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Abstract

This thesis deals with modeling of signal propagation in fiber links. The signal prop-

agation in optical fiber is described by the nonlinear Schrödinger equation (NLSE)

and this thesis discusses various schemes to solve NLSE. In addition, compensation

of propagation impairments due to dispersion and nonlinearity in fiber optic systems

are also dealt with. In order to reduce the bit error rate (BER) and enhance the

reach, digital and optical equalization schemes are investigated.

Optical fiber is usually used as the transmission channel for optical signals. How-

ever, an optical fiber has loss, dispersive and nonlinear effects which bring distortions

to the optical signal. Due to fiber loss, signal power decreases with propagation dis-

tance. Fiber dispersion results from the frequency dependence of transmission speed

which leads to pulse broadening. Also, fiber nonlinearity, which is due to the depen-

dence of refractive index on the signal intensity, brings nonlinear distortions to the

optical signal. The total propagation effect is determined by the interplay among

fiber loss, dispersion and nonlinearity, which is governed by the NLSE. Chapter 2

mainly focuses on efficient schemes for simulating propagation in optical fibers. Var-

ious schemes based on split-step Fourier techniques to solve the NLSE are compared.

To solve the NLSE using split-step method, dispersive and nonlinear effects will be

treated independently and interchangeably in small sections, and fiber loss can be
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combined with dispersion or nonlinearity. In general, the schemes in which the loss

operator is combined with nonlinearity operator are found to be more computation-

ally efficient than the schemes in which the loss is combined with dispersion. When

the global error is large, the schemes with variable step size outperform the ones

with uniform stepsize. The scheme based on local error and/or minimum area mis-

match(MAM) is investigated and futher improves the computational efficiency. In

this scheme, by minimizing the area mismatch between the exponential profile and

its stepwise approximation, an optimal step size distribution is found. The number

of steps to get the desired accuracy is determined by the local error method. This

scheme is found to have higher computational efficiency than the other schemes.

In Chapter 3, a digital back propagation (DBP) scheme with optimal step size

for polarization division multiplexed transmission system is investigated. DBP is a

digital compensation scheme to undo fiber dispersion and nonlinearity, which solves

the NLSE using split-step method with parameters the opposite sign of the transmis-

sion fiber. For a fixed number of steps in DBP, the optimal step size is calculated

by minimizing the mismatch between the area under the exponentially increasing

nonlinearity profile and its stepwise approximation. In simulations, the vector NLSE

or Manakov equations are used for forward propagation and Manakov equations are

used for backward propagation. The simulation results show that at the same com-

putational cost, the scheme using the optimum step size has higher tolerance to

nonlinearity and a lower BER. In a single channel polarization multiplexing division

system, the transmission reach can be increased from 4300 km to 5200 km while

introducing the optimum step size, if two steps per span are used for DBP.

Although DBP is effective to compensate for fiber distortions, it has a relatively
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high computational cost and is hard to implement in real time for WDM systems. Also

it is not suitable for optical networks. In Chapter 4, a fiber-optic system design with

optical backpropagation (OBP) that uses an optical phase conjugator, high-dispersion

fibers (HDFs), and highly nonlinear fibers (HNLFs) is developed. The dispersion can

be compensated by the HDFs, and the nonlinearity can be mitigated by HDFs and

HNLFs. The analytical formulas of the lengths of HDFs and HNLFs are derived

and match well with the numerical results. This technique outperforms the midpoint

optical phase conjugation and DBP with the same step size. In a single channel

system, when the step size equals the span length, BER of OBP is 8 × 10−4, while

BER of DBP is 2 × 10−3. Also, another OBP scheme consisting of an optical phase

conjugator, fiber Bragg gratings (FBGs), and HNLFs is investigated. Transmission

fiber dispersion is compensated by the FBGs and the nonlinearity is compensated by

HNLFs. Several sections of FBGs and HNLFs are concatenated in a way analogous to

the split-step Fourier scheme used for solving the NLSE. The optimum accumulated

dispersion of each section of the FBGs and the optimum nonlinear phase shift of each

section of HNLF are calculated by minimizing the mismatch between the area under

the exponentially increasing nonlinearity profile and its stepwise approximation. The

mothod of Lagrange multipliers is used for optimization. The optimization technique

leads to significant performance improvement and/or reach enhancement as compared

to uniformly spaced sections, for the given number of sections. When 2 steps per span

OBP are used in a single channel system , BER of uniform spacing step size is 2×10−3,

while BER of the optimum step size is reduced to 1× 10−3.

OBP is an effective scheme to compensate for fiber dispersion and nonlinearity.

The more steps in a single span, the better the performance will be. However, fibers
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and optical devices in OBP will introduce higher insertion loss if more steps are used.

In Chapter 5, an ideal optical back propagation (OBP) scheme to compensate for

dispersion and nonlinear effects of the transmission fibers is investigated. The scheme

consists of an optical phase conjugator (OPC), N spans of dispersion-decreasing fibers

(DDFs) and amplifiers, placed at the end of the fiber optic link. It is shown that a

combination of DDFs and amplifiers can compensate for the nonlinear effects exactly.

An analytical expression for the dispersion profile of the DDF is derived. Numerical

simulations of wavelength division multiplexing (WDM) fiber-optic systems show that

the proposed OBP scheme can enhance the system reach significantly as compared

to DBP. The OBP scheme with DDF is also potential for applications in network

communication systems, if a compensation unit with a DDF and amplifier is placed

after the transmission fiber in each span.

In Chapter 6, an exact solution of NLSE is derived for impulse input in the

presence of pre-dispersion. The phase factor of the exact solution is obtained in a

closed form using the exponential integral. It is found that if the complex weights of

a sequence of impulses at the input have a secant-hyperbolic envelope and a proper

chirp factor, they will propagate over long distances without exchanging energy. To

describe their interaction, a discrete version of NLSE is derived. The discrete NLSE

is found to admit fundamental and higher order soliton solutions in the presence of

high pre-dispersion. In the context of discrete NLSE, if the effective dispersion length

is much longer than the effective nonlinear length, we have obtained the nonlinear

eigenmodes of the highly pre-dispersed fiber-optic system which may be useful for the

description of signal propagation, and signal and noise interaction.
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ADC analog-to-digital converter
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BPF band pass filter
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NDF negative dispersion fiber
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NLSE nonlinear Schrödinger equation
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QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

SPM self-phase modulation

SSFS split-step Fourier scheme

SSMF standard single mode fiber

TF transmission fiber

WDM wavelength division multiplexing

XPM cross-phase modulation
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Chapter 1

Introduction

1.1 Introduction to fiber-optic communication sys-

tems

Fiber-optic communication systems are used to transmit datas from one point to

another through lightwaves, whose frequency is very high (∼ 200 THz). Compared

to microwave communication systems, for which the typical frequency is about 1

GHz, the fiber optic communication systems have a much larger bandwidth because

fibers can support the lightwave signals. Therefore, they have been widely used and

advanced dramatically over the past 50 years, which has resulted in low cost and

high bandwidth transmission. Fiber optics is now the back bone of internet and long

distance telecommunication.

The evolution of fiber-optic communication systems traces back to 1960s, when a

laser was invented that can be used as a coherent optical source of the transmission

systems [1]. In 1966, optical fibers are considered to be the best candidate to guide

1



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

light and used as a transmission medium in the communication systems [2]. However,

the high loss of fiber (∼ 1000 dB/km) at that time was the main limitation of fiber

to be utilized for transmission purposes. In 1970s, the fiber loss can be made less

than 20 dB/km in the wavelength near 1 µm through a novel fabrication technique

[3]. Also, GaAs semiconductor laser was investigated at the same time, which was a

great enabler for the development of fiber-optic communications [4]. From 1975 to

2000, fiber-optic communication progressed four generations [5]. In the first genera-

tion, GaAs semiconductor laser was used as an optical source, whose wavelength was

around 800 nm [4]. The transmission speed was 45 Mb/s and the repeater spacing

could be increased to 10 km as compared to 1 km in coaxial systems [6]. The second

generation began in 1980s, in which the fiber loss was 0.5 dB/km at the wavelength

of 1.3 µm, and the bit rate was less than 100 Mb/s due to the dispersion of the multi-

mode fibers [7]. The single mode fiber was introduced to solve this problem [8]. In the

third generation, fibers operated at 1.5 µm was developed as the transmission fiber,

which had a low loss (∼ 0.2 dB/km) [9], but it had a large dispersion. By introducing

the dispersion-shifted fiber (DSF), the zero chromatic dispersion (CD) was able to

shift to 1.55 µm from 1.3 µm, which made it feasible to achieve both low loss and small

dispersion of the transmission fiber [10]. To further increase the system capacity and

transmission reach, the fourth generation of fiber-optic communication systems uti-

lized the optical amplifier as well as wavelength-division multiplexing (WDM) [5]. The

optical amplifier was used to compensate for fiber loss in the transmission link, and it

could be used to enlarge the repeater spacing. In a WDM system, signals in different

channels will be modulated on separate frequencies (or wavelengths) and launched

to the fiber by a multiplexer at the transmitter, and then the signals propagated in

2
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fibers simultaneously. The signals in different channels would be demultiplexed at

the receiver side. As a result, the WDM scheme considerably increased the trans-

mission capacity without using extra fibers, and it brought a new era to fiber-optic

communication system . The bit rate could increase up to 10 Tb/s by 2001 [11].

Figure 1.1: A typical fiber-optic communication system. TX: transmitter, RX: re-
ceiver.

A typical fiber-optic communication system includes a transmitter, a transmission

link and a receiver, as shown in Fig. 1.1. The transmitter consisting of an optical

source, electronic circuits, and a modulater, is used to modulate the electric signals

into optical signals and launch the signals into the fiber links. The transmission

link consists of transmission fibers and amplifiers; the transmission fibers are the

medium to guide light. As the optical signal propagates down the fiber, it suffers

losses due to Rayleigh scattering and absorption. To compensate for loss, optical

amplifiers are introduced along the transmission line. The advantage of introducing

lightwave as the carrier is its high frequency so that the transmission capacity can

be significantly improved. The role of the receiver is to convert the optical signal

back into electrical domain. The generic receiver includes a photodetector, electric

circuits, and a demodulator. In the past decade, coherent receiver, converting the

optical signals into electrical domain using homodyne or heterodyne technique, has

drawn significant attention. The coherent detection technique makes it possible to
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compensate for fiber distortions using high-speed digital signal processing (DSP), and

it will be discussed further in subsection 1.3.

1.2 Impairments in fiber-optic links

1.2.1 Linear distortions

Chromatic dispersion (CD) is one of the major limitation factors in long-haul fiber-

optic communication systems, which results in pulse broadening and inter-symbol

interference (ISI) [12]. Therefore, it degrades the performance of the transmission

system severely. When optical signals are launched into a single mode fiber, there

is no intermodal dispersion. However, the optical pulses still broaden due to intra-

modal dispersion. That is, different frequency components have different speeds in

fibers, hence they arrive at different times leading to pulse broadening, as shown in

Fig. 1.2.

Figure 1.2: Pulse broadening due to dispersion.
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To explain CD in more detail, let us consider a single-mode fiber of length L. The

propagation delay T for a spectral component at frequency ω can be written as

T =
L

vg
, (1.1)

where vg is the group velocity [13],

vg = (dβ/dω)−1. (1.2)

If the optical pulse has a spectral width of ∆ω, different spectral component will not

arrive at the end of the fiber at the same time. The time difference is [14]

∆T =
dT

dω
∆ω. (1.3)

Plug Eqs. (1.1) and (1.2) into Eq. (1.3),

∆T = L
d2β

dω2
∆ω = Lβ2∆ω, (1.4)

where β2 is defined as group velocity dispersion (GVD) parameter and equals to

d2β/dω2. From Eq. (1.4), the extent of broadening is proportional to the spectral

width ∆ω, fiber length L, and β2.

In a polarization division multiplexing (PDM) transmission systems, another

source of pulse broadening called polarization-mode dispersion (PMD) will exist [15–

21]. In a PDM transmission system, the two polarization components have different

group velocities, as a result the input pulse will be broadened, which could severely

limits the performance of fiber-optic communication systems. In a fiber with constant
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birefringence, the time delay between two polarization components can be written as

∆T =

∣∣∣∣ Lvgx − L

vgy

∣∣∣∣ = L|β1x − β1y|, (1.5)

where β1 is the inverse of group velocity,

β1r =
dβr
dω

, r = x or y. (1.6)

In a real fiber, refractive index changes randomly due to stress, temperature and

other environmental fluctuations. As a result, the propagation constants β1x and β1y

change randomly as a function of propagation distance and time, which makes the

delay ∆T to change randomly. However, β1x and β1y change over a time scale that

is lower than the symbol period and therefore, it is possible to compensate for PMD

using DSP in coherent communication systems.

1.2.2 Nonlinear impairments

When the launch power of the fiber-optic communication system is low, the fiber

link can be roughly regarded as a linear medium, and the system performance can

be improved by increasing the launch power due to the increase of signal-noise ratio

(SNR). However, when the launch power is relatively high, the transmission quality of

the fiber-optic communication systems will degrade by further increasing the launch

power, due to the fiber nonlinearity. A typical relationship between launch power and

bit error rate (BER) is shown in Fig. 1.3. When the launch power is less than P1,

the amplified spontaneous emission (ASE) is the main limitation in the transmission

system, and the BER can be reduced by increasing the launch power. When the
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Figure 1.3: Typical relationship between launch power and BER in fiber-optic com-
munication systems.

launch power is larger than P1, the nonlinearity is dominant and it is the main factor

to limit the system performance. By introducing a nonlinear equalizer, the nonlinear

tolerance can be improved, a lower BER can be achieved, and the optimum power

can be increased from P1 to P2 (see Fig. 1.3). The compensation techniques for fiber

impairments will be discussed in Section 1.3.

Fiber nonlinearity originates from the Kerr effects, that is the refractive index

increases with optical intensity [22, 23]. The refractive index is a function of launch

power and can be written as [22]

n(ω, P ) = n0(ω) + n2
P

Aeff
, (1.7)

where n0 is the refractive index when the launch power is very low, n2 is the nonlinear-

index coefficient with typical value in the order of 2 × 10−20 m2/W, P is the launch
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power, and Aeff is the effective core area. As a result, the propagation constant β is

also related to the light intensity and can be written as [22]

β(ω, P ) =
2π

λ
n(ω, P ) = β0(ω) + γP, (1.8)

where β0(ω) is chromatic dispersion coefficient, and γ is the fiber nonlinear coefficient,

which is

γ =
2πn2

λAeff
. (1.9)

The nonlinear effects will induce phase shift to the optical signal, which can be written

as

φNL =

∫ L

0

(β − β0)dz =

∫ L

0

γP (z)dz. (1.10)

If fiber loss is considered,

P (z) = Pin exp(−αz), (1.11)

where Pin is the input signal intensity, α is the fiber loss coefficient. Plug Eq. (1.11)

into Eq. (1.10), the nonlinear phase shift can be obtained as

φNL = γPinLeff , (1.12)

where Leff is defined as the effective length

Leff =
1− exp(−αL)

α
. (1.13)

As an optical pulse propagates down an optical fiber, it interacts not only with

the pulses of the same channel, but also with the pulses of the neighboring channels.
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The nonlinear interaction among pulses of the same channel is known as intra-channel

nonlinear effects [12, 22, 24]. The nonlinear interaction between pulses of different

channels in WDM system is called inter-channel nonlinear effects [12, 22].

Figure 1.4: Illustration of the difference between intra-channel and inter-channel non-
linear effects.

Intra-channel nonlinear effects include self-phase modulation (SPM), intra-channel

cross-phase modulation (IXPM) and intra-channel four wave mixing (IFWM). For the

central pulse of channel 3 in Fig. 1.4, the change in refractive index due to the Kerr

effect translates into a phase shift, so the signal phase is modulated by its own power

distribution. This is known as SPM. If the central pulse interacts with the other

pulses in channel 3, it will result in IXPM, which also brings in a phase shift of

the central pulse. When two or more pulses of channel 3 interact nonlinearly, echo or

ghost pulses are generated, which is called IFWM. In the case of IFWM, the nonlinear

interaction between pulses centered at t1, t2, and t3 leads to echo pulses at t1 + t2− t3
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and t2 + t3 − t1.

In WDM systems, the nonlinear interaction between pulses of different channels

is called inter-channel nonlinear effects [12, 22]. The inter-channel nonlinear effects

can be divided into two types: cross-phase modulation (XPM) and four-wave mixing

(FWM). The phase of a signal in a channel is modulated not only by its channel

power, but also by other channels, which is called XPM, and the phase shift of the

jth channel can be written as

φjNL = γPin,jLeff︸ ︷︷ ︸
SPM

+ 2γLeff
∑
m 6=j

Pin,m︸ ︷︷ ︸
XPM

, (1.14)

The second term of Eq. (1.14) refers to the phase shift brought out by XPM, and it is

twice that from SPM. Nonlinear interactions between channels of center frequencies

f1, f2, and f3 results in a new frequency components at f1 + f2 − f3 and f2 + f3 − f1

which is known as FWM [25, 26]. The new frequency components generated through

FWM act as noise on channels centered at f1 + f2 − f3 and f2 + f3 − f1.

Nonlinear interaction between signal and noise leads to nonlinear phase noise [27–

31]. The signal instantaneous power fluctuates due to ASE noise and it is translated

into phase shift due to Kerr nonlinear effect. Hence, the phase changes randomly

which is known as nonlinear phase noise. In the absence of fiber dispersion, nonlinear

phase noise could lead to significant performance degradation to the coherent fiber

optic systems [27, 29]. However, in the presence of moderate to large dispersion,

nonlinear phase noise is significantly reduced [28, 30].

Fiber optic system can be categorized into two types: (i) dispersion managed (DM)

systems in which dispersion of transmission fiber is partially compensated by inline
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dispersion compensating fibers (DCFs) and (ii) dispersion uncompensated (DU) sys-

tems in which the transmission fiber dispersion is compensated only at the transmitter

or at the receiver in digital domain. Intra- and inter-channel nonlinear effective have

attracted enormous research attention for decades. The intra-channel nonlinearity in

DM fiber optic systems has been investigated by analytical techniques and numer-

ical simulations [32–34]. For dispersion unmanaged systems, a perturbation theory

has been used to study intra-channel nonlinear effects [35, 36]. The inter-channel

nonlinear effects have been studied under different system configurations, such as in

intensity modulation-direct detection (IM-DD) systems [37, 38], or in WDM systems

[25, 39, 40]. The distortion caused by XPM leads to major impairments in WDM

systems. Impact of XPM effects on the system performance have been studied tak-

ing into account its dependence on the number of WDM channels [41], its frequency

response [42], and the intensity interference caused by XPM [43]. Also, theoretical

models based on perturbation theory have been developed to study inter-channel

nonlinear effects [44–46]. The properties of nonlinear noise have been studied by

simulations [47, 48]. The capacity bound of fiber optic communication systems in

presence of nonlinear effect has also been studied and the results show that the ca-

pacity increases with signal power in the linear regime, but when the signal power is

very large, capacity decreases due to nonlinear noise caused by XPM. [49, 50]. Re-

cently, a Gaussian-noise (GN) based model has been reported [51–53] for DU fiber

optic systems. The accuracy of the GN model has been validated by experiments

[54]. Also, in fiber-optic systems with large pre-dispersion, the nonlinear distortion

behaves as decoupled modes in frequency domain [55].
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1.3 Compensation techniques for fiber dispersive

and nonlinear effects

Unlike direction detection in the receiver side of fiber-optic communication systems,

coherent detection technique makes it possible to obtain both the amplitude and

phase information of the complex signals. In a coherent receiver, the output signal

from the fiber optic link and the continuous wave (CW) signal from a local oscillator

are mixed together in a way such that the in-phase and quadrature components of

information signal can be detected using photo diodes. As a result, compensation

for distorted signals at the receiver side using DSP have advanced significantly in the

past decades.

Various schemes based on DSP were proposed to compensate for the distortion due

to the interplay of dispersion and nonlinearities in fibers. The commonly used tech-

nique to compensate for fiber impairment is digital back propagation (DBP) [56, 57].

The basic idea of DBP is as follows: Let the output of optical signal go into the DSP

unit. Virtual fibers with the loss, dispersive and nonlinear coefficient the opposite sign

of the transmission fiber are realized on the DSP unit, so as to undo the distortion

due to the transmission links. In DBP, nonlinear Schrödinger equation (NLSE), which

is used to describe optical pulse propagating in fibers, are solved numerically using

split-step Fourier scheme (SSFS). In the absence of noise, DBP can fully compensate

for both the dispersion and nonlinearity if the step size is small enough. In prac-

tice, the noise exists and the noise-nonlinearity interaction cannot be compensated

by DBP. Also, the small step size will increase the computational burden, although

it can increase the DBP performance. Li et al. applied DBP in WDM systems by
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introducing finite impulse response (FIR) filters for the dispersion step and a par-

allel architecture for real-time implementation [56]. Nonlinearity compensation can

be achieved by using two samples per symbol hardware sampling with up-sampling

in DSP. A system performance of 10×10 Gbit/s binary-phase-shift-keying (BPSK)

signals with 20 GHz channel spacing over 800 km has been demonstrated. Ip and

Kahn [57] proposed a noniterative asymmetric SSFS to solve the inverse NLSE, which

reduced the computational complexity. Their simulation results showed that it is a

reasonable compromise to set the step size equaling to span length when the symbol

rate is 10 Gsymbol/s. Mateo et al. analyzed the impact of XPM and FWM via DBP

[58]. In their work, XPM is compensated using coupled NLSE, and XPM+FWM

are compensated using total field NLSE. The results showed that the FWM is weak

relative to XPM, and DBP with coupled NLSE is sufficient to compensate for most

nonlinearities in long-haul systems with large accumulated dispersion. Mateo and Li

investigated an enhanced coupled NLSE to implement DBP for fully compensating

XPM and partially compensating FWM. In their work, the increased computational

cost is negligible as compared to that compensates for XPM only, and the scheme

is 20 times more efficient in terms of computational cost as compared to full FWM

compensation scheme [59]. Mateo et al. proposed an advanced split-step method for

DBP including the effect of the inter-channel walk off in the nonlinear step to com-

pensate for XPM. This scheme reduced the computational cost by a factor of 4 [60].

In Ref. [61], Du and Lowery presented an improved SSFS in DBP to compensate for

fiber impairment in a PDM-WDM systems. Manakov equations are used for DBP.

In the improved SSFS, new terms are added in the nonlinear step to deal with inter-

polarization mixing effects, and the effect of inter-channel walk off is included. Zhu

13



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

and Li proposed an efficient DBP algorithm for DM transmission systems, in which

the nonlinearity of many spans can be folded into one span. As a result, computa-

tional cost can be reduced significantly with negligible penalty [62]. In Ref. [63], Zhu

and Li proposed a dispersion-folded DBP in DM fiber-optic links. Their experimental

results show that the computational cost in a single channel system can be reduced

by 43, and the simulation results show that the computational cost in WDM can be

reduced by 39. In Ref. [64], Mateo et al. reported an improved SSFS for DBP in

PDM-WDM transmission systems. The governing equation used for DBP are derived

from Manakov equation. In this scheme, DBP can be implemented in a channel by

channel basis by including inter-channel nonlinear terms and new terms to calculate

the inter-polarization mixing effects.

DBP is a universal technique to compensate for deterministic fiber distortions,

which is based on solving NLSE numerically. In optical links, dispersion is considered

to be the dominant distortions, and nonlinearity can be treated as a small pertur-

bation. Therefore, analytical or semi-analytical models to solve NLSE can be used

in digital domain to undo the fiber impairments based on perturbation theory, and

it can substantially reduce the computational complexity. Mecozzi et al. analyzed

intrachannel nonlinearities of short optical pulses transmitting in dispersion compen-

sated transmission systems and they obtained closed-form expressions for the echo

pulses and the timing jitter based on a perturbative method [35]. In Ref. [44], Kumar

and Yang investigated a second-order perturbation technique for nonlinear effects in

a fiber-optic transmission system. They found that if the dispersion distance is much

smaller than the nonlinear distance, the first order perturbation technique works.

However, if the dispersion length equals or is larger than the nonlinear distance, the
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second-order perturbation technique can obtain a good result as compared to the

numerical results. Poggiolini et al. [51] and Carena et al. [52] have modeled the non-

linear interference noise (NLIN) in dispersion-uncompensated transmission systems

as excess additive Gaussian noise and its variance is calculated using a perturbation

technique. A semi-analytical expression is obtained and shown to provide good per-

formance. Dar et al. have studied the properties of NLIN in a DU transmission system

with large accumulated dispersion and found that the NLIN is not additive Gaussian,

but it depends on the transmitted data [47]. Mecozzi and Essiambre proposed a gen-

eral first-order perturbation theory of pulse propagation in fibers taking into account

the amplification and nonlinear effects. In their work, both intra- and inter- channel

nonlinear effects are considered. This scheme is in a good agreement as compared

to the numerical simulation results [49]. In Ref. [65], Tao et al. have developed a

multiplier-free predistortion algorithm operating at the symbol rate to compensate

for the intrachannel nonlinearity. They validated the algorithm by experiment and

found that it is comparable with the back propagation method, which has a higher

computational cost. Gao et al. demonstrated that the complexity can be reduced by

a factor up to 6.8 by combining symmetric electronic dispersion compensation and

root-raised-cosine pulse shaping [66]. In Ref. [67], Gao et al. reduced the number

of multiplications by jointly using perturbation-based nonlinear pre compensation at

the transmitter side and selective perturbation-based nonlinear post compensation at

the receiver side.

Also, signal distortions due to fibers can be compensated using optical techniques.

DCF and fiber Bragg grating (FBG) can be used to undo the dispersion in the trans-

mission fiber [68, 69]. In order to compensate for both the linear and the nonlinear
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effects, mid-point optical phase conjugation (OPC) are utilized to obtain the con-

jugate of the transmission signals in the middle point. Then, the fiber dispersion

and nonlinearity can be compensated at the second half of the transmission link, if

the power profile is symmetric [70, 71]. However, it is hard to realize the symmetric

power profile, which severely limits the performance of mid-OPC scheme. We note

that a scheme in which the OPC in the receiver is followed by the DBP has been

investigated before [72]. Recently, optical back propagation (OBP) techniques have

been developed to compensate for fiber dispersion and nonlinearities [73, 74]. The

basic idea of OBP is to solve the NLSE in a similar way of SSFS using optical devices

with the opposite signs of the loss, dispersive and nonlinear coefficients at the receiver

side. The main difficulty for OBP is the absence of the negative nonlinear coefficient

fibers. In Ref. [74], Kumar and Yang proposed a technique to realize an effective

negative nonlinear coefficient using two highly nonlinear fibers, which can be used to

implement OBP.

1.4 Main contributions of the thesis

This thesis mainly focuses on the modeling of signal propagation in fiber-optic links

and compensation of fiber dispersive and nonlinear effects using digital and optical

techniques.

To study signal propagation in fiber-optic communication systems, the NLSE

needs to be solved numerically. We investigated and compared various methods for

solving the NLSE. We developed a novel scheme by combining a local error method

with a minimum area mismatch method, which reduces the computational cost by a

factor up to 5.8 as compared with existing NLSE solvers.
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With the development of DSP techniques, DBP has been widely applied to com-

pensate for fiber dispersion and nonlinearity. Currently, the performance and ap-

plications of DBP are limited due to its high computational cost. We proposed a

simplified DBP algorithm by optimizing the DBP step sizes. The proposed scheme

increases the system reach from 4300 km to 5200 km when the number of DBP steps

is two.

We also studied OBP schemes to compensate for fiber dispersion and nonlineari-

ties. One OBP module consists of high-dispersion fibers (HDFs) and highly nonlinear

fibers (HNLFs). The fiber dispersion is compensated using the HDFs, and the non-

linearity is compensated using the HNLFs and HDFs. The simulation results show

that this OBP scheme outperforms the schemes using midpoint OPC and DBP with

the same step size. We further improved the OBP performance by designing the OBP

module based on the minimum area mismatch method. Another OBP scheme is de-

veloped using dispersion-decreasing fibers (DDFs) and optical amplifiers, which fully

compensates for the nonlinear effects. Numerical simulations show that the proposed

OBP scheme can enhance the system reach by 54% as compared to DBP.

Also, we derived an exact solution of NLSE for impulse input in the presence

of high pre-dispersion. We have obtained the nonlinear eigenmodes of the highly

pre-dispersed fiber-optic system which may be useful for the description of signal

propagation, and signal and noise interaction.
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Chapter 2

Comparison of split-Step Fourier

schemes for simulating fiber optic

communication systems

2.1 Introduction

The SSFS is widely used to solve the NLSE, which describes the evolution of optical

field envelope in optical fibers[22, 75–77]. In SSFS, dispersion and nonlinearity op-

erators are assumed to act independently over a small step size. A pair of FFTs is

used to solve the NLSE when there is only dispersion and/or loss and then, a phase

shift is introduced to account for the nonlinear effects when the dispersion is absent.

Recently DBP has drawn significant attention to mitigate the linear and nonlinear im-

pairments [56, 57, 60, 61, 78–80]. In DBP, the NLSE is solved in digital domain with

the reversed signs of dispersion, loss and nonlinear coefficients. Therefore, efficient

algorithms to solve the NLSE have become even more important.
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In solving the NLSE, smaller step size leads to results closer to the exact solution,

but it takes more computational time. Thus, there is a trade-off between the accuracy

and computational cost. The objective of this chapter is to compare the accuracy of

various SSFSs for the given computational cost. In the conventional approach [22],

the linear operator, D̂ takes into the account of dispersive and loss effects while the

nonlinear operator, N̂ takes into account only the Kerr effect. Instead, it is possible

to include the loss effect along with the Kerr effect in N̂ and we find that this scheme

has higher computational efficiency than the conventional approach. It is because

the path-averaged nonlinear phase shift is introduced which takes into account the

power attenuation due to fiber loss within the step while in the conventional scheme,

nonlinear phase shift is determined by the power at the beginning or the middle

of the step. If the losses were to vary with frequency, introducing losses into the

nonlinear operator would not be a simple task. For optical waveguides, the losses

change across the relevant spectrum of the optical signal and hence, this scheme is

not suitable. However, for optical fibers, over the simulation bandwidth, the loss is

nearly constant.

In the presence of fiber loss, the uniform step size is not optimum since the non-

linear phase shift accumulated in each step decreases exponentially with distance due

to loss. The step size distribution can be optimized using the local error method [77]

or minimum aera mismatch (MAM) [81–83] or the combination of both. Local error

method is a powerful technique to solve the NLSE, in which the step size is adaptively

chosen so as to bound the relative local error. In MAM, the step size distribution is

optimized by minimizing the area mismatch between the exponential curve and its

stepwise approximation. In this chapter, a scheme that combines the merits of local
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error method and MAM is introduced [84]. Using this approach, the computational

efficiency can be improved by a factor 2.5 to 5, and a factor 1.6 to 3.1 as compared

to the conventional and local error methods, respectively, when the global error is in

the range of practical interest.

2.2 Theory

2.2.1 Principle of the Split-Step Fourier scheme (SSFS)

The NLSE is used to describe the optical pulse propagation in fibers. When the pulse

width is large (> 5 ps) and the higher order dispersion and the delayed nonlinear

response are neglected, the NLSE can be written as

∂A

∂z
= −α

2
A− i

2
β2
∂2A

∂T 2
+ iγ|A|2A, (2.1)

where A is the complex field envelope, α, β2, and γ are loss coefficient, second order

dispersion parameter, and nonlinear coefficient. Eq. (2.1) has an analytical soliton

solution for a specific case when β2 < 0 . However, for most cases, it has to be solved

numerically. SSFS is extensively used to solve the NLSE numerically. To explain the

SSFS clearly, it’s convenient to write Eq. (2.1) in the following form:

∂A

∂z
=
[
D̂ + N̂(A)

]
A. (2.2)
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Here, D̂ and N̂ are the operators that account for dispersion and nonlinearity, re-

spectively. If we neglect the fiber loss,

D̂ = − i
2
β2

∂2

∂T 2
, N̂(A) = iγ|A|2. (2.3)

The cases when the fiber loss is taken into account will be discussed later. In fibers,

dispersion and nonlinearity act simultaneously, but they can be roughly treated as

being independent in a very small distance. If the unsymmetric split-step scheme is

employed, Eq. (2.2) has an approximate solution as [22]

A(z + h, T ) ≈ exp(hD̂) exp

 z+h∫
z

N̂(z′)dz′

A(z, T ). (2.4)

Fig. 2.1 illustrates the unsymmetric SSFS if the length of fiber is L. This technique

can be summarized as follows:

(i) Initial field A(0, t) is known. First, fiber dispersion (D̂) is ignored. The NLSE is

analytically solved with the initial signal A(0, t) and the output of a lossless, nonlinear

fiber Anl(h, t) can be calculated analytically.

(ii) Next, the nonlinear effects (N̂) is ignored, and the output of a lossless, linear fiber

is calculated using the Fourier transformation technique, and A(h, t) can be obtained.

(iii) A(2h, t) is calculated by repeating steps (i) and (ii) with A(h, t) as the initial

condition.

This process is repeated until z = L. The step size h should be chosen sufficiently

small so that the absolute value of the nonlinear phase shift accumulated over a

distance h should be much smaller than π.
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Figure 2.1: Unsymmetric split-step Fourier scheme for forward propagation.

In the symmetric scheme for a single step, Eq. (2.2) can be approximated as

A(z + h, T ) ≈ exp

(
h

2
D̂

)
exp

 z+h∫
z

N̂(z′)dz′

 exp

(
h

2
D̂

)
A(z, T ). (2.5)

Eq. (2.4) and Eq. (2.5) are not the exact solutions of Eq. (2.2) since D̂ and N̂ don’t

commute. Using Baker-Hausdorff formular [85], the dominant error term of Eq. (2.4)

is of the order h2, and the leading error of Eq. (2.5) is of the order h3. Since the sym-

metric scheme is more accurate than the unsymmetric one, it has been utilized in the

numerical calculation throughout this chapter. The operation exp
(
hD̂/2

)
A(z, T )

can be realized using a pair of FFTs and hence, the computational cost of a single-step

symmetric scheme is approximately twice that of the unsymmetric scheme. However,

after multiple steps, the computational cost is approximately the same. This can be

seen by dividing the fiber length into m steps and the optical field envelope after m

steps is obtained by concatenation of operators in Eq. (2.5), [22]

A(z +mh, T ) ∼= exp

(
h

2
D̂

)
exp

(
ihγ |A(z + (m− 1)h, T )|2

)
exp

(
hD̂
)

× exp
(
ihγ |A(z + (m− 2)h, T )|2

)
...× exp

(
hD̂
)

× exp
(
ihγ |A(z, T )|2

)
exp

(
h

2
D̂

)
A(z, T ).

(2.6)
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To evaluate Eq. (2.6), it requires only (m+1) FFT pairs since the dispersion operators

of the neighboring steps are combined while the unsymmetric scheme requires m FFT

pairs. Throughout this chapter, the dispersion operators of the neighboring steps are

combined whenever it is feasible, which reduces the computational cost by a factor

of 2.

When the fiber loss is included, there are two options. It could be included with

dispersion or with nonlinearity. For the first case (Sections 2.2.2 and 2.2.4), Eq. (2.3)

is modified as

D̂1 = − i
2
β2

∂2

∂T 2
− α

2
, N̂1(A) = iγ|A|2. (2.7)

For the latter case, we have (Sections 2.2.3 and 2.2.5),

D̂2 = − i
2
β2

∂2

∂T 2
, (2.8)

N̂2(A) = iγ|A|2 − α

2
. (2.9)

The efficiency of the scheme depends on whether the loss is included with dispersion

or nonlinearity. Also, the step size distribution can affect the scheme performance. In

the following subsections, several schemes of SSFS to solve the NLSE will be reviewed

and a scheme based on MAM and local error method will be introduced.

2.2.2 Uniform step size, loss with dispersion (Scheme Ia)

The simplest way to realize the SSFS is to introduce uniform step size, in which the

accuracy can be improved by selecting a smaller step size. In scheme Ia, the loss is

combined with dispersion (see Eq. (2.7)). Using the rectangular rule for the integrals
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in Eqs. (2.4) and (2.5), they become

A(z + h, T ) ≈ exp
(
hD̂1

)
exp

(
ihγ |A(z, T )|2

)
A(z, T ), (2.10)

A(z + h, T ) ≈ exp

(
hD̂1

2

)
exp

(
ihγ

∣∣∣∣Al1(z +
h

2
, T

)∣∣∣∣2
)

exp

(
hD̂1

2

)
A(z, T ),

(2.11)

where Al1(z + h/2, T ) = exp
(
hD̂1/2

)
A(z, T ).

For a certain nonlinear phase rotation φNL, the step size is determined by

h =
φNL

γPpeak
, (2.12)

where Ppeak is the peak power of the optical signal launched to a fiber span. The

same step size is used in the following steps within the span.

Using the Baker-Hausdorff formular, the leading error term is found to be (see

Appendix A)

EI =

(
i

24
β2γ

2|Al1|4
∂2

∂T 2
− i

12
β2γ

2|Al1|2
∂2

∂T 2
|Al1|2 −

i

48
β2

2γ
∂2

∂T 2
|Al1|2

∂2

∂T 2

+
i

96
β2

2γ
∂4

∂T 4
|Al1|2 +

i

96
β2

2γ|Al1|2
∂4

∂T 4
+

i

24
β2γ

2 ∂2

∂T 2
|Al1|4

)
h3A(0, T ).

(2.13)

2.2.3 Uniform step size, loss with nonlinearity (Scheme IIa)

This scheme is almost the same as scheme Ia except that the fiber loss is included in

N̂ (see Eqs. (2.8) and (2.9)). Let us first ignore the operator D̂ in Eq. (2.2). Using

Eq. (2.9) for N̂ , we find

dA

dz
=
(
iγ|A|2 − α

2

)
A. (2.14)
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Let

A = |A|eiθ. (2.15)

Substituting Eq. (2.15) in Eq. (2.14) and separating the real and imaginary parts,

we find

d|A|
dz

= −α
2
|A|, (2.16)

dθ

dz
= γ|A|2. (2.17)

Solving Eqs. (2.16) and (2.17), we obtain

A(z + h, T ) = exp
(
−α

2
h+ iγheff |A(z, T )|2

)
A(z, T ), (2.18)

where

heff =
1− exp(−αh)

α
. (2.19)

Therefore, Eqs. (2.4) and (2.5) are modified as

A(z + h, T ) ≈ exp
(
hD̂2

)
exp

(
−α

2
h+ iγheff |A(z, T )|2

)
A(z, T ), (2.20)

A(z+h, T ) ≈ exp

(
h

2
D̂2

)
exp

(
−α

2
h+ iγheff

∣∣∣∣Al2(z +
h

2
, T

)∣∣∣∣2
)

exp

(
h

2
D̂2

)
A(z, T ),

(2.21)

where Al2 (z + h/2, T ) = exp
(
hD̂2/2

)
A(z, T ).
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For this scheme, the leading error is found to be (Appendix A),

EII =

(
i

24
heffβ2γ

2|Al2|4
∂2

∂T 2
− i

12
heffβ2γ

2|Al2|2
∂2

∂T 2
|Al2|2 −

i

48
hβ2

2γ
∂2

∂T 2
|Al2|2

∂2

∂T 2

+
i

96
hβ2

2γ
∂4

∂T 4
|Al2|2 +

i

96
hβ2

2γ|Al2|2
∂4

∂T 4
+

i

24
heffβ2γ

2 ∂2

∂T 2
|Al2|4

)
hheffA(0, T ).

(2.22)

As it will be shown later, given the same step size, the performance of the scheme

when loss is clubbed with nonlinearity is better than that when loss is with dispersion,

especially when the field change due to loss within the interval [z, z + h] is larger than

that due to dispersion. This is because the operator N̂2 in Eq. (2.21) represents the

mean nonlinear phase shift in the interval [z, z + h] taking into account the power loss

in that interval. In contrast, the operator N̂1 in Eqs. (2.10) or (2.11) includes only the

power |A(z, T )|2 at the beginning or the middle of the step and it ignores the nonlinear

phase variations within the step due to fiber loss. Although it is possible to set up

an iterative procedure to approximate the integrals in Eqs. (2.4) and (2.5) instead of

the rectangular rule [22], we found that the computational efficiency (computational

cost for the given accuracy) is lower for the schemes based on the iterative procedure.

2.2.4 Variable step size, loss with dispersion (Scheme Ib)

The disadvantage of scheme Ia is that the nonlinear phase accumulated over a step

decreases with distance due to fiber loss and the step size determined by the fiber

launch power (see Eq. (2.12)) is too small for steps closer to the end of the span. If we

ignore the pulse broadening due to dispersion, the peak power decreases exponentially
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with distance. So, Eq. (2.12) is modified as

hm+1 =
φNL

γPpeake−αzm
, m = 0, 1, 2, ... (2.23)

where hm is the step size at zm, z0 = 0 and zm =
∑m

k=1 hk. In this scheme, loss is

combined with dispersion and, D̂ and N̂ are given by Eqs. (2.7).

2.2.5 Variable step size, loss with nonlinearity (Scheme IIb)

In this scheme, the selection of step size is the same as that of scheme Ib. In each

step, loss is combined with nonlinearity, and D̂ and N̂ operators are given by Eqs.

(2.8) and (2.9), respectively. This scheme brings both the advantages of loss with

nonlinearity and an efficient step size distribution.

2.2.6 Local-Error method (scheme III))

The method developed in Ref. [77] is summarized as follows. Suppose the field A at

z is known. The field at z + 2h can be obtained using Eq. (2.5) as

Ac(z+ 2h) = exp
(
hD̂1

)
exp

 z+2h∫
z

N̂1(z′)dz′

 exp
(
hD̂1

)
A(z) = Aexact(z+ 2h) + e1.

(2.24)

For the symmetric SSFS, the error e1 is of the order (2h)3 and hence, Eq. (2.24) may

be written as

Ac(z + 2h) = Aexact(z + 2h) + C (2h)3 +O
(
h4
)
, (2.25)

where Ac(z+2h) and Aexact(z+2h) represent the coarse and exact solutions at z+2h,

respectively, and C is a constant. The solution at z + 2h can also be obtained by
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using Eq. (2.5) twice with a step size of h, which we call the fine solution Af ,

Af (z + 2h)=exp

(
h

2
D̂1

)
exp

 z+2h∫
z+h

N̂1(z′)dz′

exp
(
hD̂1

)
exp

z+h∫
z

N̂1(z′)dz′

exp

(
h

2
D̂1

)
A(z)

=Aexact(z + 2h) + e2,

(2.26)

where the error e2 is of the order 2h3. Eq. (2.26) may be rewritten as

Af (z + 2h) = Aexact(z + 2h) + 2Ch3 +O
(
h4
)
. (2.27)

By taking appropriate linear combination of Ac and Af , the term proportional to h3

can be eliminated so that the leading order error is O (h4), i.e.,

A4(z + 2h) =
4

3
Af (z + 2h)− 1

3
Ac(z + 2h) = Aexact(z + 2h) +O

(
h4
)
. (2.28)

A4(z + 2h) is the solution at z + 2h with a higher accuracy and used as the input of

the next step. The local error in the coarse solution relative to the fine solution is a

measure of the relative local error, defined as

e =
‖Af (z + 2h)− Ac(z + 2h)‖2

‖Af (z + 2h)‖2
, (2.29)

and ‖ · ‖ is the norm that equals to
(∫
| · |2dt

)1/2
. The main principle of this method

is that, given a target local error etarget, if the current relative local error is larger

than the target error, the next step size should be reduced accordingly and vice

versa. Although the local-error method introduces additional computational cost
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while calculating the local error, it’s still a very efficient method to control the local

error in a certain range, especially when the target global error is very small.

2.2.7 MAM combined with local-error method (scheme IV)

In order to further increase the efficiency, we develop a scheme by roughly bounding

the local error of the first step, fixing the total number of steps M per span, and

then using an optimal distribution of the dispersion operator and nonlinear operator

in SSFS [84]. The optimal step size distribution has an elegant feature that the local

error within a fiber span has a relatively less variance, so that the local error of the

first step is a rough estimate of those of the following steps.

Before describing this scheme in detail, the principle and technique to optimize

the D̂ and N̂ operator will be presented. To explain the method more clearly, it is

better to transform the NLSE into a lossless form by the transformation

A(z, T ) = e−αz/2U(z, T ) (2.30)

to obtain

∂U

∂z
= − i

2
β2
∂2U

∂T 2
+ iγ′|U |2U, (2.31)

where

γ′ = γ exp(−αz). (2.32)

γ′ is the effective nonlinear coefficient that exponentially decreases with the distance.

In the numerical methods like SSFS, the efficient way is to divide the fiber into

several segments with fixed dispersion and effective nonlinear coefficients. As a result,

the effective nonlinear coefficient is an approximated stepwise nonlinearity-decreasing
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curve instead of an ideal exponential one. It is easy to see from Fig. 2.2(a) that

because of the limited number of steps, there is a mismatch between the area under

the exponential curve (solid line) and its stepwise approximation (dashed line) and

the total absolute area mismatch is χ =
∑3

j=1(Aj + A′j). If the area mismatch is

minimized, the stepwise curve is expected to provide the closest approximation to

the ideal exponential curve. A similar idea was investigated in the context of soliton

communications to approximate the exponentially decreasing dispersion profile by

stepwise decreasing profile with an additional constraint of soliton average condition

[82]. If the total number of steps M is sufficiently large, these two curves will almost

coincide. Define the nonlinear multiplication factor Kj, j = 1, 2, ..,M , for each step,

and the stepwise effective nonlinear coefficient is

γ′j = Kjγ. (2.33)

Fig. 2.2(a) shows the ideal exponential curve and its stepwise approximation (Kj)

as a function of distance for M = 3, and Fig. 2.2(b) shows a more general case for

the kth step. The split-step algorithm may be written as

U(z + lj) = exp

(
lj
2
D̂2

)
exp

(
iKjγ

∣∣∣∣Ul(z +
lj
2

)∣∣∣∣2 lj
)

exp

(
lj
2
D̂2

)
U(z), (2.34)

where Ul (z + lj/2) = exp
(
ljD̂2/2

)
· U(z). We have 2M − 1 adjustable parameters,

namely, K1, K2, . . . ,KM and l1, l2, . . . , lM−1. The parameters could be so chosen that

the global error is minimum. Alternatively, these parameters can be determined using

the MAM technique [81–83]. In Section 2.3, it will be shown that the optimum step

size determined using the minimum area mismatch technique minimizes the global
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Figure 2.2: Stepwise approximation of the effective nonlinear coefficient. (a) The case
when the number of steps per span M = 3. (b) The general case. Aj and A′j denote
area mismatch of the jth section.

error, for the case of M = 2. In Fig. 2.2(a), the absolute area mismatch between

the area under the ideal exponential curve (solid line) and its stepwise approximation

(dashed line) is χ =
∑3

j=1

(
Aj + A′j

)
with Aj > 0 and A′j > 0. lj and Kj are so chosen

that the total area under the exponential curve should be the same as that under its

stepwise approximation curve and the area mismatch χ should be minimum. So, we

have
La∫
0

exp(−αz)dz =
M∑
j=1

Kjlj. (2.35)

Eq. (2.35) states that the total nonlinear phase shift accumulated over a span of

length La should be equal to the sum of the nonlinear phase shifts in each step lj.

This is an optimization problem with 2M −2 parameters. The number of parameters

can be reduced by a factor of 2 if we impose a constraint that Kj is the mean of
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exponential function in the segment lj, i.e.,

Kj =
1

lj

zj∫
zj−1

exp (−αz) dz =
exp(−αzj−1)− exp(−αzj)

αlj
, (2.36)

where

zj =

j∑
k=1

lk, (2.37)

z0 = 0, zM = La, and La is the fiber span length. Now, we consider the optimization

problem with M − 1 unknown parameters (zj, j = 1, 2, . . . ,M − 1 ) with the condi-

tion that χ should be minimum. We solve this problem using the steepest descent

algorithm [86]. In Fig. 2.2(b), let x be the distance at which the exponential curve

and its stepwise approximation line intersect. So, we have

Kk = exp(−αx). (2.38)

The area mismatch Ak and A′k are given by

Ak =
e−αzk−1 −Kk

α
−Kk(x− zk−1), (2.39)

A′k = Kk(zk − x)− Kk − e−αzk
α

. (2.40)

Using Eq. (2.36), we have Ak = A′k.

We randomly choose an initial set of zk, k = 1, 2, . . . ,M−1, and iteratively update

the value of every zk towards the inverse gradient direction until the optimum points

are reached. So, taking the derivative of the total mismatch area χ with respect to
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zk, we find

∂χ

∂zk
= 2

(
InKk

α
+ zk−1

)[
e−αzk

zk − zk−1

− e−αzk−1 − e−αzk
α(zk − zk−1)2

]
+2

(
InKk+1

α
+ zk

)[
− e−αzk

zk+1 − zk
+
e−αzk − e−αzk+1

α(zk+1 − zk)2

]
− 2e−αzk + 2Kk+1.

(2.41)

Then use the following iterative procedure to update zk,

z
(n+1)
k = z

(n)
k −

∂χ

∂zk
∆k, k = 1, 2, . . . ,M − 1 (2.42)

where z
(n)
k is the value of zk in the nth iterative step and ∆k is the step size of the

steepest descent algorithm. Once the optimum values of zk are found, Eqs. (2.36)

and (2.37) can be used to obtain the best distribution of the nonlinear multiplication

factor Kj and the segment length lj.

The constraint of Eq. (2.36) is not really essential. If we do not impose this con-

straint, computational complexity of the steepest descent algorithm increases roughly

by a factor of 2. However, the improvement in accuracy (in terms of global error)

is only marginal and hence, the simulation results of Section 2.3 are obtained by

imposing the constraint of Eq. (2.36).

The steepest descent algorithm converges quickly and Table 2.1 shows the look-up

table for the optimum segment lengths when α = 0.2 dB/km and La = 80 km. One

of the advantages of this method is that the optimum segment lengths neither depend

on the launch power nor on the nonlinear coefficient. Once the look-up table such as

that shown in Table 2.1 is made for a particular fiber type, it can be used for a range

of launch powers and other system parameters. Using Eq. (2.34), the optical field at
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Table 2.1: Look-up table for the optimal step size distribution

Length (km) M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

l1 24.4 14.5 10.4 8.06 6.59 5.58 4.84
l2 55.6 21.8 13.6 9.88 7.77 6.40 5.45
l3 — 43.7 19.8 12.8 9.46 7.51 6.23
l4 — — 36.3 18.1 12.1 9.08 7.27
l5 — — — 31.1 16.8 11.5 8.73
l6 — — — — 27.3 15.6 10.9
l7 — — — — — 24.3 14.6
l8 — — — — — — 22.0

Parameters: α = 0.2 dB/km, La = 80 km.

the end of the link can be calculated for the given M . However, M is undetermined.

To relate M with the desired accuracy, we introduce a technique that combines the

local error method with the MAM.

Given an initial M and a target local error etarget, calculate the relative local error

for the first step e1 by Eq. (2.29). If e1 is larger than 10etarget, M will be updated

by 2M . Else if e1 is larger than etarget and less than or equaling to 10etarget, then

M will be replaced by d21/3Me. Here, dxe rounds the element of x to the nearest

integer towards infinity. If e1 is less than or equal to etarget/10, M will be decreased

to bM/21/3c, where bxc rounds the element of x to the nearest integer towards minus

infinity. Finally, if e1 is in the target range which is (etarget/10, etarget], that M will

be used to find the optimal parameters in the look-up table, which will be used to

model the pulse propagation.

In this scheme, the local error for each step will not have a large fluctuation since

the step size distribution is optimized for every M . As a result, we can roughly

bound the local error by controlling that of the first step. The implementation for

this scheme is different from the local-error method in that we find the total number
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of steps as well as the step size distribution at the very beginning, instead of adjusting

the step size along the fiber length, which saves the computational cost. Since we can

combine the dispersion operator (the same way as in Eq. (2.6)) of the neighboring

steps, the computational cost can further be reduced by a factor of 2. We will discuss

the simulation results in the later subsection. Since we do not make any assumptions

about the system configuration, or the modulation format of the signal, this scheme

is system independent and can be widely used for various cases with high efficiency.

2.3 Comparison of schemes

Figure 2.3: Schematic of a fiber-optic transmission system.

In this subsection, we compare the performance of the different schemes described

in Section 2.2 of the SSFS. The system schematic is shown in Fig. 2.3, which includes

a transmitter, a fiber-optic link consisting of N spans of fibers and amplifiers, and

a chromatic dispersion (CD) compensator. The amplifier compensates for the fiber

loss exactly, without adding noise. Before implementing the schemes, we simulate a

signal propagation in the fiber by the split-step method using a very small step size

with the nonlinear phase accumulated per step of 0.00001 radians, such that the fiber

output is very close to the exact solution of NLSE. This output is the reference signal

with which we compare the outputs of various schemes. Then, using the same fiber

37



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

input signal as that used to obtain the reference signal, NLSE is solved by different

schemes, and the accuracy and the computational cost are compared. To measure

the accuracy, we define the global error by

eglobal =
‖An − Aref‖2

‖Aref‖2
, (2.43)

where An is the numerical result for scheme n, and Aref is the reference signal. Note

that we use the square of the norm instead of the norm itself in Eq. (2.43). We use

the number of FFTs as a measure of computational cost since the computational time

is roughly proportional to the number of FFTs.

At first, a fiber-optic system shown in Fig. 2.3 is simulated for 32 quadrature

amplitude modulation (QAM) at a symbol rate 25 Gbaud. The following parameters

are used throughout this chapter unless otherwise specified. A random symbol se-

quence consisting of 8192 raised-cosine pulses with a roll-off factor of 0.8 is launched

to the fiber. The fiber-optic link consists of 10 fiber spans, each 80 km long, and 10

amplifiers. The parameters of the fibers are as follows, the loss coefficient α = 0.046

km−1, the dispersion parameter β2 = 5 ps2/km, and the nonlinear coefficient γ = 2.2

W−1km−1. Different schemes in Section 2.2 were employed to carry out the SSFS.

After that, a CD compensator is introduced right after the fiber link. Finally, the

global error of each scheme is calculated using Eq. (2.43).

Table 2.2 shows the error in a single step for 10 Gbaud and 25 Gbaud systems,

respectively. When the loss is combined with nonlinearity (scheme IIa or b), the

single-step error is significantly lower for 10 Gbaud as compared to the case when the

loss is combined with dispersion (scheme Ia or b). However, for 25 Gbaud, scheme

II has a lower error only when h < 40 km. When h is larger, scheme II does not
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perform better because of larger variation of the optical field within the step size due

to dispersion.

Table 2.2: Single-step error versus step size.

h (km)
10 Gbaud 25 Gbaud

Single-step error
(scheme I)

Single-step error
(scheme II)

Single-step error
(scheme I)

Single-step error
(scheme II)

0.5 1.29e-15 3.43e-17 5.38e-15 4.69e-15
1 8.05e-14 2.15e-15 3.39e-13 2.96e-13
2 5.01e-12 1.33e-13 2.17e-11 1.89e-11
5 1.05e-9 2.85e-11 5.07e-9 4.48e-9
10 5.45e-8 1.45e-9 2.86e-7 2.50e-7
20 2.22e-6 6.10e-8 9.41e-6 7.76e-6
25 6.87e-6 1.88e-7 2.16e-5 1.77e-5
30 1.68e-5 4.59e-7 3.94e-5 3.57e-5
40 6.12e-5 1.73e-6 1.02e-4 1.19e-4
50 1.53e-4 4.46e-6 2.26e-4 2.74e-4
60 3.07e-4 9.79e-6 4.14e-4 4.34e-4

Fig. 2.4(a) and 2.4(b) show the computational cost (in units of number of FFTs)

as a function of the global error for schemes Ia, IIa, Ib and IIb when the fiber launch

power is 0 dBm and 3 dBm, respectively. As can be seen, when the global error is

greater than 10−7, scheme IIb (loss combined with nonlinearity and variable step size)

is the most efficient scheme of the four schemes. When the global error is large, it

corresponds to small number of steps. In this case, uniform step size is not a good

choice because the nonlinear phase shift accumulated in a low power region is small

and the step size is unnecessarily large wasting the computational resources. When

the global error is 10−5, the number of FFTs required for scheme IIb is reduced by

a factor of 2 as compared to scheme Ia when the launch power equals to 0 dBm.

However, when the global error is less than 10−7, scheme IIa (loss combined with

nonlinearity and uniform step size) is the most efficient scheme of the four schemes
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Figure 2.4: Plot of the number of FFTs vs global error of the 32QAM system at 25
GBaud for the schemes Ia, IIa, Ib and IIb. (a) 0 dBm and (b) 3 dBm.
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Figure 2.5: Area mismatch vs l1 and global error vs l1 for the case when M = 2,
launch power = 0 dBm.
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and it is marginally better than scheme IIb. In either case, schemes in which loss is

combined with nonlinearity (schemes IIa and b) outperform the schemes in which the

loss is combined with dispersion (schemes Ia and b). For the simulation of fiber-optic

transmission system, the region of most practical interest corresponds to a global error

in the range of 10−8 - 10−2. Typically, practical power of telecom systems range from

−6 dBm to 3 dBm depending on the reach and modulation format. The purpose of

simulations with higher power (3 dBm) is to evaluate the effect of stronger nonlinear

effect in various schemes. Comparing Figs. 2.4(a) and 2.4(b), we find that the scaling

of error is quite similar.

Fig. 2.5 shows the area mismatch and global error (calculated using Eq. (2.43))

as a function of l1, for M = 2. As can be seen, the value of l1 that minimizes the area

mismatch (χ) also corresponds to minimum global error.

Next the performance of the local error method (scheme III) and MAM combined

with local error method (scheme IV) are considered. The results are shown in Figs.

2.6(a) and 2.6(b). Scheme III gives a better performance than the schemes Ia, IIa,

Ib and IIb when the global error is less than 10−8, and it has a flatter slope, which

means the required additional computational cost to achieve a smaller error is the

minimum. However, when the global error is large (> 10−8 ), the local error method is

not efficient. Similar results are found in Ref. [77] in which the efficiency of the local

error method is comparable to the other schemes when the global error is large. Figs.

2.6(a) and 2.6(b) show that the MAM combined with local error method is the most

efficient one in that, for obtaining the same error, it needs the least number of FFTs.

In Fig. 2.6(a), when the global error is 10−8, the number of FFTs needed for scheme

Ia is 4.4 times that of scheme IV, and the number of FFTs required for scheme III is
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Figure 2.6: Plot of the number of FFTs vs global error of the 32QAM system for the
schemes I-IV. (a) 0 dBm and (b) 3 dBm.
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3.1 that of scheme IV. When the global error is 10−6, the number of FFTs needed for

scheme Ia is 2.7 times that of scheme IV and the number of FFTs required for scheme

III is 2.5 times that of scheme IV. Comparing Fig. 2.6(a) and 2.6(b), we find that the

scheme that combines MAM with the local error method is the most efficient scheme

even at higher launch power. Fig. 2.7 shows the computational time as a function of

the global error. Comparing Fig. 2.6 and Fig. 2.7, we find that the number of FFTs

is a good measure of the computational cost.

Fig. 2.8 shows the relative local error as a function of distance when the launch

power is 0 dBm and the number of steps per span is 5. Dashed and solid lines in Fig.

2.8 show the results for the case of uniformly distributed step size (scheme Ia) and

an optimally distributed step size using MAM (scheme IV), respectively. Both curves

show a periodic characteristic due to the system configuration. When the uniformly

distributed step size is utilized, the local error is the maximum at the beginning and

decreases with distance in each span. This is because the accumulated nonlinear

phase per step decreases exponentially with distance in each span due to fiber loss

and, smaller accumulated nonlinear phase leads to a more accurate result. In the

case when the step size is distributed through the MAM technique, the nonlinear

phase accumulated is optimized such that the local error will be smaller and has less

variation. From Fig. 2.8, we see that the local error fluctuation for scheme IV is

about one or two orders of magnitude smaller than that for scheme Ia.

As a next example, we have simulated a fiber-optic system based on quadrature

phase shift keying (QPSK). The system configuration and all the parameters of the

system are the same as the previous ones. Fig. 2.9 shows the number of FFTs as a

function of global error for all the schemes. Fig. 2.9(a) and Fig. 2.9(b) are obtained
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Figure 2.7: Plot of the time vs global error of the 32QAM system for the schemes
I-IV. (a) 0 dBm and (b) 3 dBm.
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Figure 2.8: Local error as a function of distance for schemes Ia and IV for 32 QAM
system, when the launch power is 0dBm and the number of steps per span M = 5.
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Figure 2.9: Plot of the number of FFTs vs global error of the QPSK system for the
schemes I-IV. (a) 0dBm and (b) 3dBm.

47



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

when the launch power is 0 dBm and 3 dBm, respectively. In Fig. 2.9(a), when the

global error is 10−8, numbers of FFTs needed for scheme Ia and scheme III are 5.8

and 2.5 times that of scheme IV, respectively. When the global error is 10−6, the

numbers of FFTs required for scheme Ia and scheme III are 3.7 and 2.4 times that

of scheme IV, respectively. Similar results are obtained when the launch power is 3

dBm (Fig. 2.9(b)).

2.4 Conclusion

In this chapter, we have studied various schemes using SSFS to solve the NLSE

for a fiber-optic system based on two different modulation formats and compared

their performances. A scheme combining the local error method with the method

based on MAM is introduced. The optimum step size for the given number of steps

(M) is found by minimizing the area mismatch between the exponential curve and its

stepwise approximation. The steepest descent algorithm is used for this optimization.

The number of steps to have the desired accuracy is determined using the local error

method. The advantage of this scheme is that the local error is not calculated at each

step which saves the computational cost. The step size distribution is pre-determined

by the steepest descent algorithm so that the dispersion operators of the neighboring

steps can be combined. The simulation results show that this scheme outperforms

the other schemes.

In general, the schemes in which the fiber loss is combined with nonlinearity have

higher computational efficiency than the schemes in which the fiber loss is combined

with dispersion. When the global error is large (> 10−7 ), the schemes with variable

step size outperform the schemes with uniform step size. As for the local error method,
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it has a flatter slope and outperforms the schemes with uniform or variable step size

distribution, especially when the global error is very small.
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Chapter 3

Digital back propagation with

optimal step size for polarization

multiplexed transmission systems

3.1 Introduction

DBP is now widely used to compensate for fiber distortions due to linear and nonlinear

effects, in which the signs of loss, dispersion and nonlinear coefficients in DBP are

opposite of those of the transmission fiber [58, 61, 78, 79, 87–89]. In DBP, SSFS

is used to solve the NLSE in digital domain and it provides significant performance

improvement if the step size is sufficiently small. In practice, the choice of step

size is usually determined by the trade-off between performance and implementation

complexity. In [79], the step size used to solve the NLSE is chosen equal to the

amplifier spacing and in [58, 78], sub-amplifier spacing step size is chosen, but the

step size is uniform. In this chapter, a DBP scheme with non-uniform step size
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based on MAM is investigated [83]. For the ideal compensation of dispersion and

nonlinearity, the power in the virtual fiber should increase exponentially with distance

if the nonlinear coefficient is constant or equivalently the nonlinear coefficient should

increase exponentially with distance if the power is fixed. This ideal exponential

profile can be approximated by a stepwise increasing profile. The nonlinear coefficients

of these virtual fiber sections (or steps) are obtained by minimizing the area mismatch

between the ideal exponential profile and its stepwise approximation. The dispersion

and nonlinear coefficients of each of the virtual fiber section are optimized using the

Lagrange function. For the given number of virtual fiber sections, the MAM scheme

outperforms the uniform spacing scheme without additional computational cost. In

[61], the step size is chosen larger than the amplifier spacing so as to lower the

computational complexity and power consumption. However, the method proposed

in this chapter is not valid for such cases.

3.2 Digital back propagation theory

Let us first consider a single-span system with constant fiber dispersion, nonlinear

and loss coefficients. The evolution of the field envelope in a fiber is described by the

NLSE (see details in Chapter 2),

∂q

∂z
= (D +N)q, (3.1)

where D denotes the fiber dispersion effect given by Eq. (2.8), and N denotes the

nonlinear and loss effects given by Eq. (2.9). The solution, q(t, L) of Eq. (3.1) can
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be written as:

q(t, L) = Mq(t, 0), (3.2)

where

M = exp

{∫ L

0

[N(t, z) +D(t)]dz

}
, (3.3)

is the tranfer function of the transmission fiber, and L is the total transmission length.

To compensate for the fiber distortions due to fiber dispersion and nonlinearity, DBP

is introduced after the transmission link. If the transfer function of DBP is inverse

of that of the fiber optic link, the initial field envelope can be recovered. Multiplying

Eq. (3.2) by M−1 (transfer function of DBP) on both sides, we find

qDBP,out(t) = M−1q(t, L) = q(t, 0), (3.4)

where

M−1 = exp

{
−
∫ L

0

[N(t, z) +D(t)]dz

}
(3.5)

In Eq. (3.4), qDBP,out(t) represents the signal after DBP, and q(t, L) represents the

received field envelope which is distorted due to fiber dispersion and nonlinear effects.

Eq. (3.4) with M−1 given by Eq. (3.5) is equivalent to solving the following partial

differential equation,

∂qb
∂z

= −[N +D]qb, (3.6)

with the initial condition qb(t, 0) = q(t, L). Solving Eq. (3.6) is similar to let the

pulse propagate reversely, so this is referred to as back propagation. Eq. (3.6) may

be rewritten as

∂qb
∂z

= [Nb +Db]qb, (3.7)
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with qb(t, 0) ≡ q(t, L) and

Db = −D = i
β2

2

∂2

∂t2
, (3.8)

Nb = −N = −iγ|qb|2 +
α

2
. (3.9)

Eq. (3.7) is NLSE with reversed signs of dispersion, loss and nonlinear coefficients,

which can be solved in digital domain to compensate for fiber distortions. Fig. 3.1

illustrates the forward propagation of signals in fibers and backward propagation

using virtual fibers in digital domain.

Tx.
Rx.

front end

( ,0)q t ( , )q t L

fiber 2, ,  
2, ,    

DBP

virtual fiber

qb(t,0)= q(t,L) qb(t,L) = q(t,0) ,out ( )DBPq t

Figure 3.1: Propagation in a single-span fiber (Forward propagation) and digital back
propagation. Tx: transmitter, Rx: receiver.

Eq. (3.7) can be solved numerically using the SSFS described in Chapter 2

[22]. Let us take the symmetric split-step scheme as an example. The received

field q(t, L) = qb(t, 0). We need to find qb(t,∆z) which corresponds to q(t, L −∆z).

The operator M−1 in this propagation step can be approximated as

M−1 = exp

{∫ ∆z

0

[Nb(t, z) +Db(t)]dz

}
∼= exp

[
Db(t)

∆z

2

]
exp

{∫ ∆z

0

[Nb(t, z)]dz

}
exp

[
Db(t)

∆z

2

]
.

(3.10)

And

qb(t,∆z) = M−1qb(t, 0) ∼= exp

[
Db(t)

∆z

2

]
exp

[ ∫ ∆z

0

Nb(t, z)dz

]
qlb

(
t,

∆z

2

)
, (3.11)
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where

qlb

(
t,

∆z

2

)
= exp

[
Db(t)

∆z

2

]
qb(t, 0). (3.12)

The linear solution qlb
(
t, ∆z

2

)
is obtained using fiber linear transfer function [22]

qlb

(
t,

∆z

2

)
= F−1

[
q̃lb

(
ω,

∆z

2

)]
, (3.13)

where

q̃lb

(
ω,

∆z

2

)
= q̃lb(ω, 0)exp

[
−iβ2

∆z

2
ω2/2

]
, (3.14)

q̃lb(ω, 0) = F
[
qlb(t, 0)

]
, (3.15)

F and F−1 are the Fourier transformation and inverse Fourier transformation, re-

spectively. When only taking into account of the nonlinear operator in Eq. (3.11),

we have

∂qb
∂z

= Nbqb =
(
−iγ|qb|2 +

α

2

)
qb, (3.16)

with initial field of Eq. (3.16) being qlb
(
t, ∆z

2

)
. Following the procedure in Section

2.2.3, the solution of Eq. (3.16) is

qnlb (t,∆z) = qlb

(
t,

∆z

2

)
exp

(
−iγ∆zeff

∣∣∣∣qlb(t, ∆z

2

)∣∣∣∣2 + α∆z

)
, (3.17)

where

∆zeff =
exp(α∆z)− 1

α
. (3.18)

The leftmost term corresponding to dispersion in Eq. (3.11) can be calculated in the

same way as in Eq. (3.13).

Fig. 3.2 shows the propagation in a N-span fiber-optic system, which consists of

54



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

2,1 1 1, ,  

q(t,0)
Tx.

Rx.

front end

Fiber 1 Amp. 1

2,2 2 2, ,  
G2

Fiber 2 Amp. 2

2, , ,N N N  
GN

Fiber N Amp. N

G1

Figure 3.2: Propagation in a N-span fiber optic system. Tx: transmitter, Rx: receiver.

2,1 1 1, ,    

virtual fiber N

2, 1 1 1, ,N N N      
2, , ,N N N    

Rx.

front end
Loss

1/GN

Loss

1/GN-1

Loss

1/G1

virtual fiber N-1 virtual fiber 1

Decision

circuit

DBP

Figure 3.3: Digital back propagation for a N-span fiber-optic system. Rx: receiver.

an amplifier in each span. In DBP, shown in Fig. 3.3, amplifiers with Gain Gn are

replaced by attenuation with loss 1/Gn. Also, the parameters of the virtual fiber in

DBP are set to have the opposite signs of those of the TF. Note that the distortions

results from the first fiber span will be compensated for in the last span of DBP, and

the impairments of the second span of TF will be compensated in the last but two

span in DBP. Although the digital back propagation can compensate for deterministic

(and bit-patter dependent) nonlinear effects, it can not undo the impact of ASE and

nonlinearity-ASE coupling[27].

3.3 DBP with optimal step sizes

In polarization division multiplexing (PDM) systems, the evolution of the electric

field in the fiber can be described by the vector NLSE

∂Ax
∂z

= −β1x
∂Ax
∂t
− iβ2

2

∂2Ax
∂t2

− α

2
Ax + iγ

(
|Ax|2 +

2

3
|Ay|2

)
Ax, (3.19a)
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∂Ay
∂z

= −β1y
∂Ay
∂t
− iβ2

2

∂2Ax
∂t2

− α

2
Ay + iγ

(
|Ay|2 +

2

3
|Ax|2

)
Ay, (3.19b)

where Ax and Ay are the electric field in x- and y- polarization, respectively; β1x,

β1y, β2, γ and α are inverse group velocities for x- and y- polarization components,

dispersion, nonlinear and loss coefficients, respectively. To model PMD in the fiber,

we employed the method of [90, 91] in which fibers with randomly varying birefrin-

gence are approximated by multiple short fiber sections with constant birefringence

in each fiber section. The power transfer between the polarization components and

the random phase changes due to refractive index fluctuations are accounted for by

introducing a matrix

F =

 cosθ sinθeiφ

−sinθeiφ cosθ

 (3.20)

between the fiber sections. Here, θ and φ are the random variables with uniform

distribution in the interval −π < θ < π, −π/2 < φ < π/2.

Since the residual birefringence in the transmission fiber changes randomly much

faster than the nonlinear interaction, by averaging the vector NLSE over the Poincare

sphere, Manakov equations are obtained as

∂Ar
∂z

= −iβ2

2

∂2Ar
∂t2

− α

2
Ar +

i8γ

9

(
|Ax|2 + |Ay|2

)
Ar, r = x, y. (3.21)

Consider a single span of a transmission fiber of length La. The output field of the

fiber in two orthogonal polarizations may be written as [22]

Ar(t, La) = exp

{∫ La

0

[D(t) +N(t, z)] dz

}
Ar(t, 0), r = x, y. (3.22)
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where

D(t) = − i
2
β2
∂2

∂t2
, (3.23)

N(t, z) =
8

9
iγ
(
|Ax(t, z)|2 + |Ay(t, z)|2

)
− α

2
. (3.24)

After coherent detection and analog to digital conversion, the distorted field passes

through the virtual fiber in digital domain. The virtual fiber in DBP has loss, dis-

persion and nonlinear coefficients with the opposite sign of the transmission fiber,

i.e.,

DDBP (t) =
i

2
β2
∂2

∂t2
= −D(t), (3.25)

NDBP (t, z) = −8

9
iγ
(
|Ax(t, z)|2 + |Ay(t, z)|2

)
+
α

2
= −N(t, z). (3.26)

Then, the digital signal after the DBP may be written as

Ar,out(t) = e
∫ La
0 [DDBP (t)+NDBP (t,z)]dz · e

∫ La
0 [D(t)+N(t,z)]dzAr(t, 0)

= e−
∫ La
0 [D(t)+N(t,z)]dz · e

∫ La
0 [D(t)+N(t,z)]dzAr(t, 0)

= Ar(t, 0). (r = x, y)

(3.27)

Thus, the transmitted electric field can be fully recovered after the DBP if there is

no noise. Eq. (3.27) can also be expressed in the following form

∂Ar,b
∂z

= [DDBP +NDBP ]Ar,b = − [D +N ]Ar,b, (3.28)

with Ar,b(t, 0) = Ar(t, La). Using Ar,b = eαz/2ur,b, Eq. (3.28) can be written as

i
∂ur,b
∂z
− β2

2

∂2ur,b
∂t2

+
8γ′(z)

9

(
|ux,b|2 + |uy,b|2

)
ur,b = 0, r = x, y, (3.29)
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where γ′(z) = γeαz is the effective nonlinear coefficient. In DBP, if the step size is

small enough such that the effective nonlinear coefficient has an exponential profile,

it provides the ideal compensation of dispersion and nonlinearity. However, this ideal

case is unfeasible due to the enormous computational cost. One realistic method to

implement DBP is to divide the virtual fiber into M cascaded sections, which can

compensate for the signal distortion from the transmission fiber by solving Manakov

equations using SSFS [22]

ur,b(t, zj−1 + lj) ≈e−iD(t)lj/2 · e−i
8
9(|ux,b(t,zj−1)|2+|uy,b(t,zj−1)|2)

∫ zj−1+lj
zj−1

γ′(z)dz

× e−iD(t)lj/2ur,b(t, zj−1),

(3.30)

where r = x, y, lj is the length of the section of the virtual fiber, and zj =
∑j

k=1 lk,

z0 = 0 and zM = La. In this chapter, we investigate the DBP scheme by optimizing

the accumulated dispersion and nonlinear phase shift of each section, and compare

its performance with that of the uniform spacing scheme.

For the uniform spacing case, the virtual fiber is divided into M sections with

equal length lj = La/M , j = 1, 2, ,M (see Fig. 3.4a). The accumulated dispersion of

each section is ξj = β2lj, and the nonlinear phase shift imparted by the jth section is

ϕj =
8

9α
γ
(
|ux,b|2 + |uy,b|2

)
eαzj−1

(
eαLa/M − 1

)
. (3.31)

Let M = 3, see Fig. 3.4. In this case, we have 5 unknowns, l1, l2, γ1, γ2, and γ3.

The DBP can compensate for the linear and nonlinear distortions if it satisfies the
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Figure 3.4: Effective nonlinear coefficient and its stepwise approximation for the
number of sections M = 3. (a) Uniform spacing, (b) MAM.
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following conditions,

l1 + l2 + l3 = La,
3∑
j=1

γjlj = γ

∫ La

0

eαzdz = γ

(
eαLa−1

α

)
. (3.32)

We construct a Lagrange function

L(l1, l2, γ1, γ2, γ3, λ) =
6∑
j=1

aj + λ

[
3∑
j=1

γjlj − γ
(
eαLa−1

α

)]
, (3.33)

where λ is the Lagrange multiplier. Setting the derivative of L with respect to each

of its arguments, we obtain a set of nonlinear equations and their solutions yield the

optimum values of l1, l2, γ1, γ2, and γ3. Then the dispersion in the jth section is

ξj = β2lj, (3.34)

and the nonlinear phase shift in the jth section is

ϕj =
8

9
γjlj

(
|ux,b(t, zj−1)|2 + |uy,b(t, zj−1)|2

)
. (3.35)

The Lagarange multiplier method is effective when the number of unknown parame-

ters is not too many. For the case of a large number of steps, the number of unknown

parameters become large and the least squares method (LSM) together with the

steepest descent method is used to optimized the lengths and nonlinear coefficients

[84]. The detailed derivation of LSM has been given in Chapter 2. Table 3.1 shows

the optimum section lengths and their nonlinear coefficients for various M .

So far we considered a single span system. Fig. 3.5 shows a fiber optic transmission

system consisting of K spans with an amplifier in each span. At the receiver, the
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Table 3.1: Optimum values of the parameters in DBP

M l1 l2 l3 l4 γ1 γ2 γ3 γ4

2 55.8 24.2 — — 5.13 26.3 — —
3 43.7 21.8 14.5 — 3.54 14.17 31.94 —
4 36.3 19.8 13.6 10.4 2.84 9.53 20.2 34.8

Parameters: α=0.2 dB/km, γ=1.1 W−1km−1, and La=80 km. lj has the unit of
km and γj has the unit of W−1km−1. (j = 1, 2, 3, 4)

DBP consists of K spans of virtual fibers. It is followed by a least mean square (LMS)

equalizer to compensate for PMD.

Figure 3.5: (a) Block diagram of a fiber-optic link with DBP; (b) The dispersion and
nonlinear operator in DBP. PBC: polarization beam combiner, BPF: band pass filter,
LMS: least mean square equalizer, LPF: low pass filter.

3.4 Simulation results and discussions

Monte-Carlo simulations of a single-channel dual-polarization fiber optic system with

DBP at the receiver are carried out. 25 Gbaud per polarization and 16-QAM signal
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is used in the simulation. Total number of symbols is 32768 symbols per polarization.

Standard single mode fiber (SSMF) is used as the transmission fiber with following

parameters, α = 0.046 km−1, β2 = −21 ps2/km, γ = 1.1 W−1km−1, and the PMD

parameter Dp = 0.04 ps/
√

km. The amplifier spacing La is 80 km, the gain of the

amplifier is 16 dB and the spontaneous emission noise factor nsp is 1.5. Eight and

two samples per symbol are used for optical forward propagation and digital pro-

cessing, respectively, unless otherwise specified. A second order Gaussian filter with

50 GHz bandwidth (band pass filter (BPF) in Fig. 3.5a) is used before the coher-

ent receiver. The polarization diversity coherent receiver provides four outputs: I

and Q components of each polarization. These outputs after DBP pass through an

adaptive equalizer based on decision-directed LMS algorithm. The adaptive equalizer

calculates the inverse Jones matrix adaptively and compensates for the polarization

rotation, phase shift and delay between polarization components [92]. Number of

taps of the LMS equalizer is 12 and the number of training symbols per polarization

is 15360. The symbol sequence after the equalizer is compared with the symbol se-

quence at the transmitter and those symbols which have crossed the boundaries are

counted as error symbols.

The forward propagation is simulated in two different ways-with vector NLSE

and random rotational matrix between fiber sections (case 1), and with Manakov

equations (case 2). For both cases, standard SSFS is used for simulation with a

nonlinear phase per step of 0.0005 rad. For case 2, LMS equalizer is not required

since there is no PMD in the system. Instead a second order Gaussian low pass filter

(LPF) with 20 GHz bandwidth is used to limit the noise.

Let us first consider case 1. Fig. 3.6 shows the BER as a function of the launch
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Figure 3.6: BER versus launch power when vector NLSE is used for forward propa-
gation and LMS adaptive equalizer is introduced to remove PMD after DBP. Trans-
mission distance = 2800 km. 2 samples/symbol is used. M: number of steps per
span.
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Figure 3.7: BER versus launch power when Manakov equation is used for forward
propagation. Transmission distance = 2800 km. Optical signal-to-noise ratio (OSNR)
is 24.2 dB when launch power is 3 dBm.
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power to the SSMF at 2800 km transmission distance. The number of steps per

span M is 2 in DBP. The solid line and dashed line show BER versus launch power

when the MAM and uniform spacing methods are used in DBP, respectively. As

can be seen, the DBP with MAM method outperforms that using uniform spacing

method at the same computational cost. When the launch power is less than 1 dBm,

the performance of the two techniques are almost the same, but DBP with MAM

is better when launch power is large and nonlinearity becomes dominant. Fig. 3.7

shows BER as a function of launch power at the same transmission distance except

that the Manakov equations are solved in the forward propagation (case 2). Although

the LMS equalizer can effectively mitigate linear PMD impairments, neither LMS nor

DBP compensates for the PMD-nonlinearity interactions. Hence, comparing Fig. 3.6

and Fig. 3.7, with 2 samples per symbol, we see that the performance is slightly worse

at larger launch power for case 1, for both uniform spacing and MAM techniques.

When 4 samples per symbol are used, the Q-factor is improved by 0.1 dB and 0.4

dB for uniform and MAM schemes, respectively (as compared with 2 samples per

symbol).

The minimum BER (such as the minimum point in Fig. 3.7) is plotted as a

function of the transmission reach in Fig. 3.8 with different M . As M increases,

the maximum reach increases. The MAM technique has a longer reach than that of

the uniform spacing case. When M = 2, the maximum transmission distance at the

forward error correction (FEC) limit of BER = 2.1× 10−3 is limited to 4300 km for

the uniform spacing, which can be extended to 5200 km with the MAM technique.

Also, the transmission reach of the uniform spacing case is 5600 km and 6480 km

when M = 3 and M = 4, respectively, which can be increased to 6640 km and 6880
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Figure 3.8: BER versus transmission distance. Manakov equation is used for forward
propagation. 2 samples/symbol is used.

km, respectively, by using the MAM method. So, only optimizing the parameters of

DBP without additional computational cost and system complexity, MAM technique

can make a better compensation of the fiber dispersion and nonlinearity compared

with the uniform spacing method.

Next, we consider a wavelength division multiplexing (WDM) system with the

following additional parameters: number of channels = 5, channel spacing = 100 GHz,

a second order Gaussian filter with a bandwidth of 50 GHz is used to demultiplex

channels. Coupled vector NLSEs [78] without FWM are solved in digital domain with

2 samples per symbol. As pointed out in [58], the step size of a WDM system has to

be really small (of the order of 3 km for uniform spacing). Therefore, we considered

a relatively larger M in our WDM simulation. Fig. 3.9 shows the BER versus launch

power per channel. As can be seen, the performance improvement is larger with
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Figure 3.9: BER versus launch power per channel for a WDM system. Transmission
distance = 2000 km. 2 samples/symbol is used. OSNR is 22.5 dB when launch power
is 0 dBm.
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MAM, M = 8 as compared to the case of M = 3. Relatively smaller improvement

for M = 3 with MAM is due to the fact that WDM nonlinear impairments are much

stronger when the step sizes are larger and both uniform and MAM schemes do not

provide substantial improvements.

3.5 Conclusions

We have investigated a DBP scheme to compensate for the dispersion and nonlin-

earity of the transmission fibers. By optimizing the step size of each section through

minimizing the area mismatch between the exponential profile of the effective nonlin-

ear coefficient and its stepwise approximation, a better system performance can be

obtained without additional computational cost and system complexity. The optical

forward propagation is simulated in two different ways: (i) vector NLSE with random

polarization rotation. (ii) Manakov equations. An adaptive LMS equalizer is em-

ployed after the DBP to compensate for the randomly changing birefringence when

the vector NLSE is used for forward propagation. The simulation results show that

the two approaches have almost the same performance, except that PMD-nonlinearity

interaction results in a slight degradation for case (i). In both the approaches, DBP

with uniform spacing and MAM are simulated and results show that the MAM tech-

nique can increase the system reach significantly as compared to the uniform spacing.
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Chapter 4

Optical back propagation for

fiber-optic communications using

optical phase conjugation at the

receiver

4.1 Introduction

The compensation of fiber dispersion and nonlinear effects in either the optical or

electrical domain has drawn considerable attention [56, 57, 70, 72, 74]. Midpoint

OPC can undo the distortion due to dispersion and nonlinearity, if the nonlinearity,

dispersion, and power profiles are symmetric with respect to the location of the OPC

[70]. Although the midpoint OPC could provide substantial benefits to the point-to-

point links, they are not suitable for optical networks since the midpoint cannot be
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defined. With the advent of coherent detection, the receiver has access to the complex

optical field envelope and hence, DBP can be used to compensate fiber distortions

[56, 57]. DBP is found to be effective in mitigating intra-channel impairments. How-

ever, to compensate the nonlinear impairments of a WDM system in real time, DBP

would require enormous amounts of computational resources. An OBP scheme em-

ploying DCFs and HNLFs has been investigated [74]. Although the OBP provides

very good transmission performance, it requires pumps and polarization alignment

of the pumps with signal, which increases the complexity of the receiver. In this

chapter, we consider an improved form of the OBP that does not require pumps.

The OBP module consists of an OPC followed by short lengths of HDFs and HNLFs.

The HDF provides the accumulated dispersion that is the same as the corresponding

transmission fiber section and the set of HDF and HNLF provides a nonlinear phase

shift that is the same as the corresponding transmission fiber section. Also, another

OBP scheme consisting of OPC, fiber Bragg grating (FBG) and highly nonlinear fiber

(HNLF) is investigated in this chapter. In this scheme, we extend the approach of

[93] for arbitrary step sizes and find an optimal step size for OBP using the MAM

constraint and the method of Lagrange multipliers. We find that the transmission

performance can be significantly improved when the OBP section lengths are chosen

using MAM as compared to uniform section lengths, for the given number of sections.

In the case of DBP, step size can also be changed to improve the performance. The

step size could be adaptively chosen to keep the error within a certain tolerance level

[77] or an iteration technique [94] could be used to improve the performance. The

MAM technique can be used to minimize the computational efforts of DBP as well

(see Chapter 3). However, for OBP, the techniques presented in Ref. [77] and [94]
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cannot be implemented easily as they require feedback loops. Using the MAM tech-

nique, the optical component count in the OBP system can be reduced as compared

to the uniform step size, to achieve the same performance. The OBP has the following

advantages.(1) It provides compensation in real time whereas the DBP is currently

limited to off-line signal processing because of extensive computational requirements.

(2) A very large bandwidth (∼4 THz) is available for OBP while the bandwidth of

the DBP is limited by the bandwidth of the coherent receiver.

4.2 OBP for fiber optic communications using OPC,

HDFs and HNLFs

4.2.1 System setup

The evolution of the optical field envelope in a fiber-optic system is described by the

NLSE

∂q

∂z
= i [D(t) +N(q)] q(t, z), (4.1)

D(t) = −β2

2

∂2

∂t2
, (4.2)

N(q) = γ|q(t, z)|2 + i
α

2
, (4.3)
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Consider a single span of a transmission fiber of length La.The output field of the

fiber may be written as

q(t, La) = exp

{
i

∫ La

0

[D(t) +N(q)] dz

}
q(t, 0) (4.4)

= Mq(t, z). (4.5)

Here, M is the transfer function of the fiber-optic link. To compensate for the dis-

tortion due to fiber dispersion and nonlinear effects, an OBP module is placed at the

end of the fiber-optic link, as shown in Fig. 4.1(a). If the transfer function of the

OBP is inverse of that of the fiber-optic link, we recover the initial field envelope at

the output of the OBP. However, OBP module with transfer function

M−1 = exp

{
−i
∫ La

0

[D(t) +N(q)] dz

}
(4.6)

is not available, because the fiber nonlinear coefficient is positive. Then, let the output

of the transmission fiber be phase-conjugated using an OPC, so that

q∗(t, La) = exp

{
−i
∫ La

0

[D(t) +N∗(q)] dz

}
q∗(t, 0). (4.7)

The conjugated signal q∗(t, La) will pass through an OBP fiber that is identical to

the transmission fiber except that its loss profile (or equivalently, the power profile)

is inverted. In other words, the nonlinear operator corresponding to the OBP fiber is
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N∗(q). The output of the OBP fiber is

qOBP,out = ei
∫ La
0 [D(t)+N∗(q)]dzq∗(t, La), (4.8)

= ei
∫ La
0 [D(t)+N∗(q)]dze−i

∫ La
0 [D(t)+N∗(q)]dzq∗(t, 0), (4.9)

= q∗(t, 0). (4.10)

Thus, the input field envelope can be recovered at the receiver after performing a

phase conjugation in electrical domain. Eq. (4.8) is equivalent to

∂qb
∂z

= i[D(t) +N∗(qb)]qb, (4.11)

with qb(t, 0) = q∗(t, La). Using a transformation qb = eαz/2ub, Eq. (4.11) can be

written as

i
∂ub
∂z
− β2

2

∂2ub
∂t2

+ γ′(z)|ub|2ub = 0, (4.12)

where

γ′(z) = γ exp(αz) (4.13)

is the effective nonlinear coefficient. Eq. (4.12) is equivalent to

∂ub
∂z

= i[D(t) +N ′(ub)]ub(t, z), (4.14)

where ub(t, 0) = u∗(t, La), u(t, z) = exp(αz/2)q(t, z), and

N ′(ub) = γ′(z)|ub|2 = γ exp(αz)|ub|2. (4.15)

By solving Eq. (4.14),
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Figure 4.1: (a) Schematic of a fiber-optic link with OBP; (b) block diagram of the
OBP with stepsize= La; (c) block diagram of the OBP with stepsize= La/2. TX,
transmitter; RX, receiver.
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u∗OBP,out(t) = ei
∫ La
0 [D(t)+N ′(ub)]dsu∗(t, La),

= M ′u∗(t, La),

= u∗(t, 0),

(4.16)

where M ′ is the channel matrix of the optical equalizer. We utilize a split-step Fourier

technique with a step size of ∆z [22], and

M ′ ≈ A(t) ·B(t,∆z) · A(t) ·B(t, 2∆z) · . . . · A(t) ·B(t, La), (4.17)

where

A(t) = exp [iD(t) ·∆z] , (4.18)

B(t, x) = exp

[
i

∫ x

x−∆z

γ exp(αz)|ub(t, z)|2dz
]
. (4.19)

The solution of Eq. (4.14) is ub(t, La) = u∗(t, 0). Hence the complex field envelope

at the transmitter can be recovered by taking the complex conjugate of the output

of the OBP in electrical domain.

Here, A(t) and B(t, x) are the operators corresponding to the fiber dispersive ef-

fect over a length ∆z and the nonlinear effect over the interval [x−∆z x]. Typically,

exp(αz) varies more rapidly than |ub(t, z)|2, and therefore, |ub(t, z)|2 can be approx-

imated to be independent of z and now the integral in Eq. (4.19) can be evaluated

analytically as [74],

B(t, x) = exp
[
iγ∆zeff (∆z) exp(αx)|ub(t, x)|2

]
, (4.20)
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where

∆zeff =
1− e−α∆z

α
, (4.21)

If there are multiple spans in fiber optic link. The first OBP module will compensate

for the distortion brought by the last fiber span, and the second OBP module will

compensate for the impairment due to the second last span of the transmission fiber.

We try to realize the functions of operator A and B in optical domain. The operator

A can be realized using a HDF as shown in Fig. 4.1(b), if its nonlinearity is ignored.

Later we will discuss the impact of the HDF nonlinearity. Since the dispersion of the

transmission fibers are only compensated by HDF, the length of HDF in each step

can be easily calculated as

LHDF =
|β2,TR|∆z
|β2,HDF |

, (4.22)

The operator B is realized using a dispersion-shifted HNLF [95]. The HNLF intro-

duces a nonlinear phase shift, which is the same as that of a corresponding trans-

mission fiber of length ∆z, if the nonlinearity of the HDF is absent. For example, if

∆z = La, the first HNLF provides the same nonlinear phase shift as that accumulated

over the last span of the fiber-optic link. The transmission in HNLF is described by

uHN,out = uHN,ine
iγHNLHN,eff |uHN,in|2 , (4.23)

LHN,eff =
1− exp(−αHNLHN)

αHN
, (4.24)

where αHN , γHN and LHN are the loss coefficient, nonlinear coefficient and length of

the HNLF, respectively. From Eq. (4.23), the total phase shift introduced by HNLF

is γHNLHN,eff |uHN,in|2. If the launch power to the HNLF is increased, its length can
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be reduced to have a fixed nonlinear phase shift. As a result, the insertion loss of

HNLF can be reduced by decreasing its length. Therefore, an amplifier is introduced

after the OPC (see Amp.1 in Fig. 4.1(b)). To offset the loss due to HDF and HNLF,

a tiny amplifier is introduced after the HNLF (see Figs. 4.1(b) and 1(c)).

Since the HDF will also introduce nonlinear phase shift, now we will consider

the HDF nonlinearity. Let us first consider the case of ∆z = La in the presence

of the HDF nonlinearity. Let the nonlinear phase shifts of HDFj, HNLFj and the

transmission fiber, N − j + 1 be φHDF , φHN and φTR, respectively. The set of

HDFj and HNLFj, j = 1, 2, . . . , N compensates for the nonlinear phase shift of the

corresponding transmission fiber, N − j + 1. Then, we have

φTR = φHDF + φHN , (4.25)

where

φr = γrPrLr,eff , (4.26)

and

Lr,eff =
1− exp(−αrLr)

αr
. (4.27)

r = HDF, HN, TR and Pr is the launch power to the fiber type r. Using Eq. (4.26)

in Eq. (4.25), we find

LHN,eff =
φTR − φHDF
γHNPHN

. (4.28)

If the dispersion of the HDF were to be zero, Eq. (4.28) holds true exactly. However,

because of the large dispersion of the HDF, Eq. (4.28) is approximate and it should

be used as a rough guide to optimize the HNLF length.
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For the case of ∆z = La/2, the first set of HDF and HNLF in Fig. 4.1(c) compen-

sates for the nonlinear effects of the second half of the last span of the transmission

fiber. Since the nonlinear phase shift due to the second half is quite small, we do not

really need an amplifier following the OPC. So, the first amplifier is placed after the

first set of the HDF and HNLF (see Fig. 4.1(c)). The analytical length of HDFs and

HNLFs can be calculated as before. Also, the lengths of HDFs which are calculated

analytically can be used directly and the lengths of HNLFs need to be optimized

numerically.

It is desirable that the HDF and HNLF have high dispersion and high nonlinearity,

respectively and they are of the shorter lengths so that their insertion losses are

minimum. If the SSMF is used as the transmission fiber, the dispersion of the HDF

should be anomalous. However, a HDF with anomalous dispersion is not commercially

available. Instead, in this subsection, we have used the negative dispersion fiber

(NDF) [96] as the transmission fiber so that the conventional DCF with high normal

dispersion can be used as the HDF.

In this thesis, we neglect the higher-order dispersion while introducing OBP, since

it can be compensated in digital domain.

4.2.2 Simulation results and discussions

We simulated a single-channel fiber-optic system with the following parameters: sym-

bol rate = 25 Gsymbols/s, modulation=32 QAM, transmission fiber dispersion β2 =

5ps2 /km, transmission fiber loss = 0.2 dB/ km, nonlinear coefficient γ = 2.2W−1

km−1, amplifier spacing La =80 km, spontaneous emission noise factor nsp = 1.5.

The parameters of the OBP module at the receiver side are: dispersion of the HDF
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= 140 ps2 /km, loss of the HDF = 0.4 dB/ km, nonlinear coefficient of the HDF =

4.4 W−1 km−1, loss of the HNLF = 0.3 dB/m, and the nonlinear coefficient of the

HNLF = 2000 W−1 km−1. To simulate pulse propagating in fibers, standard SSFS is

used with a nonlinear phase per step of 0.0005 rad.

We employ two OBP step size realizations to compensate for the fiber impairment

in the transmission link. One is that the step size equals to the amplifier spacing La;

the other is that the step size equals to half the amplifier spacing. In the case of

∆z = La, we numerically optimized the gain of the first amplifier to obtain the best

performance. The optimum gain is found to be 4.8 dB. Then, we optimized the HNLF

length numerically to obtain the minimum BER. We found the optimum HNLF length

as 3.1 m at the transmission fiber launch power of 1 dBm. The analytical length found

using Eq. (4.28) is 3.2 m in good agreement with numerics. Total loss due to HDF

and HNLF is 2.07 dB, which is compensated by the in-line amplifiers in OBP. The

amplifiers in OBP have a nsp of 1.5.

In the case of ∆z = La/2, the gain of the first amplifier and lengths of HNLFs are

numerically optimized. The first amplifier compensates for the loss of the first set of

HDF and HNLF, and it gives an excess gain. The optimum excess gain is 3 dB. At 1

dBm transmission fiber launch power, the numerically optimized lengths of HNLF1,

HNLF2, HNLF3 are 0.28 m, 10.6 m, and 2.4 m, respectively. The corresponding

analytical lengths are 0.28 m, 11.9 m and 1.5 m, respectively.

Fig. 4.2 shows the BER as a function of the launch power in different system

configurations when the transmission distance is 800 km. The dashed line and the

solid line represent the BER of the OBP with step size equaling to La and La/2,

respectively. In order to compare the OBP with the other schemes, we calculated the
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Figure 4.2: BER Vs launch power. Transmission distance = 800 km.

BER of the DBP with ∆z = La and the midpoint OPC. The scheme of midpoint

OPC is shown in Fig. 4.3. In the single-channel simulation of the system based on

Tx RxOPC

BPF 1×N/2 ×N/2 BPF 2

Figure 4.3: Schematic of midpoint OPC.

DBP, eight samples per symbol are used in the transmission link and after the analog

to digital converter (ADC), two samples per symbol are used. As shown in Fig. 4.2,

the four schemes have almost the same performance if the launch power is less than

0 dBm when the nonlinear effects are small. Beyond 0 dBm launch power, OBP with

∆z = La/2 has the best tolerance to nonlinearity. When the step size equals La,

the minimum BER for OBP is 8× 10−4, while the minimum BER for DBP is about
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2 × 10−3. The relatively poor performance of the DBP as compared to the OBP is

mainly attributed to the fact that the nonlinear HDF in OBP provides distributed

nonlinearity compensation and partly due to the lower number of samples per symbol

of DBP [57]. Midpoint OPC does not perform well enough due to the unsymmetrical

power profile with respect to the location of the OPC.

Figure 4.4: BER Vs transmission distance.

For different distances, a minimum BER (see Fig. 4.2) can be obtained for each

scheme by optimizing the launch power. Fig. 4.4 shows the dependence of the min-

imum BER on the transmission distance. Using the midpoint OPC, the maximum

reach is about 880 km, which can be increased to 1360 km with OBP, ∆z = La and

to 1440 km with OBP, ∆z = La/2.
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4.3 OBP with optimal step size for fiber optic trans-

mission systems using OPC, FBGs and HNLFs

4.3.1 System setup

In this subsection, we developed another OBP scheme using FBGs and HNLFs. Since

the dispersion coefficient of FBGs can be negative, standard single mode fibers are

used as transmission fibers. From Eqs. (4.12) and (4.13), if the effective nonlinear

coefficient, γ′(z) of the OBP fiber increases exponentially with distance (or equiva-

lently, optical power increases exponentially with distance), the output of the OBP

fiber would be the conjugate of the transmitter output in the absence of noise. But

it is hard to design a fiber with such a property. Instead, we divide the OBP fiber

into M sections of length lj, j = 1, 2, . . . ,M . If the sections are sufficiently small, the

propagation in each of the sections is approximated by a single symmetrical SSFS,

i.e.,

ub(t, zj−1 + lj) ∼= eiD(t)lj/2ei
∫ zj−1+lj
zj−1

γ′(z)|ub(t,z)|2dzeiD(t)lj/2ub(t, zj−1), (4.29)

zj =
j∑

k=1

lk, z0 = 0 and zM = La. We use symmetrical SSFS in this subsection since

it can obtain higher accuracy. The dispersion operator is realized by the FBG with

γ = 0 and the nonlinear operator is realized by the dispersion-shifted HNLF with

β2 = 0. We consider two cases.

Case (i) Uniform spacing: The OBP fiber has M equal sections of lengths lj =

La/M , j = 1, 2, . . . ,M . Each section of the OBP fiber is realized by a combination

of FBGs and HNLF. The accumulated dispersion, ξj and nonlinear phase shift, φj of
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the jth section provided by FBGs and HNLF, respectively, are

ξj = β2lj, (4.30)

φj = γLeff,j|qb,j|2 = γHNLHN,eff,j|q2
b,j|. (4.31)

where

Leff,j =
eαlj − 1

α
, (4.32)

LHN,eff,j =
1− e−αHNLHN,j

αHN
, (4.33)

qb,j is the input field of the jth section, γHN , αHN and LHN,j are nonlinear coefficient,

loss coefficient and length of the jth HNLF, respectively.

Case (ii) Minimum area mismatch (MAM): As shown in Fig. 4.5(b), exponentially

increasing effective nonlinear coefficient, γ′(z) (solid line) can be approximated by a

stepwise increasing function (dashed line) using MAM method (see Chapter 3). In

Fig. 4.5(b), we see that the area mismatch, ∆1, for the first section is a1 + a2 where

a1 = γ1x0 − γ
(
eαx0 − 1

α

)
, (4.34)

x0 =
1

α
In

(
γ1

γ

)
, (4.35)

a2 = −γ1(l1 − x0) +
γeαl1 − γ1

α
. (4.36)

Total area mismatch of both the sections is ∆1 + ∆2 =
4∑
j=1

aj. The section length lj

and effective nonlinear coefficients γ1 and γ2 are so chosen that ∆1 + ∆2 is minimum

under the constraint that the total area under the exponential curve is same as that
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Figure 4.5: (a) Block diagram of a fiber-optic link with OBP; (b) Effective nonlinear
coefficient and its stepwise approximation for the number of steps per span M = 2.
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under the stepwise curve. The detailed optimization method can be found in Chapter

3 using the Lagrange multiplier. The results are that, for 2 steps per span case, when

γ = 1.1 W−1km−1, La = 80 km, loss = 0.2 dB/km, l1 =55.8 km, γ1 = 4.81 W−1km−1,

γ2 = 27.3 W−1km−1 and λ = −0.149 .

The propagation in each OBP fiber section is approximated by the SSFS. The

nonlinear coefficient of the jth HNLF need not be γj, but the nonlinear phase shift

imparted by the jth HNLF should be

zj−1+lj∫
zj−1

γ′(z)|ub(t, z)|2dz ∼= γjlj|ub(t, zj−1)|2, (4.37)

γjlj = γHNLHN,eff,j, j = 1, 2, . . . ,M. (4.38)

Figure 4.6: (a) Schematic of a fiber-optic link with OBP; (b) block diagram of the
OBP. Tx, transmitter; Rx, receiver; BPF, bandpass filter.

So far we considered the compensation of dispersion and nonlinearity of a single-

span fiber-optic link. Now we consider the compensation of a transmission system
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consisting of multiple spans. Fig. 4.6(a) shows a schematic of a fiber-optic link

consisting of N spans of transmission fiber and the OBP module. The OBP is applied

after the whole transmission link. The schematic of the OBP module is shown in Fig.

4.6(b). The output of the OPC passes through a pre-amplifier of gain Gpre so that

lengths of HNLFs can be reduced. As a result, the insertion loss of HNLFs can be

reduced. A band pass filter BPF1 is introduced after the pre-amplifier to remove the

out of band ASE noise. The OBP fiber shown in Fig. 4.5(a) is approximated by M

sections consisting of FBGs and HNLFs. To compensate for the losses of FBGs and

HNLFs, an amplifier of gain G is used. Since there are N spans in the transmission

system, cascaded OBPs with each OBP consisting of M sections are required. A

band pass filter BPF2 is introduced after the cascaded OBPs to maximize the signal-

to-noise ratio (SNR).

4.3.2 Simulation results

We simulate a single-channel and single-polarization fiber-optic system with OBP at

the receiver with 25 Gsym/s symbol rate and 32 QAM. SSMF is used as the transmis-

sion fiber, with the following parameters, β2 = −21 ps2/km, γ = 1.1 W−1km−1, and

α = 0.046 km−1. The amplifier spacing La is 80 km and the gain of the amplifier is

16 dB. The spontaneous emission noise factor nsp is 1.5 for all the amplifiers (in-line

amplifiers as well as OBP amplifiers). Noise loading is done on the per amplifier

basis. The parameters for OBP are as follows: loss of FBG = 1.8 dB [97], nonlinear

coefficient of FBG = 0 W−1km−1, loss of the HNLF = 0.3 dB/m, dispersion coeffi-

cient of the HNLF = 0 ps2/km and the nonlinear coefficient of the HNLF = 2000

W−1km−1 [95]. The gain of the pre-amplifier Gpre is 14 dB. Gain of the amplifiers
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in the cascaded OBP, G, is 5.7 dB when M = 2, which exactly compensates for the

losses due to FBGs and HNLFs. In the case of M = 2, lengths of HNLFs are LHN,1=

0.2036 (0.0963) m, LHN,2 = 0.7876 (0.9534) m for MAM (uniform spacing). 8 and

2 samples per symbol are used for optical propagation (both forward and backward)

and for digital processing, respectively. A coherent receiver is used with the local

oscillator laser linewidth (=Transmitter laser linewidth)=22 kHz. A feedforward car-

rier recovery algorithm is used for phase estimation [98]. Digital filters are not used

for dispersion compensation as the OBP compensates for dispersion. Second order

Gaussian filters with bandwidths 80 GHz and 50 GHz are used prior to the OBP

(BPF1 in Fig. 4.6(b)) and after the OBP (BPF2), respectively. Gain of the pre-

amplifier and filter bandwidths are optimized to obtain the minimal BER. The gain

of the pre-amplifier is so chosen that the power launched to the first FBG is 14 dB

higher than the power launched to the transmission fiber. It is possible to choose a

lower gain of the pre-amplifier and in that case, lengths of HNLFs become longer and

because of the losses in HNLFs, there would be slight performance degradation.

Figure 4.7 shows the BER as a function of the SSMF launch power at 800 km.

For a 10 span system and M = 2, 30 FBGs and 20 HNLFs are required for OBP to

compensate for dispersion and nonlinearity of the whole transmission link. As can

be seen, for the given M , the OBP system with sections designed using the MAM

(Case 2) outperforms that designed using the uniformly spaced sections (Case 1).

For M = 2 case, the minimum BER for MAM is 1× 10−3, while the minimum BER

for uniform spacing scheme is 2 × 10−3. For the case of M = 3, the minimum BER

for MAM is 7 × 10−4, and the minimum BER for uniform spacing scheme is about

1×10−3. Also, from Fig. 4.7 we can see that the MAM scheme has a better nonlinear
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Figure 4.7: BER versus launch power for various OBP schemes. Transmission distance
= 800 km.

tolerance.

The minimum BER (such as the minimum point in Fig. 4.7) is plotted as a

function of the transmission reach in Fig. 4.8. At the FEC limit of 2.1 × 10−3, the

transmission reach is limited to 560 km for M = 1, which can be increased to 1200 km

and 1680 km for M = 3 with uniform spacing and M = 3 with MAM, respectively.

Thus, we see that the MAM technique leads to significant reach enhancement as

compared to uniform spacing for the given M . If nearly ideal OBP is employed with

lossless FBGs and HNLFs and a very small step size of 1 km, transmission reach

can be increased to 2960 km. With MAM, M = 8, the maximum reach is 2880

km, which is 97% of the reach obtained using the nearly ideal OBP. For the case

of nearly ideal OBP, the optimal signal launch power corresponding to the 2960 km

transmission link is 6 dBm. If the system were to be linear, there should be no
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Figure 4.8: BER versus transmission distance for various OBP schemes.

limit on the achievable reach assuming that the launch power to the transmission

fiber can be increased arbitrarily. The maximum reach of 2960 km for the nearly

ideal case is due to signal-ASE nonlinear interaction. Although receiver-based ideal

OBP can compensate for the deterministic (bit-pattern dependent) nonlinear effects

exactly, signal-ASE nonlinear interaction cannot be compensated for by the receiver-

based ideal OBP. In addition, the interaction of PMD and nonlinearity could lead

to performance degradations which cannot be recovered by the ideal OBP. However,

this effect is not considered in our simulation. All the fibers or optical devices in

this chapter are assumed to be ideal. However, in real implementation, there may

be fluctuation of the length of HDF and HNLF; the optical phase conjugator may

introduce signal distortion; there will be group delay ripple for FBGs, and etc. All

these may degrade the system performance, but we can use DSP to compensate for

the distortions.
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4.4 Conclusions

In conclusion, we have investigated an optical back propagation scheme to compensate

for fiber dispersion and nonlinearity. The optical transmission system consists of

transmission fibers, an OPC, and an OBP module. The OPC is used to obtain the

conjugated signal of the fiber output, which makes compensation of fiber distortions

by OBP realizable. The OBP module is a concatenation of HDFs and HNLFs, and

it is similar to solving the NLSE in optical domain. When the step size equals to the

span length, the OBP scheme outperforms that of the DBP with the same step size.

The OBP performance can be further improved by using a smaller step size without

bringing extra computational cost.

Also, we have developed another optical back propagation scheme to compensate

the dispersion and nonlinearity of the transmission fibers in real time. The scheme

consists of an optical phase conjugator, fiber Bragg gratings and highly nonlinear

fibers. Each span of the transmission fiber can be divided into M sections and, the

dispersion and nonlinearity of the each section are compensated for by fiber Bragg

gratings and a highly nonlinear fiber, respectively. We have developed a technique to

find the optimal step size (lengths of each section) using the minimum area mismatch

constraint and the method of Lagrange multipliers. The results indicate that for the

given M , the OBP system with sections designed using the proposed MAM technique

outperforms that designed using the uniformly spaced sections. This implies that

for the given transmission performance, the number of optical components can be

reduced using MAM as compared to uniform spacing. The MAM technique also

leads to significant reach enhancement as compared to uniform spacing for the given

step size.
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Chapter 5

Ideal optical back propagation

using dispersion-decreasing fiber

5.1 Introduction

The maximum reach of a long haul fiber optic system with advanced modulation

formats is mainly limited by fiber nonlinear impairments. The back propagation

techniques can be used to compensate for dispersion and nonlinear effects of the

transmission fiber (TF). The compensation schemes can be divided into three types:

digital [56–58, 60, 61, 79, 80, 87–89, 99], optical [74, 81, 93, 100–104], and the com-

bination of both [72]. The OBP has many advantages/disadvantages over DBP. (i)

A very large bandwidth (∼ 4 THz) is available for OBP while the bandwidth of the

DBP is limited by the bandwidth of the coherent receiver. (ii) DBP requires signifi-

cant computational resources, especially for WDM systems and hence it is currently

limited to off-line signal processing. In contrast, OBP provides compensation in real
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time and it can compensate for nonlinear impairments in WDM systems. (iii) Num-

ber of samples per symbol available for DBP is limited by the sampling rate of the

ADC. Although it is possible to do upsampling on the digital signal processor, it

leads to additional computational complexity. However, for OBP, the signal process-

ing is done on the analog optical waveform. (iv) OBP requires a real fiber which has

loss. So, amplifiers are needed to compensate for fiber loss in the OBP section which

increases the noise in the system.

In [81, 93], an OBP scheme consisting of OPC, DCF/FBG, and highly nonlinear

fiber (HNLF) is investigated. DCF/FBG is used to compensate for dispersion, and

HNLF is used to compensate for nonlinearity. The dispersion and nonlinear effects

are compensated in a split-step fashion analogous to SSFS used to solve the NLSE.

Although this technique is quite effective for a single channel, for a WDM system,

small step size is required and hence the insertion losses due to DCF/FBG and HNLF

increase which limit the transmission performance. In this chapter, we investigate

the possibility of introducing a single optical device which can exactly compensate

for dispersion and nonlinearity. A dispersion-decreasing fiber (DDF) with a specific

dispersion profile is found to meet our requirements [105].

In the proposed scheme, an OPC is placed at the end of the transmission link

which is followed by N spans of DDFs where N is the number of TF spans. The

DDFs introduce a small amount of losses which are compensated by amplifiers placed

in the OBP section. Numerical simulation results show that the OBP with DDF

outperforms DBP and midpoint-OPC schemes. The transmission reach of a WDM

system can be significantly enhanced using the proposed scheme as compared to linear

compensation in the receiver or DBP.
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Existing digital compensation schemes including DBP and perturbation-based

techniques compensate for fiber nonlinear effects based on the information of signal

propagation path and link parameters such as dispersion profiles and nonlinear co-

efficient. Such compensation schemes can be implemented in a point-to-point link.

However, in the case of fiber optic networks, the digital equalizer at node j has no ac-

cess to the channels that are dropped at node j−1 and hence, it is impossible to fully

compensate for inter-channel nonlinear impairments in digital domain. In contrast, if

the OBP module is placed at every amplifier site or at every node, it compensates for

both intra- and inter- channel nonlinear impairments and the system becomes nearly

linear (except for nonlinear phase noise and nonlinear PMD), as shown in Fig. 5.1(b).

Figure 5.1: Schematic of fiber optic system using DDF. (a) DDFs are placed at the
end of the transmission link. (b) DDFs are placed at every node.
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5.2 Optical back propagation theory

The evolution of the optical field envelope in a fiber optic link is described by the

NLSE,

∂q

∂z
= i[D(t) +N(t, z)]q(t, z), (5.1)

where D and N operator are given in Eqs. (4.2) and (4.3). The output signal field of

the fiber pass through an OPC, as shown in Fig. 5.2(a), and then the output of OPC

propagate through an ideal optical backpropagation fiber (OBPF) that is identical to

the TF except that the sign of the loss coefficient of OBPF is inverted. The output of

the OBPF is the conjugated signal of the input. Thus, the input field envelope can be

Figure 5.2: A single-span fiber optic system with (a) OBP using an ideal optical
back propagation fiber with negative loss coefficient, (b) OBP using a DDF and
amplifiers. Tx: transmitter, TF: transmission fiber, OPC: optical phase conjugator,
OBPF: optical back propagation fiber, DDF: dispersion-decreasing fiber, Rx: receiver.

recovered by performing a phase conjugation in the electrical domain at the receiver,
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(see Chapter 4 for mathematical derivation). The governing equation for OBP is

∂qb
∂zb

= i[D(t) +N∗(t, zb)]qb(t, zb), (5.2)

with qb(t, 0) = q∗(t, La), and zb is the distance in OBPF. Using

qb =
√
Pine

−α(La−zb)/2ub, (5.3)

and

dz′b = β2dzb, (5.4)

Eq. (5.2) can be rewritten as

i
∂ub
∂z′b
− 1

2

∂2ub
∂t2

+
γPin
β2

e−α(La−zb)|ub|2ub = 0, (5.5)

where Pin is the power launched to the TF. Eq. (5.5) describes the field propagation

in an ideal fiber with a constant β2 and a negative loss coefficient (or equivalently the

power increasing with distance) that exactly compensates for dispersion and nonlin-

earity of the TF. However, it is hard to realize such a fiber in practice. For an ideal

OBP, we like to have a short length of a fiber (so that its insertion loss is small) which

provides the same response as that of the ideal OBPF given by Eq. (5.5). Here, we

derive an equivalent way of realizing Eq. (5.5) by using amplifiers and a DDF with

positive loss coefficient αd and a dispersion profile β2,d(zd) [see Fig. 5.2(b)]. The

optical field envelope in the DDF is described by

i
∂qb
∂zd
− β2,d(zd)

2

∂2qb
∂t2

+ γd|qb|2qb + i
αd
2
qd = 0, (5.6)
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where αd and γd are the loss and nonlinear coefficients of DDF, respectively, zd is

the distance in the DDF, qb(t, 0) =
√
G′q∗(t, La), and G′ is the gain of the amplifier

preceding DDF. Using transformations

qd =
√
Pde

−αdzd/2ub, (5.7)

and

dz′d = β2,d(zd)dzd, (5.8)

Eq. (5.6) can be rewritten as

i
∂ub
∂z′b
− 1

2

∂2ub
∂t2

+
γdPde

−αdzd

β2,d(zd)
|ub|2ub = 0, (5.9)

where Pd = GPin = G′e−αLaPin is the input power of the DDF. Eqs. (5.5) and (5.9)

are identical only if

dz′b = dz′d, (5.10)

and

γPin
β2

e−α(La−zb) =
γdPde

−αdzd

β2,d(zd)
. (5.11)

Substituting Eqs. (5.4) and (5.8) in Eq. (5.10), we find

β2
dzb
dzd

= β2,d(zd), (5.12)

w ≡ β2zb =

∫ zd

0

β2,d(zd)dzd, (5.13)

dw

dzd
= β2,d(zd), (5.14)
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Substituting Eqs. (5.13) and (5.14) in Eq. (5.11), we obtain

dw

dzd
eαw/β2 =

(
γdPdβ2

γPin

)
eαLae−αdzd . (5.15)

Integrating Eq. (5.15), we find

1

α

(
e
α
β2
w(zd) − 1

)
=

(
γdPd
γPin

)
eαLa

1− e−αdzd
αd

. (5.16)

Simplifying Eq. (5.16), we obtain

w(zd) =
β2

α
ln

(
1 +

γdGα

γe−αLa
1− e−αdzd

αd

)
, (5.17)

β2,d =
e−αdzd

γe−αLa

γdG
+ α

(
1−e−αdzd

αd

)β2. (5.18)

The length of DDF Ld is found as follows. Total accumulated dispersion of the ideal

OBPF [Fig. 5.2(a)] should be the same as that of the DDF, i.e.,

β2La = w(Ld) =

∫ Ld

0

β2,d(zd)dzd, (5.19)

or

Ld = − 1

αd
ln

[
1− αdγe

−αLa

γdGα

(
eαLa − 1

)]
. (5.20)

If the dispersion profile of the DDF is tailored to satisfy Eq. (5.18), the combination

of the amplifiers and DDF provides the ideal response described by Eq. (5.5), and

hence, signal-signal nonlinear interactions can be exactly compensated. The amplifier

with gain Gd = eαdLd is introduced after the DDF [see Fig. 5.2(b)] to compensate for

97



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

the loss of DDF. Fig. 5.3 shows the dispersion profiles of DDF that satisfy Eq. (5.18).

As can be seen, relatively shorter length of DDF can compensate for the dispersion

and nonlinear effects of the TF.

Figure 5.3: Dispersion profiles of DDF. TF parameters: α=0.2 dB/km, β2=5 ps2/km,
γ=2.2 W−1km−1, La=60 km. DDF parameters: αd=0.4 dB/km, γd=4.86 W−1km−1.
(a) G=1.0: β2,d(0)=175.1 ps2/km, Ld=20.5 km, (b) G=1.26: β2,d(0)=220.6 ps2/km,
Ld=12.1 km, (c) G=1.5: β2,d(0)=262.6 ps2/km, Ld=9.0 km.

So far we considered the compensation of dispersion and nonlinearity of a single-

span fiber optic link. For a multiple-span transmission system, Fig. 5.4 shows the

schematic of a WDM fiber optic transmission system consisting of M transmitters,

N spans of TFs, the OBP module, and M coherent receivers. The OBP is applied

at the end of the transmission link. A pre-amplifier with gain G is introduced so

that the required dispersion profile and length of the DDF can be adjusted according

to Eqs. (5.18) and (5.20), respectively. A BPF is introduced to remove the out of

band ASE noise. During back propagation, amplifiers with gain Gd are used to fully

compensate for the loss of each span of DDF.

In DBP, the compensation of fiber dispersion and nonlinearity is implemented in

a step-wise manner and the performance is usually limited by the step size which has
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Figure 5.4: Schematic diagram of a WDM fiber optic transmission system with OBP.
MUX: multiplexer, BPF: band pass filter, DMUX: demultiplexer.

to be traded off against computational cost or system complexity. In WDM systems,

the required computational load may prevent DBP from real time implementation.

In the OBP with DDF, the compensation of dispersion and nonlinearity is realized

by a gradually decreasing dispersion profile, which inherently has a very small step

size. The DDF with exponentially dispersion decreasing fibers have been fabricated

before [106, 107]. The step size of the order of a few meters in DDF can be realized

and hence, nearly ideal OBP can be realized using DDF. The DDF can be fabricated

by tapering the fiber during drawing process which alters the waveguide contribution

to the dispersion [106]. The maximum dispersion required for OBP fiber is of the

same order as the commercially available dispersion compensation fiber and of the

same sign.

5.3 Simulation results and discussions

We simulate a WDM fiber optic transmission system with OBP at the receiver with

the following parameters: number of WDM channels = 5, channel spacing = 100
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GHz, symbol rate per channel = 25 Gsymbols/s, modulation = 32 QAM, number of

symbols simulated = 32768 per channel. The linewidths of the transmitter and local

oscillator lasers are 100 kHz each. The dispersion, loss, and nonlinear coefficients of

the TF are β2 = 5 ps2/km, α = 0.2 dB/km, and γ = 2.2 W−1km−1, respectively. This

type of fiber has been fabricated before and it is known as negative dispersion fiber

(NDF) [96, 108]. The amplifier spacing is 60 km, and the spontaneous emission noise

factor is nsp = 1.5. The BPF shown in Fig. 5.4 is a second order Gaussian filter with

full bandwidth of 450 GHz. For the DDF, αd = 0.4 dB/km, γd = 4.86 W−1km−1, and

Ld = 12.1 km [see Fig. 5.3(b)]. The corresponding amplifier gain for compensating the

DDF loss is 4.84 dB. Standard SSFS is used to simulate forward signal propagating in

fibers with a nonlinear phase per step of 0.0005. In all the simulations, 32 samples per

symbol are used in the transmission link so as to obtain a frequency window covering

all the WDM channels. In DBP simulations, 2 samples per symbol are used after

the ADC unless otherwise specified, while in OBP simulations, back propagation is

in the optical domain and 32 samples per symbol are used. Using the method of [58],

the coupled NLSE is used to compensate for the inter-channel nonlinear impairments

ignoring FWM. However, the OBP scheme compensates for both XPM and FWM

simultaneously. The central channel is demultiplexed using a second order Gaussian

filter with full bandwidth of 50 GHz. In the coherent receiver, for OBP, two samples

per symbol are used after the ADC and phase noise compensation is done using

the approach of Ref. [98]. A LPF of bandwidth 25 GHz is used prior to phase

noise compensation. For the DBP scheme, coupled NLSE is solved in digital domain

prior to phase noise compensation. The optical and electrical filter bandwidths are

optimized in both OBP and DBP schemes.
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Figure 5.5: BER versus launch power per WDM channel. BER are calculated based
on the central channel. (Number of WDM channels = 5, transmission distance =
1200 km.)

Fig. 5.5 shows the BER as a function of the launch power per WDM channel

when the transmission distance is 1200 km. The solid curve represents the BER of

OBP using DDFs, and the dashed and dotted curves represent the BER of DBP

with 3 km and 10 km step sizes, respectively. The DBP step size of the simulated

WDM system is limited by the walk-off length [58], which is 3.2 km. We found that

there is no obvious performance improvement when a step size smaller than 3 km

is chosen for DBP, consistent with the results of Ref. [58]. Also, Fig. 5.5 shows

the simulation results of DBP with 4 samples/symbol ADC sampling rate and DBP

with DSP upsampling [56] from 2 to 4 samples/symbol. The DBP performance can

be improved by increasing ADC sampling rate or DSP upsampling, at the cost of

increased system complexity and computational cost. The OBP outperforms DBP

(2 samples/symbol, step size = 3 km) by 2.0 dB in Q-factor. The relatively poor
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performance of DBP as compared to OBP is mainly due to the down sampling penalty

and the lack of FWM compensation. The performance of midpoint OPC is worse than

DBP, because the power profile is unsymmetrical with respect to the location of OPC.

The performance of OBP is worse than that of DBP (with step size = 3 km) when

the launch power is less than -2 dBm which is due to the optical signal to noise ratio

(OSNR) penalty resulting from OBP amplifiers. The OSNR penalty due to OBP

amplifiers is found to be 0.56 dB. From Fig. 5.5, it can also be seen that the DBP

with a step size of 10 km performs worse than the DBP with a step size of 3 km even

at lower launch powers (-10 dBm to -6 dBm) due to residual nonlinearity. The curve

with “+” shows the case where no OBP (or DBP) is applied and fiber dispersion and

laser phase noise are compensated in the receiver. As can be seen, the performance

of this system is much worse than the system with DBP or OBP.

Figure 5.6: BERmin versus transmission distance. OSNR is 30.5 dB at the output of
the fiber-optic link when launch power per channel is 0 dBm.

Fig. 5.6 shows the minimum BER as a function of transmission distance. The
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BERmin is obtained by optimizing the launch power for each distance. At the BER

of 2.1 × 10−3, the transmission reaches of linear compensation only and midpoint

OPC are 300 km and 360 km, respectively. For DBP with a 10 km step size and 2

samples/symbol sampling rate, the reach is 760 km, which can be increased to 1600

km by using a 3 km step size at the cost of more than tripling the computational

effort. The transmission reach of OBP with DDF is 2460 km. Although the OBP

fully compensates for signal-signal nonlinear interactions, it neither compensates for

signal-ASE nonlinear interactions [27, 28, 32] nor mitigates nonlinear PMD [109],

which are the limiting factors to enhance the reach in systems based on OBP. Instead

of placing the OBP module at the receiver, it can be placed at each of the amplifier

location. In such a scheme, signal-ASE nonlinear interactions can be compensated

and better performance is expected.

The research work presented in this chapter is collaborative and my main con-

tribution includes mathematical derivation of the dispersion profiles of DDF, and

validation of the scheme to introduce DDF to fully compensate for deterministic fiber

impairments. My contribution also includes a part of the modeling and simulation in

Section 5.3.

5.4 Conclusions

We have investigated the performance of an OBP scheme consisting of an OPC and

N spans of DDFs followed by amplifiers to compensate for dispersion and nonlinear

effects of an N -span fiber optic WDM system. We have identified the conditions

under which the nonlinear effects (both intra- and inter-channel nonlinearities) can

be fully compensated and obtained an analytical expression for the novel dispersion
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profile of the DDF which provides the exact compensation of intra- and inter-channel

signal-signal nonlinear impairments. The performance of the proposed OBP scheme

is compared with DBP and midpoint OPC and simulation results show that the trans-

mission reach can be significantly enhanced using the OBP with DDF. In addition,

OBP can be implemented in real time for WDM systems. The OBP scheme with

DDF is also potential for applications in fiber optic network by placing the OBP

module at the end of each span or at each node, since the compensation of a certain

signal channel becomes independent of its propagation path and independent of the

added/dropped channels within the propagation path.
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Chapter 6

Impulse response of nonlinear

Schrödinger equation and its

implications for pre-dispersed

fiber-optic communication systems

6.1 Introduction

The propagation dynamics of the pulse in a cubically nonlinear dispersive medium

such as an optical fiber is described by the nonlinear Schrödinger equation (NLSE)

[110, 111]. Optical soliton is a normal mode of the nonlinear system described by

the NLSE, which can be integrated by means of inverse scattering transform (IST)

[112, 113]. Zakharov and Shabat [111] solved the NLSE using IST and obtained

soliton and breather solutions. The breathers or higher order solitons undergo periodic
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compression and expansion with a soliton period. Impulse response approach to

nonlinear dispersive propagation in fiber has been studied in the past [114, 115]. In

Ref. [114] , the impulse response approach of linear system is extended to nonlinear

system using a self-consistent time-transformation. In Ref. [115], an impulse response

approach is used to calculate the multiplicative correction due to the interplay between

chromatic dispersion and Kerr nonlinearity. In this chapter, we obtain an exact

solution of the NLSE for an impulse input [116]. However, we found that there is

a singularity in the phase. To remove this singularity, we introduced pre-dispersion

which can be added either in electrical domain at the transmitter or in optical domain

prior to transmission. The exact solution in this case has a phase factor which is

described by the exponential integral. Next, we investigated the nonlinear interaction

among pulses in a fiber due to periodically placed impulses at the input and analyzed

the conditions under which they propagate over long distances without exchanging

energy among them [116].

When a cluster of CW beams of different frequencies propagate in optical fiber,

they exchange energy through the process known as four wave mixing (FWM). Even-

tually the amplitudes of CW beams reach an equilibrium in which there is no exchange

of energy among them and they take secant-hyperbolic shape corresponding to soli-

ton spectrum. There exists an alternate explanation in time domain. The dual of

classical FWM is time-domain FWM or IFWM [24, 33–35] and the dual of CW sig-

nal is a Dirac delta function in time domain (CW signal is an impulse function in

frequency domain). When a cluster of closely spaced impulses propagate in fiber,

they exchange energy through IFWM. However, if the weights of the impulses have
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secent-hyperbolic shapes, they do not exchange energy and propagate stably as soli-

tons over long distances. In order to have soliton propagation, the impulses have

to be infinitesimally closer. In this chapter, we have investigated if it is possible to

propagate a large number of periodically placed impulses over large distances without

exchanging energy among them. We found that if the impulse weights at the input

have a secant-hyperbolic shape and a proper chirp factor, they propagate without

change in shape over long distances just like the soliton of NLSE [116]. The ampli-

tude of the soliton solution depends on system parameters such as pre-accumulated

dispersion, separation between the impulses and the dispersion of the transmission

fiber. When the impulses are infinitesimally closer, this solution becomes the classical

soliton of the continuous NLSE. We have derived a discrete NLSE which describes the

evolution of the discrete Fourier transform of the product of the impulse weights and

a chirp factor. We note that the discrete NLSE can be easily obtained by discretizing

the continuous NLSE. In such a discrete NLSE, the dispersion term would be directly

proportional to fiber dispersion coefficient. However, in the discrete NLSE derived

here, the effective dispersion term is inversely proportional to the square of the accu-

mulated dispersion and the effective nonlinear term is inversely proportional to the

absolute accumulated dispersion. It is not yet known if the discrete NLSE derived

here can be integrated by IST. However, we have numerically found that the discrete

NLSE admits higher order soliton solutions which undergo periodic compression and

expansion with a certain period, similar to its continuous analogue.

In the context of discrete NLSE, if the effective dispersion length is much longer

than the effective nonlinear length, the equation becomes significantly simplified. In

this case, intra-channel cross-phase modulation (IXPM) and IFWM [12, 24, 33–35]
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vanish in the transformed system. We have obtained nonlinear eigenmodes which form

the natural basis for description of signal propagation and signal and noise nonlinear

interaction in highly pre-dispersed fiber-optic systems. The work presented in this

chapter may appear unrelated to the rest of the thesis. However, the pre-dispersion

significantly simplifies the propagation equations, which would make the analysis

easier and could potentially lead to simpler nonlinearity compensation schemes.

6.2 Impulse response

If we make a transformation that A = u exp(−αz/2) in Eq. (2.1), the evolution of

optical field envelope is described by lossless NLSE,

i
∂u

∂z
− β2

2

∂2u

∂t2
+ γ0e

−αz|u|2u = 0, (6.1)

where α, β2, and γ0 are the loss, dispersion and nonlinear coefficients, respectively.

In a linear fiber (γ0 = 0), when an impluse is launched,

u(t, 0) = Aδ(t), (6.2)

the optical field in the fiber is

u(t, z) =
A√

−i2πβ2z
e
−i t2

2β2z . (6.3)

In the presence of nonlinearity, we look for a solution of Eq. (6.1) in the form,

u(t, z) =
A√

−i2πβ2z
e
−i t2

2β2z
+iv(z)

, (6.4)
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Substituting Eq. (6.4) in Eq. (6.1), we obtain

A√
−i2πβ2z

[
− i

2z
− t2

2β2z2
− dv(z)

dz
+
β2

2

(
i

β2z
+

t2

β2
2z

2

)
+ γ0e

−αz |A|2

2π|β2|z

]
= 0.

(6.5)

Simplifying Eq. (6.5), we obtain

v(z) =
γ0|A|2

2π|β2|

∫ z

0

e−αx

x
dx. (6.6)

The integrand of Eq. (6.6) has a singularity, which should be expected due to the

impulse input. The singularity can be avoided by using pre-dispersion. Suppose

β2(z) =


β2−, for z < 0

β2+, for z > 0

(6.7)

γ =


0, for z < 0

γ0, for z > 0.

(6.8)

Let s0 =
∫ 0

−L β2−(z)dz be the pre-accumulated dispersion. The pre-dispersion can be

realized using a high dispersion fiber prior to transmission fiber or a digital dispersion

filter in the DSP unit of the optical transmitter [12, 92]. Now for z > 0, Eqs. (6.4)

and (6.6) are modified as

u(t, z) =
A√

−i2πs(z)
e−i

t2

2s(z)
+iγ0

|A|2
2π

θ(z), (6.9)

θ(z) =

∫ z

0

e−αx

s(x)
dx, (6.10)
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s(z) = s0 + β2+z. (6.11)

θ(z) in Eq. (6.9) does not diverge only if s0 + β2+z does not cross 0 for any z. In

this chapter, we assume that pre-accumulated dispersion s0 has the same sign as β2+

so that s(z) does not cross 0. Under this condition, Eq. (6.10) can be written in a

closed form as [117]

θ(z) = eαs0/β2+
[
Ei

(
−αs(z)

β2+

)
− Ei

(
−αs0

β2+

)]
, (6.12)

where Ei(x) is the exponential integral.

Ei(x) = −
∫ ∞
−x

e−t

t
dt. (6.13)

Equation (6.9) is an exact solution of the NLSE when the input (at z = −L) is a

single impulse. Suppose the input consists of a train of impluses,

uin(t) =

N/2−1∑
n=−N/2

Anδ(t− nT ), (6.14)

where N is the number of impulses, which is assumed to be large. The optical field

in the transmission fiber for this input may be written as

u(t, z) =

N/2−1∑
n=−N/2

An(z)e−i(t−nT )2/2s(z)√
−i2πs(z)

, for z ≥ 0. (6.15)

In the absence of nonlinear interaction with the neighboring pulses, we have

An(z) = An(0)eiγ0|An(0)|2θ(z)/2π. (6.16)
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Equation (6.16) includes the effect of SPM only. However, due to IXPM and IFWM,

[24, 33–35] the pulses undergo amplitude/phase shifts. Substituting Eq. (6.15) in Eq.

(6.1), we find

i
∑
n

dAn
dz

e−i
(t−nT )2

2s(z) +
γ0e
−αz

2π|s(z)|
∑
k

∑
l

∑
m

AkAlA
∗
mFklm = 0, (6.17)

where Fklm = e−i[(t−kT )2+(t−lT )2−(t−mT )2]/2s(z). Multiplying Eq. (6.17) by ei(t−jT )2/2s(z)

and integrating from −t to t with t→∞, we find

i
∑
n

dAn
dz

δjn +
γ0e
−αz

2π|s(z)|
∑
k

∑
l

∑
m

AkAlA
∗
mYklm,j = 0, (6.18)

where δjn is a Kronecker delta function and

Yklm,j = lim
t→∞

1

2t

∫ t

−t
Fklme

i(τ−jT )2/2s(z)dτ

= lim
t→∞

1

2t
e−i(k

2+l2−m2−j2)T 2/2s(z)

∫ t

−t
ei(k+l−m−j)τT/s(z)dτ.

(6.19)

Yklm,j will be non-zero only if m = k + l − j. In this case,

Yklj ≡ Yklm,j = e−i[k
2+l2−(k+l−j)2−j2]T 2/2s(z). (6.20)

So, now Eq. (6.18) becomes

i
dAj
dz

+
γ0e
−αz

2π|s(z)|
∑
k

∑
l

Ak(z)Al(z)A∗k+l−jYklj = 0. (6.21)
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In the absence of nonlinear effects (γ0 = 0), from Eq. (6.21) we find

dAj
dz

= 0, (6.22)

which indicates that there is no interaction among pulses in a linear medium. Let

Uk(z) = e−ik
2T 2/2s(z), (6.23)

where k is an integer. Equation (6.20) may be written as

Yklj = UkUlU
∗
k+l−je

ij2T 2/2s(z). (6.24)

Let

Bk(z) = Ak(z)Uk(z). (6.25)

Using Eqs. (6.23)-(6.25) in Eq. (6.21), we find

i
dBj

dz
+
j2T 2β2+

2s2(z)
Bj +

γ0e
−αz

2π|s(z)|
∑
k

∑
l

BkBlB
∗
k+l−j = 0. (6.26)

The second term is similar to dispersion in NLSE. If we take the Fourier transform

of Eq. (6.1), the second term would be β2ω
2ũ(ω, z)/2, where ũ(ω, z) = F{u(t, z)},

F denotes the Fourier transformation. Therefore, in Eq. (6.26), β2+/s
2(z) may be

interpreted as the effective dispersion. However, unlike u(t, z), Bj(z) is a discrete

variable and hence, we consider the discrete Fourier transform (DFT),

DFT{Bj; j → m} = B̃m =

N/2−1∑
j=−N/2

Bje
−i2πjm/N . (6.27)
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Taking the discrete Fourier transform of Eq. (6.26) and noting that a convolution

becomes product in spectral domain (and vice versa), we find

i
dB̃m

dz
− β2+T

2

2s2(z)

N/2−1∑
k=−N/2

B̃m−kx̃k +
γe−αz

2π|s(z)|
|B̃m|2B̃m = 0, (6.28)

where

x̃k = DFT{j2; j → k}. (6.29)

Equation (6.28) may be interpreted as a discrete analogue of the NLSE. Since An

may be interpreted as signal sample at nT , a discrete NLSE can be easily obtained

for An [118, 119]. In such a discrete NLSE, the dispersion term would be directly

proportional to fiber dispersion coefficient. However, in Eq. (6.28), the effective

dispersion term is inversely proportional to the square of accumulated dispersion and

the effective nonlinear term is inversely proportional to the absolute accumulated

dispersion. The discrete NLSE in Eq. (6.28) does not describe An, instead it discribes

the evolution of the DFT of Bn which is the product of An and Un. In the absence of

pre-dispersion (s0 = 0), the effective dispersion term and the effective nonlinear term

of Eq. (6.28) diverge at z = 0 and hence, pre-dispersion is essential for the solution

of Eq. (6.28). In the terminology of Ref. [119], Eq. (6.28) is a discrete self-trapping

(DST) equation of the form [120],

i
dB̃m

dz
+ ε
∑
k

mjkB̃k + γ|B̃m|2B̃m = 0, (6.30)

where [mjk] is a f × f coupling matrix. In Eq. (6.1), when α = 0, dispersion and

nonlinear coefficients are constants for z > 0 and hence, it admits soliton solutions.
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However, in Eq. (6.28), the effective dispersion and nonlinear coefficients are varying

with distance due to s(z). If we choose the pre-dispersion such that s0 >> β2+Ltr

where Ltr is the length of the transmission fiber, we can approximate s(z) as s0. In

this case with α = 0 km−1, we look for a soliton solution of Eq. (6.28) in the form

B̃m(z) = B̃0sech
(m
M

)
eiµ(z). (6.31)

Equation (6.28) is numerically solved using the split-step Fourier method with the

initial condition,

B̃m(0) = B̃0sech
(m
M

)
. (6.32)

Figure 6.1 shows the evolution of |B̃m|2 in the transmission fiber. As can be seen, when

B̃0 is less than a threshold B̃th, we see the broadening effect and when B̃0 = B̃th, the

pulse shape is retained throughout. Figure 6.2 shows the evolution of |Bn|2 obtained

by taking the inverse discrete Fourier transform (IDFT) of B̃m. As can be seen,

when B̃0 < B̃th (Fig. 6.2a), the envelope of |Bn|2(= |An|2) becomes narrower which

indicates that the pulses exchange energy among them resulting in the pulse at the

center (n = 0) becoming stronger. When B̃0 = B̃th, pulses propagate long distances

without exchanging energy among them.

Figure 6.3 shows the similar result by solving Eq. (6.1). The impulses of Eq.

(6.14) are approximated by Gaussian pulses of short pulse widths,

Anδ(t− nT )→ An√
2πT0

e
− (t−nT )2

2T2
0 , (6.33)
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Figure 6.1: Evolution of B̃m in the transmission fiber, (a) B̃0 < B̃th, B̃0 = 10
√

mWps,

(b) B̃0 = B̃th. B̃th = 14.9
√

mWps, M = 28, α = 0 km−1, s0 = −1.28 × 104 ps2,
γ0 = 1.1 W−1km−1.
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Figure 6.2: Evolution of Bm in the transmission fiber, (a) B̃0 < B̃th, (b) B̃0 = B̃th.
The parameters are the same as in Fig. 6.1.
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and Eq. (6.1) is solved with the following initial condition

uin(t) =

N/2−1∑
n=−N/2

An(0)e
− (t−nT )2

2T2
0

√
2πT0

, (6.34)

where

An(0) = Bn(0)e
in

2T2

2s0 , (6.35)

Bn(0) = IDFT
{
B̃m(0);m→ n

}
, (6.36)

and B̃m(0) is given by Eq. (6.32). To obtain Fig. 6.3, the pre-accumulated dispersion

is fully compensated at the receiver so that the pulse width of the Gaussian pulses

at the output is the same as that at the input. As can be seen from Fig. 6.3, the

envelope of Gaussian pulses propagate undistorted over the transmission fiber. If we

had not properly chosen the input power, the nonlinear interaction among Gaussian

pulses would broaden/compress the shape of the envelope. “×” in Fig. 6.3 show the

power obtained by numerically solving Eq. (6.28) after converting B̃m to An using

Eqs. (6.23) and (6.25). The power required to form fundamental soliton is found to

be

Ps =
β2+T

2

4s0γ0T 2
0

, (6.37)

where T is the pulse separation and T0 is the pulse width of the Gaussian pulses.

Strictly speaking, the approximation of impulses by ultra-short Gaussian pulses is

not really necessary. To test the validity of Eq. (6.28), in principle, Eq. (6.1) can be

solved with the initial condition u(t, 0) given by Eq. (6.15). However, the extraction

of An from the transmission fiber output becomes hard.

As pointed in Ref. [119], DST is not typically integrable when f > 2. The
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Figure 6.3: Comparison of discrete NLSE (Eq. (6.28)) and continuous NLSE (Eq.
(6.1)). Peak power = 35.5 mw , T = 10 ps, T0 = 1 ps, s0 = −1.28×104 ps2, β2+ = −20
ps2/km, γ0 = 1.1 W−1km−1, transmission distance = 240 km.

integrability of Eq. (6.28) is not known yet, and to test if it admits high order soliton

solutions, we solved Eq. (6.28) with the initial condition

B̃m(0) = 2B̃thsech
(m
M

)
. (6.38)

Figure 6.4(a) shows the evolution of the second order soliton. As can be seen, it

undergoes periodic compression just like its continuous analogue. The soliton period

is found to be

z0 =
2s2

0

πM2T 2|β2+|
. (6.39)

Figure 6.4(b) shows the evolution of |Bn|2. When the envelope of B̃m is compressed,

the corresponding envelope of Bn is broadened and vice versa.
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Figure 6.4: Evolution of second order soliton. B̃0 = 29.8
√

mWps. The rest of the
parameters are the same as in Fig. 6.1.
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6.3 Nonlinear eigenmodes

When the effective dispersive effects are much weaker than the effective nonlinear

effects in Eq. (6.28), i.e.,

γPT 2
0 /π >> β2+T

2/|s(z)|, (6.40)

where P is the peak power and T0 is the half-width at 1/e-intensity point of the

Gaussian pulse that approximates the impulse, the second term in Eq. (6.28) can be

ignored and we obtain

∂B̃m

∂z
= i

γe−αz

2π|s(z)|
|B̃m|2B̃m. (6.41)

In Eq. (6.26), the last term is responsible for nonlinear interactions such as IXPM

and IFWM among pulses. However, in Eq. (6.41), in the transformed system, these

terms are absent and hence, the description of the nonlinear interactions becomes

significantly simplified. Let

B̃m = Yme
iθm . (6.42)

Substituting Eq. (6.42) in Eq. (6.41), we find

Ym = const, (6.43)

θm(z) = θm(0) + γ|Ym|2
∫ z

0

e−αx

2π|s(x)|
dx. (6.44)

The solution of Eq. (6.41) may be written as

B̃m(z) = B̃m(0)eλmz
′
, (6.45)
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where

λm = iγ|B̃m|2, z′ =
1

2π

∫ z

0

e−αx

|s(x)|
dx. (6.46)

When s0 and β2+ have the same sign, z′ can be written as

z′ =
eα|s0/β2+|

2π

[
Ei

(
−α
∣∣∣∣s(z)

β2+

∣∣∣∣)− Ei

(
−α
∣∣∣∣ s0

β2+

∣∣∣∣)] . (6.47)

B̃m may be interpreted as the nonlinear eigenmode of the fiber-optic system in the

presence of pre-dispersion with the eigenvalue λm. These eigenmodes form a natural

basis for the description of signal propagation, and signal and noise nonlinear inter-

action in highly pre-dispersed fiber-optic transmission systems. We note that using a

different approach with stationary phase approximation, it has been shown that prop-

agation equations can be considerably simplified in the presence of high pre-dispersion

[55]. We found a few similarities and differences between Ref. [121] and our work. In

this chapter, we introduce a transformationBk(z) = Ak(z) exp (−ik2T 2/2s(z)) in time

domain, whereas in Ref. [121], the transformation û(z, ω) ∼ Û(z, ω) exp(−iCω2/2)

is used in frequency domain. In Ref. [121], when the system has a small value of

path-average dispersion, the average dynamic of the pulse transmission is character-

ized only by the nonlinear phase shift. In contrast, from Eq. (6.28), it follows that

when the system has a very large pre-accumulated dispersion, the pulse transmission

is characterized only by the nonlinear phase shift given by Eq. (6.45). Even when the

condition given by Eq. (6.40) is not met, i.e. when the pre-accumulated dispersion is

moderate, the nonlinear eigenmode could serve as the unperturbed solution and a first

order perturbation theory could be developed for the discrete NLSE of Eq. (6.28).

An interesting fact is that the square of the accumulated dispersion appears in the
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denominator of the second term in Eq. (6.28). This means that the effect of the sec-

ond term becomes smaller for the fiber spans closer to receiver in a long haul system.

Typically, in quasilinear fiber optic systems, dispersion length is much shorter than

the nonlinear length. Hence linear solution (including dispersive effects) is treated

as the unperturbed solution and first order correction due to nonlinear effects are

calculated [35]. However, the computational complexity of the first order calculations

scales as M2 per sample where M is the number of neighbors with which the nonlinear

interaction is significant and as a result, the digital compensation of fiber nonlinear-

ities using first order perturbation theory is time-consuming [65, 122]. In contrast,

if the nonlinear eigenmodes are treated as the unperturbed solution with the second

term of Eq. (6.28) being treated as perturbation, the computational complexity is

expected to be much smaller.

The research work presented in this chapter is collaborative and my contribution is

derive the exact solution of NLSE for impulse input in the presence of pre-dispersion

mathematically, as well as model and simulate the system numerically. Also, I find

the power required to form the fundamental solition and the solition period.

6.4 Conclusions

In conclusion, we have derived an exact solution of NLSE for an impulse input in the

presence of pre-dispersion. The exact solution has a phase factor that is described by

the exponential integral. Next, we considered the nonlinear interaction among pulses

in a fiber due to periodically placed impulses at the input. We found that these pulses

will propagate stably over long distances if the complex weights of impulses at the

input has a secant-hyperbolic envelope and a proper chirp factor. We have derived the

122



Ph.D. Thesis - Jing Shao McMaster - Electrical and Computer Engineering

discrete version of the NLSE under the condition that the input of an optical fiber is a

periodic train of impluses. When the accumulated pre-dispersion is large, the discrete

NLSE admits soliton and breather solutions similar to its continuous analogue. In

the discrete NLSE derived here, the effective dispersion term is inversely proportional

to the square of the accumulated dispersion and the effect nonlinear term is inversely

proportional to absolute of accumulated dispersion. The derived discrete NLSE has a

solution only if the pre-accumulated dispersion is non-zero. In the context of discrete

NLSE, if the effective dispersion length is much longer than the effective nonlinear

length, we have obtained the nonlinear eigenmodes of the highly pre-dispersed fiber-

optic system which could be useful for the description of signal propagation, and

signal and noise interaction.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis focuses on various schemes of split-step Fourier method to solve the nonlin-

ear Schrödinger equation (NLSE), which is used to model optical pulses propagating

in fibers. In addition, dispersive and nonlinear impairments in fiber-optic communi-

cation systems are discussed, and compensation techniques to mitigate them using

DSP or optical devices are developed.

In Chapter 2, efficient schemes to solve the NLSE are discussed [84]. The fiber

loss operator can be combined with dispersion or nonlinearity operators, and it is

found that the schemes when loss is with nonlinearity outperform those when loss

is with dispersion. The schemes with varying step size are more efficient than those

with uniform step size, when the global error is large. In this thesis, it is proposed to

use mimimum area mismatch (MAM) in which the step size distribution is optimized

by minimizing the area mismatch of the power profile between the ideal curve and its

stepwise approximation. The optimization problem is solved by the steepest descent
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algorithm. Local error method is a scheme, in which the next step size is determined

and adjusted by the local error of the current step. In this thesis, it is proposed to

combine the MAM and local error method. The combined scheme is found to have

higher computational efficiency than the other schemes studied in this thesis. For

QPSK systems, when the global error is 10−8, the number of FFTs needed for the

conventional scheme (loss with dispersion and uniform step size) is 5.8 times that of

the combined scheme. When the global error is 10−6, the number of FFTs needed for

the conventional scheme is 3.7 times that of the combined scheme.

Chapter 3 deals with a DBP scheme using optimal step size distribution to com-

pensate for fiber distortions in a polarization division multiplexed fiber-optic commu-

nication system [83]. The optimization of the step sizes is obtained by minimizing the

area mismatch between the exponential profile of the effective nonlinear coefficient or

power profile and its stepwise approximation. Under the same computational com-

plexity, DBP with optimal step sizes can obtain better performance. In simulations,

vector NLSE and Manakov equations are used to model the forward propagation of

the optical signals, and Manakov equations are used for backward propagation. In or-

der to compensate for randomly changing birefringence when the vector NLSE is used

for forward propagation, an adaptive LMS equalizer is utilized. Simulation results

show that in both cases, DBP with optimal step size can significantly increase the

system reach as compared to the uniform spacing scheme at the same computational

load.

In Chapter 4, compensation of fiber dispersion and nonlinearity are realized by

OBP, which is similar to DBP scheme except that the OBP module consists of optical

devices [93]. Since fibers with negative Kerr nonlinear coefficient are not available, the
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conjugation of the transmission signals are needed before OBP. Therefore, an optical

phase conjugator is employed before OBP, and the conjugated signals then passes to

the OBP module, which consists of high-dispersion fibers (HDFs) and highly nonlin-

ear fibers (HNLFs). HDFs are mainly used to compensate for fiber dispersion, and

HNLFs are used to compensate for fiber nonlinearity. It is shown in simulation that

the OBP scheme outperforms the schemes using midpoint OPC and DBP with the

same step size. Another OBP scheme with OPC is investigated, in which the OBP

module consists of fiber Bragg gratings (FBGs) and HNLFs [81]. Dispersion and

nonlinearity are compensated using FBGs and HNLFs, respectively, and several sec-

tions of FBGs and HNLFs are concatenated in a way similar to the split-step Fourier

method, which is used to solve the NLSE. By minimizing the area mismatch between

the ideal exponential curve of the effective nonlinear coefficient and its stepwise ap-

proximation, the accumulated dispersion and nonlinear phase shift are optimized.

We simulated a single channel fiber-optic communication systems based on this OBP

scheme, and the simulation results show that the optimized OBP scheme has a better

performance than that use uniform spaced sections. Also, the benefit brought out by

OBP is that it can be implemented in real time systems. However, DBP can only be

limited to off-line signal processing recently.

In Chapter 5, an ideal optical back propagation (OBP) scheme to compensate

for impairment of the transmission fibers is investigated [105]. The transmission link

consists of N spans, and the output of the transmission fiber goes through an optical

phase conjugator, N spans of dispersion-decreasing fibers (DDFs) and amplifiers. To

compensate for the dispersive and nonlinear effects of the transmission fibers exactly,

the nonlinear coefficient of the back propagation fiber needs to increase exponentially
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with distance or equivalently the power in the back propagation fiber should increase

exponentially if the nonlinear coefficient is constant. It is found that DDFs combined

with amplifiers can be used to compensate for nonlinear effects exactly. The dispersion

profile of the DDF is derived analytically. Numerical simulations of WDM fiber-

optic systems show that the proposed OBP scheme can enhance the system reach

significantly as compared to DBP. Although OBP may introduce insertion loss, it

has many advantages: It has a very large bandwith, while DBP is limited by the

bandwidth of the coherent receiver. OBP can be implemented in real time for WDM

system, while DBP is limited to off-line signal processing due to its requirement of

significant computational resources. In addition, OBP is potential for optical network,

if the OBP module is placed at every span or at each node, but DBP can only be

implemented at the transmitter or the receiver side.

In Chapter 6, an exact solution of NLSE is derived for impulse input in the

presence of pre-dispersion [116]. The phase factor of the exact solution is obtained in

a closed form using the exponential integral. The nonlinear interaction among discrete

pulses train launched at the input is investigated, and the condition under which the

envelope of these pulses keep unchanged is examined. It is found that if the complex

weights of the impulses at the input have a secant-hyperbolic envelope and a proper

chirp factor, they will propagate over long distances without exchanging energy. A

discrete version of NLSE is derived to describe their propagation in fibers. The derived

equation is a form of discrete self-trapping (DST) equation. In the context of discrete

NLSE, if the effective dispersion length is much longer than the effective nonlinear

length, the nonlinear eigenmodes of the highly pre-dispersed fiber-optic system is

obtained, which may be useful for the description of signal propagation, and signal
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and noise interaction.

7.2 Future work

This thesis provides various schemes to solve the NLSE using SSFS, which are used

to model the optical pulse propagating in fibers. More accurate and efficient schemes

to simulate forward propagation need to be investigated in the future work. In order

to validate the theoretical derivation and simulation results, experiments need to be

carried out. Through experiments, the performance of DBP and OBP schemes can

be measured and the feasibility can be validated.

These days, DBP can only be implemented in off-line signal processing for WDM

systems because of the enormous computational cost. The main computational com-

plexity comes from the large number of steps and the FFT operations in each step.

Improving the compensation accuracy and reducing the computational complexity of

DBP is an important topic. Since perturbation theory can be used to solve NLSE

analytically or semi-analytically, DBP based on SSFS combined with perturbation

theory, which introduces perturbation theory in each step of DBP, may lead to a

better DBP scheme.

Compared with DBP, OBP compensates for fiber distortions in real time using

fibers and optical devices. Another interesting topic is to develop integrated optic

devices to realize OBP. In Chaper 4, fiber Bragg gratings and highly nonlinear fibers

are concatenated in a way similar to SSFS, and it may be possible to develop a single

integrated optic device with alternating sections of Bragg gratings and highly non-

linear waveguides or multiple sections of the gratings written on the highly nonlinear

waveguide. For the latter case, optimum section lengths calculated in Chapter 4 are
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still applicable, but the split-step approximation is not required as dispersion and

nonlinearity act simultaneously and hence, the performance would be better than

that shown in Chapter 4 for a given number of steps. Silicon has a very large Kerr

nonlinear coefficient and a small length of silicon waveguide can compensate for the

nonlinear phase-shift occurring over kilometers of optical fiber. Also, a dispersive

waveguide can be used to fulfill the dispersion operation. Hence, it may be possible

to develop an OBP module on silicon chip. Also, if a single integrated optic device

is developed to realize the function of DDF in Chapter 5, the design of fiber optic

communication systems will become much more simplified and efficient.
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Appendix A

Derivation of the leading error per

step using SSFS

The derivation of the error per step for scheme I and II is as follows. The Baker-

Hausdorff formular for two noncommuting operators â and b̂ is [22]

exp(â) exp(b̂) = exp

(
â+ b̂+

1

2
[â, b̂] +

1

12

[
â− b̂, [â, b̂]

]
+ . . .

)
, (A.1)

where [â, b̂] = âb̂− b̂â. By using the Baker-Hausdorff formular twice, we obtain

exp

(
â

2

)
exp(b̂) exp

(
â

2

)
= exp

(
â+ b̂+

1

12
b̂b̂â− 1

6
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1

12
âb̂â− 1

24
ââb̂

− 1

24
b̂ââ+

1

12
âb̂b̂

)
.

(A.2)

Let us set the right hand side of Eq. (A.2) equal to exp(H + E), where

H = â+ b̂, (A.3)
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E =
1

12
b̂b̂â− 1

6
b̂âb̂+

1
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âb̂â− 1

24
ââb̂− 1

24
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1

12
âb̂b̂. (A.4)

In the symmetric SSFS, let

â = hD̂, b̂ = hN̂. (A.5)

From Eq. (A.4), we find that E ∝ h3. Using Taylor expansion, we find

exp(H + E) = 1 + (H + E) +
(H + E)2

2!
+

(H + E)3

3!
+ . . .

=

(
1 +H +
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E3 +HE2 +H2E + EH2 + E2H +HEH + EHE
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≈ exp(H) + E +O(h4).

(A.6)

In Eq. (A.6), E is O (h3) and the higher order terms such as E2 and HE are O (h6)

and O (h4), respectively. So the leading error term for symmetric SSFS is E. When

loss is with dispersion (scheme I),

â1 = D̂1h =

(
− i

2
β2

∂2

∂T 2
− α

2

)
h, (A.7)

b̂1 = N̂1h = iγ|Al1|2h, (A.8)
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and the leading error is

EI =
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When loss is with nonlinearity (scheme II), let

â2 = D̂2h = − i
2
hβ2
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∂T 2
, (A.10)
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and the leading error now is
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â2b̂2â2 −
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