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SCOPE AND CONTENTS:

A research programme is presented for assessing the
capability of Hollow Structural Sections in Plastic Design.
This investigation attempts to relate the flange slenderness
and yield stress to the rotation capacity of Hollow Structural
Sections subjected to both constant moment regions and to
moment gradients.

An experimental programme was performed on 31 differ-
ent cross sections to evaluate the moment-curvature relation-
ship which is of fundamental importance in Plastic Methods.
The occurrence of local buckling for some sections in the
compression flange and the consequent reduction in moment
resistance is the critical factor which separates members
into compact and non compact categories.

The moment-curvature relations from tests are compared
with analytical predictions. The plastic hinge rotations
delivered by the present test sections are compared with the
maximum practical requirements for plastically designed con-

tinuous beams. Theoretical elastic and inelastic buckling
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solutions of plate elements are also presented to relate to
possible local buckling of the flats of square and rectangu-
lar hollow structural sections.

Plate ratios of compression flanges are then selected
for use in plastic design of hollow structural sections.
Such a separation permits segregation into compact and non
compact categories and can be used in working stress or

elastic design methods.
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CHAPTER 1
INTRODUCTION

The elastic design of steel structures is based on the
concept of a specified safety factor against nominal yielding
of the most highly stressed fibers. This method is there-
fore satisfactory provided that the yield stress is reached
without premature buckling. This approach is not strictly
rational however since virtually all structural members
have some residual stress locked in before they are sub-
jected to any external loads. Allowable stress based solely
on a yield point criterion does not give a consistent margin
of safety against failure. Present-day codes such as CSA
Sténdards S16 attempt in part to take into account proper-
ties of the cross-section and continuity of the structure
but still fall short of complete consistency.

Plastic design takes advantage of the ductile pro-
perty of a material of which the structure is made and
proposes to base the design on the actual load-carrying
capacity of the structure. The working loads are determined
as a specified percentage of the ultimate load, which will
be realized only if the members undergo plastic deformations
at a number of sections without local buckiing, producing
a consequent fall-off in bending moment resistance. This

process is generally referred to as the redistribution of
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moments and formation of plastic hinges.
Thus two necessary conditions must be satisfied in
plastic design
a) redistribution of moments in an indeterminate
structure when the plastic moment Mp is reached at
the section of the first and subsequent hinges
before collapse,
b) maintenance of the resisting moment Mp at a
critical section until sufficient gdditional
sections have yielded to produce a "mechanism".

When the plastic moment Mp is reached at the first
hinge of an indeterminate structure it is assumed that rel-
ative rotation of the segments meeting the hinge can occur
until sufficient additional sections have yielded to form a
mechanism. This rotation for which the plastic moment is
maintained is called the "rotation capacity"”.

The rotation capacity at a plastic hinge may be re-
duced by local buckling at a rotation smaller than that
required to form a mechanism in the structure. Cross-sections
which satisfy the minimum rotation requirements are classi-

fied as "Compact Sections for Plastic Design". These

sections are capable of developing their computed plastic
moments to the minimum rotation requirements without the
presence of local buckling.

In structures designed by the allowable stress method

the "compact sections" are capable of reaching only the




computed plastic moments without the presence of local buck-
ling. They do not need to satisfy the minimum rotation re-
guirement.

Those which are capable of reaching only the com-
puted yield moment prior to local buckling are termed "Non-

Compact™.

Reduced stress sections are those which will buckle

locally before they reach the computed yield moment My which
is defined as that moment at which yielding of the outer
- fibers is initiated.

The initial position of an idealized stress-strain
(o-e) curve for cold-formed steel in tension or compression
is shown in Figure 1l.1. For strains below the yield strain,
sy, the material is elastic, with the slope of the stress-
strain curve defined as the elastic modulus, E. As the
strain is increased beyond ey, the stress again begins to
increase with the slope of the curve in this range, Est’
the strain-hardening modulus. A strain of Ey represents the
onset of strain-hardening.

In "simple plastic" theory, it is assumed that all
elements of a given cross-section in a member subjected to
flexure remain elastic up to the attainment of the "plastic
moment", Mp, which is the moment corresponding to a stress
of iFy in all elements of the section. This state corre-

sponds to Est/E+O. It is further assumed that, once the

plastic moment has been reached, the moment at that cross-



section remains constant for all further increases in cur-
vature. This assumed behaviour neglects the additional
moment capacity due to the effects of strain-hardening, and
assumes that the shape factor Mp/My is approximately unity.

Figure 1.2 shows a plot of moment, M, non-dimension-
alized as M/Mp, vs curvature for a simple-supported HSS
beam. The curvature is equivalent to a ratio of the maxi-
mum strain in the outside fibers to half of the depth of
the HSS. Kp = Mp/EI is the curvature which would corre-
spond to a moment, Mp, if the beam were to remain completely
elastic. The symbol I denotes the moment of inertia about
the neutral axis of the beam. The dashed curve represents
the behaviour assumed in simple plastic theory. The dot-and-
dashed curve includes the penetration of yielding through
the cross-section and the effects of strain-hardening. This
more exactly predicted curve does not take into account any
residual stresses that might exist in HSS. The actual be-
haviour of a typical beam with residual stresses is shown
by the solid curve in the figure. This curve departs from
the predicted curve at the proportional limit of yielding
and shows the influence of residual stresses of HSS. This
feature will be described more fully in Section IV in Figures
from 4.1 to 4.31.

In some cases local buckling can occur within the
yielded portion of the compression flange and this can

precipitate a drop-off in moment capacity. This behaviour



is typical of beams subjected to loads producing moment
gradients primarily. The "rotation capacity" of the beam is
defined as 0 = K/Kp-l, where K is the rotation at which M
drops below Mp. The absolute inelastic hinge rotation,
K—Kp, of the full span will be denoted by the term "hinge
capacity".

Wide-flange beams subjected to moment gradient have
been the subject of both analytical and experimental jinvesti-
gations(3'6'7).The present investigation attempts to define
the effect of moment gradient and constant moment on the
rotation capacity for HSS. An attempt will be made to re-
late the flange slenderness ratio, b/t, to the hinge ca-
pacity of HSS beams.

Because HSS beams subjected to moment gradient are
influenced greatly by residual stresses, there is a definite
need for more experimental studies in this area.

The ASCE "Comentary on Plastic Design in Steel“(ls)
assumes for A36 steel beams designed by plastic-design
methods that unloading does not occur until the plastic
rotation (the total rotation minus the rotation at Mp) is
at least three times the hypothetical rotation calculated
by an elastic analysis with M=Mp. This is equivalent to
saying that unloading does not occur until the maximum
plastic strain is at least three times the strain calculated
by an elastic analysis with M=Mp.

(1e)

The paper by Jombock and Clark was prepared



for a report summarizing information on the post buckling
strength of flat plates in edge compression which would
serve as background material for the preparation of a guide
to design criteria for metal compression members. This
paper examines the effect of local buckling of square tubes
in compression.

In the paper by Thurlimann(l7), the aspects con-
cerning inelastic instability of steel structures are
presented. For plates, a solution for determining the be-
ginning of strain-hardening has been derived using the
theory of orthotropic plates with appropriate moduli deve-
loped from theoretical and experimental considerations with
respect to the effect of residual stresses.

An investigation into the structural behaviour of
stainless steel columns and beams is described by Johnson
and Winter(lg). The mechanical properties are discussed
including different stress strain curves in tension and
compression, the pronounced effect of cold working, and the
low proportional limit. An imporfant problem in light gage
metal construction is the post buckling behaviour of thin
compression elements.

A study at the U.S. Steel Applied Research Labora-

(13) was aimed at determining the require-

tory by McDermott
ments and capabilities of ASTM A514 steel in plastically
designed structures. The curve for A514 steel has a linear

elastic portion which is usually followed immediately by



an approximately linear strain-hardening portion. For cold-
formed steel of HSS, the stress-strain curve has the same
shape. In conclusion of this paper regarding the required
rotation capacity in plastically designed structures, it was
indicated that a value of hinge rotation H=0.5 should be
satisfactory for A514 steel beams which are generally de-
signed for uniform loads rather than for concentrated loads
and H=1 would presumably be satisfactory for steel columns
in building frames and for other steel beam-columns subject
to nearly linear variation of moment. Because the deriva-
tions of H are not sensitive to the shape of the material
stress—-strain curve, these values of H should be applicable
to structures of any steel.

Lukey and Adams(G)

reported the results of an ex-
perimental investigation of the influence of the flange
slenderness ratio on the rotation capacity of members sub-
jected to moment gradient. The tests were performed on
rolled wide-flange beams, simply supported and subjected to
a concentrated load at midspan.

Analytical and experimental investigations, by Smith

and Adams(7)

, have been attempted to define the effect of
moment gradient on the rotation capacity and to separate
the influence of moment gradient from that of the unbraced
slenderness ratio. The tests were performed on simply

supported, wide-flange beams subjected to a concentrated load

at midspan. The results provide a design recommendation

*

Hinge rotation H = Kp.L (Figure 2.11).



for the limiting flange slenderness ratio for compact
sections used in structures designed by the allowable stress

method.
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CHAPTER IT

ANALYTICAL FORMULATION OF BEAM BEHAVIOUR

2.1 Methods of Analysis

A brief outline of the theoretical work associated
with HSS beam behaviour follows. Two types of beams are
studied: a simple span type and a three span statically
indeterminate type.

For the three span beam the distribution of moments
shows the formation of plastic hinges. Maximum loads
associated with the collapse mechanism are computed which
were of value in designing the locading system. Deflections
are computed using conventional slope-deflection equations.
Permissible hinge rotation is evaluated and a rotation
requirement for plastic design is recommended.

A brief review of earlier work in terms of
~plastic hinge rotation requirements is included. This
information is used to complement the limited structural
forms that are considered in this work.

For the case of the simple span, the calculated
expression for deflection is used in a computer programme

to predict the load-deflection behaviour. This information

10



11

i8 later compared with tegt results in Chaptér 4.
2.11 Elastic Analysis

The elastic moments were calculated for a designed
loading condition for a simply-supported beam in Figure
2.1 and three span beam in Figure 2.2a. The total load
on the beam was Pl[kips] to simulate 2-point loading on
a beam. For the three span beam, the négative moments at
the interior supports were computed to have the value equal
to 9.73 Plinch-kips] and the positive moments equal to
5.28?[inch—kips]. The elastic distribution of moments
shows the formation of the first plastic hinges at the

interior supports.
2.12 Plastic Analysis

The work described herein is divided into 5 parts.
The first pertains to the conventional plastic analysis to
evaluate the collapse load. The second is associated with
deflections at critical points which can become important
for some structures. Thirdly, the hinge rotation requirement
is computed for the beam described in Figure 2.2a. The
fourth recommends the required rotation capacity of plasti-
cally designed structures from analytical studies which are

performed in this part.
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The last part pertains to the comparison of measured
and predicted curvature at the interior support.

(A) Calculation of Maximum Loads

These have been‘calculated on the assumption that
mechanisms will develop at collapse. Figure 2.2(c,d) shows
the bending moment distribution at collapse and the collapse
mechanism for the three span beam. For the type of loading
shown, the computed ultimate load Pu = Mp/7.5[kips], where
Mp is in kips-inch.

| (B) Calculation of Deflection

This part presents a method for computing the pre-
dic;ed deflections of a simple beam and the three span beam.
These computed values are compared to test results in Chapter
4. For the simple span, the deflections were calculated
by assuming the nondimensional moment-curvature relationship
in the computer program for the determination of the shape
of load-deflection curve. For the three span beam, the
idealized moment-curvature relation is assumed and the shape of
the load-deflection curve is determined by the two points of
deflection, at yield load and at ultimate load.

(a) Simple Beam Case

By assuming that the plastic hinge occurs at midspan,
the conventional slope deflection equations are used to
determine midspan deflection just at ultimate load.

The following form of the slope deflection equations

will be used, the nomenclature being as shown in Figure 2.3a



with clockwise moment and angle change being positive

M
_ F 8 L _ BA
%8 %8 *t 7t 3ET M T T -
The quantity ¢ABF is the slope at end A due to a

similar loading of a simply-supported beam.

The equation for member 2-1 in Figure 2.3b is

_, F _ 8§ 2 _ 12
%21 = %31 *t gt 3Er My - ) -
Now
P
Bonl = = A 2 (2b% + b _ 3b2) (From Reference 10
?21 6 EI ) U Reheloues 5. i
L p L F .
\ When Mp = (E)a the expression of ¢21 is then given by
\\\'\ - M 3
TRe T = - _E-_ l ?_... -_ 2
~a %21 gET al bk = W) .

Substituting this expression of ¢21F and using the

condition that ¢21 = 0, the solution can be expressed as

follows
M 3
= - P 1 b~ _ 4,2 s . 2 -
%21 §ET al%bt + 3 3b7) + : *aEri ) =0
M2 3 M2 2
= R L2 b” _ 3p2y7 = P2~ b™, .
§ = gElz— + zz(2b2 + 3 3b9)1 = E(3- + ab + 3]

13

. 102).

Using this expression and assuming the nondimensional moment-

curvature relationship, the deflection can be expressed at

any step in loading. This is done in the computer program

in
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Appendix 1.
For the beam of the dimensions a=30" and b=38"

2160 M
El

(b) Three Span Beam Case
It is shown in Figure 2.2 that the first hinge is at 1.
The nomenclature of the slope-deflection equations is as
shown in Figure 2.3a with clockwise moment and angle change.
The expression below takes this into account and for member

2-1 in Figure 2-4

led]

F 1 F
7%12

H

.
3EI

u —
9310 5 7 91 L (Myy = M) -

Using the condition that ¢21=0, the solution can be expressed

as follows

M 3 M 306 M
o ol b 3%y~ i Bopr - By B Ao iR
d GET a(?P* + =p - 367~ 53 gerPt - Tt ¢t wmr(Mptr)
M_ 2 3
= B+ 2 b _ 3p2
5, = gol%z + g=(2.5bL + 2= - 3b%)] .

To give quantitative values to the above dimensions
as chosen which are representative of tests described in

Figure 2.2

Load-Deflection Curve for Three Span Beam

Above the yield load, Py, the slope of the load-
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deflection curve is the same as that of a simple beam
(Figure 2.5). For deflection purposes the approximation
can be used that at point 1 M, N M.

For the type of loading shown in Figure 2.2

2160 MP AP

= ( :
AB EI P
Y

)

where Py' Ry Py with the approximation that My ~ Mp.

The quantity AP may be obtained as

M M
— -p' = - .—E: —E
AP Pu Py (4-3.08) T 0.92 T
Thus
M M
- _p(0.92, _ P .
aAB 2160 EI(3.08) 645 ET '/

and the corresponding approximate yield load

P._-AP
u

It is of interest to see whether or not the method
given herein will predict actual load-deflection relationship.
with a sufficient degree of accuracy. Although the agree-
ment between the theory based on idealized behaviour and
the tests is by no means exact, it is considered adequate in
view of the fact that the effect of residual stresses, stress-

concentrations, and the gradual plastification of the cross-
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section have been neglected in the theory.

(C) Calculation of Permissible Hinge Rotation

The rotation capacity characterizes the ability of
a member to absorb rotations of near-maximum plastic moment.
This capability is necessary for redistribution of moment
in the continuous beam. The transfer of moment to point 2
is only possible if the plastic moment is maintained at the
first hinge to form at 1 while hinge 2 is developing in
the beam.

Local buckling may limit the rotation capacity of
a section in which case the beam would be classified as
non-compact. Only compact sections are those in which no
such loss in moment resisting capacity results during build-
up of moments at other sections.

The rotation capacity requirement is a function of
the applied loading and the geometry. The plastic hinges
at the supports will require a considerable amount of
rotation -- enough to allow the load to increase. The
hinge that will form at the center span of the beam requires
no rotation capacity requirement since that hinge is the last
to develop in forming a mechanism.

The maximum rotation requirement for the three span
beam loaded as shown in Figure 2.2 is obtained from the angle
change ¢12—¢10 at support 1.

The hinge angle H, will be equal to the change in

slope at that section as shown in Figure 2.4.



The slope-deflection equation for member 1-2 in

Figure 2.4 1is

g %

_ F 4 F B} 2l
012 =~ b5 * 30y 7+ 3ETMyp73Myg)
M 3 ‘ 3 S M
=.p 1 byl b~ .2 w2 4R
zEr 21 (b2-=p) +5(2b2+=5-3b")] + —¢ + 3==( Mp+ =)
8 M & M 3
=2 _ p L, p 1 b 3,2
912 T = “E€ET T EET a'2Pi-3p3P7)
The quantity du is known
M ,2 3
= Br& 4 2o spae3p2
8, = sl~z + z=(2,5bi+53~3b7)] .
Therefore,
M_ b
B w2 B
12 ~ 7 "EI
M_ ¢

The angle change ¢10 = -%ET and the hinge angle

(.75b—.33cmP
Hy = 07,7919 BT .

For the three span beam loaded as shown in Figure 2.2

H, = 14.5

=

This equation may be nondimensionalized by dividing both

sides by Kp%, giving

H
A
— = ,213
)
KP

17
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This cannot be compared with the criterion that the
section can be capable of rotating to the rotation capacity
requirement, because all of the rotation occured at a point.
The yield zone is distributed along the beam with strains
varying all the way from the elastic limit and further beyond
this limit into the plastic region. An approximate com-
parison may be made by computing the average unit rotation
KA’ on the basis that the total rotation is divided by the
hinge length -- the length along the beam in which the
moment is greater than the yield moment.

Computation of the Hinge Length for H.S.S.

The hinge length for a simple supported beam (Figure
2.6) applied to a solid rectangular cross-section is L/3,
where L is the beam length. This length results from the
shape factor being 1l.5. For a wide-flange beam possessing
a shape factor of 1.14 the hinge length is li%%%iL = 0.12L.

For HSS the average shape factor is about 1.25 and
thus My=0.8 Mp. T fol;ows then that the hinge length
becomes 0.20 L.

For the 3 span beam of Figure 2.2 the hinge length
must be computed in the neighbourhood of the interior
support. Since the moment changes are so rapid the value
employed for a simple supported beam is not applicable.

Figure 2.7 shows that the hinge length is 0.2c+0.la at

incipient collapse.

Thus AL = 0.2¢c+0.1la = 11.4 inches .


http:0.2c+O.la
http:0.2c+O.la
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The average rotation

! "p
KA = i = 1.27 BT

=

A _
or = 1.27 .

e}

The yield zone must absorb a subsequent average
rotation that is 1.27 times the value at the elastic limit
for this loading and this geometry.

(D) Recommended Rotation Requirement in Plastic
Design

In order to determine whether the delivered hinge
capacity of a given member is adequate, it is first necessary
to know the hinge capacity required to form a mechanism in a
particular structural situation. Analytical studies have
been performed to determine maximum plastic rotation re-
quirements for practical structures.

Kerfoot(lz) has analyzed the symmetrical 3-span beam
subjected to point loadings shown in Figure 2.10. The length
ratio, o, and the load ratio, B, Qefe varied in this study
to provide a range of situations in which plastic hinge
rotations were required both in regions of constant moment
and of moment gradient. This study indicated that, only
for very extreme values of o and R would the required hinge
capacity at any point exceed KpL, where Kp = MP/EI and L is
shown in Figure 2.10.

Driscoll(l3) has presented the symmetrical 3-span
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beam subjected to distributed load. Figure 2.11 presents
some of the limiting values of‘H/KpL obtained as a result of
that study. The largest required plastic hinge rotation is
0.425 KpL for this structure.

An analysis of frames(lz) has indicated that the
largest required plastic hinge rotation for a single span
rigid frame such as that shown in Figure 2.12a is 0.475 KPL
when a=0.2 and the value of C is in range 0 < C < 1.0. For
a gable frame in Figure 2.12b, this rotation is 1.05 KbL in
the rafter for 0 < C < 0.5. In more complex structures the
theoretical hinge angle required to form a mechanism may
be rather large(l3). However, it has been shown that, for
such structures, a load close to the ultimate can be attained
with much smalier hinge rotations. This is illustrated in
Figure 2.13, taken from Reference (15). The load, P, non-
dimensionalized as P/Pu’ is plotted against the plastic

rotation, © of the first hinge to form, represented non-

H’
dimensionally as @H EI/MpL. The structure considered is

the two-span portal frame shown in the inset. The hinge
angle at formation of a mechanism is 1.52 MpL/EI, but 98%

of the ultimate load is reached at a rotation of 0.54 MpL/EI.
Since the attainment of 98% of the calculated ultimate load
would be cdnsidered satisfactory for design purposes, it is
concluded that practical rotation capacity requirements need
not be related to the large theoretical rotations encountered

in highly redundant frames(ls).
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These analyses can be used to estimate the required
rotation capacity of plastically designed structures. The
recomménded value 6f 4 for plastic rotabison requiberent in
plastic design would be considered satisfactory to form a
mechanism.

(E) Comparison of Measured and Predicted Curvature

A comparison of measured curvature K at the support

@ agrees with the average K, over the hinge length and with

A
the value of 0=4 as proposed is shown in Figure 2.9 for

cold formed HSS-6.x4.x.437 of test No. 12. The assumptions
for test comparisons are shown in Figure 2.8 and the ex-
planation of this is given below.

Curve @) of Figure 2.9 does not take into account
the influence of residual stresses for reaching Mp at the
last formed hinge. The curvature Kp=920x10“6 in"! at point @
of Figure 2.7 assumes the predicted M-K relation (simple
plastic theory) and the corresponding measured curvature K
at point @ has a value about 2200x10° in™! which is 2.4 times
of Kp. The change of curvature over the hinge length is
shown by the dot-and-dashed curve in Figure 2.9.

A more realistic curve for comparison is the one
labélled(E)which takes into account the influence of resi-
dual stresses. With the curvature ﬁb=1100x10—6 in"t at
@)Mp calculated by the simple plastic theiry is reached.

The corresponding measured curvature K at point @ reaches

a value about 3500x10™°% in~! which is 3.8 times Kp.
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In Figure 2.9 this curve is shown by the full line.

The standard calculation omitting residual stresses
is computed in Section 2.12(C) by the average rotation
method and the recommended rotation requirement in plastic
design is also shown in Figure 2.9 as lines @.

This example shows that the actual curvature at a
support is about twice that of the average curvature over
the hinge length. The higher peak of curvature is due to
residual stresses in the HSS since these stresses flatten
the M-K relation earlier than anticipated. The plastic
moment Mp at point 2, the last hinge to form is reached
with this higher curvature than in the section free of re-

sidual stresses.

2.2 Instability of Fully Plastic Square or Rectangular
Beams

Failure due to plastic instability is considerably
more likely when the average strains are in the strain-
hardening range since the buckling stress is a function
of the tangent modulus.

The performance of such a beam can be illustrated
by a load-deflection curve or by a moment-curvature relation-
ship such as in Figures 2.14 and 2.15. Both of these curves
are typical of properly behaved beams in terms of plastic
design.

The plastic moment Mp is reached and maintained

through a considerable deformation. The moment Mp is
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maintained by the beam for an average plastic rotation of
about 4 times Kp before the plasti¢ hinge behaviour is
terminated by unlcadihg. The c#use of unloading in this

beam was due to the formation of a local buckle in the
compression flange. The mechanism of failure so described

is typical of HSS beams with a high plate ratio of compression

flange.
2.21 Description of Behaviour Related to M-K Relationship

The behaviour of a typical rectangular HSS beam in
the pléne of bending is shown in Figure 2.14 where the moment
M is plotted against the curvature at the center of the
beam. A standard test description follows.

At first the response of the beam was elaséic, as
can be seen by the linear M-K relationship. Elastic be-
haviour was terminated when the sum of the bending stress
and the residual stress first reached the yield stress. If
no residual stress were present in the beam linearity would
have been extended to My, the yield moment. As more and more
of the material in the constant moment region yields, the
resiétance of the beam to further load increases was reduced,
so that finally no additional load could be carried. This
locad occurredwhen the tangent to the M-K curve became
horizontal at a moment equal to Mmax' slightly larger than
the plastic moment. The curvature corresponding to this

ultimate load is a few times larger than the curvature at
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initial yielding.

As soon as Mmax was attained, local buckling of the
compression flange was initiated. During this deformation
the initial shape of the cross-section was distorted as
shown in the photograph in Fig. 4.38. Unloading became
significant when local buckling in the most strained compres-
sion flange was clearly observed.

The photograph in Fig. 4.38 shows the final deformed
shapes and local buckles in the compression flanges of a
number of beams.

The test just described represents a fairly typical

beam history. A number of other possibilities will be de-

scribed below.

2.22 Possible Load-Deformation Curves

Some idealized load-deflection curves are shown in
Figure 2.15.

The solid curve OAB corresponds to the case of a
compact section where no local buckling occurs. This is an
ideal condition seldom reached with compact sections. The
situation described above for the test beam is given by curve
OAC. Load-deflection curves are often idealized by the elastic
portion OAD and a plastic hinge region DB.

Curves OAEF and OAGH represent situations in which
local buckling influences are more significant and occur

after some portions of the beam have yielded. To classify
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a section as compact sufficient deformation must be attained
at a load greater than or equal to that causing Mp. When
the load decreasesbelow that value the section is carrying
a moment less than Mp. Thus, the curve OAEF may represent
a section which is compact or non-compact depending on the
rotation criteria specified to transfer moment for the for-
mation of another plastic hinge. The curve OAGH is the
typical load-deflection curve of a non-compact section and
the curve OIJ is typical of local elastic buckling. In
Figure 2.15 we have shown the best possible performance of
beams (curve OAB) and we also have shown how actual beams

fall short of this ideal.
2.3 Elastic and Inelastic Buckling of Plate Elements
2.31‘Beam Behaviour

Three major ranges of beam behaviour are shown
schematically in Figure 2.16:
i) the range in which full plastification is
possible,
ii) the range in which the resistance to buckling
is impaired by partial yielding and
iii) the range in which the capacity is controlled
by elastic buckling.
The three ranges of moment capacity for HSS are
dependent on the plate slenderness, which controls local

buckling.
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In the first range, local instability of the fully
plastified section limits the deformability but permits
attainment of the full plastic moment. Beams suitable for
use in plastic design are therefore selected from this
category. 1In the other ranges neither full moment capacity
nor adedquate deformability exists, and those members can
only be used in allowable stress design.

The important fact for design are the relationships
between the moment capacity and the geometry of the section.
These relationships are entirely a function of instability
and they cover the geometric requirements for behaviour which
are needed for plastic design. Thus, the problem is to find
for compact sections the maximum permissible ratio b/t of

plate elements of the compression flange.
2.32 Local Buckling of Plate Element of Beam

The fundamental differential equation expressing

equilibrium of a plate under the action of forces in its

median plane is(z)
4 4 4 2 2 2
(lﬁiz) (gxg + 2 axgazz + :yZ) + t(o,, %;% + o, %—% + 2uxy§§—%§)
(1)
where w is the transverse deflection
Oy and oy are the normal stresses
ny is the shear stress

t is the thickness of the plate
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Vv is Poisson's ratio, assumed 0.3

and I = t3/12 is the moment of inertia

If only a uniformly distributed compressive stress
Oy exists and Gy and ny vanish then eg. (1) assumes the

simplified homogeneous form

4 4 4 2
EI d°w W 9w _
(1—v2 ( 7t 2 5 + 4) +to it —5 = 0 . (2)

)  9x x93y 3y 9x

This eqguation is valid only within the range of
Hooke's law and has to be revised when Oy exceeds the pro-
portional limit. Beyond this point the effective tangent-

modulus ES is assumed to apply in the x-direction while in

t
the y-direction Young's modulus E remains valid. We thus
assume anisotropic behaviour of the plate when the critical
stress O lies above the elastic limit.

Let T = Est/E and the factor ET must be substituted
for E when O exceeds the proportional limit.

Thus equation (2) becomes

4 4 4 2
EL (v 28 4 27 —3 9 i 9 + ot 2% =0, (3)
1-v 9x ax"ay oy Ox

The appropriate expressions for the moments are

BEI 82w 2

o w
M, = - {r + WT —%)
® 1—v2 ax2 ay2
(4)
2 2
Y 1-v 9x A%

*
M in thissection only relates to the y-axis as shown in Fig. 2.17

avoid confusion with the yield moment.
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General Solution of the Differential Equation

The solution of the partial differential equation (3)
must satisfy the boundary conditions on all four edges.

Now we will consider initially only B.C. on the loaded
edges. The condition of simple support on the loaded edges

is assumed and requires

w =0
2 2
M, = - S 2% v wr 28 =0
1=9 oxX Ay

The former condition necessitates that 82w/ay2 must

be zero, and the boundary conditions become

Bzw
w = 0 and e tha 0o . (5)

ox
The differential equation (3) and the boundary condi-

tion (5) are satisfied by the expression

w =Y sin Egi {n = 1, 2, 3 wee)

where Y is a function of y to be determined.
Upon introducing this expression into the differen-
tial equation (3) and concelling sin EEE we obtain the ordin-

ary differential of the fourth order

4 2 ot
X -2 ®h2 1+ 2D - & EDH %y = 0 (6)

ay*? dy?

where Oy is replaced by Or the unknown critical longitudinal
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stress at which the plate buckles and

Introducing the dimensionless parameter

ot
2 _ ¢ a2
vt o= 57 () (7)

the differential equation (6) assumes the form

4 2
i -2adEh? g+ @D a-uPy =0 . (8)
dy dy

The solution of this differential equation together with
the boundary conditions determines the parameter u which
by (7) leads to the formula for the critical stress

_ ,nm,2 DTt 2
oy (==l £ ¥ - (8a)

The general solution of equation (8) is

Y = C, cosh kly + C

1 sinh kly + C3 cos k2y + C4 sin kzy

2

where kl and k2 are defined by

v
ky = E-:- %t /T and ko ‘= -’3—2— e (8b)

The general solution of equation (3) is

_ s DUX ; .
w = sin —g—(Clcoshkly + C 51nhkly + C coskzy + C431nk2y)

- (9)

2 3
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The constants C, to C, are to be determined such that

1 4
the boundary conditions at all edges will be satisfied.
The physical features pertinent to the above mathematical
formulation are shown in Figure 2.17.

If we assume equal elastic restraint by both web
support edges, the deflection w corresponding to the smallest
value of 9 is a symmetric function of y, and the terms C2

sinhkly and C4sink2y in equation (9) wvanish.

Thus equation (9) simplifies to

_ ... nTx .
w = sin —g—(Clcoshkly + C3cosk2j) ‘o (10)

To determine the constants Cl and C3 we invoke the

boundary conditions at the unloaded edges

il
o

(w]
_+b
Y—*f

(11)
b= .

The first condition expresses the assumption that
the edges y=tg remain straight when the plate buckles. The
second one is a condition of continuity which indicates that
the angle of rotation Yy at the edge of the buckling plate is
equal to the angle of rotation U of the restraining web plate
which is rigidly connected.

Now ¢ and ¥ must be expressed in terms of the deflec-
tion w. The bending moment My per unit length is proportional

to the angle V.
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This elastic restraining condition can be expressed

by

M, =-F 7 (12)

where £ is a factor depending upon the dimensions of the
restraining plates, assumed constant along the edge.

From equations (4) we have

azw azw
M, = D=y + WT =] . .
Y oy ox y=t§
5%w !
Since - 0 this equation reduces to
90X
2,
My=-D[§—‘%] - (13)
oy” y=d5
Substituting into equation (12)
2
- D"
V=205 -
£ 3y” y=¥3
=+
But P —[ay s
y=t3

It is convenient to introduce £ a dimensionless number

defined by
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e=22. (13a)
£
2
Thus (2w ¢ b . 3w, =0 . (14)
By T 27 7 b
p)

The parameter £ is a function of the dimensions of
the buckling and restraining plates and can be referred to
as the coefficient of restraint. Theoretically £ can assume
values from 0 to =. When £=0 the plate is completely fixed
at the edges a, and when &=«, it is free to rotate about
these edges. 1In the case of hollow structural sections this
coefficient can be determined from the properties of the
section and lies bhetween the extreme values £=0 and &=,

Introducing the general form (10) into the boundary

conditions (11) and (l14) yields two equations

[Siey
H
o

b
Cl cosh k1 =+ C, cos k

2 3 2

; b ; b b 2
(C,k.sinhk, = - C.k 31nk2 5) + £ i(clkICOShk

b 2
¥y 13 3K 3 ~ C3k,cosk

i 32 2

Nonzero values, of these homogeneous linear equations,
for C1 and C3 result only when the determinant A=0. This
gives rise to the stability condition which leads to the

solution for the critical stress, i.e.

k, tanh k b + k., tan k b

b, 2.2, _
1 13 2 2 3+ & glkitky) =0 . (14a)
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To normalize equation (l4a) it is convenient to in-

troduce the ratio B= 5 into equations (8a) and (8b) to give

_l_am Dt 2
% = 2 (%) = - (15)
b nmw
5 o BT &= o7
ky 272 YT 7w
. (16)
b _nrm 4-
kzi—ia‘ft—ul
Consequently, the stability condition (l4a) becomes
4
YIFL tanh(2 Vil n-/" + /- tan(1T n-g“
atvT
+ mE u = o . (17)

This equation defines the relation between the para-
meter u and the ratio nQV?/B.

Introducing &=« into (17) we obtain the stability
condition for a plate simply supported along its edges.
The hyperbolic function assumes values only between +1 and

-1 and can simply be added to the absolute term.

4
Thus tan(% Yu-1 n-g?) = = o ,

The smallest root satisfying this equation is

4
— nvT _ T
sl =g 3

NTE!
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and TR N { )T .+ 117 . (17b)
niv7
2 Bt>
Substituting u~ and D = —— into (15) we get
12(1-v7)
T2EVT t.2 , B . naT,2
o = ——————3—-(5) ( ) + B ) R (18)
12 (1-v°) n T '

The iny unknown in equation (18) remaining to be
found is n, which indicates the number of half waves in
which the plate buckles in the x-direction. To find this
number of half waves for a given aspect ratio o we proceed
as follows: For sufficiently short plates, i.e., for small
values of o, buckling will occur in one half wave. Above
a certain ratio o two half waves will be formed. For the
limiting ratio at which there is the transition from one
state of equilibrium to the other, i.e., when both cases
are equally possible at the same buckling stress Ot equation
(18) will yield the same value of O whether we introduce
'n=1 or n=2. In the same way it will be possible to deter-
mine the limiting value of B for buckling in two or three
half waves. Thus we can find the limiting ratio B at which

either n or n+l half waves can occur from the equation

— 4 = 4
B, nvT _ B +(n+1)_~fr‘

e E el W7 3

It follows that B = QV? /nin+l) .
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For n = 1, 2, 3, ... we have B/&7 = vZ, /&, Vi2, ... .
In the elastic range when 1=1, the number of half

waves becomes independent of the nature of the material and

the buckling occurs in one half wave up to B = % = 1.414

and from B = 1.414 to B = 2.449 in two half waves. For long
plates the length of the half waves approaches the width b.

If t=1, equation (18) takes the form

2 2
B et (23° (E 5 %)2 = ___E_EE_
12 {1~v")

C lz(l_vz) b n

(%)2 k (18a)
where k is defined as the variable part of L in (18a) and
is plotted as a function of 8 in Figure 2.18.

Returning now to the general buckling condition (17)
for elastically restrained plates, we find that the trans-
cendental form in which p depends upon B/néV? is inconven-
ient for applications. 1In the case of the simply supported

plate just considered we have found an algebraic expression

(17b) for uz, namely,

p? =1+ 29 48 )2+ (—Z§~)4 .
n+vt n~T

It is possible to express the relationship between
u2 and B/nQV? defined by equation (17) approximately by a
similar algebraic expression. With én error of less than
1%, the values u2 can be computed for different restrain

conditionsemploying

p? =1+ p( 45 )2+ al 48 )4 (19)

n T n=/t
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where p and g are factors depending on the coefficient of
restraint §£.

The factors p and g were computed for various values
of £ from the exact stability condition (17). Figure 2.19
shows p and q plotted against £.

Substituting the expression (19) into equation (15)

and introducing D = Et3/12(l~v2) and a = Bb is obtained

2 r— 4
o = TEYVT (52 (nYT2 0 B2y (20)
©  12(0-v%) P . nd/z

This equation for e is valid for all possible values
of elastic restraint.

Introducing the notation
ndyT

T B 2
o B L .
n-vTtT

k = ( (21)

the equation (20) assumes the form

2
o, = _ﬂ~§_£§~ (%)Zk . (22)
12 (1-v7)
The wvalue BO for which Oa reaches a minimum and upon
which the design of long plates can be based is found from

BOC
35F 0, namely

_ 4N
BO = nwé;.

Substituting BO in equation (20) we get

condition
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2 2
Min ¢ = _E_E_ﬁg_ (%)2 (p+2q) = _E_E*ﬁgﬁ (g)zk (23)
12(1-v°) 12(1-v7)

an expression independent of n. The plate coefficient

k =p + 2/g ’ (24)

becomes independent of T. This is important since it permits
the use of precalculated values for the coefficient k which
are applicable in the elastic -and inelastic ranges of
buckling.

The limiting cases on the unloaded edges are shown
in Figure 2.20. Note that the clamped edge case predicts
critical stresses 1.74 times the simply supported regardless
of the tangent modulus value.

Determination of the Coefficient of Restraint

When the cross-section distorts, it is assumed that
the webs remain vertical up to a certain height. It is
assumed in this analyses that the webs, between the com-
pressive flange and the neutral axis, are acted upon on both
unloaded edges with one edge simply supported and the other
fixed. Thus the half wavelength ¢ is assumed for webs to have a
value of 0.4 4 as indicated in Figure 2.21. Each of the
restraining webs of width c is acted on edges by moments My
per unit length. It can be inferred from equation (9) that
M. must be proportional to sin(nmx/a) where a is the length

b4
of the plate and )\ =a/n the length of a half wave. The
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distribution of My along the edges a is sinusoidal as illus-
trated by Figure 2.21. Each panel between two straight

nodal lines n-n represents a plate simply supported on all
four edges and loaded symmetrically on two opposite edges

by the variable moment My per unit length; Under the assump-
tion that no compressive forces are acting on the restraining
plate, it is possible to develop the-following expression for
the angle of rotation ¥ as function of My.

The deflection w of the restraining plate can be deter-
mined from the differential equation (3). Due to the assump-
tion ox=0 the last term of this equation vanishes, but we
allow for the effect of the anisotropy produced by com-
pressive stresses Oy above the proportional limit by re-
taining the coefficients T and /?_in the first two terms of
the differential equation.

For the loading condition considered here the

deflection w can be expressed in the general form

o 4z LS o5

4 e, o
w (C; sinh ;ﬁE&EX.+ c Y_ 4+ ¢, ¥ sinh

2 A 3

4 —
+C, Yy cosh :ZZTEX)
in which C1 to C4 are constants which are defined by the

given boundary conditions. When the four sides of the

plate are simply supported, the expression for w becomes

- - 4 - - frr =
w = cz (£ cosh T Wiy_C) + (1-Y) cosh ;ZEXEX
27D'sinh (/T my/)) € =
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4 =
sinh (W7 w¥/)) + sinh ;ZE_E%X:EL
- 1] M .
sinh(éJ? Ty/A) Y
Using J = (92)—5c leads to equation (25)
Yy Y
- A1 YT T oo 47w/
Yy = - —z———— T tanh 5 [1 + 7 1 M
2%/7D" sinh (Y7 ne/n) Y
_ 4 _ . '
A T ¢
= - P4 ( ) M (25)
24/ 1 A Y

where pl indicates that the ratio of the moment My to the
rotation ¥ is constant along the edges, ¢ and tcvare the in-
flection point distance and the thickness of the restraining
plate, D' = Etc3/12(l—v2) the flexural rigidity of the
restraining plate and A the length of the half wave of the
buckling plate.

For the sake of simplification we assume XA = éV?b which

is for freely supported edges.
Thus, the term (25) simplifies to

T = ~ &
w e 2D pl(b) My .

In Figure 2.22 p, is plotted as a function of 4—\/?c/)\= %.

From equation (13a) and (12) the coefficient § is

obtained

Now we must include the effect of the longitudinal
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stress o, on the stiffness of the effective width ¢ of the
restraining plate. It can be done approximately by multi-

plying expression (26) by the factor

r = 2 .

1- (t2c2/tczb2)

This expression exactly satisfies the conditions
which control the limiting cases an r ard therefore £ becomes
infinite when t/b = tc/c, in which case both plates are
simply supported without restraint. When, owing to high
rigidity of the restraining members, t2c2/tczb2 is very
small, r approaches unity, which is correct, as in this
case no modification of equation (26) is required.

Introducing the expression r as a factor in equation

(26) finally leads to

Q
tc 1-(t%c /tc b")

This equation applies when % < 1 and t = tc.

e
Thus £ = —~—g—- = Apl . (27a)
b
The plate coefficient k can now be determined between
the limits indicated in Figure 2.20. It is given with the
aid of the diagram for Py in Figure 2.22, the values of the
parameters p and g can be read from Figure 2.19. This

permits computation of the factor k = p + 2/q, required to



41

determine . from equation (23). Discrete values are tabu-
lated in the last column of Table 2.1. In Figure 2.23a k
is plotted as a function of d/b. Some typical examples of
the effective restraint provided by the webs of rectangular
HSS to top flange buckling is given in Figure 2.23b.

Determination of the Critical Stress in the
Inelastic Range of Buckling

The critical stress o, of long rectangular plates,
loaded longitudinally by compressive forces may be com-
puted from equation (22) where k is independent of t. 1In
the elastic range of buckling, when t=1, the critical stress
o, can be directly computed from (22). In the inelastic
range T, which depends on Ot is an unknown quantity. There-

fore equation (22) is given in the form

F
_ T E t,2

-
/T 12(1-v4)

Q

We can precalculate the values 0, @s function of
oc//? for steel with an assumed proportional limit cp and
a yield strength Fy. Such functions can be cqmputed from
T-values, which are given by the expression

(F -oc)cc

" (29)
F _-0_)0O
( y P) p
For calculation it is convenient to provide a table

of the t-values computed from equation (29) and the corre-

sponding function of oc//.. For steel take a yield strength
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F, = 55 kips/in? and anassumed proportional limit 0 =48 ksi.
This proportional limit was based on results of tensile tests
in Chapter 3. Such a table for thése values is given as
Table 2.2 where the t1-values are computed by the expression
(29).

In Table 2.2 it can be seen that for a t-value of
0.1 the yield stress FY can be reached at the correct strain
of 0.5%. The corresponding buckling stress O is about
0.99 Fy and thus the designed t1-value of 0.1 can be considered
reasonable for calculation of the critical b/t ratio for a
compact section in allowable stress design. To this Tt-value
of 0.1 the corresponding value of oc//? is 200. From equation

(28) this critical ratio for b/t can be calculated as

b _ n%E X YT, _
el B el S B
12 (1~v™) c
where E = 29600 ksi
v = 0.3
k = 5.8 for square section (Figure 2.23b)
o
and -£ = 200 ksi.
VT

For a compact section in plastic design the ratio of
Est/E = %3 for the required plastic rotation of 4 can be used.
To this value of T the corresponding value of oc//? is 350 ksi
and the critical ratio of b/t using the dimensions above and

equation (28) is
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|

5 .
= ,/————-—“ Bk . (5= 21
12(1-v7) c

= 350 ksi .

Q

where ..

A
It is expected that the ratio of b/t less than about
21 adequately defines a compac£ section with a plastic ro-
tation 4 times the elastic rotation and that for a ratio
higher than about 28 a compact section in allowable stress
design can be defined.

Application of the Plastic Theq;y’to Inelastic Buckling

Plastic design methods assume that local buckling
of flanges will not ocecur during the formation of plastic
hinges. Such conditions-made the re-examination of the
i problem of plate buckling in the inelastic range necessary.-
The flangés must be able to sustain strains'coﬁsiderably
largér than the yield étrain and.can be compreséed Beyond
the yield'point and £or materials whiéh can be modelled by
Figure 2.24 into the strain-hardening range without buckling.
For elastic design it is considered sufficient if the yield
stress is reached without prematuré local buckling._

The behaviour of flange-plates that buckle in the
intermediate range between the proportional limit and the
strain-hardening range is largely‘governed by the presence
and distribution of residual stresses. The sum of the pro-
portional limit stress and the largest residual stress com-

ponent in the longitudinal direction is then equal to the
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yield stress. Although no direct solution of this problem
has been developed, a reasonable transition curve can be
given.

During yvielding the material changes its physical
properties, so that at strain-hardening the initially iso-
tropic material is assumed to be orthotropic -- that is, the

properties are direction-dependent.

o€

Thus X ook 9E, - X
Box Ex aoy Ey
o€ V) o€ Vv
—a—_}i =-—Y. .é_l:—._}f. (29)
cy Ey Gx Ex
MNuy o L
8ny Gt

where Ex and E_ are the tangent moduli
G, is the tangent shear modulus
v and v_ are coefficients of dilatation for
increases in ¢o_ and o
X Y
Y is the shear strain

and v 1s the shear stress .

The relationships between the increments of strains

and stresses can be written as follows

1 v
de = = do_ - 4 do
E Ey

X - X Y
v
= - .
dey Ex dcx + Ey doy (30)
=1
dny = Gt dey .
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The expressions for the bending moments and twisting
moments in terms of the deflection, w, in the direction of

the z-axis become

x T 3% 32y
M = - = ( + v —=)
X i ¥ vay - v ayz
E_ I "2 2
- Yy 3w 9w
M, = = = ( + v &I (31)
Yy 1 vxvy ayz X axz
32w
and M = - 2G, I
b:4% t xay

in which I is the moment of inertia per unit width of plate
and is equal to t3/12, t denoting the thickness of the

plate.

The condition that the bent position be in equili-

brium can be expressed by

D 84w + 2H 84w + D a4w - toy 82w (32)
x . 4 2. 2 y 4 I 2
ox 9. "9 ay X
X Y
in which
E E v_E
D.-_'..-.——z.{—- D=i.___z___. D =1__..L}£__
X 1—vxvy y vay .4 vay
v_E
s I i and 2H = D__ + D__ + 4G_ .
¥X 1-vxvy Xy yX t

From these relationships can be derived the buckling

strength.
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Equating internal and external work is more amenable to

the solution of - than is equation (32) and therefore

Bat ) 2
* IW 2 L. s w 9w, 2 K (0w, 2
PSSP ff (-.....-) dx d_‘y‘ o JJ‘ [Dx(-a‘-;‘i-) 4 Dy, (———2—) + (D__+D )

I 9x . oy Xy ¥YX
2 2 2l
9w 9w 0w, 2
X (—x) (—=) + 4G _(s0==) "1 dx dy . (33)
8x2 ay2 t 9xX9y

When an appropriate deflection surface is assumed,
equation (33) yields an approximate solution.

In Figure 2.25 the plate is assumed supported at
all four edges. The loaded edges, x=0 and x=a, are hinged,
and the edges y=t% have equal restraint against rotation
(Figure 2.25). For this case the following deflection

surface is used

w= [Br(L - %) + (a+B) cos T sin IX | (34)

The ratio B/A depends on the restraint. For elastic
restraints, with My equaling the moment per unit length

required for unit rotation,

£ = g . S (35)

Substituting w from equation (34) into equation (33)

and integrating yields

1 2 2
2,2 =+ (C, + =5)E + £°C
™t b, 2 A2 4 1 T2 3
o, = [D_ ()" + D_ (&) + (D__+D__)
(o] 12b§ XA v'b 1 + EC, + €2C Xy “yx
4 1 2
% + ECy + 52c4 % ¥ EC, + g2c4
X 7 p) + 4Gt T 5 ] (36)
T -+ gcl + £ C2 T + gcl + £ C2



47

in which C1 = 0.09472 C2 = 0.00921
C3 = 0.04736 C4 = 0.01139 .
In the limiting case when the unloaded edges y=t§
are hinged, the minimum values of o, are (£=0)
Wz £, 2
O ™ 15 (5-) (2/DXDY + ny + DYX + 4Gt) (37)

which is obtained when the half-wave length, )\, satisfying

(38)

o>
Il
[N
(W)
o

y' Vx’ Vy

several theories of plasticity are available. The

For the determination of the moduli Ex’ E
and Gt'
stress-strain law used by Handelman and Prager satisfies the

above assumptions reasonably well. The moduli by this theory

simplify to

4E E
E = B E = —--———-S-t G = ———-—---—-E
X st Yy E+3Est t 2 (1+v)
(39)
o - Est(2v—l)+E . 2[Est(2v-1)+E]
b 2E y E+3Est

The effective values of the moduli can be obtained
from an incremental stress-strain relationship. From the
average stress-strain curve for the strain-hardening range

can be expressed

G-F o-F
G B e & K(—E-X)m (40)

Y Est st
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in which Est = 900 kips/inZ,K=21 and m=2. Thus the following
values of the moduli were found to be applicable

- : . 2 _ -
D_ = 3000 kips/in D = 32800 kp/in

X y
(40a)

_ _ . 2 P .2
ny = Dyx 8100 kp/in and Gt 2400 kp/in” .

The developed expression for the buckling strength
of orthotropic plates can be applied only if all material
is strained into the strain-hardening range beyond the inter-
mediate range. Figure 2.26 shows a typical stress-strain
curve with elastic, intermediate and strain-hardening ranges.

The sections contain residual stress of considerable
magnitude in order that partial yielding will set in at an
applied stress considerably below the yield stress. The
elastic solution is valid only up to a limiting stress op
which is determined in order that the sum of the applied
stress, op, and the maximum residual compressive stress, Opv
equals the yield stress Fy' The stress op corresponds to
the effective proportional limit of the section.

The elastic buckling stress of a perfectly plane

plate of isotropic material is given by

2
5 % T"E

c 12 (1-v%)

£, 2
(E) g (41)

It can be written in a dimensionless form

| Q
lo

(42)

o]
Q
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2
b lZEy(l v7)

where o = or K E

(43)

This is valid for values of o larger than & limiting
value ap as shown in Figure 2.27. In this figure ay is
equal to the value of a at the point of strain-hardening.

o
From the point (ﬁg) and ap a transition curve must be followed

Y
to the point at which the buckling stress equals the yield
o
stress, FE = 1 (from 42).
y

The transition curve can be taken as

o : SE) a-o, o :
== =1 - [1-( (g ™ (44)
5 Fy' apTay

and the limiting value of n is suggested

n = Eﬁgﬁ:gzl . (45)
max (a 2_1)

Now we need to determine the value of a_ and ay.
Equation (42) gives the value of ap by substituting cc=op,
in which ap is the effective proportional limit. For
structural wide-flange shapes it is conservative to take
;B = 0.5 and thus ap = /2. The value of ay can be obtained
for the type of compression element; it is nearly inde-
pendent of the amount of restraint. For the plate supported
along all four edges is ay = (0.58.

The most important consideration is the determination

of the corresponding values of b/t for this point of strain-

hardening.
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We can calculate this value from equation (37) by
substituting the given values of the moduli (40a) with the
assumption that o = f&. For calculation of value F& can
be used the following consideration: The flanges will now
be considered to be compressed 4 times the elastic limiting
strain into the strain-hardening range without buckling.

Thus for yield stress Fy = 55 ksi can be computed from
equation (40) the value of F. = 60.9 where the plastic strain

b4
reached 4 times the elastic strain.

2
- T £, 2 =
Thus O = 13 (b) (Z/DXDy B ny+Dyx + 4Gt) 2 Fy 5 (46)

Introducing the values (40a) and F& = 60.9, equation (46)

yields

(adkex
A
W

[,

(=]

o

o

= 22.6 . (47)

From this analysis, it is expected that the ratio
of b/t less than about 23 adequately defines a compact
section with a plastic rotation capacity equal to 4 times

the elastic rotation i.e. 0=4.
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(a) Nomenciature {b) Deformation of Simple Beam

FIGURE 23 Deflection of Simple Beam
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FIGURE 27 Hinge Length at Interior Support
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FIGURE 28 Assumption of Formed Hinge for Test No. 12
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@ Test
(©) Standard Calculation of K,
@ Recommended Requirement bf K

~8_

A=

50 A

40 o

30 A
20 -
10 -
0 " T T ® & T T
0 Y Z] ¥4 13 V2 s 0
— 84 in. - 3'in.
@ Calculated Test @ Test
K _ 2200 _ ., K _ 3500 _.
i~ 20 " 2" K~ 92076
M K K, M K K
. K K
Point | cpniny | (x1079 PA ckp=in) | (x1079 % P
0 703 830 0°90 703 830 090
Y4 753 970 105 756 973 105
Yo 802 | 1150 1'25 808 | 1155 126
3 852 1440 1'57 864 1550 1'68
7 902 | 2200 240 914 | 3500 380

FIGURE 2'9 Measured and Calculated Curvature at Support
for HSS-6'x4x437 of Test No.I2
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FIGURE 210 Three Span Continuous Beam
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dp | /b | & | A § | » q k
04 L |F16.222 | eg(27) | =gA FIG.2'19
0 0 0 0 0 250 500 697
02 008 | 0072 008 0006 242 480 6 80
0% 016 | 0144 0164 0024 | 232 445 654
06 024 0216 0255 | 0055| 225 405 628
08 032 028 0357 010 2'19 370 604
10 040 | 032 0476 0152 24 332 579
12 048 0 34 0623 | 0212 2°10 300 556
14 056 | 036 0817 0294 208 2'70 5'37
16 064 | 037 1085 | 040 205 235 512
18 072 | 038 1'50 057 204 208 493
20 080 | 0 38 222 084 204 1'78 471
22 088 | 0375 391 146 203 1'46 445
2% 09 | 037 12°00 443 201 116 417
25 1700 | 037 co oo 200 1'0¢C 400
TABLE 2’1 The Plate Coefficient k
ke, = L _k_P_]

éc I-na T T ﬁ in‘

480 100 1°00 480

490 0875 0935 52'5

500 0'745 0862 580

510 0607 0780 654

520 0464 0680 76°5

530 0315 0561 945

540 0160 0400 135

548 00326 0181 303

TABLE 22 Dependence of &: on the Ratio T




CHAPTER III
EXPERIMENTAL PROGRAM
3.1 Testing Material

HSS are manufactured by ﬁwovmethods; sections up to
16" periphery are hot formed by the continuous weld process;
larger sections are cold formed by the Electric Resistance
Welding process.

Sections for the test series were selected to pro-
vide a range of flange slenderness ratios of b/t for compact
and non-compact sections. The square, rectangular and
round sections are indentified by examples such as those in
Figure 3.1.

A summary of the geometric properties of the sections

'tested is given in Table 3.1.
3.2 Material Properties

The hot formed sections are manufactured from
Columbium High Strength Steel with a low carbon content;
the shapes of their stress-strain curves are similar to
those for cold formed sections.

A typical stress-strain curve obtained from a tension
test is shown in Figure 3.2. The yield stress Fy is the

stress corresponding to a total strain of 0.5 percent, which

66
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is easily obtained in routine spot checks in the steel in-
dustry. This stress usually corresponds closely to the con-
stant stress at yielding and is close to the stress obtained
by the conventional 0.2% offset (0.002 in/in) or plastic
strain method. The simplified stress-strain curve for an
analysis by computer is given by the idealized yield stress,
YS, the modulus of elasticity, E=29600 ksi, and the strain-

hardening modulus ES obtained by tension tests.

t
Table 3.2 summarizes the material properties obtained
from tension tests performed on coupons cut from each of
the sections. Figures 20a, 22a, 4a ... show the stress-
strain curves for the flats, corners and weld coupons of the
cross—-sections. The locations from which the coupons were
taken are shown in the inset of figures. In Table 3.2 is
given for these coupons: area of their cross-section, the

ultimate load Pm , the ultimate stress Fu and the yield

ax
stress Fy’ For the cold-formed sections are calculated the
average yield stresses Fya' The last two columns prescribe

the values of the simplified bilinear stress-strain relation-
ship for an analysis by computer. Plastic strains are pre-

sumed to begin at stresses greater than YS in the simplified
model sheown by the dash-dot straight line in Figures 20a,A22a, e

The tests were performed in a hydraulic testing
machine using tensile specimens conforming to ASTM Specifi-

cation A 370-65(14). For the first five tension tests the

strain rate was reduced to zero for a short period before
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taking readings, so that the values were the "static" yield
stress. In the above procedure it was observed that leaking
of hydraulic fluid occumed and tlierefore there was a great
influence on the drop of the tensile strength. Thus, the
other tension tests were performed at a common constant
"slow" strain rate of 100 micro-in/in/sec.

The value of Es was obtained by graphically measur-

t
ing the approximate slope of the strain-hardening branch
of the recorded stress-strain curves.

In Figure 3.3 is shown a typical variation of yield
stress of cold-foraéd sections from corners to flats. The

average yield stress Fya based on appropriate flange area

weightings is given by

2A F.__+A_F

F = _Ccyc fyf
va 2Ac+Af )
where ch = the yield stress of corner (.5% total strain)
Fyf = the yield stress of a flat (.5% total str;in)
Ac = area of corner
Af = area of flat part

It is of interest that for the cold-formed HSS used

in this test series the following average stress ratios were

found
F F F
ye _ uf _ uw _ -
7 = 1.135 = 1.128 2 1.175 ch wa

vE vE uf
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where the second subscript is defined in Figure 22a.
The overall view of all test tensile coupons is
shown in Figure 3.4. In the background can be seen the

pieces of sections from which the coupons were cut.
3.3 Testing Arrangement

a) Simple Span

The test setup was designed to confirm computed
shape factors of HSS to assess the problem of local buckling
in a pure moment domain. Figure 3.5 shows the overall experi-
mental setup. This experiment was designed to simulate
2-point loading on a simple span beam. Two equal vertical
loads were applied with a hydraulic jack midway between
load points onto a spreader beam. This load at midspan
was measured by a load cell which was located between the
jack and a ball and socket on the spreader beam. The central
part of the beam between the two lcad points was therefore
subject to uniform moment. Electric resistance strain gauges
were placed at midspan, having been mounted on the top and
bottom flanges of the test HSS; at the load points gauges
were located only on the bottom. One of the strain gauges
at midspan was placed at right angles to the direction of
bending.

The moment-curvature relationship was determined
by monitoring the loads with the load cell and the strains
by strain gauges.

The vertical deflection at midspan was measured by
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means of a dial gauge. The accuracy of the dial gauge was
+0.001 inches. Because the displacements were very large |
(usually to 10 inches), measurement of deflection was
sufficiently accurate by this method.

b) Three Span Beam

A similar loading condition applied symmetrically
to a three span beam is shown in Figure 3.6. As shown in
Figure 2.2b the magnitude of the moments at interior supports
exceeds the positive moment in midspan. As the load is in-
creased the negative moments —Mp are initiated over the
interior supports which must be maintained until +Mp occurs
in the positive moment region at which time a mechanism is
formed.

At the interior supports, the electric strain gauges
were mounted on the top flange of HSS. Two other load cells
were placed at the ends of the beam to make the structure deter-
minate (see Figure 3.6). This arrangement determined the
negative moments over the interior supports by using the
load cells at thé ends.

The movement of the exterior supporting channels
was checked by means of dial gauges. Very little change
was recorded in the readings of dial gauges from the initial
readings. Thus, this arrangement effectively restrained
vertical movement of the exterior supports.

The details associated with loading of the circular

sections are shown in Figure 3.7.
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3.4 Preparations of Beam for Testing

For the egperimentd; tHe type 6f electiic sttain

gauging used was:

EP-08-500BH-120 made by the Micro-Measurement Co.

at Romulus, Michigan.
Specifications for the gauges are as follows

Resistance in ohms : 120 %+ 0.15%
Gage factor at 75°R: 2.055 + 0.5%

Strain limits : approximately 15%.

For the gauge installation M-BOND AE-10 adhesive
was used. This is a 100% sblids epoxy system which provides
rapid room temperature cures, together with ease of handling
and mixing. The surface preparation, the gauge preparation
and installation were made as recommended in Instruction
Bulletin B-137 provided by the manufacturer.

PREPARATION OF TEST APPARATUS

It was found that the hydraulic jack and the load
cells provided accurate control over the loads when they
are calibrated before each test. The load cells were cali-
brated in the 120 kip Tinius testing machine available in
the laboratory. The calibration curves were very nearly
linear. The load cells together with the electric strain

gauges were connected to a balancing and switching box unit
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which was connected to a strain indicator.
3.5 Testing Procedure

In the elastic range of the test, the hydraulic
pressure was increased in increments to give predetermined
elastic behaviour of HSS. The load was maintained at each
of these values until all readings had been taken.

After yielding had occurred, the midspan deflection
was increased in increments to get sufficient values for
plotting a moment-curvature relationship. The flow of hy-
draulic fluid to the ram was then closed off for a short
stabilization period before readings were taken. The readings
of the electric strain gauges and dial gauge at midspan for
the deflection were recorded for each increment of the load.

The section was deformed well into the yield zone
to ensure a rotation from 4 to 8 times the rotation at the
elastic limit. For those tests in which flange buckling
predominated, the visual observations and measurements of the
progression yielding and local buckling were recorded into
the unloading range using the above procedure.

The redistribution of moments for a three span beam
was checked by the load cells at the ends of the beam. The
same constant readings of these load cells indicated the
maintenance of resisting negative plastic moments —Mp at
the interior supports until +Mp occured in the middle span.

When local buckling was observed at the interior supports,
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the readings of the end load cells decreased due to the
reduced moment resistance at the section.

Figures 3.8 and 3.9 show overall views of the test
setup. The general arrangement of the loading system for a

round HSS can bhe seen in Figures 3.10, 3.11 and 3.12.
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No. H.S.S. g No. e, rgu
& H

] 60x60x437 | 3| 17 50x50x250 |1
2 60x60x188 |3 | 18 80 x80x312 |1

K 60 x60x188 |1 | 19 60 x 60 x 188 !

4 60 x60x437 |1 | 20 1000x10°0 x375 |1

5 50x30x230 | 3| 21 35.0.0 x'150. |1
6 S50 x30x230 |1 | 22 100x 60x500 |1
7 40 x20x235 |3 | 23 100100 x375 /
8 40x20x235 |1 | 24 10075 0.D. x'500 | 1

9 25x25x210 1| 25 70 x70 x'188 !
10 25 x25x210 |3 | 26 70x70x250 |1
11 60 x40x437 |1} 27 60x60x25 |1
12 60 x 40x437 |3 | 28 40 x 40 x188 |1
13 40x40x250 |1} 29 350D x'150 |1
14 450D x25 |3} 30 400.D. x'188 |1
15 45 0D x 250 |1 | 31 450D. x'188 |1
16 70 x 70 x312 7

|
TABLE 31 Test Sections



Material Properties
#*
o i 5 E R |Loc Ari{em, Fu| 5 |Fal YS|ET
' (in) (in )\ (kp)| (ksi){ (ksi)|(ksi)j(ksi|(ksi)
f | 220|145|660|565
20a | 100x100 x 375|750 w |491 |378|770|66'5|582] 570|350
c |433|325/750|665
f 1650|396{609|563
22a | 100x 60 x'500 (100 w |655|468|714{620{588)1580|273
c |'805155%4|688|620
f |'643|408|635|563
4a 60x 60 x437 |875| w |435(32°0|736{640|58 8| 580|320
c | 365|263|720|640
i , . : 93|71 :
Ia 60x40 x437 |875 A d L 6954 685|307
c |'311 1248798728
. . . f | 348|26'3/754 1555
13a 40 x40 x 250|375 5550535687
_ c | 3111234|75'11555
f 1'339]252|744|595
8a 40x20 x 235|352 59'5) 580|528
c | 296221(74°7\59°5
) ) . f |356(254|714(520
6a 50x30 x 230|345 : 52°00500|683
c | 295(209|70°9|520
. ) i f 1143103718613
9a 25x25 x 210 |315 6131605|333
c 1971141716613
J . 738\ 400|54°2|43°0
24a | 10750.D.x500| — |-~ ¢ 30l 415|366
w | 729 40'8{56 0|502
15a 4’50 D x250| — 275(19'8|71'8|580|580)560|674
2la 3500 x'150 | — 098|75|764|57°0{570} 550|656

* See Fig 22a and 24a for

location

TABLE 32 Tensile Test Data
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Material Properties
i S, (':) Logf‘;‘j /(?:3 ( kFZI) (IZ;;U (/:(_)?7) (:j) (fz;)
19a | 60 x 60 x'188 |376| f [239(17°1|71'5|560|572]1560|357
16a| 70 x 70 x312 |624| f |405[284|693|600|616(605|305
18a| 80 x80 x312 |624)  |402|288|7161630|645|637|250
17a | 50 x50 x 250 |500| f |334)218|652|5860)|59%8 590|250
25a| 70x70 x'188 |376| f |231|17'1|740|570|580570|350
26al 70x70 x 250 |'500| t |330|218|661|570|58:3|580 194"
27a| 6 0x60 x 250 |500| f |340|224|658|59'5|610(605|167
28a| 40x40 x'188 |282| f |257\182|708|530|530)510 |660
29a| 350D. x'150 | - | r |173]|122|706)|520|520}500 | 650
30a| 400D. x'188 | - | r |196|141)|718|535[535|510|735
3la| 450D x'188 | - | r |229|158|690|525|52'5{505|650

TABLE 32 (cont'd)
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CHAPTER IV

TEST RESULTS
4.1 Comparison on the Basis of Acgual YS of HSS
4.11 Description of Computer Analysis

This comparison was carried out on the basis of actual
yield stress of HSS. For each beam the bilinear behaviour
simplification of the stress-strain relation as defined in
Figures 3(20a, 22a, etc.) was used to relate analytical pre-
dictions to experimental results. The values of elastic

modulus E, tangent modulus E vield stress ¥YS and the cross

st’
sectional dimensions were considered for each beam in the
analysis to obtain the M-K relation.

The following designations for the calculation of

M-K relation are used in the computer program:

W = K curvature

WY = Ky curvature at yield stress
WR = K/Ky nondimensional curvature
ST = e strain

STY = €y yield strain

M moment

MY yield moment

MR = M/My nondimensional moment

895
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ER = E_, /E = © ratio strain-hardening to elastic
modulus

S elastic section modulus

F shape factor

The nondimensional M-K relation relating the reduced
moment M/MY to this reduced curvature W/WY is calculated by

the following equations for:

i) a straight elastic part
MR = WR ,

ii) the case when the flanges are partly plastic

2 2
) + B.D ds

MR = WR(1 - 4.S(l - ————7) ’

iii) the case when the webs are partly plastic

7.0% . ER-1 _ WR

)
6.5.WR> ER ER

MR = (F -

The maximum elastic strain STY = YS/E and the corre-

sponding curvature and moment are

_ 2.8TY
WY = )
MY = ¥S.S
and W = WR.WY
M = MR.MY .

For the calculation of the load-deflection cuxrve

at midspan for a simple span beam, the designations in the
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computer program are

SE = a
see Figure 2.3 (b)
SM = b
PL = load
DL = deflection .

The loads and the corresponding deflections are com-

puted from equations which are derived in Subsection 2.12(B)

to be
~ 2.MY
PL = MR . —“S-E—
2 2
DL = WR . (§%—+SE.SM+§D-2"—-) . WY .

The theoretical solution by computer is considered
for the compact section (no local buckling considered) with-
out taking account the residual stresses of the given cross-

section. The reader is referred to Appendix 1 for further details.
4.12 Comparison with Experimental Results

The results of the analysis are given in Figures
4(1) to 4(31) with the experimental results added for com-
parison. The tests are numbered according to chronological
order of testing. The behaviour predicted by the analysis
is shown as the full line with black triangles while the
actual experimental behaviour is given by the full line

joining the white triangles and squares. Each white triangle
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and associated white square (where applicable) represents
a stage during the test at which data was recorded.

For three span beams it should be noted that for a
given stage of loading the curvature associated with a
support position, will exceed that at midspan. Figure 4(1)
for example shows that the last recorded data for M-K
correspond to a load of P=132 kp in which the moments over
the support and at midspan are 950 in-kips and 1000 in-kips
respectively but with considerably different curvatures.

There is good correlation between test results and
analytical predictions for those sections in which local
buckling did not occur until well into the plastic range.
Separate subsections follow describing well behaved sections

and those undergoing local buckling.

4.13 Results of Sections Without Local Buckling in Tests

Results for sections without local buckling are
shown in Figures 4(4,6,8,9,11,13,15,16,17,21,22,24,29,30
and 31) for the simple span of rectangular, square and round
sections. The three span experimental results free of local
buckling are shown in Figures 4(7,10,12). These former two
sections were hot rolled while the latter was cold rolled.
All exceeded the predicted moment capacity somewhat at large
curvature K. Thus, these sections would be classified as
compact in plastic design.

The following observations are pointed out from these
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test results:

(1) There is considerable influence from residual stresses
of cold formed sections in the neighbourhood of the first
yielding -- see for example Figures 4(4,16,17,18,19 eté.).

The proportional limit stress can be taken as
approximately half of the yield stress.

(2) The repeated loading in the plastic region appears
to have an influence on the increase of the moment capagity
Iat large curvatﬁre K. This can be seen in Figures 4(4,8,11
and 12) which represent a few cycies of repeated loading.

' In the tests a jack with only 3 inches of travel was
used which was not enough to obtain the required rotation
- capacity. For that reason, unloading of the beam was unaer—
taken followed by the inserting of steel plates between the‘
jack and the beam. Loading was then‘continuéd. It was
-péssiblé by this means to obtain the required plastic de-
formation of the beam.

(3) The load-deflection curves show the maintenance of
the predicﬁed loads at the region of large curvature. Only
iﬁ the cases of repeated loading were the loads significantly
greater thén the predicted values.

(4) Thé bearing surface of HSS is a very important con-
dition for design. Figure 4(5) of rectangular HSS and
Figure 4(14) of a round show the experimental M-K relations
for thrée span beams. These sections can be classified as

compact in spite of negative moments over the interior
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supports being maintained at a value less than the moment
capacity Mp. For these cases of point bearing, local buck-
ling was observed on the bearing surface of HSS.

A four inch wide plate was inserted under the loading
and bearing points of the beams for subsequent tests. in
the case of square and rectangular HSS plates were used
following test No. 5 while for circular HSS they were used
after No. 14.

It is clear from the tests that the behaviour of cold
rolled HSS is sensitive to the bearing stresses imposed on
loading. Further study is deemed necessary to couple the
width to thickness ratio of a compression flange with the

bearing stress intensity imposed on that flange.
4.14 Results of Sections With Local Buckling

The experimental moment-curvature relationships for
all 8 beams tested with local buckling occurred are summarized
in Figure 4.32. The flange slenderness ratios b/t have been
adjusted by the factor v¥YS/50 to bring the results for sections
having different yield stress levels to a common base.

The "rotation capacity" of the beam has been defined
as ®=K/Kp—l, in which K is the curvature at which the moment
begins to decrease relative to the predicted M-K relation for
the section without local buckling. The point at which the
drop was observed is indicated on each curve by a vertical

arrow. Kp is the curvature which would correspond to a moment

McMASTER UNIVERSITY LIBRARY
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Mp if the beam were to remain completely elastic to that
capacity. The vertical dash-dot above the idealized transi-
tion to plastic response indicates Kp in Figure 4.32. The
last column of the table in this figure is the ratio of the
maximum buckling moment to the calculated yield moment. These
ratios for compact sections in working stress design are
higher or equal to their associated shape factors F which
are written in brackets.

Figure 4.33 is a plot of the rotation capacity, ©,
versus an equivalent flange slenderness ratio which takes
into account the buckling moment and shape factor from
Figure 4.32. The highest flange slenderness ratio, when the
ratio of the buckling moment to the yield moment is equal
to the shape factor, is the limiting b/t value for compact

sections in working stress design. This limiting b/t ratio

for ¥YS of 50 ksi is approximately 29.5 and for the different

yield stresses it can be rewritten as b/t £ 210//YS.

For non-compact sections, the buckling moment has

to reach the value of yield moment without the presence of

local buckling. From this assumption the limiting b/t wvalue
foi YS of 50 ksi is approximately 34.5. The corresponding |
limiting ratio for different yield stresses assuming the same

form as above is % S Zii,

. vYS
For a more exact limiting b/t value in working stress
design more tests are’necessary in the range of flange slender-

ness between 28 and 36 for a yield stress of 50 ksi.
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4.2 Comparison on the Basis of a Guaranteed Minimum YS
for HSS

In this comparison it was assumed that the sections
will buckle for a yield stress of 55 and 50 ksi with the same
moment-curvature relationships as are given by the experi-
mental curves. That is, if a moment-curvature plot is known
for ¥S=55 ksi, it is assumed that this curve can be trans-
lated downwards by the appropriate ratio 50/55 for a post-
ulated ¥YS=50 ksi. This assumption is based on tests 20 and
23 in Figure 4.34 which pertain to a 10x10x.375 HSS each
giving rise to a different YS value. The full line with the
white triangles is the experimental M-K relation and will be
related to the yield stress of the flat part of the com-
pressive flange (st = 55.3 ksi for test Nb. 20). The yield
stresses therefore were 55.3 and 61.8 ksi respectively. The
similarity in the response curves is shown in Figure 4.34
which give rise to identical rotation capacities when related
to the same flange yield stress (55 ksi). Figures 4.34 and
4,36 are similar in that they indicate the influence of
flange slenderness ratio on the plastic rotation capacity.

Figure 4.36 includes both 50 ksi and 55 ksi "contours"
to relate yield stress to rotation capacities for the numbered
sections. The dot-and-dashed line is for 55 ksi and the
vdashed line is for 50 ksi. By simple plastic theory the
levels can be determined for plastic moments with yield stresses

of 55, 50 and 42 ksi. The rotations K for the yield stresses
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of 55 and 50 ksi can be found when these curves drop below

the determined levels of M 55, Mp50 and Mp42.

P

A section with a guaranteed yield stress of 55 ksi

and a b/t > 22.7 will generate "contours" for 50 and 42 ksi
which can be used for prescribing a rotation capacity. The

35 line

55 ksi curve will just touch the constant moment Mp
and therefore does not provide a rotation capacity. See for
example test No. 20 in Figure 4.36. Similarly a section with
¥S=50 ksi and a b/t > 22.7 will generate only a contour of
42 ksi which can be used in plastic design.

It should be noted that for b/t < 22.7 the guaranteed
minimum yield stress may be used in simple plastic design for
the same stress level. For the required plastic rotation

capacity © of 4, this limiting b/t ratio will be between 20

and 22.7 which is given by tests No. 27 and 20 in Figure 4.36.
4.21 Limiting b/t Values for Working Stress Design

The results of rotation capacities are summarized in
the table on the right of Figure 4.34. The flange slender-
ness ratio is given for a yield stress of 55 ksi by compari-
sons with this level of yield stress. Only for No. 28 was
an adjustment by the factor /50/55 needed. The last column is
the ratio of buckling moment of compression flange to plastic
moment. Assuming this ratio is close to the value of 1.0,

it can be proposed in working stress design, that a section

qualifies as compact, if the projecting elements of the
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compression flange have a width-to-thickness ratio not
exceeding 210//YS.

The limiting b/t value for non-compact sections is

given by the condition of an equality of be and My and it
cannot exceed the value of 245//YS. These limiting b/t
values in working stress design are shown in Figure 4.35.
The corresponding value of the inelastic rotation
capacity approximately equal to 2.0 will be quite satisfac-

tory for compact sections of HSS in working stress design.
4.22 Limiting b/t Values for Plastic Design

The limiting b/t values for plastic design of HSS
for minimum quaranteed yield stress of 55 and 50 ksi are
shown in Figure 4.37. The rotation capacities from Figure
4.36 are plotted against the flange slenderness ratios for
different yield stresses in Plastic Design.

The criterion used is that a minimum plastic rotation
of 4 times, that corresponding to Mp, is needed before the
moment capacity of the section drops below Mp. The require-
ment of reaching the plastic moment is satisfied by this
plastic rotation and can be seen from the ratios of be/My
in Figure 4.37.

The analysis of the three-span continuous beams shown
in Figures 2.2, 2.7 and 2.8 can be used to estimate a
practical maximum for the required rotation capacity of

plastically designed continuous beams. The largest required

plastic hinge rotation for a three-span beam such as that
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shown in Figure 2.8 is 0.425 MpL/EI. The corresponding
plastic rotation capacity to this value is approximately 4.
In more complex structures the theoretical hinge angle re-
quired to form a mechanism may be rather large. However, for
such structures, a load close to the ultimate can be attained
with much smaller hinge rotations (see Figure 2.13). It
was concluded in Subsection 2.12(D) that a rotation capacity
requirement of 4 is considered satisfactory for design pur-
poses for a majority of structural types.

Thus, from this requirement it is found that the
ratios of b/t for different yield stresses in plastic design
can be given in the form shown in Figure 4.37.

The limiting b/t value for plastic design in the

same level of yield stress from this figure can be recommended

as

A

% 20 (Figure 4.37a)

[
wm
o

o
A
=)
n

% < 21 (Figure 4.37b)

-
A

Figure 4.38 shows the bent square and round hollow
structural sections after testing. The square section buckled
into the shape as shown in this photograph. The series of

sections after testing appear in Figure 4.39.
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