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ABSTRACT

Malaria is one of the most devastating infectious diseases, with nearly half of the worlds

population currently at risk of infection [105]. Although mathematical models have made

significant contributions towards the control and elimination of malaria, it continues to

evade control. This thesis focuses on two aspects of malaria that complicate dynamics,

helping it persist.

The basic reproductive number is one of the most important epidemiological quantities

as it provides a foundation for control and elimination. Recently, it has been suggested

that R0 should be modified to account for the effects of finite host population on a single

disease-generation. In chapter 2, we analytically calculate these finite-population repro-

ductive numbers for both vector-borne and directly transmitted diseases with homogeneous

transmission. We find simple, generalizable formula and show that when the population is

small, control and elimination may be easier than predicted by R0.

In chapter 3, we extend the results of chapter 2 and find expressions for the finite-

population reproductive numbers for directly transmitted diseases with different types of

heterogeneity in transmission. We also outline a framework for discussing the different

types of heterogeneity in transmission. We show that although the effects of heterogeneity

in a small population are complex, the implications for control are simple: when R0 is large

relative to the size of the population, control or elimination is made easier by heterogeneity.

Another basic question in malaria modeling is the effects of immunity on the population-

level dynamics of malaria. In chapter 4, we explore the possibility that clinical immunity

can cause bistable malaria dynamics. This has important implications for control: in ar-

eas with bistable malaria, if malaria could be eliminated until clinical immunity wanes, it
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would not be able to invade. We built a simple, analytically tractable model of malaria

transmission and solved it to find a criterion for when we expect bistability to occur. Ad-

ditionally, we review what is known about about the parameters underlying the model and

highlighted key clinical immunity parameters for which little is known. Building on these

results, in chapter 5, we fit the model developed in chapter 4 to incidence data from Kericho,

Kenya and estimate key clinical immunity parameters to better understand the role clinical

immunity plays in malaria transmission.

Finally, in chapter 6, we summarize the key results and discuss the broader implications

of these findings on future malaria control.
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Chapter 1

Introduction

Historically, malaria is one of the most devastating infectious diseases, spreading in the

human population for over 4,000 years [51]. Although malaria has been investigated for

hundreds of years, the most significant advances in understanding malaria epidemiology

were made around the turn of the 20th century: in 1880, Charles Louis Alphonse Lav-

eran discovered parasites in the blood of malaria patients [23, 78] and shortly thereafter, in

1887, Ronald Ross discovered that mosquitoes transmitted malaria [8]. These discoveries,

coupled with advances in anti-malarial drugs and the advent of DDT, ushered in a wave

of successful elimination efforts. From 1945 to 2010, 79 countries successfully eliminated

malaria, of those 75 countries remain malaria free, even in the absence of sustained control

efforts [139, 98]. Piggybacking on these successes, the World Health Organization (WHO)

announced its goal of global malaria eradication [98]. However, with nearly half of the

worlds populations still at risk of malaria, no effective vaccine available, and many older

anti-malarial drugs losing efficacy due to evolved resistance, the WHO has since abandoned

the goal of eradication and now focuses on rolling back malaria [105]. Currently, the most

viable malaria control strategies rely on vector control (e.g. Indoor residual spraying) and
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prevention (e.g. bed nets) [105].

Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmod-

ium. In humans, malaria is caused by Plasmodium falciparum, P. vivax, P. malariae, and

P. ovale. Although there are also human cases of P. knowlsi, it primarily affects macaques

[105]. Malaria spreads through bites of infected female mosquitoes of the genus Anopheles

[105]. When an infected mosquito bites a host, it inoculates sporozoites into the human

host; those sporozoites then infect liver cells. After initial asexual replication in the liver,

parasites move to the red blood cells. There, some differentiate into sexual stages (gameto-

cytes) while others remain sporozoites. The male and female gametocytes are then ingested

during a blood meal. Once in the mosquito, the gametocytes invade the wall of the mid-gut

where they replicate and develop into sporozoites. The sporozoites move to the salivary

glands where they can be transmitted to a new host; and the life cycle repeats. The complex

epidemiology of malaria makes it a prime candidate for mathematical modeling.

Mathematical models are an important tool used to understand disease transmission and

inform control efforts. The use of epidemiological models date back to 1760, with Daniel

Bernoulli, who used differential equations to explore the effect of smallpox inoculation

on disease related mortality [29]. Mathematical modeling was first applied to malaria in

1911 by Ronald Ross [8]. Ross showed that not all mosquitoes needed to be eliminated in

order to eliminate malaria; rather, their density only needed to be reduced below a critical

threshold for successful elimination to occur. Shortly thereafter, in 1927, Kermack and

McKendrick showed that this threshold density held true for host populations of directly

transmitted diseases [66]. Their formulation of this threshold density has come to be called

the basic reproductive number.

The basic reproductive number, R0, is defined as the average number of secondary

infections that can be traced back to a single infectious individual in an otherwise totally
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susceptible population [66]. R0 is one of the most important epidemiological quantities

as it provides the epidemic threshold: when R0 > 1, a disease can invade, whereas when

R0 < 1 the disease will die out. Thus, to eliminate an infectious disease, transmission

must be reduced by a factor of 1/R0, rather than all the way to zero [66]. Additionally, R0

gives the critical vaccination fraction – the proportion of people who must be vaccinated or

otherwise made not susceptible to achieve herd immunity [43]. Accurate calculation of R0

is critical for understanding disease dynamics and planning control efforts.

The first model of malaria, developed by Ross was a simple, single equation model. It

divided humans into susceptible and infected individuals. Susceptible individuals get in-

fected at a rate proportional to the fraction infected, times the contact rate (vectoral capac-

ity) [122, 93]. This simple model of malaria yields major insights into malaria dynamics.

First and foremost, it was the first to identify that not all mosquitoes needed to be eliminated

in order to eliminate malaria. Ross showed that below a critical vectoral capacity, malaria

would die out; above that threshold, the relationship was highly non-linear. Ross showed

that when the vectoral capacity is close to the critical threshold, small increases in vectoral

capacity lead to large increases in malaria prevalence, whereas when the vectoral capacity

is large, even large decreases in vectoral capacity have little impact on reducing prevalence.

Additionally, Ross showed that a reduction in prevalence of malaria without changing the

vectoral capacity is not sustainable, as malaria will eventually return to the pre-reduction

prevalence. Although simple, this model of malaria provides critical insights for the control

of malaria [73, 93, 131].

Building on the work of Ross, in 1952, George MacDonald extended this model to

include susceptible and infected hosts and susceptible, infected, and infectious vectors

[73, 93, 131]. Although this model introduces a level of complexity, it still makes some

simplifying assumptions, including: no acquired immunity, homogeneous hosts and vec-
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tors populations, and that mosquitoes bite randomly. The “Ross-MacDonald” model, as

it has come to be known, has formed the foundation for vector-borne modeling. In addi-

tion to the insights of Ross, the main contribution of the Ross-MacDonald model was the

formulation of R0 – MacDonald was the first to define “z0”, the “basic reproductive rate”

for malaria, what we now call R0 [85]. Additionally, MacDonald performed a sensitivity

analysis of the parameters affecting R0 [85]. The sensitivity analysis revealed that the most

effective way to reduce R0 is by increasing the adult mosquito mortality rate, suggesting

this is where control should be focused.

Incorporating immunity into models of malaria was the next step forward in malaria

modeling [93, 28, 6]. The Ross-MacDonald model of malaria assumed that individuals did

not develop immunity which lead to unrealistic predictions, meaning that the model predicts

that when R0 is large, nearly the entire population is infected (and infectious), which is not

realistic. There were two ways in which immunity was incorporated. The Garki model,

a model of P. falciparum transmission used in conjunction with a large, control trial in

Garki, Nigeria, incorporated partial immunity – characterized by an increased recovery rate

and a decrease in interactivity and detection [93, 28]. Other models [6] incorporated full

immunity, moving immune individuals into a class where they are neither susceptible nor

infectious until immunity is lost. Like the Garki model, immunity in these models was lost

without re-exposure. These models incorporated immunity to malaria to explore the effects

of immunity on vaccination [6]. Since then, a variety of models have explored immunity to

malaria [134, 2, 31, 21, 77] and have shown immunity can have important implications for

control.

Another simplifying assumption of the Ross-MacDonald model is the assumption that

all hosts are identical and that all hosts are equally attractive to mosquitoes, this has impor-

tant ramifications when planning control. There is considerable variation among individual
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hosts, in disease susceptibility. Dramatic examples include the sickle-cell trait and glucose-

6-phosphate dehydrogenase deficiency, both of which cause disease in homozygotes, but

reduces malaria parasitemia in heterozygotes [118, 137, 18, 87]. In addition to individual

variation in the susceptibility to disease, there is incredible variation in the attractiveness

of individual hosts to mosquitoes. It is well known that mosquitoes prefer some hosts over

others for a variety of reasons including: pregnancy [82, 5], ABO blood group [130], body

size [115], and alcohol use [129], among others. This individual variation can further com-

plicate malaria control.

Although mathematical models of homogeneous populations have provided significant

contributions to our understanding of infectious disease dynamics, host heterogeneity has

important implications for disease spread and control. In general, models of malaria that

incorporate heterogeneity usually look at heterogeneity in the attractiveness of hosts to

mosquitoes. This type of heterogeneity has important implications for R0. Namely, het-

erogeneity in the biting rate of mosquitoes has been shown to increase R0 compared to the

R0 calculated from uniform biting [37, 73], making malaria more difficult to control than

predicted by the homogeneous R0.

Despite the many insights into malaria control derived from mathematical models,

malaria continues to evade control. This thesis focuses on modeling two aspects of malaria

that complicate dynamics, to better inform malaria control programs. In chapters 2 and

3 we explore the effects of finite population on the basic reproductive number for homo-

geneous populations (in chapter 2) and for diseases with heterogeneity in transmission (in

chapter 3). Chapters 4 and 5 are devoted to exploring the effects of clinical immunity on

transmission.

Measuring and predicting disease spread is a foundational concept in mathematical epi-

demiology, dating back to Ross [8] and Kermack and McKendrick [66]. Classical calcula-
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tions of R0 implicitly assume a disease spreading in an infinite population of susceptible

hosts. However, for diseases, like malaria, with large reproductive numbers spreading in

small populations, it is possible for R0 to approach or exceed the size of the population,

rendering R0 difficult to interpret. Smith et al. [132] introduced the idea of measuring the

reproductive number in a finite population. These finite-population reproductive numbers

are the average number of secondary infections that can be traced back to a single infected

individual in a finite population of susceptible hosts. Smith et al. [132] estimated these

finite-population reproductive numbers for malaria, tracing malaria through one full cycle

of transmission. In addition to Smith et al. [132], Keeling and Grenfell [65] and Ross

[121] also estimated these finite-population reproductive numbers, for directly transmitted

diseases, using stochastic models. In chapter 2, we take a step towards better understand-

ing these finite-population reproductive numbers by analytically calculating these finite-

population reproductive numbers for both directly-transmitted and vector-borne diseases in

homogeneous populations.

Despite the usefulness of homogeneous models, host heterogeneity has important im-

plications particularly for the reproductive number. Diekmann et al. [26] first laid out a

framework for calculating R0 for a directly transmitted disease with heterogeneity in both

the mixing rate of susceptibles and infected individuals. Dye and Hasibeder [37, 74] calcu-

lated R0 for malaria, with heterogeneity in the attractiveness to mosquitoes. They showed

that heterogeneity in the mixing rate increases R0, making control more difficult than pre-

dicted by the homogeneous R0. Interested in understanding the effect of super-spreaders

on disease transmission, Lloyd-Smith et al. [84] explored the effect of heterogeneity in the

mixing rate for a directly-transmitted disease. Similarly, they showed that while hetero-

geneity increased the probability of disease extinction, when an epidemic did occur, it was

more likely to be explosive [84].
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Although the effects of heterogeneity on R0 in an infinite population are straightfor-

ward, Smith et al. [132] suggested that heterogeneity in finite populations can have com-

plicated effects on the reproductive number. They suggest that although heterogeneity in-

creases R0 in an infinite population, in a finite population, heterogeneity actually decreases

R0. This is because individuals who are more attractive to mosquitoes are more likely to

get bitten multiple times, absorbing some possible infections, reducing R0.

In chapter 3 we extend the results from chapter 2 and calculate the reproductive num-

ber for diseases spreading in small, heterogeneous populations. We explore the relation-

ship between heterogeneity and R0 in a finite population of susceptible hosts and outline a

framework for discussing the different “types” of heterogeneity. In doing so, we highlight

the importance of the different types of heterogeneity in terms of the spread and control

of infections. We find simple expressions for finite-population reproductive number with

different types of heterogeneity and solve them for different distributions of heterogeneity.

Chapter 3 sheds further light on the different types of heterogeneity and how they affect the

reproductive number in a finite population.

Chapters 4 and 5 concentrate on the other aspect of malaria we model in this thesis:

clinical immunity. Clinical immunity to malaria is the acquired immune response that pro-

vides protection against the clinical symptoms of malaria, despite the presence of parasites

[47, 49]. It is acquired with age and exposure and is lost in the absence of re-exposure

[47, 49, 30, 125, 42]. Clinical immunity has long been of interest due to its complicated ef-

fects on malaria control. Because clinical immunity can be lost without re-exposure, under

certain circumstances a decrease in malaria transmission could increase malaria morbidity

and mortality, due to a loss of immunity [134, 103, 102]. Although clinical immunity pro-

tects individuals from disease, its effects at the population level are complex. Consequently,

understanding clinical immunity is a critical part of planning malaria control efforts.

7
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An important aspect of clinical immunity is the possibility that clinically immune indi-

viduals are particularly effective at transmitting malaria over the duration of their infection.

If clinically immune individuals have a higher reproductive number, in some cases, malaria

may be able to spread more effectively in areas where it is already present, all else being

equal. That is, under certain circumstances, malaria may be able to persist, if endemic, in

areas where it would not be able to invade [2]. This is because for some parameter values,

both a stable endemic and a stable disease free equilibrium exist – a phenomenon known

as bistability [34]. Aguas et al. [2] suggested that clinical immunity could be a mechanism

for bistability in malaria. They also suggested that bistability would have important impli-

cations for control – if malaria could be eliminated until clinical immunity waned, it would

not be able to re-invade, under current transmission and treatment conditions.

In chapter 4, we build a simple, compartmental model of malaria that includes clinical

immunity. Unlike the Ross-Macdonald model, we do not explicitly model mosquitoes. We

solve this model and find a criterion for when we expect bistability to occur. Additionally,

we review what is known about clinical immunity and highlight key clinical immunity pa-

rameters that are not well understood, including the duration of clinically immune infection

and the relative susceptibility of clinically immune individuals, two parameters highlighted

by the bistability criterion as important for understanding when and whether bistability will

occur.

In chapter 5 we attempt to estimate these critical clinical immunity parameters by fitting

our simple, compartmental model, outlined in chapter 4, to data from the Kericho region of

Kenya. Kericho has been central to the malaria climate change debate for over 10 years [52,

127, 3, 104]. Due to its elevation, malaria transmission in Kericho has largely consisted of

imported cases from the holoendemic region surrounding Lake Victoria (defined as having

a parasite ratio consistently greater than 75% of infants [90]). However, in 1990, large, mid-
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year, seasonal epidemics began. The cause of these explosive epidemics has been debated.

We do not set out to add to this debate, rather we work within the existing framework

that includes temperature as an important factor in malaria transmission in Kericho, and

incorporate temperature into the force of infection of our simple model.

The relatively low prevalence of malaria in Kericho coupled with the rapid increase of

cases makes Kericho a good data set to use to explore clinical immunity. This is because we

expect to see relatively low levels of immunity prior to the rapid increase of malaria cases,

after which we expect to see clinical immunity develop rapidly. This is supported by Shanks

et al. [127] who found that the rapid increase of malaria incidence coincides with a drop

in the adult-to-child ratio of inpatient malaria cases, suggesting the development of clinical

immunity. Using a version of the model in chapter 4, modified to include temperature as a

driver of malaria transmission; we fit the model to hospital confirmed malaria cases from

Kericho, to better understand the key clinical immunity parameters highlighted in chapter

5. To help elucidate the role clinical immunity plays in malaria transmission in Kericho.

Finally, in chapter 6 we summarize our key results from chapters 2 – 5 and discuss the

broader impacts of the findings on future malaria control. It should be noted that overlap

may occur between the chapters as they were all prepared for independent publication.
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Chapter 2

Analytic calculation of finite-population
reproductive numbers for direct- and
vector-transmitted diseases with
homogeneous mixing.

Keegan LT, Dushoff J, (2014) Bulletin of Mathematical Biology 76(5):1143-54.
doi: 10.1007/s11538-014-9950-x

2.1 Abstract

The basic reproductive number, R0, provides a foundation for evaluating how various fac-

tors affect the incidence of infectious diseases. Recently, it has been suggested that, par-

ticularly for vector-transmitted diseases, R0 should be modified to account for the effects

of finite host population within a single disease-transmission generation. Here, we use a

transmission-factor approach to calculate such “finite-population reproductive numbers”,

under the assumptions of homogeneous and heterogeneous mixing, for both vector-borne

and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-

population reproductive numbers for both host-to-host and vector-to-vector generations,
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assuming that the vector population is effectively infinite. We find simple, interpretable

formulas for these three quantities. In the direct case, we find that finite-population repro-

ductive numbers diverge from R0 before R0 reaches half of the population size. In the

vector-transmitted case, we find that the host-to-host number diverges at even lower val-

ues of R0, while the vector-to-vector number diverges very little over realistic parameter

ranges.

2.2 Introduction

The basic reproductive number, R0, measures the expected number of new infections that

can be traced back to a single infectious individual in an otherwise totally susceptible popu-

lation. The concept of R0 provides a foundation for evaluating when infectious diseases can

spread in a population, what factors determine disease incidence, and when interventions

can eliminate disease [27, 55]. Its foundations go back over a century [122, 66].

In a study of malaria reproductive numbers, Smith et al. [132] pointed out that classical

calculations of R0 implicitly assume infinite host population sizes, and are hard to interpret

when R0 approaches or exceeds the population size. They introduced the idea of measur-

ing the typical number of new infections per infectious individual for a disease invading a

finite host population. These finite-population reproductive numbers account for the fact

that some individuals get bitten by multiple mosquitoes, at random, and absorb some of the

infections. However, like classic calculations of R0, Smith et al. [132] are only interested in

the initial spread of infection; their estimates of these reproductive numbers ignore longer-

term depletion of susceptibles. They used simulations to estimate the vector-to-vector and

host-to-host reproductive numbers, which they called Z0(H) and R0(H), respectively, and

ask how these reproductive numbers change when vector biting is heterogeneous – where
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some hosts are more attractive to mosquitoes than others. They showed that in the case

of finite-sized populations, unlike the infinite-population case, the number of vectors in-

fected per vector is not necessarily the same as the number of hosts infected per host, and

suggested that measuring Z0(H) and R0(H) could be informative for understanding the

effects of different control measures.

Other studies (Keeling and Grenfell [65] and Ross [121]) have done similar work on

directly transmitted diseases using stochastic models, here we use a next-generation frame-

work to explore the impact of finite-population size on both directly-transmitted and vector-

borne diseases.

Here we take a step towards better understanding of these “finite-population reproduc-

tive numbers” by calculating them analytically for homogeneous mixing between hosts (or

hosts and vectors). We consider both directly transmitted and vector-transmitted diseases.

For directly transmitted diseases, we calculated the average number of hosts infected by a

single infectious host, which we call R(N). In the latter case, we calculate separate finite-

population reproductive numbers for transmission from host species (via the vector) back

to the host species, and for the vector species (via the host) back to the vector species which

we call R(H) and Z(H) respectively.

Our calculations are based on Nåsell’s idea of transmission factors, as described by

Bailey [8]. Transmission factors are analogous to reproductive numbers for a single “leg”

of host-vector transmission (or heterosexual HIV transmission, see [36]). They give the

number of new cases of one group that can be attributed to a single infectious individual of

another group. In the case of malaria, the transmission factor from hosts to vectors (τhv)

is the average number of vector infections that are caused by a single infectious host, and

the transmission factor from vectors to hosts (τvh) is the average number of host infections

that are caused by a single infectious vector. Unlike the reproductive numbers, we use
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these transmission factors only in the infinite-population limits. The reproductive number

R0, for a vector-transmitted disease is equal to the product τhvτvh, we call the ratio of the

transmission factors ρ = τhv/τvh. For a directly transmitted disease, there is only one

“transmission factor”, which we call τ , and which is equal to R0.

Although we consider only homogeneous mixing here, in order to implement a model

that takes finite population size into account, we need to account for the fact that each

infectious individual will create a discrete number of new infections. Since we assume that

each infectious individual will have a constant contact rate over an exponentially distributed

infectious period, the number of contacts is geometrically distributed. We then account for

the fact that the population-size is finite by allowing some of the potential infections to land

on the same host.

2.3 Methods

We calculate finite-population reproductive numbers for directly transmitted diseases, R(N),

in a finite population of size N ; and we calculate these finite-population reproductive num-

bers for vector-borne diseases, for host-to-host R(H), and vector-to-vector Z(H) trans-

mission in a finite host population of size H (under the assumption of an effectively infinite

vector population). To calculate these finite-population reproductive numbers, we trace in-

fections through one cycle of transmission. For a directly transmitted disease, hosts infect

other hosts: we start with one “typical” infected individual and calculate how many indi-

viduals are infected by that individual. For a vector-borne disease, we look at cycles of

transmission: for R(H), we start with one typical infected host and calculate how many

vectors are infected from that host, and then how many hosts will become infected, on aver-

age, from that distribution of vectors; likewise for Z(H), we start with one infected vector,
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calculate how many hosts it infects and then how many vectors those hosts are expected to

infect. These three scenarios R(N), R(H), and Z(H) are depicted diagrammatically in

Fig. 2.1 for an infinite population, where the dashed arrows depict steps that change in the

finite case.

To validate our results, we simulated host-to-host and vector-to-vector transmission un-

der the same assumptions used to calculate the finite-population reproductive numbers.

Starting with a single infectious host (or vector), we simulate the number of hosts (or vec-

tors) infected by those infectious individuals. We repeated those simulations 1000 times

for a mosquito population of M = 100, 000, and took the mean of those 1000 simulations

for each value of R0. Results are plotted in Fig. 2.2, Fig. 2.4 (for direct- and vector-borne

transmission, respectively). We explore the effects of smaller vector-population sizes in

2.A.

2.3.1 Assumptions

For directly transmitted diseases, we assume a finite population of size N . Each infected

host produces an average of τ potential new infections, using the geometric distribution, as

discussed above; this is equivalent to assuming that the infection and recovery processes

are Markovian. We assume that all hosts behave identically and independently. Since the

host population is finite, some of these potential infections may fall at random on the same

susceptible host, so the average number of realized infections in general, will be smaller.

In the case of vector-borne transmission, we assume that the host population is finite, of

size H , and that the vector population is effectively infinite (i.e., much larger than the host

population; we relax this assumption in the 2.A) since mosquitoes are not the limiting factor.

Thus, a single infected host produces a geometrically distributed number of new infections,

14



Ph.D. thesis – Lindsay T Keegan; McMaster University – Department of Biology

Figure 2.1: Schematic of one generation of disease transmission for (a,b) vector-borne and
(c) directly transmitted diseases. The compartmental depiction represents transmission for
both the infinite and the finite case. The dashed arrows indicate places where we change
the calculation to take account of finite host populations. The depiction using transmission
factors describes transmission only in the infinite case. (a) Transmission beginning with a
single infectious host (H0). That host goes on to produce τhv infected vectors (M0) who
each produce τvh new infected hosts resulting in τhvτvh new infected hosts (H1) from a
single infectious host. (b) Transmission beginning with a single infectious vector (M0) who
on average, infects τvh hosts (H0). Each of those infectious hosts goes on to produce τhv

new infected vectors, resulting in τhvτvh new infected vectors (M1). (c) Direct transmission
beginning with one infected individual (H0) who infects an average of τ new individuals
(H1).

15



Ph.D. thesis – Lindsay T Keegan; McMaster University – Department of Biology

with mean τhv, in a susceptible vector population. We assume that all hosts and all vectors

are identical and independent, as in the case of directly transmitted diseases. A single

infected vector produces a geometrically distributed number of potential infectious events

(we call these infectious bites) in the host population, with mean τvh, however, because the

host population is finite, some of these bites may fall at random on the same host, so the

average number of new infections will be smaller.

2.3.2 Calculation framework

If we know that a generation of infected vectors produces a potentially infectious bites

on the finite host population, the probability that any individual host escapes infection is
�
1− 1

H

�a. Thus, the expected number of new infections is H
�
1−

�
1− 1

H

�a�.

To calculate expectations, we use probability distributions over numbers of potentially

infectious events p(a), and corresponding generating functions, φ(x) =
�

a
p(a)xa. In par-

ticular, the generating function that corresponds to a geometric distribution with probability

P is:

φ(x) =
∞�

a=0

(1− P )P a
x
a =

1− P

1− Px
. (2.1)

Since τ = P

1−P
is the mean number of events, we can solve for P to get P = τ/(τ +1) and

substitute to write φ(x) = 1
1+τ(1−x) .

In particular, if φa(x) corresponds to the distribution of infectious bites on the host

population p(a), then we have that the expected number of infections, I , is:
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I =
∞�

a=0

H(1− (1− 1/H)a)p(a) (2.2a)

= H

� ∞�

a=0

p(a)−
∞�

a=0

(1− 1/H)ap(a)

�
(2.2b)

= H(1− φa(1− 1/H)) (2.2c)

2.4 Results

2.4.1 Calculation framework

We use generating functions to calculate finite-population reproductive numbers for both

directly transmitted and vector-borne diseases.

Since we assume that the number of infectious bites that land on a host is geometrically

distributed, the generating function for the expected number of bites from one infectious

vector is:

φv1(x) =
1− Pvh

1− Pvhx
, (2.3)

where Pvh = τvh/(τvh + 1) is the probability that an infected vector bites a host.

If we substitute equation (2.3) into equation (2.2c), we have that the expected number

of infections from one infectious vector is I1 = H − φv1(1− 1/H). Solving yields:

I1 =
Hτvh

H + τvh
. (2.4)

Equation (2.3) gives the generating function for the number of infectious bites from one
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infectious vector, from this we can calculate the generating function for the number of

infectious bites by m infectious vectors is:

φvm(x) =

�
1− Pvh

1− Pvhx

�m

(2.5)

Plugging in to (2.2), with mean Pvh = τvh/(τvh + 1), the distinct number of hosts

infected by m vectors is:

Im = H

�
1−

�
H

H + τvh

��m

(2.6)

2.4.2 Direct Transmission, R(N)

The expected number of infections that can be traced back to a single infected host is anal-

ogous to the expected number of bites from a single infectious vector in a finite population,

above (for a vector-borne disease). Thus, by analogy with (2.4), the expected number of

new infections from a single infectious host is:

I1 =
Nτ

N + τ
. (2.7)

Since R0 is exactly τ , the expected number of infections from a single host is:

R(N) =
Nτ

N + τ
=

NR0

N +R0
(2.8)

Fig. 2.2 shows how our analytic calculation and simulations of R(N) increase with the

basic reproductive number, for a fixed value of H = 1000. R(N) diverges from R0 as
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Figure 2.2: The finite-population reproductive number R(N) versus the basic reproductive
number, R0 for directly transmitted diseases. Host population size is N = 1000. The blue
points represent the average of 1000 simulations each.

the basic reproductive number approaches the population size – around R0 = 1/2H , and

approaches the population size for very large values of R0. Simulated results match the

analytically calculated results, as expected. Fig. 2.3 shows how R(N) varies with H for

fixed R0 = 1000; R(N) converges on R0 as the population size increases relative to the

basic reproductive number.

2.4.3 Vector-borne disease transmission

Vector-to-vector transmission, Z(H)

To calculate the vector reproductive number, Z(H), we start with a single infectious vector,

calculate the expected number of hosts infected by that single infectious vector and then
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Figure 2.3: The finite-population reproductive number R(N) versus the population size,
N , for directly transmitted diseases. The basic reproductive number is R0 = 1000.

calculate the expected number of vectors infected by those infectious hosts.

Since we assume that the vector population is effectively infinite (from equation (2.3)),

we know that the number of hosts infected by a single infectious vector is:

I1 =
Hτvh

H + τvh
. (2.9)

Those I1 infected hosts go on to infect τhv vectors. Thus, the finite-population repro-

ductive number for vectors is:

Z(H) =
Hτvhτhv

H + τvh
=

H

H + τvh
R0 (2.10)
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Figure 2.4: Plot of the basic reproductive number, R0 (black), versus the finite sized re-
productive numbers R(H) (blue) and Z(H) (red), for three values of ρ, for vector-borne
diseases. The host population size, H = 1000 (gray). We simulated the host-to-host re-
productive number (blue points) and the vector-to-vector reproductive number (red points).
For the simulations, the vector population size is M = 100, 000.
(a) ρ= 0.1 (b) ρ= 1 (c) ρ= 10.
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Figure 2.5: Plot of the population size H versus the finite-population reproductive number,
R(H) (blue) and Z(H) (red), for three values of ρ. The basic reproductive number, R0 =
1000 (black). (a) ρ= 0.1 (b) ρ= 1 (c) ρ= 10.
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Host-to-host transmission, R(H)

To calculate the host reproductive capacity, R(H), we start with a single infectious host,

calculate the expected number of vectors infected by that one host; then we calculate the

expected number of hosts infected by infected vectors.

Starting from a single infected host we calculate the expected number of vectors in-

fected by that host. The number of infected vectors is distributed geometrically with mean

Phv = τhv/(τhv + 1) where Phv is the probability that an infectious host infects a vector.

Thus, the distribution of infected vectors (from a single infectious host) is:

p(m) = (1− Phv)P
m

hv
(2.11)

From equation (2.6) we know that the number of hosts infected by m vectors is Im =

H(1− ( H

H+τvh
)m). The finite-population reproductive number for is R(H) =

�
m
p(m)Im.

We calculate the finite-population reproductive number for hosts to be:

R(H) =
τhvτmH

H + τvhτhv + τvh
=

R0H

R0 +H + τvh
(2.12)

The relationship between R(H), Z(H), and R0 are shown in Fig. 2.4, Fig. 2.5, and

the results are compared in Table 2.1. Fig. 2.4 is a plot of the finite-population repro-

ductive numbers (R(H) and Z(H)) compared to R0 for a fixed population of size H. We

varied τhv for three fixed values of ρ. It highlights the divergence of the host-to-host and

vector-to-vector finite-population reproductive numbers and R0 as the reproductive num-

bers approach the size of the host population, H; which occurs at about R0 = H/3. It also

highlights the effect of ρ on the divergence of Z(H) from R0, an effect better shown in
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Finite-sized Reproductive Numbers Basic Reproductive numbers
Direct Vector-borne Direct Vector-borne
R(N) R(H) Z(H) R0 R0

Nτ

N+τ

τhvτvhH

τhvτvh+H+τvh

τhvτvhH

H+τvh
τ τhvτvh

Table 2.1: Finite-population reproductive number for direct- and vector-borne diseases
compared with the basic reproductive number (for infinite population sizes).

Fig. 2.5.

In addition, Fig. 2.4 shows the results of our simulations of vector-borne transmission in

a finite-population. We simulated vector-to-vector and host-to-host transmission and plot-

ted the resulting reproductive numbers. We see that our simulations match the analytically

calculated results.

Fig. 2.5 displays the relationship between the finite-sized reproductive numbers (R(H)

and Z(H)) and the infinite-population reproductive number, R0, for a fixed value of R0,

varying the host population size, H, for three values of ρ. It shows R(H) and Z(H) con-

verging on R0 as the size of the population increases and highlights the importance of ρ in

the convergence of Z(H) on R0. When hosts infect few vectors (relative to vectors infect-

ing hosts), that is, when ρ is small, Fig. A1a, Z(H) converges on R0 slower compared to

when ρ is large, Fig. A1c. ρ has much less of an effect on the convergence of R(H).

2.5 Discussion

Accurate calculation of the basic reproductive number, R0, is crucial for designing and

implementing control and elimination programs. Smith et al. [132] suggested that when

R0 is large relative to the size of the population, as can happen with malaria, R0 does
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not accurately reflect the disease dynamics. They introduced the idea of finite-population

reproductive numbers for both host and vectors, for malaria, and used simulations to esti-

mate both R0 and the finite-population reproductive numbers (Z0(H) and R0(H)), while

allowing for heterogeneous biting, transmission-blocking immunity, and sampling issues.

Here, we consider the simpler case of homogeneous mixing, where all hosts are equally

attractive to mosquitoes, and we are able to derive analytic formulas for those finite-population

reproductive numbers for both vector-borne (Z(H) and R(H)) and for directly transmitted

diseases (R(N)). We find simple formulas for these quantities in terms of transmission

factors (τhv, τvh, and τ ) [8] (Table 2.1), and show that the finite-population reproductive

numbers, particularly R(N) and R(H), diverge from R0 when R0 approaches the pop-

ulation size. We then simulated our results in a finite population of hosts to validate our

analytic calculations (Fig. 2.2, Fig. 2.4).

Since we assume a finite population size in the direct-transmission case, and a finite host

population size in the vector-borne case (with an infinite vector population size), the repro-

ductive numbers R(N) and R(H) are necessarily smaller than the size of the population,

however, for vector-borne transmission, Z(H) can exceed the host population size as the

vector population is infinite (Fig. 2.4, Fig. 2.5). However, unlike R0, Z(H) does decrease

as it approaches the population size, but not as quickly as R(H) does (Fig. 2.4, Fig. 2.5).

Our results show that Z(H) is very similar to R0 when τhv is large relative to τvh (large ρ)

(Fig. 2.4c, Fig. 2.5c), and somewhat smaller (though still larger than R(H)) when τhv is

small relative to τvh (small ρ) (Fig. 2.4a, Fig. 2.5a). In other words, the number of vectors

infected by a single infectious vector is more strongly affected by the host population size

when the number of hosts infected by a single vector is large compared to the number of

vectors infected by a single host.

If we were to relax the assumption of infinite vector population size, both R(H) and
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Z(H) would be limited by M in an analogous way to how they are limited by H: R(H)

would decrease if M was small relative to the reproductive number (in the same way that

Z(H) decreases as a result of H) but it would not be limited by M ; and Z(H) would be

bounded by M (just as R(H) is bounded by H).

Since R(N) and R(H) are bounded by the population size and R0 is not, they di-

verge. In the case of directly transmitted diseases, R(N) diverges from R0 near R0 = N/2

(Fig. 2.2). Similarly, for vector-borne diseases, R(H) diverges much sooner than R(N)

(for directly transmitted diseases). Our results show that when R0 is near the size of the

host population size, R0 overestimates the actual dynamics, making control and elimination

seem more difficult then they actually are.

It is well known that malaria-transmitting mosquitoes prefer some hosts over others

for a variety of reasons (for example [72, 96]). This heterogeneity has complicated ef-

fects: in simple models, it increases the reproductive number [143, 37], but it can decrease

finite-population reproductive numbers [132]. Extending the work here to gain analytic in-

sight into finite-population reproductive numbers in the presence of heterogeneity in host

attractiveness to mosquitoes would be a valuable contribution to understanding diseases

spreading in small populations.

26



Ph.D. thesis – Lindsay T Keegan; McMaster University – Department of Biology

2.A Finite vector population

We assume, for the calculations of R(H) and Z(H), that the population of vectors is ef-

fectively infinite. In our simulations of finite-sized reproductive numbers, we chose a pop-

ulation of vectors to be very large relative to the host population size. However, here we

explore how finite vector population size affects the simulations of the finite-population

reproductive numbers.
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Figure A1: The basic reproductive number, R0 (black), versus the finite sized reproductive
numbers R(H) (blue) and Z(H) (red), for three values of ρ, for vector-borne diseases. The
host population size, H = 1000 (gray). Points represent the average of 1000 simulations.
We vary the vector population size, from M = 100, 000 (closed circles) to M = 10, 000
(triangles), to 1000 (Squares). (a) ρ= 0.1 (b) ρ= 1 (c) ρ= 10.

We find that the vector-population size, M, does not significantly affect the finite-sized

reproductive numbers unless M is small relative to the host-population size, H . We also

see that when M is small relative to H , ρ has the opposite effect on Z(H) than when

the vector population size is infinite: when ρ is small, for the same value of M , Z(H)
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diverges from R0 slower than when ρ is large. That is, when hosts are better at transmitting

to vectors (than vectors are at transmitting to hosts) the effect of small vector-population

size is smaller than when the vectors are better at transmitting to hosts (relative to hosts

transmitting to vectors).

28



Ph.D. thesis – Lindsay T Keegan; McMaster University – Department of Biology

Chapter 3

Estimating Finite-Population
Reproductive Numbers in
Heterogeneous Populations.

Keegan LT, Dushoff J, (2014) Journal of Theoretical Biology [Submited]

3.1 Introduction

The effect of heterogeneity on disease dynamics is a foundational question in infectious

disease modeling. Recently, renewed attention has been given to the impact of heterogene-

ity on the basic reproductive number, R0 [84, 132, 110]. R0 is the average number of

secondary infections from a single infectious individual in an otherwise totally susceptible

population. Kermack and McKendrick [66] formulated R0 assuming a disease spreading

in a large, homogeneous population; this construction of R0 has since dominated epidemic

theory.

Despite the common, convenient assumption that diseases are spread in well mixed ho-

mogeneous populations, there is a great deal of evidence that population heterogeneity is an
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important determinant of disease spread. Woolhouse [144] argued that heterogeneity in dis-

ease spread is pervasive, and often characterized by the ‘20/80 rule’ – i.e., 20% of infected

individuals cause 80% of cases. Perhaps the most famous example of disease heterogeneity

is typhoid Mary, who is estimated to have have caused over 50 new cases, despite typhoid

having an R0 of 2.8 [113, 16]. Other examples include: vector-borne diseases, including

malaria [126], dengue fever [25] and West Nile Virus [69]; sexually transmitted infections

(STI), including HIV [45] and gonorrhea [101, 56]; and other directly transmitted diseases

such as severe acute respiratory syndrome (SARS) [84], tuberculosis (TB) [71], and small

pox [84]. Individual variation has important implications for disease dynamics, including

emergence, spread, and control.

The effect of population heterogeneity on the basic reproductive number, R0, has been

well studied [38, 84, 110, 132, 26, 88]. May and Anderson explored the effects of hetero-

geneity on R0 for directly transmitted diseases and showed that heterogeneity increases

R0, making eradication harder under a homogeneously applied immunization program

[88]. Diekmann et al. [26] defined and calculated R0 for heterogeneous populations of

directly-transmitted diseases. They calculated R0 in terms of the next-generation operator,

which maps generations of infected individuals to each other. Like other calculations of

R0, it assumes one infected individual in an otherwise very large population of suscepti-

ble hosts. Hasibeder and Dye [38] showed that for vector-borne diseases, heterogeneity in

the mosquito biting rate increases R0, which suggests that heterogeneity makes invasion

likely and elimination more difficult than would be predicted by a standard calculation of

R0 based on parameters. Lloyd-Smith et al. [84] showed that for directly transmitted dis-

eases with heterogeneous transmission, like SARS, both the probability that an epidemic

will occur and the subsequent size of the epidemic will be affected: heterogeneity made

extinction more likely than predicted by the standard calculation of R0, but if an epidemic
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did occur, it was more likely to be explosive.

While heterogeneity increases R0 in infinite populations, Smith et al. [132] suggest that

heterogeneity actually decreases R0 in finite populations. They introduced the idea of cal-

culating the expected number of secondary infections from a single infectious individual in

a finite population of susceptible hosts. Motivated by malaria, a disease with a large R0,

where R0 can easily approach or exceed the size of the population, they simulated these

finite-population reproductive numbers and show that in a finite population, heterogeneity

actually decreases R0; this is because in a finite population, individuals who are more sus-

ceptible are more likely to get infected multiple times, absorbing some possible infections.

Keegan and Dushoff [63] calculated these finite-population reproductive numbers for both

vector-borne and directly-transmitted diseases assuming a well mixed host population.

Building on this previous work we calculate finite-population reproductive numbers for

directly transmitted diseases under different assumptions of heterogeneity in transmission.

We also discuss a framework for discussing different “types of heterogeneity” (Fig. 3.1)

and their importance in terms of disease control and intervention.

3.1.1 Heterogeneity Framework

In general, heterogeneity in transmission can be broken into two categories: structural het-

erogeneity where individuals are separated into groups, either by age or by spatial struc-

ture; and heterogeneity in individual level parameters in which individuals exhibit different

disease-related behaviors [84, 35]. Here, we outline the different types of heterogeneity in

individual level parameters.

Although a great deal of work has been done in understanding how heterogeneity af-

fects the spread and control of infectious diseases (eg. [84, 35, 26]), we have found little
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Figure 3.1: Schematic of the different types of heterogeneity in individual level parameters.
The red people are infected and the pink people are susceptible. Each arrow represents
a contact and the weight of the arrow represents the probability that contact will result in
infection.

detailed discussion of different types of heterogeneity in transmission and their effects. Of-

ten, heterogeneity is discussed in terms of presence/absence: a population is assumed to

be homogeneous or it is not. Less attention is given to the type or types of heterogeneity

in disease spread. When heterogeneity is discussed in more detail, it tends to be discussed

in terms of heterogeneity in infected individuals, ie “super-spreaders” [45, 84, 135] and

“super-shedders” [50, 136, 19], likely because heterogeneity in susceptible individuals is

harder to measure. However, clearly identifying and understanding the different types of

heterogeneity and how they affect disease dynamics provides new opportunities for control.

Here, we outline a framework for discussing heterogeneity in individual-level parameters.

Mixing rate

The mixing rate, also called “contact rate” describes the number of contacts that an indi-

vidual has that could result in an infection. Mixing rates vary by modes of transmission
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and by disease. The contact rate for a vector-borne disease depends on hosts being bitten

by vectors and consequently, it is dependent both on host-related and vector-related factors.

The mixing rate for an STI is the number of potentially infectious sexual contacts an indi-

vidual has. This can be affected by a multitude of factors including condom use, etc. For

other directly transmitted diseases, the mixing rate may be harder to quantify and depend

on specific disease-related factors such as how long infectious particles remain in the air or

stay alive on surfaces, and environmental factors such as humidity[50, 11, 62, 92, 61].

Heterogeneity affects mixing rates in a multitude of ways. For a vector-borne disease,

such as malaria, heterogeneity in the mixing rate is often a result of host-related factors,

such as differential attractiveness to mosquitoes (eg. [115, 130, 82]) or the use of bed nets

[81]. Heterogeneity in the mixing rate for sexually transmitted infections can be affected

by including rate of sexual partner change, sexual practices [7], and access to condoms

[20, 86, 10, 112]. For directly transmitted diseases, contacts are often harder to define,

and heterogeneity arises from a mixture of host, pathogen, and environmental factors. Het-

erogeneity in the mixing rate can be further broken down into the mixing rate of infected

individuals and the mixing rate of susceptible individuals. Here, we assume that individuals

have an intrinsic mixing rate that does not change with infection status.

Heterogeneity in infected mixing – The mixing rate of infected individuals is the number

of contacts that an infected individual has that could result in an infection, during the course

of infection. This type of heterogeneity is the most widely discussed and is often discussed

in terms of infected individuals with large numbers of contacts, or super-spreaders [84, 45].

Malaria is a well known example of a disease with heterogeneity in the mixing rate:

some hosts are more attractive to mosquitoes for a variety of reasons, including body size

[115], blood type [130], pregnancy [82, 5], and alcohol consumption [129, 80], among
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others. An example of a directly transmitted disease with heterogeneity in the mixing rate

of infected individuals is SARS. During the 2002-2003 SARS epidemic, renewed attention

was given to the role of super-spreading events in the epidemic; particularly in the context

of control. In a model of SARS transmission, Lloyd-Smith et al. [84] showed that targeted

control was up to three times more effective than random control.

Heterogeneity in susceptible mixing – The mixing rate of susceptible individuals is the

number of contacts that a susceptible individual has that could result in an infection. The

susceptible mixing rate may or may not be closely related to the infected mixing rate, de-

pending on whether contacts are symmetric, and whether behavior is changed by the dis-

ease. For example, vector-borne and sexually transmitted diseases involve symmetric con-

tact (both the susceptible and infected individual need to be bitten by a vector, or to have

sexual intercourse to transmit disease), whereas food-borne illnesses often involve asym-

metric contact (food workers infect food consumers, but not the other way around). Ebola

virus disease is an example where behavior is changed by disease: effective mixing rates of

well people depend on how likely they are to be involved in care-giving, and likely vary less

than the effective mixing rates of infectious people. Sick individuals may also voluntarily

attempt to reduce risk [57, 44].

Probability per contact

The probability of infection per contact describes the probability of successful transmission

per potentially infectious contact. A “potentially infectious contact" is defined as one which

would succeed in transmitting if both the probability of transmitting and the probability of

contracting an infection are 1. The probability of successful transmission is the product of

an infectiousness probability and a susceptibility probability.
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Heterogeneity in infectiousness – The infectiousness of an individual is the probability

of transmitting an infection per potentially infectious contact, assuming the susceptibility

probability is 1. This type of heterogeneity is often discussed in terms of individuals who

shed a lot of virus, or super-shedders [50, 136, 19].

Influenza and tuberculosis are examples of directly transmitted diseases with hetero-

geneity in infectiousness. For influenza, viral shedding influences the per contact infec-

tiousness, there is a large variation in the number aerosolized respiratory secretions, mak-

ing some individuals more infectious than others [50]. Additionally, external factors such

as taking antipyretics may also increase the per-contact probability of transmission by in-

creasing both the rate and duration of viral shedding [40]. For TB, access to health care

interventions and proper nutrition may reduce the probability of transmitting per contact,

by reducing the risk of pulmonary TB [71].

HIV is an example of an STI with heterogeneity in infectiousness. For HIV, the infec-

tiousness per contact varies for a variety of reasons: individuals who are co-infected with

another STI have been shown to be more infectious per contact [46, 1], while individuals

on antiretroviral treatment are less infectious per contact [141].

Heterogeneity in susceptibility – The susceptibility of an individual is the probability

of contracting an infection per potentially infectious contact, assuming the infectiousness

probability is 1. This is the least talked about as it is likely the hardest to measure and

probably depends on the interaction between host, pathogen, and environment.

An example of a disease with heterogeneity in susceptibility is HIV. There are a mul-

titude of factors that can cause susceptibility to vary including gender and circumcision.

It has been suggested that women are physiologically more susceptible to HIV than men

[48, 116] and that male circumcision has a protective effect against the per contact trans-
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mission of HIV [142, 9].

3.2 Methods

We calculate finite-population reproductive numbers for directly transmitted diseases under

three heterogeneity assumptions: heterogeneity in intrinsic mixing rate (assumed to be in-

dependent of disease status), Rm(N); heterogeneity in mixing rate when infected, Rtm(N);

and heterogeneity in the probability of contracting an infection per contact, Rsp(N). Two

other assumptions: heterogeneity in the probability of transmitting an infection per con-

tact, Rtp(N)and heterogeneity in mixing rate when susceptible, Rsm(N), are shown in the

appendix.

We numerically calculate each of these finite-population reproductive numbers using

two different distributions to underlie the heterogeneity: the gamma and log-normal distri-

butions for Rtm(N), Rsm(N), and Rm(N) and the beta and logit-normal distributions for

Rtp(N) and Rsp(N).

3.2.1 Assumptions

We assume a finite population of size N . We talk about transmission, t = tmtp, as the

product of the mixing rate of infected individuals, tm, and the probability of transmitting an

infection per infectious contact, tp. Similarly, we talk about susceptibility, s = smsp, as the

product of the mixing rate of susceptible individuals, sm, and the probability of contracting

and infection per contact, sp.

We assume that an infected individual of type y produces a geometric distribution of

new infections with mean of t(y). This is equivalent to assuming that the infection and
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recovery processes are Markovian [63]. We assume that all hosts behave independently.

Since the host population is finite, some of the possible infections may fall on the same

susceptible host, so the average number of realized infections, in general, will be smaller.

3.2.2 Calculation framework

We start with a known infectious individual of type y. We know that this infected individual

produces a geometric distribution of potentially successful challenges (contacts) with mean

t(y) (where t(y) = tm(y)tp(y)). For each challenge, the risk to a particular susceptible

individual of type x, is s(x)
s̄mN

, where s̄m is the mean susceptible mixing rate.

The probability of escaping a challenges from an infected individual is
�
1− s(x)

s̄mN

�a

.

The risk of being infected by at least one of those contacts is
�
1−

�
1− s(x)

s̄mN

�a�
. Using

the generating function method detailed in [63], we find the risk to a susceptible individual

of type x from a single infected individual of type y is:

s(x)t(y)

s(x)t(y) + s̄mN
(3.1)

The expected number of infections from the known infectious individual is

�
s(x)t(y)

s(x)t(y) + s̄mN

�

x

N (3.2)

We then average over the distribution of “typical” individuals [26], s(y)/s̄, and find:

R(N) =

�
s(y)

s̄

�
s(x)t(y)N

s(x)t(y) + s̄mN

�

x

�

y

(3.3)
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Which is equivalent to

R(N) =

�
s(y)

s̄

�
s(x)t(y)N

s(x)t(y) + s̄mN
f(x)f(y)dxdy (3.4)

Where f(x) is the distribution of susceptible individuals and f(y) is the distribution

of infected individuals. Here, we always choose the same distribution for f(x) and f(y)

however, we allow the mean of the distributions to vary (s, t, and m).

Heterogeneity in mixing rate, Rm(N)

We calculate the finite-population reproductive number for the case where we allow only

heterogeneity in the mixing rates of infected and susceptible individuals.

Because individuals need to contact each other we want s to be proportional to τ , so we

write τ = m and s = m/m̄.

We find the expected number of new infections from our known infectious individual is

�
m(x)m(y)N

m(x)m(y) + m̄N

�

x

(3.5)

We then account for the distribution of typical individuals, m(y)/m̄ and find

Rm(N) =

�
m(y)

m̄

�
m(x)m(y)N

m(x)m(y) + m̄N

�

x

�

y

(3.6)
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3.3 Results

3.3.1 Heterogeneity in mixing rate, Rm(N)

The finite-population reproductive number is

Rm(N) =

�
m(y)

m̄

�
m(x)m(y)N

m(x)m(y) + m̄N

�

x

�

y

(3.7)

We solve for Rm(N) numerically for two distributions of mixing rates, gamma-distributed

heterogeneity (Fig. 3.2) and log-normally distributed heterogeneity (Fig. A1). Fig. 3.2a and

Fig. A1a show how the finite-population reproductive numbers increase with R0 for a fixed

population size. The finite-population reproductive numbers diverge from their correspond-

ing infinite population reproductive number as R0 approaches the size of the population.

Where they diverge depends on the coefficient of variation – the finite-population repro-

ductive number with CV = 3 diverges around 1/5N whereas the homogeneous finite-

population reproductive number diverges around 1/2N . Further, the heterogeneous finite-

population reproductive numbers are larger than the homogeneous finite-population repro-

ductive number when R0 is large relative to the size of the population and the heterogeneous

finite-population reproductive numbers are smaller than the homogeneous finite-population

reproductive number when R0 is small relative to the size of the population. For gamma

distributed heterogeneity, this occurs between 1/3N and 3/4N (Fig. 3.2a) and at around N

for log-normally distributed heterogeneity (Fig. A1).

Fig. 3.2b and Fig. A1b show how the finite-population reproductive numbers vary with

the size of the population for fixed R0 = 100. It shows the finite-population reproductive

numbers converging on their corresponding infinite population reproductive number; with
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finite-population reproductive numbers with large coefficient of variation converging slower

than finite-population reproductive numbers with small coefficient of variation.

Fig. 3.3 shows the relationship between gamma distributed and log-normally distributed

heterogeneity. Although the results are fairly robust to the distribution, the finite-population

reproductive numbers with log-normally distributed heterogeneity is larger than the finite-

population reproductive numbers with gamma distributed heterogeneity for the biologically

relevant parameter range.
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Figure 3.2: The finite-population reproductive number, Rm(N), for gamma distributed het-
erogeneity. The solid lines are the finite-population reproductive numbers with different co-
efficients of variation and the dot-dashed lines represent the infinite reproductive numbers
with corresponding coefficients of variation. (a) the finite-population reproductive num-
bers versus the null reproductive numbers, Rnull with a fixed population of size N = 100
(dashed line) and (b) the finite-population reproductive numbers versus the population size
for fixed R0 = 100 (dot-dashed line).
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Figure 3.3: The finite-population reproductive numbers, Rm(N), versus the homogeneous
basic reproductive number, R0 for gamma distributed (light green) and log-normally dis-
tributed (forest green) heterogeneity for CV=2. The population size is N = 500, the homo-
geneous R0 is the solid black line and the heterogeneous reproductive numbers are the solid
green lines, the homogeneous finite-population reproductive number, R(N), is the dotted
black line, and the dot-dashed lines represent heterogeneous finite-population reproductive
numbers with different coefficients of variation.

3.3.2 Heterogeneity in transmission mixing Rtm(N)

The finite-population reproductive number is

Rtm(N) =

�
s̄t(y)N

s̄t(y) + s̄mN

�

y

(3.8)

We solve for Rtm(N) numerically for two distributions of mixing rates, gamma-distributed

heterogeneity (Fig. 3.4) and log-normally distributed heterogeneity (Fig. A2). Fig. 3.4a and

Fig. A2a show how the finite-population reproductive numbers increase with R0 for a fixed

population size. The finite-population reproductive numbers diverge from their correspond-
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ing infinite population reproductive number as R0 approaches the size of the population.

Where they diverge depends on the coefficient of variation – the finite-population repro-

ductive number with CV = 3 diverges around 1/5N whereas the homogeneous finite-

population reproductive number diverges around 1/2N . Unlike intrinsic mixing, the finite-

population reproductive numbers with heterogeneity in transmission mixing are always

smaller than the homogeneous finite-population reproductive number.

Fig. 3.4b and Fig. A2b show how the finite-population reproductive numbers vary with

the size of the population for fixed R0 = 100. It shows the finite-population reproductive

numbers converging on their corresponding infinite population reproductive number; with

finite-population reproductive numbers with large coefficient of variation converging slower

than finite-population reproductive numbers with small coefficient of variation.

Fig. 3.5 shows the relationship between gamma distributed and log-normally distributed

heterogeneity. Although the results are fairly robust to the distribution, the finite-population

reproductive numbers with log-normally distributed heterogeneity is larger than the finite-

population reproductive numbers with gamma distributed heterogeneity for the biologically

relevant parameter range.

3.3.3 Heterogeneity in transmission probability Rtp(N)

The finite-population reproductive number is

Rtp(N) =

�
t(y)s̄N

t(y)s̄+ s̄mN

�

y

(3.9)

We solve for Rtp(N) numerically for two distributions of mixing rates, beta-distributed

heterogeneity (Fig. ??) and logit-normally distributed heterogeneity (Fig. A2). Fig. 3.6a
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Figure 3.4: The finite-population reproductive number, Rtm(N), for gamma distributed
heterogeneity. The solid lines are the finite-population reproductive numbers with different
coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers
with corresponding coefficients of variation. (a) the finite-population reproductive num-
bers versus the null reproductive numbers, Rnull with a fixed population of size N = 100
(dashed line) and (b) the finite-population reproductive numbers versus the population size
for fixed R0 = 100 (dot-dashed line).

and Fig. A2c show how the finite-population reproductive numbers increase with R0 for a

fixed population size. The finite-population reproductive numbers diverge from their cor-

responding infinite population reproductive number as R0 approaches the size of the pop-

ulation. Where they diverge depends on the coefficient of variation – the finite-population

reproductive number with CV = 3 diverges around 1/5N whereas the homogeneous finite-

population reproductive number diverges around 1/2N . Unlike intrinsic mixing, the finite-

population reproductive numbers with heterogeneity in transmission probability are always

smaller than the homogeneous finite-population reproductive number.

Fig. 3.6b and Fig. A2d show how the finite-population reproductive numbers vary with
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Figure 3.5: The finite-population reproductive numbers, Rtm(N), versus the basic repro-
ductive number, R0 for gamma distributed (light green) and log-normally distributed (forest
green) heterogeneity for CV=2. The population size is N = 500, R0 is the solid black line,
the homogeneous finite-population reproductive number, R(N), is the dotted black line,
and the dot-dashed lines represent heterogeneous finite-population reproductive numbers
with different coefficients of variation.

the size of the population for fixed R0 = 100. It shows the finite-population reproductive

numbers converging on their corresponding infinite population reproductive number; with

finite-population reproductive numbers with large coefficient of variation converging slower

than finite-population reproductive numbers with small coefficient of variation.

Fig. 3.7 shows the relationship between beta distributed and logit-normally distributed

heterogeneity. Although the results are fairly robust to the distribution, the finite-population

reproductive numbers with logit-normally distributed heterogeneity is larger than the finite-

population reproductive numbers with beta distributed heterogeneity for the biologically

relevant parameter range.
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Figure 3.6: The finite-population reproductive number, Rtp(N), for beta distributed hetero-
geneity. The solid lines are the finite-population reproductive numbers with different co-
efficients of variation and the dot-dashed lines represent the infinite reproductive numbers
with corresponding coefficients of variation. (a) the finite-population reproductive num-
bers versus the null reproductive numbers, Rnull with a fixed population of size N = 100
(dashed line) and (b) the finite-population reproductive numbers versus the population size
for fixed R0 = 100 (dot-dashed line).

3.3.4 Heterogeneity in susceptible mixing, Rsm(N)

The finite-population reproductive number is

Rsm(N) =

�
s(y)

s̄

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

�

y

(3.10)

=

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

(3.11)

We solve for Rsm(N) numerically for two distributions of mixing rates, gamma-distributed
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Figure 3.7: The finite-population reproductive numbers, Rtp(N), versus the basic repro-
ductive number, R0 for beta distributed (light green) and logit-normally distributed (forest
green) heterogeneity for CV=2. The population size is N = 500, R0 is the solid black line,
the homogeneous finite-population reproductive number, R(N), is the dotted black line,
and the dot-dashed lines represent heterogeneous finite-population reproductive numbers
with different coefficients of variation.

heterogeneity (Fig. 3.8) and log-normally distributed heterogeneity (Fig. A2). Fig. 3.8a

and Fig. A2e show how the finite-population reproductive numbers increase with R0 for a

fixed population size. The finite-population reproductive numbers diverge from their corre-

sponding infinite population reproductive number as R0 approaches the size of the popula-

tion. Where they diverge depends on the coefficient of variation – the finite-population

reproductive number with CV = 3 diverges around 1/5N whereas the homogeneous

finite-population reproductive number diverges around 1/2N . Unlike intrinsic mixing, the

finite-population reproductive numbers with heterogeneity in susceptible mixing are always

smaller than the homogeneous finite-population reproductive number.

Fig. 3.8b and Fig. A2f show how the finite-population reproductive numbers vary with
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the size of the population for fixed R0 = 100. It shows the finite-population reproductive

numbers converging on their corresponding infinite population reproductive number; with

finite-population reproductive numbers with large coefficient of variation converging slower

than finite-population reproductive numbers with small coefficient of variation.

Fig. 3.9 shows the relationship between gamma distributed and log-normally distributed

heterogeneity. Although the results are fairly robust to the distribution, the finite-population

reproductive numbers with log-normally distributed heterogeneity is larger than the finite-

population reproductive numbers with gamma distributed heterogeneity for the biologically

relevant parameter range.

(a) Fixed Population Size (b) Fixed R0

Figure 3.8: The finite-population reproductive number, Rsm(N), for gamma distributed
heterogeneity. The solid lines are the finite-population reproductive numbers with different
coefficients of variation and the dot-dashed lines represent the infinite reproductive numbers
with corresponding coefficients of variation. (a) the finite-population reproductive num-
bers versus the null reproductive numbers, Rnull with a fixed population of size N = 100
(dashed line) and (b) the finite-population reproductive numbers versus the population size
for fixed R0 = 100 (dot-dashed line).
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Figure 3.9: The finite-population reproductive numbers, Rsm(N), versus the basic repro-
ductive number, R0 for gamma distributed (light green) and log-normally distributed (forest
green) heterogeneity for CV=2. The population size is N = 500, R0 is the solid black line,
the homogeneous finite-population reproductive number, R(N), is the dotted black line,
and the dot-dashed lines represent heterogeneous finite-population reproductive numbers
with different coefficients of variation.

3.3.5 Heterogeneity in susceptibility probability Rsp(N)

The finite-population reproductive number is

Rsp(N) =

�
s(y)

s̄

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

�

y

(3.12)

=

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

(3.13)

We solve for Rsp(N) numerically for two distributions of mixing rates, beta-distributed

heterogeneity (Fig. ??) and logit-normally distributed heterogeneity (Fig. A2). Fig. 3.10a
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and Fig. A2g show how the finite-population reproductive numbers increase with R0 for a

fixed population size. The finite-population reproductive numbers diverge from their corre-

sponding infinite population reproductive number as R0 approaches the size of the popula-

tion. Where they diverge depends on the coefficient of variation – the finite-population

reproductive number with CV = 3 diverges around 1/5N whereas the homogeneous

finite-population reproductive number diverges around 1/2N . Unlike intrinsic mixing, the

finite-population reproductive numbers with heterogeneity in susceptible mixing are always

smaller than the homogeneous finite-population reproductive number.

Fig. 3.10b and Fig. A2h show how the finite-population reproductive numbers vary with

the size of the population for fixed R0 = 100. It shows the finite-population reproductive

numbers converging on their corresponding infinite population reproductive number; with

finite-population reproductive numbers with large coefficient of variation converging slower

than finite-population reproductive numbers with small coefficient of variation.

Fig. 3.11 shows the relationship between beta distributed and logit-normally distributed

heterogeneity. Although the results are fairly robust to the distribution, the finite-population

reproductive numbers with logit-normally distributed heterogeneity is larger than the finite-

population reproductive numbers with beta distributed heterogeneity for the biologically

relevant parameter range.

3.4 Discussion

Host heterogeneity has been shown to have a significant effect on disease dynamics [38,

84, 110, 132, 26]. Of particular interest is the effect of heterogeneity in transmission on R0

[38, 84, 110, 132]. In an infinite population of susceptible hosts, heterogeneity has been

shown to increase R0, whereas in a finite population, we show that heterogeneity has a
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(a) Fixed Population Size (b) Fixed R0

Figure 3.10: The finite-population reproductive number, Rsp(N), for beta distributed het-
erogeneity. The solid lines are the finite-population reproductive numbers with different co-
efficients of variation and the dot-dashed lines represent the infinite reproductive numbers
with corresponding coefficients of variation. (a) the finite-population reproductive num-
bers versus the null reproductive numbers, Rnull with a fixed population of size N = 100
(dashed line) and (b) the finite-population reproductive numbers versus the population size
for fixed R0 = 100 (dot-dashed line).
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Figure 3.11: The finite-population reproductive numbers, Rtp(N), versus the basic repro-
ductive number, R0 for beta distributed (light green) and log-normally distributed (forest
green) heterogeneity for CV=2. The population size is N = 500, R0 is the solid black line,
the homogeneous finite-population reproductive number, R(N), is the dotted black line,
and the dot-dashed lines represent heterogeneous finite-population reproductive numbers
with different coefficients of variation.

more complicated effect on the reproductive number.

Smith et al. [132] found that in a finite population, heterogeneity in the attractiveness

to mosquitoes decreases the reproductive number; our results for simple heterogeneity (ie.

heterogeneity either mixing or probability for only susceptible or infected) support this

Fig. 3.4, ??, 3.8, 3.10, Fig. A2. However, for heterogeneity in the mixing rate of both

infected and susceptible individuals, we find that when the population is large compared to

the homogeneous R0, heterogeneity increases Rm(N) compared to the homogeneous R0;

and when the population is small relative to R0, heterogeneity decreases Rm(N) compared

to the homogeneous R0 Fig. 3.2 and Fig. ??.

Compared to the heterogeneous R0, the effect of small population decreases the re-
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(a) Heterogeneous/Homogeneous
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Figure 3.12: Plot comparing the different distributions. (a) Plot of the ratio of the het-
erogeneous finite-population reproductive numbers to the homogeneous finite-population
reproductive number versus R0; for each of the four distributions of heterogeneity and for
both intrinsic mixing (dashed lines) and simple heterogeneity (solid lines). (a) Plot of the
ratio of the heterogeneous finite-population reproductive numbers to R0 versus R0; for
each of the four distributions of heterogeneity and for both intrinsic mixing (dashed lines)
and simple heterogeneity (solid lines)
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productive number. In general heterogeneity increases the effective mixing rate, because

the most susceptible individuals are also the most infectious individuals. This has complex

effects in the finite population, when the size of the population is large relative to R0, few

people are contacted multiple times, so increasing the mixing rate increases the reproduc-

tive number. However, when the size of the population is small relative to R0, many more

people are contacted multiple times, absorbing some possible infections, reducing Rm(N)

Fig. 3.2 and Fig. ??.

Smith et al. [132] considered only heterogeneity in attractiveness to mosquitoes. Here,

we consider five different types of heterogeneity: the four simple types outlined in the sec-

tion 3.1.1 and heterogeneity in the mixing rate of both susceptible and infected individuals

(the last corresponds to Smith’s assumptions). We find simple expressions for each of the

five finite-population reproductive numbers in terms of the distribution of heterogeneity and

the size of the population.

We show that R0 is affected by both the choice of the family of distributions of the het-

erogeneity (e.g., gamma, log normal, etc.) and the specific CV of its distribution. Fig. 3.3,

3.7, 3.9, 3.5, 3.7 show the effect of the distribution on the the finite-population reproductive

numbers for a fixed coefficient of variation (CV=2). While the distribution of heterogeneity

for a fixed CV affects the finite-population reproductive numbers, the CV has a larger effect

on how much the finite-population reproductive number is changed due to heterogeneity.

Fig. 3.2 Fig. 3.4, ??, 3.8, 3.10, Fig. ??, and Fig. A2 show the effect of the coefficient of

variation on the finite-population reproductive numbers. For very small values of the CV,

the finite-population reproductive numbers converge on the homogeneous finite-population

reproductive number; as CV increases, so does the effect of heterogeneity.

For simple heterogeneity (Rtm(N), Rsm(N), Rtp(N), and Rsp(N)), in which hetero-

geneity always decreases the finite-population reproductive numbers, classical calculations
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of R0 are over-estimating the diseases actual reproductive number. And although hetero-

geneity in the mixing rate has a more complicated effect on the finite-population reproduc-

tive number, it has the same implications for control: it suggests that for a disease with a

large R0 spreading in a small heterogeneous population, the actual reproductive number

may be lower than the standard calculation of R0, making control easier than predicted.
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3.A Appendix: Calculation Framework

3.A.1 Heterogeneity in transmission mixing Rtm(N)

We calculate the finite-population reproductive number for the case where we allow only

transmission mixing rates, tm, to vary. We find the expected number of infections from our

known infectious individual is
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=

�
s̄t(y)N

s̄t(y) + s̄mN

�

x

(3.14)

=
s̄t(y)N

s̄t(y) + s̄mN
(3.15)

3.A.2 Heterogeneity in transmission probability Rtp(N)

We calculate the finite-population reproductive number for the case where we allow only

probability of transmitting an infection per contact, tp, to vary.

We find the expected number of infections from the known infectious individual is

�
t(y)s̄N

t(y)s̄+ s̄mN

�

x

(3.16)

t(y)s̄N

t(y)s̄+ s̄mN
(3.17)

3.A.3 Heterogeneity in susceptible mixing, Rsm(N)

We calculate the finite-population reproductive number for the case where we allow only

susceptible mixing rates, sm, to vary. We find the expected number of new infections is

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

(3.18)
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3.A.4 Heterogeneity in susceptibility probability Rsp(N)

We calculate the finite-population reproductive number for the case where we allow only

heterogeneity in the probability contracting an infection per contact, sp.

We find the expected number of new infections from a single infected individual of type

y is:

�
s(x)t̄N

s(x)t̄+ s̄mN

�

x

(3.19)

3.B Appendix: Results
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Figure A1: The finite-population reproductive number, Rm(N), for log-normally dis-
tributed heterogeneity. The solid lines are the finite-population reproductive numbers with
different coefficients of variation and the dot-dashed lines represent the infinite reproduc-
tive numbers with corresponding coefficients of variation. (a) the finite-population repro-
ductive numbers versus the null reproductive numbers, Rnull with a fixed population of
size N = 100 (dashed line) and (b) the finite-population reproductive numbers versus the
population size for fixed R0 = 100 (dot-dashed line).

3.B.1 Appendix: Additional figures
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(a) Rtm(N): Fixed Population Size
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(b) Rtm(N): Fixed R0
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(c) Rtp(N): Fixed Population Size
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(d) Rtp(N): Fixed R0
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(e) Rsm(N): Fixed Population Size
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(f) Rsm(N): Fixed R0
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(g) Rsp(N): Fixed Population Size
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(h) Rsp(N): Fixed R0
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Figure A2: (Previous page.) Plot of the finite-population reproductive numbers, for log-
normally distributed heterogeneity The solid lines are the finite-population reproductive
numbers with different coefficients of variation and the dot-dashed lines represent the infi-
nite reproductive numbers with corresponding coefficients of variation. (a,c,e,g) the finite-
population reproductive numbers versus the null reproductive numbers, Rnull with a fixed
population of size N = 100 (dashed line) and (b,d,f,h) the finite-population reproductive
numbers versus the population size for fixed R0 = 100 (dot-dashed line). (a,b) Rtm(N)
(c,d) Rtp(N) (e,f) and (g,h)
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Chapter 4

Population-Level Effects of Clinical
Immunity to Malaria

Keegan LT, Dushoff J, (2013) BMC Infectious Diseases 13:428.
doi: 10.1186/1471-2334-13-428

4.1 Abstract

Background

Despite a resurgence in control efforts, malaria remains a serious public-health problem,

causing millions of deaths each year. One factor that complicates malaria-control efforts is

clinical immunity, the acquired immune response that protects individuals from symptoms

despite the presence of parasites. Clinical immunity protects individuals against disease, but

its effects at the population level are complex. It has been previously suggested that under

certain circumstances, malaria is bistable: it can persist, if established, in areas where it

would not be able to invade. This phenomenon has important implications for control: in

areas where malaria is bistable, if malaria could be eliminated until immunity wanes, it
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would not be able to re-invade.

Methods

Here, we formulate an analytically tractable, dynamical model of malaria transmission to

explore the possibility that clinical immunity can lead to bistable malaria dynamics. We

summarize what is known and unknown about the parameters underlying this simple model,

and solve the model to find a criterion that determines under which conditions we expect

bistability to occur.

Results

We show that bistability can only occur when clinically immune individuals are more “ef-

fective" at transmitting malaria than naive individuals are. We show how this “effective-

ness" includes susceptibility, ability to transmit, and duration of infectiousness. We also

show that the amount of extra effectiveness necessary depends on the ratio between the du-

ration of infectiousness and the time scale at which immunity is lost. Thus, if the duration

of immunity is long, even a small amount of extra transmission effectiveness by clinically

immune individuals could lead to bistability.

Conclusions

We demonstrate a simple, plausible mechanism by which clinical immunity may be causing

bistability in human malaria transmission. We suggest that simple summary parameters – in

particular, the relative transmission effectiveness of clinically immune individuals and the

time scale at which clinical immunity is lost – are key to determining where and whether
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bistability is happening. We hope these findings will guide future efforts to measure trans-

mission parameters and to guide malaria control efforts.

4.2 Background

Despite extensive efforts to eradicate it, malaria caused by Plasmodium falciparum remains

a significant problem resulting in millions of cases and 660,000 deaths in 2010 [106]. A

characteristic of falciparum malaria disease that complicates control efforts is clinical im-

munity – an immune response that develops with exposure to parasites and provides pro-

tection against the clinical symptoms of malaria, despite the presence of parasites [125].

Although clinical immunity protects individuals against disease, its effects at the popula-

tion level are complex.

Malaria is highly variable from region to region, further complicating analysis. Ge-

ographic variation in average disease burden (endemicity) leads to variation in acquired

immunity [42]. Malaria endemicity ranges from “holoendemic" (defined as having a par-

asite ratio (PR, the percentage of subjects with parasites found in the blood) consistently

greater than 75% of infants [90]) through “hyperendemic" and “mesoendemic" to “hypoen-

demic", defined as having a PR of less than 10% of children age 2–9 [90]. This results in

variation in the acquisition of clinical immunity. This variation in endemicity and clinical

immunity complicates malaria epidemiology and control.

Clinical immunity to malaria develops after exposure to parasites and varies as en-

demicity varies [47, 49]. In holoendemic regions, exposure to parasitemia is high enough

that clinical immunity develops rapidly, and most adults and older children are clinically

immune, whereas in hypoendemic regions, most people are not re-infected often enough

to develop clinical immunity [49]. Even after it develops, clinical immunity can be lost in
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3-5 years without re-exposure [30, 49, 47, 125, 42]. When individuals first develop clinical

immunity, they are only immune to severe symptoms. If re-exposure continues, however,

clinical immunity can result in asymptomatic or nearly asymptomatic disease. Full clinical

immunity develops slowly and tends to correlate with the onset of puberty [75, 49].

An important aspect of clinical immunity is the possibility that clinically immune in-

dividuals are particularly effective at transmitting malaria over the duration of their infec-

tions. This phenomenon could arise if clinically immune individuals are more infectious to

mosquitoes per unit time, or if they stay infectious for longer (perhaps because they are less

likely to seek medical treatment), or both. If clinically immune individuals have a higher

reproductive rate, this has potential implications at the population level – in some cases,

malaria may be spread more effectively in areas where it is already present, all else being

equal.

As transmission of malaria decreases, the proportion of the population protected by

clinical immunity decreases as well, since clinical immunity is lost. As a result, decreases in

transmission can, under some circumstances, lead to an increase in morbidity and mortality,

because fewer people are protected against the symptoms of malaria. [134, 103, 102].

Aguas et al. [2] have shown that under certain circumstances when clinically immune

individuals are more infectious over the duration of their infection, than naive cases, malaria

can persist, if established, in areas where it would not be able to invade. In other words, for

some sets of parameters, both an endemic equilibrium and a disease-free equilibrium are

stable – a phenomenon known as bistability. Bistability would have important implications

for malaria control: in particular, it would imply that there are some areas where, if malaria

could be eliminated until clinical immunity wanes, it would not be able to re-invade. Here

we use a model of malaria transmission to explore under which conditions we would expect

bistability to occur, indicating possible opportunities for malaria elimination.
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Malaria elimination has been surprisingly effective in many countries: 75 of the 79

countries that successfully eliminated malaria between 1945 and 2010 remain malaria free,

even though many have not sustained control efforts [139]. A recent paper by Chiyaka et

al [21] presents six hypotheses for this phenomenon, and argues that R0 may be reduced

either by external factors, like demographic and hydrological changes, or by factors driven

by malaria elimination itself, for example economic development catalyzed by reduced

disease burden, or bistability due to treatment seeking. They argue that, to the extent that

malaria elimination reduces R0, incentives to aggressively pursue control are increased,

since on-going active control efforts will not be required once malaria is eliminated.

In this paper, we first review what is known about infectiousness and susceptibility to

infection of clinically immune individuals. We then build a simple transmission model de-

signed to elucidate what factors make bistability likely, and what measurements could shed

light on when and whether bistability is likely to be an important phenomenon in malaria

dynamics and control. We derive a simple mathematical criterion for how “effective" trans-

mission by clinically immune individuals must be for bistabilty to occur.

4.2.1 Effects of clinical immunity on disease transmission

The overall infectiousness of an infected individual is the product of duration of infection,

and mean infectiousness. Below, we review what is known about the effects of clinical

immunity on these components.

The duration of a malaria infection is highly variable, and treatment-seeking behav-

ior is an important determinant. In a review of population-level studies done on malaria

treatment-seeking behavior, McCombie [89] found that treatment rates were correlated with

severity of symptoms, and that in Africa, 64–95% of individuals who sought treatment re-
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ceived at least one form of treatment; with the majority of studies reviewed reporting over

90% treatment rate.

It is well known that many clinically immune infections are not even recognized by the

individual as malaria. Individuals in hyper- and holo-endemic areas who do not think they

have malaria, have been found to test positive at high rates, for example in Ghana [89, 107],

Senegal [114], and Kenya [14]. Thus, it seems reasonable to suppose that most clinically

immune infections are untreated, and last longer than treated clinical infections because

of treatment-seeking behavior. Various studies have been done to estimate the duration of

untreated malaria infection. Earle et al. [39] observed the duration of infection in children

age 5-15 years old and found all of them had cleared the infection within a year. However,

most of what is known about duration of infection comes from malariotherapy data. These

studies infected naive adults infected with neurosyphilis with P. falciparum strains with

low clinical virulence and found the mean duration of infection to be 200 days[123]. A

recent study in a highly endemic region found a similar mean duration of infection to that

of the malariotherapy data, however, they found a larger variance in duration of infection

with many more infections with shorter duration then found in the malariotherapy data

[15]. And in an extreme case, an infection was found 8 years after last known exposure

to parasites [138]. However, it’s not clear how the duration of untreated clinically immune

infections compares to untreated symptomatic cases. Bruce et al. [17] found that “episodes”

of parasitemia lasted longer in children than in adults and suggest that this may be due

to clinical immunity[17]. Unfortunately, it is not straightforward to relate their measured

episodes to infection clearance (partly because infected individuals may be “super-infected"

by other strains).

While clinically immune cases are frequently asymptomatic or of low clinical virulence,

data from malariotherapy studies suggest naive cases may also have a wide range of clinical
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virulence ranging from high virulence to asymptomatic [94]. Other studies, suggest that

asymptomatic malaria is not limited to areas of high transmission where exposure-related

immunity is expected to develop [12, 4, 76]. Thus, not all naive cases may be terminated

with treatment.

Another key component to the population-level effects of clinical immunity is the in-

fectiousness per transmission event of infected individuals. Although malaria transmission

is much studied, it remains unclear how parasitemia, gametocytemia, and other factors in-

teract to affect malaria transmission. Gametocyte quantity alone is not sufficient to ensure

successful transmission; mosquito uptake of gametocytes depends on a wide variety of fac-

tors, including transmission-blocking immunity (TBI) [124, 100, 31] and cytokine tumor

necrosis factor (TNF) [99, 41].

Transmission-blocking immunity (TBI) is a human immune reaction to sexual stages of

malaria. TBI develops with exposure to gametocytes and, through a variety of mechanisms,

reduces successful transmission of new infections. TBI increases with gametocyte density;

consequently, TBI tends to be negatively correlated with clinical immunity [31], but the

importance of TBI to population-level transmission is not clear. In one study, transmission-

blocking immunity was found to reduce transmission by up to 90%, with higher immunity

in the younger age groups [31]. Two other studies, which did not include the youngest age

group, failed to find correlations between age and TBI [97, 13]; the latter of these found

that only 15% of urban and 29% of rural gametocyte carriers had reduced transmission. A

model of human infectiousness to mosquitoes found that patterns of EIR across Africa and

Papua New Guinea could be explained without invoking TBI [67].

Cytokine TNF is another factor that affects gametocyte success. It is present in the

blood serum taken during the crisis of a malaria infection [99, 41]. Cytokine TNF is re-

sponsible for the loss of infectiousness during peak parasitemia by killing the gametocytes.
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Gametocytes present during malaria crisis were found dead before entering the mosquito;

as well, gametocytes from crisis serum failed to infect mosquitoes even when washed and

re-suspended in normal serum [99].

Although there is immunity against gametocytes at peak parasitemia in non-immune

individuals, clinically immune infections often have lower gametocytemia as a result of

having anti-parasite immunity, conferring protection against high-density parasitemia [30].

There is also evidence that clinically immune individuals are less infectious per bite but

because clinically immune individuals are less likely to seek treatment, they are consistently

infectious at low levels for long periods of time and therefore result in producing a large

number of new infections over the course of a single clinically immune infectious period

[120, 111].

As we will see below, susceptibility to infection in clinically immune individuals is also

important to the population-level dynamics of malaria. Although a great deal is known

about susceptibility to clinical illness, parasitemia or gametocytemia [91, 32], much less is

known about susceptibility to new infection. Individual susceptibility to new infections is

complex, and known to be influenced by genotype, parasite virulence, and specific immu-

nity [91]. Though there is evidence to believe that clinically immune individuals are about

as susceptible to disease as non-immune individuals [68]

4.2.2 Population-level effects

We investigate the factors underlying bistability with a simple transmission model that ac-

counts for clinical immunity (see Methods). We assume that individuals infected when

they are naive have a probability of becoming clinically immune when they recover from

infection, and that clinically immune susceptible individuals lose immunity at some rate if
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not infected again, meaning that clinical immunity will be maintained when the force of

infection is high, and will often wane if the force of infection is low.

To explore the effects that clinically immune individuals have on the population-level

disease dynamics, we compare the life-cycle transmission effectiveness of naive and clini-

cally immune individuals, using subgroup reproductive numbers. These are defined as the

average number of secondary infections from a single infectious individual in an otherwise

totally susceptible population. We define the reproductive number for naive cases, RNN ,

as the average number of secondary infections generated by a single naively infectious in-

dividual in an otherwise totally naively susceptible population. We define the reproductive

number for clinically immune cases, RCC , as the average number of secondary infections

given by a single clinically immune infectious individual in an otherwise totally clinically

immune population.

Because we assume that all individuals are naive in the absence of infection, the basic

reproductive number of our system R0 = RNN . We stress that this is the basic reproductive

number, in the presence of baseline control efforts – in particular, we assume that treatment

is always available to those who seek it. This R0 will typically differ from the R0 that

would be calculated in the absence of control [21].

The reproductive numbers determine malaria disease dynamics. When RNN > 1 the

disease will always persist. When RNN≤ 1 the disease cannot invade. However, there

is evidence that under certain circumstances when RCC > 1 > RNN , clinically immune

individuals can act as a reservoir and allow malaria to remain endemic, even though RNN

drops below one. In this case, both the disease-free equilibrium and an endemic equilibrium

are stable, this is an example of “bistability".

Bistability is typically associated with “backwards bifurcations". In general, as a dis-
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ease invades, it reduces its reproductive number R, primarily by reducing the number of

susceptibles in the population. In such “forward bifurcations", we expect the disease to go

extinct from any starting conditions when R0 ≤ 1, and to reach a small equilibrium, when

R0 is just above 1 [34]. When a disease increases its reproductive number as it invades,

backwards bifurcations occur. In a backwards bifurcation, the disease invades to a non-zero

level even when R0 = 1, and will be able to persist above a certain threshold when R0 is

just below 1 [34].

4.3 Methods

To explore the dynamics of malaria and determine the conditions in which bistability can

occur, we evaluated the following simple transmission model (Fig. 4.1):

dSN

dt
= −ΛSN + αSC − µSN + µT + γNNIN (4.1a)

dIN

dt
= ΛSN − (γNN + γNC)IN − µIN (4.1b)

dSC

dt
= −σΛSC − αSC + γNCIN + γCIC − µSC (4.1c)

dIC

dt
= σΛSC − γCIC − µIC (4.1d)

SN represents naive susceptible individuals, individuals who have never been infected

with malaria, those who have been infected but have not developed clinical immunity, or

who have lost all immunity. When infected with malaria, they move to the clinically in-

fected class (IN ). Recovered individuals become immediately susceptible again, but with

immunity to clinical symptoms (SC). When non-naive susceptibles get infected, they ac-
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Figure 4.1: Compartmental diagram of our transmission model Each compartment in
the diagram represents a different epidemiological class. Individuals begin in the suscep-
tible naive class (SN ), return there after losing clinical immunity, at a rate α, and are born
into this class, at a rate µ. Individuals in SN who get infected move to the infected naive
class (IN ), at a rate Λ. From IN , individuals recover from illness to either the susceptible
naive class (SN ), at a rate γNN , if immunity was not conferred, or to the susceptible clin-
ically immune class (SC), at a rate γNC if clinical immunity developed. Individuals who
are susceptible clinically immune can either lose immunity at a rate α and return to the sus-
ceptible naive class, or they can get infected, at a rate σΛ, and become infected clinically
immune (IC). Infected clinically immune individuals recover to the susceptible clinically
immune class, at a rate γC . Individuals can die from any of the epidemiological classes and
do so at a rate µ not proportional to the level of malaria in the population. Individuals are
born and die at the same rate, thus keeping the population size closed.

quire clinically immune infections (IC). Each class represents a portion of the population.

τN and τC are the transmission rates of naive and clinically immune cases, respectively.

γNN is the recovery rate of naive individuals, γNC is the rate of acquiring clinically immu-

nity, and γC is the recovery rate for clinically immune individuals. α is the rate at which

clinical immunity is lost σ is the relative susceptibility to new infection of clinically im-

mune individuals. Λ = τN IN+τCIC
T

is the force of infection. Both types of susceptibles

(naive or clinically immune) can be infected by either type of infectious individual (naive

or clinically immune). The total population size is T = SN + IN + SC + IC . For this

model, R0 = RNN = τN
γNN+γNC+µ

, and RCC = στC
γC+µ

. We define ρ to be the ratio of
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the clinically immune reproductive number to the naive reproductive number (RCC/RNN ).

And π = γNC

γNN+γNC
is the proportion of naive infections that recover to become clinically

immune.

We used the statistical package R [117] to simulate our model. We held the average

durations of infectiousness for naive and immune individuals (1/γNN and 1/γC) constant

at 50 and 200 days respectively. We chose π = γNC

γNC+γNN
to be 0.5, assuming an equal

chance of getting clinical immunity and remaining non-immune after each naive infection.

Transmission coefficients τN and τC were calculated from RNN and RCN which varied

as described in the Results section. We chose duration of immunity 1/α to be 1282 days

(about 3.5 years), and lifespan 1/µ to be 25,550 days (about 70 years). The relative suscep-

tibility of clinically immune individuals was chosen to be σ = 0.7 since clinically immune

individuals are about as susceptible as naive cases; we also tested other values.

R code and Maxima code to replicate all of our results will be made available upon

publication.

In building a simple transmission model, we have lumped a variety of biological mech-

anisms into the parameters. For example, transmission parameters τC and τN include trans-

mission blocking immunity and the reduction of parasites in clinically immune individuals.

The duration of infection parameters γNN , γNC , and γC take into account treatment seeking

behavior (naive individuals are likely to seek treatment quickly whereas clinically immune

individuals are less likely to seek treatment or they wait longer to seek treatment).
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(a) RNN > 1 > RCC (b) 1 > RNN > RCC

(c) RCC > RNN > 1 (d) RCC > 1 > RNN

Figure 4.2: Simulation of Malaria transmission in a naive population. We simulated
malaria transmission in a population with 95% naive susceptible and 5% naive infectious
individuals (SN = 0.95, IN = 0.05, SC = 0, IC = 0, N = 1, α = 0.001, γNN = 0.02,
γNC = 0.02, γC = 0.005, µ = 0.000039, and σ = 0.7) under two assumptions of ρ. Panels
a and b show ρ = 0.5 and panels c and d show ρ = 3.5 (a) RNN = 2 > 1 > RCC = 1. (b)
1 > RNN = 0.75 > RCC > 0.375. (c) RCC = 7 > RNN = 2 > 1. (d) RCC = 2.625 >

1 > RNN = 0.75.
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4.4 Results

We simulated our malaria transmission model under two scenarios of infectiousness: over-

all infectiousness of clinically immune cases was either low (ρ ≡ RCC/RNN = 0.8, pan-

els 4.2a and 4.2b) or high (ρ = 4, panels 4.2c and 4.2d). For each scenario, we simulated

two different values of R0 ≡ RNN . Disease-invasion results are shown in Fig. 4.2. When

we start near the disease-free equilibrium, the qualitative behavior is determined by R0:

when R0 > 1 (panels 4.2a and 4.2c), the disease invades and reaches an endemic equilib-

rium; when R0 < 1, (panels 4.2b and 4.2d), the disease does not invade.

(a) RNN > RCC (b) RCC > RNN

Figure 4.3: Malaria transmission with changing parameters. Here we simulated malaria
using the parameters from the first column of Fig. 4.2 until they reached equilibrium at
which point we changed the parameters to those in the second column and allowed malaria
to reach equilibrium again. (a) We used the parameters from Fig. 4.2a from 0 to 3000
and the parameters from Fig. 4.2b from 3000 to 6000. (b) We used the parameters from
Fig. 4.2c from 0 to 3000 and from Fig. 4.2d from 3000 to 6000.

In the case where underlying parameters can change over time, however, there are strik-

ing differences between the scenarios with low and high relative transmission from immune

individuals. Fig. 4.3 shows what would happen in a population with endemic malaria if
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control efforts moved transmission from the first column of Fig. 4.2 to those shown in the

second column. Panel 4.3a behaves as we would expect: when we change the parameters at

day 3000, the system moves to the disease-free equilibrium. Panel 4.3b, however, exhibits

bistability. Although the parameters in the latter part of the simulation are consistent with

disease extinction, the disease does not go extinct from the equilibrium reached under high

transmission, but instead finds a lower endemic equilibrium. Whether or not malaria will

remain endemic or die out under parameters consistent with disease extinction is dependent

both on R0 and on initial conditions.

(a) Forward Bifurcation (b) Backwards Bifurcation

Figure 4.4: Bifurcation diagram for malaria. The dashed line shows R0 = 1 and the
arrows show the behavior of the system: in the white area, to the left of the manifold, the
disease will die out while to the right of the manifold, in the shaded area, the disease will
persist. The dark-shaded region represents the area in which malaria can invade and persist
and the light-shaded area in which it persists, even though it would not invade. In these
figures, all parameters are held constant except τN and τC . (a) A forward bifurcation occurs
at R0 = 1. ρ = 0.8. (b) A backwards bifurcation occurs at R0 = 1. ρ = 4.

Fig. 4.4 gives a broader perspective on the two scenarios, using “bifurcation diagrams”

showing how equilibrium incidence changes as R0 increases, while holding the relative
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infectiousness of clinically immune individuals (ρ ≡ RCC/RNN ) constant. Panel 4.4a

illustrates the scenario where clinically immune individuals are relatively less effective at

transmitting disease (ρ < 1). Here we see the simple, common, relationship between R0

and equilibrium incidence. As R0 increases past 1, the system moves smoothly from having

a globally stable equilibrium at 0, to having a globally stable endemic equilibrium.

Panel 4.4b shows shows the scenario where clinically immune individuals are relatively

more effective at transmitting disease (ρ > 1). In this case, we see a more complicated

pattern, where both R0 and initial prevalence affect the final outcome. In particular, if we

increase R0 smoothly past 1 in a population where the disease is absent, the equilibrium

jumps abruptly; if the disease invades, and R0 is decreased back below 1 the disease does

not necessarily go extinct. Similarly, if Rcrit < R0 < 1 (the light gray region of the plot), a

temporary intervention that sharply reduces disease prevalence could succeed in eliminating

the disease even without a long-term reduction in R0.

To be specific, we don’t expect the disease to go extinct once established unless R0 is

reduced beneath the minimum value for which the endemic equilibrium exists. We call this

value Rcrit and the force of infection Λ that corresponds to it Λcrit. On the forward bifur-

cation diagram (Fig. 4.4a) Rcrit = 1 and on the backwards bifurcation diagram (Fig. 4.4b)

Rcrit is precisely the point where the stability of the endemic equilibrium (in a region of

bistability) changes from unstable to stable (the black dot on Fig. 4.4b).

In text 4.A.1, we show that a backwards bifurcation will occur when the ratio ρ =

RCC/RNN > ρ
∗, where:

ρ
∗ = 1 +

D

πL
(4.2)

Here L = 1/(α + µ) is the duration of immunity, D = 1/(γNC + γNN) is the duration

of naive infection, and π = γNC

γNC+γNN
is the proportion of people who become clinically
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immune after a naive infection. This criterion determines for what parameters bistability

can occur when R0 < 1. The value of ρ∗ is always strictly greater than 1, meaning that

bistability only occurs when RCC exceeds RNN by a sufficient amount. The amount of

excess necessary is determined by how quickly immunity is lost (through death or waning)

compared to the duration of infectiousness of the disease: when immunity lasts longer,

bistability is more likely.

When ρ > ρ∗, a backwards bifurcation occurs, resulting in a region of bistability where

there exists a stable disease-free equilibrium and a stable endemic equilibrium for the same

parameter values. Fig. 4.4b illustrates the backwards bifurcation and the region of bista-

bility (light gray shaded region). Within the region of bistability, if malaria were to be

eliminated, it would not be able to re-invade unless R0 were increased from below one

back above one, making malaria elimination from these regions more sustainable. In order

to eliminate malaria from a region of bistability, either the force of infection must be re-

duced below the unstable endemic equilibrium (dashed curve), or the reproductive number

must be reduced below the critical value (Rcrit), or these in combination. In Fig. 4.4b, this

is equivalent to leaving the light gray shaded region (without exceeding R0 = 1, the dashed

line).

We explored how different model parameters affected the bifurcation (text 4.A.2), by

varying each parameter individually. To vary R0, we changed τN and τC , while keeping

their ratio constant. To vary ρ or to adjust ρ when necessary (e.g., when changing σ), we

varied the ratio τN : τC .

We show that the region of bistability depends strongly on the ratio ρ. When ρ is large,

bistability can occur even for large incidence rates, as shown in Fig. A1. Consequently,

if malaria were to be eliminated then re-introduced, it would jump to being endemic at a

higher level in the population than when ρ is small. When ρ is large, Λcrit (the value of
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Λ that corresponds to Rcrit) is also large. A large value of Λcrit means that the force of

infection needs to be reduced by less to move below the unstable endemic equilibrium and

be eliminated.

We also found that even when ρ is held constant, the individual components of ρ (σ,

π and γC) still affect the bifurcation, as shown in text 4.A.2. When we increased σ (text

4.A.2) while holding ρ constant, the region of bistability decreased. When σ is small (text

4.A.2) the proportion of infections that occur in clinically immune people increases, thus

increasing the accumulation of clinical immunity and magnifying its effect on transmission.

We also explored the dynamics when varying the recovery rates (text 4.A.2), while

holding ρ constant. When individuals recover quickly, the area of bistability is large, since

there are more susceptible clinically immune individuals in the population. When γC is

large, Λcrit is also large; this means that the force of infection needs to be reduced by less

to drop below the unstable endemic equilibrium for malaria to be eliminated. Also, when

γC is large, the value of Λ when R0 = 1 is larger than when individuals recover slowly.

So if malaria is eliminated then re-invades, it would jump to a high endemic level in the

population. Resurgence of malaria has been found, in 75 resurgent events to jump from

either eliminated or from a low-level in the population to a high endemic level [22]. We

also change the proportion of naive infections, π. When π is large, so is Rcrit and Λcrit and

as π is decreased, so is Rcrit and Λcrit, making the region of bistability larger.

4.5 Discussion

The question of whether there are places where malaria is endemic, but where it could

remain stably eliminated under current transmission and treatment conditions (ie., places

where malaria is bistable) is important to interpreting malaria data and planning control
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measures. It has been suggested that treatment-seeking behavior can lead to bistability in

the dynamics of malaria infections of humans [2].

In areas where malaria is bistable, an aggressive program that held malaria infection at

low levels until clinical immunity wanes could result in the disease remaining absent even

after the program is terminated. Malaria would not re-invade in this case because treatment

seeking by non-immune infected individuals would lead to shorter duration of infectious-

ness and less overall transmission. This is a potentially risky strategy, however, because if

malaria does re-invade such an area, the fact that clinical immunity has waned could lead

to increased morbidity [134, 103, 102]. Mass drug administration (MDA) is a possible ex-

ample of such an aggressive approach. Although MDA has so far proved unsuccessful in

permanently interrupting malaria transmission, it is successful at reducing parasitemia and

does temporarily reduce transmission [140]. Further investigation of factors underlying

bistability could improve understanding of when and where MDA would be likely to lead

to long-term elimination.

We analyzed a simple model, and found a simple criterion that determines whether

bistability can occur. In particular, we found that the key quantity is the life-cycle “trans-

mission effectiveness" of clinically immune individuals, relative to non-immune individu-

als. We encapsulate this relative infectiousness in a ratio, which we call ρ and show that

bistability can occur when ρ exceeds 1 + D/(πL), where D is the duration of naive in-

fection, π is the proportion of naive cases that recover to become clinically immune, and

L is the length of immunity. We also show that, in addition to duration of infection and

ability to transmit the disease, the relative susceptibility of clinically immune individuals

to new infections is a key component of this ratio. Although the relative susceptibility is

a key component to understanding bistability in malaria, little is known about the relative

susceptibility of clinically immune individuals.
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Chiyaka et al [21] discuss the importance of reducing the reproductive number under

control efforts (RC) below one to eliminate malaria and to gage the size of an outbreak

arising from an imported malaria case. They also point out that once malaria is eliminated,

control efforts must be sustained to keep RC < 1 unless elimination of malaria permanently

changed R0. Bistability of malaria, as we explore here, is one of the possible reasons why

eliminating malaria could permanently alter R0. As eliminating malaria from a region of

bistability will remain stably eliminated, even in the presence of imported malaria cases.

Chiyaka et al [21] suggest that while evaluating control programs, countries should assess

the stability of elimination. Determining if a country or region is experiencing bistability

using our criterion, ρ∗ is a cost-efficient, fast method to begin to assess the stability of

malaria control of specific areas, where elimination can be maintained with little extra long-

term effort.

The details of clinical immunity to malaria are more complex than those in our simple

model: in particular, clinical immunity may continue to develop even in clinically immune

individuals. Nonetheless, we expect our qualitative results to apply to more realistic sit-

uations. We expect the possibility of bistability when the relative life-cycle transmission

effectiveness of clinically immune individuals is high. Thus, measuring the components

of transmission effectiveness, both in clinically immune and non-immune individuals, is

important for evaluating and planning malaria control efforts. Although certain aspects of

malaria are well studied, it is surprisingly difficult to find information bearing directly on

the components of transmission effectiveness, particularly in clinically immune individuals.

Continued investigation of how these components determine transmission effectiveness will

be important in understanding the population-level patterns of the spread and persistence of

malaria.

Although duration of symptomatic infection is well studied [39, 89], little is known
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about duration of asymptomatic infection [17]. This is a complicated question because

malaria infections can be long and variable; failure to detect parasites may not mean an

infectious event is over; and resurgence of parasites may be due to a new infectious event.

Transmission of infection to mosquitoes is another aspect of malaria biology that is

not well understood. Although they are well studied individually, it is not clear how the

components of transmission come together to affect the infectiousness per transmission

event. These components include: gametocytemia [100, 124]; TBI [13, 31, 97], which

increases with gametocytemia, and wanes with age and clinical immunity; and other human

and mosquito-specific factors [32]. More information on how these components interact to

affect transmission would help to unravel how clinical immunity affects population-level

transmission.

As we’ve shown, susceptibility of clinically immune individuals to malaria is an impor-

tant component of the ratio of life-cycle transmission effectiveness. Susceptibility to new

infection is known to be complex [91] but not well understood; in the literature “suscepti-

bility" is frequently used to refer to susceptibility to clinical disease [91, 32].

Our model neglects age structure, and oversimplifies the process of clinical immunity.

In particular, the population is divided simply into those who are and are not clinically

immune. Other omissions include seasonality, biting heterogeneity, and in fact, mosquitoes.

For these reasons, the model is not expected to provide quantitatively accurate estimates of

malaria dynamics.

The advantage of this simplistic approach, in our opinion, is that the model sheds light

on the possible mechanisms and key quantities underlying bistability in malaria dynamics.

In particular, we expect the importance of the quantity ρ – the ratio of life-cycle effec-

tiveness of transmission between immune and non-immune individuals – to be robust to
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including more model details. Similarly, we expect some analogue of the time scale ra-

tio D/(πL) – that is, the ratio between the time scales of infection and immunity – to be

important in a detailed model.

4.6 Conclusions

It has been suggested that human malaria-transmission dynamics exhibit bistability, which

would have important implications for control efforts. We have shown that bistability

through treatment seeking by clinically immune individuals is plausible in human malaria

transmission dynamics. Using a simple model, we have demonstrated how these dynamics

might play out, and determined key parameters underlying when and whether bistability

might occur in real populations.

We find that the key quantities underlying whether bistability is expected to occur are:

the relative “effectiveness" of clinically immune individuals, compared to naive individu-

als, at transmission; and the time scale at which clinical immunity is lost, compared to the

time scale of infectiousness. The model also shows that relative susceptibility to malaria

infection should be considered part of transmission effectiveness, when making this com-

parison. We find that bistability can occur for plausible parameters, and suggest that more

research into these two ratios may shed light on malaria dynamics, and guide future control

efforts.

4.7 List of abbreviations

• TBI: Transmission-blocking Immunity
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• MDA: Mass drug administration

• TNF: Tumor necrosis factor
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4.A Additional Files

4.A.1 Additional File 1 – Backwards Bifurcation

To determine if bistability can occur, we analyze our model at the bifurcation point, R0 = 1,

to determine the size of the ratio ρ = RNN
RCC

must be in order for a backwards bifurcation to
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occur [33].

To analyze our model, we can disregard dSN
dt

because the population remains constant.

So we re-write dIN
dt

, dSC
dt

, and dIC
dt

in terms of IN , SC , IC and T . We define Y to be the vector

(IN , SC , IC). We take the Jacobian of Y , H(Y ).

We then find the eigenvectors of the matrix H(Y ) at equilibrium (when Y=0. The

eigenvectors determine whether or not a backwards bifurcation will occur at R0 = 1. This

is determined by the sign of the dominant eigenvectors of the Jacobian matrix [34]. The

dominant right eigenvector, which gives the direction of the initial spread of the disease, is

V= [1, γNC

τN−γNN−γNC−+α
, 0] and the dominant left eigenvector which gives the contribution

of each infected group to the overall spread is given by W = [1, 0, τC
τN−γNN−γNC+γC

].

To determine the criterion ρ
∗, which gives the amount RCC needs to be larger than RNN

in order for a backward bifurcation to occur, we look at the Jacobian matrix, H perturbed

just a little from 0. Dushoff [34] showed that a backward bifurcation will occur if and only

if

ρ∗ = W ·Hε(0)V > 0 (4.3)

For our model, we calculated ρ
∗ to be:

ρ∗ = 1 +
α + µ

γNC

(4.4)

We take 1
α+µ

to be the length of immunity (L), 1
γNN+γNC

to be the duration of infection
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(D), and γNC

γNN+γNC
. We find that when R0 = 1, bistability will occur when:

ρ∗ = 1 +
D

πL
(4.5)

4.A.2 Additional File 2 –Bifurcation Diagrams
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Figure A1: Bifurcation diagrams changing model parameters individually (ρ, σ, π, and γC

) while keeping all other parameters constant at the base model values (Fig. 4.4b). The
vertical dashed line shows R0 = 1; the solid curve represents the stable equilibrium and the
dotted curve shows the unstable equilibrium; the point shows (Rcrit,Λcrit); the light grey
area shows the region of bistability– the area where malaria will persist, if endemic, but
cannot invade; and the dark grey region shows where malaria can always invade and persist.
In all of the bifurcation diagrams, R0 ranged from 0 to 1.5 and RCC varied accordingly,
changing only transmission rates (τN and τC). (a)-(c) vary ρ (a) The ratio RCC : RNN is
1 : 2 (b) The ratio RCC : RNN is 2 : 1 (c) The ratio RCC : RNN is 4 : 1. (d)-(f) vary σ (d)
σ = 0.5, (e) σ = 0.7. (f) σ = 1. (g)-(i) vary π while keeping γNC constant (g) π = 0.66 (h)
π = 0.5 (i)π = 0.33 (j)-(l) vary γC (j) clinically immune infections clear in 100 days (k)
clinically immune infections clear in 200 days (l) clinically immune infections clear in 400
days.
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Chapter 5

Modeling Clinical Immunity to Malaria
in the East African Highlands

Keegan LT, Bolker BM, and Dushoff J

5.1 Introduction

Globally, 3.3 billion people are at risk of malaria infection each year [105]. The greatest

burden of malaria lands on Africa, where it is estimated that 90% of all malaria deaths oc-

cur, primarily in children under the age of 5 [105]. Despite extensive efforts to eradicate it,

malaria remains a significant global public health problem. One of the factors that compli-

cates control is clinical immunity to malaria. Understanding the effects of clinical immunity

on malaria transmission and control has long been of interest due to its complicated effects

on malaria control.

Clinical immunity to malaria is the acquired immune response that provides protec-

tion against the clinical symptoms of malaria, despite the presence of parasites [125]. It is

acquired with age and exposure, and can be lost without re-exposure [90, 47]. Because clin-
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ical immunity can be lost, under certain circumstances a reduction in malaria transmission

can result in an increase in morbidity and mortality [134, 103, 102]. Additionally, clinical

immunity has been shown to be a mechanism for bistable malaria dynamics [2, 64]. That

is, for some set of parameters, both an endemic equilibrium and a disease-free equilibrium

are stable [35, 64, 2]. Bistability has important implications for control: if malaria could be

eliminated until clinical immunity wanes, it would not be able to re-invade [2, 64]. Conse-

quently, understanding the effects of clinical immunity on malaria transmission is critical

for planning control. Keegan and Dushoff [64] identified important clinical immunity pa-

rameters that are still not well understood, including the duration of clinically immune

infection and the relative susceptibility of clinically immune individuals. These parameters

play a key role in determining if bistable-malaria can occur [64].

Although these are important clinical immunity parameters, relatively little is known

about them. Some studies have attempted to estimate the duration of clinically immune in-

fection [77, 17, 39], but the majority of studies rely on estimates of the duration of clinically

immune infection from malariotherapy data [123].

Prior to the discovery of penicillin, malaria was a standard treatment for neurosyphilis;

this type of treatment has come to be known as malariotherapy [123, 133]. Malariotherapy

treatment involved infecting malaria-naive neurosyphilis patients with low-virulence strains

of malaria [123]. These patients were monitored, but left untreated for up to one year [133].

They found the mean duration of infection to be 200 days [123]. In addition to malariother-

apy, other studies have attempted to determine the duration of clinically immune infection

[77, 17, 39, 15, 133]. Earle et al. [39] observed untreated malaria in children age 5-15 and

found that they all cleared infection within a year. A more recent study in a highly endemic

area found a similar mean duration of untreated infection to that of the malariotherapy data,

but with a larger variance, as many infections were of shorter duration [15]. However, the
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relationship between the duration of untreated naive and untreated clinically immune in-

fection is not straightforward. Bruce et al. [17] measured “episodes” of parasitemia and

showed that an episode lasted longer in children than in adults, which they suggested might

be the result of clinical immunity. Additionally, using a similar model to the one used here,

Laneri et al. [77] fit it to data from northwest India and found that for their model with-

out including rainfall, the duration of clinically immune infection was 250 days, whereas

when including rainfall into their model as a climate covariate, they found the duration of

clinically immune infection to last 28 days.

The other key parameter that is not well understood is the relative susceptibility of

clinically immune individuals to malaria. The susceptibility of naive individuals to clinical

disease, parasitemia, and gametocytemia are well understood, but little is known about how

susceptible clinically immune individuals are [91, 32]. There is evidence to suggest that

clinically immune individuals are about as susceptible to malaria as naive individuals are

[67]. However, individuals susceptibility to new infection is complex, and known to be

influenced by genotype, parasite virulence, and specific immunity [91].

Here, we estimate these two key parameters, by fitting a modified version of the model

in Keegan and Dushoff [64] to inpatient incidence data from the Kericho District in the East

African Highlands, to better understand the role of clinical immunity in malaria transmis-

sion.

In much of sub-Saharan Africa, malaria is endemic, however, in some regions, such as

the East African Highlands, conditions are less favorable and malaria transmission is con-

sidered epidemic. In epidemic areas, like the East African Highlands, malaria is imported

from nearby endemic regions [127]. In areas with epidemic malaria, environmental factors

such as temperature and rainfall have a large impact on malaria transmission. Variation

in temperature has been shown to have a non-linear effect on malaria transmission by im-
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pacting both the mosquito and the parasite [127, 24, 83, 95, 79]. The other climate factor

that has a strong effect on malaria is rainfall. While rainfall is necessary for breeding sites

for mosquitoes, the relationship between rainfall and malaria is more complex, partially

because temperature and rainfall are inversely correlated [83].

We focus on malaria in the Kericho District, in the highland region of Kenya, near Lake

Victoria, in the Great Rift Valley. Kericho is characterized by ample rainfall and fertile,

well-drained soil, and hosts two tea plantations [53]. Historically, malaria in the Highland

region has been largely imported. Prior to World War I, malaria did not exist. During World

War I and World War II, soldiers were responsible for importing malaria. After World War

II, intense, mass drug administration and indoor residual spraying campaigns successfully

reduced malaria transmission [127]. Since then, malaria has largely been imported from the

hyperendemic region around Lake Victoria. More recently, (1990 on Plantation 1 and as

early as 1980 on Plantation 2) large, mid-year seasonal epidemics of malaria began. These

explosive epidemics remained until 1999 on Plantation 1, at which point a rapid reduction

of cases occurred [53, 127].

The resurgence of malaria in the highland region has received attention due to the possi-

bility that climate change may be the underlying cause of the increase in malaria incidence

(eg. [3, 104, 53]). The International Panel on Climate Change concluded that climate

change would likely exacerbate malaria transmission, resulting in an extension in the dis-

tribution of malaria [53]. However, the role climate change has played in the resurgence of

malaria in the East African Highlands is controversial and has been debated in the literature

for over ten years [3, 104, 53, 54, 109, 52, 108, 145]. The two leading hypotheses to explain

the increase in malaria incidence are climate change and drug resistance.

From 1986-1998, malaria cases on the Kericho tea plantations ballooned from 16 to

120 cases per 1,000 people. This, paired with the global temperature increase of 0.6◦C
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over the last century has lead many to suspect that climate change was the driving force

behind the increase in malaria transmission [53]. However, the original study [53] found

no correlation between increased temperature and increased malaria in Kericho. Conse-

quently they suggested drug resistance as the alternative hypothesis to the rapid increase

in malaria cases. They postulated drug resistance as a potential cause, as chloroquine was

used as a first-line malaria treatment until 1999 on Plantation 1, despite the emergence of

widespread resistance. By 1999, fewer than 50% of cases were cleared by chloroquine

[127, 53]. Additionally, they highlight the association between the shift from chloroquine

to sulfadoxine-pyrimethamine (SP) in 1999, and a corresponding reduction in malaria inci-

dence [53].

Using better meteorological data, more recent studies have found that the increase in

temperature (estimated at 0.2◦C and 0.3◦C per decade, respectively [104, 3] ) correlates with

the increase in malaria transmission; suggesting a significant effect of warmer temperatures

on the resurgence of malaria in the East African Highlands.

Here, we do not attempt to add to this debate. We incorporate temperature as a likely

important factor in malaria transmission in Kericho, for the purpose of using this data to

explore the effect clinical immunity on malaria transmission. In areas with low or intermit-

tent transmission, like the East African Highlands, outbreaks tend to have higher morbidity

and mortality due to low levels of immunity. Whereas in lowland regions with high levels

of immunity, clinical immunity protects many of the adults from symptoms, concentrating

morbidity and mortality largely in younger children [83].

Since there were relatively few malaria cases in Kericho prior to 1990, we expect rel-

atively low levels of immunity during that period. However, after 1990, when epidemics

become more intense, we expect transmission to be strong enough for clinical immunity to

develop. Shanks et al. [127] found that around 1990, the ratio of adult (> 15 years old) to
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child (< 15 years old) hospital confirmed cases drops, suggesting the development of clin-

ical immunity in the population, making this data set potentially useful for understanding

clinical immunity.

Here, we explore the model with transmission parameters that are either held constant

(simple model), or vary (proportionally to each other) with the temperature (temperature

model). Previous models have incorporated climate forcing functions using a variety of

methods. Alonso et al. [3] incorporated temperature into their model by allowing it to

affect mosquito development. Reiner et al. [119] incorporated temperature into a dengue

model by using a non-parametric spline based approach. This approach is flexible and

does not a priori assume periodicity, however, it does not allow for time-lagged effects.

In a model of malaria in northwest India, Laneri et al. [77] used a spline based approach

and incorporated rainfall as a linear function with an a priori threshold, below which no

transmission can occur, above which, rainfall linearly increases transmission. Here we

incorporate temperature as an exponential function with time lagged effects. The benefit of

this approach is simplicity. It requires few parameters to be estimated but does not include

seasonal effects independent of temperature.

In areas like Kericho, on the fringe of malaria transmission, temperature is an impor-

tant factor for malaria transmission. Variation in temperature has been shown to have a

non-linear effect on malaria transmission, impacting both the mosquito and the parasite

[24, 79, 127]. Below 16◦C, it is too cold for malaria transmission to occur; between 16◦C

and 22◦C malaria transmission is unstable; and above 22◦C is generally considered to be

suitable for stable malaria transmission, as 15% of adult mosquitoes survive the 3 weeks

sporogony takes at 22◦C. It is possible for mosquitoes to escape the extreme cold temper-

atures by resting in more favorable micro-climates such as within occupied houses, where

temperatures can be 3 - 5◦C warmer than outdoors [127].
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5.2 Methods

These data are a monthly time series of malaria cases from hospital records on tea Plan-

tation 1 in the Kericho district of the Kenyan Highlands from 1970-2002 (Fig. 5.1a). We

only consider data from 1970-1999 – we don’t consider data after the hospital changed

its first-line malaria treatment from Chloroquine to SP [53]. We use the temperature time

series from Alonso et al. [3], which was generated by combining records from two meteo-

rological stations adjacent to the tea plantation (Fig. 5.1b, see the appendix 5.A.1 for more

details). The population size is generally considered to be fixed and estimates in the litera-

ture range from 50,000 to 100,000 [3, 127, 128] which includes both workers and their 3 to

4 dependents [127].

We fit our model (Fig. 5.2), using both a constant force of infection and a temperature-

dependent force of infection (5.A.3). Unlike Alonso et al. [3], we model mosquitoes im-

plicitly for ease of fitting. We thus allow temperature to affect the force of infection directly,

rather than via mosquitoes. We subdivide the population into the following distinct classes:

SN , naive, susceptible to infection, these are individuals who have either never been in-

fected with malaria, have been infected but have not developed clinical immunity, or who

have lost all immunity; IN , infected (infectious) with clinical malaria; SC , susceptible with

immunity to clinical symptoms; and IC , infected (infectious) with clinical immunity. The

total population size is N, which we assume to be fixed at N = 50, 000. We are able to

assume a closed population because we know the population on the tea plantation is fixed.

Here we assume the birth/ death rate is analogous to the immigration/ emigration rate, µ.

N = SN + IN + SC + IC . Naive and clinically immune individuals have different sus-

ceptibility (clinically immune individuals differ by a factor of σ). We incorporate clinical

immunity but do not allow the development of full immunity to malaria. Our model allows
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Figure 5.1: Monthly time series of (a) malaria cases and (b) mean temperature. The malaria
incidence data are confirmed malaria cases from inpatients at the hospital serving a tea plan-
tation from 1970-2002. The temperature data are from Alonso et al. [3] and were obtained
by dovetailing records from two meteorological stations adjacent to the tea plantation (for
more details see appendix section 5.A.1).
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Figure 5.2: Flow diagram of our compartmental model of malaria transmission. Each com-
partment in the diagram represents a different epidemiological class, with susceptible and
infected naive classes and susceptible and infected clinically immune classes.

individuals to either develop clinical immunity (by recovering from IN to SC at a rate γNC)

or to remain naive (by recovering from IN back to SN at a rate γN ) and clinical immu-

nity can be lost (at rate α). This is meant to be a simple way to approximate that clinical

immunity develops with exposure and is lost in the absence of re-exposure [90, 47]. The

corresponding system of differential equations is given along with the details on climate

and stochastic forcing in the appendix section 5.A.3.

An important aspect of developing clinical immunity is age. Clinical immunity develops

with age and exposure and its onset is correlated with the onset of puberty [75, 49]. In

appendix 5.A.4, we outline how we would incorporate age structure into this model, using

data from Shanks et al. [127].

To estimate parameters we used a log-likelihood-based technique based on iterated fil-

tering using the mif function of the R package pomp [70]. We describe this algorithm

in the appendix 5.A.5. We will calculate profile likelihood confidence intervals for these

estimates.
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Parameter Name γN γNC γC σ

Start 0.136 0.262 0.45 0.88
Fit 0.969 0.802 0.048 0.73

Table 5.1: Table of starting values and key parameter estimates from the simple model fit
to simulated data

5.3 Results

5.3.1 Simple model

We used the simple model of malaria from Keegan and Dushoff [64] (Fig. 5.2) with a

constant force of infection and simulated data with realistic parameters to check our ability

to fit the model. We then fit the simple model (with constant force of infection) to the actual

data from Kericho.

Simulated Data– Using the simulate function in pomp with parameters taken from

the literature, we simulated our model and fit the simple model (Fig. 5.2) with constant

force of infection to the simulated data. The results are shown in Fig. 5.3, 5.4, and 5.5.

Fig. 5.3 shows the log cases of the simulated data and model fit; Fig. 5.4 shows a time

plot of the average yearly cases; and Fig. 5.5 shows the cases aggregated by month for the

simulated data and the model fit.

Kericho Data– We then fit our simple model with constant force of infection to the

incidence data. The results are shown in Fig. 5.6, 5.7, and 5.8.

Fig. 5.6 shows the log cases of the simulated data and model fit; Fig. 5.7 shows a time

plot of the average yearly cases; and Fig. 5.8 shows the cases aggregated by month for the

simulated data and the model fit.
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Figure 5.3: Time plot of log cases for the simple model fit to simulated data. The blue line
is the simulated data and the red line is the fit.

Parameter Name γN γNC γC σ

Fit 0.0358 0.00294 0.00876 0.834

Table 5.2: Table of and key parameter estimates from the simple model fit to data
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Figure 5.4: Time plot of the yearly mean cases for the simple model fit to simulated data.
The blue line is the average number of cases from the simulated data that year. The red line
is the average number of cases from the fitted model that year. The shaded regions represent
the maximum and minimum cases during that year.
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Figure 5.5: Plot of the number of cases each month for the simple model fit (red) to the
simulated data (blue).
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Figure 5.6: Time plot of log cases for the simple model fit to Kericho data. The blue line is
the Kericho data and the red line is the fit.
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Figure 5.7: Time plot of the yearly mean cases for the simple model fit to Kericho data. The
blue line is the average number of malaria cases from the Kericho that year. The red line is
the average number of cases from the fitted model that year. The shaded regions represent
the maximum and minimum cases during that year.
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Figure 5.8: Time plot of the number of cases each month for the simple model fit to Kericho
data. The blue line is the Kericho data and the red line is the fit.

101



Ph.D. thesis – Lindsay T Keegan; McMaster University – Department of Biology

Parameter Name γN γNC γC σ

Start 0.140 0.140 0.035 0.7
Fit 0.138 0.123 0.0242 0.657

Table 5.3: Table of starting values and key parameter estimates from the temperature model
fit to simulated data

5.3.2 Temperature model

We then incorporated temperature into the model using

β = exp(B0 +BtT +Bt−1Tt−1) (5.1)

Λ = ι+
(βIN + βIC)

N
(5.2)

as the force of infection.

Simulated Data– As described in section 5.3.1, we simulated our temperature model

and fit the model to the simulated data. The results are shown in Fig. 5.9, 5.10, and 5.11.

Fig. 5.9 shows the log cases of the simulated data and model fit; Fig. 5.10 shows a time

plot of the average yearly cases; and Fig. 5.11 shows the cases aggregated by month for the

simulated data and the model fit.

Further, we ran three fits with the same starting parameters and same seed to the simu-

lated temperature data and present the results in 5.A.6.

Kericho Data– We then fit our temperature model with to the Kericho incidence data.

The results are shown in Fig. 5.12, 5.13, and 5.14.

Fig. 5.12 shows the log cases of the data and model fit; Fig. 5.13 shows a time plot of

the average yearly cases; and Fig. 5.14 shows the cases aggregated by month for the data

and the model fit.
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Parameter Name γN γNC γC σ

Fit 0.000263 0.000744 0.0682 0.62

Table 5.4: Table of and key parameter estimates from the temperature model fit to data
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Figure 5.9: Time plot of log cases for the temperature model fit to simulated data. The blue
line is the simulated data and the red line is the fit.
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Figure 5.10: Time plot of the yearly mean cases for the temperature model fit to simulated
data. The blue line is the average number of cases from the simulated data that year. The
red line is the average number of cases from the fitted model that year. The shaded regions
represent the maximum and minimum cases during that year.
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Figure 5.11: Plot of the number of cases each month for the temperature model fit (red) to
the simulated data (blue).
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Figure 5.12: Time plot of log cases for the temperature model fit to data. The blue line is
the data and the red line is the fit.
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Figure 5.13: Time plot of the yearly mean cases for the temperature model fit to data. The
blue line is the average number of cases from the data that year. The red line is the average
number of cases from the fitted model that year. The shaded regions represent the maximum
and minimum cases during that year.
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Figure 5.14: Plot of the number of cases each month for the temperature model fit (red) to
the simulated data (blue).
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5.4 Discussion

Although clinical immunity provides protection at the individual level, its effects at the

population level are complex. Because clinical immunity can be lost, under certain cir-

cumstances, a reduction in transmission can lead to an increase in morbidity and mortality

[49, 75]. Additionally, clinical immunity has been shown to be a mechanism for bistable

malaria [64, 2]. Consequently, understanding how clinical immunity affects malaria trans-

mission is an important component of malaria control. Here, we estimate key clinical im-

munity parameters, identified by Keegan and Dushoff [64] as being poorly understood. We

fit a simple model of malaria, with and without temperature, to hospital confirmed data

from Kericho, Kenya; to further elucidate the effects of clinical immunity on malaria trans-

mission and to understand the key quantities underlying clinical immunity.

Our estimates of the duration of clinically immune infection are highly variable and

depend on which model was used. From our simple model fit to actual data, we found

the duration of clinically immune infection to be 111 days. Whereas from our temperature

model fit to data, we found the duration of clinically immune infection to be 14 days. Laneri

et al. [77] also found that the inclusion of climate data had a large effect on their estimates of

the duration of clinically immune infection. From their model without rainfall, they found

the duration of clinically immune infection was 250 days, which is similar to the estimates

from malariotherapy data. However, for their model with rainfall, they found the duration

of clinically immune infection to be 28 days.

Our estimates of the relative susceptibility of clinically immune individuals are 0.6

and 0.8 for the simple model and temperature model respectively. This is fairly consis-

tent with the reported susceptibility of around 0.7 [64]. Although we have parameter esti-

mates, we currently do not have confidence intervals on these estimates. Calculating pro-
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file likelihood confidence intervals is a critical future direction that will be done using the

Profiledesign() function in POMP.

To estimate these data, we made some simplifying assumptions about our model that

could affect these estimates, including no age structure and that everyone enters the popu-

lation into the susceptible naive class. Age is an important component of clinical immunity.

Clinical immunity develops with age and exposure and the development of clinical im-

munity correlates with the onset of puberty [49, 75]. In 5.A.5, we outline how we would

include age structure, using the data from Shanks et al. [127]. Additionally, we assume

that everyone enters the population into the susceptible naive class. However, we know that

prior to 1990, most malaria cases were imported from the holoendemic region around lake

Victoria [127] (defined as having a parasite ratio consistently greater than 75% of infants

[90]). Consequently, many people immigrating to Kericho have already developed clinical

immunity.

Currently, our model only includes seasonality as a byproduct of temperature fluctua-

tions. However, we plan to add seasonality independent of temperature as a future direction.

Additionally, because of the large effect of adding temperature on the estimates of the du-

ration of clinically immune infection, extending our model to include a variety of different

temperature trends is an important future direction.

Finally, during the time working on this project, the authors of POMP proposed a new

method with extra capabilities [59]. In 5.A.4, we outline the differences between an IF1,

used here, and IF2. Updating our fitting methods to IF2 is a future direction of this project.
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5.A Supplementary Methods

5.A.1 Temperature data

We used the temperature data from Alonso et al. [3] which they obtained by dovetailing the

records from two meteorological stations within the tea estates, after adjusting for altitude.

Data from the Tea Research Foundation Meteorological station (TRF) located at 2178 m

was used up to 1992; after which a new meteorological station was established at 1977 m

and data was used continuously from 1992 onwards, except for the period between Decem-

ber 1997 and March 1998 when data from TRF was used. Alonso et al. [3] compared the

two datasets after adjusting for altitude and the comparison was consistent except for the

period between 1994 and 1996, when TRF recorded much lower values of temperature.

5.A.2 Model

A diagram of our model and a description of the different classes can be found in Fig. 5.2.

The corresponding system of differential equations is given by:

dSN

dt
= −ΛSN + αSC − µSN + µN + γNNIN (5.3a)

dIN

dt
= ΛSN − (γN + γNC)IN − µIN (5.3b)

dSC

dt
= −σΛSC − αSC + γNCIN + γCIC − µSC (5.3c)

dIC

dt
= σΛSC − γCIC − µIC (5.3d)

We explored the model with two forces of infection, Λ(t): a simple force of infection in
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which the only variability was random noise, Λ = ι+ βIN+βIC

N
; and a force of infection that

included both random noise and a temperature covariate, Λ = ι+ (βIN+βIC)
N

(equation 5.2).

In both cases, our force of infection allows both naive and clinically immune individuals to

transmit infection. Additionally, our model couples the transmission dynamics within the

tea estates to the surrounding areas through a constant, external force of infection. Envi-

ronmental noise is included as Gamma white noise.

5.A.3 Specifying the POMP model

We fit our model using the mif function in pomp. In general, a POMP model consists of

an unobserved stochastic process {X(t), t ≥ t0} with observations y1, ..., yN made at times

t1, ..., tN .

To complete our model, we need to specify the relationship between the continuous

time dynamical system and the monthly malaria case data, y1, y2, . . . , yn at discrete times,

t1, t2, . . . , tn. So the k-th observation, yk = C(tk−1, tk), is the observed number of cases

from tk−1 to tk. We model yn as:

yn ∼ Negbin (ρ∆S→I(tn−1, tn), θ) (5.4)

We assume that the measurement error is negative-binomially distributed and ρ is the

reporting rate, ∆S→I(tn−1, tn) is the accumulated number of cases on that interval, and θ

measures over-dispersion in the reporting process.
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5.A.4 Fitting the model by maximum likelihood

We estimated the parameters using iterated filtering, a Monte Carlo technique for estimating

parameters and comparing models, first proposed by Ionides et al. [60]. This methodology

has a “plug and play ” property in that it does not require the explicit evaluation of the state

transition densities, it only requires the ability to simulate the process portion of the model

[60]. This has made likelihood-based inference possible for many situations where it was

not previously so (eg. [77, 58]).

Iterated filtering algorithms search for the maximum likelihood of a function by repeat-

edly filtering to explore the likelihood surface at increasingly local scales. The algorithm

takes an initial parameter vector, a noise intensity, and a “cooling” fraction. It then performs

Monte Carlo filtering on the dynamical model with unknown parameters by performing a

random walk with the given noise intensity. It then takes the weighted averages of all of the

filtered estimates, with weights based on the uncertainty of the estimates. Finally, it returns

the parameter estimates and the corresponding likelihood.

Ionides et al. [60] first proposed this method as a way to study stochastic differential

equations, this method has made inference possible for systems which was previously not

possible. Recently, Ionides et al. [59] proposed a new method with extra capabilities, which

allows for further inference to be made about non-linear stochastic differential equations.

The new method is called IF2 (making the original method IF1). Although IF1 and IF2 are

both iterated particle filters used to find parameter estimates by maximizing the likelihood,

they differ both in practical use and in theoretical justification.

In IF1, at each filtering iteration, a summary statistic is calculated based on the local

mean and variance. This statistic is then used to update the parameter estimates for the next

iteration. In IF2, rather than relying on the Fisher score function, it implements an iterated
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Bayes map. That is, it introduces a stochastic perturbation, h, at every time step. IF1

relies on the stochasticity of the summary statistic to decrease, converging on the maximum

likelihood estimate where as in IF2, the final set of J particles is what converges to the

maximum likelihood estimate.

5.A.5 Incorporating age structure

An important aspect of the development of clinical immunity is that it develops with both

age and exposure. Here, we outline how we would incorporate age structure into the model

presented in the text (Fig. 5.2).

Shanks et al. [127] present data on the adult-to-child ratio of inpatient cases in Kericho

from 1970 to 1990 with gaps from 1992-1993 and 1997. They categorize adults as older

than 15 years old and children as younger than 15 years old. Because of this, we would

model only two age classes, Adults (> 15 years old) and children (< 15 years old).

We model adults using the same model as presented in the text (Fig. 5.2). For children,

we only allow them to be naive for simplicity of fitting, adding age structure complicates

the fitting process and requires a lot of particles due to particle impoverishment.

An interesting question for incorporating age structure in Kericho is linking the adult

and child populations in the model, or children “growing up". Since Each adult is allowed

to have 3-4 dependents, we link µC (the child birth/ death rate) and µA (the adult birth/ death

rate). Additionally, because we assume that the population is fixed and that the structure

of the population is fixed, (ie 3-4 dependents for each worker) we do not allow children to
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Figure A1: Flow diagram of our age-structured compartmental model of malaria transmis-
sion. Each compartment in the diagram represents a different epidemiological class, with
susceptible and infected naive classes for children and susceptible and infected naive and
clinically immune classes for adults.
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“grow up" in the model.

dSN,C

dt
= −ΛSN,C + γNNIN,C + µ(C − SN,C) (5.5a)

dIN,C

dt
= ΛSN,C − γNNIN,C + µIN,C (5.5b)

dSN,A

dt
= −ΛSN,A + αSC,A − µSN,A + µA+ γNNIN,A (5.5c)

dIN,A

dt
= ΛSN,A − (γN + γNC)IN,A − µIN,A (5.5d)

dSC,A

dt
= −σΛSC,A − αSC,A + γNCIN,A + γCIC,A − µSC,A (5.5e)

dIC,A

dt
= σΛSC,A − γCIC − µIC,A (5.5f)

5.A.6 Additional temperature model fits
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Figure A2: Time plot of log cases for the temperature model fit to simulated data for multi-
ple fits using the same starting parameters and same seed. The purple line is the simulated
data and the green, red, and blue lines are multiple fits with the same starting parameters
and the same seed.
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Figure A3: Time plot of the yearly mean cases for the temperature model fit to simulated
data for multiple fits using the same starting parameters and same seed. The purple line
is the average number of cases from the simulated data that year. The green, red, and
blue lines are the average number of cases from multiple fits of the model with the same
starting parameters and same seed, that year. The shaded regions represent the maximum
and minimum cases during that year.
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Figure A4: Plot of the number of cases each month for the temperature model fits to the
simulated data for multiple fits using the same starting parameters and same seed. The
purple dots are the simulated data and the green, red, and blue dots are the different fits of
the model with the same starting parameters and the same seed.
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Chapter 6

Conclusions

Mathematical models are an important tool that have been used for over a century to un-

derstand malaria dynamics and inform control [85, 122, 131, 73]. These models have been

instrumental in identifying novel approaches to reduce malaria transmission. This thesis

builds on previous work (including [132, 2, 77]) to address two aspects of malaria that have

helped it to evade eradication. Our results provide insights into malaria dynamics that can

help guide future control efforts.

The first aspect of malaria that we explore is the effect of finite population on the basic

reproductive number. Accurate calculation of R0 is critical for understanding disease dy-

namics and planning control efforts. Classical calculations of R0 assume a disease spread-

ing in an infinite population of susceptible hosts. However, recently it has been suggested

that R0 be modified to account for the effects of finite population within a single disease-

transmission generation. In chapter 2, we analytically calculated these finite-population

reproductive numbers for both directly-transmitted and vector-borne diseases with homo-

geneous transmission. We found simple, generalizable formula for these finite-population

reproductive numbers and showed that the finite-population reproductive numbers diverge
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from R0 at around half of the size of the population. Additionally, we explore the effect of

reducing the vector population in 2.A.

While homogeneous models of disease transmission have provided significant insights

into disease dynamics, it is well known that most infectious diseases do not spread ho-

mogeneously through out the population. Although heterogeneity is well studied, careful,

detailed discussion of the different types of heterogeneity in individual level parameters is

limited [84, 35]. In chapter 4, we outline a framework for discussing the different types of

heterogeneity in transmission. In particular, host heterogeneity has important implications

for the basic reproductive number.

Previous models have shown that in an infinite population of susceptible hosts, het-

erogeneity in mixing increases R0. However, for diseases spreading in finite populations,

Smith et al. [132] suggest that heterogeneity may actually decrease the reproductive num-

ber. In chapter 3, we calculated expressions for these finite-population reproductive num-

bers with different types of heterogeneity in transmission and showed that the effect of

heterogeneity in a finite population is more complicated. We showed that for simple het-

erogeneity (Rtm(N), Rtp(N), Rsm(N), and Rsp(N)), heterogeneity decreases the finite-

population reproductive numbers; whereas heterogeneity in the intrinsic mixing rate in-

creases the finite-population reproductive numbers when R0 is small relative to the size

of the population and decreases the finite-population reproductive numbers when R0 is

large relative to the size of the population. Although the effects of heterogeneity in a fi-

nite population are complex, the implications for control are straightforward: when R0 is

large relative to the size of the population, heterogeneity decreases the finite-population

reproductive numbers, making control or elimination easier than predicted by either R0

or R(N). Extending these results to include vector-borne diseases is an important future

direction.
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The other aspect of malaria that we address in this thesis is the effects of clinical im-

munity on malaria spread and control. Understanding the effects of clinical immunity on

malaria dynamics has long been of interest to malaria modelers [93, 28, 6]. In particular,

of the effects of clinical immunity on control efforts: because clinical immunity can be lost

without re-exposure, under certain circumstances, a decrease in malaria transmission could

result in an increase in morbidity and mortality [134, 103, 102]. Additionally, it has been

suggested that clinical immunity could be a mechanism for bistable malaria dynamics [2].

This has important implications for control: if malaria could be eliminated from an area

with bistability until clinical immunity waned, it would not be able to re-invade. In chapter

4, we built a simple model of malaria transmission and solved it to find a criteria for when

we expect bistability to occur. We found a simple mechanism by which clinical immunity

results in bistability and showed that bistability can occur for realistic parameter values.

Additionally, we reviewed what is known about the underlying parameters of the model

and highlighted key parameters that are not well understood. These results suggest that

more research into these parameters may shed light on malaria dynamics and guide further

control efforts.

In chapter 4, we highlighted key clinical immunity parameters that are not well under-

stood. Building on this work, in chapter 5, we fit the simple model developed in chapter

4 to malaria incidence data to estimate these parameters. Because temperature is an im-

portant covariate in transmission of malaria in the fringe regions, we modify the constant

force of infection from chapter 4 to allow the force of infection to vary by temperature. We

estimated the parameters and found that these results are highly dependent on whether or

not temperature was included in the model; this is consistent with what Laneri et al. [77]

found.

We suggest extending the model to explore different temperature trends, due to the
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impact of climate covariates on the parameter estimates. Additionally, extending the model

to include age structure is an important future direction. Clinical immunity develops with

age and exposure and its onset is correlated with puberty [75, 49]. Using the data on the

adult-to-child ratio from Shanks et al. [127], we outline how we would include age structure

in the model (in appendix 5.A.5) and suggest that this extension could lead to further insight

into the key clinical immunity parameters and the effects of clinical immunity on malaria

transmission.

Mathematical models have provided significant contributions to our understanding of

malaria dynamics and have been instrumental in identifying novel approaches to reduce

malaria transmission. In this thesis, we provide more accurate calculations of the reproduc-

tive number for disease spreading in small populations, and show that in small populations,

control or elimination may be easier than predicted by R0. Additionally, we explored the

effects of clinical immunity on the population-level dynamics of malaria. We found a sim-

ple criterion for when we expect bistability to occur and show that clinical immunity can

act as a mechanism for bistability to occur for plausible parameter values. Further, we

identified and estimated key clinical immunity parameters that are important in understand-

ing how clinical immunity affects malaria transmission and prospects for control. These

results should guide future malaria control efforts as they highlight potential opportunities

for control.
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