratio 

of b/t less than about 23 adequately defines a compact 

section with a plastic rotation capacity equal to 4 times 

the elastic rotation i.e. 0=4. 
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(a) Loading 

(b) Bending moment 

distribution 

FIGURE 2·1 Simple Span Beam 

76" 

(a) Loading 

(b) Elastic bending 

moment distribution 

(c) Bending moment 

distribution at collapse 

(d) Collapse mechanism 

FIGURE 2 2 Three Span Beam 
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A 

1­

cp;, r~J ¢~ r-J 


(a} Nomenclature ( b) Deformation of Simple Beam 

FIGURE 23 Deflection of Simple Beam 

FIGURE 2·4 Deflection of Three Span Beam 
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FIGURE 2·5 Load - Deflection Curve of Three Span Beam 

L 

FIGURE 2·5 Hinge Length of Simply Supported H.S.S. 
under Concentrated Load 
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FIGURE 2·7 Hinge Length at Interior .support 
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@ Calculated Test 

® Test 
© Stahdard Calculatiof1 of K,o. 

@) RecammtJnded R(}tfilir~merd bf K 
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~I 
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® Calculated Test 
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@ 
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Kp 
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-3"8 
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1 902 2200 2·40 914 3 500 3'80 

f7GURE 2·9 Measured and Calculated Curvature at Support 

for HSS-6.x4x'437 of Test No.12 




56 

FIGURE 2·10 Three Span Continuous Beam 
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FIGURE 2·71 Values of H/LKp 
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FIGURE 2·12 Single Span Rigid Frames 
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FIGURE 2·14 Typical £xperimental Moment - Curvature 
Relationship · 
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FIGURE 2·15 Possible load- Deflection Curves for Beams 
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FIGURE 2·21 Assumed Shape of Buckling 
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FIGURE 223 Plate Coefficient k for Critical Stress 6c 
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Strain E 

FIGURE 2·21, Simplified Stress - Strain Curve 


z 

t!GURE 2 ·25 Plate Supported at All Four £dges 
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·FIGURE 2·27 Buckling Strength of Plates 
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TABLE 2· 1 The Plate Coefficient k 
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TABL£ 2·2 Dependence of ~c on the Ratio T 




CHAPTER III 

EXPERIMENTAL PROGRAM 

3.1 Testing Material 

HSS are manufactured by two methods; sections up to 

16" periphery are hot formed by the continuous weld process; 

larger sections are cold formed by the Electric Resistance 

Welding process. 

Sections for the test series were selected to pro­

vide a range of flange slenderness ratios of b/t for compact 

and non-compact sections. The square, rectangular and 

round sections are indentified by examples such as those in 

Figure 3.1. 

A summary of the geometric properties of the sections 

tested is given in Table 3.1. 

3.2 Material Properties 

The hot formed sections are manufactured from 

Columbium High Strength Steel with a low carbon content; 

the shapes of their stress-strain curves are similar to 

those for cold formed sections. 

A typical stress~strain curve obtained from a tension 

test is shown in Figure 3.2. The yield stress FY is the 

stress corresponding to a total strain of 0.5 percent, which 

66 
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is easily obtained in routine spot checks in the steel in­

dustry. This stress usually corresponds closely to the con­

stant stress at yieiding and is close to the stress obtained 

by the conventional 0.2% offset (0.002 in/in) or plastic 

strain method. The simplified stress-strain curve for an 

analysis by computer is given by the idealized yield stress, 

YS, the modulus of elasticity, E=29600 ksi, and the strain-

hardening modulus Est obtained by tension tests. 

'I'able 3. 2 summarizes the material properties obtained 

from tension tests performed on coupons cut from each of 

the sections. Figures 20a, 22ai 4a ... show the stress-

strain curves for the flats, corners and weld coupons of the 

cross-sections. The locations from which the coupons were 

taken are shown in the inset of figures. In Table 3.2 is 

given for these coupons: area of their cross-section, the 

ultimate load P , the ultimate stress F and the yieldmax u 

stress F . For the cold-formed sections are calculated the 
y 

average yield stresses F The last two columns prescribeya 

the values of the simplified bilinear stress-strain relation­

ship for an analysis by computer. Plastic strains are pre­

sumed to begin at stresses greater than YS in the simplified 

model shown by the dash-dot straight line in Figures 20a, 22a, 

The tests were performed in a hydraulic testing 

machine using tensile specimens conforming to ASTM Specifi­

cation A 370-65(14). For the first five tension tests the 

strain rate was reduced to zero for a short period before 
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taking readings, so that .the values were the "static" yield 

stress. In the above procedure it was observed that leaking 

bf hydraulic fluid occuttsd and theretore the~e was a great 

influence on the drop of the tensile strength. Thus, the 

other tension tests were performed at a common constant 

"slow" strain rate of 100 micro-in/in/sec. 

The value of Est was obtained by graphically measur­

ing the approximate slope of the strain-hardening branch 

of the recorded stress-strain curves. 

In Figure 3,. 3 is shown a typical variation of yield 

stress of cold-formed sections from corners to flats. The 

average yield stress F based on appropriate flange area ya 

weightings is given by 

2A F +AfF fc ye y
F = ya 2Ac+Af 

where F ye = the yield stress of corner (. 5% total strain) 

F yf = the yield stress of a flat (. 5% total strain) 

A = area of corner 
c 

Af ·- area of flat part 

It is of interest that for the cold-formed HSS used 

in this test series the following average stress ratios were 

found 

FFye = 
1.135 1.128 uw = 1.175 F = F ye ywFyf Fuf 
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where the second subscript is defined in Figure 22a. 

The overall view of all test tensile coupons is 

shown in Figure 3.4. In the background can be seen the 

pieces of sections from which the coupons were cut. 

3.3 Testing Arrangement 

a) Simple Span 

The test setup was designed to confirm computed 

shape factors of HSS to assess the problem of local buckling 

in a pure moment domain. Figure 3.5 shows the overall experi­

mental setup. This experiment was designed to simulate 

2-point loading on a simple span beam. Two equal vertical 

loads were applied with a hydraulic jack midway between 

load points onto a spreader beam. This load at midspan 

was measured by a load cell which was located between the 

jack and a ball and socket on the spreader beam. The central 

part of the beam between the two load points was therefore 

subject to uniform moment. Electric resistance strain gauges 

were placed at midspan, having been mounted on the top and 

bottom flanges of the test HSS; at the load points gauges 

were located only on the bottom. One of the strain gauges 

at midspan was placed at right angles to the direction of 

bending. 

The moment-curvature relationship was determined 

by monitoring the loads with the load cell and the strains 

by strain gauges. 

The vertical deflection at midspan was measured by 
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means of a dial gauge. The accuracy of the dial gauge was 

±0.001 inches. Because the displacements were very large 

(usually to 10 inches), measurement of deflection was 

sufficiently accurate by this method. 

b) Three Span Beam 

A similar loading condition applied symmetrically 

to a three span beam is shown in Figure 3.6. As shown in 

Figure 2.2b the magnitude of the moments at interior supports 

exceeds the positive moment in midspan. As the load is in­

creased the negative moments -M are initiated over the p 

interior supports which must be maintained until +Mp occurs 

in the positive moment region at which time a mechanism is 

formed. 

At the interior supports, the electric strain gauges 

were mounted on the top flange of HSS. Two other load cells 

were placed at the ends of the beam to make the structure deter­

minate (see Figure 3.6). This arrangement determined the 

negative moments over the interior supports by using the 

load cells at the ends. 

The movement of the exterior supporting channels 

was checked by means of dial gauges. Very little change 

was recorded in the readings of dial gauges from the initial 

readings. Thus, this arrangement effectively restrained 

vertical movement of the exterior supports. 

The details associated with loading of the circular 

sections are shown in Figure 3.7. 
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3.4 Preparations of Beam for Testing 

gauging used was: 

EP-08-500BH-120 made by the Micro-Measurement Co. 

at Ronulus, Michigan. 

Specifications for the gauges are as follows 

Resistance in ohms : 120 ± 0.15% 

Gage factor at 75°R: 2.055 ± 0.5% 

Strain limits approximately 15%. 

For the gauge installation M-BOND AE-10 adhesive 

was used. This is a 100% solids epoxy system which provides 

rapid room temperature cures, together with ease of handling 

and mixing. The surface preparation, the gauge preparation 

and installation were made as recommended in Instruction 

Bulletin B-137 provided by the manufacturer. 

PREPARATION OF TEST APPARATUS 

It was found that the hydraulic jack and the load 

cells provided accurate control over the loads when they 

are calibrated before each test. The load cells were cali­

brated in the 120 kip Tinius testing machine available in 

the laboratory~ The calibration curves were very nearly 

linear. The load cells together with the electric strain 

gauges were connected to a balancing and switching box unit 
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which was connected to a strain indicator. 

3.5 Testing Procedure 

In the elastic range of the test, the hydraulic 

pressure was increased in increments to give predetermined 

elastic behaviour of HSS. The load was maintained at each 

of these values until all readings had been taken. 

After yielding had occurred, the midspan deflection 

was increased in increments to get sufficient value~ for 

plotting a moment-curvature relationship. The flow of hy­

draulic fluid to the ram was then closed off for a short 

stabilization period before readings were taken. The readings 

of the electric strain gauges and dial gauge at midspan for 

the deflection were recorded .for each increment of the load. 

The section was deformed well into the yield zone 

to ensure a rotation from 4 to 8 times the rotation at the 

elastic limit. For those tests in which flange buckling 

predominated, the visual observations and measurements of the 

progression yielding and local buckling were recorded into 

the unloading range using the above procedure. 

The redistribution of moments for a three span beam 

was checked by the load cells at the ends of the beam. The 

same constant readings of these load cells indicated the 

maintenance of resisting negative plastic moments -MP at 

the interior supports until +MP occured in the middle span. 

When local buckling was observed at the interior supports, 
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the readings of the end load cells decreased due to the 

reduced moment resistance at the section. 

Figures 3.8 and 3.9 show overall views of the test 

setup. The general arrangement of the loading system for a 

round HSS can be seen in Figures 3.10, 3.11 and 3.12. 
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Examples: 

D= 4in. D =roso in. 

d D t =·100 in.B =2 in. 

t =·25 in. 

HSS - 4 x2 >< 0250 HSS - !'050 OD >< 0 ·100 

(a) RECTANGULAR (b} ROUND 

FIGURE 3·7 Hollow Structural Sections 
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FIGURE 3) Variation of Yield and Ultimate Tensile 

Around Periphery of Typical Cold -tormed HSS 
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No. H.S.S. 
V)
c:: 
C\l 
Q.. 

V) 

No. H.S.S. 
V)
c:: 
C\l 
Q.. 

V) 

1 6·o x 5·0 x 437 3 77 s·o x s·o x'250 7 

2 6'0 x 6"0 x '188 3 18 a·o x B·o x'312 7 

3 6-0 x 6'0 -x ·1aa 1 79 6"0 x 5·0 x' 188 1 
~· 

4 6'0 x 6'0 x ·437 7 20 10'0x 10"0 x'375 1 

5 s·o x 3·0 x ·230 3 21 3·5 O.D. x'150 7 
-

6 5"0 x 3·0 x 230 7 22 TOD x 5·0 x·500 1 

7 1,·ox2·ox~235 3 23 70"0x10·0 x 375 7 

8 4'0 x 2·0 x ·235 7 24 10·75 0.0. ><"500 1 
-

9 25 x 2'5 x 270 1 25 7'0 x TO x'188 7 

10 2·5 x 2·5 x ·210 3 26 7·0 >< TO x ·250 7 

11 5·0 x 1,·o x ·1,37 1 27 5·0 x 5·0 x ·2so 1 

12 6D x 4·0 x ·437 3 28 4'0 x 4 "O x'188 1 

73 4·0 x 4'0x.250 1 29 3·5 0. tJ. x ·150 1 
~-

71, 4·5 0. D. x '250 3 30 4·0 O.D. x '188 I 

75 45 O.D. x ·250 7 37 4·5 0.0. x. 788 1 

76 TO x 7'0 x·372 1 

TABLE 3"1 Test Sections 
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Material Properties 

No. H.S.S. R 
(in.) 

•Loe. Area 
(in~) 

flnax 
(kp) 

Fu 
(ks/) 

Fy 
(ks!) 

Fya 
(ksi) 

YS 
(ks1) 

ET 
(ks!) 

20a 10·0x10·0 x 375 750 

f 220 11, ·5 66'0 55·5 

582 STO 350'w ·1,97 3T8 77'0 66'5 

c 433 32'5 75'0 55·5 

22a 10·0 x 6-0 x ·soo roo 

f '650 39 ·5 50·9 55·3 

58 '8 5a·o 273'w ·555 46'8 77'1, 62'0 

c BOS 554 68'8 62"0 

4a 6"0 x 6'0 x ·437 '875 

f '643 40·8 635 563 

58'8 58'0 120·w 435 32·0 73'6 64'0 

c 365 26'3 72 ·0 640 

77a 6'0 x 4·0 x ·437 '875 
( '688 49'3 77 ·7 

79 ·a 

665 

72"8 
69'5 68'5 307' 

c 317 24'8 

13a 4"0x4"0x'250 375 
f 348 26'3 

23 ·4 

75·4 55'5 
555 53 ·5 68T 

c 317 75 ·7 555 

Ba 1,'0 x 2·0 x 235 352 
f '339 252 

22'1 

74 4 59·5 
59·5 5a·o 528. 

c 296 74·7 59·5 

6a s·o x 3·0 x ·230 345 
f "356 25'4 71'4 52·0 

52·0 EIYO 683. 
c 295 20·9 70·9 520 

9a 2·sx2·5 x·210 375 
f '143 70·3 7r8 673 

673 60'5 333· 
c ·797 74'1 77 ·5 61'3 

24a 10·75 O.D.x'500 - r "738 40-0 54 ·2 43'0 
'13'0 I, 1"5 366' 

w ·729 40'8 55·0 502 

75a I, ·5 0. D. x '250 
.. 

35 0. D. x ·750 

- 275 79 '8 77'8 58'0 5a·o 56D 674' 

21a - '098 ·7S ·76 ·4 STO 5TO 55'0 656' 

* See Fig. 22a and 24a for location 

TABLE 32 Tensile Test Data 



78 

Material Properties · 

R *Area f?nax F, . Fy FjaNo. H.S.S. 
Loe. YS ETu 

(in.) (in~) (kp) (ksi) (ks1) (ks!) B<siJ (ksi) 

19a 6'0 x 6'0 x'188 '376 f 239 !Tl 71'5 56'0 57'2 56'0 35T 

16a 7·0 x 7'0 x'312 '621, f '405 284 69'3 60'0 61"6 60'5 305' 

78a 8'0 )( 8'0 x '312 '624 f 402 28'8 71'6" 630 645 53·7 250' 

77a 5-0 x 5·0 >< '250 '500 f '334 218 65'2 58'0 59'8 59'0 250' 

25a 7·0 x 7·0 x'188 "376 f 237 17'1 71#0 57'0 58'0 57'0 350' 

26a 7'0 x TO x ·250 ·500 I 330 27'8 66'1 570 583 58'0 194. 

27a 6'0x6'0x250 '500 f '340 22"4 65"8 59·5 67'0 60'5 767' 

28a 4·0 x4'0 x '188 282 . f 257 782 70'8 53·0 53'0 57'0 660' 

29a 3·5 0.0. x '750 - r ·773 722 70'6 520 520 50'0 650 ' 

30a 4-0 0.0. x '188 - r '196 ,,,., 71 '8 53'5 53·5 51 '0 735· 

31a 4·5 0.D. x '188 - r 229 75'8 69'0 52'5 52'5 505 650' 

TABLE 3·2 (cont'd) 
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FIGURE 3 .8 HSS-8'x 8-,< 372 Dunng Testing 



2 

FIGURE 3'9 Ovtrall T•st Sttup 




t!GURC 3"77 Test Setup - rront VieVI 



• 

• 

•• 

• 

• 

94 

•• 
•• 

• 
( 

( 

•
• 

•• • 
0 

• 

• 

• 


FIGURE 3 )2 Test Setup - Top Front View 



CHAPTER IV 

TEST RESULTS 

4.1 Comparison on the Basis of Actual YS of HSS 

4.11 Description of Computer Analysis 

This comparison was carried out on the basis of actual 

yield stress of HSS. For each beam the bilinear behaviour 

simplification of the stress-strain relation as defined in 

Figures 3(20a, 22a, etc.) was used to relate analytical pre­

dictions to experimental results. The values of elastic 

modulus E, tangent modulus Est~ yield stress YS and the cros~ 

sectional dimensions were considered for each beam in the 

analysis to obtain the M-K relation. 

The following designations for the calculation of 

M-K relation are used in the computer program: 

w = K curvature 


WY = curvature at yield stress
Ky 


WR = K/K nondimensional curvature 

. y 


ST = £ strain 


STY yield strain= £.y 


M moment 


MY yield moment 


MR = M/MY nondimensional moment 


.95 



96 

ER = E /E = T ratio strain-hardening to elasticst modulus 


S elastic section modulus 


F shape factor 


The nondimensional M-K relation relating the reduced 

moment M/MY to this reduced curvature W/WY is calculated by 

the following equations for: 

i) a straight elastic part 

MR = WR , 

ii) the case when the flanges are partly plastic 

2 2 
MR = WR(l - ~) + B.D (1 - 1 )

6 . S 4 • S 3 . WR 2 

iii) the case when the webs are partly plastic 

2T.D ) ER-1 WRMR = (F - -- + 
G.S.WR2 ER ER 

The maximum elastic strain S'rY = YS/E and the corre­

spending curvature and moment are 

2.STYWY = 
D 

MY = YS.S 

and W = WR.WY 

M = MR.MY . 

For the calculation of the load-deflection curve 

at midspan for a simple span beam, the designations in the 
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computer program are 

SE = a 
see Figure 2. 3 (b) 

SM = b 


PL = load 


DL = deflection 


The loads and the corresponding deflections are com­

puted from equations which are derived in Subsection 2.12(B) 

to be 

2 .MYPL = MR . -SE 

SE 2 SM2 
DL - WR . (-·- + SE.SM + 2) . WY .

3 

The theoretical solution by computer is considered 

for the compact section (no local buckling considered) with­

out taking account the residual stresses of the given cross-

section. The reader is referred to Appendix 1 for further details. 

4.12 Comparison with Experimental Results 

The results of the analysis are given in Figures 

4(1) to 4(31) with the experimental results added for com­

parison. The tests are numbered according to chronological 

order of testing. The behaviour predicted by the analysis 

is shown as the full line with black triangles while the 

actual experimental behaviour is given by the full line 

joining the white triangles and squares. Each white triangle 
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and associated white square (where applicable) represents 

a stage during the test at which data was recorded. 

For three span beams it should be noted that for a 

given stage of loading the curvature associated with a 

support position, will exceed that at midspan. Figure 4(1) 

for example shows that the last recorded data for M-K 

correspond to a load of 'P= 132 kp in which the · moments over 

the support and at midspan are 950 in-kips and 1000 in-kips 

respectively but with considerably different curvatures. 

There is good correlation between test results and 

analytical predictions for those sections in which local 

buckling did not occur until well into the plastic range . . 

Separate subsections follow describing well behaved sections 

and those undergoing local buckling. 

4.13 Results of Sections Without Local Buckling in Tests 

Results for sections .without local buckling are 

shown in Figures 4(4,6,8,9,ll,13,15,16,17,21,22,24,29,30 

and 31) for the · simple span of rectangular, square and round 

sections. The three span experimental results free of local 

buckling are shown in Figures 4(7,10,12). These former two 

sections were hot rolled while the latter was cold rolled. 

All exceeded the predicted moment capacity somewhat at large 

curvature K. Thus, these sections would be classified as 

compact in plastic design. 

The following observations are pointed out from these 
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•· . 
test results: 

(1) There is considerable influence from residu~l stresses 

of cold formed sections in the neighbourhood of the first 

yielding -- see for example Figures 4(4,16,17,18,19 etc.). 

The proportional limit stress can be taken as 


approximately half . of the yield stress. 


(2) The repeated loading · in the plastic region appear.s 


to have an influence on the increase of the moment capactty 


at large curvature K. This can be seen in Figures 4(4,8,li 


and 12) which represent a few cycles of repeated · loading. : 


In the tests a jack with only 3 inches of travel was 


used which was not enough to obtain the required rotation 


. capacity. Fot that reason, unloading of the beam was urider~ · 

taken followed by the ihserting of steel plates between the 

jack and the beam. · Loading was then continu~d. It was 

·possible by this means to obtain the required plastic de­


formation of the beam. 


( 3) The load-deflection curves show the maintenanc.e of 

the predicted loads at the region of large curvature. Only 

in the bases of repeated loading were the loads significantly 

gre~ter than the predicted values. 

( 4) The bearing surface of ·HSS is, a very important con­


dition for design. Figur~ 4(5) of rectangular HSS and 


Figure 4(14) of a round show the experimental M-K relations 


for three span beams. These sections can be classified as 


compact in spi t 'e of negative moments over the interior 
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supports being maintained at a value less than the moment 

capacity M . For these cases of point bearing, local buck­
p 

ling was observed on the bearing surface of HSS~ 

A four inch wide plate was inserted under the loading 

and bearing points of the beams for subsequent tests. In 

the case of square and rectangular HSS plates were used 

following test No. 5 while for circular HSS they were used 

after No. 14. 

It is clear from the tests that the behaviour of cold 

rolled HSS is sensitive to the bearing stresses imposed on 

loading. Further study is deemed necessary to couple the 

width to thickness ratio of a compression flange with the 

bearing stress intensity imposed on that flange. 

4.14 Results of Sections With Local Buckling 

The experimental moment-curvature relationships for 

all 8 beams tested with local buckling cxcurred are sununarized 

in Figure 4.32. The flange slenderness ratios b/t have been 

adjusted by the factor /YS/50 to bring the results for sections 

having different yield stress levels to a common base. 

The 11 rotation capacity" of the beam has been defined 

as G=K/K -1, in which K is the curvature at which the moment 
p 

begins to decrease relative to the predicted M-K relation for 

the section without local buckling. The point at which the 

drop was observed is indicated on each curve by a vertical 

arrow. K is the curvature which would correspond to a moment p 

McMASTER UNIVERSITY UBRARV 
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M' if the beam were to remain completely elastic to that 
p 

capacity. The vertical dash-dot above the idealized transi­

tion to plastic response indicates KP in Figure 4.32. The 

last column of the table in this· figure is the ratio of the 

maximum buckling moment to the calculated yield moment. These 

ratios for compact sections in working stress design are 

higher or equal to their associated shape factors F which 

are written in brackets. 

Figure 4.33 is a plot of the · rotation capacity, e, 

versus an equivalent flange slenderness ratio which takes 

into account the.buckling moment and shape factor from 

Figure 4.32. The highest flange slenderness ratio, when the 

ratio of the buckling moment to the yield moment is equal 

to the shape factor, is the limiting b/t value for compact 

sections in working stress design. This limiting b/t ratio 

for YS of 50 ksi is approximately 29.5 and for the different 

yield stresses it can be rewritten as b/t s 210/IYS. 

For non-compact sections, the buckling moment has 

to reach the value of yield moment without the presence of 

local buckling. From this assumption the limiting b/t value 

for YS of 50 ksi is approximately 34.5. The corre~ponding 

limiting ratio for different yield stresses assuming the same 

form as above 
.
is 

. _ 
b < 245 
- = ---. 
t {YS 

For a more exact limiting b/t value in working stress 

design more tests are necessary in the range of flange slender­

ness between 28 and 36 for a yield stress of 50 ksi. 
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4.2 	 Comparison on the Basis of a Guaranteed Minimum YS 
for HSS 

In this comparison it was assumed that the sections 

will buckle for a yield stress of 55 and 50 ksi with the same 

moment-curvature relationships as are given by the experi­

mental curves. That is, if a moment-curvature plot is known 

for YS=55 ksi, it is assumed that this curve can be trans­

lated downwards by the appropriate ratio 50/55 for a post­

ulated YS=SO ksi. This assumption is based on tests 20 and 

23 in Figure 4.34 which pertain to a lOxlOx.375 HSS each 

giving rise to a different YS value. The full line with the 

white triangles is the experimental M-K relation and will be 

related to the yield stress of the flat part of the com­

pressive flange (YSf = 55.3 ksi for test No. 20). The yield 

stresses therefore were 55.3 and 61.8 ksi respectively. The 

similarity in the response curves is shown in Figure 4.34 

which give rise to identical rotation capacities when related 

to the same flange yield stress (55 ksi). Figures 4.34 and 

4.36 are similar in that they indicate the influence of 

flange slenderness ratio on the plastic rotation capacity. 

Figure 4.36 includes both 50 ksi and 55 ksi "contours" 

to relate yield stress to rotation capacities for the numbered 

sections. The dot-and-dashed line is for 55 ksi and the 

dashed line is for 50 ksi. By simple plastic theory the 

levels can be determined for plastic moments with yield stresses 

of 55, 50 and 42 ksi. The rotations K for the yield stresses 
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of 55 and 50 ksi can be found when these curves drop belciw 

the determined levels of M 55 , M SO and M 42 . 
p . p p 

A section with a guaranteed yield stress of 55 ksi 

and a b/t > 22.7 will generate "contours" for 50 and 42 ksi 

which can be used for prescribing a rotation capacity. The 

5555 ksi curve will just touch the constant moment Mp line 

and therefore does not provide a rotation capacity. See for 

example test No. 20 in Figure 4.36. Similarly a section with 

YS=SO ksi and a b/t > 22.7 will generate only a contour of 

42 ksi which can be used in plastic design. 

It should be noted that for b/t < 22.7 the guaranteed 

minimum yield stress may be used in simple plastic design for 

the same stress level. For the required plastic rotation 

capacity 0 of 4, this limiting b/t ratio will be between 20 

and 22.7 which is given by tests No. 27 and 20 in Figure 4.36. 

4.21 Limiting b/t Values for Working Stress Design 

The reE:ul ts ·of rotation capacities are summarized in 

the table on the right of Figure 4.34. The flange slender­

ness ratio is given for a yield stress of 55 ksi by compari­

sons with this level of yield stress. Only for No. 28 was 

an adjustment by the factor /50/55 needed. The last column is 

the ratio of buckling moment of compression flange to plastic 

moment. Assuming this ratio is close to the value of 1.0, 

it can be proposed in working stress design, that a section 

qualifies as compact, if the projecting elements of the 
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compression flange have a width-to-thickness ratio not 

exceeding 210//YS. 

The limiting b/t value for non-compact sections is 

given by the condition of an equality of Mbf and My and it 

cannot exceed the value of 245//YS. These limiting b/t 

values in working stress design are shown in Figure 4.35. 

The corresponding value of the inelastic rotation 

capacity approximately equal to 2.0 will be quite satisfac­

tory for compact sections of HSS in working stress design. 

4.22 Limiting b/t Values for Plastic Design 

The limiting b/t values for plastic design of HSS 

for minimum quaranteed yield stress of 55 and 50 ksi are 

shown in Figure 4.37. The rotation capacities from Figure 

4.36 are plotted against the flange slenderness ratios for ' 

different yield stresses in Plastic Design. 

The criterion used is that a minimum plastic rotation 

of 4 times, that corresponding to M , is needed before the 
p 

moment capacity of the section drops below M . The require-
P 

ment of reaching the plastic moment is satisfied by this 

plastic rotation and can be seen from the ratios of ~f/My 

in Figure 4.37. 

The analysis of the three-span continuous beams shown 

in Figures 2.2, 2.7 and 2.8 can be used to estimate a 

practical maximum for the required rotation capacity of 

plastically designed continuous beams. The largest required 

plastic hinge rotation for a three-span beam such as that 
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shown in Figure 2.8 is 0.425 M L/EI. The corresponding
p 

plastic rotation capacity to this value is approximately 4. 

In more complex structures the theoretical hinge angle re- . 

quired to form a mechanism may be rather large. However, for 

such structures, a load close to the ultimate can be attained 

with much smaller hinge rotations (see Figure 2.13). It 

was concluded in Subsection 2.12(D) that a rotation capacity 

requirement of 4 is considered satisfactory for design pur­

poses for a majority of structural types. 

Thus, from this requirement it is found that the 

ratios of b/t for different yield stresses in plastic design 

can be given in the form shown in Figure 4.37. 

The limiting b/t value for plastic design in the 

same level of yield stress from this figure can be recommended 

as 

(Figure 4.37a) 

b 150 
t ~ /Ys

b /Ys < 21 (Figure 4.37b)r /so= 

Figure 4.38 shows the bent square and round hollow 

structural sections after testing. The square section buckled 

into the shape as shown in this photograph. The series of 

sections after testing appear in Figure 4.39. 



----- - --

-------------------

------

106 

given loading 

.s 
~ 
~ 
§ 
E: 

0 0 

Test 

I _ 42 ;.- I .JQ 
1 

• 7 6 

FIGURE 4 "J to 1,-37 Results of Test and Theory 

R S
H.S.S . (in.) (in.3 

6°0 x6·ox·437 "875 15 ·

Numbers for test data correspond to 

.) 

---~--~ 

z 
( in . 3 

} 

YS 
( ksi} 

ET 
( ksi} 

b/t 

42 
- ·­

18"90 52·0 320 ' 9 ·a 

Position (]) 0 
1 000 

Predicted • ... 

c'300 
L:::. a 

--­

600 

400 

_ _1q I • 4 2 _ f200 1 

1'0 2'0 30 40 


I 
V) .e. 
~ 

~ 
local 

·'§­500 

400 

300 

200 

100 

0 

H.S.S. 

6'0 x 5·0 x ·188 

..-- ----.-·--­
s YS ETR z b/t 

( i n_.J}(in.} ( in.3 
} ( ksi) ( ksi) 

357·7·94 56'0 2r9926376 

Position © CV 
Predicted ..., ..., 

Test .c::. a 
buckling 

01'--t--~ __,_@~i~o/H 


ro 2'0 3'0 

( 42) 

-



__ _ 

107 

R-----------]~~
H.S .S. r· ) r · tn. In 

~ ·ox 6'0 x -,l!!__ ·176_ 7~94 

S 
_.J) 

z 
( in .3 ) 

926 

YS 
(ksi) 

55 ·0 

ET 
(ksi) 

357· 

b/t 

2r9 

~ ·-I 
Cl) ' - ~ :::J • .. ---~~500 ~ - ~· · ············ ·· ·· · ·· · · · 

· ~ 
-* ~-1~---400 

local buckling Test No-;(HSS -60x6Dx"188)
300 

200 

700 

K,,,10 -.3
0 

0 ro 2-0 40 

Predicted A 

Test 

Bearing on H.S.S. 

Spreader beamSpreader beam 

No.3 No.19 ___I= 

(4 '3) 




108 


H.5.5. R s z YS ET b/tNo. (in . ) (in~) (in~) (ksi) ( ksi) 

© 6'0 x 6'0x ·437 "875 1542 18"90 58 "0 320' 9'8 
-

..c:: u .s 
I 

V) 

·~ 
~ 

.s 
1000 

800 

600 


400 


200 


0 


~ 
c:: 
<lJ 

E 
0 
E 

0 ro 2·0 3"0 

II)

.ft.80 

60 

40 

20 

Deflee tion (inch.) 
00 2"0 4"0 6D 

Predicted • 

Test ~ 

~ 

c::-
"I:) 

~-

~ 
76I •30• I ­



109 

E 
0 
E 

buckling 

~ 
I 

No. H.S.S. 

5· 0 "3·0 )( ·230® 
R s z YS ET b/t 

(in.) (in~) (in~) ( ksi) ( ksi) 

'345 4·33 5·42 so ·o 683' 10·0 

Position (j) 0 
(j) t!j2 q> i82 CD Predicted ....

Lf f f f' 
... 

Test .6. Cl76 42_,I - 42 -1 .Jq 1.. • l.. 3CZ I .. 

support 

Compact Section 

- local buck/ ing at support 

300 

200 

100 

i3 
· ~ 
J,
.9- a--e­
~ 

~ b ~--=----o-
~ ":f;t L local 

Bearing at support 




! · 

110 

s YSR z ET b/tNo. H.S.S. (in~)(in . ) (in~) ( l<si) ( ksi) 

4 ·33 . 683 . © s·o "'3·ox 230 
I--­

10 ·05'1,2 so·o 
­

345 

300 

200 

700 

ti s 
I 

V) 

.9­
~ 

.s 
~ 
c: 

.Cl> 

E 
0 
E 

20 

15 

10 

5 


0 
 I. 6'0 

V) 

.9­
~ 

c:·­
"l;) 
qi 

..9 

I 

0 2"0 

Deflection (inch.) 

I I -8'0 

Predicted 

Test 

A 

.o.. 

76 


(1, ' 6) 




J.ll 

H.S.S. 
R 5 z YS ET b/tNo. (in~) ( . 'J · (ksi) ( ksi)(in.) In. 

® 4 ·o x2.0x235 '352 2·32 3'03 I 5lfO 528' 5 ·5 

200 


~ 
~ 
I 

Cl).s. 
~ 

· ~ 
150 ~ 

c: 
Cll 

100 ~ 

V) 

.e. 

·
~ 

­c::30 

20 

70 

Deflection (inch.) 0 io · ;,'o ' ­

1::> 
CV 
0-

0 ro 2·0 


Position (j) (2) 

t~g? tl7'.2f Predicted • •i' ~ ~ 
Test A a1- 42 • I 3q, I.. 76 • I..3~ I -42 _J 

( 4 . 7) 




112 

No. H.S.S. 

® 4 ·ox 2 ·ox ·235 

R 
(in . ) 

"352 

-· 
5 z YS ET 

(in~) (in . 3) ( ksi) ( ksi) 

2'32 3"03 . 58 '0 528' 
-

b/t 

5 ·5 

200 

150 

100 

..c:: 
(.J 

·-c;; 
I 

V) 

.s. 
~ 

-E 
V).... 
c:; 
llJ 

E 
0 
E 

a10 ·­~ 
.s 
\:) 


0
.._ 
cu 

No L-B­5 

Deflection (inch.) 
0 0 zo 4'0 5·0 a·o 

Predicted A. 

,, Test
ytr2 
~ 

76, _30. 1- .. l ..Jo_ I 



113 . 


No, H.S.S. 

2·5 x 2'5x 270® 
R 

(in.) 
s 

(in~) 
z 

(in~) 
YS 

(ks i) 
ET 

( ksi) 
b/t 

"375 
-· 

725 rss 60 "5 333· 8"9 

N L.B. 

2 

Deflection (inch.) 0 
0 2"0 40 60 8"0 70-0 

Predicted A. 

Test 6 

700 

80 

60 

40 

20 

.s 
~ 
~ 
E 
0 
E 

~ 
76 - I •30

• I 



114 

b/tR s z YS ETNo. H.S.S. (in .) (in~) (in~) (ksi) ( ksi) 

@ 2'5 x 2'5 x 210 "315 125 7'55 60"5 333· 8'9 
---'--· 

.c:: 
0 
c:·­
a I 

·­100 ~ 

80 

60 

40 


20 


-~ 
V) 
'-
c: cu 
E 
0 

E 

Kx 70·3 

00 ro 2'0 3"0 4·0 

15 

70 

5 

0 
8"

I 
0 

Ill 

9­
~ 

.s 
"tJ 

~-

I I 
Deflection {J.nch.) 

i I
6"00 2'0 4·0 


Position (j) 0 

*
t!72 Q) Predicted

f 'P,1* ~ • • 
Test A 076j_42 I .JQ I • - I .3Q I • 42-1 

( ,,. 70) 




115 

~ 

.s 
Cl) ..... 
c:: 
11' 

E 
0 

E 

No. H.S.S. 

5·ox4 ·ox ·437® 
R 

(in.) 
s 

(in~) 
z 

(in~) 
YS 

( ksi) 
E:T 

( ksi) 
b/t 

875 10 ·90 74·03 68 '5 30'!' 5·2 

00 ro 2'0 3"0 ~-o 

V) 

-9­
~ 

80 .s 
\:) 
ru60 .£;! 

40 

20 

Deflection (inch.) 
00 2'0 

Predicted • 

Test .A 

-5 s 
I 

Cl) 

.9­

1000 

800 

600 

1,00 

200 
KxT0-3 

76 




No. H.S.S. 

@ 6'0x 4·ox ·437 

R s z YS ET 
(in .) (in~) (in::) (ksi) ( ksi) 

"875 10·90 71, '03 51, ·5 307' 

116-
b/t 

52 

~ 
<.> 

1000 

800 

600 

400 

200 


0 

3·0 

120 

80 

Deflection (inch.) 
io ' 5o • 

.s 
"'I;) 

~ 

40 

ro 

s 
I 

Cl) 

.9­

.:1: 

.s 
II) ...... 
c: 
QJ 

E 
0 
E 

0 ro 2·0 

V) 

-9­
~ 

Position (j) (2) 

Predicted _. . .A 

Test &. aI _1,2. I ,3Q I I 76 .. I 3Q.1. "2-1 



117 

R 
(in . ) 

s 
(in~) 

z 
(in~} 

rs 
( ksi) 

ET 
( ksi) 

-
375 4 "18 5·05 53 ·5 687" 

b/t :No. H . S~S. 

@ 4 '0x4'0x250 ~ 
..c:: 
0 

300 

200 

100 

3·0 

.s 
I 
II) 

.e­
~ 

c::·­
.:'.:! 
c:: 
q, 

E 
0 
E 

0 ro 2D 


II) 

.s. 
20 

~ 

c::.._ 

"'tJ 
75 ~-
70 

5 

00 2'0 

No L.. 

Deflection (inch.) 

8'0 

Predicted A. 

Test ..6. 

76 




--

118 

00 ro 20 

Position (j) (j) 

(j) t1?1@ t'7? CD Predicted ..
1' f . f 2t 

A 

Test A a,_42..1.Jq,1. 76 42 -1- 1.3~ 1.. 

Compact Section 

support 
- local buckling at support 

JOO 

200 

700 

(.) 

.s 
I 


ti)
·9­
~ 

.s .~..........-­ .....,__._.-....,,.._--•-­
-a--· 

YS ETs z b/t
) (in~) (ksi) ( ksi)( in .3 ) 
·-1--­

671,. 77·0~·523'36 56"0 
---'--· 

~ -- i::r-­

~ E ~~c----o----A­. ,;r E I local buckling

I 
I 

~ v 

Bearing at support 

( 4 ·71, ) 



119 -
sRNo. H.S.S. (in. ) ( tn 

@ 4·5 O.D. x 250 -

YS ETz b/t
(in~) (ksi)~) ( ksi) 

·--1 - --·--· 
I, ·52 77·056"0 674 "6 

-...L..---­

<.> 
·~ 

I 
V)300 .Q.. 
~ 

· ~ 
~ 
c: 
<!> 
E 
0 
E 

200 

700 

0 0 ro 2·0 

·
V)

'*~20 
.s 

15 


10 


5 

Deflection (inch.} 
00 2"0 '~ 60 80 

Predicted ... 

Test A 

~ 

~-

~ 
l.Jo ...1- 76 

( 4 "15) 




.s 
'1:J 
('tJ 

-2 

12 0-H--s-....., ---- z---r- Ys ET I b/t 
No. H.S .S. (~.) (in . ) (in. ) (ksi) (ksi) 


@ 7 ·ox 7·0 x ·312 ·621, 1s·97 20·09 60 ·s 305· 20· s . 

L-~--~~~--~~- -~--·--~--'·~-~-1-..~~~----

.s 
I 

s'o .. 

t.~ 
~ 

60 

40 


20 


Deflection (inch. 

00 2·0 ,.0 6'0 8'0 


Predicted • 

Test A 

1200 a 
~ 

1 000 .s 

800 

600 

400 

200 

ro 

~ 
76 - I •~o ..J 

( ~ '16) 




121 

No. 

® 
H.S.S. 

5 ·o xs·o )( 250 

R 
(in.) 

·500 

ET T b/t 
(ksi) 

2so· 16'0 

ii 
s 
I 

II)

.9­
~ 

.s 
500 

400 

300 

200 

100 

0 

II) 

.s 
~ 

.s30 

20 

10 

s 
(in.) 

6"78 
··­

Z YS 
(in.) (ksi)TI 

8"07 l 59"0 

~ 
c:; 
Cb 
E 
0 
E 

0 ro 2·0 3·0 

1:> 
C\'J 
~ 

00 . 2'o 

j~ 
4S 

76l-34.1 ­

Defl•ction (inch.) 
s ; e • 

8'0 

Predicted _. 

Test A 

iJY2 
2?­

.. 1..J-' ..J 
• 

(1,'17) 



122 

No. H.S.S. 

@ 8·o x s·o x ·312 

R 
(in.) 

s 
(in.) 

z 
(in.) 

YS 
(ksiJ 

ET 
( ksi) 

b/t 

·521. 22'69 26'69 63 '7 250' 23'7 

-5 
i:::-I 
(I) .s. 
~ 

1500 .E; 

7000 

500 

K"TO -~ 
0 ro 2·0 


100 

80 

60 

40 

20 

0 

II) 

.e. 
~ 

c:·-
(lJ 
0..... 

0 2'0 
Deflection (inch. 

Predicted _. 


Test A 


t~ I 

{_34 -1 - 68 



No. 

@ 

z YS ET 
( in. 3 

) (ksi} (ksi) 

9"26 56'0 357' 
------'-· 

b/t 
! 
I 

·123 

27"9 

-5 s 
I 

V) 

.s 

.,:,c 

500 

400 

300 

200 

100 

0 '-----....... 

·~ 
~ 
t:: 
Cb 
E 
0 

E 

o ro 3'0 

V)

.9- J 

30 ~ 

20 

10 

Deflection(inchJ
F f p 

.s 
~ 
nJ 
0-

00 - I 

2-0 

Predicted • 


Test .o. 


64 
· ~ 

.1 .~ -l 

( 4 "19) 




80 

124 

2000 

1000 

s~ YS 
in~) i (in'!) (l<si) 

'89 1so·3s__l 57'0 

ET b/t 
( ksi) 

350' 22·7 

0 -----·~-
0 ro 3'0 

VJ • 

60 

40 

20 

-~ 
~ 

.s 
"=> 
~-

Deffeetion (inch.) 
00 2'0 4V 5·0 s·o 

Predicted 

·Test 

~ zr. 
1- 60 -1- 96 -1- 50__J 

( i#20) 



125 

I 
1@·_3_:_~~ 


.._,.....----- - -- - --.----­
YS5 zR.S. (in~)(in~)(in. J 

D. x '150 55·01'68127-
-· ·-' ·---­

-5 s 
I 


II) 

.£,. 
~ 

700 .f: 
Cl).... 
c:80 

§ 
<b 

60 E 

40 

20 

Kx10·3 
0 

0 ro 2'0 3'0 4·0 

ET b/t 
(ks i) ( ksi) 

656. 22 ·3 

9. 
..::t: 

c:8 ·­
\,) A ns6 .Q 

4 
\_.£> .t-l~

2 

Deflection (inch.
0 0 2'0 4·0 6'0 eo 

Predicted • 

Test ..o.. 

,_30.1. 76 

(421) 



126 - ·­
YS ET b/t 
ks i) ( ksi) 

58"0 273 ' 8 '0 

,...; 
(.) 

.f: 3000 
I 

V) 
.Q. 

2000 

'000 

..:x: 
s 

0 
0 ro 

If) 

100 .9­
~ 

80 
· ~ 

"'O 
(\'J 
0 

60 -... 

40 

20 

00 20 

Pr~dicted .., 

Test A 

Lf 
961 ... 50 ;as 1­

(I, 22) 




127 

No. H.S.S. 

@ 10'0x10'0x 375 

R s z YS ET 
(in.) (in~) (in!) (ksi) ( ksi) 

-
·750 42 "89 50·35 63 "5 350 · 

-

b/t 

22 ~ 7 

t s 
I 

~ 

I 

3000 

2000 

7000 

V) .e. 
~ 

.s 

V) .s. 
80 ~ 

.s 

40 

20 

Deflection {inch.) 
0 0---.-~2-· o~.-· ~4~V~---6~.o~;:_:,....;._::._ar·o--.;.:...._--

Predicted • 

Test .c:. 

jJ?? t'72 
~ 

1-

2r 
l-. 72 72 -1- 72 ,..-I- I 

( 423) 



128 

~· -- H.S.S. 

~ 70 75 O.D. x ·500 

-z YS ET b/t 
I

R 5 
(in.) (in~) (in~) (k si) (ksi;' 

- L 39·47 l 52 "54 47 ·5 366 ' 20'5 
-· 

3000 

2000 

7000 

I 
V) 

.£:. 

.s 
~ 
~ 
E 

- E 

0 ro 2'0 JD 


60 


40 


20 


"' ~ 
.s 0- c.... 6-~ 
\:) 

--~ 

f\h~ L,Y>. 

Deflection (inch.) 

0 2'0 4·0 5·0 

Predicted .&. 

Test A 

i/?2 
I 

t/?Q

1 2r 


72 72 721- .. I~ -1- ~I 

( 4 24) 




129 

~ 
6001j 
500 .s 

.:2 
400 

c: 
(!) 

E 
0 

300 E 1 

200 

100 

0 
0 

I 

-­

1'0 

--­

No. H.S.S. . fr~~(~.) -rf YS ET 
n . ) (ksi) (ksi) 

--t--
·77 57·0 350' 

-....L.. 

b/t 

33 ·3® 7 ·o x 7 ·o ,,. ·1ss ·376 -;, ·02 12 
-----·-------·-- ·--- ... 

·--~-.,. 

-

De flee tion (inch.) 

25 II)
.9-
~ 

20 · ~ 

75 ~ 
0--

10 

5 

2'0 

Predicted ..._ 


Test ~ 


~ ~ 
1- 51 ;r 1-36. 1- 51 ... 1 



..c:: 
IJ s 
I 

V)

.9­
~7 000 
·~ 

800 

600 

400 

200 

-· ----4--_ 

-~ 

~ 

.!:: 
30 

70 

V) 

40 .9­

Deflection (inch)o o.__~--~~·-..--
2·0 4'0 6'0 

Predicted & 

Test ~ 

~ ~ 
I .. s1 • 1_36. 1- s1 1 

( l,"26) 



(J

700 .s 
I 

II) 

600 .e. 
~ 

I c:: 
5(10 i'­

i ~ 

1,ooJ ~ E 
0 

300 E 

K"" 10 ~' 


200 


700 


1'0 


30 

20 

70 

00 
pefl~ction (incll;). 

Predicted • 

Test 6. 

~ . I ~ 

, _ 35 .. 1- 30 -1 - 35 _J 



132 . 

~ 

200 i'~ 

··9­.:c 
150 -~ 

!? 
c:: 
Ill 

100 E 
0 
E 

ro 2·0 . 3·0 50 


8 

6 

4 

II) 

.e. 
.:ii: 

c::·-
'I;) 
Ill 
0-

2 · 

0 
0 2 ·0 

Predicted .A 

Test 

LjS 
1- so • 1-36. I _ 50 ..J 


( ~28) 




133 

V)..... 
c:: 
(IJ 

E 
0 

E 

ET b/t 
(ksi) 

o 650" 22·3 

80 

60 

~o 

20 

00 ro ·. 3·0 ·- 70 6'0 

If) 

-9­4 ~ 

c:·­3 
\:) 
(lJ 

I.Q
2 

A 

1 

Deflection (inch.) 
0 0 2·0 8'0 10·0 

Prt1d ic ted .A 

Test 

AItvO. 

@ 


100 

H 'SS . . . 

_____!_~~. D. 


·-<.J 

I 

c: 

II)

.9­

.
~ 

s: 

I R s z · ) ( iB- ! YS-r-( · --~~· · ) ( · In. tn. tn . ;I tksiJ 

so·>e _·!_~_o__l- - 1'27 I~8 I -

( 4·29) 




120 

100 

80 

60 

40 

20 

0 ·----...-----;­

· ~ 
VJ.._ 
c:: 
CIJ 

E 
0 

E 

~ 

0 ro 2·0 .JO ,.0 S'O 

V) 

-~ 
~ 

c:·­6 

4 

2 

Deflection (inch.) 0 
0 2'0 s·o 

Pr~dicted .A 

Test . 

"tJ 
ca 
0-

'fl. • ..A 
_--;Qi • 

K.10- 3 

,_ 45_,_36.,1 • 45 _, 


(I, '30) 




135 

-j 

___ o---ro- ~·o 

YS ET ' . b/ti 

.) (ksi) (ksi) 
- ·-------- r-

0 so ·s 650' 23'0 

50 

0 o._____1.......0 2...,.· 5·0 

Deflection (inch.) 
00 

Predicted .& 

Test e::i. 

LJS ~ 
1- 45 • I • 36 I I I 45 J 

( 4 '31 ) 



--

_,, .. • 

M (kips- inch.) 

r28 
(1'19) 

200 

150 

- -,.....____ .......o. 

® 22"0 225 1'170 
(1"18) 

30001 

25001__ 
1'71, 1"118 

0 ·17) 

3000~ 
2500 l _. 7·45 7·175 


(l "17) 
. I 

1aoo j I J.. ..................... _.. 


7400.:t___}:L~--,- rsa 1'135 
(!'17) 

I ::Lh- _.,__...!...6--.....~~....~ ;~...-.: ..... .. -~ .. .::-..il~••. • 

1·090 
- - r--­

(7"17) 

_ 
-r-­-· ----,­

j 
I ! 
. . •' . -~.............
500 r:I 3 ......... .. . .. . 


1"91 7·735400 _12::~-----,- @) 
(7"16). .. ..... .... .... .... ..... .. ., 


700 

(7'16)600 
0"33 0·91,5 

500 - -,..-- ----.- - --r- -- --r ­o ro i-o 1·0 4·0 s·o KI( 10-3 

t/GUR£ 4 ·32 Rotation Capacities .on Basis of Actual YS 



72 

137 

':~:::.---t -·I\ /

b- \
{.) 

\3"0 ~ 
C1J 
{.) 

c:: \
.S? -t --? 

2'0 0 . ~- - / 
~ 

-C1J 

I+__ -.- I
 
i ~---'
-..:...-..1 ~"' 

Ii "'­ro . ~ 

flange slendernesso L~·---~~ .:. .. .lt~. 
15 20 25 30 35 l2_1!YS' 

I 
7 2 

/'O 

1"4 

t rso 

1 l ! 
fvfb-M I ; -;-~
-=-L---1--·1-+-~-+=-

fvlb=M,... !.:;:::..~~--f-=7'17 b _
-~/~--:r--~~- - 1- -­
-~ 1 _J 

Mb fvfb=buckling moment (--F-----.-~ 4t 
fvfy My= yield moment ll._ Jl 

Mp= plastic moment 

Non - Compact Sections : 

byrs· < 34·5 b .s; 245 
t 50 t - 1/YS' 

Compact Sections in working stress design: 

E.rs· .<29·5 
t 50 

FIGUR£ 4 33 Limiting b/t Value for Working Stress Design 




---

r 

No. 2tvs' Ml-e-=K -1 38 
t 55 Kp ·. MpI..c:: 

u . I 
1 

Ic::·­
. I ~Y~5;=;.5~1'0~k~s~i~~=::=:-:::::::=:200 i tvtgo __.;..,. _____ _:_____________--=_~- =+­

~ I 
1 

~ @ 17'5 7'7 1'08 
I150 

700 
Mgs~v 

--~-

- -- -- ----·---,- -­
600 

500 
/7 @ 21JV 5·0 ro2 

Ys1=55·3 ksi 

__/YS'=55"0 ksi 

@ 22·7 2·1, 0·9a 

22"7 0·9a 

-=-----_...,,,,,,,,..... 

3000 

2500 -

2000 

3000 

2500 

2000 

14ool 
1200~ 

900t 
700 

237 

240 

2'3 roo 

1'9 

soo{ 
4001 

55j-­--~~~~ 

I 
I 27"9 100 

700 

fvf5 
y 
5~or ­· s5· 

. 

33"3I /- ...... ,---<50· -_d1 
I 
- ..--~ --- -.- - ---,-- - --,- - -...,- ----­-

0 ro 2 o 3 -a 4 o s-o K ~ 10 _, 

FIGURE 4 ·34 Rotation Capacities by Simple Plastic Theory 



139 

a· ~ \ 
~ •\ _co!.4PACT s* NON.:..=* REDUCED 5. ­

6 · '-- \., ICOMPACTI 

\"' ~ $ 
---·-~~____.._ 

I 
0 ,~~ , , '2b, .--~F~JO-+js, , flange 12~~~~erne~s 
o·a-1 1 • t~55 

t __ My=0'85/vfp (f::7'78)~·-· --···>:-M/,=My
0·9~ : / 

... !
! 

//
;' 

. 
·o ... __._ --·· r1 - --,,,......-------..--__:::;-==--•--··--·Mb =fvlp 

. / 

J·7 .,,,,., 


Mb M6 =buckling moment of flange 


fvfp 


Non - Compact Sections : 

byrs· ,s;; 33 b ~ 245 
t 55 -r-yy=sr 

Compact Sections in working stress design : 

_g,/YS ~28 
t rss 

FIGURC -4 "35 Limiting · b/t Value · ·for Working Stress Design 




140 


200 

1so 

700 

600 

500 

No. 

-~~Y~S;=~5~7V~ks~i~~50:·=-::::=:::~~~ 
~ 

!·
u 

7 ,.,,go r­ _ _._-­. _____. ___ -~-~------....,,, ,"'< 

~ I @ 18·3 - - T7 -

I 

-·-·-·-·~-- ,,,..Y1=1_9!__ksi
M55/- · ~ ,,..,::::::_·. - · - · - · --=--:--::....:...::::=---..-+--: - 55 · ---­p . ./ - --- r.o· ·-- --­

. / ___.. . oJ ---~ -· -·­Mft.'?7 ------ -----@ -;o~o---;-;;;~~-=;;-;; ·:::-
M#2f-¥-···-···-···- ..·-···--···-···--···-···-. ···-···-~- ..·-··~··· 

Jooo1·ssr£·~ . 
2 500 ~ ::; j/,...- ··- -:.-~s~@ m 2"4 6"5 112 27 8"7 
2000J . . 

1 551.·~~2'2lL:---~.1400-1 . 
~ 50 / .?' " -r"' (;Q\1200~ 42 f-·L~--··--···-~~~~\@,; 23·7 

900-3 55 ,---·-· - 56'7 
~ sorr::::.--~...:_S"o-...:_ ss..._ 

7001 42 ···-···-..·-··~··-··p 

500~ 55~ ..,__ -·--· 55·
:l so~ -=-- ~----:<:. ""-A1400 ~ /./" --... So· 
~ 42f-7,.-· ..-···-. ..·-···-TJiy 279 n 4·2 7L 2·6 6·2 

700~ 


600~ 56' . . .
j ~~--
., M .P° · 55· --' 

500]~ !?t ,...:::_~... ···- M°5' 33·3 - - 2·7 -·­
- -1 / ....... ...__,50· ~ 


_]?"- ~, 
400 

1 -,.----~---r----r-----r------..;
0 1'0 2'0 3"0 . ; 4'0 50 K x10-3 

FIGURC 4 '36 Rotation Capacities 



141 
75· cb 

~ 
74· 'uA AST/ ALLOWABLE STRESS DESIGN 


[DESIGN AND REDUCED S RESS 

~ . 

. 12· 0 20 \ 30 

c ~--P~LA~S_T_tc~........~A~L~LO~~~~B~l~E;;.._S~T~R~E~S~S---.2 

10· ._ 

. 8 ~ ~ \ ~. .. ..fLASTIC@iJ. ALLOWABLE .· STRESS • 

6. \ .,,. '\1• ~~'--..... 
\ . '\...__ ·"'- YS in Plastic Design . 

'\. • --~ . T 55"0 ksi 
. ~ • 50'0 ksi

'" T ~ 2· ~--- ....3L • 42'0 ksi 

o 
J 

I ,Jo, ,is , ~ , ~ .~J,flange slen:;ne~s
15 3

FIGURE 4 ·37 Limiting b/t Value for Plastic Design 


<t> . ~ 
12· ~Pf;JSTI~ ALLOWABLE STR~ESS -
10· ~ l. . 32 

0 ~\ •PLASTIC ALLOWABLE STRESS., 

8. ~~ ' ® ..~ . I 
6 . p \ •- + ···~ YS in Plastic Design :+-- \ .··-._ 

• so·o ksi 
+ 1,2·0 ksi;:~ -t~__!__ ~ 

. I' Il , , , , I , .--.---,--,.--,.-,-....-.-r·~ , flange slenderne~ 

15 f 20 . 25 30 .. 3? b/t 


M6-Mv : : 


~~~ t,Mr....+---.- • -¥-f~m 
t4 __.....- ...__.. .__......fv!J; .... --·· 

My ( b) fvlin. YS =50 ksi 

0 
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CHAPTER V 

SUMMARY 

This investigation was undertaken to attempt to re­

late the flange slenderness ratio (b/t) to the plastic ro­

tation capacity of Hollow Structural Sections subjected to 

a moment gradient and constant moment. The rotation capacity 

is limited mainly by pos~-elastic buckling of the compression 

flange. In plastically designed structures it is assumed 

that any section at which a plastic hinge forms will sustain 

the full plastic moment until a collapse mechanism has formed. 

The experimental program reported herein consisted 

of 31 tests on Hollow Structural Sections, having a range 

of b/t values from 5 to 34. This program was designed to 

simulate 2-point loading on a ~imple span beam or three span 

beam. 

A wide range of rotation capacities was observed for 

the beams tested. As expected, the sections having slender 

flanges delivered smaller rotation capacities than did the 

stockier sections. Unloading was accompanied by local 

buckling of the compression flange. 

The maximum rotation capacities required in practical 

structures have also been performed in Subsection 2.12(0). 

For plastically designed continuous beams it is recommended 

that the minimum plastic rotation capacity be 4 before the 
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moment capacity drops below Mp. The limiting b/t value ap­

plicable to square and rectangular HSS for this recommended 

rotation cannot exceed the value of 150//YS. This is a 

more conservative requirement than is currently set forth 

in CSA Standard 816 where this ratio is 200//YS. In more 

complex structures with larger rotations, a load close to 

the ultimate can be attained with this plastic rotation 

capacity of 4 and therefore it can be considered satisfac~ 

tory for design purposes. 

In structures designed by the allowable stress 

method the "compact sections" have to reach the specified 

plastic moments while "non-compact sections" only need 

attain the yield moments without the requirement of minimum 

plastic rotation for a formation of mechanism. 

The Canadian Standards Association{l) has defined 

a compact section as one in which the projecting elements 

of the compression flange shall have a width-to-thickness 

ratio less than 200/IYS and non-compact section less than 

250//Ys. This recommendation stated that for a section to 

qualify as a compact section in working stress design only 

this ratio would be changed from 200/IYS to 210/IYS. On the 

basis of the current programme this recommendation appears 

to be adequate in fulfilling the necessary safety requirement 

for working stress design~ 

A further series of tests in the critical range of 

flange slenderness is proposed which would give a more exact 
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limiting b/t value. It is expected that the results of that 

test series, in conjunction with the presently available 

test results, would provide a sufficient basis upon which 

to make specific design recommendations. Cognizance should 

be made, however, of the need to specify bearing stresses in 

relation to b/t and should be considered in an extension to 

this programme. 



APPENDIX 1 

COMPUTER PROGRAM FOR THE DETERMINATION 

OF MOMENT-CURVATURE AND LOAD-DEFLECTION 


RELATIONSHIPS 


1.1 	 Introduction to the Program 

The program is split into two main components: 

(i) 	 a main program for rectangular and round 

sections 

(ii) 	 a subroutine, SHAPE, for rectangular sections 

and a subroutine, ROUND, for round sections. 

The load-deflection curve for a simple beam is com­

puted from the expressions for deflection derived in Chapter 

2. 

The description of computer analysis is given in 

Subsection 4.11. 

Names of Variables: The meaning of the variable 

names in the fortran program is explained in the program as 

well as in Subsection 4.11. 
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APPCNDIX 12 General Flow Chart for Analysis of H.5.5. 148 

Yes 

STOP 

-

READ : · HSS Dimensions. Material 

Properties, Loading Confi­

guration for Simple Beam 


No 

H.5.5. 

......--1 J::ML, Number of Beamsi----.---. 

Vary the nondimensional strains WR 
to balance the bending moments MR 

PRINT: Moment, Curvature, 

Yes 

Maximum Strain, 
Load~ Deflection 

STOP 

Webs partly plastic 

COMPUTE : Moment -Curvature and 
Load-Deflection Rela­
tionship (Simple Beam) 
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APPENDIX 7·3 Computer Program 


7L3El0.07 
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Rf:" 1-H~ Ct::.,?) !\:CC T 
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RC. .".r; ( C:, '?. l f~L 


f)'"' 1 r:C J = 1 ,~~L 

fFCT.FO.?J ~~ rn ?0n 

R~ftnf ~,4)~,~.T,R,Y~.F.~T,SF,SM 

~~ Tn ?01 . 
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wrn Tr: (~'Pr l 


( · A ~TPAIG~T FL~STIC P~RT 
l 0 I F P~rp • r: T. 1 • r: ) GO T0 2 0 


MR = 1: .1P 

GO T:'.1 15 
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MR :WR*<l.-(P*n**7/C6.•5l))+(8*n**?IC4.*~))*(l.-1./(~.*WR**2>> 

GO TO 15 150 


( TH f:' r= U\ MG: S .~ R~ PL fl.~ T T( MH~ TH f 1.·J ~ n, S /\ RF Pt-, o Tl..Y f L A .ST J( 
~~ T~{ ~P.~T.P.l ~n T0 ,~n 

MR~ (f:'-T*D**2/(6.*S*WR**2ll*CFR-l.)/FR~WR/FR
GO TO 	 15 

C 	 TH F ""4 /\ X P.': UM FL AST J C ST R .A I N ST V 
15 	 STY = YS/E 

C 	 n ~F CG RR F SP0 ~,'. !) J Nt'~ (UR\/ !\ TUR E l·· ~ Y .~ N!) ~-" 0 Mr- NT MY 
'·JY = 2 •*STY /f"I 
MY = Y~*~· 

( 	 THF ~O~FNT v IN KJP-t~ 
r-ft :: ~~R*MY 

C 	 THF tURVATURE IN RAD 
W = 'tJR* 1.,..'Y 

( . 	 THF STRAIN JM THF FXTfH:"ME:" Fff1,:"P5 5T 
ST= '-J*fJ!?. 

C 	 T~c LO/\ IJ - f)t::FLr:CT J()"! CU~VF OF S p.~Pl F 11f.ft.M 

PF = 2.-r.·MY/~E

nF = <SF**?l~.+SF*S~+SM**21?.)*~Y 

PL. = 'A P~·PI:' 


DL ::: ':.' R·X· f) i=" 
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IFC WR.~T.2.) GO Tn 38 
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~ p 	 \~; q = i,-! q ... l • 0 
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APPENDIX 2 

NOMENC~..TURE 

Af Area of flat part of the flange 

A Area of corner c 

b Flat f lan9e width 

E Modulus of elasticity 

Est Strain-hardening modulus 

FY, YS Yield stress 

Gt Tangent shear modulus 

H Hinge angle 

I = 
t3 
IT Moment of inertia 

K Curvature 

K p Curvature corresponding 
elastic material 

to MP assuming ideally 

Q,, L Length 

~L Hinge length 

M Moment 

Mp Plastic moment 

~ Buckling moment 

p Load 

p 
y Load at yield 

p 
u 

Collapse load 

t Flange thickness 

E Strain 

M y Yield moment except as noted in Section 2.2 
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Yield strain€y 

e Inelastic hinge rotation (hinge capacity) 

0 Deflection 

v Poisson's ratio . 

<P End rotation 

<f>F Simple beam end rotation 

cr General stress quantity 

a , cr Normal stresses in x and y directions x y 

w transverse deflection 

Shear stressuxy 

1." Ratio of strain-hardening to elastic modulus 

0 Buckling . stress 
c 

EI
D = 

l-v2 

1/J 	 Angle of rotation of the buckling plate 

Angle of rotation of the restraining web plate~ 

Moment per unit lengthMy 

£; Coefficient of restraint of the restraining plate 

E.: Coefficient of restraint of the buckling plate 

B Ratio of length to width of the plate 

a Limiting value of B for buckling 

Bo B for which cr reaches a minimum c 

p,q Factors depending on ~ 

k Plate coefficient 
Et 3 
. cD' = 

Thickness of restraining webtc 
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Length of the half wave of the buckling plate 

Ratio of M to the rotation ~ y 

r Correcting coefficient of the eff$ctive width c 

Coefficients of dilatation 

y · shear strain . 

a Elastic buckling stress e 


Residual compressive stress 


Effective proportional stress 


2
 

Cl = 
/l2F {l-\)-b ,___y__) 

iTt · . kE 

a at the proportional elastic limit 

a at the point of strain-hardening 
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