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Abstract

Clustering time-series data into discrete groups can improve prediction as well as pro-

viding insight into the nature of underlying, unobservable states of the system. How-

ever, temporal heterogeneity and autocorrelation (persistence) in group occupancy

can obscure such signals. We use latent-state and hidden Markov models (HMMs),

two standard clustering techniques, to model high-resolution hourly movement data

from Florida panthers. Allowing for temporal heterogeneity in transition probabili-

ties, a straightforward but rarely explored model extension, resolves previous HMM

modeling issues and clarifies the behavioural patterns of panthers.
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Chapter 1

Introduction

1.1 Background

The Florida panther (Puma concolor coryi) is a subspecies of puma, an endangered

species that was once found throughout the southeastern United States. The remain-

ing population of Florida panthers inhabits a small part of south Florida, roughly 5%

of its original inhabited range (van de Kerk et al., 2015a). The population of Florida

panthers had experienced severe pressure from human development expansions result-

ing in habitat loss. Furthermore, in the 1800s the Florida panthers became primary

hunting targets for settlers, which led to the presumed extinction of the population

by the early 1950s. The Florida panther was rediscovered in 1973 by a survey team

organized by the National Geographic Society and immediately added to the US en-

dangered species list. From that point on, research programs have been initiated to

help recover Florida panthers.

The first panther research program was initiated in 1981 by state and federal
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wildlife agencies to study and learn more about the panthers and restore their pop-

ulation. The panther population continued to decrease after humans stopped hunt-

ing them due to low reproduction/ inbreeding rates , diseases and road kills (Coffin,

2007). Biologists have tracked the panthers using high frequency geographic position-

ing system (GPS) ratio collars to provide morphological and biomedical treatments

and examinations. The population was recovered after a genetic restoration in 1995,

where eight female pumas (P.c. stanleyana) were transfered from Texas to reverse

the inbreeding depression and increase population numbers (Johnson et al., 2010).

1.2 Animal Movement

Animal movements is one of many important research topics in panther research.

In animal movement, ecologists are interested in factors that determine behavioural

sequences of movement patterns (i.e. when animals move in a certain pattern, and

under what circumstances they switch to alternative movement pattern). Under-

standing animal movement can help with conservation development such as road and

development planning, as well as better estimates of demography so humans can

avoid interfering with their lives and vice versa. In recent years, animal ecologists

have proposed the multiphasic movement framework, which considers combinations

of internal states and external (environmental) factors in an attempt to capture the

underlying movement patterns (Firle et al., 1998; Nathan et al., 2008) Hidden Markov

models (HMMs) are able both to group observed movements into behavioural states

and to characterize movement behaviour within the states. Hidden Markov models

have been explored in the animal movement literature (Langrock et al., 2012; Franke

et al., 2006; Patterson, 2009; McKellar et al., 2014) and previously in Florida panthers
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research (van de Kerk et al., 2015b).

1.3 Movement Data

In animal ecology, movement data are frequently used to study animal movement

patterns. Movement data are often in the form of longitudinal designs (Lanza et al.,

2004), where they conceptually targets three elements (Collins, 2006):

1. Theoretical model of change: Can we use linear, quadratic, periodic, or other

types of models to capture the characteristic shape of change in the data?

2. Temporal design: Can the temporal design (timing, frequency and spacing of

observations) capture the changes of interest in the data?

3. Statistical model of change: Can we validate the goodness of fit of the models

used to fit the data?

Raw, unprocessed movement data are usually coordinates roughly indicating the an-

imal’s position at a given time. The most common way to locate animals is radio

tracking, by attaching a transmitter to the animal; e.g. with ankle or neck collars.

Movement data can be further processed into other useful forms such as the distance

and angle between consecutive positions.

1.4 Florida Panther Data

GPS collars were attached to 18 Florida Panthers in 2005-2012 by the Florida Fish and

Wildlife and Conservation Commission (FWC). The GPS collars were programmed

3
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to collect location coordinate data at fixed intervals. The time interval between con-

secutive coordinates may vary depending on battery life and equipment technology.

Data resolution had improved over the years as technology advances, time intervals

between consecutive coordinates used to be twice a week and now, hourly data. For

our study, we used the subset of panthers with a significant amount of hourly-interval

data. The hourly GPS coordinates were later decomposed into step lengths (in me-

ters) and turning angles (in radians). In addition, animal-level covariates such as sex,

age, reproductive status and covariates that vary within animals (i.e. times, current

habitat type, etc) are also present in the dataset. The data is available at the Uni-

versity of Florida Institutional Repository (http://ufdc.ufl.edu//IR00004241/00001).

Due location sensitivity of GPS locations of Florida Panthers, only processed step

length and turning angle data are available to the public.

1.5 Objective

In a previous Florida panther study (van de Kerk et al., 2015b), hidden semi-Markov

models (HSMM), an extension of HMM that permits explicit modeling of dwell times

(ie. time spent in a specific state using alternative distributions such as Poisson

and negative binomial instead of the default geometric distribution) (Langrock et al.,

2012) were used to reveal multiphasic movement of Florida panthers. The Florida

panthers were modeled independently with 2- to 6-state time-homogeneous HSMM

models and Bayesian information criteria (BIC) were used to evaluate goodness of

fit between models with different numbers of states. BIC values of these models

decrease as the number of states increases from three to six states, suggesting the six

states model was favoured statistically. On the other hand, it was hard to interpret

4
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the six states biologically. Despite the flexibility to model dwell time, it did not

affect the results (negative binomial parameter close to 1 for dwell time implying is it

geometrically distributed), thus, in this thesis, we will use HMM instead of HSMM.

The hidden Markov model structure is very sensitive to the number of hidden

states. The number of movement states directly affects the complexity of the move-

ment model. In behavioural ecology, most HMMs are often limited to two (Schliehe-

Diecks et al., 2012; McKellar et al., 2014; Langrock et al., 2012; Fryxell et al., 2008)

and sometimes (in a few examples) three states (Dean et al., 2012; Morales et al.,

2004; Franke et al., 2006; van de Kerk et al., 2015b). Models with more than three

states are difficult to interpret biologically, especially since the behavioural states

cannot be directly observed. Thus, a number of obvious, yet unexplored questions

arise that are applicable in many hidden Markov applications are:

1. Are models with large numbers (>3) of states biologically interpretable and

statistically defensible?

2. Do omitted covariates in HMMs lead to overprediction of the number of states?

3. Can we find a flexible framework for exploring these issues?

In Figures 1.1, 1.2, 1.3, multiple peaks in the step length distribution exist in

population, individual, and individual hourly level. The previous study of Florida

panthers using hidden semi Markov model (HSMM), showed BIC decreases as the

number of hidden states increase to 5 to 6, especially for cats with the most data

(van de Kerk et al., 2015b), but we cannot really identify 5 or 6 distinct peaks in

Figure 1.1, 1.2, 1.3.
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Figure 1.1: Histogram of step length in log10 meters at population level

Figure 1.2: Histogram of step length in log10 meters at individual level (ID=130)
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Figure 1.3: Histogram of step length in log10 meters at individual hourly level (ID=130
at 1:00)

In this thesis, we would like to answer the above questions using the Florida

panther data by investigating cats with the most data (CatID 48,94,130,131 where

each has more than 9000 observations):

1. Can modeling temporal heterogeneity reduce the estimated number of states to

a statistically defensible and biologically interpretable level?

2. Can increasing structural complexity of HMM framework capture heterogeneity

in behavioural transition patterns?

3. Can the model capture movement patterns over long periods of time and pro-

duce biologically reasonable movements?

7
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1.6 Scope of the Thesis

Chapter 2 of this thesis introduces methods modeling longitudinal data, (i.e. finite

mixture models, Markov models and finally HMM). Chapter 3 considers software to

model HMMs, dimension reduction in animal movement data and then modeling and

fitting the Florida panther data. Chapter 4 explores HMM extensions and modeling

HMMs with temporal heterogeneity in transition probabilities. Chapter 5 explores

different methods to evaluate goodness of fit and validate the model from model-

based simulations. Finally, Chapter 6 conclusions this thesis and discusses future

explorations.
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Chapter 2

Mixture Models for Longitudinal

Data

2.1 Finite Mixture Models

Mixture models are designed to accommodate a particular form of heterogeneity in

the population; that is, the population may consist of clusters, each having a distinct

distribution for the observed variable. Finite mixture models distributions consist

of a finite number of component distributions, one for each cluster, and a mixing

distribution that selects from these components.

Let Y = (Y1, ..., Yn) be an N -dimensional random variable and y = (y1, ..., yn) be

an observation of Y . In the general case of M components, the probability density

function for the random variable Y is given by :

p(y|Θ) =
M∑

m=1

λmpm(y|θm), (2.1)

9
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where pm(y|θm) is the probability density function of the m-th component, λm are

the mixing proportions and Θ = (λ1, ..., λM , θ1, ..., θM) is the set of parameters and

satisfies

λm > 0, m = 1, ...,M (2.2)

and

M∑
m=1

λm = 1. (2.3)

2.2 Markov Models

Although finite mixture models are a useful tool, they do not handle one of the key

features of longitudinal data, sequential dependence. Markov models are useful for

this scenario, allowing sequential dependence relationships in the data. Let O =

(O1, ...On) be a sequence of discrete random variables and S = {s1, ..., sk} be a set of

k distinct states, satisfying the Markov property:

P (Ot+1 = si|Ot, ..., O1) = P (Ot+1 = si|Ot), t = 1, ..., n (2.4)

then it is called a Markov chain, where the past and the future are dependent only

through the present.

The Markov property can be interpreted as specifying that conditioning on the

whole process up to time t is equivalent to conditioning only on the most recent value

at time t. This is called a first order Markov chain, where the state at the next time

step only depends on the current state. The more general case of a kth order Markov

10
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chain can be expressed as:

P (Ot+1 = si|Ot, ..., O1) = P (Ot+1 = si|Ot, Ot−1, ..., Ot−k+1), k = 1, ..., n, t = 1, ..., n

(2.5)

where the state at the next time step depends on the most recent k states.

In general, a Markov model can be fully specified by two parts: an initial prior

distribution and the transition probabilities between states. The initial prior distri-

bution is the probability of the first observation starting from a certain state and is

given by:

ψi = P (O1 = si), (2.6)

where

ψi > 0,
k∑

i=1

ψi = 1, i = 1, .., k. (2.7)

The transition probabilities between states form a transition matrix:

Π =


π1,1 · · · π1,k

...
. . .

...

πk,1 · · · πk,k,

 (2.8)

where,

πij = P (Ot+1 = sj|Ot = si), πij ≥ 0, (2.9)

11
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k∑
j=1

πi,j = 1, i, j = 1, ..., k (2.10)

The initial prior and transition probability can be covariate dependent. Let X =

{x1, ..., xn} be a set of covariates. Starting with the initial prior probability, we

want to make Ψ a function of X. In order to satisfy (2.7), we define the following

multinomial logistic function:

ψi(xt) =
exp(ηi(xt))

1 +
∑k

j=2 exp(ηi(xt))
, i = 2, ..., k, t = 1, ..., n. (2.11)

ψ1(xt) = 1−
k∑

i=2

ψi(xt), (2.12)

where ηi(xt) is a function of the covariates.

We can use the same method to parameterize the transition matrix (2.8):

Π(xt) =


π1,1(xt) · · · π1,k(xt)

...
. . .

...

πk,1(xt) · · · πk,k(xt),

 t = 1, ..., n. (2.13)

and using the same multinomial logistic approach:

πi,j(xt) =
exp(ηi,j(xt))

1 +
∑k

j=2 exp(ηi,j(xt))
, j = 2, ..., n, t = 1, ..., n, (2.14)

πi,1(xt) = 1−
n∑

j=2

πi,j(xt), i = 1, ..., n. (2.15)

where (2.15) satisfies (2.10).

12
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Given the initial prior distribution Ψ and transition matrix Π, the probability of

a state sequence O = {O1, ..., On} can be calculated as the product of the two parts:

P (O|Ψ,Π) = P (O1|Ψ)P (O2|O1)P (O3|O2)× · · · × P (On|On−1)

= P (O1|Ψ)
n−1∏
t=1

P (Ot+1|Ot)
(2.16)

2.3 Hidden Markov Models

The Markov framework is useful in many applications, but Markov models are limited

to fully observable system. The hidden Markov model, a special dependent mixture

model, is an extension of the Markov model that incorporates mixture models (Ra-

biner, 1989; Zucchini and MacDonald, 2009). The hidden Markov framework is made

more flexible by allowing any form of observable sequential data generated from an

underlying unobserved Markov process in which the number of states and transition

probabilities can be both known and unknown.

Let Y = {y1, ..., yn} be a sequence of either discrete or continuous observations and

Z = {z1, ..., zn} be a sequence of discrete hidden states. An HMM can be characterized

by a composition of an indirect Markov model and finite mixture model with the

following specifications:

1. The number of hidden states in the model. In many applications, the hidden

states often have some significant characteristics so that the observed data can

be reasonably grouped into distinguishable clusters. For example, two-state

models are often used in applications with dichotomous features. The hidden

Markov framework is very sensitive to the number of states, and due to the

13
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uncertainty, it is ideal to have minimal and sensible number of states by context.

As in the previous section, we denote the individual states as S = {s1, ..., sk},

where the number of distinct states is k.

2. The transition probability distribution Π = {πi,j} where

πi,j = P (zt+1 = sj|zt = si), i, j = 1, ..., k (2.17)

Unlike (2.9) in the previous section, this transition process is unobservable.

3. The emission probability distribution:

P (yt|zt) = P (yt|zt = si), i = 1, ..., k, t = 1, ..., n. (2.18)

The observations of an HMM are generated by conditioning on the hidden state

of the unobservable Markov process. This is similar to finite mixture model in

section 2.1, but here it is conditioned upon hidden states rather than observable

components.

4. The initial prior distribution Ψ. This is the probability distribution of the initial

state of the hidden Markov process

P (z1) = P (z1 = si) = ψi, i = 1, ..., k, (2.19)

with the usual constraints of non-negativity and summation to 1.

14
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2.4 The Two Fundamental Problems for HMMs

Given an observable sequence Y = {y1, ..., yn} and a HMM model with defined initial

prior distribution, state transition probabilities, and emission distribution defined,

there are two fundamentals question of interest in many real-life HMM applications:

1. How do we efficiently compute the probability or likelihood of an observed

sequence?

2. How do we estimate the HMM parameters to maximize the likelihood?

Answering the two fundamental problems can create a model to reproduce the charac-

teristics of the observed data. The first problem can be used to evaluate the likelihood

of the model given the observation sequence which can be used for model selection,

whereas the second problem tunes the model to maximize the likelihood.

2.4.1 Problem 1: Evaluating HMM likelihoods

In the previous section, we defined all the requirements (2.17), (2.18) and (2.19)

necessary to compute the probability of an observed sequence given an HMM. Given

an observed sequence Y = {y1, ..., yn} and an HMM with the set of k distinct states

S = {s1, ..., sk} ,the direct but inefficient method to compute the probability or

likelihood P (Y|Π,Ψ) is to first define a hidden sequence

Z = {z1, ..., zn}, zt ∈ S, t = 1, ..., n. (2.20)

Using Z, we can calculate the probability of the observed sequence Y by the

product of (2.17), (2.18) and (2.19)

15
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P (Y|Z,Π,Ψ) = P (z1|Ψ)P (y1|z1)P (z2|z1,Π)P (y2|z2)× · · · × P (zt|zt−1,Π)P (yt|zt)

= P (z1|Ψ)P (y1|z1)
n∏

t=2

P (zt|zt−1,Π)P (yt|zt).

(2.21)

There exist kn possible sequences of Z, and (2.14) is the probability of only one of these

kn. Thus, summing over all possible hidden sequence Z’s will give the probability of

the observed sequence

P (Y|Π,Ψ) =
∑
∀Z

P (Y|Z,Π,Ψ) (2.22)

This direct method to calculate P(Y) is computationally inefficient. A more

efficient calculation method is the Forward Algorithm, which calculates the probability

of the observational subsequence Y1:t = {y1, ..., yt} at a particular state at time t

αt(i) = P (Y1:t|zt = si,Π,Ψ), (2.23)

where αt(i) is called the forward variable. αt(i) can be solved by induction:

1. Base case:

α1(i) = P (z1 = si|Ψ)P (y1|z1), i = 1, ..., k (2.24)

2. Induction step:

16
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αt+1(j) =
k∑

i=1

αt(i)P (zt+1 = sj|zt = si,Π)P (yt+1|zt+1), j = 1, ..., k, t = 1, ..., n−1.

(2.25)

Summing up all the forward variables at time n will give the probability of the

observed sequence

P (Y|Π,Ψ) = P (Y1:n|Π,Ψ) =
k∑

i=1

αn(i). (2.26)

2.4.2 Problem 2: Estimating HMM parameters:

As in the previous problem, there is no direct analytic way to estimate the parameters

that maximizes the likelihood of the observed sequence. The Baum-Welch algorithm,

a special expectation-maximization method developed by Baum’s team, locally max-

imizes P (Y|Π,Ψ) (Baum et al., 1970; Baum, 1972).

Given the observed sequence Y and parameters Π,Ψ, we need to calculate γt(i, j),

the probability of being in state si at time t and sj at time t+ 1 as the following:

γt(i, j) = P (zt = si, zt+1 = sj|Y,Π,Ψ), (2.27)

which we can further decompose by independence:

γt(i, j) =
P (zt = si|Y1:t,Π,Ψ)πi,jP (zt+1 = sj|Yt+1:n,Π,Ψ)

P (Y|Π,Ψ)
. (2.28)

Notice that in the numerator of (2.28), the first probability can be rewritten as
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αt(i), using the forward variable defined in the previous section. The last probabil-

ity in the numerator can be written in a similar manner with the backward vari-

able βt+1(j) of the backward algorithm. Similar to the forward algorithm, the back-

ward algorithm calculates the probability of the observational subsequence Yt+1:n =

{yt+1, ..., yn} at a particular state at time t

βt(i) = P (Yt+1:n|zt = si,Π,Ψ). (2.29)

βt(i) can be solved by induction:

1. Base case:

βn(i) = 1, i = 1, ..., k (2.30)

2. Induction step:

βt(i) =
k∑

j=1

P (zt+1 = sj|zt = si,Π)P (yt+1|zt+1)βt+1(j), i = 1, ..., k, t = 1, ..., n−1.

(2.31)

In the previous section, summing up all the forwards variables at time n will give

the probability of the observed sequence P (Y|Π,Ψ) (2.19). We can also calculate

P (Y|Π,Ψ) by the backward algorithm since we are using the full observed sequence

by summing up all the backward variables at time 1:

P (Y|Π,Ψ) = P (Y1:n|Π,Ψ) =
k∑
i

β1(i). (2.32)
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Now that we have defined the backward variable, we can rewrite (2.21) as the

following:

γt(i, j) =
αt(i)πi,jβt+1(j)∑k

i=1

∑k
j=1 αt(i)πi,jP (yt+1|zt+1 = sj)βt+1(j)

. (2.33)

1. E-step

With the above equations, we can start the parameter estimation.

ψ∗i = expected number of times in state si at time 1 =
k∑

j=1

γ1(i, j). (2.34)

π∗i,j =
expected number of transitions from si to sj

expected number of transitions from si

=

∑n−1
t=1 γt(i, j)∑n−1

t=1

∑k
j=1 γt(i, j)

(2.35)

P ∗(O|zt = sj) =
expected number of times in sj and observing O

expected number of times in sj

=

∑n
t=1,s.t yt=O

∑k
j=1 γt(i, j)∑n

t=1

∑k
j=1 γt(i, j)

(2.36)

Let Θ be the set of all parameters in the HMM, Θ = {Ψ,Π, and parameters of

the emission probability distributions}, then Θ∗ is the estimated parameters,

and (2.34-2.36) are the estimation formulas. The E-step is calculating the ex-

pected value of the log likelihood of the HMM under the estimated parameter
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Θ∗ by the auxiliary function

Q(Θ,Θ∗) =
∑
Q

P (Q|Y,Θ)log[P (Y, Q|Θ∗] (2.37)

2. M-step:

The M-step of estimating the HMM parameters is to maximize the auxiliary

function (2.37). Baum and his colleagues (Baum et al., 1968, 1970) show that

maximizing (2.37) will necessarily increase the likelihood:

argmaxΘ∗ [Q(Θ,Θ∗)] =⇒ P (Y|Θ∗) ≥ P (Y|Θ). (2.38)

2.5 HMM: Discussion

In many HMM literatures and applications, there is one more fundamental question:

how do we select the unobserved state sequence that best explains the observed se-

quence? We will not look into this problem in great detail because we are most

interested in finding the model structure that can best simulate realizations resem-

bling the original data, rather than knowing the best unobserved state sequence and

understand patterns via simulations rather than finding the best unobserved state

sequence given any model. Unlike problem 2, it is possible to find the best unob-

served state sequence given the observed sequence of any HMM regardless of how

well the HMM maximizes the likelihood. Even though the simulations of the HMM

framework depend heavily on the unobserved Markov process, we want to focus our

attention on the observable outcomes of simulations based on model.

The direct method of finding the best unobserved state is to find the state that
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gives the highest probability at the current time step:

Z∗ = argmax1≤i≤k

k∑
j=1

γt(i, j), 1 ≤ t ≤ n, 1 ≤ i ≤ k (2.39)

This approach may generate an impossible sequence because it does not account for

the transitions in the Markov process; a more efficient approach that takes account

of the Markov process is called Viterbi Algorithm. The Viterbi algorithm solves for

the most probable state sequence by finding:

δt(i) = maxZ1:t−1P (Z1:t−1, zt = si,Y1:t|Θ), (2.40)

where δt(i) is the highest probability along a single path sequence up to time t. We

can continue this process by induction :

1. Base case:

δ1(i) = ψiP (y1 = z1), i = 1, ..., k, (2.41)

2. Induction step:

δt+1(j) = [argmaxiδt(i)πi,j]P (yt+1|zt+1), j = 1, ..., k, t = 1, ..., n− 1, (2.42)

Z∗ = argmax1≤i≤k(δt(i)πi,j), for i, j = 1, ..., k, t = 1, ..., n. (2.43)

where Z∗ records the most probable hidden sequence.
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Chapter 3

Modeling Florida Panther

Movements

3.1 Computational Software

HMM has been a hot topic for the past couple of decides for two reasons: better data

and better computation power. Common statistical and computation software (SAS,

R, SPSS, Matlab and etc) have the tools to handle very basic HMM frameworks but

not complex HMMs. The statistical software that we are using in this thesis is R.

There exist many packages in R that can model very basic HMM but with many lim-

itations. For example, the HMM package (Himmelmann and www.linhi.com, 2010)

can only model multinomial responses, and mhsmm package (O’Connell and Hjs-

gaard, 2011) can model multivariate GLM responses but not special distributions

frequently used in animal movement models. Many researchers implement their own

HMM codes oriented toward specific disciplines, such as, move.hmm (Augustine and

Langrock, 2014), an R package specially coded for animal movement HMMs with
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special distributions such as the Weibull distribution for modeling step length distri-

butions and the von Mises and wrapped Cauchy distributions for modeling turning

angle distributions.

All of the package discussed above have one important limitation; they cannot

model covariate-dependent transitions. Specifying the transition matrices governing

the hidden process in HMM may require many parameters; hence many applications

lack the data to parameterize complex covariate-dependent transmission models. The

idea of covariate dependent transition is not new, but there are few software frame-

works that allow modeling such complexity. The package we are using in this thesis

is depmixS4 (Visser and Speekenbrink, 2010), a dependent mixture model framework

that can model covariate dependent transitions and allows the usuer to extend the

set of response distributions by manually coding.

3.2 Dimension Reduction

There are numerous discussions in the animal movement literature on whether to

model GPS coordinates directly (sequences of paired longitude and latitude positions)

or to reduce the data to step lengths and turning angles. From a mathematical point

of view, they are equivalent because converting to step lengths and turning angles

is just a simple transformation where the dimensionality remains the same. One

advantage of using step lengths and turning angles versus longitude and latitude

positions is that we may able to ignore turning angles, thus reducing the dimensions

of the problem. Step lengths and turning angles are negatively correlated; that is,

longer step lengths tend to have less variation in turning angles (more directed),

whereas short and medium step lengths have uniform variation in turning angle (i.e.,
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more random movement). With this dimension reduction, not only we can reduce the

number of parameters greatly, we also do not need to worry about the complexities

of modeling a multivariate response.

3.3 Model Selection

We considered models ranging in complexity from 3 biologically interpretable states:

1. Resting mode, characterized by short step lengths

2. Moderately active mode, characterized by intermediate step lengths

3. Traveling mode, characterized by long step lengths

to 6 (the maximum number of states by BIC selection from the previous HSMM study

(van de Kerk et al., 2015b)) underlying movement states for FMM and HMM.

BIC was used for model selection because we are interested in exploring the data

generation process by trying to determine the true number of underlying states. Fur-

thermore, BIC will usually choose a less complex model when the number of obser-

vation is large. It is defined as

BIC = −2lnL+ kln(n) (3.1)

where lnL is the log-likelihood (Eq. 2.26), k is the number of free parameters and n

is the number of observations. The BIC penalty term (k ln(n)) is stricter than the 2k

penalty term of the Akaike information criterion (AIC)

AIC = −2lnL+ 2k, (3.2)
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as long as n > exp(2) = 7.38.

In this thesis, we consider only log-normal models for the distribution of step

lengths.

3.4 Modeling Florida Panther Data

3.4.1 FMM

We will start by modeling the data with FMM. This is a naive way to simply test how

many clusters are in the data set, ignoring the serial dependency of the sequential

data. The FMM is a special case of HMM; we can model it in the HMM framework

by setting the transition matrix (2.8) with columns equal to the mixing proportions

(2.2):

Π =


λ1 · · · λk
...

...
...

λ1 · · · λk,

 (3.3)

This will satisfy all conditions of the hidden Markov transitions (2.8) because the

mixing proportions sum up to 1 (2.3). The response distributions for step lengths

used are log-normal distributions conditional upon the state the panther is in:

Y |Z = si ∼ N(µi, σ
2
i ) i ∈ {1, ..., 6}, (3.4)

where Y is the log10 transformed step lengths.
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Figure 3.1: FMM BIC Comparison (ID = 130)

We standardize the BIC values of each type of model relative to the lowest BIC

value within the same group.

∆BIC = BIC−min(BIC) (3.5)

Figure 3.1 suggests three underlying states in the for this individual Florida panther

(ID=130). This result is encouraging because three-state models are biologically

interpretable, but FMM does not account for serial dependency.

State Mean log10 meters Standard Deviation log10 meters Mixing Proportion λ

1 1.47 0.51 0.65
2 2.73 0.27 0.20
3 3.16 0.17 0.15

Table 3.1: FMM parameter estimates for all three states (ID = 130)
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3.4.2 HMM

In order to account for the serial dependency in the sequential data, we used the HMM

to model the Florida panther data. Figure 3.2, we can see the relationship described

in the previous study that as the number of state increase, the BIC decreases (van de

Kerk et al., 2015b). Furthermore, we are able to get qualitatively similar results when

we reduce dimension by ignoring turning angles. Of course, the question still remains,

what does the six different states mean? From a biological point of view, it is difficult

to find interpretations for six distinct hidden states.

Figure 3.2: BIC Comparison Among States and Type (ID = 130). Note that BICs
are now standardized relative to minimum HMM rather than minimum FMM values.

HMMs in general have much lower BICs compared to FMMs. As mentioned in the

previous section, the FMM is a naive approach just to see how many clusters/ hidden

states seem to appear the raw data, if we ignore serial dependency and treat it as
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cross-sectional data. HMM on the other hand accounts for the serial dependency of

the longitudinal data, thus fit the data better via BIC. This Florida panther (ID=130)

has 10286 observations and the six-state HMM has 54 parameters. At this point, a

seven state HMM has a much higher BIC than six states. We have the flexibility to

explore more complex HMM models and see if increasing the model complexity can

reduce the number of estimated states via BIC.

State Mean log10 meters Standard Deviation log10 meters

1 0.81 0.39
2 1.22 0.24
3 1.72 0.25
4 2.41 0.28
5 2.94 0.18
6 3.27 0.12

Table 3.2: HMM parameter estimate for all six states (ID = 130)

Π̂ =



0.36 0.30 0.14 0.10 0.08 0.02

0.12 0.57 0.17 0.08 0.05 0.01

0.06 0.16 0.59 0.13 0.05 0.01

0.06 0.14 0.16 0.35 0.24 0.05

0.01 0.02 0.05 0.13 0.35 0.44
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Chapter 4

Variations of Hidden Markov

Models

4.1 Temporal Heterogeneity

Like many species, Florida panthers have a diurnal cycle: specifically, they become

less active during the day (as reflected in the data by shorter step lengths) and more

active at night. The diurnal cycle exhibited by the Florida panthers is noticeable in

Figure 4.1 and 4.2; on average, they tend to have shorter step lengths between the

8th hour and the 15th hour, longer step lengths between the 16th hour to 20th hour,

and a mixture of step lengths at other times of the day.
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Figure 4.1: Violin Plot of Distance vs Time of Day For all Panthers

Of course, Figure 4.1 displays the marginal distribution of data at the population

level, which includes panthers of different ages and sexes. But, even at the individ-

ual level Figure 4.2, we can still see a diurnal cycle, which is not accounted for by

the homogeneous-time FMMs and HMMs discussed in the previous section or the

homogeneous-time HSMMs used by van de Kerk et al (2014).
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Figure 4.2: Violin Plot of Distance vs Time of Day (ID=130)

Referring back to the figures in section 1, which show marginal histograms across

time, we see a sequence of bimodality observed in the data from the marginal dis-

tribution of step lengths across time at the population level (Figure 1.1) to Figure

4.1 broken down to time of day, or to Figures 1.2, 1.3, and 4.2 at the hourly and

individual-specific level. Bimodality/ mixture of behaviours persists as we go to finer

scales, indicating that mixture models are indeed required even once temporal varia-

tion is taken into account.

In the HMM framework, we can add temporal heterogeneity (i.e. allowing the

model to depend on temporally varying covariates) in two places — the transitions

or the emission probability. There are reasonable arguments for adding temporal

heterogeneity in both places, but in this thesis, we will focus our attention on the

unobservable behavioural change from the transition probabilities. It is more reason-

able to think panthers move less during the day because they are more likely to rest,

rather than panthers move less because it is day time.
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4.2 HMM with Temporal Heterogeneity

In the Florida panther data, let X be a time of day covariate, i.e. a repeating sequence

of 1 to 24. Using 2.13-2.15 described in section 2 on modeling covariate dependence

using multinomial logistic, we modeled ηi,j(xt) in the following ways:

1. Hourly: A factor of all the hours,

ηi,j(xt) =
24∑

m=1

ci,j,mIm(xt), (4.1)

Im(xt) =

 1 if xt = m

0 if xt 6= m
(4.2)

2. Block:

ηi,j(xt) = ci,j,0 + ci,j,1I1(xt) + ci,j,2I2(xt), (4.3)

I1(xt) =

 1 if xt ∈ {7, 8, ..., 16}

0 otherwise
(4.4)

I2(xt) =

 1 if xt ∈ {17, 18, 19, 20}

0 otherwise
(4.5)
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3. Quadratic functional transition:

ηi,j(xt) = ci,j,0 + ci,j,1

(
xt
24

)
+ ci,j,2

(
xt
24

)2

(4.6)

4. Sinusoidal functional transition:

ηi,j(xt) = ci,j,0 + ci,j,1cos

(
2πxt
24

)
+ ci,j,2sin

(
2πxt
24

)
, (4.7)

where, ci,j,m, m = 1, ..., 24 are parameters.

Figure 4.3: HMM BIC Comparison Among States

The 5-state HMM with sinusoidal transition is chosen via BIC to be the best model

among all the other time-dependent transition HMMs. The BIC-optimal number of

states decreases by one after accounting for temporal heterogeneity. Thus, adding
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serial dependence to the FMM (resulting in a time-homogeneous HMM) increases

the number of BIC-optimal states from 3 to 6, but further extending the model by

adding temporal heterogeneity in the transition probabilities (resulting in a time-

heterogeneous HMM) decreases the optimal number of states from 6 to 5.

4.3 FMM with Temporal Heterogeneity

In the previous chapter, accounting for serial dependency using a underlying Markov

process (HMM) increased the number of BIC-optimal states; however, the resulting

HMMs fit better overall, with BIC values approximately 2500 units less than the

corresponding FMMs. On the other hand, accounting for temporal heterogeneity

transition in HMM gives a lower BIC than HMMs. So what happens when we account

for temporal heterogeneity but not serial dependency?

Using the same multinomial logistic method described in section 2, we can define

the mixing proportion λm in (2.1) as a function of covariate X:

λm(xt) =
exp(ηm(xt))

1 +
∑M

m=2 exp(ηm(xt))
, m = 2, ...,M, (4.8)

λ1(xt) = 1−
M∑

m=2

λm. (4.9)

For simplicity, we only considered ηm(xt) a sinusoidal function:

λm(xt) = cm,0 + cm,1cos

(
2πxt
24

)
+ cm,2sin

(
2πxt
24

)
, (4.10)

where cm are parameters.
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Figure 4.4: BIC Comparison of All Models

Comparing all the different type of models, the minimum FMM has 3 states as

mentioned in the previous chapter. Models with either temporal heterogeneity (FMM

with sinusoidal functional mixing proportion to account for temporal heterogeneity)

or serial dependency (HMM), but not both, have minimum-BIC models with six

states and both yield a lower BIC than FMM. Thus, increasing complexity in FMM

may increase the estimated number of states. However, temporally heterogeneous

HMMs fit best overall and suggest 5 underlying states. Thus, increasing complexity

to account for serial dependency and temporal heterogeneity does in fact decrease the

number of estimated states.
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Chapter 5

Simulation Validation

5.1 Average Distance vs Time of Day

The ultimate goal in this thesis is to build a HMM capable of simulating data similar

to the patterns exhibited by the Florida panthers. In van de Kerk et al (2015) and

other animal research studies (Langrock et al., 2014), researchers use the Viterbi

algorithm describe at the end of chapter 2 to simulate the movement sequence. In

this thesis, we will not use this method because we are not interested in finding a

particular hidden sequence that best describes the observed sequence, but rather in

simulating sequences based on the parameterized model. We would like simulations

based on our models to produce patterns similar to Figure 4.2. For every panther, we

simulated the same number of observations as the the observed data (14645, 10250,

10286, 9458 observations for cat 48, 94, 130, 131 respectively).
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Figure 5.1: Average Step Length by Time of Day (ID = 130)

Models that assume temporal homogeneity (FMM and HMM) fail to capture the

diurnal activity cycle exhibited by Florida panthers; the average step length is very

similar at any given time of day for temporally homogeneous FMM and HMM (and

would be more similar for a longer simulation). The average step length for FMM of

large amount of observations is approximately the sum of the estimated mean times

the mixing proportion:

µ̂total =
M∑

m=1

λ̂mµ̂m. (5.1)

Similarly, for time-homogeneous HMM, long sequences of a Markov process converges

to a stationary distribution such that the average step length is the sum of the relative

occupancy times the mean of the state. Thus, for long sequences, the average step

length given in any time of day simulated from FMM and HMM fails to capture the
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desired diurnal cycle.

Models incorporating temporal heterogeneity (FMM with sinusoidal temporal

mixing proportion and HMM with sinusoidal temporal transitions) can capture the

observed patterns in the hourly average step. Note that the simulated results from

FMM with sinusoidally time-varying mixing proportions match the diurnal pattern

of average step lengths reasonably well; nevertheless, its higher BIC (4BIC ≈ 1500

units) indicates that the sinusoidally time-varying HMMs fits better overall.

5.2 Autocorrelation Function

In the previous section, we showed that models that account for temporal hetero-

geneity (FMM with sinusoidal temporal mixing proportion and HMM with sinusoidal

temporal transitions) can capture the diurnal cycle exhibited by Florida panthers.

We will consider another simulation validation approach to examine goodness of fit

by autocorrelation plots. Autocorrelation is the correlation of a random variable with

its own time-shifted sequence often used to examine serial correlation within data;

it is a common tool in time series analysis. The autocorrelation function (ACF) is

defined as follows

Rl =
E(Yt − µY )(Yt+l − µY )

σ2
Y

(5.2)

where l is the lag or number of time steps in the sequence (Brockwell and Davis,

2006).
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Figure 5.2: Autocorrelation Plot (ID = 130)

FMM has no autocorrelation at all. HMM without temporal heterogeneity can

capture the first few lags of the ACF but is unable to capture lags beyond 7. FMM

with temporal heterogeneity can capture lags beyond 12, but not short-term correla-

tion. HMM with temporal heterogeneity can fully capture the autocorrelation pattern

of the observed data.

5.3 Simulation Comments

There is no single way to select the best model that best describes the observed

sequence. We used several reasonable approaches to compare these models: BIC,

ACF plots and average step length vs time of day plots. While each metric has its

own limitations, examining them together can give a good understanding of the model

structure that best describes the observed sequence. It is hard to evaluate simulation
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via Viterbi algorithm because it is strongly influenced by the observational sequence

itself; thus, it can simulate a strong diurnal pattern even from a model with no diurnal

structure.

Figure 5.3: Viterbi Average Step Length by Time of Day

To illustrate this point, we used the three-state FMM (the worst fit with the

highest BIC among all models), simulated via the Viterbi algorithm and compared

it with the observed data (figure 5.3, 5.4). From the previous section, FMM models

have approximately constant average step lengths regardless of the time of day — thus

simulations from the model are unable to capture the diurnal cycle or to produce a

realistic ACF pattern, yet the simulation via the Viterbi algorithm can capture the

diurnal cycle and autocorrelation. Since the Viterbi algorithm is conditional upon the

observed sequence, even FMM models can capture serial dependency and temporal

heterogeneity through the information contained in the observed sequence.
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Figure 5.4: Viterbi ACF plot
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Chapter 6

Conclusion

6.1 Multiple States

The biggest issue in analyzing mixture models with multiple underlying discrete states

is interpreting them biologically. The states themselves have no intrinsic meaning (i.e,

we do not know independently the state with the shortest step length really represents

a “resting” state), though they can identify structure present in the data. We do not

know if Florida panthers really move according to a particular, discrete set of hidden

states, and even if they do, we don’t know the true number nor can we observe them.

Three distinct movement states have a useful biologically interpretable meaning for

Florida panthers: Short step lengths correspond to resting states, intermediate step

lengths correspond to foraging state and long step lengths correspond to a traveling

state. A distinct long-step-length state is always identified, whereas short step lengths

are often represented by multiple, nearly overlapping states. Thus, models with a

small number of short step length states with higher variance in the emission (step

length) distribution are easier to interpret biologically and logically than those with
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multiple discrete short step length states with low variance.

Figure 6.1: Mean vs. Standard deviation (log10 meters)

6.2 Discussion

Identifying behavioural states based on a set of observations is a common method-

ological problem in behavioural ecology; finding solutions that are both biologically

and statistically interpretable and defensible is challenging. Models that suggest a

higher number of states fit the data well but are hard to interpret biologically; models

that are biologically interpretable are not statistically supported. While the HMM

framework has been applied in many research areas, very few studies have considered

modeling with more than 3 states. HMM is a simple, straight forward framework, but

HMM extensions that add a small amount of complexity can complicate the model

greatly and reveal deeper understanding. For example, van de Kerk et al. (2015b)

used 2 to 6 movement states HSMM to model Florida panthers; Morales et al. (2004)
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used HMM with transition probabilities depending on distances from different habi-

tats to model elks; Schliehe-Diecks et al. (2012) used a model with time-dependent

transitions but with a smaller resolution dataset and time intervals between successive

points are 1 minute intervals, 40 minutes between 18:00 and 24:00 per nigh. Outside

of ecology and animal behaviour, Raffa and Dubin (2015) used mixed effect transition

and emission HMM in a smoking study.

We have considered a conceptually simple yet little-studied extension by which

covariate independent HMM can overestimate the number of true states in covari-

ate dependent HMM (in our case, time-dependent transitions). The motivation in

researching this direction was driven by two factors: a large real life dataset that

can freely, flexibly and capable of model more complex extensions of HMM and an

interesting statistical and biological problem to understand hidden states in higher

magnitude. HMM with more than three states are not biologically interpretable and

are often discarded, but we cannot ignore the observation that increasing complexity

(number of states) can increase goodness of fit statistically. Our analyses revealed that

modeling temporal heterogeneity in HMM transition can reduce the number of states

estimated in time homogeneous transitions HMM movement of Florida panthers and

reduce the overall model complexity.

For some kinds of model predictions, the time-homogeneous transition model can

perform as well as the time-inhomogeneous transition models. In particular, when

predicting hidden states using the Viterbi algorithm; models with interesting addi-

tional structure can easily be overlooked. The Viterbi algorithm predicts the most

likely sequence of movement states based on the observations, which allows the time-

homogeneous transition model’s prediction to incorporate the temporal heterogeneity
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from the observations. In general, the time-homogeneous transition model gives the

broader scope of movement pattern whereas the time-inhomogeneous transitions mod-

els gives a more realistic movement structure. It is important to contrast a variety of

metrics (i.e, ACF, simulated diurnal patterns, etc) to get a reliable understanding of

how well models fit the data.

6.3 Generalization - Simulation

From the Florida panther analysis, we want answer the general question whether

the HMMs that neglect covariate dependence (when the data really contain it) will

overestimate the number of hidden states via BIC. We simulated data from a basic

block transition model (described in section 4) with Gaussian and Poisson emissions.

The covariate is a binary indicator variable that switches every 12 time steps.

1. Gaussian HMM:
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Figure 6.2: BIC Comparison of 2-state covariate dependent Gaussian HMM simula-
tion
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Model Parameters Parameter Value/Estimate

2-state HMM c1,2,0 -3
with Covariate c1,2,1 4
(True Model) c2,2,0 3

c2,2,1 -4
µ1 3
µ2 4.5
σ1 1
σ2 1

2-state HMM ĉ1,2,0 -2.785
with Covariate ĉ1,2,1 4.041
(Fitted Model) ĉ2,2,0 2.89

ĉ2,2,1 -3.86
µ̂1 2.98
µ̂2 4.5
σ̂1 0.978
σ̂2 1.00

2-state HMM µ̂1 3.22
without Covariate µ̂2 4.19

σ̂1 1.12
σ̂2 1.17

3-state HMM µ̂1 3.13
without Covariate µ̂2 3.61

µ̂3 4.68
σ̂1 1.04
σ̂2 1.15
σ̂3 0.97

Table 6.1: Parameters and parameter estimates of Gaussian HMM

2. Poisson emissions:
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Figure 6.3: BIC Comparison of 2-state covariate dependent Poisson HMM simulation

Model Parameters Parameter Value/Estimate

2-state HMM c1,2,0 0
with Covariate c1,2,1 0
(True Model) c2,2,0 3

c2,2,1 -4
µ1 1
µ2 2

2-state HMM ĉ1,2,0 0.218
with Covariate ĉ1,2,1 -0.251
(Fitted Model) ĉ2,2,0 2.16

ĉ2,2,1 -2.84
µ̂1 0.99
µ̂2 2.00

2-state HMM µ̂1 1.02
without Covariate µ̂2 2.01

3-state HMM µ̂1 1.00
without Covariate µ̂2 1.99

µ̂3 2.01

Table 6.2: Parameters and parameter estimates of Poisson HMM
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6.4 Future Research

Although time-inhomogeneous transition models offer an objective approach to (1)

reduce the number of states to a biologically interpretable level, (2) capture the obser-

vational autocorrelation and temporal patterns, (3) reduce overall model complexity

while improving goodness of fit, several challenges must be overcome in order to max-

imize its potential. The current model is univariate, based only on between-location

step lengths and ignoring the corresponding turning angles. Predictions of move-

ment trajectories in two dimensions requires us to characterize the distributions of

both step length and turning angles. Furthermore, modeling temporal heterogeneity

only reduces the number of BIC-optimal states by 1, resulting in models with 4 or

5 states. This suggests that there may be other factors such as habitat-dependent

behaviour, seasonal-temporal heterogeneity, etc., that might also contribute to over

predicting number of states. Alternatively, there might really be additional classes

of behaviour that biologists have been overlooking. It would be interesting to look

at other complexities such as habitant-dependent behaviour (influencing transition

probability and/or emission probability); changes in behaviour over longer time scales

(seasonal, animal’s lifespan/ age); attraction/repulsion from features in the environ-

ment (road, con-specifics of the same or opposite sex), etc., that could eventually

be added to the modeling framework. Despite the challenges, our study provides an

important extension to HMM modeling that has rarely been applied before, as well

as a real-life application that contributes to the field of animal movement ecology.
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Appendix A

Florida Panther ID 131, 48, 94

Panther ID 131, 48, and 94 are the other three panthers with the most data available

with 9458, 14645, 10250 observations respectively. There are two males (CatID 130,

131) and two females (CatID 48, 94) in our study; one female (CatID 94) produced a

litter during the 24 months that she was GPS-tracked. The step length distribution

of this individual female differs from that of the other three panthers. Our models did

not account for presence of kittens as a factor, but it is a good direction to investigate

in the future.
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A.1 CatID 131

Figure A.1: BIC Comparison of All Models (ID=131)

Figure A.2: Average Step Length by Time of Day (ID = 131)
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Figure A.3: Autocorrelation Plot (ID = 131)

A.2 CatID 48

Figure A.4: BIC Comparison of All Models (ID=48)
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Figure A.5: Average Step Length by Time of Day (ID = 48)

Figure A.6: Autocorrelation Plot (ID = 48)
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A.3 CatID 94

Figure A.7: BIC Comparison of All Models (ID=94)

Figure A.8: Average Step Length by Time of Day (ID = 94)
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Figure A.9: Autocorrelation Plot (ID = 94)
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