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Abstract

In this PhD thesis, a novel experimental technique has been implemented to study

the variables controlling the undulatory locomotion of a tiny worm. Well known

for its elegant slithering motion and simple biology, the millimetre-sized nematode

Caenorhabditis elegans was chosen to serve as a model organism for our work. The

emphasis of this thesis, as embodied by three separate research projects, has been

to study the passive and active biomechanical properties of C. elegans, as well as

to investigate inter-worm interactions. Micropipette deflection has been used to di-

rectly probe forces in a time-resolved manner and with high dynamic resolution.

The viscoelastic material properties of C. elegans were explored on a biologically

and structurally relevant length scale, and the elastic properties of the body were

quantified. Furthermore, the soft tissue was found to behave as a shear-thinning

fluid: a non-Newtonian property that has interesting implications on the undulatory

locomotion strategy of the nematode. Micropipette deflection furthermore allowed

for measurements of the active swimming dynamics of C. elegans. Our experiments

quantified the drag coefficients of the tiny worm as well as the viscous forces present

in its swimming motion. Swimming experiments were performed in a normal buffer

solution, in the confinement of solid boundaries, as well as in fluids with increased

viscosities, and the dynamics of the gait modulating worm was investigated. Finally,

the binary interactions between two swimming nematodes were studied, utilizing the

high micromechanical control provided by the micropipette-based technique. Our

findings provide new insight into the physics of undulatory locomotion and active

materials in general.
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Preface

This is a “sandwich” thesis and thereby first includes an in-depth introduction to

the concepts and theories necessary to grasp the general focus of my PhD research.

The introduction is followed by a chapter describing the experimental details relevant

to this study, as well as any other advice that could be helpful for someone pursuing

a similar scientific pathway. The publications that form the framework for this work

are then summarized and have furthermore been included at the end of the thesis. As

interdisciplinary science is highly collaborative, a clear description of my own contri-

bution to each project is given for each publication. The concluding chapter finally

summarizes this work with a focus on the common theme of the thesis, highlighting

our most significant findings as well as future avenues that could be explored.
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Chapter 1

Introduction

Undulatory locomotion is ubiquitous in nature and used by crawlers and swimmers

like snakes and spermatozoa, spanning nearly seven orders of magnitude in length.

The smooth, slithering motion of these slender bodies has fascinated researchers for

nearly a century [1–7]. To this day, however, the complex interplay between the

perfectly synchronized muscle contractions, the bending of the soft biological tissue,

and the interactions between the animal body and the surrounding mud, sand, or

water, is still not fully understood [8]. Natural evolution has produced an efficient and

agile undulator able to interact with its surrounding environment through modulating

its gait between crawling on high-friction surfaces [6, 7, 9] or in high-viscosity fluids

[10], and swimming when immersed in water [11, 12] or sand [13, 14]. Despite intense

efforts made into mimicing the properties of a natural crawler, the same performance

has not been reproduced artificially [15, 16]. From a purely physical perspective, the

complexity of the system can be narrowed down into two key questions that outline

our understanding of undulatory locomotion in general, namely: What are the ideal

passive properties of a crawler and how does it interact with its surrounding medium?

The passive material properties of a crawler determine its ability to bend its own

body and thereby produce the required undulatory motion [17]. An optimization of

the energy spent internally and externally has to be made, and all efforts spent on the

continuous bending of the body (passive) should be minimized in order to maximize

the energy spent on pushing off against the surrounding media to move forward. An

ideal oscillatory system would be that of a spring with purely elastic material proper-
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ties and no energy dissipation. In real biological systems, however, such a simplifica-

tion would be unrealistic as tissue is composed of soft building blocks that typically

possess viscous components, where damping causes energy to dissipate. Furthermore,

the viscoelastic properties can be highly nonlinear and complex. Understanding these

materials demand detailed experimental studies combined with physical modelling of

the system.

Once the first key question dealing with the passive properties is addressed, the

natural transition is to probe the active dynamics of the undulator. Defining the ideal

interactions between undulatory swimmers or crawlers and their surrounding media is

of importance, as these are essential for any propulsion to take place [18]. In viscous

environments, any moving object (or stationary object in a moving fluid) is opposed

by drag forces, which dissipate the energy. Many small organisms have developed

to use these forces to achieve propulsion and the ability to do so is characterized by

the drag coefficients of the undulator. These constants depend on the aspect ratio

of the undulating body, as well as on the actual undulatory motion used by the

swimmer itself. The study of swimming dynamics quickly thereby narrows down into

investigating the drag coefficients of a natural undulator.

Having gained knowledge about undulatory locomotion, many new, interesting

questions arise. How does the undulating swimmer change its dynamics when con-

fined by the surrounding environment? What happens when the swimmer is close to

another (or several) undulatory swimmer(s), and what kind of interactions will affect

their interplay? Hydrodynamic interactions might, for example, cause collective fea-

tures, such as phase or frequency locking, in the relative motions of the swimmers.

Also other physical interactions, like steric or mechanosensory, can take place and

dominate the final dynamics of the active system. The intricate interactions present

in these types of active fluids are of immense interest in the current soft matter

community, and contribute to the development of novel bioengineering applications.

In the work for this doctoral thesis, the tiny nematode Caenorhabditis elegans, well

know as a model organism in the biological community, was studied to enhance our

understanding of undulatory locomotion and is discussed in detail in this chapter.

In Section 1.2, the physical modelling of the material properties of soft condensed

matter in general is described and different, standardized viscoelastic models are

2
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introduced. Section 1.3 covers the undulatory swimming dynamics of organisms in a

purely viscous regime and highlights a simple model that can be used to capture the

physics of this type of swimming. Finally, in Section 1.4, interactions between several

such microswimmers are discussed. Before diving into the concepts of viscoelastic

material properties and the dynamics of active materials, our workhorse (worm) C.

elegans will be introduced in terms of its biological characteristics. At the end of this

chapter (Section 1.5), previous physical studies performed by others on the passive

and active properties of this nematode will finally be summarized.

1.1 The model organism C. elegans

C. elegans is a free-living, transparent, hermaphroditic1 nematode with 959 somatic

cells and 302 neurons [19]. The adult worm, shown in the optical microscopy image of

Fig. 1.1(a), has a length of around 1 mm and a life cycle of a few days. As suggested

by its name, the nematode moves in an elegant, undulatory fashion when crawling on

a surface, leaving a sinusoidal pattern behind on the soft gel substrate in Fig. 1.1(b).

Figure 1.1: (a) An adult C. elegans nematode with some anatomical terms noted and
the position of the vulva highlighted. (b) An adult worm crawling on an agar (gel)
surface.

1Both hermaphroditic and male C. elegans nematodes exist, but for the scope of this thesis, only
the former will be discussed.

3
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The C. elegans nematode was first suggested as a model organism to the scientific

community by Sydney Brenner in 1965 to study anatomy, genetics, behaviour, as well

as neural and cellular development [19, 20]. The choice of this specific organism was

based on its short life cycle, transparency, as well as the size of the worm, deeming

it one of the smallest and least complicated organisms still with a central nervous

system. The small size also made it possible to use electron microscopy to achieve a

full anatomical description of the worm with a very high resolution.

The original C. elegans sample (the N2 strain) was isolated by L. N. Staniland from

a mushroom compost in Bristol in the 1950s2, and the nematode later became the first

animal to have its entire genome sequenced (1998), five years before that of the human

[20]. To this date, three Nobel prizes have been awarded for research performed on

C. elegans, the first of which was received by S. Brenner and collaborators J. Sulston

and H. R. Horvitz in 2002 for their work on genetic regulation of organ development

and programmed cell death. It is sufficient to say that this nematode is one of the

most studied and best understood animals. Every single cell in the worm body has

been located and characterized, it is well know when and how each of these cells

divide, and the function of the neurological system has been mapped out in detail

and correlated with behavioural features of the worm. The C. elegans nematode is,

therefore, an ideal candidate for novel physical studies.

1.1.1 Anatomy

Some anatomical terms of the nematode are denoted in Fig. 1.1(a), where anterior-

posterior and dorsal-ventral define the front (head) and back (tail), as well as the

two sides of the worm, respectively. The vulva is located on the ventral side, slightly

shifted towards the posterior end of the worm. The anatomy of C. elegans is that of a

typical nematode, with an outer tube consisting of the cuticle, hypodermis, neurons,

and muscles, and an inner body cavity (the pseudocoelomic space) containing the

intestine and gonad [19]. A schematic illustration of a posterior cross section of an

adult worm is shown in Fig. 1.2.

2Two original samples were collected. One in the United Kingdom, and one by V. Nigon in
France a decade earlier. The British strain, however, has been used in the most significant studies
[20].
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Figure 1.2: A schematic diagram (not to scale) of a posterior cross section through
an adult worm. The outer tube consists of the cuticle, hypodermis, neurons, and
muscles, whereas the inner pseudocoelomic space contains the intestine and gonad
(not shown here).

The hypodermis is composed of epithelial tissue and makes up a large fraction

of the outer worm tube. The nematodal body shape is maintained through a high

internal hydrostatic pressure in the pseudocoelomic space. This pressure has been

thought to contribute significantly to the rigidity of the worm as a hydrostatic skeleton

[21], acting as a support against the forces of contracting muscles, and restoring the

original length of a muscle after its contraction [6]. New biomechanical studies have,

however, partly disproved this hypothesis, as will be discussed in Section 1.5.1.

The muscle cells (a total of 95) of C. elegans are located along the entire worm

length in four longitudinal quadrants of the body. The worm moves by propagating

travelling waves down its body, where small sections of the dorsal and ventral muscle

quadrants contract simultaneously in a highly coordinated, anti-phase fashion [19].

The worm can thereby only actively bend its own body in the dorsal-ventral plane,

with an exception in the head region where full three-dimensional motion is achievable

due to a more extensive wiring of the head and neck muscles. For this reason, the

worm always crawls on either of its two sides (where a side is as defined in Fig. 1.2)

when placed on a solid substrate.

The cuticle of C. elegans is a highly flexible and resilient structure that covers

the entire outside of the worm body. This tough layer is composed of a structured

5
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extracellular matrix consisting mainly of cross-linked collagen. The cuticle acts as a

barrier to protect the worm from the external environment and enables locomotion

through its attachment to the body muscles. The cuticle is renewed at each larval3

moult, as described in detail in the next section.

1.1.2 Life stages and development

In Fig. 1.3, a diagram of the life stages of C. elegans is shown. The development of

the worm from the point of hatching of the egg to a fully grown adult takes around

2 days at 20◦C, and is sped up with increased temperatures [19, 22]. The schematic

illustration indicates the average lengths of the L1, L2, L3, L4, young adult, and

adult worms, as well as the average time spent in each larval stage before moulting.

The young adult stage is not an actual, separate life stage punctuated by a moult,

but is part of the adult stage and is distinguished for practical reasons4. The adult

C. elegans nematode is fertile for about 4 days and can live for a total of 14-19 days

after the final L4-adult moult.

At each transition (except that between a young adult and adult worm), the old

cuticle is shed and a new and larger version is synthesized as a replacement. The

cuticle of each life stage is different both structurally and molecularly as compared

to the others [23]. Other than that, the general anatomy of the worm, including the

aspect ratio of the body [24, 25], remain intact throughout the life cycle, with an

exception of the development of the reproductive system. Fertilized eggs will, for

instance, start to accumulate in the uterus after the L4-adult moult.

The Dauer worm

An impressive feature in the development of C. elegans is the so called Dauer state,

included as a special case in the diagram of Fig. 1.3. This life stage occurs if the

worms find themselves in an environment that is too hot or cold, is overcrowded, or

has a lack of food [19]. The L1 larva can, in that case, develop into a special L2d

3The use of the word larval in this thesis follows common C. elegans nomenclature and is to be
understood in a highly figurative way. The development of C. elegans does, for example, not involve
metamorphosis.

4Due to the long lifetime of adult worms, most measurements are usually performed on young
adult worms to avoid any effects of aging.

6
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Figure 1.3: The life stages of C. elegans at ∼ 20◦C. The average larval size and time
spent in each stage is denoted in the brackets. The transition between the young
adult and adult life stage is not a true transition and does not involve a moult. The
worm can survive in the Dauer state for as long as 4 months without any food.

stage, followed by a transition into the Dauer state, in which the worm can survive

for up to 4 months without any food. Once the environment is suitable for further

growth, the Dauer worm moults and transitions into an L4 stage worm, identical to

that developed through the normal pathway.

It has been shown that the cuticle of the Dauer worm is thicker as compared to

that of a normal life stage worm [23]. In the Dauer state, the ratio between cuticle

thickness and worm diameter has been measured as 1/36, whereas the same ratio for

normal worms is a constant of 1/88. It is believed that the thickening of the cuticle

has developed to increase the protection of the less mobile Dauer worm in a possibly

more hostile environment.

1.2 Material properties of soft condensed matter

To study the passive material properties of C. elegans, an understanding of the me-

chanical properties of condensed matter in general is crucial. Mechanical properties

are intrinsic features that describe how the solid material will respond to an external

force [26]. For a normal solid, the initial deformation is generally purely Hookean
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and reversible, and followed by some irreversible plastic deformation or fracture as

the strain becomes larger. However, for soft condensed matter [27], such as colloidal

or polymeric systems, emulsions, gels, and biological tissues, the response to exter-

nal deformations can be much more complicated. Due to the complex (molecular,

granular, cellular, etc.) arrangement of the material, interesting viscoelastic effects

arise at time and length scales atypical from those of solid state materials. In the

following sections, the treatment of elastic materials is initially discussed with a focus

on the bending of a cylindrical structure. After this, viscoelasticity is introduced and

different standardized models are discussed. Finally, a brief description of complex,

non-Newtonian fluids is given.

1.2.1 Elasticity

Elasticity is a physical quantity describing the tendency of a deformed solid material to

return to its original shape after the external stress has been removed [27]. To describe

its deformation a continuum mechanical approach is taken. For most solids, the initial

material deformation is linearly proportional to the applied force, as described by

Hooke’s law. The linear regime ends at the yield strength of the material, after which

any further strain causes partially or fully irreversible deformations.

In the linear regime, defined by small deformations, the stiffness of the material is

defined as the ratio between stress (σ, force per unit area) and strain (ε, normalized

deformation) of the material [26]

E =
σ

ε
. (1.1)

Here E is the Young’s (or elastic) modulus and represents the intrinsic elastic property

of the isotropic solid material. The exact definition of stress and strain depends on the

geometry and dimensionality of the system as well as the type of strain applied. The

extension of a string, bending of a sheet, splaying, twisting or bending of a rod, and

shearing or compression of a cube are typical examples of ways to deform different

objects. Below, the difference between the concept of transverse and longitudinal

stiffness for a cylinder is defined. Then the specific case of the bending of a cylindrical

beam will be discussed in detail, as this system later will be used as an approximation

for the bending of the nematodes in this work.
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Transverse vs. longitudinal stiffness

Disregarding torsion and elongation, a cylinder can be deformed in two ways: by

compression in the radial direction or by bending along the longitudinal axis, as

illustrated in Figs. 1.4(a) and (b), respectively. Both of these deformations can be

described by their corresponding elastic components, defined as the transverse and

longitudinal stiffnesses. Most typical homogeneous solids are isotropic, and would

have the same transverse and longitudinal stiffness. This is, however, not the case for

many biological tissues [23], which are composed of heterogeneous and structurally

anisotropic materials. The distinction between the two stiffnesses is important. The

transverse stiffness of a cylindrical biological body, such as a nematode, would ideally

be high enough to protect the body against any external perturbations and withstand

the hydrostatic internal body pressure. The longitudinal counterpart, however, should

preferably be designed to be significantly lower and thereby enhance the non-local

bending of the body and allow for easy propulsion. In terms of undulatory locomotion,

the longitudinal bending of a slender, cylindrical body is thus the relevant geometry

to consider.

Bending of a cylinder

Since the shape of the worm body can be approximated as cylindrical, the study

of the longitudinal bending of the nematode can be simplified by investigating the

Figure 1.4: (a) The transverse compression of a cylinder (cross-sectional perspective).
(b) The longitudinal bending of a cylinder (side view).
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bending of a cylinder. The resistance to bending of a cylinder depends on the Young’s

modulus, E, of the material, and on how that material is distributed in the cylindrical

structure, as captured by the so called area (or second) moment of inertia, I [28].

The product of these, EI, represents the bending stiffness of the cylinder. A detailed

derivation of the area moment of inertia for a hollow cylinder is included in Appendix

C.1, resulting in

I =
π

64

(
D4 − d4

)
, (1.2)

where D and d are the outer and inner diameters of the cylinder, respectively. A

cylinder with a thick shell will therefore be more difficult to bend as compared to

a thin-walled cylinder with the same outer diameter, simply because the former has

more stiff material to deform. For a cylinder with an unknown inner structure,

the concept of stiffness should therefore always relate to the bending stiffness of

the cylinder, and not only the Young’s modulus of its material. Furthermore, for a

cylinder with an unknown combination of potentially non-isotropic, stiff materials,

such as a heterogeneous biological system [17], the bending stiffness still accurately

describes the elasticity of the structure as a whole, although the concept of defining

a Young’s modulus of the cylinder becomes vague and ill-defined.

The bending stiffness of a cylinder can be measured by performing a three-point

bending measurement on the beam as illustrated in Fig. 1.5 [28]. The beam is sup-

ported at both of its ends either by fixed supports, clamping the ends of the beam, or

by simple supports, as shown here, allowing the ends to move upwards as the beam is

F

a
L

Figure 1.5: Schematic diagram of a three-point bending measurement on a simply
supported beam. A known force (F ) is applied at a certain distance (a) from one of
the supports, separated at a distance of L, causing the uniform beam to bend.
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bent. A known force F is then applied to the beam at a distance of a from one of the

supports (separated at a distance of L), causing the beam to bend. The force-bending

relationship can be calculated as (see Appendix C.2 for a detailed derivation of this

equation)

y(a) =
a2(L− a)2

3LEI
F, (1.3)

where y(a) is the measurable bending of the beam at the location of the applied force.

Knowing the geometry (a and L) of the system, the bending stiffness can then be

quantified. As an analogy to the elastic, Hookean deformation of a simple spring, the

proportionality factor of Eq. 1.3 can be thought of as the inverse of the spring-like

longitudinal stiffness (k) of the cylinder.

1.2.2 Viscoelasticity

The elastic treatment of a solid material as described above works for certain materials

within the limit of small deformations. It is, however, doomed to fail as the strain

or stress becomes too larger. Furthermore, the simplistic assumption of a Hookean

stress-strain response is not applicable to most soft materials. A great example of

this is the behaviour of a chunk of silly putty, which flows like a very viscous liquid

when slow stresses are applied to it [27]. If the polymeric material, however, is

rolled up into a ball and thrown at a solid substrate, the silly putty bounces with a

purely elastic response. The timescale at which the external stress is applied clearly

affects the response of the material, and is considered a typical feature of many soft

matter systems. To extend our understanding of mechanical material properties to

also take into account the liquid attributes of soft materials, elasticity needs to be

combined with the properties of a fluid. This is done by introducing the concept of

viscoelasticity.

When a sudden stress is applied to a soft material and then kept constant, the

material will gradually deform as the subcomponents (like the colloidal particles,

polymers, or cells) of the material slowly rearrange to accompany the applied stress

[26]. This phenomenon is called creep, and will stop when the stress built up internally

corresponds to the externally applied stress. A sudden strain can also be applied to

the material and then be kept constant. This will give rise to the gradual decrease of
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the stress induced on the system, and is called stress relaxation. These two features

are characteristic of viscoelastic materials, and the time scale separating the elastic

response with the viscous flow is called the relaxation time [27].

Eq. 1.1 defined the elasticity of a Hookean solid as the linear relationship between

stress and strain. The response of an incompressible Newtonian fluid to an applied

stress can similarly be defined as5

σ = ηε̇, (1.4)

where η is the dynamic viscosity. In the same way as the Young’s modulus (with units

of pressure, Pa) quantifies the resistance to deformation of a solid due to an applied

force, the viscosity (with units of Pa·s, i.e., N·s/m2) of a fluid acts as a measure of its

inherent resistance to a gradual deformation. For the systems relevant to this thesis,

it will be sufficient to include only forces (F ) and deformations (y), and Eqs. 1.1 and

1.4 thus can be rewritten as

Felastic = ky (1.5)

and

Fviscous = cẏ, (1.6)

respectively, where k is the spring constant (with units of N/m) and c is the damping

coefficient (with units of N·s/m).

Different soft materials have different viscoelastic responses and thus have to be

modelled in slightly different ways. Some materials will, for example, flow like a liquid

at long timescales after an initial elastic response, whereas others might support a

longterm stress after an initial viscous response. In the following subsections, three

standardized viscoelastic models (the Maxwell, Kelvin-Voigt, and Standard Linear

Solid models)6 are introduced to capture these differences in detail.

The Maxwell model

A material modelled by the Maxwell model has an initial elastic response to an applied

force, followed by a continuous viscous relaxation. Silly Putty and warm tar are two

5All time derivatives (d/dt) are denoted by a dot in this thesis.
6These models provide the most simple theoretical treatments available, but can of course all be

extended to capture the complex flow patterns present in some systems.
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y

k

c

F

F
y

Figure 1.6: (a) Schematic diagram of the Maxwell model, where the spring (spring
constant k) and dashpot (damping coefficient c) are connected in series. An applied
force (F ) causes a certain time-dependent deformation (y). (b) Force relaxation of a
Maxwell material under constant deformation.

good examples of real Maxwell materials [29, 30]. As described in Section 1.2.2, Silly

Putty bounces like a rubber ball at short timescales, but flows like a liquid when

perturbed slowly. As suggested by the schematic illustration of Fig. 1.6(a), these

viscoelastic requirements can be mimicked by connecting an elastic spring in series

with a liquid-filled dashpot. Here, the spring is modelled as purely Hookean, with a

spring constant of k, whereas the Newtonian fluid in the theoretical dashpot has a

damping coefficient of c.

The force (F ) required to compress (y) a Maxwell material is highly time and

velocity-dependent. When an instantaneous deformation is applied to the system, as

shown in the bottom graph of Fig. 1.6(b), the spring will be compressed instanta-

neously. The fluid in the theoretical dashpot, however, will initially not be deformed

at all, as it possesses an infinite resistance to instantaneous deformation. As time

progresses, the material will relax as the fluid component of the system starts to

flow. This will cause the external force to decay until it reaches zero, as shown in

the top graph of Fig. 1.6(b). A Maxwell material can, in other words, not support

any longterm deformations, and will not retain its original shape when the external

constraint is removed. Few real condensed materials can therefore be fully described

by the Maxwell model.

A force applied to a Maxwell material will be absorbed fully by both the spring
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and dashpot in the series connection. The compression speed of the entire system

(ẏ) is thus the sum of the separate deformation speeds of the spring (ẏs = Ḟ /k) and

dashpot (ẏds = F/c) [26]. The total speed of the deformation will in other words be

ẏ =
Ḟ

k
+
F

c
. (1.7)

Solving this differential equation with respect to time will describe the viscoelastic

response of the material. The initial condition for Eq. 1.7 will depend on how the

compression experiment is performed. For the case of the example in Fig. 1.6(b), the

initial condition would be y(0) = F (0)/k (assuming the compression was applied at

t = 0), since the dashpot does not respond instantaneously to the applied deformation.

The Kelvin-Voigt model

The Kelvin-Voigt model is very similar to the Maxwell model, but here the elastic and

viscous components are connected in parallel [26], as shown in the schematic diagram

of Fig. 1.7. In comparison to the Maxwell model, the parallel connection ensures that

a Kelvin-Voigt material retains its original shape after compression, since the spring

would return to its equilibrium length when the external force is removed. For this

reason, the Kelvin-Voigt model is successful in describing the viscoelastic features of

many soft condensed materials, including biological tissues [31].

y

kc

F

Figure 1.7: Schematic diagram of the Kelvin-Voigt model, where the spring and
dashpot are connected in parallel.
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The compression of the parallel connection of this model requires that both compo-

nents deform equally with time. The total force absorbed by both of the components

can thus be written as

F = ky + cẏ. (1.8)

Initially, all external force will be absorbed by the dashpot, and the appropriate initial

condition for differential Eq. 1.8 is thus y(0) = 0 (again, assuming the deformation

starts at t = 0). When the fluid starts to flow, however, the force absorption will

gradually be shifted onto the spring, which will be compressed until it supports the

external force completely.

The Standard Linear Solid (SLS) model

To successfully describe all features of real soft condensed materials, the initial re-

sponse of a Maxwell material should ideally be combined with the final relaxation

attributes captured with the Kelvin-Voigt model. This is achieved with the so called

Standard Linear Solid (SLS) model [26]. A schematic diagram of this model is shown

in Fig. 1.8(a), where a Maxwell series connection of a spring (spring constant k2) and

dashpot (damping coefficient c) is connected in parallel with a second spring (spring

constant k1). The SLS model has been successful in describing the viscoelasticity of,

for example, single cells [32]. An additional dashpot connected in series with the SLS

model has, however, been shown to be necessary for the modelling of large cellular

aggregates [33, 34].

A SLS material would initially respond elastically to an instantaneous deforma-

tion, during which the two springs share the absorption of the applied force. The

instantaneous stiffness of a SLS material is thus k1 + k2. The force relaxation of this

material is plotted as a function of time in Fig. 1.8(b). As the theoretical dashpot

fluid starts to flow, the material will relax until all of the external force is absorbed

by only Spring 1, maintaining some of the elastic features of the material at long

times. The same spring is also responsible for reclaiming the original material shape

upon removal of the external constraint. The SLS model thereby describes both the

compression and relaxation response of soft condensed matter more successfully than

either of the above described models separately, but has, as a drawback, to include a

third parameter to do so.
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Figure 1.8: (a) Schematic diagram of the standard linear solid model, where the
Maxwell model (spring constant k2 and damping coefficient c) is connected in parallel
with a second spring (spring constant k1). (b) Force relaxation of a SLS material
under constant deformation.

To quantitatively describe the compression of the SLS model, the same assump-

tions as used to derive Eqs. 1.7 and 1.8 for the Maxwell and Kelvin-Voigt models will

be implemented [26]:

1. Components (1 and 2) connected in parallel are compressed equally (y1 = y2 =

ytot), but share the absorption of the total force (Ftot = F1 + F2).

2. Components connected in series are opposed by the same total force F1 = F2 =

Ftot, but deform differently (ytot = y1 + y2).

By implementing these two rules for the SLS connection in Fig. 1.8(a), the following

differential equation can be derived

ẏ =
1

k1 + k2

(
Ḟ +

k2

c
F − k1k2

c
y

)
. (1.9)

The case-specific solution of Eq. 1.9 describes the time and speed-dependent response

of a SLS material to external compressions or forces.
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1.2.3 Complex fluids

Up until now, the fluid in all theoretical models has been assumed to be purely Newto-

nian. As introduced in Eq. 1.4, a Newtonian fluid has a constant viscosity, rendering

a linear relationship between strain rate and stress. Excluding water, however, many

everyday fluids, like ketchup, shampoo, paint, blood, toothpaste, and quicksand, have

strong non-Newtonian properties [27]. All of these examples are so called complex

fluids, composed of a binary mixture of two different components, typically of dif-

ferent phases (liquid-liquid emulsions, liquid-gas foams, liquid-solid suspensions, or

solid-gas granular materials). The geometry of these systems causes restrictions or

enhancements of the flow depending on how fast the material is perturbed, resulting

in strongly varying viscosities with strain rate.

If a fluid becomes more viscous with increased strain rate, it is defined as shear-

thickening. Of the examples above, only quicksand possess this property, whereas the

other fluids are shear-thinning, and thereby become less viscous as the strain rate is

increased. In addition to these examples, shear-thinning properties have also been

observed in various types of biological materials, including heart and brain tissue

[35] as well as in vocal cords [36]. Interestingly, although the structure and function

of these materials are very different, their gross mechanical properties are mostly

governed by the components of the extracellular matrix of the materials [26, 35, 37].

This is exemplified by collagen, which is a prominent structural protein in connective

animal tissue [26], including that of the cuticle of C. elegans, and which has been

shown to be strongly shear-thinning [35, 37–40].

To describe the flow of a complex fluid in a quantitative manner, many differ-

ent empirical models have been developed [41]. Below, the most well-known and

commonly used theoretical approach is introduced.

Power-law fluid

It has been empirically verified that the viscosity of several complex fluids decrease as

a power law with increased strain rate [41]. Polymer solutions are especially common

examples of this, and characterizing their flow properties is of importance for many

industrial applications [42]. The Ostwald-de Waele power-law model is the most

simple and successful in capturing this non-Newtonian behaviour theoretically by
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implementing a non-constant fluid viscosity. The relationship between the effective

viscosity and the applied shear rate (γ, strain rate caused by shearing, units of s−1)

is introduced as

ηeff = Kγ̇−d, (1.10)

where K is the consistency index (with units of Pa·s1−d), corresponding to the vis-

cosity at a strain rate of 1 Hz, and d is a dimensionless flow behaviour index, which

quantifies the deviation from pure Newtonian flow. For a Newtonian fluid, the viscos-

ity is constant and d = 0. Non-zero values of the flow behaviour index characterize

shear-thinning (d > 0) or thickening (d < 0) properties of the fluid. For polymer

solutions, d = 0.4 − 0.85 [41–43], whereas the flow behaviour index for collagen has

been determined as d = 0.76± 0.01 [40].

Many real complex fluids, like paint, penicillin broth, and human saliva [44], are

Newtonian at very low and high shear strains, but have different viscosities in the

two regimes and a shear-thinning transition in between. To capture these kinds of

more general flow properties of complex fluids, more extensive, empirical models are

necessary [41, 44].

1.3 Undulatory microswimming

Up until now, the passive material properties relevant for the modelling of C. elegans

have been introduced. In this section, the physics needed to understand the active

dynamics of the nematode will be discussed.

Undulatory locomotion occurs in a seemingly similar fashion in a wide range

of species with different sizes. In this type of motion, wave-like patterns are used

in the typically (but not exclusively) limbless body to propel the animal forward.

Interestingly, however, the physics behind the motion of a swimming snake and a

tiny worm is completely different. For large objects moving through a liquid at

high speeds, inertia will dominate the dynamics of the fluid motion, giving rise to

turbulence and allowing for long coasting distances [45]. Propulsion in the inertial

regime has been studied in, e.g., fish [46–48], snakes [49], and lamprey eels [8]. A very

small and slow object, however, will typically move in a purely viscous regime, where

inertia can be neglected and laminar fluid flow is characteristic. To understand the
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active undulatory motion of the small C. elegans nematode, propulsion in the purely

viscous environment thereby needs to be approached. In this regime, microorganisms

such as spermatozoa, bacteria, and the tiny algae Chlamydomonas reinhardtii strive

[50]. These are coined as “microswimmers”, and the physical quantity separating

them from the swimming in an inertial regime is set by the dimensionless Reynolds

number (Re) which will be defined in detail below. In the following section, the

hydrodynamics at low Re will first be introduced in general, followed by a detailed

description of the physics governing undulatory microswimming.

1.3.1 Flow at low Reynolds numbers

To fully describe the fluid flow in any hydrodynamic system, composed of anything

from a small sphere falling through honey to a whale swimming in the ocean, the

Navier-Stokes equations should be solved. For incompressible fluids (i.e., ∇ · v = 0)

with a viscosity η and density ρ, these equations can be written in terms of the fluid

velocity v as7

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p+ η∇2v + f , (1.11)

where p is the pressure and f represents all body forces, such as gravity or centrifugal

forces, opposed on the system [12]. For the scope of this thesis, the body forces will

from here on be assumed to be zero. The left side of Eq. 1.11 represents the iner-

tial terms of the system, whereas the right side is composed of the stress diverging

components, consisting of the pressure and viscous terms. Unfortunately, solving the

incompressible Navier-Stokes equations analytically has been proven to be very diffi-

cult or even impossible for most systems due to the nonlinear character of the partial

differential equations8. To describe the flow caused by a microswimmer, simplifica-

tions have to be made. Luckily, as will be shown below, the Navier-Stokes equations

become linear in the purely viscous regime in which microswimming is relevant.

7∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

8In fact, as of May 2015, there is no actual proof that solutions to the Navier-Stokes equations
exist for all possible situations. Devising such a proof is one of the seven Millennium Prize problems
defined by the Clay Mathematics Institute, offering $1 million to whoever solves it.
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The Reynolds number

To distinguish between the inertial and viscous regimes of fluid flow, the Reynolds

number, defined as the ratio between inertial and viscous forces, is introduced [27].

The interpretation of this dimensionless number can be made in many different ways.

Here, a scaling law approach will be used [12]. According to Eq. 1.4, the viscous

stress on an object with a size of L scales as σviscous ∼ ηv/L, rendering viscous forces

of fviscous ∼ ηvL, since σ = f/L2. Furthermore, the inertial stress on the body can be

described with a Bernoulli-like dynamic pressure: σinertial ∼ ρv2, making the inertial

force scale as finertial ∼ ρv2L2. The ratio between these forces gives us the Reynolds

number

Re =
finertial

fviscous

=
ρLv

η
. (1.12)

For high fluid viscosities (η), small object sizes (L), and low fluid speeds (v), Re will

be less than unity and viscous forces will govern the flow properties of the system.

The Re for bacteria, small fish, and humans in water are on the order of 10−4 to

10−5, 102, and 104, respectively [51]. As derived in the supplementary information

of Paper III (see Appendix A.3), the Reynolds number for C. elegans in water lies

within the range of Re ∼ 0.05− 0.5, and is thus on the border of being considered a

microswimmer for which inertia can be ignored.

Stokes flow

For microswimmers in general, with very small sizes and slow swimming speeds, the

Re is typically very close to zero [50]. At the lower limit of Re = 0, the inertial terms

in the Navier-Stokes Eqs. 1.11 vanish and the nonlinear differential equations simplify

to the Stokes equations

−∇p+ η∇2v = 0. (1.13)

In comparison to its predecessor, these equations are linear and independent of time

and thereby easier to solve analytically. For the system of a spherical particle moving

with a speed v in a viscous solution, the Stokes equations can be solved to derive

Stokes’ law, giving the drag force on the bead as [27]

Fd = −6πηRv, (1.14)
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where R is the bead radius. Although the seemingly simple physical system and an-

alytical solution, the mathematical steps connecting Eqs. 1.13 and 1.14 are complex

enough to not be included in introductory textbooks. As will be discussed below,

solving the Stokes equations for more complicated systems of undulating cylindri-

cal bodies is thereby far from elementary. Furthermore, the time-independence of

Eqs. 1.13 governing the motion of microswimmers will turn out to have interesting

consequences for the locomotion strategies necessary at low Re.

1.3.2 Propulsion at low Reynolds numbers

The effect the Reynolds number has on swimming is surprising and can best be

described by estimating the coasting distance of a fluid-immersed object of size L

decelerating (a) with an initial speed of v [12, 51, 52]. In a high Re regime, the drag

force on the body will be fdrag = finertial ∼ ρv2L2, and the deceleration can, according

to Newtons second law, be written as a = fdrag/m. The actual coasting distance of

the object will then scale as d ∼ v2/a ∼ m/ρL2. Furthermore, assuming a swimmer

density of ρs = m/L3, the dimensionless coasting distance can be written as the ratio

of the densities: d/L ∼ ρs/ρ. For a human (with a density very similar to that of

water), the coasting distance will thus be on the order of a body length.

In the low Re regime, however, the situation changes drastically, as can be ex-

emplified by imagining a human trying to swim in a pool of molasses while being

restricted to not moving any body parts faster than 1 cm/min [51]. Achieving a net

propulsion of a few meters over the time period of a few weeks would qualify this

human as a low Re swimmer. In this regime, fdrag = fviscous ∼ ηvL, and with the

same reasoning as above, d/L ∼ ρsLV/η = Re · ρs/ρ. For most biological organ-

isms (ρs ≈ ρ) in the purely viscous regime (Re � 1), the Reynolds number can in

other words conveniently be interpreted as a non-dimensional coasting distance. For

a bacterium (L ≈ 1 µm, Re ≈ 10−5), the physical coasting distance can be estimated

as d ≈ 0.1 Å, which is on the order of the radius of a hydrogen atom. All forces

produced by a microswimmer are thereby instantaneously absorbed by the viscous

medium, and when the force production stops, so does the propulsion. This feature

has strong effects on what types of swimming motions produce a net propulsion in

the limit of low Re.
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Time-reversal symmetry breaking

As mentioned in Section 1.3.1, the Stokes Eqs. 1.13 are time-independent. This

means that their solutions are independent of whether the motion, like that of a

spherical bead falling through a viscous solution, was performed quickly or slowly

or was followed forward or backward in time. In terms of locomotion in the low Re

regime, this means that any repeated motion that is symmetric with time, i.e., a

motion that looks identical when played in reverse, can not produce a net propulsion.

This is best exemplified by the opening and closing of the shells of an imaginary low

Re scallop, as proposed by the so called Scallop Theorem [51]. When the scallop

opens its shells, it will suck in liquid and thereby pull itself forward. When shutting

the shells, the squished out liquid will in turn push the scallop backwards. Since all

fluid moves according to the Stokes equations, the scallop will be pushed or pulled the

same distance during both of the steps, independent of how fast it opened or closed

its shells. There can in other words not be any net propulsion of the scallop, since the

motion it is producing has a time-reversal symmetry (also called a reciprocal motion)

in the low Re regime9.

To produce net propulsion at low Re, time-reversal symmetry has to be broken. In

real biological systems [50], this is, for example, achieved through the helical beating

of bacterial flagella, the intricate motion of cilia covering the surface of many mi-

croorganisms, the breast-stroke kind of motion produced by the algae C. reinhardtii,

as well as through undulatory locomotion, used by spermatozoa and the C. elegans

nematodes of interest for this thesis. In the following section, one of the most suc-

cessful theoretical approaches to model the hydrodynamics of a microswimmer will

be described.

Resistive force theory

Taylor approached the question of how undulatory motion produces propulsion in vis-

cous environments by calculating the flow induced around an infinite sheet undulating

with small-amplitude, transverse waves [53]. He then continued to study the more

realistic geometry of the propagation of transverse waves down an infinitely long,

9A real scallop of course lives in a high Re regime, and by opening its shells slowly and closing
them quickly, the inertial effect will allow it to propel itself backward.
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cylindrical body immersed in a viscous fluid [54]. For the case of C. elegans, however,

the main problem with this approach is the assumption of small swimming ampli-

tudes, which will not accurately describe the physics behind the actual swimming

motions used by the nematode. The same holds true for most other real microswim-

mers, which employ large amplitudes in their propulsion strategies [12]. To capture

more realistic, high-amplitude swimming patterns, resistive force theory (RFT, also

known as “local drag theory”) was introduced by Gray and Hancock [11, 55] as an al-

ternative theoretical approach, where the slender, i.e., long and thin, shape of typical

undulatory microswimmers was taken advantage of. To do so, the flow caused by a

deforming slender body, such as a flagellum or nematode, was modelled by replacing

the body with a line of singular solutions to the Stokes equations [12, 56]. As intro-

duced in Section 1.3.1, this requires that the hydrodynamic drag forces acting on a

small body segment are proportional to the local body velocity of that segment.

The velocity of the local segment of a line, here representing a slender body, can

be decomposed into two components, one tangential (v
T
) and one normal (v

N
) to the

direction of the segment, as illustrated in Fig. 1.9. These two velocity components

give rise to their respective drag forces on the segment in question. According to

RFT, the constant of proportionality between the drag forces and body velocities is

given by the drag coefficients of the body and the viscosity (η) of the fluid. For a

short body segment (dl) along the slender body, the drag forces on that segment can

v

v
v

F

F

Figure 1.9: The drag forces acting on a short segment of a line moving through a
viscous solution with a velocity v. The velocity is composed of two perpendicular
components, one tangential (vT) and one normal (vN) to the segment.
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be written as

dFT = −cTηvTdl, dFN = −cNηvNdl, (1.15)

where ci denotes the drag coefficient in the normal (i = N) and tangential (i = T)

direction along the body. These drag coefficients are assumed to be constant along

the entire cylindrical body. Integrating Eqs. 1.15 along the total body length gives the

total drag forces FN and FT experienced by the swimmer in the normal and tangential

directions, respectively. Through this analysis, the propulsive force exerted by the

miscroswimmer can then be calculated.

As presented above, time-reversal symmetry breaking is required for net propul-

sion to be possible. Another key asymmetry required for an organism to be capable

of microswimming lies in the anisotropy of the environmental resistance, which can

be quantified by the ratio κ = cN/cT between the drag coefficients [52]. For an undu-

lating body, if κ = 1, no net propulsion is possible. If κ > 1, however, net propulsion

will occur in the opposite direction to the waves propagated down the slender body,

whereas the body waves and net propulsion is in the same direction for κ < 1. Most

worm-like shapes have κ ≈ 1.5, whereas the limit of an infinite cylinder gives κ = 2.

Larger values of the ratio have been shown to be possible in swimming close to solid

boundaries [57], as will be presented in Paper IV (Appendix A.4).

The magnitude of the two different drag coefficients of a slender body have been

derived theoretically with RFT by many. Gray and Hancock estimated the intrinsic

drag coefficients as

cN,G&H =
4π

ln(2λ/R) + 1/2
, cT,G&H =

2π

ln(2λ/R)− 1/2
, (1.16)

where R is the radius of the cylindrical body and λ is the swimming wavelength [3, 11,

58]. Lighthill later improved on this derivation by taking into account hydrodynamic

interactions between different segments along the slender body, giving

cN,L =
4π

ln(2q/R) + 1/2
, cT,L =

2π

ln(2q/R)
, (1.17)

where R is the radius of the slender body and q = 0.09Λ, where Λ is the swimming

wavelength as measured along the body [58]. The coefficients in both of these models
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are thus only functions of the geometry of the body and the swimming pattern used.

The limitation of RFT is that it does not include any hydrodynamic long-range

interactions between the segments along the body. A more accurate, but also far more

complicated theoretical approach is made by using slender body theory [12, 52, 56],

which is a more general microswimming model on which RFT is based. Slender body

theory has been shown to typically capture swimming dynamics in a wider range of

microswimming motions [59], but will not be relevant for the scope of this thesis.

Despite the simplicity of RFT, it has for example been shown to successfully capture

the locomotion dynamics of sandfish lizards swimming through a low Re environment

of granular media [13, 18], and has in addition to that been extensively assumed for

the case of C. elegans, as will be discussed further in Section 1.5.2.

1.4 Interactions in active materials

In very dense solutions of microswimmers, the swimmers will not only be affected

by the surrounding, passive fluid as discussed in the section above, but will now

also interact with each other. In 1928, Gray reported on observations of interactions

between the flagella of individual spermatozoa, which would start swimming perfectly

in phase when the sperm cell heads were close enough [53]. Other synchronized

swimming patterns and collective behaviour has later been shown to occur in a broad

range of biological systems, composed of, for example, different kinds of bacteria

[4, 53, 60, 61], cilia [62–65], microtubule filaments [66, 67], sperm cells [68], as well as

many other microorganisms, such as C. reinhardtii and Volvox carteri [69–73].

Materials composed of self-driven, living units, as exemplified above, are defined

as “active” [74]. Active matter can also be made up by externally driven passive

components, such as self-locomoting slender rods [75] and colloidal particles [76].

The interaction driving the collective behaviour in these low Re systems is rarely

controlled by chemical signalling or active communication between the subunits, but

is typically of hydrodynamic origin [66, 73]. The key requirement for the collective

behaviour is thus a high density of components, rendering small separation distances

and strong hydrodynamic interactions. Independent of their origin, the addition of

subunit interactions leads to a completely different motion pattern as compared to
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what would occur with an individual component in an infinite, passive fluid [77]. The

simultaneous change from individual to collective behaviour leads to a complicated

temporal or orientational ordering of the fluid, often featured by synchronized waves

or other physical patterns on length scales far above those of the subunits themselves

[74, 77, 78]. As a consequence, the macroscopic properties of active materials can

vastly differ from those of normal soft condensed materials made of passive subcom-

ponents (as discussed in detail in Section 1.2). The activity of a system can, for

example, give rise to non-equilibrium phases and phase transitions, as well as dif-

ferent viscoelastic and non-Newtonian properties depending on the character of the

local sub-component interactions [79]. A typical trademark of active hydrodynamics

is a reduced or enhanced viscosity, which strongly depends on the relaxation time

of the collective behaviour. Furthermore, anisotropic viscosities can arise due to the

direction of the orientational order and flow.

To model any of the emerging macroscopic material properties, the local inter-

actions between the active subunits need to be understood. The first theoretical

description of the collective, phase-locked behaviour of bacterial flagella, as observed

by Gray and many others, was developed by Taylor, who modelled the oscillations

of two nearby infinite sheets in a purley viscous environment [53]. By including only

hydrodynamic interactions between the sheets, the mechanical energy dissipation was

found to be minimized during perfect in-phase swimming, and increase monotonically

with larger phase-shifts. More advanced, high-amplitude numerical treatments have

later shown that also perfect out-of-phase swimming is a stable configuration [12].

In many systems, however, the presence of only hydrodynamic interactions is not

sufficient to generate collective motion. Steric interactions have, for example, been

shown to be a necessary ingredient for synchronization in some bacterial and colloidal

suspensions [76], as well as in densely packed collections of swimming C. elegans

nematodes [80], as discussed further in Section 1.5.3. In these types of systems,

the physical collisions between the actively moving subcomponents give rise to the

formation of, e.g., vortices, fluctuating swarms, clustering, and synchronized beating.

In some biological systems, also mechanosensory interactions need to be considered

[81], as an active touch sensation and response can change the outcome of a collision.

The introduction of these, sometimes quite random, additional interactions naturally
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makes such a system very complex to model and will for the scope of this thesis not

be discussed further. Instead, the curious and much less common example of knotting

and tangling of high aspect-ratio components of soft materials will be discussed below,

as these can act both to induce or hinder collective behaviour in active materials.

1.4.1 Knots and tangles

Biological knots and tangles occur in systems composed of hair [82], the umbilical

cord [83], DNA strands [84–86], polymers [87], proteins [83], and flagella in groups of

spermatozoa [88, 89] or bacteria [90–94]. Some of these tangles have specific biological

purposes, whereas others are undesired consequences of the high aspect-ratio design.

In passive systems, the naturally occurring knots in the recombination and replication

cycles of DNA are, for example, thought to contribute to gene regulation. In addition

to this, from a materials point of view, entanglement of the macromolecules in polymer

melts vastly affects the mechanical properties of the bulk material, as exemplified by

rubbers and plastics [95]. Tangles also occur in active materials, where they can cause

various biological consequences. The so called run-and-tumble motion of bacteria is,

for example, enabled by the tangling of several bacterial flagella into a propeller-like

bundle, allowing for propulsion in a specific direction. For systems composed of cilia,

however, the absence of tangles allows for active fluid pumping as well as transport

of many different microorganisms.

To quantify different types of tangles, mathematicians have developed a definition

based on the topology of the tangle, as will be described below. Furthermore, the

experimental work by others into the knotting and tangling kinetics and probability of

various passive strings will be summarized, as these compose the basis of our physical

understanding of how and why tangles and knots form and disappear.

The Conway notation

In mathematics, a tangle is a region of a knotted string surrounded by a circle, such

that the surrounded knot crosses the circle exactly four times [96, 97]10. To define

10Tangle theory only deals with the tangles within a knot, whereas knot theory is applied to
the study of the topology of a knot in a closed loop of a single string. These exact mathematical
definitions are, however, not fully relevant for the scope of this thesis, where a more colloquial
treatment will be made.
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Figure 1.10: Examples of vertical 0/0, 1/2, and 1/3 rational Conway tangles. If
rotated by 90 degrees, these would be 0, 2 and 3 horizontal tangles.

different types of tangles (a few of which are shown as examples in Fig. 1.10) between

different strings or within a single string, Conway introduced the mathematical con-

cept of rational tangles [96]. These are recognized by the number of overlapping

points between the strings, which is equivalent to the number of twists that have

been made to form the tangle. A horizontal tangle is defined as a so called integer

tangle and denoted by n (n ∈ Z), which stands for the number of horizontal twists

that were made in the formation of the tangle [97]. Twisting the strings n times ver-

tically will produce a vertical tangle, which is defined by the notation 1/n. Examples

of different types of vertical tangles are shown in Fig. 1.10. If these were rotated by 90

degrees, they would correspond to horizontal tangles. A distinction between vertical

and horizontal tangles will not be made in this thesis.

A rational tangle can furthermore be either positive or negative, depending on in

which direction the twisting of the strings was made. For the purpose of this thesis,

the sign of the tangle is irrelevant and will not be included in the notation, but as

an example, the 1/2 tangle in Fig. 1.10 is positive since, per definition, the top left

incoming string passes above the top right one [97]. If the red string would pass below

the blue one in the upper crossing, the tangle would be defined as a −1/2 tangle.
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Physical knotting studies

Macroscopic systems consisting of strings, chains, and ropes have been used to study

the formation, topology, lifetime, and untying of knots experimentally. Ben-Naim,

et al. placed a ball chain with a knot tied in its centre on a vibrating plate and

followed the unknotting procedure of the string [98]. A power-law scaling between

the unknotting time and chain length was discovered, consistent with a diffusive be-

haviour. By implementing a random walk based theoretical model, the authors were

able to achieve quantitative agreement with the experimental results. With an iden-

tical setup, Hickford, et al. investigated the probability of the knotting of ball chains

with different lengths when these were vigorously shaken [99]. The knotting probabil-

ity was found to be invariant of chain length above a certain critical length, whereas

the unknotting probability increased strongly with length. A rate based theoretical

model was furthermore derived to describe the knotting probability qualitatively.

Raymer, et al. placed ropes with different lengths and stiffnesses in a rotating

box [100]. This study reported on a qualitatively very similar knotting probability

as was observed by Hickford, but much more complex knots were formed due to the

longer ropes used in this study. A sigmoidal function was shown to qualitatively fit

their knotting probability data as a function of rope length. Lastly, Belmonte, et

al. studied the self-knotting of a vertically shaken, hanging ball chain, and reported

on the formation likelihood of different knots of varying complexity [101].

1.5 Physical studies on C. elegans

As a conclusion to this chapter, a brief overview of previous work performed on the

physical properties of C. elegans will be given.

1.5.1 Passive material properties

Transverse stiffness

Park, et al. were the first to measure the stiffness of C. elegans by using a piezoresistive

displacement clamp technique to locally push a small bead, attached to a force-sensing

cantilever, into the worm body, and thereby probe its elasticity [102, 103]. By doing
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so, they found a linear force-deformation relation and derived a Young’s modulus

(E = 10 MPa) for the outer body shell (see Fig. 1.2), consisting of the cuticle,

hypodermis, and muscles [103, 104]. The stiffness was, furthermore, found to be

constant along the worm body. The elasticity probed in these studies corresponds to

the transverse stiffness of the nematode body, and is a measure of the local radial

resistance to compression of the cylindrical shell, as discussed in Section 1.2.1. To

perform their experiments, worms were glued onto an underlying agar plate, causing

both the worm and agar to be compressed by the bead in their measurements. The

decoupling of the agar stiffness from the total measured stiffness was thereby required

to quantify the stiffness of only the worm.

As discussed in Section 1.1.1, the stiffness of C. elegans has been thought to be

caused mainly by the internal hydrostatic pressure, or “skeleton”, of the nematode

body [6, 21, 23]. In Park, et al. [103], the authors performed experiments with the

same technique as described above to probe this suggested pressure effect on the body

stiffness of C. elegans. The dissipation of the internal pressure was performed either

by puncturing the cuticle with a sharp object, or by causing hyperosmotic shock.

Interestingly, both of these approaches decreased the measured transverse stiffness by

only around 20%, and the internal hydrostatic pressure was, in other words, found

to not be a dominant factor contributing to the total body stiffness of C. elegans.

The authors also experimented on a mutant with altered cuticle proteins (lon-2), and

measured a 50% increase in the transverse body stiffness as compared to wild type

(N2) worms, indicating a strong effect of the outer body shell on the total elasticity

of the worm. By using the same technique, the effect of the body-wall muscles on

body stiffness was studied by Petzold, et al. [104], where it was found that muscle

contraction caused worm body shortening and stiffening, whereas muscle relaxation

gave rise to the opposite effect. The same group also studied the effect of increased

body stiffness on the ability of force sensing, and found a negative correlation between

the two [105].

In addition to the above described technique, developed in the groups of Goodman

and Pruitt at Stanford University, a similar technique was developed by Nakajima, et

al. [106], where the buckling of a nanoprobe, used to push into the worm body, was

suggested as a stiffness probe.
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Longitudinal stiffness

As introduced in Section 1.2.1, the longitudinal stiffness of a cylindrical body is

the more relevant elastic property to consider when studying undulatory propulsion

of slender bodies. This stiffness is a measure of the resistance to bending of the

cylindrical body as a whole, and thus acts against any active undulatory swimming

or crawling motions.

Before the research performed for this thesis, the longitudinal stiffness of C. ele-

gans had been measured by two different groups with very different approaches. In

Sznitman, et al. [107], the authors predict the viscoelastic material properties of the

nematode by quantifying its swimming patterns in a low Re regime. The experimen-

tal kinematic swimming data was coupled with a linearized model implementing the

total internal moment of the worm, composed of the active moment of the contracting

muscles and the passive moment of the elastic worm material. This indirect but non-

invasive approach was conveniently used to study the material properties of C. elegans

in a natural environment. In the paper, the Young’s modulus and viscosity of the

model organism was determined as E = 3.77± 0.62 kPa and η = −860.2± 99.4 Pa·s.
The achieved negative viscosity was explained by the tissue generating rather than

dissipating energy. The longitudinal stiffness was that of the outer body shell, and is

three orders of magnitude smaller than the directly measured transverse stiffness of

Park, et al. [103]. This large difference is in excellent agreement with the anisotropy

of the worm material and the functional design of the worm body in general [23]. As

discussed in Papers I and II, we have furthered the investigation of the viscoelasticity

of C. elegans.

In another study by Sznitman, et al. [108], the passive material properties were

predicted in fluids with different viscosities, affecting the swimming gait and kine-

matics of the worms. Both the stiffness and absolute viscosity of the worm material

were found to strongly increase with fluid viscosity, and it was hypothesized that

the stiffening of the worm body was caused by the shortening of sarcomeres and a

higher muscle cell density in environments with higher resistance, where the worm

is forced to produce more mechanical work. The observation of an increase in the

absolute apparent internal viscosity in environments with higher fluid viscosities is

very interesting. In the work presented in this thesis (Papers I and II in Appendices
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A.1 and A.2), we have found the viscous component of C. elegans to behave as a

shear-thinning fluid. The slower beating of the worm body in the higher viscosity

fluids, as observed by Sznitman, would give rise to a different apparent viscosity of a

non-Newtonian internal worm fluid, as discussed in Section 1.2.3. Implementing this

kind of interpretation would have rendered the worm material shear-thinning, as was

discovered with a more direct approach in our work.

The second quantification of the longitudinal stiffness of C. elegans was performed

by Fang-Yen, et al. [10]. In their work, a worm was held by its tail by a micropipette

and its head was pulled down to bend the body to the dorsal or ventral side and then

let to quickly relax up to its original position. The relaxation was monitored with

a high-speed camera and the experimentally determined relaxation time was used

to derive values for the worm body stiffness and viscosity. Through this approach,

the Young’s modulus of the cuticle was estimated as E ∼ 13 MPa, which is signif-

icantly higher than the shell stiffness predicted by Sznitman. This difference could

be due to the assumption of no muscle activity in the work by Fang-Yen, rendering

a higher apparent stiffness as it likely also includes the active response of the bent,

unanesthetized worm.

1.5.2 Active undulatory locomotion

Kinematics and gait modulation

The kinematics of C. elegans moving in liquids and on a gel surface has been stud-

ied extensively. Karbowski, et al., investigated the conservation of various kinematic

variables of the nematode, including both wild type and mutant worms, as well as

other Caenorhabditis species crawling on different agar substrates [109]. They found

that the normalized crawling wavelength is a conserved quantity for all of the ne-

matodes studied. The velocity of forward propulsion was furthermore found to scale

linearly with the velocity of the muscular wave. Some exceptions from the otherwise

conserved quantities were found in mutants with different cuticle structures, which

was suggested to be partly due to a change in the stiffness of these mutants, indicat-

ing the significance of the biomechanical body properties on the resulting undulatory

locomotion.
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A few theoretical attempts have been made to model the intricate elasto-capillary-

hydrodynamical interplay present in the crawling locomotion on soft and wet vis-

coelastic gel substrates. In a model by Sauvage, et al. [110], the authors included

the pinning down of the worm due to the thin liquid layer capillarity, the hydrody-

namics of the lubrication film between the worm and the substrate, as well as the

substrate and worm body elasticity, to determine the ratio between the transverse

and longitudinal friction coefficients of the worm body on the gel. The maximum

drag coefficient ratio achieved was derived to be 2, and is lower than what has been

predicted experimentally. Implementing the plasticity of the gel substrate into the

model was suggested to potentially improve this discrepancy.

In the group of Arratia at the University of Pennsylvania, the swimming kinemat-

ics of C. elegans in normal buffer solutions [107, 108, 111], in viscoelastic fluids [112],

in wet granular media [113], in fluids with polymer networks [114], and in shear-

thinning fluids [115], has been examined. By investigating the decay of the fluid

velocity away from a swimming nematode in different viscosities, the worm, with a

questionably large size, was shown to behave like a low Re swimmer [111]. In addition

to this, the locomotion in saturated particulate system [116], structured microfluidic

environments [117, 118], and in fluid flow [119] have been studied.

Significant attempts have been made to study the gait modulation of C. elegans

in different viscosities [108, 120–123]. Fang-Yeng, et al., showed that the worm slows

down and decreases its swimming wavelength with increased fluid viscosity, and that

the motion in fluids with extremely high viscosities (28 000-fold increase with respect

to that of water) is identical to that used in crawling on agar [10]. In the same

study, it was determined that the muscle power exerted by the nematode during the

swimming gait is primarily devoted to the bending of the elastic body. During the

crawling gait, however, comparable muscle power was found to be used to drive the

external load and the elastic body.

Dynamics

Several different attempts have been made to estimate the forces used by C. elegans

during swimming. Sznitman, et al., performed indirect force measurements on swim-

ming worms by using RFT in combination with particle tracking and velocimetry
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methods applied on kinematic data [111]. The propulsive thrust was thereby pre-

dicted to be within the order of a few nanonewtons, and the drag coefficient ratio

was estimated as κ ≈ 1.4. Also Fang-Yen, et al. used RFT to estimate the propulsive

thrust and thereby calculate the produced swimming power of C. elegans [10]. The

total power output was shown to remain constant over a broad range of fluid viscosi-

ties, indicating the necessity of gait modulation of the swimmer as it enters regions

of higher external resistance.

Before the work for this thesis, the only direct approach to measure locomotion

forces was performed by Ghanbari, et al. [124], where the authors used the deflec-

tions of gel micropillars as force probes arranged in a periodic matrix. The observed

maximum force level was 61.94 µN. A similar experimental micropillar approach was

performed by Doll, et al. [125], where an average peak force of 2.5± 2.5 µN was mea-

sured. These forces are three to four orders of magnitude higher than the swimming

forces estimated by Sznitman, and it is unlikely that the worms, although certainly

capable of producing forces this high, would exert such forces in its swimming gait.

In the work for this thesis (see Paper III in Appendix A.3), we have performed the

first direct and time-resolved measurements on the forces experienced by C. elegans

when swimming in a buffer solution. With this direct approach, we proved the pre-

viously assumed suitability of RFT to model the swimming dynamics of C. elegans,

and were also able to determine the drag coefficients of the worm. We have also

studied the swimming dynamics and change in the drag coefficients of C. elegans in

two-dimensional confinement (Paper IV in Appendix A.4) and in fluids with increased

viscosities (Paper V in Appendix A.5).

The crawling dynamics of C. elegans has also been studied experimentally. In

Shen, et al. [126], the authors predicted the drag coefficient ratio as 10 for C. elegans

nematodes crawling on agar surfaces using experimentally achieved kinematic data

and a hydrodynamic model based on lubrication theory. In our work on crawling

dynamics [127], as briefly summarized in Appendix B.1, the drag forces were directly

measured with micropipette deflection and the ratio between the drag coefficients

were determined as 2-10, depending on the speed of the worm (increasing ratio with

decreasing speed).
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1.5.3 Collective swimming and crawling

As discussed in Section 1.4, collective behaviour can arise between actively moving mi-

croswimmers in dense systems. Not many studies have to this date been performed to

probe the collective interactions between C. elegans nematodes. Yuan, et al. recently

investigated the interactions between highly packed C. elegans nematodes swimming

confined between two planes [80]. By analyzing a large number of nematode pairs,

the authors found that the worms indeed swim collectively when close enough, but

explained this with purely steric interactions. Interestingly, no signs of hydrodynamic

interactions were in other words discovered, which could be due to the Re being closer

to unity than zero for the model organism.

In the work by Gart, et al. [128], the collective motion of worms crawling on

an agar plate was investigated. The initial aggregation of two or more worms was

reported to be driven by random collisions, whereas the continued collective crawling

motion was explained with the attractive force caused by the surface tension of the

liquid layer on top of the gel substrate.

Neither of these two studies reported on any signs of mecahnosensation between

the interacting worms, indicating that the steric forces were too low to trigger these

types of neurological responses.
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Chapter 2

Experimental details

This chapter is designed to cover all experimental procedures used in the research

performed for this thesis. In the first section, the micropipette deflection technique

is introduced and a detailed description of its application to C. elegans is given. In

the second section, maintenance and handling guidelines for working with C. elegans

are provided.

2.1 Micropipette deflection

The focus of my doctoral studies has been to apply the technique of micropipette

deflection (MD) to probe the passive and active properties of C. elegans. In this tech-

nique, the spring-like deflection of a long (1-3 cm) and thin (10-20 µm) glass capillary

is calibrated and used to measure forces as low as tens of piconewtons. In comparison

to other, standardized mechanical probes, MD fills an interesting mesoscopic gap in

its force-displacement (F-d) range, as illustrated in Fig. 2.1. Microscopic probes such

as atomic force microscopy (AFM) as well as optical and magnetic tweezers (OT and

MT, respectively) are typically used to characterize the biodynamic properties in a

range spanned from single biomolecules, such as DNA, up to entire cells [129]. All

of these microscopic probes are, however, restricted in the upper bounds of their F-d

range. On the other hand, macroscopic probes such as dynamometers, force gauges,

and load cells are only capable of working in much larger F-d regimes, well above

those of the microscopic probes.
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MD

Figure 2.1: The force-displacement range of standard force probes, including atomic
force microscopy (AFM), optical tweezers (OT), magnetic tweezers (MT) [129], and
macroscopic (macro) probes like dynamometers, force gauges, and load cells. Mi-
cropipette deflection (MD) fills the gap between these micro and macro regimes.

The accessible F-d range of MD falls right between the microscopic and macro-

scopic probe regimes, and has deemed the micropipette technique highly suitable for

biomechanical studies of, e.g., vesicles and cells [130–135] as well as cellular aggregates

[136]. MD thereby adds to the more standardized micropipette aspiration technique

[137–140], applicable to a much smaller regime within the F-d range set by MD. The

limiting features of MD is the thermal vibrations (< 0.1 µm) of the micropipette when

immersed in liquid, rendering a force resolution of around 0.1 nN. By making shorter,

stiffer pipettes, there is no limit (within reasonable bounds) in the other extreme.

The original MD setup in our lab was designed and built by Dr. M.-J. Colbert and

is described in detail in her M.Sc. and Ph.D. theses [141, 142]. In the sections below,

the manufacturing and calibration of the pipettes as performed for this thesis will be

described. Furthermore, the specifics of all experimental setups will be discussed. In

all experiments, pipettes were filled with deionized water by attaching a rubber tube at

the end of the capillary and pushing in water with a syringe attached to the other end
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Figure 2.2: Inverted optical microscopy image of a young adult C. elegans worm
caught by its head by a force-calibrated micropipette.

of the tube. The same syringe was then used to either push out more water, as in the

case of a calibration experiment (see Section 2.1.2), or to apply suction to grab hold of

a worm before a measurement (see Sections 2.1.3-2.1.5). All experiments were imaged

with an inverted optical microscope with magnifications in the range of 5X-20X, as

exemplified in Fig. 2.2, where a young adult worm has been caught by its head with a

micropipette. The deflection of the pipette has been analyzed with an in-house cross-

correlation image analysis Matlab script (Adam4MJCorrelationLotsGray.m) written

by Drs. A. Raegan and M.-J. Colbert. The temporal resolution of all of our exper-

iments was thereby set (limited) by the speed of the camera. The actual force is

obtained by multiplying the deflection with the spring constant (kp) of the pipette.

2.1.1 Pipette manufacturing

Micropipettes were stretched from glass capillaries (152 mm long, 1/0.58 OD/ID

(mm), World Precision Instruments) with a pipette puller (Narishige Group PN-30),

resulting in hollow cylinders with a length of 1-4 cm and an outer diameter within the

range of 10-50 µm. The end of the pipettes were cut by looping the capillary around

a hot wire (0.5 mm in diameter, 90% Ir-10% Pt, Alfa Aesar), heated by connecting

a voltage across the wire with a DC power supply (Xantrex HPD 30-10). When the

voltage was turned off, the soft glass solidified and contracted, resulting in a sharp
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cut of the pipette and an open pipette end. To bend these pipettes into the desired

shape, a thinner (0.2 mm) Ir-Pt wire was used in the same way as described above,

but with lower wire temperatures to avoid sticking of the glass to the wire. With the

help of an optical microscope (Meiji techno, Model SKT 28209, 2X), bends as short

as ∼200 µm were possible.

To perform experiments on very small worms, the end of the pipette had to be

made thinner than the typical 10-15 µm achievable with the pipette puller. To do

this, the pipette was pulled away from the hot wire during the cutting stage, causing

a slight stretching of the part of the glass touching the wire. When the voltage was

turned off, the pipette was, with some luck, cut at the thinnest part. With this

additional step, pipettes with openings as thin as 5 µm could be produced.

2.1.2 Pipette calibration

To calibrate the micropipettes, two different approaches were used as described below.

Straight pipettes

In the calibration of a completely straight pipette, a small water droplet was hung as

a weight at the end of the pipette, causing a certain, measurable pipette deflection.

Knowing the drop volume and pipette deflection, the spring constant of the pipette

could be calculated. To perform the calibration, the pipette was mounted horizontally

above the inverted microscope and filled with ultra pure water. A small water drop

was then pushed out from the pipette and left to cover the outside of the glass

capillary, as shown in Fig. 2.3(a). Here, the pipette was viewed from the side by

placing a mirror (piece of a silicon wafer) at a 45 degree angle very close to the

pipette and focusing on the mirror image instead of the real image of the pipette. As

more water (with a mass m) was pushed into the drop, its weight (F = mg) increased,

leading to a change in the deflection (∆x) of the pipette, as shown in Fig. 2.3(b). The

water in the drop could also be let to evaporate to achieve a more continuous and

slow change in its mass.

To quantify the weight of the droplet, its volume was first calculated by assuming

an ellipsoidal shape with the volume of V = 4πd2
mindmax/3, where dmin and dmax are the

minimum and maximum diameters of the drop, respectively. Here we assume radial
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Figure 2.3: (a) In the calibration of a straight pipette, a small water droplet with a
know mass (m) was used as a weight (F ). (b) By increasing the size of the drop, a
larger pipette deflection (∆x) was detected. (c) The change of droplet weight plotted
as a function of change in pipette deflection. The slope of the linear data corresponds
to the spring constant of the pipette.

symmetry with respect to the axis of the pipette, i.e., that the minimum diameter

is invariant with viewing angle. This is a refinement of the previously developed

image analysis procedure, where a spherical droplet shape was assumed [142]. As the

glass capillary clearly deforms especially smaller drops, as shown in Fig. 2.3(a), the

assumption of an ellipsoidal three-dimensional shape is more correct. The weight of

the drop can then easily be calculated as F = V ρ
H2O

g, where the density ρ
H2O

of pure

water is assumed. In Fig. 2.3(c), the change in droplet weight is plotted as a function

of change in pipette deflection. The slope of the clearly linear data corresponds to

the spring constant of the pipette in units of nN/µm.

Bent pipettes

To calibrate a pipette with a bent end, the water droplet technique was not ideal as the

bent pipette corner typically deformed the surrounding drop, making any assumptions

of its three-dimensional shape difficult to make. Instead, a previously calibrated

straight pipette (spring constant ks) was used as a force sensor to calibrate any bent

pipettes. To do so, the calibrated straight pipette was mounted on a stepping motor

and placed parallel to the pipette that was to be calibrated, as shown in Fig. 2.4(a).

By moving the straight pipette (xs) with a constant speed into the bent pipette

(xb), the relative deflection of the former before and after contact could be used to

calculate the force applied to the bent pipette. In Fig. 2.4(b), the deflection of the
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Figure 2.4: (a) The experimental setup for the calibration of a bent pipette (right)
with a previously calibrated straight pipette (left). By moving the straight pipette
(xs) into the bent pipette (xb), the spring constant of the latter can be quantified.
(b) The deflection of the straight pipette, moved at a constant speed by a stepping
motor. After contact between the two pipettes, the deflection speed of the straight
pipette is decreased as it now also acts to deflect the bent pipette. The change in
deflection caused by the bent pipette on the straight one is defined as ∆xs. (c) The
force applied by the straight pipette as a function of the bent pipette deflection. The
slope corresponds to the spring constant of the bent pipette.

straight pipette is plotted as a function of time. Before contact with the bent pipette,

the straight pipette moves with a constant speed. After contact, the deflection speed

is decreased due to the deflection of the bent pipette. The force applied to the bent

pipette corresponds to ks∆xs, where ∆xs is the relative deflection of the straight

pipette before and after contact [see Fig. 2.4(b)]. The force applied by the straight

pipette is plotted as a function of the bent pipette deflection in Fig. 2.4(c), and the

slope of the linear data corresponds to the spring constant (kb) of the bent pipette.

Spring constants

The typical spring constants of the pipettes used in the work for this thesis were in

the range of kp ∼ 1 − 20 nN/µm. By varying the length and thickness of the can-

tilever, pipettes with different stiffnesses could easily be manufactured. The relative

error associated with the spring constant was less than 10%, where the uncertainty

stems from determining the volume of the elliptical drop through the image analysis

described above, performing the linear fits to the force-deflection data, as well as from

variations between several calibration experiments performed on the same pipette.
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2.1.3 Bending experiment

The first goal of my doctoral research was to measure the longitudinal bending stiff-

ness of C. elegans. To do so, a three-point bending measurement (see Section 1.2.1)

of the worm was performed. To set up the bending experiment, a few drops of M9

containing NaN3 (see Section 2.2.1) were placed on a thin glass cover slip (22x40

mm2, VWR micro cover glass) and worms were picked into the liquid and paralyzed

within a few minutes. A chamber was then built around the drop with two (2 mm

tall) rubber spacers and a second glass cover slip on the top, as illustrated by a top

view in Fig. 2.5(a), and was finally secured by two metal clamps, placed over the

spacers. The chamber was then filled up with more of the M9-NaN3 buffer, resulting

in a capillary bridge between the two glass slides, which, for this reason, had to be

spaced at a distance close to the capillary length of water (∼2 mm for clean water).

The finalized chamber was placed on top of an inverted microscope and two dif-

ferent pipettes were then mounted into the chamber from the opposite sides. First,

a force-calibrated pipette bent into a Z-shape [see Fig. 2.5(a)] was mounted on the

right side onto a xyz-translational stage. The second pipette was the so called support

pipette, which was a thicker (∼50 µm) straight glass capillary with its end shaped as

a U. This pipette was attached to a stage connected to two stepping motors in the

z

x
y

x

v

F

L

a

D

Figure 2.5: (a-b) Schematic diagram (top view, not to scale) of the experimental
bending setup. (c) Optical microscopy image of the bending of a young adult worm.
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xy-directions and with manual z-translation, and placed facing the first pipette. To

start an experiment, a worm was grabbed by the vulva (for consistency) and placed

between the two vertical parts of the U-shaped pipette, as shown in the schematic

illustration of Fig. 2.5(b) and in the optical microscopy image of Fig. 2.5(c). The

bending was then performed by moving the support with a constant speed in the

x-direction, causing a deflection (x) of the pipette to the right and a spring-like force

(F = kpx, where kp is the spring constant of the pipette) applied to the worm to the

left. Various experiments were performed by bending the worm with different speeds

and using a smaller support to bend different body parts locally. To perform relax-

ation measurements, the support was moved a certain, controlled distance (typically

30-50 µm) with a high speed onto the worm, after which the motor was stopped and

the worm was left to relax under the force applied by the deflected pipette. Inde-

pendent of experiment, they were all set up on an Olympus IX71 inverted optical

microscope standing on an anti-vibration table (Halcyonics MOD-1). The CCD cam-

era (QImaging, Retiga 2000R) and stepping motor (Newport LTA-HS, controlled by

ESP3000) were controlled by an in-house LabView script (MJ summer07 matilda.vi).

Images were captured at a rate of 2 Hz, setting the time resolution of these experi-

ments. For faster (10 Hz) capturing, the QCaptue Pro software is recommended.

Analysis

To calculate the bending stiffness EI (see Section 1.2.1), the worm diameter (D), the

distance between the supports (L), and the distance between the upper support and

the position of the applied force (a) [all shown in the schematic of Fig. 2.5(b)] were

measured on an optical microscopy image from the experiment in question with a

simple Matlab script. Three length measurements were performed for each quantity

to obtain an average and standard deviation, used for any subsequent error analysis.

The cross-correlation code (Adam4MJCorrelationLotsGray.m) was used to analyze

the deflection of the pipette as well as obtain the exact speed (vu = xut) of the

supporting, U-shaped pipette. No values were taken directly from the motor, since

acceleration and backlash (0.00786 mm for our stepping motor) issues made these

unreliable. The force (F = kpx) was then plotted as a function of the bending of

the worm, which was defined as y = xu − x, i.e., the difference between the motion
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of the support and deflection of the pipette. The slope of the initially linear data

corresponds to the Hookean stiffness of the worm

kw =
3LEI

a2(L− a)2
, (2.1)

as introduced in Eq. 1.3 of Section 1.2.1, where EI is the bending stiffness of the

nematode.

In the Supplementary Information of Paper I in Appendix A.1, a detailed deriva-

tion of the viscoelastic Maxwell model (Eq. 1.7) applied to this system is given. The

key point in this derivation, as well as all other similar derivations in this work, was

to realize that the MD experiments can not be performed or represented as pure creep

or stress relaxation systems (see Section 1.2.2). The pipette is responsible both for

the force sensing and material deformation, and these can, therefore, not be decou-

pled to, for instance, keep the force constant and let the deformation relax1. A simple

stress or strain relaxation equation can therefore not be applied. This issue was taken

into account in the derivation of the viscoelastic models, all based on Eqs. 1.7, 1.8,

and 1.9, rendering analytically solvable differential equations. All viscoelastic fits to

force-bending-time data in Papers I and II were performed either with Matlab or with

the open source software GLE (Graphics Layout Engine).

2.1.4 Swimming experiment

A new micropipette deflection setup was built to perform high-speed measurements

on actively swimming C. elegans nematodes. An inverted microscope (Olympus IX71)

was placed on an anti-vibration table (Halcyonics) and xyz-translational stages were

mounted with optical posts (all from Thorlabs) onto the table. A 56 Hz CCD camera

(Allied Vision Technologies, GT1660) was finally attached to the microscope and

connected to the computer with an ethernet cable.

In swimming experiments with a single worm, the nematodes were picked into a

cylindrical container (diameter = 1.2 cm, height = 4 cm) made from a rubber tube

1In theory, this could be done by implementing a feedback loop connected to the motor, which
would adjust its position to keep, e.g., the pipette deflection constant. This would, however, require
real-time acquiring of the pipette position, which is not possible with the current image analysis
approach. Reflecting a laser beam off the pipette and onto a photo diode could, for instance, be
used for this purpose.
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Figure 2.6: (a) Schematic diagram (not to scale) of the experimental swimming setup.
(b) Optical microscopy image of a young adult worm swimming.

and filled with M9, as illustrated in Fig. 2.6(a). The pipettes for these experiments

were of a “three-dimensional” design to measure forces in both the propulsive and

lateral swimming directions of the worm. A worm was caught with this pipette by

following it as it swam along the bottom of the chamber and applying suction close

to its tail, resulting in the final configuration shown in the optical microscopy image

of Fig. 2.6(b). Since the worms typically swim in the same plane as the bottom of

the chamber, they kept on swimming in the imaging plane when captured by the

pipette and brought away from the surface. All measurements were performed in an

“infinite” fluid, far from any boundaries, and the thin part of the pipette was always

completely immersed in the liquid, as asymmetric meniscus deformation effects were

found to give rise to drift in the pipette position.

All analysis for this work is described in detail in Papers III-V (Appendix A.3-A.5)

and in the M.Sc. thesis of R. Schulman [143].

2.1.5 Tangling experiment

The chamber setup for the tangling experiment was the same as that developed for

the bending experiments (Section 2.1.3). The chamber was filled with M9 and placed

on the high-speed inverted microscope setup developed for the swimming experiments
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Figure 2.7: (a) Schematic diagram (not to scale) of the experimental tangling setup.
(b) Optical microscopy image of two young adult worms. The scale bar represents
200 µm.

(Section 2.1.4). Two pipettes were then mounted on separate xyz-translational stages

from the same side, as shown in the schematic illustration in Fig. 2.7(a). To get the

pipette ends very close to each other, the pipettes were bent as shown in the diagram,

where each straight part was approximately 1 cm long. Two similarly sized worms

were finally grabbed by their tails and left to swim very close to each other, as shown

in the optical image of Fig. 2.7(b).

The tangling analysis relied on the deflection of both of the flexible pipettes and

is described in detail in the Supplementary Information of Paper VI in Appendix

A.6. The rational 3 tangles were identified and counted by looking through the

entire image series of each experiment performed at reasonably close distances. To

track the sinusoidal lateral motion of the worm heads, sequential images were opened

with Matlab and the head positions were located by manual clicking. This manual

approach was deemed necessary due to the frequent overlapping between the worm

bodies, making any automatized image analysis approach similar to that applied to

a single worm highly non-trivial.

2.2 C. elegans maintenance

The C. elegans nematodes (from the Caenorhabditis Genetics Center) and all worm

related materials were acquired, starting in November of 2011, from the lab of Dr. Ryu

at the University of Toronto. The worms were kept on bacteria-covered gel surfaces
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held in petri dishes (9 cm in diameter) and maintained in an incubator (Thermo

Scientific Heratherm) at a constant temperature of 20◦C. The incubator was cleaned

several times a year with a 70% ethanol in water mixture to prevent mould growth

and to clean out any other contamination. The worm materials used in this work

were prepared by technicians in Dr. Ryu’s lab and all chemicals were sourced from

Sigma-Aldrich. The maintenance procedures are described in detail below.

2.2.1 Materials

Agar plates

The worm gel plates were prepared from nematode growth media (NGM) according

to standard procedures [144]. The agar plates were then covered by a “lawn” of

Escherichia coli (OP50) bacteria, acting as a food source for the worms. The growth

of this bacterium is limited on NGM plates, resulting in a thin layer of bacteria which

allows for easier observation of the worms as well as better worm mating [19]. All

bacteria covered NGM plates were brought from Toronto a few times a year, stacked

in clean plastic bags and kept in a refrigerator at 4◦C in Dr. Fradin’s lab at McMaster.

Any plates containing worms were sealed with Parafilm to avoid water evaporation

from the gel and potential worm death.

M9 buffer

To perform experiments in a fluid environment, a so called M9 buffer containing

various salts is typically used with C. elegans (placing worms in deionized water is

to be avoided due to the risk of osmotic shock). The M9 buffer used in all of our

micropipette deflection experiments was mixed according to the following, standard

recipe [19]:

3 g KH2PO4

6 g Na2HPO4

5 g NaCl

1 ml 1 M MgSO4

H2O to 1 L
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The buffer was finally sterilized by autoclaving. Three large (1 L) bottles of M9

were brought from Toronto during 2011-2014. A large consumption, occasional salt

aggregation (causing clogging of our pipettes or dirt in the field of view during the

experiments), as well as contamination were the main reasons to acquiring new buffer

solutions.

Drugs

To anesthetize C. elegans, various chemicals were used. The most common approach

was to use the muscle relaxant NaN3 dissolved in water (1 M solution acquired from

Toronto). To achieve the appropriate concentration (8-15 mM) for the bending ex-

periments, the drug was further diluted with M9 in our lab. Care was to be taken

when handling high concentrations of NaN3, as the chemical is both explosive and

lethally poisonous to humans. The usage of this drug gave rise to paralyzed, straight,

rod-shaped worms as shown in Fig. 2.5(c). No differences were noted in the mate-

rial properties of the worms with increased NaN3 concentration, but care had to be

taken not to perform experiments on dead nematodes. To ensure live worms, the

lowest drug concentration resulting in paralysis was used and all experiments were

performed within 2 hours from placing the worms in the media.

Figure 2.8: (a) Bending measurements on C. elegans in a M9 buffer with 0.3 M BDM
had to be performed within 15 minutes. After this, the worm went from a rod to a
zig zag shape due to muscle contraction. (b) The immediate effect of muscimol on C.
elegans, making any bending measurements impossible with this muscle contracting
drug. The scale bar applies to all images.
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In addition to this, 0.3 M 2,3-Butanedione monoxime (BDM) in M9 and various

concentrations of muscimol and levamisole dissolved in M9 were tried. All of these

drugs, however, caused paralysis of the worms, featured by random and intense muscle

contractions, resulting in undesired zig zag shapes of the worm bodies, as shown in

Fig. 2.8. BDM could be used as long as the bending experiments were set up and

finished within 15 minutes from placing the worms in the media. After this time, the

muscle contraction started deforming the previously straight worm body [Fig. 2.8(a)].

This time window allowed for the bending of 1-2 worms per experiment (3 trials per

worm), requiring the entire experiment to be set up in less than a couple of minutes.

In Fig. 2.8(b), the immediate result of muscimol on the worm body is shown. No

bending experiments were possible with either muscimol or levamisole due to the zig

zag worm shapes caused by the drug induced muscle contractions.

2.2.2 Chunking

To keep the worms viable, they had to be transferred to new bacteria covered agar

plates with an interval of 2-3 days, corresponding to the time for the lack of food and

plate overcrowding to become apparent. Using worms from too old plates showed

differences in both the passive material properties, caused mostly by the intestine

being completely empty, as well as in the active swimming behaviour of the worms.

In the latter case, worms were more sensitive to being placed in the buffer and caught

by pipettes, resulting in frequent halts in their movements and unusual swimming

motions, as well as a faster apparent death.

To transfer (or “chunk”) worms to a new plate, a spatula was first sterilized by

dipping it in ethanol and burning off the alcohol using an alcohol burner. After this,

a ∼ 1 cm2 piece of the old, worm-covered agar was cut out and placed upside-down on

the fresh, bacteria-covered plate. This new plate could then be used for experiments

in 1-4 days after chunking, depending on the size of the chunked piece (the higher the

number of worms transferred, the faster they would reproduce and manage to cover

the new plate) and the temperature of the incubator (the worms develop faster at

higher temperatures). The actual transfer was to be performed as fast as possible to

avoid contamination of the fresh agar plate. In the case of apparent mould on any of

the old plates, these were quickly discarded and another, clean plate was used for the
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chunking. Plates as old as 2-3 months could be used for chunking since all of these

contained Dauer state worms (see Section 1.1.2), which would develop into normal

worms when placed in a food rich environment. For this reason, several plates from

various dates were stored in the incubator to always have usable worms and avoid

acquiring new ones from Toronto. All unwanted plates were finally discarded in the

biowaste bin in Dr. Fradin’s lab.

2.2.3 Picking

Before an experiment, worms were picked from the surface of an appropriate agar

plate, as discussed above, into a drop of buffer. The picker was made by carefully

melting the tip of a glass pasteur pipette in the flame of an alcohol burner and placing

a platinum wire (∼2 mm thick, ∼2-3 cm long) into the soft glass. The pipette was

then moved out of the flame, causing the wire to firmly freeze into the now solid glass.

The picking was done under a dissecting stereomicroscope (Leica StereoZoom SZ4,

0.7-3X), where the end of the sharp picker was carefully placed under the worm of

interest and then used to scoop up the worm and finally place it in the drop of buffer.

As the worms were easily injured and/or killed by careless picking techniques, caution

was necessary to gently lift the worms off the agar and then place them into the drop

without squishing them into the supporting glass slide. The transfer between the

agar and the buffer was to be done quickly, as the worms die within tens of seconds

after being placed on a dry surface.

Between each pick, the picker was sterilized by dipping it in ethanol and burning off

the alcohol using the alcohol burner. As ethanol works as an anesthetic to C. elegans,

it was important to burn off all alcohol before picking the next worm. Furthermore,

care had to be taken not to pick worms with a burning hot picking wire, which

naturally would kill or seriously injure the small crawlers. To avoid this, the picker

was cooled down by sticking it into the agar along the edge of the petri dish before

a worm was approached. This also made the platinum wire more sticky, simplifying

the scooping up of the worms.
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Chapter 3

Summary of papers

In this chapter, the published work of my C. elegans research is summarized. For

all of these publications (appended in Appendix A), I contributed significantly to

the design, research, and final outcome of the project. All of my additional PhD

publications, either related to C. elegans or fields not relevant for the focus of this

thesis, are listed and briefly described in Appendix B.

The focus of my C. elegans research performed by micropipette deflection can

be divided into three parts: probing the passive material properties of C. elegans,

understanding the active swimming dynamics of the microswimmer, and investigating

the active interactions between two swimming worms. In Papers I and II, the passive

material properties of C. elegans are discussed. In Paper I, the viscoelastic properties

of the model organism were studied by performing three-point bending measurements

on the worms at all life stages and with a focus on different anatomical parts. It

was shown that a widely used and accepted viscoelastic model failed to describe the

material properties of the nematode, and that the worm is shear-thinning. These

findings shed new light onto the already studied mechanical features of the model

organism. In Paper II, the complex internal flow of the worm was further quantified

by force relaxation measurements and described with an extended viscoelastic model,

incorporating the non-Newtonian aspects of the biological tissue.

In Papers III-V, the active swimming dynamics of single worms was probed (see

Appendix B.1 for a brief description of our work on the crawling dynamics of C.

elegans nematodes). The drag forces experienced by the swimmer were directly mea-
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sured in a time-resolved manner and successfully modelled with resistive force theory.

In Paper III, we investigated the dynamics of C. elegans in a water-like buffer and

quantified the drag coefficients of the slender body. To investigate the gait modula-

tion and drag coefficients in environments with increased resistance, the worms were

confined to swim close to one or two boundaries (Paper IV), or in fluids with increased

viscosities (Paper V). The gait modulation was found to only depend on the external

resistance of the fluid, and not on the means of how the resistance was increased.

In Paper VI, the interactions between two microswimming nematodes in an in-

finite fluid are finally investigated. The two “active string”-like worms were found

to tangle in a reproducible and predictable manner, and a simple geometric model

was introduced to describe the seemingly complicated system. This work introduces

an interesting avenue to study complex interactions in active materials, and can be

linked to highly packed systems of cilia and flagella.
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3.1 Paper I: Viscoelasticity

Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-

thinning worm

M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, Proceedings of the National Academy

of Sciences of the United States of America 110, 4528-4533 (2013).

This paper represents our first attempt on understanding the viscoelastic proper-

ties of C. elegans by using a direct biomechanical approach, and is the first within

our collaboration with Dr. William Ryu at the University of Toronto. In this work,

we implemented the technique of micropipette deflection to measure the longitudinal

bending stiffness of the model organism on a biologically and structurally relevant

length scale. Three-point bending measurements were performed by holding on to

the side of anaesthetized worms with a force-calibrated micropipette and by mov-

ing a simple support onto the worm, causing it to bend under the applied force of

the deflected pipette. The worm material was initially modelled as purely Hookean,

and the bending stiffness was achieved from the slope of the linear regime of the

force-deformation data. Nematodes in all life stages were probed, and the scaling of

the bending stiffness with worm diameter was shown to be in agreement with the

assumption of a cylindrical distribution of stiff material. Interestingly, Dauer state

nematodes were shown to have a higher stiffness as compared to similarly sized, nor-

mal life stage worms, indicating the strong contribution of the cuticle to the total

body stiffness. By performing local bending measurements along the body of young

adult worms, the contribution of the relaxed body muscles to the total stiffness was

furthermore verified.

The most significant finding in this work was made when investigating the vis-

coelastic properties of the worm. Kelvin-Voigt and Maxwell models were applied to

our system and the theoretical solutions were fit to the experimental force-deformation

data. It was shown that the previously assumed Kelvin-Voigt model failed to capture

the data, whereas the Maxwell model successfully described the bending dynamics

of the worm. By applying the Maxwell model to our data, the damping coefficient

of young adult worms were probed in experiments performed with different bending

speeds. The viscous component of C. elegans was in this way shown to be shear-
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thinning, and the implications of this non-Newtonian internal property was related

to the gait modulation of the worm in different environments.

In this work, I designed the experimental setup, made and calibrated all pipettes,

collected and analyzed all experimental data, derived the theoretical models, and

wrote the first draft of the manuscript.
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3.2 Paper II: Complex relaxation

The nematode C. elegans as a complex viscoelastic fluid

M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, European Physical Journal E 38,

36 (2015).

Here, the non-Newtonian (complex) flow of C. elegans was investigated in detail.

Dynamic relaxation measurements were performed with micropipette deflection to

closely probe the internal viscosity of the model organism and further explore the

shear-thinning properties discovered in Paper I. To successfully capture the viscoelas-

tic response of the soft tissue, the standard linear solid model was applied to the

experimental data. First, a simplistic model assuming a purely Newtonian internal

fluid was used. The failure of the initial approach was then corrected by implementing

a power-law fluid into the viscoelastic model. Our extended SLS model was shown to

successfully capture the dynamics in the relaxation regime, and the non-Newtonian

properties of C. elegans could thereby be probed in a more general way. The flow

consistency and power-law indices were quantified for young adult and adult nema-

todes, and the worm material was once again proven to be strongly shear-thinning.

The effective damping coefficient of the worm was calculated for the biologically rel-

evant cases of typical swimming and crawling motions, and were shown to differ by

a factor of three. These results emphasizes the importance of achieving a detailed

knowledge of the internal material properties of a natural swimmer or crawler, as its

active locomotion strategy can not be assumed to be affected only by the external

environment.

In this project, I initiated, designed, and performed all experiments and data

analysis. I also derived all theoretical models applied to our system and wrote the

first draft of the manuscript. Early discussions with Drs. Alexander Morozov, Elie

Raphaël, and Olivier Dauchot, as well as ongoing conversations with Rafael Schulman

are gratefully acknowledged.
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3.3 Paper III: Swimming dynamics

Dynamic force patterns of an undulatory microswimmer

R. D. Schulman, M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, Physical Review

E: Rapid Communications 89, 050701 (2014).

In this paper, we laid the groundwork for our new focus to probe the active

swimming dynamics of C. elegans by using micropipette deflection. Actively swim-

ming nematodes were caught by their tails with calibrated micropipettes designed to

measure the drag forces experienced by the microswimmer in both the lateral and

propulsive directions. These experiments represent the first direct and time-resolved

force measurements of an undulatory microswimmer. The net propulsive force was

determined for nematodes in different life stages and found to be in agreement with

previously predicted drag forces. By combining the acquired force data with resis-

tive force theory, this simple and well used model could be verified for the case of

C. elegans. Furthermore, the analytical approach could successfully provide the first

measured values of the drag coefficients of the model organism, and the results were

shown to agree well with the theoretical predictions made by Lighthill. Finally, a

simple scaling argument of the drag forces as a function of body length was made

and verified experimentally in both the propulsive and lateral directions.

For this project, I designed and performed the initial experiments demonstrat-

ing how the drag forces experienced by a swimming C. elegans nematode could be

probed with micropipette deflection. Furthermore, I was highly involved in the de-

sign and building of the new, “high-speed” micropipette deflection setup purposed

for these time-resolved, dynamic measurements. I then trained M.Sc. student Rafael

Schulman in all components related to the micropipette deflection experiments on C.

elegans, and he then collected all final data under my co-supervision for his M.Sc. the-

sis. We developed the theory as well as the data analysis scripts and procedures in

close collaboration. Finally, I was strongly involved with the preparation of the first

draft of the manuscript as well as its continuous editing. Interesting discussions with

Konstantine Palanski and Yegor Rabets at the University of Toronto are gratefully

acknowledged.
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3.4 Paper IV: Swimming near boundaries

Undulatory microswimming near solid boundaries

R. D. Schulman, M. Backholm, W. S. Ryu, and K. Dalnoki-Veress, Physics of Fluids

26, 101902 (2014).

In this project, we used micropipette deflection to investigate how the swimming

dynamics of C. elegans was affected as nematodes were confined by solid boundaries.

The drag forces were seen to increase significantly as a function of decreasing distance

to a single boundary, whereas the ratio between the drag coefficients remained con-

stant. We also confined worms between two plates and detected a vast increase in the

drag forces experienced by the nematode as compared to the case of a single bound-

ary. By decreasing the separation between the two walls in the channel experiments,

the drag coefficient ratio was seen to increase by more than two folds. The drag

coefficients derived in these experiments were compared to the theories of Lighthill

for swimming far away from the surfaces, and Katz, et al., for swimming close to the

solid walls. Our data was shown to be in excellent agreement with the two theoretical

models. In both of the experiments, the swimming amplitude of the nematode was

shown to decrease with confinement. This change corresponds to a gait modulation

of the worm, as caused by the increase in the drag forces experienced by the worm in

environments with higher confinements.

For this paper, R. Schulman was the the leading author. During the project, I

contributed with continuous assistance to design the experimental setup, and solve

experimental and analysis issues. I was strongly involved with the continuous inter-

pretation of the results, and edited several early drafts of the manuscript.
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3.5 Paper V: High-viscosity swimming

The effects of viscosity on the undulatory swimming dynamics of C. elegans

M. Backholm, A. K. S. Kasper, R. D. Schulman, W. S. Ryu, and K. Dalnoki-Veress,

submitted to Physics of Fluids (2015).

Here, we investigated the swimming dynamics of C. elegans in fluids with different

viscosities. The gait modulation of the tail-tethered nematodes was quantified by

increasing the fluid viscosity, and the swimming frequency, wavelength, and amplitude

were shown to decrease in environments with higher resistance. By using micropipette

deflection, we measured the drag forces experienced by the worms, and modelled the

data with resistive force theory. The resulting drag coefficients were compared to

the classical theoretical models of Lighthill as well as Gray and Hancock, and an

interesting transition was observed between the theory of Lighthill at low viscosities,

and that of Gray and Hancock at high viscosities. This could be partly explained

by the gait modulation of the worm, transitioning from a high-amplitude swimming

motion to a more conventional undulatory motion with a low amplitude. The gait

modulation was shown to occur to maintain a constant power output of the swimming

worm as the external viscous resistance was increased. The ability of varying its gait

ensures the survival of the nematode in continuously changing environments of, e.g.,

water, mud, and soil. We also compared the swimming amplitude of the worms

with the findings of Paper IV, where the drag forces were increased by bringing the

swimmers close to one or two solid boundaries. We found no difference between the

kinematics of the two systems, and thus show that the only relevant force affecting

the gait modulation of the nematodes is of a hydrodynamic origin.

In this work, I designed the experimental setup and carried out the first exper-

iments. I then trained B.Sc. thesis student Alexandra Kasper in micropipette de-

flection, worm maintenance, and solution preparation. She finally carried out the

experimental work under mine and R. Schulman’s continuous co-supervision. All co-

authors contributed to the interpretation of the results, I then analyzed the final data

and wrote the first draft of the manuscript.

60



PhD Thesis - M. Backholm McMaster University - Physics and Astronomy

3.6 Paper VI: Tangling

Tangling of tethered swimmers: Interactions between two nematodes

M. Backholm, R. D. Schulman, W. S. Ryu, and K. Dalnoki-Veress, Physical Review

Letters 113, 138101 (2014).

In this paper, we investigated the interactions between two swimming C. ele-

gans nematodes, held close together with two micropipettes. When brought to short

enough separations, the worms were found to twist into rational tangles of two dif-

ferent orders. The critical ratio between body length and pipette separation was

derived with a simple geometrical model, implementing the helical structure of the

three-dimensional tangles. These ratios, predicting the onset of 2 and 3 rational

tangles, were shown to be in excellent agreement with our experimental observations.

The lifetime of the tangling events was furthermore investigated at short and long sep-

arations. Finally, the tangling probability was derived analytically by considering the

sinusoidal motion of the worm heads and the likelihood of these overlapping enough to

form a tangle. The resulting probability was successfully fit to the experimental data,

showcasing how a seemingly complicated process can be analytically investigated and

quantitatively understood. In addition, this work increased our understanding of the

everyday problem of tangling strings, as well as the intricate interactions present in

active materials composed of, for example, closely packed arrays of cilia or actively

beating and interacting bacterial flagella.

In this project, I initiated and designed the experiment, and collected and analyzed

all experimental data. The theory was developed in close collaboration with R. Schul-

man. I wrote the first draft of the manuscript. Early discussions with Solomon

Barkley and Dr. Christian Wagner are gratefully acknowledged.
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Chapter 4

Conclusions and outlook

In this PhD thesis, the biomechanical properties of the nematode and model organism

C. elegans have been investigated to understand the contributions of passive body

properties, active swimming dynamics, and inter-worm interactions on undulatory

microswimming in general. Micropipette deflection has served as a novel experimen-

tal technique, implementing a force-calibrated micropipette to, for the first time,

directly probe these dynamic quantities in a time-resolved and biologically relevant

manner. Our work has focused on investigating the validity of previously assumed

physical models. In addition to this, our findings have provided new insight into the

complex material properties of the model organism as well as the forces involved in

its undulatory motion.

The first goal of this PhD work was to measure the stiffness of C. elegans. Our

results in Paper I on the scaling of the bending stiffness with worm body size, as well

as the contribution of different anatomical parts to the total stiffness of the nematode,

resolve several open questions in the biomechanical field. In the process of determining

the worm elasticity, new viscoelastic and non-Newtonian properties were furthermore

found. The bending of the worm body was determined to be best described by the

viscoelastic Maxwell model, although our work in Paper II furthermore showed that

the standard linear solid model successfully captures also the relaxation aspect of the

soft material. Applying these models to the data from two different experiments, the

worm material was decisively found to be shear-thinning. This result represents an

advancement in our knowledge of the material properties of C. elegans, and should
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be part of any future attempts to model and understand the motion of the nematode

in different environments. The gait-modulation between swimming and crawling can

no longer be assumed to be driven solely by a change in the resistance of the external

medium, but will clearly also be affected by the variables determining the internal

resistance to bending. As a shear-thinning property makes it easier for the nematode

to bend its own body at higher rather than lower speeds, it might transition into

swimming earlier than previously assumed when only taking a decrease of the external

fluid viscosity into account.

The second goal of this thesis, as described in Papers III–V, was to use mi-

cropipette deflection to investigate new physics in the active swimming dynamics

of C. elegans. By holding on to a worm by its tail, the drag forces experienced by

the swimmer could be probed in a direct and time-resolved manner. The drag forces

were successfully modelled using resistive force theory, and the drag coefficients of

the undulatory microswimmer were determined. Experiments were performed close

to one and two boundaries, as well as in fluids with different viscosities, and the results

were compared to the classical theoretical models of Lighthill, Katz, and Gray and

Hancock. In order to maintain a constant power output in the systems of increased re-

sistance, the nematodes actively modulated their swimming gaits by decreasing their

swimming frequency, wavelength, and amplitude. The gait modulation was finally

shown to be caused only by hydrodynamic forces.

The development of micropipette deflection into a high-speed technique during

this PhD project also enabled further investigations of C. elegans in the field of

collective behaviour and interactions. In the experiments of Paper VI, we forced two

nematodes to swim at different separations. This experimental setup allowed us to

probe different inter-worm interactions in a controlled manner. The most dominant

interaction was found to be the frequent twisting of the worms into tangles of different

orders. The achieved understanding of the system could be linked to other active

materials as well as the everyday snarling of strings and ropes. Most importantly, the

final part of my PhD work also created several new and interesting questions within

the field of collective swimming. As discussed in this thesis and also investigated in

initial work by B.Sc. thesis student Alexandra Kasper in our group, no hydrodynamic

interactions have been found between nematodes swimming at close distances in a
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normal buffer solution. To enhance the drag forces between the worms, their rather

high Reynolds number would need to be decreased. This could be achieved by, for

example, introducing confinement or by increasing the fluid viscosity. As was shown in

Paper V, the Re for young adult worms can be decreased with an order of magnitude

by increasing the viscosity of the surrounding fluid by a factor of 4. Probing the

binary hydrodynamic interactions between two microswimmers in a high viscosity

fluid would be the natural next step to take.

To conclude, the overall strategy of the work behind this thesis has been to com-

bine direct high-quality micromechanical experiments with simple theoretical models

to shed new light on a seemingly complicated biological system. In doing so, we

have spanned the breadth of an interdisciplinary field focused on understanding the

slithering motion of a slender body from the perspectives of physics, engineering,

biology, and mathematics. The work presented in this PhD thesis has also provided

new avenues into future research in active materials.
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Undulatory motion is common to many creatures across many scales,
from sperm to snakes. These organisms must push off against their
external environment, such as a viscous medium, grains of sand, or
a high-friction surface; additionally theymustwork to bend their own
body. A full understanding of undulatory motion, and locomotion in
general, requires the characterization of the material properties of
the animal itself. The material properties of the model organism Cae-
norhabditis eleganswere studiedwith amicromechanical experiment
used to carry out a three-point bending measurement of the worm.
Worms at various developmental stages (including dauer) were mea-
sured and different positions along the worm were probed. From
these experiments we calculated the viscoelastic properties of the
worm, including the effective spring constant and damping coeffi-
cient of bending. C. elegans moves by propagating sinusoidal waves
along its body. Whereas previous viscoelastic approaches to describe
the undulatory motion have used a Kelvin–Voigt model, where the
elastic and viscous components are connected in parallel, our mea-
surements show that the Maxwell model, where the elastic and vis-
cous components are in series, is more appropriate. The viscous
component of the worm was shown to be consistent with a non-
Newtonian, shear-thinning fluid. We find that as the worm matures
it is well described as a self-similar elastic objectwith a shear-thinning
damping termanda stiffness that becomes smaller as one approaches
the tail.

biomechanics | viscoelasticity

The undulatory motion of snakes and fish as they crawl or swim
through a medium is considered a superior form of locomo-

tion in terms of its adoption across a broad range of length scales
and efficiency (1). Several attempts have been made to achieve
the same level of performance artificially (2), but the agility seen
in nature is far from being reproduced in manmade systems. A
number of experimental model systems have been used to study
undulatory motion (3–7). To achieve a deeper understanding of
this form of motility, the biomechanics has been studied theo-
retically for snake-like systems (8, 9). Recently, computational
fluid dynamic models of organismal swimming have been de-
veloped to simulate fluid–body interactions, including internal
forces and body stiffness (10, 11). However, a requirement for a
successful, systems-level model is a detailed knowledge of the
material properties of the crawler––insight that can only be achieved
experimentally.
Caenorhabditis elegans, a millimeter-sized nematode, has been

used as a model organism to study undulatory motion experi-
mentally (12–15). One fundamental, unresolved question is how
difficult is it for the worm to bend its own body as it moves (16).
In other words, what is the bending stiffness of the model or-
ganism? Efforts have been made to measure the stiffness of
C. elegans (17–20), but a conclusive result is yet to be reached
for several reasons.
Direct comparisons between transverse and longitudinal stiff-

ness values have caused confusion. Here, the former quantity is
the elasticity probed by a local compression of the worm, whereas
the latter corresponds to the stiffness related to a nonlocal

bending of the entire worm. As the nematode is known to consist
of anisotropic materials (21), the two stiffnesses should not be
considered the same. Additionally, the elasticity related to un-
dulatory motion is the longitudinal stiffness, as the worm needs
to bend its entire body to swim or crawl. There exist experimental
limitations in directly measuring the longitudinal stiffness, and
many measurements have been made indirectly through model-
ing assumptions (18, 19). Models used to elucidate the mechanics
of undulatory motion typically involve assumptions of the ma-
terial properties of C. elegans that are yet to be proven experi-
mentally (22, 23).
Here, we present a method used to probe the dynamic visco-

elastic properties of C. elegans at a biologically, physically, and
structurally relevant length scale. Direct micromechanical mea-
surements were performed, and a simple elastic model was used to
gather results for the bending stiffness of C. elegans at all of its life
stages. Furthermore, we havemeasured the viscoelastic response to
bending, and show that commonly used models do not adequately
describe the measured material properties of C. elegans. By mod-
eling the viscoelasticity of the worm, our dynamic experiments re-
veal unexpected viscous properties. The Young’s modulus of the
worm as a whole is reported, and an attempt to decouple the
contributions from cuticle andmuscles to the total stiffness is made.

Results and Discussion
Micropipette deflection (MD) (24) was used to perform three-
point bending measurements on anesthetized C. elegans nemat-
odes to probe their force–deflection response. The experiment is
illustrated in Fig. 1A, and described in more detail at the end of
this paper. In short, the worm was held with a flexible force-
calibrated pipette through suction, and bent by moving a simple
support toward the “holding” pipette (from left to right in the
figure) with a constant speed vu. The deflection x of the holding
pipette produces a certain force F = kpx, where kp is the spring
constant of the pipette. The bending y = xu − x of the worm is
defined as the difference between the motion of the support (xu)
and the deflection of the pipette. Optical microscopy images
from the beginning (Upper) and end (Lower) of a bending ex-
periment performed on an adult worm are shown in Fig. 1B. The
total deflection of the pipette is indicated by the dashed line.

Elastic and Viscoelastic Theoretical Models. Two different theoretical
models were used to achieve an understanding of the worm ma-
terial. A simple linearized Hookean model was applied to describe
the purely elastic properties of C. elegans. To gain deeper insight,
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a non-Hookean viscoelastic Maxwell model was introduced. In the
limit of small deformations and short times these two models
are equivalent.
Euler–Bernoulli elastic beam theory (EBT) (25) was used to

analyze the elasticity of the worm by approximating it as a spring-
like beam. The bending y at the position of the applied force F is
given as

y=
a2ðL− aÞ2

3LEI
F =

1
kw

F; [1]

where L is the distance between the supports and a is the dis-
tance between the upper support and the position of the applied
force (pipette). The spring constant kw of the worm is a function
of both the geometry of the experiment, as well as the bending
stiffness EI of the worm. The bending stiffness is equivalent to
the product of the Young’s modulus E of the material, and the
area moment of inertia I of the beam. For simplicity we assume
that the cross-sectional distribution of stiff material in C. elegans
is cylindrical (17), giving I = (D4 − d4)π/64 (26), where D and
d are the outer and inner diameters of the cylindrical shell, re-
spectively (Supporting Information, Area Moment of Inertia for
a Cylinder). We note that much of our data will be reported as
EI, because this product is independent of any assumptions in I.
To model the worm as a non-Hookean material, a viscous

component was introduced to the system as shown in Fig. 1C.
The compression y of the spring and dashpot connected in series
corresponds to the bending of our worm. This viscoelastic model
is known as the Maxwell model (27), and describes the re-
lationship between force and compression as

_y=
F
c
+

_F
kw

; [2]

where c and kw are the damping coefficient and spring constant
of the material, respectively. By applying the Maxwell model
to the geometry of our specific system, the exact solution to
Eq. 2 can be solved as (see Supporting Information for a detailed
derivation)

yðtÞ= vu

�
t−

c
kp

h
1− e−kpkw=½cðkp+kwÞ�t

i�
; [3]

where vu is the speed of the support and kp is the spring constant
of the holding pipette. Furthermore, the force–deformation re-
lationship can be written as

FðyÞ= kpvuc
kp + kw

 
−1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

2kw
�
kp + kw

�
kpvuc

y

s !
: [4]

The Kelvin–Voigt viscoelastic model, where a spring and a
dashpot are connected in parallel (27), has been used by others
to describe the material properties of C. elegans (18, 19), based
on the theory of snake-like creatures in general (9). The ana-
lytical solution of the Kelvin–Voigt model applied to our system
is shown in Supporting Information (the derivation is analogous
to that sketched above).
The results from an MD experiment on a young adult worm is

shown in the main graph of Fig. 2, where the bending of the
worm is plotted as a function of time. The analytical solutions to
the theoretical models (EBT, Maxwell, and Kelvin–Voigt) have
been fit to the data. The residuals of the fits are shown in the
bottom graph, where Δ is the difference between the best-fit line
and the data for each case.
As expected, the linearized EBT is valid only within the initial

time regime, after which it is inadequate as a model due to the
apparent viscosity of the material as well as nonlinear bending
contributions. The Kelvin–Voigt model shows systematic devia-
tions from the data, whereas the Maxwell model captures
the data within the uncertainty of the measurement. Thus, the
Maxwell model is a more appropriate method to characterize the
viscoelasticity present in the bending of C. elegans. We note that
the Maxwell model provided a consistently superior description
of the data for all worms studied.
Fig. 2 (Inset) shows the force–deformation data from the same

experiment as illustrated in the main graph. The solid line is the
best fit of Eq. 4 to the experimental data. The fits used in Fig. 2
only require two fitting parameters c and kw, because the rest of

Fig. 1. (A) Schematic diagram of the experimental micropipette deflection setup used to study the bending stiffness of C. elegans. A support (two circles) is
moved from left to right with a constant speed, vu. This induces a bending y of the worm due to the force F = kpx applied by the pipette, where kp is the spring
constant of the pipette. The deflection of the pipette and motion of the support are defined as x and xu, respectively, and the bending y of the worm is
defined as the difference between these. (B) Optical microscopy images of an adult worm in the beginning (Upper) and end (Lower) of a bending experiment,
with the total pipette deflection indicated by the dashed line. The supporting structure is a thicker, U-shaped glass pipette, into which the worm can be bent
as it would be simply supported. Scale bar, 100 μm. (C) Diagram of the worm modeled as a viscoelastic Maxwell material, consisting of a spring (spring
constant kw) and dashpot (damping coefficient c) connected in series. The bending y of the worm corresponds to the compression of the system due to the
force F applied by the pipette.
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the constants in Eqs. 3 and 4, such as the speed of the support vu
and spring constant of the pipette kp are known experimental
parameters. By applying the Maxwell model to our data, we
therefore obtain values for not only the stiffness, but also for the
damping coefficient of C. elegans. The spring constant obtained
from the EBT and Maxwell model is the same.

Viscoelastic Properties of C. elegans. To investigate the viscoelastic
properties of C. elegans, bending experiments were performed at
different bending speeds vu. The Maxwell model was used to
analyze the data; the resulting speed dependence of the spring
constant and damping coefficient of the worm is shown in Fig. 3.
The spring constant is independent of speed, which is an expected
feature of the elasticity of a material. The viscous component,
however, is inversely proportional to the bending speed. This
strong decrease of the damping coefficient is a characteristic of a
shear-thinning, complex fluid (28). Specifically, the damping co-
efficient shows a clear power-law dependence over two decades in
bending speed: c∝ v−1:0± 0:1

u . The viscous component of C. elegans

should thus be modeled as a power-law fluid, as described by the
Ostwald–de Waele model (29).
Shear thinning has been observed in several biological tissue

types, such as heart and brain tissue (30) as well as in vocal cords
(31). Although the structure and function of these tissue types
are vastly different, the gross mechanical behavior is commonly
governed by components in the extracellular matrix (ECM) (30,
32). Shear-thinning properties have been measured in the ECM
component collagen (33, 34), and, as the cuticle of C. elegans is
predominantly composed of cross-linked collagen (35), the non-
Newtonian results reported here might be explained by the
properties of the cuticle.
Shear-thinning properties have also been noticed in the legs of

insects (36). To describe this, a friction-based structural damping
model (37) was introduced instead of the more commonly used
viscous damping approach. Structural damping cannot, however,
describe the relaxation of a stressed material; as we have observed
the worm material relax under static conditions (data shown in
Supporting Information), the viscoelastic Maxwell model is better
suited to describe the inelastic properties of C. elegans.
The implication of the shear-thinning property of C. elegans is

that it is easier for the worm to bend its own body quickly rather
than slowly. This is because the internal viscous resistance is lower
at higher deformation speeds. The shape of an undulating crawler
is due to the dynamic balance between elastic, hydrodynamic, and
muscular forces. As a result, the shear-thinning property of the
worm may influence the dynamics of motility, and shear thinning
should be integrated into a full locomotory model. The actual
bending speed of an adult C. elegans crawling on an agar surface
can be calculated as vcrawl = 104 μm/s, based on the frequency and
amplitude of its motion (22). This choice of bending speed is
much higher than what was probed in the MD experiment, and
corresponds to a speed regime with negligible internal viscous
resistance. The gait transition between crawling and swimming
can be noted by, among other things, an increase in bending speed
(18), which is thought to be made possible by the lower external
resistance from a fluid than from a gel substrate. This gait ad-
aptation of C. elegans may, however, be driven to minimize not
only external losses, but also internal viscous dissipation.
The bending stiffness of C. elegans was measured at all of its

life stages, and is shown as a function of worm diameter in Fig. 4.
As can be seen in the graph, the bending stiffness of C. elegans
increases by almost 4 orders of magnitude as the worm grows
from the L1 to the adult stage. The actual values correspond to
the spring constant of the worm normalized by the geometry of
the system according to Eq. 1, EI = a2(L − a)2kw/3L. The errors in
Fig. 4, as well as in all of the following graphs, are the SDs from
several measurements performed on the same worm.
The images at the top of Fig. 4 show snapshots from the MD

experiments performed with worms at the L1, L2, L3, and L4 life
stages, and the colors and markers correspond to the respective
data set plotted in the main graph. The power-law line EI ∝ D4

shown in the graph corresponds to the best-fitting function to the
data (the exact value of the best-fit exponent is 4.02). As discussed
above, if the worm is modeled as a cylindrical tube with an outer
and inner diameter of D and d ∝ D, respectively, the bending
stiffness will scale as EI ∝ ED4, consistent with experimental
observations. We conclude that treating the worm as a cylindrical
structure, with a stiffness that is self-similar, is a valid approxi-
mation––that is, the distribution and amount of stiff material
scales with the size of the worm, and can be nondimensionalized
by D. Thus, one need not treat the young and adult worms as
mechanically different when properly nondimensionalized.
The slope of the power-law line in Fig. 4 can be used to cal-

culate the Young’s modulus E of the nematode. If C. elegans is
thought of as a rod-shaped worm consisting of a uniform dis-
tribution of “worm material,” the Young’s modulus of this ma-
terial would be Erod = 110 ± 30 kPa. When modeling the bending

y

F
y

t

Fig. 2. Comparison between experimental bending results and viscoelastic
theories. (Upper) Main graph shows the bending of a young adult worm as
a function of time (□). The data have been fitted by the exact solutions from
the Maxwell (Eq. 3, solid line) and Kelvin–Voigt (dashed line) models, as well
as the EBT (dashed–dotted line). (Lower) Graph shows the difference Δ be-
tween theory and experiment (same legend as for Upper), and thus illus-
trates the quality of the different theoretical models. (Inset) Force is plotted
as a function of bending, with the Maxwell force–deformation prediction
(Eq. 4) drawn as a solid line.

k w

c

vu

Fig. 3. Speed dependence of the spring constant kw (left y axis), and the
damping coefficient c (right y axis), of the worm as a function of bending
speed vu. The damping coefficient is an inversely proportional function of
the bending speed.
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of C. elegans in theory and simulations, this value is what should
be used in combination with an area moment of inertia of I =
πD4/64, where D is the diameter of the worm. In reality, it is well
known that the worm does not consist of a uniform distribution
of the same material. On the contrary, C. elegans is a complex
biological system made up of multiple tissue types, which are
organized at different scales (cuticle, muscle, organs). The con-
cept of bending stiffness is robust and independent of these
complexities, and is therefore unambiguous when used to de-
scribe the complex mechanical structure. The Young’s modulus
reported here is only to be used when considering the worm as
a whole, without taking substructural components into account.
Furthermore, the stiffness measured in this work is the longitu-
dinal stiffness, which is the relevant geometry to consider when
studying the bending of C. elegans.

Contributions from the Muscles and Cuticle. To probe the local
stiffness along the body of a young adult worm, a smaller spacing
L between the supports was used. The vulva was considered
a reference point for the coordinate system due to its visibility in
all of the experiments. The distance from the position of the
pipette (i.e., the applied force) to the vulva was defined as l, with
the head oriented in the positive direction. At the top of Fig. 5A,
snapshots from measurements performed at different body
positions are shown. The arrows indicate the position of the
vulva. To factor out effects from changes in the diameter along
the body of the worm, the local bending stiffness was divided by
D4

local for each experiment, where Dlocal is the local diameter of
the worm at the position of the pipette. The resulting “effective”
Young’s modulus is shown in the main graph of Fig. 5A, whereas
the local bending stiffness is shown in the inset.
From these measurements, it is clear that the tail is signifi-

cantly (up to 50%) less stiff than the rest of the body. From
the vulva to the head, the stiffness was, within error, the same. The
strong decrease in relative stiffness of the tail compared with the
rest of the body can be explained by the smaller amount of mus-
cles in the tail (21).

The anesthetic sodium azide (NaN3) used throughout this
work acted as a muscle relaxant, resulting in worms that were still
and straight. Different concentrations of this drug did not affect
the measured bending stiffness of the nematode. To further
confirm that the NaN3 did not affect the material properties
of C. elegans, another muscle relaxing drug (2,3 Butanedione
monoxime, BDM) was tried. As shown by the triangle in Fig. 5B,
the average bending stiffness of adult worms anesthetized with
BDM is the same, i.e., independent of choice of drug.
In this work we have probed the passive material properties

of a relaxed worm. Having tried two different drugs (NaN3 and
BDM) and studied worms exposed to different concentrations of
the anesthetics for different times, we get consistent and re-
producible results. Thus, the drug did not affect the probed pas-
sive material properties of the nematode. As an active worm

E
I

D

EI D
4

Fig. 4. Bending stiffness at all life stages of C. elegans as a function of
worm diameter. The power-law fit shows a D4 dependence, consistent with
modeling the stiffness of the worm as a self-similar cylinder. Images on the
top show snapshots from the experiments, with an L1, L2, L3, and L4 worm
from left to right. Images of experiments done on a young adult and adult
worm can be found in Figs. 5A and 1B, respectively. Colors and markers
correspond to the respective data sets. Scale bar, 100 μm.
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Fig. 5. (A) Bending stiffness along the body of a young adult worm. (Upper)
Images show snapshots from experiments performed at different positions
(tail on the left, head on the right) of the worm. Arrows indicate the position
of the vulva, and l is the distance from this to the middle of the pipette.
(Lower) In the main graph, the local D4 dependence has been factored out
from the bending stiffness, and a local “effective” Young’s modulus is thus
plotted. The dashed lines are meant to guide the eye. (Inset) Local bending
stiffness as a function of distance from the vulva. (B) Bending stiffness as
a function of worm diameter of the self-similar worms (□) averaged over
each life stage. N indicates the number of worms per data point, and the line
is the same power-law function as used in Fig. 4. Bending stiffness of the
dauer-(×) and post-dauer- (○) state worms are shown, and illustrate the
deviation from self-similarity of the former. The use of another muscle re-
laxant (BDM) did not affect the measured bending stiffness of adult worms
(△). (Inset) A dauer worm. Scale bar, 100 μm.
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moves, the contraction of its muscles could be thought to modify
the total bending stiffness of the worm. It is the dynamic modu-
lation of the passive bending stiffness which enables undulatory
locomotion.
Under stress, such as lack of food or in environments of high

temperatures, the young L1 worms turn into the so-called dauer
state, in which they can survive for months (21). It has been
shown that dauer-state worms have a thicker cuticle with respect
to total body thickness compared with nematodes at normal life
stages. Specifically, the fraction between the thickness of the
cuticle and the diameter of the worm is 1/36th for a dauer worm,
whereas this fraction is 1/88th for all other life stages (35). By
measuring the bending stiffness of dauer-state worms, the cuticle
contribution to the total stiffness could therefore be studied, as
this worm potentially has more stiff material than an equally
sized, self-similar worm. The results from MD measurements
performed on dauer-state worms (×) are shown in Fig. 5B. The
dauer worm is significantly stiffer than what would be the case
for a self-similar worm. Thus, the stiffness of C. elegans is highly
dependent on the cuticle thickness.
If the cuticle were the only component contributing to the

total stiffness of the worm, then the worm’s body could be
modeled as a cylindrical shell. The Young’s modulus of this shell
would be Ecuticle = 1.3 ± 0.3 MPa, which corresponds to the
upper extreme value of this material-specific property of C. ele-
gans. In contrast, the lower limit, obtained above as Erod = 110 ±
30 kPa, resulted from modeling the worm as a uniform rod. If
one were to assign a Young’s modulus to the worm, detailed
knowledge of the distribution of the elastic material within the
worm would be required. However, the modulus must be bound
by these two limiting assumptions.
Measurements were also performed on post-dauer-state worms,

as shown by circles in Fig. 5B. The results illustrate how thematerial
properties of C. elegans return back to normal as the nematode
exits the dauer state.

Conclusions
Here we have presented the use of a micromechanical technique
to probe the viscoelastic material properties of C. elegans. The
bending stiffness was measured at all life stages of the worm, and
was shown to scale in a self-similar cylindrical way with the di-
ameter of the worm. If assuming a uniform distribution of stiff
worm material within the rod-shaped worm, the Young’s mod-
ulus of this material was determined to be Erod = 110 ± 30 kPa.
The different stiff body parts contributing to the total stiffness of
the worm were investigated, and the cuticle was found to be re-
sponsible for a large fraction of the bending stiffness of C. elegans.

Furthermore, measurements along the body of the worm showed
a higher stiffness of the head than the tail, indicating a strong
contribution from the muscles as well.
The viscoelasticity of C. elegans was shown to be best modeled

as a Maxwell material. By using this theoretical model, the
nematode was found to be shear thinning––a complex fluid
property that can be expected to influence the dynamics of mo-
tility of the worm. We conclude that the Caenorhabditis elegans
nematode can be modeled as a self-similar, shear-thinning object.

Materials and Methods
Bending Measurements. The micropipette deflection technique was used as
described in ref. 24. A flexible micropipette with the length of ∼1 cm and
diameter of ∼20 μm was bent into an L shape and used as a spring-like
cantilever. The manufacturing and calibration of this force-sensing pipette
was performed as in ref. 38. The support used in the bending experiments
was a 50-μm-thick micropipette bent into the shape of a U, with which the
worm could be supported. The optical microscopy images were analyzed
with MATLAB (MathWorks) by performing cross-correlation image analysis
on pictures taken at 2 Hz.

Unless mentioned otherwise, all bending experiments were performed in
an M9 buffer with a 10-mM concentration of the anesthetic NaN3. The
measurements were performed within 2 h of drugging the worms. Different
concentrations of the NaN3 did not give rise to changes in the measured
bending stiffness. To further verify that the drug did not change the
bending stiffness of the worm, a buffer of 0.3 M BDM in M9 was used. In this
experiment, the worms were studied within 15 min after being put into the
buffer, as they lost their rod-like shape after this time.

The results shown frommeasurements performed on only one wormwere
all reproduced with several other worms (Supporting Information). All of the
worms were bent in the dorsal–ventral plane. Repeated experiments per-
formed on the same worm with different bending speeds were done with
enough waiting time (around 3 min) in between measurements to give the
worm time to relax. The results from these measurements were independent
of changing the speed in an increasing or decreasing fashion. For the results
in Fig. 4, at least three measurements were performed per worm.

Worm Strains, Cultivation, and Preparation. Wild-type worms (N2) were ac-
quired from the Caenorhabditis Genetics Center and were cultivated
according to standard methods (39) on Escherichia coli (OP50) nematode
growth media (NGM) plates at 20 °C. Dauer-state worms were produced by
moving L1 worms to an NGM plate without bacteria, and letting them de-
velop for several weeks. The post-dauer states (first generation) were
studied as the dauer worms exited the rest state after they had been moved
back to a bacteria-covered NGM plate. All chemicals were sourced from
Sigma-Aldrich.
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Area Moment of Inertia for a Cylinder
The definition of the area moment of inertia for a symmetrical
cross-section is (1)

I = Ix = Iy =
Z
A

y2dA: [S1]

This can be rewritten in polar coordinates (dA= rdrdθ, y= r sin θ)
and solved for the case of a cylindrical shell as

I =
Z2π
0

sin2θdθ
ZD=2
d=2

r3dr=
π

64
�
D4 − d4

�
; [S2]

where D and d are the outer and inner diameters of the cylinder,
respectively.

Maxwell Model
We model the worm as a system with a purely viscous damper
(damping coefficient c) connected in series with a purely elastic
spring (spring constant kw), as shown in Fig. 2C in the main text.
In this system, both of the components will be affected by the
same force, but will deflect in different ways. According to theory,
one then gets the differential equation (Eq. 2 in the main text)

_y=
F
c
+

_F
kw

; [S3]

where y is the bending of the worm, and the dot indicates a time
derivative. The force applied to the system can, in our case, be
written as F = kpx, where kp and x are the stiffness and the de-
flection of the pipette, respectively. Furthermore, the pipette
deflection can be written as x = xu − y, where xu = vut is the
motion of the U-shaped pipette, moving at a constant speed vu.
This gives us F = kp(vut − y) and

y= vut−
F
kp

[S4]

as well as

_y= vu −
_F
kp

: [S5]

By plugging Eq. S5 into S3, we get

vu −
_F
kp

=
F
c
+

_F
kw

;

and after reordering

_F
�
1
kp

+
1
kw

�
+
F
c
= vu

_F +
kpkw

c
�
kp + kw

�F =
vukpkw
kp + kw

_F +AF =B;

where A and B are constants (B = Acvu). This linear nonhomoge-
neous ordinary differential equation can be analytically solved (2) as

FðtÞ=B
A

�
1+C1e−At

�
;

where C1 is a constant of integration. With the initial condition
F(t = 0) = 0, we get C1 = −1 and

FðtÞ= vuc
h
1− e−kpkw=ðcðkp+kwÞÞt

i
: [S6]

A combination of Eqs. S4 and S6 results in

yðtÞ= vu

�
t−

c
kp

h
1− e−kpkw=ðcðkp+kwÞÞt

i	
; [S7]

giving us an expression for how the bending of the worm varies
as a function of time (this is the same as Eq. 3 in the main text).
To get an expression for the bending as a function of the force,

Eq. S6 is solved for t, giving

tðFÞ= −
c
�
kp + kw

�
kpkw

ln
�
1−

F
cvu

	
; [S8]

resulting in

yðFÞ= −
vuc
kp

�
kw + kp
kw

ln
�
1−

F
vuc

	
+

F
vuc

�
; [S9]

when plugging Eq. S8 into Eq. S7. This is the exact deformation–
force solution for the Maxwell model. The initial slope of Eq. S9
can be calculated as

lim
F→0

dy
dF

=
1
kw

;

and corresponds to that expected in the EBT.
To get the force–deformation expression, we need to rewrite

Eq. S9 as F(y). This equation is not, however, analytically solv-
able for F, and the natural logarithm in Eq. S9 thus needs to be
Taylor expanded (to the second order), giving

yðFÞ= −
vuc
kp

�
kw + kp
kw

�
−

F
vuc

�
1+

F
2vuc

�	
+

F
vuc

�
:

Reordering and solving the quadratic equation of F as a function
of y finally gives (Eq. 4 in the main text)

FðyÞ= kpvuc
kp + kw

 
−1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

2kw
�
kp + kw

�
kpvuc

y

s !
: [S10]

This approximate force–deformation solution was shown to give
very similar values for kw and c as the exact deformation-force so-
lution in Eq. S9, and is thus valid to use when describing the data.

Kelvin–Voigt Model
The differential equation characterizing a spring and a dashpot
connected in parallel can be written as

F = kwy+ c_y: [S11]
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This equation is solved in the same way as described above, result-
ing in an expression for the bending as a function of time

yðtÞ= kpvuc�
kp + kw

�2
�
kp + kw

c
t− 1+ e−

kp+kw
c t
�
: [S12]

This is the functional form used for the Kelvin–Voigt fit in Fig. 2
in the main text.

Reproducibility of Experimental Results
Varying Bending Speeds. Results from bending measurements
performed with different speeds on different worms are shown in
Fig. S1.
The difference in the constant stiffness values is due to different

diameters of the studied worms. The damping coefficient is in-
versely proportional to bending speed.

Along the Body Measurements. Results from micropipette deflec-
tion experiments performed along the body of three different
young adults are shown in Fig. S2. The stiffness has been nor-
malized by the stiffness at the vulva to make it easier to compare
results between different worms. The head is stiffer than the tail in
all cases, and the dashed lines act to guide the eye.

Viscous Relaxation of the Worm
In Fig. S3 all the force–deformation data from a bending ex-
periment on a young adult worm are shown.
Before contact between the support and the worm, there is no

deflection of the pipette and the negative bending values are thus
an artifact from the definition of y = xu − x (defined as 0 at the
contact point). After the bending was performed, the support
was stopped and the worm was left to relax. The force decreased
as a function of time (0.5 s between each data point), which is
a strong implication of a viscous relaxation.

1. Young WC, Budynas RG (2002) Roark’s Formulas for Stress and Strain (McGraw-Hill,
New York).

2. Kreyszig E (2006) Advanced Engineering Mathematics (Wiley, New York), p 27.

c

vu

k w

c vu

Fig. S1. (Upper) Stiffness and (Lower) damping coefficient as function of bending speed for three different young adult worms.
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Fig. S2. The effective Young’s modulus as a function of position along the body of three different young adult worms. The modulus has been normalized by
the value measured at the vulva for each worm.
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Fig. S3. Entire force–deformation from a bending experiment of a young adult worm. Bending starts at the contact point between the worm and the support
and the material clearly relaxes after the motion of the support has been seized (after “stop”).
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Abstract. The viscoelastic material properties of the model organism C. elegans were probed with a
micropipette deflection technique and modelled with the standard linear solid model. Dynamic relaxation
measurements were performed on the millimetric nematode to investigate its viscous characteristics in
detail. We show that the internal properties of C. elegans can not be fully described by a simple Newtonian
fluid. Instead, a power-law fluid model was implemented and shown to be in excellent agreement with
experimental results. The nematode exhibits shear thinning properties and its complex fluid characteristics
were quantified. The bending-rate dependence of the internal damping coefficient of C. elegans could affect
its gait modulation in different external environments.

1 Introduction

Caenorhabditis elegans is a millimeter-long, transparent
nematode used as a model organism in biology to study,
e.g., genetics, cancer, and aging [1]. The small worm has
recently gained popularity as an ideal model for studies
of motility due to its elegant undulatory locomotion: an
efficient form of motion shared with sperm cells, worms,
and snakes ranging several orders of magnitude in size.
The motion of C. elegans has been extensively studied
in liquids to probe the active micro-swimming kinemat-
ics and dynamics of the worm in a purely viscous envi-
ronment [2–7]. The crawling motion of the nematode on
a gel substrate has also been investigated [8–10], as well
as the interactions between worms, both in fluid and on
agar [11–13]. The smooth modulation between the gaits
of swimming and crawling has furthermore been the focus
of many studies [3, 7, 14–16].

To form a complete understanding of the undulatory
locomotion of C. elegans, a knowledge of the passive ma-
terial properties of the nematode is required. The material
properties affect how much energy the worm has to spend
on bending its own body as it performs its undulating mo-
tion and simultaneously pushes off against the surround-
ing medium. Extensive work has been performed to study
the elasticity of the model organism, either through direct
measurements or by utilizing the swimming kinematics of
the worm [3,17–20]. In many of these studies, however, the
results rely heavily on theoretical assumptions of the vis-
coelasticity of the soft biological tissue. In previous work,

a e-mail: dalnoki@mcmaster.ca

we probed the material properties of C. elegans directly
and implemented the Maxwell model, a well-known model
for viscoelasticity, to capture the bending dynamics of the
worm [20]. We showed that the viscous component of this
model, responsible for relaxation, responds as a shear thin-
ning fluid when the nematode is bent at different bending
speeds. This shear thinning property of C. elegans sug-
gests that it is easier for the worm to bend its own body
quickly, than to produce the same motion slowly. Such
an internal body property could strongly affect the gait
modulation of the nematode in different environments.

Here we present a detailed experimental study of the
viscous relaxation of the nematode and apply a well-
known viscoelastic model to describe the worm material.
We will show that a pure Newtonian fluid can not correctly
capture the viscous component responsible for relaxation,
but that the implementation of a complex, power-law fluid
is necessary to understand its relaxation. We find that
the worm is strongly shear thinning and quantify the vis-
coelastic properties of young adult and adult C. elegans
nematodes.

2 Experiment

Micropipette deflection was used to measure the mate-
rial properties of C. elegans as shown in the schematic
illustration of fig. 1(a) and in the optical microscopy im-
age of fig. 1(b). In this technique, the deflection of a long
(1–2 cm) and thin (∼ 20μm) glass micropipette, which
acts as force measuring spring, is force-calibrated and used
as a sensor capable of measuring forces down to the nN
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Fig. 1. a) Schematic diagram of the experimental micropipette
deflection setup. b) Optical microscopy image of the bending of
a young adult worm. The insets show a zoom in of the pipette
deflection (Δx = 11.4 ± 0.1 μm) between the points of worm-
support contact (bottom) and the end of the bending part of
the experiment (top).

range. This technique was previously introduced to probe
the elastic properties of C. elegans by simply bending the
worm [20], and has since then been used to study the
active dynamics of the nematode crawling on a gel sur-
face [10] as well as swimming in an infinite fluid [6] and
close to solid boundaries [7]. Micropipette deflection has
furthermore been applied to, e.g., probe the adhesion dy-
namics of vesicles, cells, and cellular aggregates [21–25],
as well as the cellular response to stiffness [26,27].

In our experiments, the micropipettes were manufac-
tured and calibrated (spring constant kp) as described
in [20–22]. Before an experiment, worms were picked from
agar plates into a drop of M9 buffer containing 10mM
of NaN3 that acted as an anesthetic. This drug has been
shown to not affect the material properties of the nema-
tode [20]. A chamber consisting of two thin glass cover
slips was then built around the drop with two 2mm tall
spacers on both sides and filled up with more M9-NaN3

solution. The worm-containing chamber was then care-
fully moved onto an inverted microscope where the force-
sensing pipette was mounted onto an xyz-translational
stage and moved into the chamber. To directly probe the
viscoelastic material properties, three-point bending mea-
surements were performed on the worm bodies. An anes-
thetized worm was held by the pipette at the point of
the vulva by applying suction, and centered between two
simple supports. As in our previous experiments [20], the
support was made of a thicker (∼ 50μm) micropipette
curved into the shape of a U and mounted on the oppo-
site side of the chamber to a motorized translation stage.
The worm could then be bent by pushing it into the gap
between the two sides of the U-shaped support, which
was done by moving the support (xu, from left to right in
fig. 1) with a constant speed (vu) towards the worm. This
causes a deflection (x) of the pipette to the right, a spring-
like force (F = kpx) to the left and the worm to bend

F

t

F

t

Fig. 2. Force as a function of time for the bending (blue circles)
and relaxation (red dots) parts of the experiment. The Hookean
model of eq. (1) has been fit to the bending data, as shown by
the blue line. The inset shows a zoom in on the relaxation data.

(y = xu−x = vut−x). The experiments were run using an
in-house LabView code controlling the motor and camera.
All wild type (N2) C. elegans nematodes used in this work
were young adults or adults. The worms were acquired
from the Caenorhabditis Genetics Center and were culti-
vated according to standard methods [28] on Escherichia
coli (OP50) nematode growth media (NGM) plates at
20 ◦C. All chemicals were sourced from Sigma-Aldrich.

The experiments in this work consisted of two parts.
First the worm was quickly bent by moving the support
as described above. In the second and main part of the ex-
periment, the motion of the support was stopped and the
worm was left to relax under the applied force. To measure
actual forces, images of the experiments were captured
with a camera at a rate of 2 fps and the pipette deflection
was extracted with cross-correlation image analysis per-
formed with an in-house Matlab script. The deflection was
then multiplied by the spring constant of the pipette (kp ∼
2–6 nN/μm), giving the force with an uncertainty of less
than 10%. In fig. 2, the force from such an experiment is
plotted as a function of time, and the two different regimes
are denoted by different markers. The change in the force
due to relaxation of the worm is always significantly
smaller than due to the initial bending, as highlighted in
the inset of fig. 2. As the focus of this work was to probe
the viscoelastic relaxation of the worm material, the ini-
tial bending experiment was performed with a high speed
of the supports (30–50μm/s) during just a few seconds to
minimise any viscous dissipation to occur before the start
of the pure relaxation part of the experiment. Here it is
important to notice that both the force and worm defor-
mation vary as a function of time since the force-sensing
pipette causes the worm to bend as the force relaxes. This
is taken into account in the models, as described below.

3 Model

The initial bending part of our experiment was performed
with high speeds to exclude any viscous dissipation, and
the material is thereby assumed to behave in a purely
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Fig. 3. The standard linear solid (SLS) model, with two elastic
springs (spring constants k1 and k2) and a viscous dashpot
(damping coefficient c). The compression (y) of this connection
corresponds to the bending of the worm and the force (F ) is
that applied by the deflected pipette.

Hookean manner. The worm bending can thus be written
as yb = Fb/k, where k is the total spring constant of the
worm and the subscript b denotes the bending regime. For
our experiment, the force can also be written as Fb(t) =
kpxb(t) = kp(vut − yb). Combining these two expressions
gives

Fb(t) =
kpvuk

k + kp
t. (1)

For the relaxation part of the experiment, we model
the worm material with the standard linear solid (SLS)
model [29], where a purely viscous dashpot (damping co-
efficient c) is connected with two purely elastic springs
(spring constants k1 and k2) as shown in fig. 3. The series
connection of c and k2 is known as the Maxwell model
and has been shown to successfully describe the viscoelas-
tic properties of C. elegans in dynamic bending experi-
ments [20]. In order to study material relaxation, the par-
allel connection of a second spring is necessary to prevent
continuous viscous flow at long times, which would not be
representative of a soft biological tissue.

The SLS model relates the applied force F with the
material deformation y as [29]

ẏ =
1

k1 + k2

(
Ḟ +

k2

c
F − k1k2

c
y

)
. (2)

Comparing the SLS and Hookean models, k = k1 +k2 and
corresponds to the initial elastic response of the viscoelas-
tic material.

3.1 Newtonian fluid

First, we assume a theoretical dashpot containing a purely
Newtonian fluid. During the relaxation part of the exper-
iment, Fr(t) = kpxr(t) = kp(s0 − yr(t)) and Ḟr = −kpẏr,
where s0 is the distance the support was moved during the
initial bending, and time has been restarted so that t = 0
when the relaxation starts. Solving eq. (2) with these sub-
stitutions and the boundary condition Fr(0) = kp(s0−y0),

where y0 is the initial worm bending, gives

Fr =
k1kps0

k1 + kp
− kp

(
y0 − kps0

k1 + kp

)
e−κt, (3)

where

κ =
k2(k1 + kp)

c(k1 + k2 + kp)
.

We want to stress that the SLS model is necessary to
describe the worm material as a whole, i.e., both in the
bending and relaxation regimes. The Maxwell model itself
can only describe the active bending of the nematode [20],
whereas the Kelvin-Voigt model, where a spring is con-
nected in parallel with a dashpot [29], has the same func-
tional solution as the SLS model in the relaxation regime.
The SLS model thus captures the physics of both regimes
and should be used when investigating the pure material
properties of the worm, as is done here. In the case of a liv-
ing, actively moving worm, however, solving the Maxwell
model in the bending regime is sufficient to properly de-
scribe the viscoelastic properties of the nematode.

3.2 Power-law fluid

To take any non-Newtonian (complex) viscous properties
of the worm into account, the Ostwald-de Waele power-law
fluid model [30] was implemented. This model has been
widely used to describe the flow of many different complex
fluids and was, furthermore, shown to describe the viscous
component of C. elegans in our previous work [20]. As we
will show below, the power-law fluid is necessary due to
the failure of the purely Newtonian model to describe the
observed relaxation. In the Ostwald-de Waele model, an
effective damping coefficient is used to account for the
change of flow as a function of bending rate:

ceff = aγ̇−d. (4)

Here a is the flow consistency index (damping coefficient
at bending rate 1 s−1) and d the power-law index (a mea-
sure of the deviation from pure Newtonian flow). For a
Newtonian fluid, d = 0 and the damping coefficient would
be constant as in sect. 3.1. When d > 0, however, the fluid
is shear thinning. The bending rate in our system has been
defined as γ̇ = ẏ/L, where L is the distance between the
two simple supports. Substituting eq. (4) into eq. (2) and
solving for the relaxation case gives

F ∗
r = C+

kp

A

[
(B − Ay0)

d
d−1 +

Ad

a
1

1−d (1 − d)
t

] d−1
d

, (5)

where A, B, and C are the following constants:

A =
k2(k1 + kp)

k1 + k2 + kp
, B =

k2kps0

k1 + k2 + kp
, C =

k1kps0

k1 + kp
.



Page 4 of 5 Eur. Phys. J. E (2015) 38: 36

F

t

Fig. 4. Relaxation force as a function of time. The dashed
blue line is the fit from the Newtonian SLS model of eq. (3)
and the solid red line shows the fit from the power-law fluid
model of eq. (5). The fit residuals (Δ) are shown in the bottom
graph, where the dashed grey lines denote the experimental
uncertainty.

4 Results and discussion

4.1 Newtonian relaxation

Since the first part of the experiment was performed with
high bending speeds to minimise any viscous dissipation,
the force was purely linear as a function of time during
the initial worm bending. As shown by the best fit line in
fig. 2, eq. (1) was successfully fit to the force data in this
regime and k could thereby be determined, reducing the
number of fitting parameters necessary for the relaxation
part of the experiment. The total spring constant was in
other words used when fitting the Newtonian model of
eq. (3) to the relaxation data, so that only two fitting
parameters were necessary: k1 and c, while k2 is fixed by
k − k1. The result is shown in fig. 4, where the relaxation
force is plotted as a function of time. The SLS model is fit
(dashed blue line) to the data and the residual between
theory and experiment is shown in the bottom graph of
fig. 4, where the expected experimental uncertainty (forces
corresponding to pipette deflections of less than 0.1μm) is
drawn with dashed lines. It is clear that this viscoelastic
model does not capture the data within the uncertainty of
the measurements. The failure of the model is especially
clear in the beginning of the relaxation, where the force
and worm deformation change rapidly.

4.2 Non-Newtonian relaxation

In previous work, we showed that the worm possesses
shear thinning properties when bent with different bend-
ing speeds [20]. The worm bending rate γ̇ remains con-
stant throughout such an experiment, and the assumption

of a constant damping coefficient (for that specific exper-
iment) is therefore valid. However, during the relaxation
stage of our current experiments, γ̇ changes rapidly and
fitting for a constant damping coefficient for the relaxation
of this complex viscoelastic material is thus not correct.
We therefore implemented the power-law fluid model as
described in sect. 3.2 to model the mechanical relaxation
of the nematode. As shown by the solid red line of fig. 4,
the non-Newtonian fluid model of eq. (5) is successfully
fit to the relaxation data. Again, k has been fixed by the
initial bending portion of the experiment, and the data
is fit with three fitting parameters: k1, a, and d. There is
a significant improvement of the fit when implementing
the non-Newtonian damping coefficient as compared to
the Newtonian case, and the non-Newtonian model clearly
captures the data within the experimental uncertainty, as
highlighted by the residuals.

Tens of relaxation experiments were performed with
different nematodes (of similar size) and eq. (5) was suc-
cessfully fit to all data sets. The flow consistency and
power-law indices could thereby be determined as a =
0.10 ± 0.03mNs1−d/m and d = 0.9 ± 0.1. Since d > 0,
the nematode is shown to consist of a shear thinning
viscous component. Furthermore, the power-law scaling
c ∝ ẏ−0.9±0.1 is in excellent agreement with that found
previously by bending the worm with different bending
speeds, where c ∝ ẏ−1±0.1 [20]. C. elegans thus shows
stronger shear-thinning properties than typical complex
fluids made of macromolecules like polymers, for which
the power-law indices are in the range of dpolymers =
0.4–0.85 [30–32]. The complex fluid property of C. ele-
gans could be due to its collagen-rich cuticle [33], since
this extracellular matrix component has been shown to
be strongly shear thinning [34–36], with a power-law in-
dex of dcollagen = 0.76 ± 0.01 [37].

Other factors or complexities that could render shear
thinning properties of C. elegans include the different
cross-sectional structure of the worm along its body, where
various tissues will be deformed differently during bend-
ing. In this work, we consider the viscous flow component
of the worm as a composite parameter in a viscoelastic
model, and not necessarily as actual flow of internal body
fluids. For the case of a nematode, however, there is in
fact some internal motion of the heterogenous tissues and
fluids as the body is deformed. This flow could contribute
to the shear thinning properties of the worm. Finally, the
high hydrostatic pressure of the nematode body cavity
could affect the viscous characteristics of the worm. How-
ever, as our experiments were performed with low ampli-
tude bends, changes in the internal pressure due to bend-
ing would not be significant. These avenues could be fur-
ther investigated by performing relaxation experiments on
mutants with different developmental defects or with cu-
ticle or muscle variations.

Knowing the quantitative power-law fluid properties
of C. elegans, it is now also possible to calculate the ef-
fective damping coefficient experienced by the nematode
during its active undulatory locomotion. When crawling
on agar, the adult C. elegans worm bends its body at a
speed of ẏcrawl ≈ 104μm/s [38] and with a wavelength
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of λcrawl = 650 ± 30μm [3], corresponding to an effective
damping coefficient of ceff,crawl = a(ẏcrawl/0.5λcrawl)

−d =
0.29 ± 0.07mNs/m. The effective internal damping coeffi-
cient of the worm swimming in a fluid with a water-like
viscosity (ẏswim ≈ 970μm/s, λswim = 1540 ± 40μm [3,4])
can in the same way be calculated as ceff,swim = 0.08 ±
0.03mNs/m, and is significantly lower than that used in
higher viscosity environments. The internal properties of
the worms can thereby not be considered invariant, but
depend strongly on the type of motion performed by the
nematode. The change in the internal viscous properties
of C. elegans should thus be accounted for when studying
its gait modulation in response to varying environmental
factors, such as an increased viscosity or confinement.

5 Conclusions

In this work, the viscoelastic material properties of the
model organism C. elegans were probed experimentally
with a dynamic and time-resolved micropipette deflection
technique. Direct relaxation experiments were performed,
and the nematode deformation was described with the vis-
coelastic standard linear solid model. It was shown that
the viscous component of the worm material could not be
described as a Newtonian fluid. Instead the Ostwald-de
Waele power-law fluid model was implemented and shown
to be in excellent agreement with our experimental obser-
vations. The viscous relaxation of C. elegans is character-
ized by a shear thinning power-law fluid with a flow consis-
tency and power-law index of a = 0.10 ± 0.03mNs1−d/m
and d = 0.9 ± 0.1, respectively. The strong bending-rate
dependence of the internal properties of the worm, show-
ing a lower effective viscosity at higher bending speeds,
could affect the gait modulation of the undulating motion
in various environments.

The financial support by NSERC of Canada is gratefully ac-
knowledged. The authors also thank Rafael Schulman for in-
teresting discussions.
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We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using
micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to
the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which
we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical
predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the
forces that we measure, which well describes our data.
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Locomotion through a fluid environment is common to
organisms over a wide range of length scales, from whales
and humans to primitive algae and bacteria. However, the
physics of “microswimming,” which is the propulsion at very
small length scales, differs vastly from that applicable to
macroscopic swimmers. Studying the principles of locomotion
in this regime is crucial for our fundamental understanding
of a diverse collection of organisms, including bacteria,
sperm, and a variety of other microorganisms. Furthermore,
microswimmers offer a wide variety of applications including
robotic microswimmers capable of cargo towing for biomedi-
cal purposes, such as advanced drug targeting [1,2], collective
swimming of bacteria to induce mixing in microfluidic devices
[3,4], and fluid pumping [5–7].

The Reynolds number is a quantity that measures the
relative magnitude of viscous and inertial forces in a fluid.
At small length scales, the Reynolds number is typically less
than unity, which implies that viscous forces are dominant and
inertia can be neglected. In addition, to achieve propulsion in
this regime, it is obligatory to perform a motion that is not
time reversible, according to the scallop theorem [8]. This
theorem asserts that if a swimmer performs a sequence of
motions that is unchanged when played in reverse, such as a
scallop, which simply opens and closes, it will not acquire any
net displacement. There are numerous ways of breaking this
symmetry, such as the helical beating of a flagellum [8–10],
and motions similar to a human breast stroke, as is performed
by the simple alga cell Chlamydomonas reinhardtii [11,12].
Another common way to break this symmetry is to propagate
traveling waves down a body, which is successfully achieved
by undulatory swimmers [13–16].

Undulatory locomotion is known to be a very efficient
mechanism of propulsion and is effective over a large range of
length scales [17]. Extensive theoretical efforts have been put
forth in understanding the locomotion of a slender undulator,
in which the length of the swimmer is much larger than its
width [10,15,16,18,19]. Among these, resistive force theory
(RFT) is a simple model in which the viscous force on a
body segment moving through a low Reynolds number fluid

*dalnoki@mcmaster.ca

can be decomposed into a component tangential and normal
to that segment [10,15,16,18,20]. Each of these components
is linearly proportional to the speed of the segment in
that direction and related through the normal and tangential
drag coefficients, cN and cT. The ratio cN/cT has important
implications in the propulsion of the swimmer. Namely, if
cN/cT > 1, propulsion is directed contrary to the direction of
the traveling wave. If cN/cT < 1, we are faced with the curious
case of the undulator moving in the same direction as its
traveling wave, while the swimmer can attain no net propulsion
if cN/cT = 1. In RFT, the difficulty lies in determining the
drag coefficients. Several theoretical studies have derived
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FIG. 1. (Color online) (a) C. elegans. The scale bar represents
100 μm. (b) Time lapse of the worm’s centerline over one period
(T ), with colors representing time. A sample centerline is overlaid on
the worm in black. Arrows indicate motion of the end of the pipette
as a result of the two orthogonal forces. The scale bar represents
150 μm. (c) Schematic of the micropipette used in our experiments
with a worm held at the end (not to scale). (d) Curvature color plot
for the swimming. BC (body coordinate) denotes the distance along
the worm, where 0 represents the head and 1 represents the portion
of the worm nearest the pipette. Positive curvatures are indicated by
lighter color and denote the convex side to the left.
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values for the coefficients; however, assumptions regarding the
swimming and approximations must be made [10,15,18,20].
Indeed, experimental measurements are crucial in order to
evaluate the validity of RFT and to determine the magnitude
of the drag coefficients. There have been experiments which
have evaluated RFT for a variety of single-celled organisms
using kinematic data from high-speed imaging [21–23]. Other
experiments have performed average force measurements
of nonundulatory microorganisms in optical traps [24,25].
However, to date, direct and time-resolved measurements of
drag forces on an undulating microswimmer are still lacking.
Furthermore, direct verification of the applicability of RFT for
swimmers at length scales where the Reynolds number may
not be much less than unity is still needed.

Many experiments on undulatory microswimmers have
focused on the model organism Caenorhabditis elegans
[Fig. 1(a)], a millimeter sized hermaphroditic nematode [26].
These studies have characterized the kinematics of C. elegans
in various environments, including swimming in a buffer of
various viscosities [27,28], viscoelastic media [29], crawling
on agar [30], structured environments [31,32], and through
complex environments such as granular materials [33,34].
Attempts have been made to measure crawling forces using
pillars as force transducers for C. elegans crawling on agar
[35,36]. In another work, the viscous forces of swimming
C. elegans were inferred from particle tracking and particle
image velocimetry [28]. However, these studies, though
insightful, have not succeeded in performing direct measure-
ments of forces and drag coefficients in fluid.

Here we present a method to directly measure the time-
varying propulsive and lateral forces of C. elegans. A com-
parison between our experimentally determined forces and
the calculated forces from RFT demonstrates an excellent
agreement. The experimental and theoretical force curves are
used to deduce values for the drag coefficients of C. elegans
swimming. Finally, a simple scaling argument is presented
which postulates a relationship between the size of the worm
and the mean propulsive and rms lateral force. We find our
experimental data to be well described by the scaling argument.

We use a micropipette deflection technique to measure the
forces generated by the undulatory microswimmer [37–39]. In
this technique, a flexible glass micropipette that is more than
three orders of magnitude thinner than its length deflects when
subjected to an external force. Since the bending stiffness of the
pipette has been determined through calibration, forces can be
computed from deflections of the pipette. We catch worms by
their tail end by applying suction, and hold them with the end of
our pipettes. The micropipettes are capable of deflecting along
the worm’s swimming axis, as well as along the corresponding
in-plane perpendicular direction. Thus, we can measure forces
in two orthogonal directions [Figs. 1(b) and 1(c)] [39]. As the
nematodes move, they generate forces in their propulsive and
lateral directions, which we independently measure using the
micropipette as a force transducer [Fig. 1(c)]. The deflections
of the pipette are much smaller than length scales associated
with the motion of the worms [39].

Upon capture, the worms perform a highly reproducible
and periodic sequence of body movements, in which traveling
waves are propagated down the body, which is akin to free

−3

0

3

κ
(m

m
− 1

)

0 T/2 T
Time

(d)

−15

0

15

F
L

(n
N

) (b)

−8

0

8

F
P

(n
N

) (c)

(a)

FIG. 2. (Color online) (a) Snapshots of a young adult worm at
different stages of one swimming cycle. The labels refer to the
markers in the graphs below and the arrows indicate the main velocity
of the body. The scale bar represents 100 μm. (b) The lateral force
experienced by the worm over one period, where a positive force
denotes a force directed to the left. The peak negative force (red
circle) corresponds to the worm moving directly left, generating a
drag force to the right (negative direction). Secondary peaks (blue
diamond) correspond to turning points in the swimming cycle, when
an extra push in the lateral direction is instigated. This point roughly
coincides with a zero in the propulsive force. (c) The propulsive force
on the worm over one period, where a positive force denotes a force
directed up (in the swimming direction). The maximum propulsive
force (orange square) corresponds to the worm pushing fluid behind
itself, generating a drag force forward. This point roughly coincides
with a maximum in the curvature. (d) The mean curvature of the
worm over one period.

swimming of C. elegans [Fig. 1(b)] [27,28]. However, when
held fixed at one end, the traveling waves are of larger
amplitude than in free swimming and have a node at the fixed
end. The temporal oscillations of the curvature of the worm
exhibit a well defined frequency, which remains constant at
2.4 ± 0.2 Hz for worms of various lengths [Fig. 1(d)]. The
spatial and temporal oscillations in the curvature compare well
with what has been measured for free swimming [27,28,31].

Figure 2 shows direct simultaneous measurements of the
force generated in the lateral and propulsive directions as
well as images of the motion that caused specific forces [39].
Microswimmers inhabit a low Reynolds number environment,
and as such, the net forces involved in swimming are domi-
nated by viscous drag forces. The estimated Reynolds numbers
for the worms in these experiment lie within the range 0.05–0.5
[39]. Thus, we are in a regime where inertial effects may not
be negligible. However, it is known from previous work that
C. elegans swimming in a buffer can indeed be treated as a
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low Reynolds number swimmer, which suggests that viscous
effects may dominate in our system [28]. Using this reasoning,
the peak lateral forces (FL) occur when the worm is moving
with the greatest speed in the lateral direction [Fig. 2(b)].
Conversely, the largest propulsive forces (FP) are generated
when the worms push the greatest amount of fluid behind
themselves [Fig. 2(c)]. Small secondary peaks can be found in
the lateral force curve corresponding to turning points in the
worm’s cycle, in which the lateral motion experiences a small
spike, and there is minimal motion in the propulsive direction.
The maximum propulsive forces approximately coincide with
the points of highest mean worm curvature 〈κ〉 [Fig. 2(d)].

In the low Reynolds number regime, drag forces are simply
linearly proportional to velocities. According to RFT, one can
deconstruct the drag force (dF ) acting on each length segment
(dl) of a slender body into forces in two orthogonal directions,

dFT = −cTvTμdl, dFN = −cNvNμdl, (1)

where μ and v denote the dynamic viscosity and speed respec-
tively, c is the drag coefficient per unit length, and T and N
denote directions tangential and normal to the length segment
[15]. Since a slender body has little variation in thickness, cN

and cT can be approximated as constants over the entire length
of the swimmer. Although an experimental measurement of
these two drag coefficients individually for this microscopic
undulator is still needed, the ratio cN/cT has been determined
through theory and experiment to be approximately 1.5 for
body and swimming parameters characteristic of C. elegans
[10,16,28]. If cN and cT are known, using this prescription,
and given the speed of each segment of the undulator’s body,
it is possible to calculate the total drag force the swimmer
experiences. Since our experiment is performed in conjunction
with high-speed imaging, we can extract the velocities of the
worm body. Using numerical integration, we generate the
RFT prediction for the lateral and propulsive force curves.
Subsequently, using two free parameters, we fit the RFT
prediction of the two force curves to our lateral and propulsive
data (Fig. 3). In our analysis, we fix cN/cT at 1.5 because
our fits are not sensitive enough given the experimental error
in the data to accurately determine this ratio. Thus, the first
free parameter in our fitting controls the magnitude of the
two drag coefficients, and functions as a vertical stretch on
the curves. We find these drag coefficients to vary little for
worms of all sizes ranging from ∼400 to ∼1200 μm (this
agrees with the theoretical prediction of a weak logarithmic
dependence on geometry, in which there is no dependence
if the swimmer is self-similar for all sizes [10,15,18]), and
measure cN = 5.1 ± 0.3, and cT = 3.4 ± 0.2. We have thus
made an experimental quantification of the magnitude of the
drag coefficients for C. elegans swimming in a fluid.

The second fitting parameter allows for a small horizontal
time shift in the data. A phase shift is to be expected for
several reasons, including damping of the force transducer,
inertial effects of the worm, and imaging artifacts such as
overexposure in the body’s direction of travel. The observed
phase shifts were always smaller than T/20, with T the period
of the motion. Deviations between data and theory may be
attributed to various sources of error [39].

Although other studies have generated predictions of the
forces and powers involved in undulatory microswimming at
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FIG. 3. (Color online) (a) The lateral and (b) propulsive force
plotted as a function of time over several periods. The blue circular
markers denote the experimental data which contain a systematic
error of roughly 10% from uncertainty in the spring constant of the
micropipette. The red solid curve represents the prediction from RFT
which has been fit to the data. The error in the RFT curve is estimated
to be 5%.

larger length scales, they are reliant on theoretical models,
including RFT [27,28]. The close agreement between the
predictions of RFT and our experimental data demonstrates
the applicability of this model in generating quantitative
predictions in undulatory systems (Fig. 3). For the purposes
of comparing our measured drag coefficients with theoretical
predictions by Lighthill [10], we can use 1.0 ± 0.2 mm
as an estimated wavelength, and 45 ± 5 μm as the typical
thickness of a young adult. Substituting these parameters
into Lighthill’s expressions, we get cN = 4.9 ± 0.4, and cT =
3.0 ± 0.3, which fall within the error of our experimental
values.

Slender body theory (SBT) is a more general model of
microswimming, on which the simpler RFT is based [40].
SBT is expected to generate accurate predictions over a wider
range of swimming parameters than RFT. However, since RFT
captures our data within experimental error, it follows that it
is in also in agreement with SBT [39].

Using simple scaling arguments, one can determine the
dependence of the magnitudes of typical propulsive and lateral
forces upon the worm size. In our experiments, we find that
the drag coefficients are largely independent of the size of the
worm. Thus, once the forces in Eq. (1) have been integrated
over the worm’s body, the forces will scale as F ∝ vLout,
where v is a typical speed and Lout is the length of the worm
outside of the pipette. The typical speed depends on the product
of the amplitude (A) of the oscillations and the frequency (f ) of
the swimming. Therefore, the forces will scale as F ∝ Af Lout.
We make the approximation that the swimming of the worm is
self-similar for all life stages, which implies that A will scale
linearly with Lout. This assumption is influenced by previous
measurements which showed that mechanical properties of the
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FIG. 4. (Color online) (a) The root-mean-squared lateral force
and (b) the mean propulsive force as a function of the square worm
length outside of the pipette. The mean and rms are taken over
many cycles.

worms can be treated as self-similar [38]. In our experiments,
we find that f does not depend on the worm size. Thus,
we see that the typical viscous forces generated should scale
as F ∝ L2

out. A plot of the root-mean-squared (rms) lateral
force as a function of L2

out yields approximately a straight
line passing through the origin, in accordance with the scaling
argument [Fig. 4(a)]. Since the worms are attempting to swim
forward, one would expect there to be no net force in the lateral

direction over one period. Indeed, for the worms, we measure a
mean lateral force of 0.1 ± 0.7 nN. Consistent with the scaling
argument we find that the mean propulsive force 〈FP〉 also
scales with L2

out at large worm lengths [Fig. 4(b)]. However,
at small worm lengths (�800 μm), the mean force drops. We
attribute this to the fact that small worms undergo motions that
are quite different from traveling waves and more “hooklike.”
This type of motion does not yield appreciable propulsion. The
mean propulsive forces of larger worms we measure here are
comparable to other estimates for C. elegans [28].

Here we report a direct measurement of the forces expe-
rienced by an undulatory microswimmer. Using micropipette
deflection, we attain a high-resolution time sequence of drag
forces felt by C. elegans while swimming in a buffer. By
using these force measurements in conjunction with the low
Reynolds number model resistive force theory, we demonstrate
the success of this simple model in describing the locomotion
of slender microswimmers. This direct verification of the
theory, which has previously been assumed to apply at
this Reynolds number, provides a better understanding of
undulatory microswimming at length scales larger than of
unicellular organisms. Furthermore, using RFT to describe
our data, we extract measured values of drag coefficients for
C. elegans, a highly studied model organism and microswim-
mer. These coefficients are in congruence with theoretical val-
ues, and will allow future studies to perform direct calculations
of the forces generated by free swimmers simply by using high-
speed imaging. Finally, simple scaling arguments successfully
explain how the magnitude of lateral and propulsive forces
scale with the size of the swimmer.
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Force measurements and Analysis

The micropipette deflection technique was employed
in the same manner as outlined in Refs. [1, 2]. The mi-
cropipette has a straight portion which is roughly 3 cm
long, and terminates in an L-shaped bend, in which each
length is about 300-600 µm (Fig. 1). The pipette has an
outer diameter of ∼20 µm and inner diameter of ∼10 µm.
The fabrication and subsequent calibration procedure is
described in Ref. [3]. Since the long, straight part is very
flexible (compared to the L-shaped bend), it is the only
portion that deflects significantly. By observing this L-
shape from below, we can measure its displacements in
two orthogonal directions.

In this study, we measure forces generated by L3, L4,
young adult, and adult worms. In our experiments,
worms were picked off the NGM plates and placed in-
side a transparent cylindrical container containing M9
buffer, which was placed atop an inverted optical micro-
scope. The micropipette would subsequently be inserted
into the cylinder from above, with the L-shaped bend be-
ing in a horizontal plane close to the bottom boundary
where the worms are found. The cylindrical container
was deep enough to immerse the entire flexible portion
of the micropipette within fluid - this is important be-
cause if the fluid interface were in contact with the flex-
ible part of the pipette, then the surface tension could
cause deflections that interfere with the desired measure-
ment. Worms were captured by positioning the end of the
micropipette near the tail of a worm and subsequently
applying section through a syringe connected to the mi-
cropipette. Experiments where the worms were sucked
in more than 15% of their length were not used. Worms
swim in the same plane as the L-shape before being cap-
tured, and thus, remain in this plane after capture. Upon
capturing a worm, the pipette was raised several mil-
limeters away from the bottom boundary, such that the
worm could be treated as swimming in an infinite fluid
medium. We only collected data when the worm was
seen to be swimming symmetrically about the propulsive
direction. Images were taken with a high-speed camera
(Allied Vision Technologies, Model: GT1660) at 56 fps.

The images from our experiments were analyzed in
MATLAB. We used a cross correlation image analysis
technique to precisely measure displacements of the L-
shape of the micropipette in lateral and propulsive direc-

tions. To determine the pipette position corresponding
to zero force, we waited for a worm to perform an Ω-turn,
during which it curls up into a spiral shape. When it is
in this configuration, it moves very little, and thus, does
not generate appreciable viscous forces. Therefore, this
allows us to determine the zero point for our force curves.
We also employ image analysis techniques to determine
the centerline of the worm’s body, and subsequently, cal-
culate the body curvature, and find the body velocities
used to compute the RFT force prediction. The RFT
curve (e.g. Fig. 3) is only evaluated at the same points
in time as the data. This image analysis script was also
used to determine the arclength of the worms.

While the agreement between RFT and the direct force
measurements is excellent, small deviations between data
and theory may be attributed to several factors. The
body velocities are attained from an average of differ-
ences in body position over time. Although employing
a high frame rate in our experiment provides us with
good estimates of the body’s velocities, they are not ex-
act. Furthermore, during swimming, the worm generates
a flow around itself. This flow will in turn generate a
drag force on the pipette, which contributes to the devi-
ations we see. Note that since the swimmer tries to swim
forward, it generates a net flow directed behind itself,
and as such, will cause the measured force to be smaller
on average. Furthermore, the value cN/cT=1.5 has been
derived for sinusoidal undulations, and may be subject
to minor corrections for the swimming observed.

The mean propulsive force is calculated over many cy-
cles of the RFT curve. The horizontal error bars in
Fig. 4 stem from uncertainties in determining the worm’s
arclength using an image analysis script. The vertical
error bars have contributions from uncertainties in the
micropipette spring constant, uncertainties in the calcu-
lated RFT curves, and temporal variations of the worms’
mean propulsive force and rms lateral force.

Worm strains and cultivation

We attained Wild-type worms (N2) from the
Caenorhabditis Genetics Center and cultivated these
worms according to standard procedures described in
Ref. [4] on Escherichia coli OP50 NGM plates at 20 ◦C.



2

Reynolds Number Calculation

We can estimate the Reynolds number (Re) for this
system by likening the worm to a rod with the same ra-
dius, moving side to side at the typical oscillation speed of
the worm. The average oscillation speed is 4A/T , where
A is the typical swimming amplitude (roughly 0.65 mm
for a young adult) and T is the period (∼0.4 s for all
worms). The relevant length scale is the radius of the
rod (∼20-25 µm for a young adult). Substituting these
values, along with the density and viscosity of water (as-
sumed to be roughly equal to that of the buffer), into
the expression for the Reynolds number yields a value of
approximately 0.15. One may also choose the diameter
of the worm as the relevant length scale, which would
imply Re = 0.3. In addition, repeating the calculation
for all size worms in our study, and using either the ra-
dius or diameter of the worm as the length scale, yields
a range of Reynolds numbers of Re ∼ 0.05-0.5. There-
fore, the relevant Reynolds numbers for the worms in our
experiment lie in the range 0.05-0.5.

RFT vs. SBT

For helical swimming, there is experimental evidence
for full quantitative agreement between SBT and mea-

sured data for a broad range of swimming parameters [5].
For the study of the helical swimmer, RFT fails in the
regime L >3λ, where L and are the length and wave-
length of the helix as measured along its axis, due to
hydrodynamic interactions between body segments be-
coming important. Although undulatory swimming is
qualitatively different, in our system, we have L ∼ λ,
which yields small enough hydrodynamic interactions for
RFT to be successful in predicting the viscous forces, as
it is in our study.
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The hydrodynamic forces involved in the undulatory microswimming of the model or-
ganism C. elegans are studied in proximity to solid boundaries. Using a micropipette
deflection technique, we attain direct and time-resolved force measurements of the
viscous forces acting on the worm near a single planar boundary as well as con-
fined between two planar boundaries. We observe a monotonic increase in the lateral
and propulsive forces with increasing proximity to the solid interface. We determine
normal and tangential drag coefficients for the worm, and find these to increase
with confinement. The measured drag coefficients are compared to existing theoret-
ical models. The ratio of normal to tangential drag coefficients is found to assume
a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but in-
creases significantly as the worm is confined between two boundaries. In response
to the increased drag due to confinement, we observe a gait modulation of the ne-
matode, which is primarily characterized by a decrease in the swimming amplitude.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897651]

I. INTRODUCTION

Locomotion through a fluid environment at small length scales, or “microswimming,” is interest-
ing because the relevant physics differs considerably from that applicable to macroscopic swimmers.
Microorganisms dwell in a regime where viscous forces dominate and swimmers have negligible
inertia.1 That is, the Reynolds number (Re), which is a measure quantifying the ratio of inertial to
viscous forces in a fluid, is typically much smaller than unity for microscopic swimmers. The activity
within this field has increased substantially in recent years. This growth is, in part, due to rapidly
improving experimental techniques capable of performing measurements of motile microorganisms,
as well as more developed analytical and computational treatments of these systems. Beyond studies
which have succeeded in providing precise kinematic observations of small swimmers, in the last
decade, there have been direct force measurements of unicellular organisms using optical traps.2, 3

This large drive towards developing a better understanding of low Re locomotion is warranted, as it
offers exciting application and research avenues, such as fluid pumping,4–6 collective motion of bac-
teria to generate mixing in microfluidic devices,7, 8 and microscopic artificial swimmers capable of
transporting loads for biomedical purposes such as advanced drug targeting and robotic surgery.9, 10

Furthermore, enhancing our ability to describe the relevant physics is a crucial step towards devel-
oping a more complete picture of the behaviours, capabilities, and interactions of bacteria, sperm,
and other microorganisms.

There are numerous biologically relevant systems in which microorganisms move near a bound-
ary, such as in surface-associated bacterial infections,11, 12 sperm locomotion in the female reproduc-
tive tract,13 and biofilm formation.14, 15 To attain a complete picture of these systems, it is imperative
to understand how the physics of a microswimmer differs upon proximity to an interface. However,
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microswimmers are typically studied while swimming in an effectively infinite fluid and few studies
have investigated the effects of a nearby interface. In particular, due to the nearby no-slip boundary
condition at a fluid-solid interface, there will be an increase in the shear of the velocity field near
such a boundary. This increase in shear will cause an increase in viscous forces, which will influence
the motility of organisms. Experiments have verified changes in both propulsion and trajectories of
swimmers near solid boundaries at low Re.6, 16–18

A unique aspect of low Re locomotion is that, according to the Scallop Theorem, to achieve
propulsion it is necessary to undergo a sequence of motions that is not time-reversible.1 Microor-
ganisms have developed various swimming mechanisms that satisfy this constraint, such as motions
akin to a human breast stroke, as characterized by the alga cell Chlamydomonas reinhardtii,19, 20 or
the helical rotation of a bacterium’s flagellum.1, 21, 22 Undulatory locomotion, in which a swimmer
propagates travelling waves down the length of its body, is another non-time-reversible mechanism,
and is often employed by nematodes and sperm.23–26

Undulatory locomotion has proved to be a highly efficient means of propulsion which is
present over length scales ranging from micrometers to tens of meters.27 The locomotion of slender
undulatory swimmers has been investigated by a multitude of theoretical studies.22, 25, 26, 28, 29 A
common approach is to derive resistance coefficients for the swimmer, such that given the velocity
of the segments of the swimmer’s body, it is possible to compute the force. Such a framework is
called resistive force theory (RFT). In this model, one can decompose the force acting on each body
segment into a component tangential and normal to the body, each of which is proportional to the
speed of the segment along the corresponding direction, and related by the normal and tangential drag
coefficients, cN and cT. In particular, the ratio K = cN/cT is a quantity of interest, as it determines the
magnitude and direction of propulsion of the swimmer. These drag coefficients have been derived
for a slender undulator in an unbounded fluid22, 25 and for slender cylinders near boundaries.30, 31

In particular, the results of Katz et al. predict K = 2 for a cylinder moving parallel to a nearby
fluid-solid interface, and also predict K to increase past a value of 2 when the cylinder is confined
between parallel solid plates.30 Recently, the drag coefficients of an undulatory microswimmer in an
infinite fluid were found using direct force measurements, and compared well with the theoretical
result.32 However, there have been no direct force or drag coefficient measurements for undulatory
swimmers in proximity to a solid boundary, which is the focus of this study.

Experiments focusing on undulatory locomotion often employ the model organism Caenorhab-
ditis elegans,33 a millimeter sized nematode, as its subject. The viscoelastic material properties of
this worm have been determined,34 as well as its kinematic properties in a wide variety of media.35–43

In addition, there has been much interest in the gait modulation of C. elegans from swimming to
crawling, which involves a decrease in frequency and wavelength of undulatory motion.35–37 The
gait modulation is known to occur in response to changing environmental resistance, which has been
realized in experiments by changing viscosity,35, 36 and by pressing the worm down onto an agar
surface with a glass plate.44 Direct force measurements have been attained for C. elegans crawling on
agar45, 46 and recently for C. elegans swimming in a buffer.32 Although there have been some studies
which have involved confining the worm,44, 47 no experiments have measured swimming forces in
proximity to an interface, nor have the kinematics been studied for confinement of the worm near
solid boundaries. Despite this, many studies of free swimming C. elegans employ experimental
designs in which the worm swims near a solid boundary, even though the effects of the boundary,
in terms of changing drag coefficients and modulations in kinematics of the worm, are not properly
understood. Studying the behaviour and forces experienced by C. elegans in confinement provides
insight into the impact of the physical constraints that nematodes face in their true habitats (e.g.,
soils and other materials with small interstitial spaces).

In this paper, we perform direct force measurements using micropipette deflection32, 34, 48, 49

on the undulatory microswimmer and model organism C. elegans at controlled distances from a
singe solid boundary and between two solid boundaries. The structure of the paper is as follows. In
Sec. II, we describe the experimental methods, including details of micropipette deflection and
image analysis. In Sec. III A, we present measurements of forces and drag coefficients of the worm
at varying distances from a single planar solid boundary, and compare these to existing theoretical
models. In Sec. III B, we determine drag coefficients for the worm swimming midway between two
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planar solid boundaries with different spacings, and compare the measurements to theory. We discuss
and present evidence of a gait modulation of the worm in response to increasing drag coefficients
in confinement in Sec. III C. Finally, we provide a summary and conclusions in Sec. IV. We find
that for increasing confinement, the drag coefficients and viscous forces generated by C. elegans
increase monotonically. The drag coefficients are compared to theoretical models and exhibit partial
agreement. We determine the drag coefficient ratio K, and find that it is constant at all distances
from the single boundary, but find it to increase as the worm is confined between two boundaries. In
addition, as the drag coefficients increase, the worm is seen to exhibit a gait modulation.

II. EXPERIMENTAL METHODS

A. Micropipette deflection

As in previous work, we employ a micropipette deflection technique to measure time-resolved
forces in dynamic, microscale systems.32, 34, 48, 49 In this experimental technique, a flexible glass
micropipette that is more than three orders of magnitude thinner than it is long, deflects when
subjected to an external force. The pipette can be calibrated by ejecting a small droplet through the
pipette which then hangs off the pipette tip. By imaging the droplet, and calculating its volume, the
mass of the droplet can be found. Observing the deflection of the pipette in response to the droplet’s
weight allows the spring constant to be determined. Once the spring constant is known, a pipette
can be used as a force transducer, for which the deflections away from the equilibrium position
indicate the applied force. For instance, the pipette can be pushed against a soft material to measure
its properties.34, 49 Since the pipette is hollow, suction can be applied to catch objects at the end of
the pipette. Using this set up, one can perform friction and adhesion measurements,48 or measure
the forces generated by an active object.32

In this study, two types of pipettes are employed. In the first part of the study, a straight pipette
with an L-shaped bend at its end is used (Fig. 1(a)). The L-shaped bend, in which each length is about
300–600 μm, is highly rigid compared to the long straight portion of the pipette, which is roughly
3 cm long. For this reason, only the long straight portion exhibits appreciable deflection. Therefore,
this micropipette is capable of deflecting in two perpendicular directions: along the worm’s swimming
axis, as well as along the corresponding in-plane perpendicular direction (Fig. 1(b)). Thus, using
this pipette, we can measure both the propulsive and lateral hydrodynamic forces generated by the
worm, by simply observing the L-shaped bend from below (the same approach has previously been
employed32). In the second part of the study, a completely straight pipette which is roughly 3 cm
long is used (Fig. 1(c)). Such a pipette can only deflect side-to-side, and can thus only measure

FIG. 1. (a) Experimental set up for the single boundary experiments. A straight pipette with an L-shaped bend at its end is
used to measure forces of the worm swimming at a distance h from the boundary. The blue horizontal line represents the
location of the buffer meniscus. (b) An image taken of a young adult worm swimming as it is being held with the L-shaped
bend of a pipette. By observing the L-shaped bend move, we can measure both lateral (FL) and propulsive (FP) forces. The
scalebar represents 200 μm. (c) Experimental set up for the channel confinement experiments. A straight pipette is used to
measure lateral forces of the worm swimming in the x-y plane at a distance h from each boundary.
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the lateral forces generated by the worm. All pipettes in this study have an outer diameter of
∼20 μm and an inner diameter of ∼10 μm. The spring constants of all pipettes are within the range
of 2.7–8.9 nN/μm, with no more than 10% uncertainty in each spring constant. The deflections of
the pipettes in these experiments are much smaller than length scales associated with swimming of
the worms. Thus, pipettes can be treated as linear springs, and drag forces acting on the pipette are
small compared to the forces driving it.

B. Experimental design

In this study, force measurements are performed on worms in the so called L4, young adult,
and adult life stages. For the purpose of our study, these are different sized worms that behave in the
same way when captured. Wild-type worms (N2) were obtained from the Caenorhabditis Genetics
Center and cultivated according to standard procedures.33 The worms are picked off NGM plates
and placed inside a chamber filled with M9 for the force measurements (see Fig. 1). Worms are
captured by positioning the end of the micropipette in proximity to the worm’s tail and applying
suction through a syringe connected to the micropipette. Worms are never sucked in by more than
15% of their total length. Upon capture, the z-position of the pipette is adjusted and monitored using
a digital actuator. The nematodes perform a highly reproducible undulatory motion when being held
by the micropipettes. Since the worm is being constrained in its motions, we expect the propulsive
forces generated by a tethered worm to be smaller than a freely swimming worm. Worms are seen
to swim in the plane of focus (parallel to the plane of the boundaries) during the majority of the
experiments, as they are captured while swimming parallel to this plane. In each type of experiment,
the system is observed from below with a microscope. Images of the swimming are taken with a
high-speed camera (Allied Vision Technologies, Model: GT1660) at 56 fps. Data in which there
are out of plane swimming results in the worm’s body being out of focus during a portion of the
swimming cycle – such data are discarded.

Worms are studied in two types of confinement: near a single planar boundary and inside a
channel. For the single planar boundary experiment, a transparent cylindrical container is used.32

In this case, the micropipette with the L-shaped bend is inserted into the chamber from above
such that the thin flexible portion is fully immersed in the fluid, as seen in Fig. 1(a), where the
horizontal line indicates the location of the buffer meniscus. By letting the thick stiff portion of the
pipette pass through the meniscus, we prevent capillary forces at the contact line from disturbing
the force measurements. The L-shaped bend is in a plane parallel to the bottom boundary. For the
measurements, the worm is positioned to be at a desirable h away from the bottom boundary. The
distance h is measured by moving the pipette until it is in contact with the bottom surface, and
subsequently raising the pipette while keeping track of the relative change in height using the digital
actuator.

For the channel confinement experiment, the channel is composed of two parallel glass slides
spaced and held together by a chosen number of layers of melted Parafilm to achieve a desired
channel height, 2h (Fig. 1(c)). The channel heights range from 58 μm to 1700 μm. This channel
is mounted within a larger chamber filled with buffer in which the worms are placed, composed of
two horizontal glass slides separated by rubber spacers. The buffer remains in the chamber due to
surface tension. In these experiments, the straight pipette is inserted into the larger chamber from the
side. For the measurements, the worm is captured from the larger chamber and positioned such that
it is equidistant from the top and bottom plates of the internal channel, at a distance h from either
plate. The flexible portion of the pipette is mainly in the larger chamber, and only a small portion at
the end (containing the worm) is placed within the channel in order to reduce the drag force on the
pipette. Again, we ensure that the meniscus of the buffer is only in contact with the thicker portion
of the pipette. The height of the channel 2h and the corresponding midpoint position are determined
using the same technique as for the single boundary.

C. Image analysis

The deflections of the micropipettes are analyzed using a cross-correlation technique, which,
given the magnification of the microscope used in the experiment, is able to resolve deflections to
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a precision of ∼0.1 μm. This translates into a sub nN precision in our force measurements for the
range of pipette spring constants used.

The nematode’s motion during swimming is analyzed as follows. First, each snapshot of the
swimming is thresholded into a binary image. Subsequently, each binary image is processed to attain
a centerline of the worm’s body. The raw data of each centerline are smoothed using a spline curve.
From the resultant smoothed centerline, which is composed of 1000 equally spaced points, it is
possible to compute quantities such as body curvatures and the amplitude of the swimming. The
velocity of a body point in a given frame (used for the RFT computations) is calculated by measuring
the difference in position of the point in the previous frame to that in the next frame. This procedure
leads to a ∼5% error in computing the velocities. All above analysis was done using inhouse code
written in MATLAB. The worm’s radius is measured near its vulva using ImageJ.

III. RESULTS AND DISCUSSION

A. Single planar boundary

1. Force measurements

At any distance from the boundary, lateral and propulsive force curves over a swimming cycle
of the worm were obtained. The force curves were reproducible over time as well as from worm to
worm. Examples of force curves for a single period of swimming at a distance close and far from
the boundary are shown in Figs. 2(a) and 2(b). The Reynold’s number of this system is in the range

FIG. 2. The (a) lateral (FL) and (b) propulsive (FP) forces over one period of a young adult worm’s swimming, close
(h = 35 ± 4 μm) and far (h = 2524 ± 4 μm) from a single boundary. (c) The rms lateral force normalized to its value at
infinity (h/rw > 100) as a function of the distance to the boundary (h) normalized by the worm radius (rw), for young adult
worms. The vertical error bars come from uncertainties in the spring constant of the pipette and temporal variations of the
forces. The horizontal error bars stem from uncertainties in determining the distance from the boundary and measuring the
worm’s radius. The vertical error bars increase for larger forces, since the percentage error for all data points is similar. (d)
Lateral and (e) propulsive forces (blue circle markers) for a young adult worm swimming near a single boundary (h/rw ∼ 2.8)
plotted as a function of time over several periods. The solid red curves correspond to simultaneous RFT fits to the lateral and
propulsive force data. In this case, cN = 7.8 ± 1.2 and cT = 5.1 ± 0.8.
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of 0.05–0.5,32 and previous studies have demonstrated that the physics describing the locomotion
of C. elegans is compatible with that of a low Re swimmer.32, 36 For such low Re swimmers, the
forces we measure are dominated by viscous forces.32 As such, a maximum in the lateral force, for
instance, roughly corresponds to the point in the worm’s swimming cycle in which it moves with
maximal velocity in the negative lateral direction (defined to be right in our experiments). Using the
same logic, when the worm has a maximal velocity component in the negative propulsive direction,
we measure a maximum force in the forwards swimming direction.

At close distances to the planar boundary, we observe significant increases in the forces generated
by the worms. As seen in Figs. 2(a) and 2(b), the lateral and propulsive force curves are plotted as a
function of time over one swimming period . Near the boundary, the force curves appear vertically
stretched in comparison to the corresponding force curves of the same worm far from the boundary.
At large distances from the planar boundary (roughly h ∼ 3000 μm, or h/rw > 100, where rw is the
radius of the worm), we observe the swimming of the worms to be similar in form and frequency
as in previous work in an unbounded fluid.32 Furthermore, at large distances, the magnitudes of
the forces we measure compare well with past work. In Fig. 2(c), the normalized root-mean-square
(rms) lateral force is plotted as a function of h/rw. The rms lateral force increases continuously as
the worms are brought closer to the boundary. The rms lateral force increases most significantly
below h/rw ∼ 10, and at very close approaches to the boundary it can be more than 3 times larger
than in an unbounded fluid. For the mean propulsive force, we measure 〈FP〉 = 3 ± 1 nN at h/rw

= 1.8 ± 0.3 for worms with Lout = 880 ± 60 μm, where Lout is the length of the worm found
outside of the pipette. In comparison, for worms of similar size in an unbounded fluid, 〈FP〉 = 0.8
± 0.2 nN.32 Thus, in our experiments, the worms attain significantly larger mean propulsive forces
when they swim near the boundary. Near the boundary, viscous drag forces are larger due to the
nearby no-slip interface. Since the propulsion of microswimmers is derived from viscous forces, the
propulsive forces are expected to increase near the solid boundary because of the increasing velocity
gradient.

2. Drag coefficients

For a swimmer moving through a fluid, the velocity of each infinitesimal segment of the
swimmer’s body can be decomposed into two perpendicular directions, a component tangential (vT)
and normal (vN) to the body. In RFT, these velocities generate infinitesimal drag forces (dF) on the
corresponding body segment (dl), which are given by

dFT = −cTvTμ dl and dFN = −cNvNμ dl, (1)

where μ is the dynamic viscosity, c represents the drag coefficient per unit length, and T and N
denote directions tangential and normal to the body segment.25 The ratio cN/cT has been estimated
through theoretical as well as experimental studies to be approximately 1.5 for C. elegans in an
infinite fluid medium.22, 26, 36 We previously measured these drag coefficients for C. elegans in an
unbounded fluid to be cN = 5.1 ± 0.3 and cT = 3.4 ± 0.2, where the ratio of the drag coefficients, K,
was fixed to be 1.5.32 However, these coefficients have not been experimentally determined in the
proximity to a boundary.

If cN and cT as well as the speed of each segment of the worm’s body are known, one may
integrate Eq. (1) to find the total viscous force acting on the undulator. From image analysis of our
high speed image sequences attained during experiments, we can extract kinematic data, including
body segment speeds, for the worm’s swimming. Since cN and cT are not known in the presence of
a solid boundary, we can treat these as free parameters in calculating RFT’s prediction of the lateral
and propulsive forces, as each of these forces has contributions from both tangential and normal
forces acting on the worm. Using this procedure, we can fit the RFT force curves to the experimental
force curves, and as such, extract best fit values for cN and cT. A third free parameter is employed
in our fits which allows for a relative phase shift between the theoretical and experimental force
curves. This horizontal time shift may be present for several reasons, including viscous damping
of the micropipette, inertial effects of the worm, and various imaging artifacts. These phase shifts
are always smaller than T/20, where T is the period of the worm’s motion. Examples of RFT fits to
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lateral and propulsive force data for a young adult worm swimming near a boundary are shown in
Figs. 2(d) and 2(e), where the data are plotted alongside the RFT prediction. As seen in these figures,
the RFT fit describes the data within experimental error. In addition, as seen in Figs. 2(d) and 2(e),
the experimental force curves are reproducible over time.

The fits are performed at several values of h/rw for L4, young adult, and adult worms. The
swimming of these worms is observed to be approximately self-similar, meaning that the swimming
motions and waveforms all scale with the size of the worm. The self-similarity allows these different
sized worms to be compared. The resultant values of cN and cT are plotted as a function of h/rw

in Figs. 3(a) and 3(b). As demonstrated in these plots, the data collapse for a large range of values
of h/rw, since both h and rw (∼14 μm to ∼35 μm) are varied, this suggests that this ratio is an
important controlling parameter.

Katz et al. incorporated the effects of a nearby solid planar boundary into the calculation of the
drag coefficients for a straight cylinder.30 Their values of cN and cT, which contain no free parameters,
are plotted along with the data in Figs. 3(a) and 3(b), represented by the solid curves. In their analysis,
the resultant resistance coefficients are derived in the regime r0 � h � l/2, where r0 and l are the
radius and length of the cylinder, respectively. For a young adult worm in our experiments, rw

∼ 24 μm and Lout/2 ∼ 450 μm. The point at which h/rw ∼ (Lout/2)/rw (i.e., h ∼ Lout/2) is indicated
by a vertical arrow on the x-axis of Fig. 3(b). Evidently, there is no value of h which is much
larger than the worm radius, and simultaneously much smaller than half the worm length. Thus,
C. elegans falls outside of the ideal regime for which the derivation by Katz et al. is applicable.

FIG. 3. (a) cN and (b) cT plotted against the normalized distance from the boundary for adult, young adult, and L4 worms.
The vertical error bars come from uncertainty in the spring constant of the pipette and the fitting procedure. The solid and
dashed curves correspond to the predictions of Katz et al. and Lighthill.22, 30 The grey area denotes the uncertainty range
in evaluating Lighthill’s drag coefficients. The vertical arrow on the x-axis of (b) represents the point at which h ∼ Lout/2.
(c) Binned values of cN and cT from (a) and (b), respectively, demonstrating that a linear fit (solid line) with a slope of
1.5 ± 0.1(5) describes the data within error. The dashed lines correspond to lines given by the upper and lower bounds of the
slope. The error bars of the data points come from the scatter in the binning of (a) and (b).
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However, there are no studies which incorporate boundary effects into a calculation for the drag
coefficients of an undulating cylinder. Thus, although limited in its applicability to our system, the
study of Katz et al. provides the most relevant comparison near a boundary. Despite this, as seen in
Fig. 3(a), their predictions describe the cN data well for h/rw � 4. On the other hand, one can see in
Fig. 3(b) that there is a consistent underestimate of cT compared to our measurements for all h/rw.
In the limit h � rw, the worm can be well approximated as swimming in an unbounded fluid, where
the theoretical predictions of drag coefficients for an undulatory swimmer become applicable.22, 25

In this regime, the wavelength of the swimming is a more relevant length scale than the distance
from the boundary, and the prediction of Katz et al., which does not take into account the effects of
undulations, is expected to fail. Since Lighthill’s resistance coefficients have been shown to exhibit
excellent agreement with experimental values in an unbounded fluid,22, 32 we expect the data for cN

and cT to match this theoretical prediction in the h � rw regime. Indeed, as seen in Figs. 3(a) and
3(b), Lighthill’s resistance coefficients, given by cN = 4.9 ± 0.4, and cT= 3.0 ± 0.3,22 represented
by dashed lines, agree with the data for h/rw � 10. In generating this prediction, we have used
parameters characteristic of young adult worms: 1.0 ± 0.2 mm as an estimated wavelength, and rw

= 45 ± 5 μm, but since the swimming can be approximated as self-similar,32 the theoretical drag
coefficients for adults and L4’s are within error of the values above.

In Fig. 3(c), binned averaged values of cN are plotted as a function of binned averaged values of
cT. The binning is performed evenly as a function of log10(h/rw) with bin sizes of 0.15, large enough
to have sufficient data in each bin. An average value within each bin is subsequently computed.
We fit these data to a line constrained to pass through the origin, and obtain a slope of K = 1.5
± 0.1(5). Thus, the ratio K = cN/cT assumes a constant, distance-independent value of 1.5 ± 0.1(5)
for undulatory swimming in a plane parallel to a solid planar boundary. In the straight cylinder
calculation of Katz et al., a constant value of K = 2 is derived. Lighthill’s calculation yields K = 1.6
± 0.2, which is in agreement with our experimental value for all h/rw. Interestingly, theoretical and
experimental estimates which have suggested that K ∼ 1.5 have been carried out for an infinite fluid
medium,22, 26, 36 yet our results imply that this ratio remains valid in the proximity of a solid planar
boundary.

As a consistency check, it is worthwhile comparing to see that the increase in the magni-
tude of the forces we measure close to a boundary, scale with the increase in drag coefficients.
Nearby the boundary (h/rw = 1.8 ± 0.3), where we found 〈FP〉 = 3 ± 1 nN, cN and cT are both
roughly 2.5 times larger than in an unbounded fluid, where 〈FP〉 = 0.8 ± 0.2 nN.32 The mean
propulsive force and rms lateral forces should scale linearly with the magnitude of the drag coef-
ficients. Thus, we would expect 〈FP〉 near the boundary to be roughly 2.5 times larger than in an
unbounded fluid, or 〈FP〉 ∼ 2 nN, which agrees with the measured value within experimental error.
Furthermore, the rms lateral force near the boundary is found to be 2.3 ± 0.2 times larger than
in an unbounded fluid. This increase is roughly consistent with the 2.5 times increase in the drag
coefficients.

B. Channel confinement

For the studies of a worm confined between two solid boundaries (Fig. 1(c)), the confining
geometry restricted us to a straight pipette and only lateral forces could be measured. Thus, our
resistive force theory curves are, in this case, only fit to lateral force data.50 In the same way as
before, we can extract the values of cN and cT from our free fits. The results are shown as a function
of h/rw in Figs. 4(a) and 4(b) for adult, young adult, and L4 worms. For the smallest channel, the
drag coefficients are more than an order of magnitude larger compared to in an unbounded fluid.
Thus, we see that the effect of a second solid boundary is not simply additive in terms of the increase
in the drag coefficients experienced by the worm. Instead, the second boundary imposes a significant
restriction on the fluid flow surrounding the worm’s body compared to in the single boundary case,
causing this large increase in viscous drag.

In their study, Katz et al. also investigate the case of parallel plate confinement of a straight
cylinder moving in the central plane of the channel.30 Once again, the derivation is carried out
for a straight cylinder in the r0 � h � l/2 limit, and is thus limited in its applicability to our
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FIG. 4. (a) cN and (b) cT as a function of the normalized distance to each boundary in channel confinement for adult, young
adult, and L4 worms. The predictions of Katz et al. and Lighthill are plotted as solid and dashed curves. The vertical arrow
on the x-axis of (b) represents the point at which h ∼ Lout/2. The black triangle markers correspond to three measurements
on the same worm at three separate y-positions (Fig. 1(c)). This translation affects cT more significantly than cN.

system. Nevertheless, for comparison, this theoretical prediction for the drag coefficients, as well
as Lighthill’s results, are plotted alongside the data in Figs. 4(a) and 4(b). Here we see that
the predictions of Katz et al. are in agreement with data near the intersection with Lighthill’s
drag coefficients. For larger h/rw, Lighthill’s results capture our data within error. For smaller
h/rw, the results of Katz et al. overestimate cN and underestimate cT. The failure is not a fail-
ure of the theory, rather it is to be expected since C. elegans falls outside of the regime in
which the derivation of Katz et al. is carried out. Despite this, as mentioned previously, the
study of Katz et al. provides the most relevant theoretical comparison of drag coefficients near a
boundary.

The data of cT contain more scatter than the data for cN. We believe that this can in part
be attributed to cT being more influenced by changes in geometry of the experiment. The thin
chambers that we use may not be perfectly parallel (±0.5◦) and the swimming plane of the worm
may also be subject to a tilt (±2◦), such that the swimming of the worm is not exactly in plane
with the chamber walls. Furthermore, there is an inherent error in determining the midpoint of the
chamber (±2 μm). These sources of scatter would be more significant for experiments with higher
confinement. To demonstrate the possibility of scatter due to uncertainties in geometry, we performed
an experiment in which we placed the worm at the center of a very thin chamber, and measured
the drag coefficients at three separate y-positions (Fig. 1(c)), each a few hundred micrometers apart.
These three measurements are represented by the black triangle markers in Fig. 4. As seen in the
figure, this procedure resulted in significant scatter in the value of cT, yet relatively little scatter in
the value of cN, where two of the data points are so close that they are indistinguishable in the plot.
Another source of scatter may stem from the RFT fitting. Since the final contribution of tangential
body motion to the lateral force is smaller than the contribution from normal body motion, our fits
will be more sensitive to determining cN precisely.

Interestingly, the predictions of Katz et al. involve a monotonically increasing value of K upon
increasing the confinement within the channel, in contrast with the case of the single boundary.
In our experiments, we find that for very large channels (at h/rw = 35 ± 6), K = 1.8 ± 0.7,
which is in agreement with the results for an essentially unbounded fluid (i.e., far from the single
plane boundary). On the other hand, for very narrow channels (at h/rw = 1.3 ± 0.1), we find K
= 5 ± 2. Thus, when confined between two plates there is an increase in K for highly confined
worms, whereas we obtain a constant value of K for an undulatory swimmer near a single plane
boundary.
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C. Gait modulation

For very wide channels, or at large distances from a single boundary, the same swimming is
seen as for an unbounded fluid.32 However, as the worm is placed into channels of high confinement,
there is a significant difference in the swimming of the worm (see movies in the supplementary
material (Multimedia view)50). Most noticeably, the amplitude of the motion is greatly reduced
compared to that seen in an unbounded fluid. Time-lapses of the nematode’s centerline over one
period of motion are shown in Figs. 5(a) and 5(b), for h/rw = 28 ± 4 and h/rw = 1.1 ± 0.3. For the
highly confined worm, the shape of the worm’s body is more akin to a sinusoid about the swimming
axis, and more similar to the free swimming waveform of C. elegans.35, 36 In Fig. 5(c), the lateral
position of the head of the worm (xhead) is plotted as a function of time for the worm in low and high
channel confinements, corresponding to Figs. 5(a) and 5(b). As seen, the amplitude of the worm’s
head motion is much larger when it is not confined (red open circle markers) compared to under
high confinement (blue filled circle markers). In addition, the confined worm is seen to swim with a
reduced frequency.

To quantify the change of amplitude discussed above, experienced by the worm as it modulates
its gait, we measure the mean angular amplitude, Aθ , which is defined as half the angle swept out
by the worm’s head during swimming. As seen in Figs. 5(a) and 5(b), the angular amplitude is
significantly smaller for the confined worm. Since it is known that C. elegans experiences a gait
modulation in response to increasing environmental resistance (such as increasing viscosity), it is not
surprising that the swimming form will change with increasing values of cN and cT. In our system,
we quantify the amount of environmental resistance by the sum cN + cT, which increases by a factor
of 20 from an unbounded fluid to the most confined worms studied (analogous to a 20-fold increase
in viscosity from that of a buffer, as seen in Eq. (1)). The angular amplitude is plotted as a function
of cN + cT in Fig. 5(d) for worms swimming in channel confinement as well as in the presence

FIG. 5. Time-lapses of the worm’s centerline over one swimming period for (a) very low (h/rw = 28 ± 4) and (b) very
high (h/rw = 1.1 ± 0.3) confinement, in which only every other centerline in the image sequence is plotted. The colourbar
indicates the temporal progression along the single period (from t = 0 to t = T) and the scalebar represents 200 μm.
(c) The lateral position of the head (xhead) of the worm in high and low channel confinement as a function of time for several
swimming periods. The red open circles and the blue filled circles correspond to the worms in (a) and (b). (d) The angular
amplitude as a function of cN + cT for young adult and adult worms swimming near a single boundary (blue squares) and in
channel confinement (red circles).
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of a single boundary. The angular amplitude decreases as a function of cN + cT. This decrease is
most rapid for cN + cT � 30. In addition, since the worm simply modulates its gait in response to
changing resistance, the results for the single boundary and for the channel confinement fall on the
same curve. Included in this gait modulation is a slight decrease in the swimming frequency from
2.4 ± 0.2 Hz for an unbounded fluid,32 to 2.07 ± 0.13 Hz for cN + cT = 108 ± 9.

The significant difference in swimming amplitude that we measure by confining the worm
has not been seen over the same range of increasing environmental resistance in studies of gait
modulation in which the fluid viscosity has been changed.35, 36 In these studies, the amplitude
of free swimming worms was found to remain relatively constant over a 20-fold increase in the
viscosity from that of a buffer. However, the fact that our worm is tethered at the tail is a crucial
difference, and the swimming amplitude we measure in the unbounded buffer differs from that of
a free swimming worm. Therefore, it is not surprising that some kinematic parameters, such as the
amplitude, may exhibit different behaviours in the gait modulation of our system. Studies on gait
modulation in C. elegans measure a decrease in the swimming frequency of roughly 10%–20% from
that in a buffer,35, 36 which is consistent with our findings. In studying gait modulation by changing
the viscosity, the chemical composition of the fluid is altered, which may have implications on the
behaviour of the worm. In addition, the osmotic pressure of the solution is changed, which may
upset the ionic balance of the nematode. Therefore, our results indicate that confinement near solid
boundaries is another complimentary way in which gait modulation can be investigated without
changing composition of the fluid.

IV. SUMMARY AND CONCLUSIONS

In this study, we present an experimental investigation into drag forces acting on an undulatory
microswimmer in proximity to solid boundaries. We employ micropipette deflection to directly
measure the viscous forces during the swimming of the model organism C. elegans in a plane
parallel to nearby boundaries. This represents the first direct force measurement of a microswimmer
in which boundary effects have been investigated. We witness large increases in the lateral and
propulsive forces of the worm as it approaches a single boundary. Using kinematic data from the
high speed image sequences of the swimming in conjunction with our force measurements, we
are able to extract the normal and tangential drag coefficients for the worm. The drag coefficients
decrease as a function of the distance away from the solid boundary. Despite the study being limited
in its applicability to our experimental system, the predictions of Katz et al. capture the general
trends of cN and cT near the boundary, but with some deviations. Lighthill’s results for cN and cT are
successful at large separations from the boundary. We find K = cN/cT = 1.5 ± 0.1(5) at all distances
from the boundary. This is an interesting result, as it suggests that a propulsive force increase of an
undulator swimming in plane with a nearby boundary cannot be attributed to a changing ratio of the
drag coefficients.

For confinement between two planar boundaries, the drag coefficients increase by a factor of
20 for the highest confinements compared to in an unbounded fluid, and we observe an increase in
K for high confinements. In this geometry, Lighthill’s results are still in agreement with our data
for very large channels. Our results suggest that the analytical results for the drag coefficients in
proximity to a boundary are not entirely suitable for this system, and require reconsideration by
further theoretical studies. For both channel and single boundary geometries, as the drag coefficients
increase, the nematode is seen to undergo a gait modulation characterized by a large decrease in the
amplitude of its swimming. This gait modulation is independent of whether the worm is swimming
near one or two boundaries, and is only a function of the drag coefficients it is experiencing. These
results offer a promising new means of investigating the gait modulation of C. elegans by confining
the worm, rather than changing the viscosity and hence altering the chemical composition of the
fluid.
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S1. RFT FITS

From the high-speed image sequence of the swimming
worms, we can compute body velocities over time. From
these velocities, along with the equations of RFT (Eq. 1
in the main text), we can generate theoretical predictions
of the viscous forces that can be fit to the experimental
data with three parameters. The first two free parame-
ters are the drag coefficients c

N
and c

T
. The third free

parameter is a horizontal phase shift between the exper-
imental and theoretical curves, which we find is always
smaller than T/20. In the case of the worm swimming
near a single boundary, a pipette with an L-shaped bend
is used, which implies that we can measure both lateral
and propulsive forces. As such, the RFT fits can be per-
formed simultaneously on the worm’s lateral and propul-
sive force curves, as exemplified in Fig. S1. In the figure,
the experimental lateral and propulsive forces are plotted
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FIG. S1. (a) Lateral (FL) and (b) propulsive (FP) force curves
(blue circle markers) for a young adult worm swimming near
a single boundary (h/rw ∼ 2.8) plotted as a function of time.
The red curves correspond to simultaneous RFT fits to the
lateral and propulsive force data. In this case, cN = 7.8 ± 1.2
and cT = 5.1 ± 0.8.

as a function of time. The fitted RFT prediction is plot-

ted in Fig. S1 as well, and as seen, captures the data very
well. In the case of the worm in channel confinement, a
completely straight pipette is used which can only mea-
sure lateral forces. For this reason, the RFT fit is only
performed on the lateral force curve, as seen in Fig. S2.
In the figure, the experimental lateral force is plotted as
a function of time along with the RFT prediction. The
RFT fit successfully captures the data.

The RFT curves are only evaluated at the same points
in time as the data is acquired. The error in the RFT
curves is estimated to be roughly 5%.
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FIG. S2. (a) Lateral force curve (blue circle markers) for a
young adult worm confined between two planar boundaries
(h/rw ∼ 1.2) plotted as a function of time. The red curve
corresponds to an RFT fit to the data. In this case, cN =
99 ± 20 and cT = 17 ± 3.

S2. VIDEOS

In this section, we include videos of the typical swim-
ming of a young adult with low and high confine-
ment. In Fig. S3, we show a still image from the video
“Fig S3.mpg”, in which the worm is swimming in a chan-
nel with low confinement (h/rw ∼ 35). In Fig. S4, we
show a still image from the video “Fig S4.mpg”, in which
the worm is swimming in a channel in which it is very
confined (h/rw ∼ 1.5). The angular amplitude of the
highly confined worm is significantly smaller. Further-
more, due to the increase in drag coefficients, the pipette
deflections (and, hence, lateral forces) of the highly con-
fined worm are much larger.



2

FIG. S3. Still image from the video “Fig S3.mpg” of a swim-
ming worm in a channel with very low confinement. The
swimming is akin to that in an unbounded fluid. The scale
bar represents 200 µm.

FIG. S4. Still image from the video “Fig S4.mpg” of a swim-
ming worm in a channel with very high confinement. The
swimming is characterized by a much smaller angular ampli-
tude than seen in Fig. S3. The diagonal lines near the bottom
are the edges of the internal channel as described in Sec. II
B. The majority of the pipette is located in the larger cham-
ber. Since the drag coefficients are increased compared to
at low confinement, the pipette deflections (and, hence, lat-
eral forces) are much larger than in Fig. S3. The scale bar
represents 200 µm.
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The undulatory swimming dynamics of the millimetric nematode Caenorhabditis elegans was investigated in
fluids with different viscosities. The technique of micropipette deflection was used to directly measure the
drag forces experienced by the swimming worm in both the lateral and propulsive direction. Gait modulation
due to increasing viscosity in our tethered system was found to be qualitatively similar to that of freely
swimming worms. Resistive force theory was used to determine the drag coefficients of the slender swimmer,
and the experimental values were compared to the classical theories of Lighthill as well as Gray and Hancock.
The gait modulation was shown to be independent of how the environmental resistance is changed, indicating
the relevance of only the fluid resistance on the swimming kinematics and dynamics of the nematode.

PACS numbers: 47.63.Gd, 47.15.G-, 87.19.ru
Keywords: Locomotion, Gait modulation, Microswimming, C. elegans

I. INTRODUCTION

Undulatory locomotion is used by crawlers and swim-
mers, such as snakes and sperm, at length scales spanning
almost seven orders of magnitude. In this form of loco-
motion, the organism moves by propagating waves down
its body in an agile and efficient manner. In nature, these
slender creatures are forced to adapt to complex environ-
ments, such as liquid, sand, and mud1. To accomplish
this versatility, the organism has two seemingly distinct
gaits: crawling on high-friction surfaces2–4 or through
highly viscous fluids5, and swimming when immersed in
water6 or sand7,8. Understanding the kinematics and dy-
namics behind the gait transition is an important chal-
lenge, and would contribute towards a more general com-
prehension of the motion of crawlers and swimmers as
seen in nature.

The transition between swimming and crawling has
been extensively studied with the model organism C.
elegans9–12: a millimetric nematode known for its ele-
gant slithering motion13. Interestingly, it has been shown
that, instead of transitioning between two distinct gaits,
the small worm modulates one single gait continuously
as the external resistance is changed9,11. Several exper-
imental studies have probed the swimming kinematics
of C. elegans in different viscosities, finding a decrease
in the swimming speed, frequency, and wavelength with
an increased fluid viscosity5,14,15. Furthermore, in the
experimental approach by Yuan, et al. , the gait modu-
lation of several worms trapped in a channel was stud-
ied, and steric confinement interactions were shown to
induce gait synchronization between the swimmers16. In

a)Electronic mail: dalnoki@mcmaster.ca

recent work, the same group studied the kinematics of
C. elegans nematodes in the presence of fluid flow17. By
introducing a simple micropipette-based technique, we
have recently probed the material properties18,19, swim-
ming and crawling dynamics20,21, as well as the swim-
ming interactions22 of C. elegans. In addition, we have
investigated the swimming dynamics and gait modula-
tion of the nematode close to one and two solid bound-
aries, where the viscous drag forces were increased by
decreasing the distance to the interface23. We found the
amplitude and frequency of the worm’s swimming to de-
crease in response to proximity to the boundary.

Given its small size, C. elegans has a Reynolds num-
ber (Re) slightly less than one in water-like liquids20.
By studying the decay of fluid velocities away from a
swimming nematode in different viscosities, the worm has
been shown to indeed behave like a low Re swimmer, or
“microswimmer”15. Microswimmers live in a viscous en-
vironment, where inertial effects can be neglected. If,
furthermore, assuming no long-ranged hydrodynamic in-
teractions between different body parts of the swimmers,
the drag forces they experience as they move can be mod-
elled with restive force theory (RFT)24,25. According to
RFT, the drag forces on a short slender body segment,
dl, immersed in a fluid can be related to the segment
velocity, vi, as

dFT = −CTvTdl, and dFN = −CNvNdl, (1)

where Ci denotes the extrinsic drag coefficient (in units
of Pa·s) in the normal (i = N) and tangential (i = T)
direction along the body. By integrating Eq. (1) along
the entire body length, the total drag forces FN and FT

experienced by the swimmer in the normal and tangential
directions can be calculated.

We define the extrinsic drag coefficients as Ci = ciη,
where ci are the intrinsic drag coefficients of the body



2

and η is the fluid viscosity. In order to attain net propul-
sion, an anisotropy in the environmental resistance is
required24. This asymmetry is quantified by the ratio
of the drag coefficients K = cN/cT. If K = 1, no net
propulsion is possible for an undulating body in the low
Re regime. If K > 1, net propulsion will occur in the op-
posite direction to the waves propagated down the slen-
der body, whereas the converse is true for K < 1. Both
experiments and theory have determined K ≈ 1.5 for C.
elegans15,26,27, but only recently have the two intrinsic
drag coefficients been directly measured as cN = 5.1±0.3
and cT = 3.4± 0.2 in a water-like buffer20.

The magnitude of the two different intrinsic drag co-
efficients of an undulating body have been theoretically
estimated by Gray and Hancock as

cN,G&H =
4π

ln( 2λ
R ) + 1

2

, and cT,G&H =
2π

ln( 2λ
R )− 1

2

, (2)

where R is the radius of the cylindrical body and λ is
the swimming wavelength6,26,28. Lighthill later improved
on this derivation by taking into account hydrodynamic
interactions between different segments along the slender
body, giving

cN,L =
4π

ln( 0.18Λ
R ) + 1

2

, and cT,L =
2π

ln( 0.18Λ
R )

, (3)

where Λ is the swimming wavelength as measured along
the body26. This refined model of Lighthill has been
shown to be in excellent agreement with experiments in
a buffer with the same viscosity as water20. In both of
the above described models, a change in the swimming
wavelength will result in a small change in the drag co-
efficients.

The drag coefficients of Eqs. (2) and (3) are derived
in the context of an infinite swimmer propagating a sinu-
soidal wave without a small amplitude restriction. How-
ever, the crucial difference arises from the way in which
the body is divided into segments of uniform force per
unit length. Gray and Hancock equate one wavelength to
a segment, which implies that the entire wavelength expe-
riences a constant force. Although this violates an impor-
tant assumption that this constant force region should be
small in comparison to λ, it produced better agreement
between experiment and theory. Lighthill refined the ex-
pressions of Gray and Hancock by choosing a smaller size
for the region of uniform force, and in doing so, produced
the resistance coefficients given by Eq. (3). To date, ex-
perimental results have been compared to the predictions
of both of these models with varying success20,23,29–32.
Therefore, it is important to continuously test both of
these theories to better understand within which circum-
stance each prediction is more successful and applicable.

In this work, we have investigated the swimming dy-
namics of C. elegans in fluids of different viscosity. By
holding the worm by its tail with a force-calibrated mi-
cropipette, the drag forces experienced by the worm in
the lateral (side to side) and propulsive (forward and

backwards) direction were directly measured. Both the
kinematics and dynamics of the tail-tethered microswim-
mer were analyzed. Using resistive force theory, the drag
coefficients were measured and compared to the theoret-
ical models of Lighthill as well as Gray and Hancock.
To the best of our knowledge, no previous experimen-
tal work has investigated how the intrinsic drag coeffi-
cients of C. elegans change as the viscosity of the fluid
is increased and the swimmer is forced to modulate its
gait. We observe a gait modulation induced transition
from one model to the other as the viscosity is increased.
Furthermore, we show that the gait modulation is inde-
pendent of the means by which the drag of the system is
increased.

II. EXPERIMENTAL METHODS

A. Micropipette deflection

Micropipette deflection was used to investigate the
swimming dynamics of single C. elegans nematodes in
fluids with increasing viscosities. In this technique, the
deflection of a long (1 − 3 cm) and thin (∼ 20 µm)
microcapillary is calibrated and used to measure forces
with sub-nanonewton resolution. To manufacture the
force probes, micropipettes were stretched from glass
capillaries with outer and inner diameters of 1 and 0.58
mm (World Precision Instruments) with a pipette puller
(Narishige Group PN-30). The end of the pipettes were
cut open by looping the capillaries around a hot wire
and then quickly quenching the system by turning off
the voltage applied across the wire. This rapid cooling
causes the glass to solidify and contract, resulting in a
sharp cut of the pipette end. The shaping of the pipettes
was performed by bending the capillaries over a similar
hot wire. The pipettes were calibrated by pushing out
a small droplet of water to hang on the outside of the
capillary. The pipette and droplet could be imaged with
optical microscopy. From the images, the droplet volume,
and hence the mass, could be obtained as a function of
the pipette deflection, yielding the spring constant. The
spring constants of the pipettes used in this work were
in the range of 4.6− 8.9 nN/µm and the force–deflection
was entirely linear in the range used.

To study the swimming dynamics of the worms in
both the lateral and propulsive directions, the pipettes
were shaped as shown in the schematic illustration of
Fig. 1(a). Two short (∼ 200 µm), orthogonal segments
of the pipette end were bent in the plane of the swim-
ming motion of the worm. The rest of the pipette was
angled at 90 degrees out of the swimming plane to act as
a force-sensing cantilever. Here it is important to note
that the delflection of the two shorter segments is neg-
ligible in comparison to the long cantilever-part of the
pipette. In our swimming experiments, the micropipette
was mounted on an xyz-translational stage from above,
and placed within a cylindrical chamber, which was filled
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FIG. 1. (a) Schematic diagram (not to scale) of the experi-
mental setup with the force-calibrated micropipette mounted
in a cylindrical container. (b) Optical microscopy image of
a C. elegans nematode caught by its tail. The different lines
show a time-lapse of the centreline over one swimming cycle.
As the pipette deflects in the two orthogonal directions, the
lateral (FL) and propulsive (FP) drag forces experienced by
the nematode can be directly measured.

with the fluid in which the worms swim. The fluid filled
chamber was placed upon the xy translation stage of the
inverted microscope so that the region of interest within
the chamber as well as the micropipette could always be
brought into the field of view.

Before an experiment, tens of worms were picked into
a chamber filled with M9 buffer. A nematode was then
caught by its tail by applying suction, and left to swim
as shown by the optical microscopy image in Figure 1(b).
After the measurement in the regular buffer, the same
worm, still held by the pipette, was carefully transferred
to a new chamber containing a fluid with a different vis-
cosity. The transfer to new chambers was continued un-
til all desired viscosities had been probed. After this,
the worm was let go and the same procedure was then
repeated by catching a new nematode in the initial cham-
ber. In this way, all higher-viscosity experiments could
be compared to the reference swimming behaviour of the
same worm in the water-like buffer. We note that in sam-
pling different viscosity environments, care was taken so
as to change the order in which the worms were exposed
to the different chambers (not simply from lowest to high-
est) in order to avoid biases.

B. Image analysis

During the experiment, the swimming motion of the
worm was followed at 56 fps with a CCD camera (Allied
Vision Technologies, GT1660). MATLAB was then used
as described in Refs.20,23 to track the motion of the entire
nematode body and derive swimming kinematics quan-
tities such as frequency, amplitude, and wavelength. By
monitoring the motion of the two orthogonal pipette seg-
ments, the lateral (FL) and propulsive (FP) drag forces
experienced by the nematode were directly measured.

w

FIG. 2. Viscosity of PEO dissolved in M9 as a function of
polymer mass concentration. The line shows the best fit to the
data. The error bars correspond to the standard deviation.
In the inset, the viscosity is plotted as a function of shear rate
(γ̇) for the five different concentrations.

Using the image analysis data, the instantaneous ve-
locity of each segment of the worm’s body was calculated.
From Eq. (1), we compute the forces acting normal and
tangential to this individual body segment, which is then
further deconstructed into a lateral and propulsive com-
ponent. Finally, we numerically integrate each body seg-
ment’s contribution to find the total lateral and propul-
sive forces acting on the worm.

C. Viscous solutions

Swimming experiments were performed in M9 solu-
tions with different viscosities. M9 is the standard buffer
used for C. elegans and consists of various dilute salts re-
quired to maintain a suitable osmotic pressure to sustain
life13. Higher viscosity solutions were achieved by mix-
ing polyethylene oxide (PEO, 10 kg/mol, Sigma-Aldrich)
with M9. The molecular weight and polymer combina-
tion was selected to ensure a Newtonian fluid behaviour
over the range of shear rates relevant to the swimming
of the worms as will be shown below. Nematodes were
not negatively affected below a PEO mass concentration
of 17%. At higher concentrations, worms were seen to
either die or stop moving. All experiments in this work
were therefore performed at concentrations below 15%.

To obtain fluid viscosities, rheology measurements
(MCR301, Anton Paar USA Inc, USA) were performed
on five different solutions (mass concentrations of 0%,
1%, 5%, 10%, and 15% PEO in M9). The result is shown
in Fig. 2, where the viscosity is plotted as a function of
PEO mass concentration (w). The best fit to the data is
η(w) = ηH2O + 0.099w1.8 mPa·s, where ηH2O = 1 mPa·s
is the viscosity of water at 20◦C. This equation was used
to calculate all viscosities in this work.

As shown in the inset of Fig. 2, the rheology experi-
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FIG. 3. Time-lapse images (top) of a young adult worm swimming in fluid with viscosities of (a) 1, (b) 2.8, and (c) 7.2 mPa·s.
The scale bar represents 200 µm. The bottom graphs show the curvature plots for the worms in the top images over several
swimming cycles. The body coordinate is defined as the distance along the worm body, where the head is represented by 0 and
the tail (portion closest to the pipette) by 1.

ments were performed at shear rates (γ̇) between 0 and
100 s−1 to rule out any shear-thinning flow caused by the
dissolved polymers. Since C. elegans has been shown14,33

to use a shear rate within the range of 10 − 20 s−1, our
polymer solutions can safely be assumed to be Newto-
nian.

D. C. elegans maintenance

Wild-type nematodes (N2) were acquired from the
Caenorhabditis Genetics Center and were cultivated on
Escherichia coli (OP50) nematode growth media (NGM)
plates at 20◦C according to standard methods34. Only
young adult worms were used in the experiments. All
chemicals were sourced from Sigma-Aldrich.

III. RESULTS AND DISCUSSION

In this section, the kinematics of the tail-tethered
worms will first be quantified as the viscosity of the sur-
rounding fluid is increased. Then, the swimming dynam-
ics of the nematodes will be investigated, and the result-
ing drag coefficients will be compared to the theoretical
estimates of Lighthill as well as Gray and Hancock. Fi-
nally, the power output will be calculated and the gait
modulation will be compared to a previously investigated
system wherein the drag forces were increased by intro-
ducing nearby solid boundaries23.

A. Swimming kinematics

The change in the swimming kinematics of C. elegans
in increased viscosities is visualized in Fig. 3, where a
time-lapse of optical microscopy images of a worm is
shown over one swimming cycle (see the Supplementary
Information for movies from the same experiments). A
clear decrease in the swimming amplitude (or beating
amplitude) is seen. Along the bottom panel of the same
figure, the curvature plots from the same experiments
as the time-lapse images are shown. In these plots, the
swimming curvature is illustrated as a function of time
and body coordinate, which defines the position of each
segment of the worm’s body (head = 0, portion nearest
to pipette = 1). To best understand these plots, one
should first consider a horizontal line through the graph:
the variation of the curvature along this line describes
the shape of the worm at that specific point in time. On
the other hand, the curvature changes along a vertical
line describe the motion of a specific body segment as a
function of time. From the curvature plots in Fig. 3, the
swimming frequency can be seen to decrease slightly with
viscosity (greater temporal spacing between lines of equal
curvature), whereas the curvature itself increases (greater
range in the intensity associated with the curvature). In
Fig. 4(a), the change in swimming frequency compared
to that of the M9 buffer (∆f = fM9 − fη, where fM9

is the swimming frequency of the same worm in M9) is
plotted as a function of viscosity. The average swimming
frequency in M9 was measured as fM9,ave = 2.0 ± 0.2.
The frequency then decreased by around 0.2 Hz between
1 and 4 mPa·s, to finally remain stable as the viscosity
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FIG. 4. (a) Change in frequency (∆f = fM9 − fη), (b) angular amplitude (defined as half the average swimming angle, 2Aθ,
shown in the inset), (c) length-normalized wavelength as measured along the worm body, and (d) the Reynolds number for young
adult C. elegans nematodes as a function of viscosity. The error bars correspond to the standard deviations from measurements
on several swimming cycles of the same worm. The solid line in (c) is the best linear fit to the data: Λ/R = −(1∓0.4)η+(39±8),
and the dashed lines show the error envelope.

is further increased. The same change in swimming fre-
quency has been observed for free-swimming worms over
the same viscosity range14.

As is clear from the time-lapse images in Fig. 3, the
swimming amplitude decreases significantly as the viscos-
ity is increased. In Fig. 4(b), the angular amplitude (Aθ)
is plotted as a function of viscosity, where the amplitude
is defined as half the average total angle swept out by
the worm’s head in one complete cycle, as shown in the
inset. The angular amplitude decreases from around 60◦

to 15◦ as the worms modulate their gaits in the different
viscosities. The angular amplitude is a convenient metric
for the change in the gait of the worm. As will be seen
in Section III C, this gait modulation is crucial for the
swimmer to maintain its power output at a reasonable
level.

To calculate the swimming wavelength of the worm,
the curvature plots (exemplified in Fig. 3) were used. By
fitting lines to the diagonal high and low curvature re-
gions (i.e., the solid bands) in the graphs, the inverse of
the wave speed, v, of the undulatory swimmer can be
obtained from the slope33. The wavelength along the
worm body (i.e., the arc length) can then be calculated
as Λ = v/f , where f is the swimming frequency. In
Fig. 4(c), this wavelength has been normalized by the
radius (R) of the worm, and is plotted as a function of
viscosity. The solid line in the graph shows the best linear
fit to the data, which will be used in theoretical calcula-
tions in Section III B. If we normalize the wavelength by
the length of the worm body outside the pipette (L), we
find that it decreases from around Λ/L = 1.2 to 0.9 in
our viscosity range. Due to the tethering of the worms,
the swimming wavelength is around 20 % lower than
for free-swimming worms, but decreases similarly with
viscosity5. To measure the actual swimming wavelength,
λ (as normally defined for a sinusoidal function, rather
than the arc-length Λ), the worm body was modelled as
a sine wave at several different points in time. The typ-
ical sine wave amplitudes were then approximated and
used together with the wavelength measured along the

worm body (Λ) to estimate the ordinary wavelength as
λ = (0.80±0.07)Λ. The uncertainty stems from the tem-
poral variations in the shape of the same worm, variations
between different worms, as well as as the precision of the
sine wave fit to the worm centreline.

To classify as a microswimmer, the Reynolds num-
ber of the organism needs to be less than unity. The
Reynolds number is given by Re = ρlU/η, where ρ and
η are the density and dynamic viscosity of the fluid, l
is the characteristic length scale, and U is the typical
speed. For the case of C. elegans in our tethered system,
U ∼ 4fL sinAθ, where f is the swimming frequency, L
is the worm length outside the pipette, and Aθ is the an-
gular amplitude, as defined in the inset of Fig. 4(b). The
typical length scale in our system can be taken to be the
worm radius R. The density (in units of kg/m3) of the
PEO solutions can be calculated using the empirical for-
mula ρ = 997.07+174.41w/100 (at T = 298 K), where w
is the percent mass concentration of the polymer and the
solvent M9 is approximated as water35. The resulting
Re is plotted as a function of viscosity in Fig. 4(d) and
is shown to decrease by about two orders of magnitude
from around 0.15 in M9 to 0.002 in the highest viscosity
fluid (∼ 13 mPa·s). The low Reynolds number at high
viscosities suggests that we can safely describe the swim-
ming of C. elegans in these media with low Reynolds
number physics. In addition, previous experiments have
demonstrated the success of the low Reynolds number
model RFT even in M9, where the Reynolds number is
large enough that one could worry about the presence of
inertial effects20,23.

All data points in Fig. 4 are an average over several
swimming cycles that are representative of the worm’s
swimming in general, as observed for several minutes.
Each data point corresponds to a single worm.
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B. Swimming dynamics

By following the deflection of the micropipette in both
orthogonal directions as illustrated in Fig. 1(b), the lat-
eral and propulsive drag forces experienced by the swim-
ming worm were directly measured. In Fig. 5, exam-
ples of force versus time data for both the lateral (a–b)
and propulsive (c–d) directions are shown in a low (left
panels) and high (right panels) viscosity fluid. As has
been noted in previous work on the swimming dynam-
ics of C. elegans in M920, the lateral force is typically
twice as large as the propulsive. We see here that this
trend persists for the range of viscosities studied. The
maximum and minimum force peaks of the lateral force
data in Fig. 5(a) and (b) occur when the worm’s body
is moving with the highest speed to the right (max) or
left (min), whereas the small shoulders on the peaks of
the lateral force data in M9 (Fig. 5(a)) arise when the
worm’s head turns around and starts moving in the oppo-
site direction. As expected, the drag forces increase when
the worm is moved to a higher viscosity fluid (Fig. 5(b)
and (d)). In M9, we measure a mean propulsive force of
〈FP〉 = 0.3 ± 0.1 nN20, whereas this quantity increases
to 〈FP〉 = 3 ± 2 nN in fluids with the highest viscosities
η = 10± 3 mPa·s. Furthermore, the shoulders in the lat-
eral data disappear as the swimming amplitude decreases
and the swimming motion becomes more sinusoidal, as
shown in the time-lapse images of Fig. 3. The worm
transitions from a high-amplitude swimming in the low
viscosity M9 buffer, to a more crawling-like wave form in
a high viscosity fluid.

As is shown by the solid lines in the graphs of Fig. 5,
resistive force theory is successfully fit to the experimen-
tal data in both orthogonal directions. As was discussed
in our previous work in M920, the success of RFT in cap-
turing the drag force data of C. elegans in a water-like
buffer is not to be taken for granted, as the young adult
nematode has a Re = 0.15, i.e., not very much lower than
unity. Therefore, the excellent agreement between RFT
and our data indicates that inertial effects can be ne-
glected even for the lowest viscosity studied here. As the
Re decreases in higher viscosity fluids, as was shown in
Fig. 4(d), the nematode transitions into a more conven-
tional microswimming regime where only viscous forces
are relevant.

The extrinsic drag coefficients are fitting parameters
for the RFT fits in Fig. 5. Here we fix the ratio,
K = CN/CT = 1.5, to further constrain the fits. (See
Fig. S1 in the Supplementary Information for a graph of
CN vs. CT obtained with both drag coefficients as free
parameters. The slope in the graph is found to be in
good agreement with K = 1.5.) Furthermore, a horizon-
tal shift was necessary to make up for a small phase shift
(less than T/20, where T is the swimming period) be-
tween the theory and experimental data20. The extrinsic
drag coefficients were finally divided by the fluid viscos-
ity, and the resulting intrinsic normal drag coefficient is
plotted as a function of viscosity in Fig. 6. Since we hold

F
F

FIG. 5. (a–b) Lateral and (c–d) propulsive force as a function
of time in M9 (left) and a high viscosity fluid (right). The
resistive force theory fits are shown with a solid line.

K constant, we do not show the graph of cT vs. η here,
as the same qualitative trends are seen.

To compare our findings to the theoretical models of
Lighthill (Eq. (3)) as well as Gray and Hancock (Eq. (2)),
the two different swimming wavelengths (λ and Λ) were
first measured as described in Section III A, and normal-
ized with the worm radius (R). These values were entered
into the equations to calculate the theoretical drag coeffi-
cients, and are plotted as crosses (Lighthill) and squares
(Gray and Hancock) in Fig. 6. A linear fit was also made
to the Λ/R vs. η data (see Fig. 4(c)), and the resulting
empirical function (Λ/R = (−1.0∓ 0.4)η+ (39± 8)) was
substituted into the drag coefficient equations, producing
the solid lines in Fig. 6. The shaded areas in the graph
represent the error regions. Both theoretical models pre-
dict a slight increase in the intrinsic drag coefficients as
the fluid viscosity is increased. An interesting feature of
the results is that there is an unexpected decrease in our
experimentally determined intrinsic drag coefficients as
the external resistance is increased. Moreover, there ap-
pears to be a transition between the excellent agreement
with the theoretical results of Lighthill at low viscosities,
to full agreement with the theory of Gray and Hancock
as the viscosity is increased. This significant transition
could act to alter the functional dependence of the drag
coefficients on the swimming wavelength. The drag co-
efficients might start to increase with the prediction of
Gray and Hancock as the viscosity is increased beyond
what was probed in this work.

The transition between the two models is likely due to
the gait modulation of the worm. At viscosities above
6 mPa·s, the experimental data follows the model devel-
oped by Gray and Hancock.

In this regime, the worm swimming is more reminiscent
of conventional undulatory locomotion of free-swimming
worms and the body is less curved onto itself. The pre-
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FIG. 6. The intrinsic normal drag coefficient as a function
of fluid viscosity. The error bars correspond to the precision
of the RFT fits and the error in the spring constant of the
pipettes. The cross and square markers represent the theoret-
ical predictions of Lighthill (Eq. (3)) and Gray and Hancock
(“G&H”, Eq. (2)) evaluated at the wavelengths and viscosities
measured for worms as shown in Fig. 4(c). By substituting
the empirical function from the linear fit in Fig. 4(c) into the
drag coefficient equations, the solid lines in the graph were
obtained. The shaded areas represent the error regions. A
transition occurs between the two theories as the viscosity is
increased.

dictions of Gray and Hancock (Eq. (2)) are derived in the
context of a somewhat coarse grained model. However,
their choice of setting the constant force region equal to
the wavelength was justified by demonstrating that such
a choice produced better agreement with experiments
done on freely swimming nematodes. It is, therefore,
reasonable that this model succeeds at high viscosities,
where the gait-modulating worm has decreased its swim-
ming amplitude significantly, and the worm’s motion is
more akin to that of a freely swimming worm. On the
contrary, Lighthill’s refined estimate of the drag coeffi-
cients is in excellent agreement with our experimental
data in the water-like buffer. In these low-viscosity me-
dia, the worm’s amplitude is larger and the body is more
curved onto itself at times. Therefore, the agreement be-
tween Lighthill’s theory and our results in this regime
might be linked to the fact that Lighthill’s theory bet-
ter accounts for hydrodynamic interactions between body
segments. To better understand why this transition oc-
curs would require further theoretical or computational
studies specifically considering the swimming within our
tail-tethered geometry.

C. Gait modulation

The gait modulation of C. elegans occurs to maintain
its propulsive thrust whilst sustaining a reasonable power
output as the external resistance changes5. We have in-
vestigated the total power output of the worm, defined

as the sum of the viscous power (Pη) exerted on the fluid
and the elastic power (Pe) exerted on the bending of the
worm body, giving Ptot = Pη + Pe. To calculate the
mean viscous power, Pη, we use a similar procedure as
for calculating the RFT curves. First, we compute the in-
finitesimal power expended in overcoming viscous forces
for each body segment dFTvT + dFNvN, where dFN and
dFT are given in Eq. (1). Subsequently, this quantity is
numerically integrated over the entire body of the worm
to find the total power. The mean bending power was
calculated as

Pe =
EILf〈κ2〉

2
, (4)

where L is the worm length outside of the pipette, 〈κ2〉
is the mean square body curvature, f is the swimming
frequency, and EI = (1.2 ± 0.7) · 10−14 N · m2 is the
bending stiffness for young adult worms obtained from di-
rect bending measurements performed with micropipette
deflection18.

Calculating the power components as above, we find
that both components are constant within experimental
error over the viscosity range probed in this work (see
Fig. S5 in the Supplementary Information for a graph
of the mean viscous and elastic power as a function of
viscosity). The average for all young adult worms is
Pη = 0.41 ± 0.15 nW and Pe = 0.14 ± 0.03 nW, which
sums up to a total power output of Ptot = 0.55 ± 0.18
nW. The elastic bending power calculated here deviates
from that calculated by Fang-Yen et al.5 (Pe ≈ 4 nW)
due to a higher estimation of the bending stiffness in
their work (EI = (9.5± 1.0) · 10−14 Nm2). The constant
power output, as has also been reported by Fang-Yen,
et al., demonstrates that the worm actively changes its
swimming motion to maintain the same level of energy
consumption in different environments. This ability is
thought to be crucial for the nematode to move through
and survive in continuously changing surroundings of,
e.g., water, mud, and soil9. If not capable of modulating
its gait when moving into a region of increased resistance,
the nematode would have to increase its power output to
maintain the same swimming or crawling waveform, and
in that way risk exhaustion and even starvation.

In previous studies, the kinematics of C. elegans has
been investigated by chemically altering the surrounding
fluid, making it more viscous5,14,15,33, viscoelastic36, or
shear-thinning37. In our previous work23, we enhanced
the drag forces experienced by tail-tethered swimming
nematodes by holding them close to one solid boundary,
or confined between two surfaces. In Fig. 7, the angular
amplitude measured in that work (defined in the same
way as shown in the inset of Fig. 4(b)) is plotted as a
function of the sum of the two extrinsic drag coefficients,
CN + CT = η(cN + cT). In the same graph, the results
of our present study are plotted (circles). Evidently, the
gait modulation of the worm is identical within a chemi-
cally altered fluid compared with a fluid where the drag
forces have been enhanced by changing the physical ge-
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FIG. 7. Angular amplitude (circles) as a function of the sum
of the extrinsic drag coefficients. The error bars correspond to
the standard deviations from measurements on several swim-
ming cycles of the same worm. The dots are data from Schul-
man et al.23, where one and two solid boundaries were brought
close to the swimming nematode to enhance the drag expe-
rienced by the worm. The solid line is included to guide the
eye.

ometry of the system. The kinematics of the nematode is,
in other words, affected solely by the change in its extrin-
sic drag coefficients. By using different mutants, future
studies could investigate the effect of, e.g., mechanosen-
sation on the gait modulation of C. elegans to probe
the biological reasons governing the change in swimming
kinematics with increased external resistance.

IV. SUMMARY AND CONCLUSIONS

Here we have used the technique of micropipette de-
flection to probe the undulatory swimming dynamics of
the nematode C. elegans in fluids with different viscosi-
ties. The change in the kinematics of the tail-tethered
worm was quantified, and the swimmer was shown to
move with a decreased frequency, amplitude, and wave-
length as the fluid viscosity was increased. The drag
forces experienced by the worm in the lateral and propul-
sive directions were directly measured over time, and
resistive force theory was used to derive the drag coef-
ficients of the microswimmer. The intrinsic drag coeffi-
cients were, surprisingly, shown to transition between the
classical models of Lighthill at low viscosities, to that of
Gray and Hancock at high viscosities. This transition
was attributed to the gait modulation of the nematode,
adapting from a large-amplitude motion, to a more con-
ventional, small-amplitude undulatory motion. A deeper
theoretical treatment of the system would be of future in-
terest to investigate the effects of gait modulation on the
intrinsic drag coefficients of an undulatory microswim-
mer. Furthermore, experimental studies of the swimming
dynamics at higher viscosities would shed more light on
whether the intrinsic drag coefficients continue to follow

the estimates of Gray and Hancock in the low-amplitude
swimming regime.

Finally, the total power output of the nematode was
found to remain constant as the environmental resistance
changed. That is, the worm modulates its gait to in-
crease propulsion without modifying its power expendi-
ture. The gait modulation was shown to be independent
of how the viscous forces of the system are enhanced,
indicating that only the hydrodynamic forces of the sys-
tem influence the undulatory locomotion kinematics and
dynamics of the nematode.
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S1. RFT FITTING WITH A FREE RATIO K

To verify a drag coefficient ratio of K = 1.5, we also
performed the RFT fits with both the drag coefficients
as free fitting parameters. In Fig. S1, we plot the normal
vs. tangential extrinsic drag coefficients derived from the
RFT fits. The solid line in the graph has a slope of
K = 1.5, and the data is in good agreement with this
prediction of the ratio. For all results presented in the
main paper, we used a fixed K to decrease the number
of free fitting parameters in the RFT analysis.

K

FIG. S1. The normal vs. tangential extrinsic drag coefficients
from the RFT analysis performed with the ratio K as a free
fitting parameters. The line has a slope of K = 1.5, and the
data is in good agreement with this ratio.

S2. VIDEOS

Here, videos of the typical swimming of a young adult
worm in M9, an intermediate viscosity, and a high vis-
cosity are included. The time-lapse optical microscopy
images of Fig. 3 in the main manuscript correspond to
the same experiments.

a)Electronic mail: dalnoki@mcmaster.ca

A still image from the video “Fig S2.avi” of a worm
swimming in the M9 buffer (1 mPa·s) is shown in Fig. S2.
In Figs. S3 and S4, still images from movies (“Fig S3.avi”
and “Fig S4.avi”) of the same worm but in higher vis-
cosity fluids (2.8 and 7.2 mPa·s) are shown. The angu-
lar amplitude decreases as the fluid viscosity is increased.
The pipette deflections in both orthogonal directions can,
furthermore, be seen to increase with the fluid viscosity,
indicating higher drag forces in the more viscous regimes.

FIG. S2. Still image from the video “Fig S2.avi” of a swim-
ming worm in the M9 buffer. The scale bar represents 200
µm.

FIG. S3. Still image from the video “Fig S3.avi” of a worm
swimming in an intermediate viscosity fluid (2.8 mPa·s). The
angular amplitude is decreased and the drag forces increased
with respect to what can be seen in Fig. S2. The scale bar
represents 200 µm.
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FIG. S4. Still image from the video “Fig S4.avi” of a worm
swimming in a high viscosity fluid (7.2 mPa·s). An even larger
change in the swimming motions is seen as the worm modu-
lates its gait to maintain a constant power output. The scale
bar represents 200 µm.

S3. POWER OUTPUT

In Fig. S5, the mean viscous and elastic power is plot-
ted as a function of viscosity. Within experimental error,

both of these powers remain constant, as shown by the
dashed lines in the graph, giving Pη = 0.41 ± 0.15 nW
and Pe = 0.14 ± 0.03 nW. The worm is, in other words,
modulating its gait to maintain a constant power output
in different environments.

P

P

FIG. S5. Mean viscous (filled circles) and elastic (open circles)
power as a function of viscosity.
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The tangling of two tethered microswimming worms serving as the ends of “active strings” is
investigated experimentally and modeled analytically. C. elegans nematodes of similar size are caught by
their tails using micropipettes and left to swim and interact at different separations over long times. The
worms are found to tangle in a reproducible and statistically predictable manner, which is modeled based
on the relative motion of the worm heads. Our results provide insight into the intricate tangling interactions
present in active biological systems.

DOI: 10.1103/PhysRevLett.113.138101 PACS numbers: 87.85.gj, 46.70.Hg, 47.63.Gd

Entanglements are ubiquitous in our everyday lives with
headphone cords forming braids and knots in our pockets,
collections of small items like staples arranging into large
tangled networks [1], and hair strands knotting into dis-
ordered snarls [2]. A less common example is the knotting
of the umbilical cord which occurs at birth for about 1% of
the population [3]. At smaller scales, like in the case of
DNA, knots occur naturally in the recombination and
replication cycles and are thought to contribute to gene
regulation [4–6]. Tangling in polymers [7], proteins [3],
and the flagella in groups of spermatozoa [8,9] as well as
bacteria are further examples. Flagellar entanglements
have been shown to stabilize bacterial networks in biofilms
[10,11] and also give rise to the well-studied run-and-
tumble motion of bacteria, where several flagella are
tangled into a propellerlike bundle, allowing for propulsion
in a specific direction [12–14].
Over recent years, active networks of, e.g., highly

packed bacteria [15,16], cilia [17–20], nematodes
[21,22], sperm cells [23], self-locomoting slender rods
[24], microtubule filaments [25,26], and colloidal particles
[27] have been studied for the purpose of bioengineering
applications [28] and understanding the complex, collective
interactions present in these living or active liquids [29,30].
In addition to hydrodynamic coupling and collisions,
entanglements play a vital role in determining the final
physical properties and biological function of the active
material. In the case of cilia, for example, the synchronized
beating enables locomotion of a variety of microorganisms
as well as the transport of mucus from our lungs. Any
tangling of the cilium strands would certainly have severe
biological consequences.
Mathematicians and physicists have taken a keen interest

in understanding the formation and topology of knots and
tangles. To spontaneously form a knot, a long and flexible
string with a certain excluded volume and bending stiffness

has to be given enough energy to move around and explore
its surroundings [31]. For very small strings, like polymer
chains, thermal energy is sufficient to reptate and entangle
the molecules [7]. For larger objects, however, extra energy
input is needed, as in the case of the driven helical rotation
of bacterial flagella [12–14] or for vigorously shaken ball
chains and strings [32–35]. Independent of the formation
strategy, the tangle topology can be defined by the Conway
notation [36–40].
The formation, lifetime, and untying of knots has been

investigated experimentally in macroscopic systems con-
sisting of single strings, chains, and ropes of different
lengths and stiffnesses [32–35]. Upon shaking these pas-
sive strings, self-induced knots of different types were
found, and the knotting probability was theoretically
modeled. Most knots form and disappear due to the string
ends moving in and out of chain loops and around straight
segments of the chain. To the best of our knowledge, this
intricate chain end motion has not been closely studied, nor
has the interaction between two chain ends.
Here we present a time-resolved experimental system

illustrated in Fig. 1(a), probing the dynamic tangling of two

d
(a) (b)

FIG. 1 (color online). (a) Schematic illustration of the exper-
imental setup where two worms were held by Z-shaped micro-
pipettes. (b) Optical microscopy image of two young adult
C. elegans worms swimming at a separation d. Scale bar 200 μm.
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small worms serving as active, i.e., self-driven, strings on
a millimetric scale. The nematode Caenorhabditis elegans
is a millimeter-sized microswimmer used as a model
organism to probe undulatory locomotion experimentally
[41–45]. When tail anchored, C. elegans has been shown to
move in a highly reproducible, undulatory fashion with a
well-defined frequency and amplitude [43]. In our experi-
ments, the nematodes were placed in a buffer solution and
held by their tails with long (∼2 cm) and thin (∼20 μm)
micropipettes made as described in Refs. [46,47], and
carefully placed side by side at a separation d as shown in
Fig. 1(b) (see the Supplemental Material for more exper-
imental details [48]). The motion of the worms was
monitored with a camera (56 fps) as shown in the time-
lapse snapshots of Fig. 2(a) (see the Supplemental Material
movie SM1.avi [48]). The lateral positions of the worm
heads were tracked and are plotted as a function of time in
Fig. 2(b), where sinusoidal functions have been fit to the
three first noninteracting periods of both worms, showing
the smooth, undulatory motion of the swimmers.
At close enough distances, the worms were seen to

frequently overlap and form temporary tangles. A typical
example of the formation of such a tangle is shown by the
head positions in Fig. 2(b). The undulatory motion of the
slender bodies remains unchanged throughout a tangle,
deeming the attempt frequency to untangle the same as
the swimming frequency of the worms, which finally exit
the locked configuration by moving their heads apart. The
undoing of the tangle is sometimes driven by the motion of
only one of the worms.

Here, two different types of tangles shown in Figs. 2(c)
and 2(d) were found to occur frequently and in a repro-
ducible manner. These could be recognized by the number
of overlapping points and are here defined as a 2- and 3-
tangle, respectively (in the Conway notation, these tangles
would correspond to vertical rational tangles of type 1=2
and 1=3 [36]). To understand the formation of these specific
tangles, the worms were modeled as strings with an average
length L ∼ Lleft ∼ Lright and radius R. Consistent with our
observations, the lateral position of the string ends (worm
heads) were defined as sinusoidal functions with a maxi-
mum amplitude of A ¼ kL, where k is an experimentally
determinable constant. The left and right string end
positions could, thus, be written as xL ¼ A sinðtþ ϕÞ
and xR ¼ A sin tþ d, respectively, where ϕ ∈ ½0; π� is
the phase shift between the active strings, and d > 0 is
the distance between their anchors.
The probability of these strings entangling will vanish

at large distances and become increasingly probable as
the string ends start to overlap, i.e., at some point in
time, xL ≥ xR. This results in a critical ratio between the
distance and amplitude for any overlap to be possible:
d=A ≤ sinðtþ ϕÞ − sin t. For an entanglement to be physi-
cally possible, it is not sufficient for only the string ends to
overlap. Instead, a certain fraction (Lc=L) of each string
needs to be available to form a full tangle with a minimum
length of Lc. We, therefore, consider that both worms must
have a swimming amplitude such that they reach a distance
greater than Lc beyond the symmetry plane [exemplified by
the left worm in the second frame of Fig. 2(a)]. Thus, we

x
x

t

R

(a)

(b)

(c) (d)

(e)

FIG. 2 (color online). (a) Snapshots (0.054 s between each image) showing the tangling of two worms swimming at a distance
d ¼ 370 μm apart. (b) The lateral position of the heads of the same worms. The worms slowly shift from in-phase to out-of-phase
swimming, allowing the heads to overlap and the worms to wrap around each other’s bodies and form a tangle. Subsequently, they exit
the tangle in phase with the same sinusoidal motion as prior to the tangling event. The gray zone in the graph denotes the time frame of
the snapshots in (a) (image of every third data point shown). The solid lines are sinusoidal fits to the head positions of both of the worms.
(c),(d) Two worms at different separations forming a 2- and 3-tangle, respectively. (e) A schematic illustration of a 2 tangle modeled as a
helix with radius R, twist π, and arc length L2. All scale bars represent 200 μm.
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can state that for a tangle to occur, A ≥ d=2þ Lc, which
yields

L
d
≥
�
2

�
k −

Lc

L

��
−1
: ð1Þ

This equation corresponds to an upper bound to the critical
ratio between the chain length and distance for an entan-
glement to be theoretically possible.
The lowest-order tangle seen in our system is the

2 rational tangle [Fig. 2(c)] illustrated schematically in
Fig. 2(e). This tangle can be described as a helix with a
radius R (the same as the worm radius), curvature κ, and
twist π. The arc length (minimum string length required for
this tangle) then is Lc ¼ L2 ¼ π

ffiffiffiffiffiffiffiffi
R=κ

p
. The proportionality

constant relating the maximum swimming amplitude
(see the Supplemental Material [48]) to the worm length
has been measured as k ¼ 0.8� 0.05 for single worms.
By measuring the mean radius and length of the worms
used in this study (young adults and adults, R ¼ 29� 2 μm
and L ¼ 1080� 70 μm) and the mean of the absolute
curvature of the first (anterior) half of their bodies in a
state of normal swimming (κ ¼ 3.3� 0.2 mm−1), an esti-
mate of L2=L ¼ 0.27� 0.02 could, thus, be made. By
applying the helix model to Eq. (1), the predicted critical
ratio between the worm length and distance for any
entanglement to be possible is ðL=dÞ2 ≥ 0.95� 0.10.
Following the same approach, the critical ratio for a 3
tangle modeled as a helix with a twist of 2π is calculated
as ðL=dÞ3 ¼ 2.0� 0.3.
The experiments were performed at different distances

with several pairs of worms of similar size. In a particular
experiment, the presence of 2- and 3-tangles were noted. In
Fig. 3(a), we plot if a tangle could be observed at a given ratio
L=d and also indicate the type of tangle. The two vertical
lines in the graph denote the theoretically predicted critical
ratios ðL=dÞ2 and ðL=dÞ3, and the experimental onsets are,
within error, in excellent agreement with the model.
Note that 2 tangles were always present in experiments in
which 3 tangles were observed.
In Figs. 3(b) and 3(c), the distributions of entanglement

lifetimes are shown for several experiments performed in
the two extreme cases of large (L=d ¼ 1.0� 0.2) and small
(L=d ¼ 5.7� 2.8) separations, respectively (for further
details, see the Supplemental Material [48]). At the larger
separation, only 2 tangles are possible and have an average
lifetime of τ2 ¼ 0.18� 0.03 s. However, for the shorter
separation, both 2- and 3-tangles were possible, and this is
clearly seen in Fig. 3(c) where a shoulder around τ3 ≈
0.4 s ≈ 2τ2 has formed due to the occurrence of the more
long-lived 3 tangle stabilized by an additional crossing
which requires extra time to become undone. Note that,
as one might expect, even for short distances, the 3 tangles
are much less probable than 2 tangles. A slight shift and
widening of the 2 peak at close distances is also apparent

when comparing the two distributions [see vertical dashed
lines in Figs. 3(b) and 3(c)], indicating more variations in
the tangling events as the worms are brought closer
together. A few 3 tangles remained stable for around
10 s, which corresponds to over 20 full swimming cycles
(untangling attempts). These dynamic tangles were beating
and rotating reminiscent of bacterial bundles (see the
Supplemental Material movie SM2.avi [48]). Variables
that affect the tangle stability are the length, thickness,
and bending stiffness of the worms, the attempt frequency
to untangle, the friction between the worms [49], as well
as contact between the worms eliciting mechanosensory
responses [50]. The latter of these has previously been
shown not to affect the collective swimming of C. elegans
[21] and did not seem to strongly affect the tangling
dynamics in our experiments either.
To investigate the entanglement probability as L=d

increases above the critical ratios derived above, we now
follow the lateral motion of the point (xc) on the worm
body located at a distance of Lc from the head. Since the
worm propagates traveling waves down its body, xcðtÞ
can also be modeled as a sinusoidal function with an
amplitude Ac ¼ kcL, where kc is an experimentally deter-
minable constant. For the left and right worms, we
thereby have xc;L ¼ Ac sinðtþ ϕÞ and xc;R ¼ Ac sin tþ
d, respectively. At a given separation distance, these
sinusoidal functions intersect at a range of phase shifts
above some critical value. For an entanglement to be possi-
ble, the maximum value of the difference Δ ¼ xc;L − xc;R
needs to be greater than zero. Using a trigonometric

L d

(a)

(b)

(c)

FIG. 3 (color online). (a) The experimental onset of 2- and
3-tangles (filled circles) with horizontal error bars as a function
of the worm length-distance ratio. The vertical lines are the
theoretical crossover predictions ðL=dÞ2 ¼ 0.95� 0.10 and
ðL=dÞ3 ¼ 2.0� 0.3. (b),(c) Histograms of the entanglement
lifetimes of several worm pairs far apart [L=d ¼ 1.0� 0.2,
(b)] and close together [L=d ¼ 5.7� 2.8, (c)]. The count has
been normalized with the total number of tangles. The vertical
dashed lines indicate the peak position of the other histogram.
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identity, xc;L − xc;R ¼ 2Ac cos½ð2tþ ϕÞ=2� sinðϕ=2Þ − d.
Maximizing this difference with respect to time yields
Δ ¼ 2Ac sinðϕ=2Þ − d ≥ 0 and, thus,

ϕ ≥ ϕc ¼ 2sin−1
�

d
2Ac

�
: ð2Þ

This is the critical phase shift needed to form a tangle at a
specific L=d ratio. In other words, the farther apart the
worms are, the more out of phase they have to swim in
order to intersect and the smaller is the range of phase shifts
which yield intersections.
Although the worms have very similar average frequen-

cies (f ¼ 2.1� 0.2 Hz), small temporal variations in this
quantity allow the worms to explore all relative phase
shifts, as exemplified in Fig. 2(b). Since the worms explore
all relative phase shifts over time, and since a certain
fraction of intersection events between the worm ends will
lead to entanglements, it is reasonable to hypothesize that
the entanglement probability will be proportional to the
fraction of relative phase shifts which contain an inter-
section at the separation distance d. However, we also
expect that entanglement events will be more likely to
occur if the worm heads have more space (and time) to
wrap around each other’s bodies. Thus, we make the
first-order assumption that the probability of entanglements
at a given separation distance is proportional to the
fraction of relative phase shifts which contain an inter-
section but where each phase shift is linearly weighted
by the maximum separation between the worm heads,
giving

p ∝
Z

π

ϕc

Δ
L
dϕ; ð3Þ

where L is used to nondimensionalize the weighting.
Evaluating this integral and substituting Ac ¼ kcL gives

p ∝ 2kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

�
d
kcL

�
2

s
−
d
L

�
π − 2sin−1

�
d

2kcL

��
; ð4Þ

which shows how the entanglement probability scales with
the worm length-distance ratio.
The number of worm entanglements were counted, and

the experimental entanglement probability was calculated
as the ratio between the number of entanglements and
entanglement attempts (the sum of the number of swim-
ming cycles and successful tangling events). The proba-
bility is plotted as a function of L=d in Fig. 4 for all
experiments performed with different worm pairs at differ-
ent distances. The entanglement probability increases
sharply at a worm separation close to one worm length.
Equation (4) is successfully fit to the data, and the model
is clearly in excellent agreement with the experimental
observations. Two fitting parameters were used to fit the

data in Fig. 4. The first is a compressing factor
(0.11� 0.03) in the y direction, which corresponds to
the proportionality prefactor of Eq. (4). Any mechanosen-
sory interactions present between the worms would enter
into this factor. The second fitting parameter defines the
horizontal shift of the theoretical curve and is given by
kc ¼ 0.64� 0.10. Comparing this value to that derivable
from the helix model giving Ac;helix=L ¼ k − L2=L ¼
0.53� 0.05, we find the two models to be, within error,
in excellent agreement.
To form a tangle in our experiments, the worms were

forced to deviate from their otherwise planar swimming
motion to form a three-dimensional helix. If significant
out-of-plane swimming occurred, the entanglement prob-
ability was seen to vastly decrease, as easily explained by
our geometric model. The clear entanglement difference
between the nearly 2D versus a complete 3D motion could,
thus, be a significant factor in, e.g., how arrays of cilia
avoid tangling due to their sophisticated 3D motion [51].
The aspect ratio of cilia can be as high as L=D ¼ 100
(versus 19 for our worms), where D is the diameter. Since
cilia are typically arranged at distances 0.27–0.4 μm apart
[52], ðL=dÞcilia ¼ 75. The lack of ciliar entanglements is,
thus, surprising when compared to our experimental find-
ings in planar swimming and highlights the importance
of the specific motion patterns used to avoid or achieve a
tangled network. Strong hydrodynamic interactions could
also act to modify ciliar entanglements at close distances.
Hydrodynamic interactions were not discovered between
the worms in our experiments, consistent with the findings
of others [21].
Here we have presented a time-resolved, dynamic study

of the tangling of active stringlike worms. By describing
the system with a simple model based on the overlap
probability of the worm heads during their undulatory
swimming, the critical ratio between the worm length
and distance for any entanglement to be possible was

p

L d

FIG. 4 (color online). The entanglement probability as a
function of L=d. The different markers denote experiments with
different worm pairs. The solid line is the analytical fit of Eq. (4)
to the data.
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quantitatively predicted and shown to be in excellent
agreement with experimental observations. Furthermore,
the entanglement probability was analytically derived and
successfully fit to the data. It is clear that the tangling of the
active strings is far from random but a statistically pre-
dictable process based on the relative motion of their ends.
These experiments provide an interesting model system to
understand the intricate interactions present in active matter
such as cilia and bacterial flagella.
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3Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI, Paris, France
(Dated: September 9, 2014)

EXPERIMENTAL DETAILS

Wild-type worms (N2) were acquired from the
Caenorhabditis Genetics Center and cultivated in an in-
cubator according to standard methods on Escherichia
coli (OP50) nematode growth media (NGM) plates at
20◦C [1]. Young adult and adult worms were picked from
the plates into a droplet of M9 buffer sitting on a thin
cover slip. A chamber was then built around the drop
with a second cover slip and two (2 mm thick) spacers
on both sides. The chamber was filled with more buffer,
placed on top of an inverted microscope, and two mi-
cropipettes, attached to XYZ translational stages, were
finally positioned into the chamber, as shown in Fig. 1.
By attaching thin tubes to the back ends of the pipettes
and applying suction with syringes, worms were captured
by their tails and carefully brought to the middle of the
chamber. By capturing the worms as they were swim-
ming at (and in the plane of) the bottom glass slide,
both of the worms could be ensured to initially swim in
the same plane. Furthermore, by applying a high enough
suction to the tails, vast rotation in the pipettes could be
avoided.

z
x

y

FIG. 1. Schematic diagram of the experimental setup as seen
from above.

Optical microscopy images were captured at 56 fps
for around 3 minutes per worm distance, correspond-
ing to more than 10 000 images per experiment. With
an average worm swimming frequency of f = 2.1 ± 0.2

Hz, hundreds of swimming cycles were monitored for
each separation distance. The pipettes were made to be
very flexible, so that the forces produced by the swim-
ming worms would cause the thin glass capillaries to de-
flect. The deflections of the pipettes were obtained with
cross-correlation image analysis using MATLAB (Math-
Works). An example data set is shown in Fig. 2, where
the pipette deflections are plotted as a function of time.
In states of normal swimming, the pipettes can be used
as force sensors to probe the viscous forces experienced
by the microswimmers (see Ref. [2]). When an entangle-
ment occurs, the pipettes are pulled together and these
clear deflections above that of normal swimming (dashed
lines) were used to recognize all entanglements in the long
experiments.

x

t

FIG. 2. Pipette deflection as a function of time. During nor-
mal swimming, the pipettes follow the undulatory swimming
patterns of the worms. The large peaks correspond to entan-
glements between the worms, pulling the pipettes above the
peaks (dashed lines) set by normal swimming.

An entanglement had to, per definition, last last longer
than at least 8 frames (0.14 s), since tangling events
shorter than this did not represent an actual tangle, but
occurred when the worms were touching as they swam
past each other in slightly different planes. The number
and lifetimes of real tangles were then analyzed.

The worms were seen to undergo small changes in their
amplitude and/or swimming axis during the experiment.
For the analysis, the maximum swimming amplitude was



2

considered since a critical d/A ratio was desired.
The vertical error bars in Fig. 4 in the main manuscript

represent the standard error of the mean of the entangle-
ment probability at different times of the experiment,
propagated together with the standard deviation of the
swimming frequencies of both worms and the precision of
the analysis. The horizontal error bars were propagated
based on the standard deviation of the worm lengths as
well as the error in worm separation.

∗ dalnoki@mcmaster.ca
[1] S. Brenner, Genetics 77, 71 (1974).
[2] R. D. Schulman, M. Backholm, W. S. Ryu, and

K. Dalnoki-Veress, Phys. Rev. E 89, 050701 (2014).



Appendix B

List of additional papers

The manuscripts listed and briefly summarized below represent other research I have

performed during my PhD studies. These papers are not part of the main focus of

this thesis.

B.1 Crawling dynamics

Direct measurements of drag forces in C. elegans crawling locomotion, Y. Rabets,

M. Backholm, K. Dalnoki-Veress, and W. S. Ryu, Biophysical Journal 107, 1980-

1987 (2014).

Here we investigated the drag coefficients and crawling dynamics of C. elegans on

different types of agar. By using micropipette deflection, the adhesion force and drag

coefficients between the worm and the gel surface were directly measured. This was

achieved by pulling the worm off, or dragging it over the surface, respectively. Fur-

thermore, the forces involved in the crawling motion of C. elegans were investigated

and an extension of RFT was applied to reconstruct the measured forces.

I helped Yegor Rabets design a micropipette deflection setup in the lab of W. Ryu

at the University of Toronto. I also contributed with continuous input during the

project, helped with the interpretation of data, and edited a late version of the

manuscript.

141



PhD Thesis - M. Backholm McMaster University - Physics and Astronomy

B.2 Hole relaxation in viscous films

Capillary levelling of a cylindrical hole in a viscous film, M. Backholm, M. Benza-

quen, T. Salez, E. Raphaël, and K. Dalnoki-Veress, Soft Matter 10, 2550-2558 (2014).

During my doctoral studies, I had the opportunity to perform research in the

field of polymer physics in close collaboration with Michael Benzaquen, Dr. Thomas

Salez, and Dr. Elie Raphaël at the ESPCI in Paris. Our focus has been to continue

the work of Dr. Joshua McGraw on the capillary levelling of thin films with initially

sharp topographical features, such as steps, trenches, and cylindrical holes. The main

goal has been to investigate how such features relax over time as the system is heated

above its glass transition temperature.

In this work, we investigated the capillary levelling of cylindrical holes in viscous

polystyrene films. I initiated and designed the sample preparation procedure and

performed all experiments and data analysis. The theoretical work was led by the

team in Paris with my continuous input. I prepared all figures and wrote the first

draft of the manuscript, except for the theoretical section which was written by M.

Benzaquen and T. Salez.

B.3 Levelling of trenches in viscous films

Relaxation and intermediate asymptotics of a rectangular trench in a viscous film,

O. Bäumchen, M. Benzaquen, T. Salez, J. D. McGraw, M. Backholm, P. Fowler, E.

Raphaël, and K. Dalnoki-Veress, Physical Review E 88, 035001 (2013).

Here Dr. Oliver Bäumchen led the project on the relaxation of rectangular trenches

in viscous polystyrene films. I was brought into the project at its final stage and

contributed by performing the experiments on trench levelling in the linear regime,

where the depth of the trench was significantly smaller than the thickness of the

bottom film. I also edited a late version of the manuscript.
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B.4 Mechanical properties of hydrogels

Crosslinked bulk hydrogels formed through Diels-Alder coupling of Furan- and Malei-

mide-modified Poly(methyl vinyl ether-alt-maleic acid), S. A. Stewart, M. Backholm,

N. A. D. Burke, and H. D. H. Stöver, submitted to Journal of Polymer Science (2015).

During my time at McMaster University, I have been part of the CREATE pro-

gram for Integrated Development of Extracellular Matrices (IDEM) to contribute

with physical modelling and testing of various hydrogels designed for cell encapsu-

lation purposes. Within the framework of this research, I co-supervised Tim Govey,

Chris Miranda, and Richard Parg for their undergraduate thesis or summer research

projects carried out in our group. We used the in house “bead squisher” to mea-

sure the mechanical properties of gels prepared by Rachelle Kleinberger and Alison

Stewart under the supervision of Dr. Harald Stöver.

In this project, I trained A. Stewart to use the bead squisher, helped with the

data analysis and interpretation of the results and contributed with the theoretical

treatment of the elasticity data. Furthermore, I wrote the physical modelling section

of the paper.
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Appendix C

Derivations

C.1 Area moment of inertia of a hollow cylinder

The area moment of inertia for a symmetrical cross-section, as exemplified by a hollow

cylinder in Fig. C.1, is defined as I = Ix = Iy =
∫
y2dA [145].

r

x

y

Figure C.1: Cross section of hollow cylinder with inner and outer diameters d and D.

Using polar coordinates, i.e., y = r sin θ and dA = rdrdθ, gives

I =

∫ 2π

0

sin2 θdθ

∫ D/2

d/2

r3dr =
π

64

[
D4 − d4

]
, (C.1)

where D and d are the outer and inner diameter of the cylinder, respectively.
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C.2 Three-point bending of simply supported beam

In Fig. C.2, a schematic diagram of a three-point bending measurement on a simply

supported beam is shown. The distance between the two simple supports is L, whereas

a corresponds to the distance between the left support and the location of the applied

force F . The origin of the coordinate system as well as the axis of rotation is defined

at the left support, as shown in the image.

The assumption of translational and rotational equilibrium gives N1 = F (1−a/L)

and N2 = aF/L, where N1 and N2 are the normal forces from the two simple supports.

For the case of x ≤ a, the bending moment can be calculated as M(x) = N1x

[28]. Assuming that the force is applied right between the supports, L = 2a, and

M(x) = Fx/2. The Euler-Bernoulli equation, defined for the quasistatic bending of

a slender, isotropic beam of a constant cross-section, gives

dy2(x)

dx2
=
M(x)

EI
=

F

2EI
x, (C.2)

where y denotes the bending of the beam. Solving this differential equation with the

boundary condition for a simply supported beam (y(0) = 0 and y′(a) = 0) gives

y(x) =
F

2EI

(
1

6
x3 − 1

2
a2x

)
. (C.3)

F

N1 N2

a L

y
x

Figure C.2: Schematic diagram of a three-point bending measurement on a simply
supported beam. The origin of the coordinate system as well as the axis of rotation
is denoted by the blue dot at the left end of the beam.
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Evaluating this at x = a = L/2 finally leaves us with the bending of the beam at the

position of the applied force

y(a) =
L3

48EI
F. (C.4)

With the same approach, the case of L 6= 2a (as shown in Fig. 1.5) gives [146]

y(a) =
a2(L− a)2

3LEI
F. (C.5)
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