
Higher-Fidelity Modelling and Simulation of the

CAN Protocol Stack

HIGHER-FIDELITY MODELLING AND SIMULATION OF THE

CAN PROTOCOL STACK

BY

GRANT WHINTON, B.Eng

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Grant Whinton, September 24, 2015

All Rights Reserved

Master of Applied Science (2015) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Higher-Fidelity Modelling and Simulation of the CAN

Protocol Stack

AUTHOR: Grant Whinton

B.Eng&Management, (Mechatronics Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Mark Lawford and Dr. Alan Wassyng

NUMBER OF PAGES: xiv, 106

ii

Abstract

This thesis details a higher-fidelity, scalable simulation tool and model for message re-

sponse time and bus utilization rate analysis for the Controller Area Network (CAN)

protocol stack. This tool achieves higher fidelity than existing commercial and aca-

demic simulation tools by including details of the stack implementation that are often

neglected, such as receive and transmit hardware buffer availability and usage policy

(i.e., which messages are able to be copied to which buffer resources), and the buffer

polling or queueing policies. Key details of these features have been identified by

a thorough examination of CAN stack behaviour, taking into account the physical

considerations of commercial CAN implementations. Inclusion of these details in the

simulation can produce better accuracy by exposing certain priority inversion scenar-

ios. Scalability is achieved by using a transaction-based modelling approach and mod-

elling transmissions at the protocol level rather than the physical/bit level. The tool

requires minimal user interaction, and system level model generation is automated

using an AUTOSAR XML (ARXML) system description file (ARXML format) to

specify network topology and message information (transmitter, receiver(s), period,

length, etc.), and an Excel spreadsheet file (XLS or XLSX format) to specify node

hardware/software implementation details (buffer resource details, polling loop rates,

main control loop rates, etc.) as inputs.

iii

Acknowledgments

McMaster University

Mark Lawford

Alan Wassyng

Lucian Patcas

Emil Sekerinski

Douglas Down

General Motors

Paolo Giusto

Sudhakaran M.

Katrina Schultz

Zarrin Langari

Vector Informatik

Gunnar Meiss

iv

Author’s Note

Drafts of Sections 1.3, 2.2, 2.4, 3, and 4 were originally written by me for inclusion

in a proprietary report for an industry partner. That report clearly is not intended

for publication, and some material has been altered or removed from these sections

to protect the proprietary nature of some of the information.

v

Acronyms

ACK acknowledgement. 9, 11, 55

ARXML AUTOSAR XML. iii, 2, 30–34, 56, 65, 68–70

CAN Controller Area Network. iii, 1–7, 11–18, 21–23, 28–30, 32–34, 43, 50, 56, 57,

62–66, 69, 71, 92, 103

CRC Cyclic Redundancy Check. 9–11, 13, 14

DLC Data Length Code. 10, 30, 31, 34, 39, 68, 69

DLL Data Link Layer. xi, 23–25, 28, 30, 35–37, 45–47, 59, 60, 69, 71, 73–76, 78, 79,

84, 99

ECU Electronic Control Unit. 1, 2, 4–9, 11–16, 22, 28, 30–35, 37, 44, 49, 51–59,

61–71, 73, 78–81, 89, 91–93, 97, 99, 100, 103

EMI Electromagnetic Interference. 15

EOF End of Frame. 9, 11

ID Identifier. 7–10, 28, 30, 31, 34, 44, 49, 50, 52, 57, 58, 65, 68, 69, 71, 78, 99

vi

IDE Identifier Extension. 10

IL Interaction Layer. xi, 17, 23, 24, 26, 35, 37, 39, 45–47, 59, 60

ISR Interrupt Subroutine. 24, 28

NACK non-acknowledgement. 55

RTaW-Sim Real Time at Work. 16

RTR Remote Transmit Request. 8, 10

RX receive. 2, 3, 5, 14, 16–18, 28, 31, 34, 44, 54, 55, 57, 68, 69

SOF Start of Frame. 9, 12, 13, 82

SRR Substitute Remote Request. 10

TX transmit. xi–xiii, 2–5, 14, 16, 17, 23, 31, 34, 44, 54, 57, 60, 68, 69, 71, 74–76,

78–83, 85, 86, 88, 90–95, 97–99

vii

Contents

Abstract iii

Acknowledgments iv

Author’s Note v

1 Introduction and Problem 1

1.1 Introduction . 1

1.2 Main Contributions . 2

1.3 The Problem . 3

2 Preliminaries 6

2.1 Controller Area Network (CAN) . 6

2.1.1 Bus . 6

2.1.2 Arbitration . 7

2.1.3 Frame Format . 8

2.1.4 Bit Timing and Synchronization 11

2.2 Related Work . 13

2.2.1 Analytical Methods . 13

viii

2.2.2 CAN Simulation . 15

2.3 Existing Tools . 16

2.4 MathWorks Software . 18

2.4.1 MATLAB . 18

2.4.2 Simulink . 18

2.4.3 SimEvents . 19

2.4.4 Stateflow . 20

2.4.5 Why SimEvents? . 21

2.4.6 Why not Stateflow? . 22

2.5 Vector CAN Implementation . 23

3 The Tool 29

3.1 Target Configurations . 29

3.2 Overview . 31

3.3 Model Generation Scripts . 32

3.4 Generic ECU Library Block . 34

3.4.1 Boolean Routing Conditions 39

3.4.2 MATLAB Functions on Entities 39

3.4.3 Resource Consumption . 41

3.4.4 IL and DLL Queueing . 45

3.4.5 Priority Queues . 47

3.4.6 Arbitration . 49

3.4.7 Extracting Simulation Results 50

3.5 Generic Bus Library Block . 53

3.6 Problems Overcome . 56

ix

3.6.1 Easy System Generation . 56

3.6.2 Importing Configuration Data 56

3.6.3 Extensible Configuration for Buffer Resources 57

3.6.4 Impact of Scale on Compilation and Simulation Performance . 58

3.6.5 Implementation of Vector Queueing Behaviours 59

3.6.6 SimEvents Priority Queues Exhibiting FIFO Behaviour 60

3.6.7 Clock Drift . 61

3.7 Outstanding Problems . 61

3.8 The Current Simulation Tool . 64

3.8.1 Assumptions . 64

3.8.2 Defining the Network Configuration 65

3.8.3 Options . 68

3.8.4 User Input . 69

3.8.5 Retrieving Simulation Results 70

4 Results 71

4.1 Polling vs Interrupts . 71

4.2 Number of Transmit Buffers . 78

4.3 Message to Buffer Mapping . 83

4.4 Clock Drift . 89

4.5 ECU Software Behaviours . 92

4.6 Comparison With Other Simulations 95

4.7 A Practical Case . 98

4.8 Conclusions . 102

x

List of Figures

1.1 An example of priority inversion due to buffer limitations. 4

2.1 An example of arbitration. 8

2.2 The initial state of the system. 24

2.3 After the first TxTask execution. 25

2.4 During the second TxTask execution. 25

2.5 After the second TxTask execution. 26

2.6 During the fourth TxTask execution. 27

2.7 Calling CANTransmit with a full buffer. 27

2.8 The ISR for the buffer emptying. 28

3.1 An overview of the tool model generation flow. 32

3.2 A set of simple state machines defining the behaviour of the IL flag,

DLL flag, and buffer assuming a single buffer and i messages. 35

3.3 A message activity flow diagram. 37

3.4 The general topology of the ECU model in SimEvents. 38

3.5 A MATLAB function block data management view. 40

3.6 An example of how an entity uses a function requiring attributes and

other signals as inputs and/or outputs. 41

xi

3.7 A SimEvents demo from Mathworks describing how to model multiple

consumable resource pools. 42

3.8 The details of a resource pool subsystem. 43

3.9 A gated queue that does not quite work as a model for the Interaction

Layer (IL) and Data Link Layer (DLL) queues 46

3.10 A suitable model for the IL or DLL queue. 47

3.11 A modified priority queue with an arbitrary event resolution priority. 49

3.12 An example probe point. 51

3.13 Logged signal properties and the probe point subsystem mask initial-

ization code . 52

3.14 Probe data in the MATLAB workspace. 53

3.15 An example of a large scale system (right) that may be generated using

the library (left). 67

4.1 Plot of end-to-end response times for the first scenario for the configu-

ration with one transmit (TX) buffer, the DLL disabled, and a 2.5ms

polling period. 74

4.2 Plot of end-to-end response times for the first scenario for the con-

figuration with one TX buffer, the DLL disabled, and a 5ms polling

period. 75

4.3 Plot of end-to-end response times for the first scenario typical of con-

figurations with two TX buffers and/or the DLL enabled. 76

4.4 Plot of end-to-end response times for the first scenario showing a com-

parison between the three general behaviours. 77

xii

4.5 Plot of end-to-end response times for the second scenario for the con-

figuration with a single TX buffer. 80

4.6 Plot of end-to-end response times for the second scenario for the con-

figuration with two TX buffers. 81

4.7 Plot of end-to-end response times for the second scenario showing a

comparison between the two configurations. 82

4.8 Plot of end-to-end response times for the third scenario for the config-

uration with no dedicated buffers. 84

4.9 Plot of end-to-end response times for the third scenario for the config-

uration with a buffer dedicated to messages 0x18-. 85

4.10 Plot of end-to-end response times for the third scenario for the config-

uration with a buffer dedicated to messages 0x19-. 86

4.11 Plot of end-to-end response times for the fourth scenario for the con-

figuration with no dedicated buffers. 87

4.12 Plot of end-to-end response times for the fourth scenario for the con-

figuration with a buffer dedicated to messages 0x18-. 88

4.13 Plot of end-to-end response times for the second scenario for the con-

figuration with a single TX buffer with 5 minutes of simulation data. 90

4.14 Plot of end-to-end response times for the second scenario for the con-

figuration with two TX buffers with 5 minutes of simulation data. . . 91

4.15 Plot of end-to-end response times for the second scenario for the con-

figuration with a single TX buffer and no clock drift. 92

xiii

4.16 Plot of end-to-end response times for the second scenario with message

0x192 at a 4ms period for the configuration with a single TX buffer

and assuming message 0x192 buffers first. 94

4.17 Plot of end-to-end response times for the second scenario with message

0x192 at a 4ms period for the configuration with a single TX buffer

and assuming message 0x1B2 buffers first. 95

4.18 Plots of end-to-end response times for the case study described by

Table 4.5. 96

4.19 Plot of inter-arrival times for the second scenario for the configuration

with a single TX buffer including results from CANoe simulation. . . 97

4.20 Plot of inter-arrival times for the scenario provided by GM. 100

4.21 Plot of end-to-end response times for the scenario provided by GM. . 101

xiv

Chapter 1

Introduction and Problem

1.1 Introduction

The trend of increasing features in cars such as adaptive cruise control, lane depar-

ture warnings, comprehensive external sensors, etc. have caused many more embedded

computer systems to be required in modern automobiles. These features are imple-

mented with distributed, embedded computer control systems (Electronic Control

Units (ECUs)) which are networked together to exchange signals and information

over a physical interface. CAN has been the network interface of choice in the auto-

motive industry for over two decades due to being simple, inexpensive, and having

boundable latency and utilization (Di Natale et al. [2012]). The main drawback of

CAN is a relatively low throughput, at a nominal rate of 500Kb/s and a maximum

rate of 1Mb/s. With the increased amount of features and ECUs, as well as additional

diagnostic and security overhead network traffic, utilization demands on CAN buses

are becoming increasingly high. For approximately 10 years, the FlexRay bus pro-

tocol was under joint development by the automotive industry (Original Equipment

1

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Manufacturers (OEMs), tier one suppliers, tier two suppliers, tool vendors, etc.) to

support up to 10Mb/s data transfer rates as well as improve reliability. While the

first commercial use of FlexRay was seen in the 2007 BMW X5 for its adaptive drive

dampers, it is still not widely used in automotive features, and manufacturers re-

main heavily reliant on CAN. The continued dependence on CAN combined with

the increasing demands on bus bandwidths make careful design and early verification

critical to ensuring that message response times and loss rates are within acceptable

levels.

1.2 Main Contributions

The main contributions of this thesis are:

• A working prototype of a higher-fidelity simulation tool for CAN that allows

for commonly neglected implementation details to be configured, including

– The amount of TX or receive (RX) buffers

– The mapping of messages to buffers

– The buffer loading policy (interrupt versus polling)

– The TxTask and buffer polling loop rates

– The ECU clock drift and initialization time

• An interface for the tool that uses mainly previously established workflow in

the network design process (i.e., ARXML system description files) to generate

and configure arbitrary system level models for simulation

2

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

• The basic validation of the tool using comparison to a physical test bench as

well as other simulation method results

• A demonstration of changes to network behaviour that may result from consider-

ation of the previously mentioned configured implementation details, including

examples of when current CAN analytical models may fail to account for these

behaviours leading to worst case response time predictions that are either too

optimistic or unrealistically pessimistic.

1.3 The Problem

Closed form solutions are the most useful design tool in this context. However, current

analysis is based on assumptions that usually are not valid. Major assumptions relate

to the number of hardware buffers available. In many cases, the real number of buffers

varies from 1 to 16 TX buffers and a similar number of RX buffers for “full-CAN”

and 32 or 64 buffers of each type for “enhanced CAN” devices.

Current analysis and simulation techniques in practice are highly abstracted and

give little or no consideration to system details such as hardware TX/RX buffer

resource availability. This causes certain priority inversion or timing scenarios that

are observable in the physical system to go undetected in simulation or predictive

analysis. In Figure 1.1, an example shows the impact of buffer consideration in the

model. In both scenarios, there are three messages m1, m2, and m3, with m1 being

the highest priority and m3 being the lowest priority. The messages arrive in the

order of m2, m3, and then m1, with a message’s arrival event indicated by an X in

that message’s row.

3

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 1.1: An example of priority inversion due to buffer limitations.

On the left, no consideration is given for hardware TX buffer availability, meaning

that we do not care about what nodes transmit which messages since we assume

that the highest priority message available in the system will always arbitrate. m1

experiences some priority inversion since m2 begins transmission on the bus before

m1 is available for arbitration. After m2 finishes transmission, the assumption is

that m1 is always able to arbitrate since it is available, and m1 wins arbitration over

m3 and is transmitted.

On the right, we consider that m1 and m3 are both transmitted by the same

ECU (a system node), and m2 is transmitted by a separate ECU. Both ECUs are

assumed to have only a single hardware TX buffer. In this case, m1 experiences a

longer priority inversion, since when m3 arrives before m1, m3 is copied into the

buffer and m1 must remain in the software queue until m3 has been successfully

transmitted. This means that after m2 has completed transmission, m1 is unavailable

for arbitration and m3 is transmitted first.

Models used in common practice, such as in Davis et al. [2007], treat CAN as a

single server fixed priority scheduling problem with arbitrary deadlines and variable

execution priority, assuming that ECUs always arbitrate the highest priority message

available without priority inversion.

4

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

In more recent years, models like the one presented in Khan et al. [2011] have

started to consider increased fidelity and physical system constraints like available

hardware TX buffers. This addresses some problems, like identifying the extra priority

inversion in Figure 1.1, but it still does not consider other factors such as messages

being transmitted successfully over the CAN bus, but not being received due to

hardware RX buffer limitations, or such as polling versus interrupt-based progression

of messages from the software queue to hardware buffers (in the case of polling, even

with an available buffer the message may experience an additional delay bounded by

the polling interval). Additionally, these models still do not consider that, for any

specific physical configuration, there are many different possible mapping relations

between messages and buffers. The implication of this is that not all messages within

an ECU are capable of using the same set of buffers, and the matter of which buffers

are available becomes important.

Finally, current approaches focus on providing an algorithm or series of equations

for determining whether or not a system is strictly schedulable assuming the worst

case timing of all messages. It may be more practical, and thus even more useful,

to examine a system that may not be strictly schedulable in order to determine the

percentage of missed transmissions or to identify probability distributions for end-

to-end timing (the total time it takes a message to go from release to reception,

including jitter, queueing delays, and transmission time) of messages. This is likely

to give a very different and more realistic expectation of system behaviour, compared

with exclusively considering worst-case timing. For these reasons, current models and

simulations are of limited usefulness, and system analysis is still heavily reliant on

physical test benches.

5

Chapter 2

Preliminaries

2.1 Controller Area Network (CAN)

The CAN 2.0 standard was originally published in the early 1990s by BOSCH GmbH

and defines the implementation for CAN falling within the OSI model physical and

data link layers. This section details the relevant properties of the CAN bus and

frame formats outlined by that document.

2.1.1 Bus

The CAN bus is a simple two wire interface to which all nodes are connected. Dom-

inant bits (0) drive a voltage differential on the bus wires when transmitted and

recessive bits (1) do not drive a voltage differential, leaving the bus in its passive

state. Thus, the bus behaves as a wired AND ; if every ECU is not transmitting or

sending a recessive bit, then the bus wires will have no differential (reading recessive),

but if at least one ECU is transmitting a dominant bit, then the bus wires will have

6

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

a driven differential (reading dominant). The bus is considered to be idle if at least

the past 11 bits seen on the bus have been recessive.

2.1.2 Arbitration

CAN uses a priority based broadcast message transmission. All ECUs with messages

begin transmitting their frames onto the bus at the same time as soon as the bus is

idle. The first information transmitted in the frame is the message’s priority Identifier

(ID) as the main part of what is referred to as the arbitration field, and the arbitration

scheme is used to determine which ECU is able to continue transmitting its frame’s

payload. Since the bus has the wired AND property, referred to as non-destructive

interference, ECUs that attempt to transmit a recessive bit on the bus and read

back a dominant bit are aware that there must be at least one ECU on the bus

which is currently transmitting a dominant bit. During the arbitration field of the

frame, when an ECU detects this condition (transmitting a recessive bit but reading

back a dominant bit), it loses the arbitration and ceases transmission, instead just

receiving the frame sent over the bus and waiting until the next bus idle period to

attempt arbitration again. When an ECU detects the same bit on the bus that it was

attempting to transmit, then this indicates that either it is the only ECU transmitting

on the bus, or that all ECUs are transmitting the same bits.

7

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

BIT
1 2 3 4 5 6 7 8

ECU 1 0 0 0 1 1 0 1 1
ECU 2 0 0 1 - - - - -
ECU 3 0 0 0 1 1 1 - -

BUS 0 0 0 1 1 0 1 1

Figure 2.1: An example of arbitration.

Figure 2.1 shows an example of 8 bits from within the arbitration field. The bits

sent by each of the three ECUs is shown along with the result that will appear on

the bus. Once an ECU sends a recessive bit and reads back a dominant bit, it will

cease transmission. If an ECU transmits its entire arbitration field without having

lost arbitration, then it is considered to have won arbitration and continues with

transmitting the rest of its frame. After the arbitration field, if the transmitting

ECU reads a bit on the bus that is different from what was sent, this will generate

an error. This means that it is important for the arbitration fields (and therefore

the message IDs) to be unique. Because dominant bits win arbitration over recessive

bits and because 0 bits are dominant, the most significant bit is sent first and lower

number IDs have higher priority and will transmit sooner.

2.1.3 Frame Format

CAN has several different types of frames that may be transmitted. Data and Remote

Transmit Request (RTR) frames are sent by ECUs either to send a message (data

frame) or request that the appropriate ECU on the network schedule the transmission

of the corresponding data frame (RTR frame). Error and overload frames are sent

by all ECUs that detect the corresponding error or overload condition. This work

8

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

focuses on data frames, and the details of the other frame formats will be omitted

here.

Data frames may be either standard or extended format. Extended frames allow

for 29 ID bits, while standard frames allow for only 11. Both types of data frames

are compatible and may be transmitted on the same bus.

Frames are composed of the following fields:

• Start of Frame (SOF)

• Arbitration

• Control

• Data

• Cyclic Redundancy Check (CRC)

• Acknowledgement (ACK)

• End of Frame (EOF)

The SOF, data, CRC, ACK, and EOF fields are the same for extended or standard

formats.

The SOF is a single dominant bit transmitted at the start of a frame. Its purpose

is to provide a hard resynchronization (see Section 2.1.4). This bit may be sent if

the bus is idle. If one ECU detects the bus idle condition earlier and sends its SOF

bit, other ECUs may begin arbitration in the next bit cycle, skipping transmission of

their SOF bits.

The arbitration field is 12 bits in the standard format and 32 bits in the extended

format. The first 11 bits of this field are the base ID portion, which in the standard

9

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

format is the entire ID, and in the extended format is the 11 most significant bits.

This is followed by the RTR bit in the standard format and the Substitute Remote

Request (SRR) bit in the extended format. The RTR bit indicates if the frame is a

data frame or an RTR frame, and is dominant in the case of a data frame. The SRR

bit is always sent recessive. The next bit in both formats is the Identifier Extension

(IDE) bit, though in the standard format this bit is part of the control field. In

the standard format, this bit is dominant, and in the extended format, this bit is

recessive. This means that data frames will win priority over RTR frames with the

same ID, and standard frames will win priority over extended frames when the base

ID is the same. Of the remaining 19 bits of the extended format’s arbitration field,

the first 18 are the extended ID portion, which is the least significant 18 bits of the

29 bit ID, and the last bit is the extended format’s RTR bit.

The control field is 6 bits in both formats. In the extended format, the first 2 bits

are reserved, and in the standard format, the first bit is the IDE bit while the second

is reserved. Reserved bits are to be sent dominant, though receivers accept dominant

or recessive without error. The last 4 bits of the control field are the Data Length

Code (DLC), and are the binary encoding of the number of bytes in the frame’s

payload (from 0 to 8).

The data field is a variable length field that can be from 0 to 8 bytes in length

and contains the payload of the frame.

The CRC field consists of 16 bits. The first 15 are the CRC sequence, which is

derived from an algorithm applied to the sequence of bits in the frame prior to the

CRC field, and the last bit is the CRC delimiter, sent as a recessive bit. The CRC

sequence serves as an integrity check. The transmitter calculates the CRC of its frame

10

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

and transmits it, while the receivers calculate the CRC sequence as they receive the

transmission. If the calculated CRC sequence fails to match the transmitted CRC,

an error is generated and transmission fails.

The ACK field consists of the ACK slot and the ACK delimiter. During the ACK

slot, all receivers that were able to successfully receive the frame so far and match

the CRC transmit a dominant bit, while the transmitting ECU sends a recessive

bit. If the transmitter reads back a dominant bit, then at least one other ECU has

successfully received the message. If the transmitter reads back a recessive bit, an

error is generated and transmission has failed. The ACK delimiter is sent by the

transmitter as a single recessive bit.

The EOF field is the last field of the frame and is a series of 7 consecutive recessive

bits.

After the completion of a frame, transmission on the bus is still not allowed for

another 3 bit periods, referred to as the intermission. Note that the ACK delimiter,

the 7 EOF bits, and the 3 intermission bits total the 11 consecutive recessive bits

required for the bus idle condition.

2.1.4 Bit Timing and Synchronization

CAN is an asynchronous transmission protocol, so a method of resynchronization

is included in the standard to ensure that ECUs sample the bus at the appropriate

times. Each bit on the bus is segmented into four pieces; the synchronization segment

(sync seg), propagation segment (prop seg), phase segment 1 (phase seg 1), and phase

segment 2 (phase seg 2). These sections are measured in terms of time quanta, with

sync seg being 1 time quantum, prop seg being settable from 1 to 8 time quanta,

11

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

phase seg 1 being settable from 1 to 8 time quanta, and phase seg 2 being set either

to the same length as phase seg 1 or the minimum time required to calculate the bit

level after the sample point (bit sampling occurs between phase seg 1 and phase seg

2). The total bit width should be between 8 and 25 time quanta.

The sync seg should always contain the bit edge, and the phase segments can be

shortened (phase seg 2) or lengthened (phase seg 1) by a set amount (known as the

resynchronization jump width) between 1 and 4 time quanta (or at most the length

of phase seg 1 if it is less than 4 time quanta) to satisfy this condition in the next bit

period. The prop seg is to allow enough time for the signal to propagate through the

bus.

There are two types of synchronization. Hard synchronization is the type triggered

by SOF bits and causes ECUs to reset the bit time with the sync seg such that the bit

edge that caused the hard synchronization is within the sync seg. Resynchronization

occurs at every bit edge that falls outside of the sync seg. If the difference is smaller

than the resynchronization jump width, then the resynchronization is the same as a

hard synchronization. Otherwise, if the bit edge came before the sync seg, phase seg

2 is shortened by the jump width (causing the next sync seg to be sooner), and if

the bit edge came after the sync seg, phase seg 1 is lengthened by the jump width

(causing the next sync seg to be later).

Because the resynchronization requires the detection of a bit edge, CAN uses a

method of bit stuffing to encode parts of a frame’s bit stream to ensure that not

too much time will pass in between bit edges. Any time 5 consecutive bits in the

stream have the same value, an alternate value bit is automatically inserted. These

stuffed bits are also considered when looking for 5 consecutive bits, thus maximum

12

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

bit stuffing is achieved with a pattern of 5 0 s followed by 4 1 s followed by 4 0 s, etc.

The SOF, arbitration, control, and data fields, as well as the CRC sequence portion

of the CRC field, are all subject to bit stuffing. The remainder of the frame is not.

2.2 Related Work

2.2.1 Analytical Methods

In the early 1990s, embedded computer component were relatively simple, consisting

of only a few ECUs using direct point-to-point communications, but rapid increases

in the number of ECUs and transmitted signals have made CAN become the standard

for communications in automotive applications, with vehicles today containing up to

several dozen ECUs and thousands of signals (Navet et al. [2005]).

In the early days of CAN analysis, Tindell et al. [1994] took the approach of ap-

plying the work that had been done in the field of fixed-priority pre-emptive schedu-

lability for single processors, and the analysis and modelling techniques developed to

include consideration for CAN features such as probabilistic modelling of worst-case

response times considering bit-stuffing or operation under bus errors (Nolte et al.

[2003], Punnekkat et al. [2000]).

The concept of a busy period in fixed-priority scheduling meant that tasks with

arbitrary deadlines or varying execution priority required examining the worst-case

response times of all instances of a task within a busy period to identify the true worst-

case response time (Lehoczky [1990], Harbour et al. [1990]). Davis et al. [2007] again

adapted this work by identifying non-pre-emptive CAN as a case of fixed-priority sin-

gle processor systems wherein tasks (messages) may have arbitrary deadlines and/or

13

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

variable execution (transmission) priority, giving an analysis for CAN that considered

non-pre-emptive transmission and introduced the busy period concept to produce

better worst-case response time predictions. This has been the standard practice for

analysis and prediction of CAN behaviour since.

Meschi et al. [1996] discuss the possibility of priority inversion as a result of phys-

ical buffers in the network adapter, and show that at least three TX buffers are

required (in the case where they are pre-emptive) to avoid priority inversions as a

result of copy times between software queues and hardware buffers. Di Natale [2008]

applies this to CAN timing analysis with consideration to the case where buffers are

non-pre-emptive, and Khan et al. [2011] has further developed on this and the work

from Davis et al. [2007].

While Khan et al. [2011] has given more consideration to the CAN implementation

than previous analyses, there are still some issues that we hope to address. First, there

is no accounting for the message to buffer mappings. While there may be four buffers

in an ECU, half of that ECU’s messages might only have access to two of those buffers

while the other half have access to all four. Second, there is still no consideration being

given for the availability of RX buffer resources in the ECU. It is possible for a message

to successfully transmit over the CAN bus, but never be received by the application

(either because an RX buffer was unavailable at transmission or because the message’s

RX buffer was overwritten before it was read into the application), in which case it has

effectively failed to transmit and not been automatically retransmitted (as it would

be in the case of a failed transmission due to a bad CRC, for example). There is

no technique provided for identifying the likelihood of this occurrence. Finally, while

this analysis provides a better worst-case response time boundary, which is important

14

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

in safety-critical systems, the worst-case conditions become much more unlikely to

occur, and the likely or expected system response times may be considerably below

these boundaries, while still somewhat commonly above the worst-case calculated by

Davis et al. [2007].

2.2.2 CAN Simulation

Hofstee and Goense [1999] provides an early example of CAN simulation for agricul-

tural tractors. The simulation work discussed there is concerned with a very specific

CAN application with multiple buses, and the only factors that were tested were the

priorities of the messages, which bus certain ECUs were connected to, and what the

traffic levels were on a specific bus. The main goal in this work was to simulate

the tractor CAN system in compliance with the ISO standard, with no concern for

how ECU implementation details might impact message end-to-end timing or bus

utilizations.

Prodanov et al. [2009] discusses simulation of CAN transceivers at the signal level.

The focus of this paper is to simulate the electrical characteristics of the system for the

purposes of evaluating corner cases in CAN systems for Electromagnetic Interference

(EMI) or signal integrity, examining various types of fault scenarios such as short-

circuits. This is very different from the goal of the simulation discussed in this thesis,

where communications are modelled at the protocol level and the focus is on message

response times and bus load, particularly as impacted by priority inversion introduced

by ECU-specific implementations.

Other simulations are more similar to the work of this thesis with regards to

focusing on bus loads and message response times. While it does not appear to have

15

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

any degree of configurability in the ECU component of the model, the simulation

from Hao et al. [2011] appears to consider the node limitations to some degree by

including a single non-preemptive TX buffer. This is very restrictive, and will not be

the case in most ECUs. The simulation tools described in Matsumura et al. [2013]

and Herpel et al. [2009] take a similar approach to the one discussed in this thesis,

using transaction based modelling and some network configuration input to generate

system level models for simulation. In both of these cases, the only possible detail of

hardware buffer configuration is a single non-preemptive buffer.

Li et al. [2008] also describes the process of modelling a CAN system using Math-

works software. This work does not appear to have any flexible network configuration

or specific ECU details included in the model, but it includes a case study that will

be examined in Section 4.6.

2.3 Existing Tools

There are few tools that exist for simulating CAN systems. The most comprehensive

tool that currently exists seems to be Real Time at Work (RTaW-Sim). According

to the user manual, RTaW-Sim includes many, but not all, of the features and func-

tionality discussed here. RTaW-Sim allows for options such as variable number of

TX buffers, TxTask period, ECU clock drift, or software queueing by FIFO or prior-

ity basis, but does not appear to be able to account for features such as RX buffer

limitations, arbitrary message-to-buffer mappings, buffer loading by polling versus by

interrupt, or buffer copy delays or other software jitters (Rea [2014]).

CANoe is a commercially popular network design tool from Vector Informatik

16

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

GmbH, and includes the CANoe CANalyzer simulation tool. By default, few configu-

ration options are available for the implementation details, and most customizations

come from modifications of the message database or system description. Different

IL behaviour may be supported, but this requires a custom library describing the IL

model, and only Vector and some OEM IL model libraries are included by default (Vec

[2014]). This makes the adjustment or specification of these features cumbersome.

Another simulation tool which does not seem to have seen use in industry was

developed at Nagoya University, Japan. This tool, A Simulation Model of Controller

Area Network (CAN) for OMNeT++, again seems to account for a few of the features

discussed here, but not all. Rather than using buffer configurations, a partial priority

queue may be used, where messages that have already requested to transmit on the

bus are not preempted from their queue position. This again means that buffers may

not be arbitrarily configured to accept only a subset of messages. Further, RX buffers,

TxTask loop rates, and buffer loading via polling versus interrupt are not considered

(Matsumura et al. [2013]).

Finally, MathWorks SimEvents and Simulink provide an environment for devel-

oping discrete event simulation tools, which is the approach taken in this thesis.

TrueTime is a tool developed in Simulink using the Control Systems Toolbox for

simulation of networked and embedded control systems. Again, it does not appear

to be possible to configure the TxTask period, message-to-buffer mappings, buffer

loading by interrupt versus polling, or RX buffers. The extent to which it is possible

to modify the number of TX buffers is not clear in the manual (Cervin et al. [2010]).

MathWorks also provides a demo CAN model, Effects of Communication Delays on

17

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

an ABS Control System, as connected to an ABS (Anti-lock Braking System) con-

troller model. In this model, there are no non-preemptive buffers, RX buffers are

not configurable and not easily scaled, and arbitration is dependent on the connected

transmit input port of the bus model rather than message priority Mat [2014]. Thus,

the demo model is only useful as an indication of how different CAN concepts may

be represented within SimEvents, and not as the actual basis of a CAN simulation

model.

2.4 MathWorks Software

2.4.1 MATLAB

MATLAB, Simulink, and SimEvents are all software tools designed for technical com-

putation in engineering and the sciences. They are all part of the MATLAB suite of

tools published by MathWorks. MATLAB is built on a variety of libraries including

C, C++, and Java, and provides an interpreter for its own scripting language (MAT-

LAB functions or .m code), allowing users to perform various types of calculations.

Most notably, MATLAB (MATrix LABoratory) uses matrices as base data types and

provides robust matrix manipulations and vectorized operations with easy graphing

and data visualization capabilities.

2.4.2 Simulink

Simulink is a graphical modelling language designed for ease of use and rapid/simple

development of models. While it is very different from MATLAB’s .m code, Simulink

models may still incorporate code directly and an API is provided that allows for

18

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

model generation, modification, and analysis in MATLAB scripts. Fundamental block

elements form the base syntax of the language, and have a behaviour that defines the

output signal as a function of its input signals and/or parameters. These fundamental

blocks include things like constants, addition/multiplication, integral/derivative, and

signal generation. Instances of these blocks may be placed, configured, and inter-

connected within a model to define new, more complex behaviours to model systems

such as capacitor banks (an electrical toolbox for Simulink even includes capacitors

and other similar components as fundamental block types), analogue filters, and PID

controllers. Other blocks implement control flow behaviour, such as if conditions or

signal switches, allowing for simple expression of mode switching or decision making.

It is also possible to use C or MATLAB code directly to specify the input-output

relation in that language within a function block. The user also has the option of cre-

ating a model hierarchy through the use of subsystems. Subsystems may also contain

commonly recurring model structures and be saved to a custom library for multiple

reuses in a similar way to Simulink’s fundamental blocks.

Once a model has been created, an iteration method may be specified to determine

major and minor simulation steps to iterate through the operation of the system and

observe the various signal levels over the course of the simulation, which may be

displayed as graphs in scopes or saved to the MATLAB workspace (or otherwise

exported out of the Simulink environment).

2.4.3 SimEvents

SimEvents introduces the concepts of discrete event simulation to Simulink. Whereas

in Simulink signals are continuous and always have a value, in SimEvents signals are

19

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

discrete and may not always have a value. Other than this, signals behave the same,

and gateway blocks allow continuous signals to be treated discretely by sampling

at the appropriate event occurrence, or discrete signals to be treated continuously

by holding the most recent sampled value. SimEvents also introduces the concept

of entities, which are discrete objects that flow through the model from port to port

(using different types of ports and pathways from signals, which propagate rather than

flow/move through the system), which may be used to represent things like packets

in communications protocols or partial products in an assembly process. Entities

may have associated attributes, which are values that may be read from or written

to the entity as signals. Since entities are discrete objects, they may also experience

queueing, blocking, service times, and other sources of time delays (the SimEvents

toolbox provides new fundamental blocks for these various elements), and may have

timers that can be set and read from point to point. There are many entity routing and

management blocks available, including the ability to select specific entity paths based

on an input signal or entity attribute, the ability to merge two or more entities into a

single, combined entity (which may then later be split into its original constituents),

or the ability to create copies of an entity on alternate entity pathways (e.g., for a

parallel process).

2.4.4 Stateflow

Stateflow provides tools for modelling hierarchical state machine systems with Simulink

based on statecharts. State transitions trigger based on specific event occurrences and

guard conditions, and code execution can be specified for entering a state, remain-

ing in a state, exiting a state, and undergoing a state transition. This code may

20

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

determine the values of internal signals or externally output signals. A Stateflow

diagram may then be used as a block within a Simulink or SimEvents model, similar

to Simulink or SimEvents subsystems (except that the internal behaviour is specified

as a Stateflow diagram instead of a Simulink/SimEvents model). Stateflow diagrams

may include parallel state behaviour, and multiple Stateflow diagrams may operate

concurrently. Stateflow may be used for the modelling of mode switching, finite state

machine behaviour, or flow diagram behaviour.

These tools are not mutually exclusive and may be integrated with varying degrees

of difficulty and success.

2.4.5 Why SimEvents?

This model has been developed in Mathworks SimEvents primarily because it is a well-

established modelling and simulation environment and is designed and well suited

to the modelling of event-based systems and communication protocols like CAN.

Examples of simplified CAN models in SimEvents are widely available and provide a

basis for many of the behavioural elements required in the higher-fidelity model.

Also, since this project has been with General Motors as an industry partner,

integration with GM workflow is a prime concern. SimEvents and Simulink are widely

used within GM by engineers for modelling and simulation, which makes it easier for

GM personnel to develop an understanding of the model’s inner workings if necessary

to extend its functionality in the future, and also means that there is a better chance

in the future for integration of this tool with other GM models and for applying

co-simulation and platform-in-the-loop simulation techniques.

21

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

2.4.6 Why not Stateflow?

Although Stateflow and SimEvents are often used together, and although the simula-

tion model described in the following section has components describing state machine

behaviour and message flow, for which Stateflow would be well suited to modelling,

elements from the Stateflow toolbox are never used. The reason for this is that State-

flow showed considerably poorer scalability compared to representing state behaviour

with a case statement written directly in .m code. If each message requires a corre-

sponding Stateflow diagram to model its process flow, then each ECU would contain

several concurrent Stateflow diagrams, and a system level model would contain sev-

eral ECUs, each with concurrent Stateflow diagrams. Using a MATLAB function, the

next state behaviour is calculated as a result of entity (representing CAN messages

in the model) attributes (current state variables), requiring only one block per ECU.

Further, the replication of this function block for multiple ECUs to generate a system

level model seems to scale reasonably well.

It is possible to compile Stateflow models into C code and call the code from MAT-

LAB function blocks using coder.ceval. However, more thorough testing is needed to

know what limitations (if any) exist in compiling Stateflow models to C code, and

what impact using the coder package has on model compilation and simulation times.

Experience using coder.extrinsic shows significantly poorer scalability, but this may

only be typical of certain functionality within the coder package and not extend to

coder.ceval.

22

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

2.5 Vector CAN Implementation

The Vector CAN implementation was used as the foundation in developing the un-

derstanding of a practical CAN model. Through discussions with Vector Informatik

GmbH and General Motors we were able to identify the core aspects of the Vector

stack behaviour.

Periodic messages are sent according to timer events. Timers are loaded to an

integer multiple of the fundamental TxTask period. So, for example, with a period of

2.5ms, a 10ms cycle message would have a counter value of 4. The TxTask executes

once every timed interval (in our example, every 2.5ms, which we were told was a

typical loop rate). Every time the TxTask executes, it decrements the value of all

message timers by 1. If a message timer reaches 0, the corresponding message is

scheduled to be sent and the timer is reset.

When a message is scheduled to be sent, there are two different behaviours. IL

support is always enabled, and DLL support is optionally enabled. The difference

amounts to whether hardware buffers are loaded via interrupt (DLL is enabled) or

polling (DLL is disabled). Each layer has an associated queue, but the queue is

implemented as a flag in the main message table, meaning that a message put into

the IL queue would not have its memory contents copied to a new location associated

with the queue, rather the message’s IL flag would be set to 1, indicating that it is

in the IL queue.

When a message timer expires, it is placed into the IL queue in either case. The

TxTask will then attempt to load the message into a hardware TX buffer. If this

succeeds, the message is removed from the IL queue. If this fails, then if the DLL is

disabled, the message remains in the IL queue. If the DLL is enabled, the message

23

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

is removed from the IL queue and placed in the DLL queue. If the DLL is disabled,

the TxTask will attempt to load the highest priority messages from the IL queue into

buffers each time the TxTask executes (i.e., the buffers are loaded by polling), and if

successful, removes the message from the IL queue. If the DLL is enabled, then every

time a transmit buffer is freed, an Interrupt Subroutine (ISR) executes and copies

the highest priority message (if there is one) from the DLL queue, and then removes

it from the DLL queue (i.e., the buffers are loaded by interrupt).

To aid in the development of our understanding of the Vector stack behaviour,

we created a sequence of images showing what happens over time with a clearly

delineated ordering of events. This example is presented here in brief to clarify the

behaviour.

Msg
ID

EN IL DLL P

002 1 0 0 2

100 1 0 0 4

200 1 0 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 4 4 5 9 ..

Buffer empty

EN = Enable flag
IL = IL ‘queue’ flag
DLL = DLL queue flag
P = Period (counter) for Msg
Assump: the DLL queue is enabled

 Msg ID 002 100 200 300 400 ..

Figure 2.2: The initial state of the system.

Figure 2.2 shows the initial values for everything in the system. In this example,

there are five messages with period counters 2, 4, 4, 5, and 9. If the TxTask execution

period was 2.5ms, this would correspond to message periods of 5ms, 10ms, 10ms,

24

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

12.5ms, and 22.5ms. The counters are all initialized to their reset values, and all IL

and DLL flags are inactive. In this example we assume that the DLL is enabled.

Msg
ID

EN IL DLL P

002 1 0 0 2

100 1 0 0 4

200 1 0 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 1 3 3 4 8 ..

Buffer empty

 Msg ID 002 100 200 300 400 ..

After a single TxTask execution,
all counters have decremented,
and with no counters expiring,
the TxTask exits without doing
anything else

Figure 2.3: After the first TxTask execution.

During the first TxTask execution, a TimerTask decrements all counters and resets

any that become 0. Since no timers expire, after all counters have decremented, the

TxTask is finished (Figure 2.3).

Msg
ID

EN IL DLL P

002 1 1 0 2

100 1 0 0 4

200 1 0 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 2 2 3 7 ..

Buffer empty

 Msg ID 002 100 200 300 400 ..

In the next TxTask execution, the
Msg 002 counter is reset, and
the IL flag is set. A
StateUpdateTask will process all
messages with an active IL flag

Figure 2.4: During the second TxTask execution.

25

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

During the second execution (Figure 2.4), the timer for Msg 002 will expire, so the

TimerTask will reset the timer and set that message’s IL flag. After the TimerTask

has finished decrementing the counters, a StateUpdateTask will process all messages

with active IL flags in priority sequence.

Msg
ID

EN IL DLL P

002 1 0 0 2

100 1 0 0 4

200 1 0 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 2 2 3 7 ..

 Msg ID 002 100 200 300 400 ..

CANtransmit(002)

Called by CANtransmit

msg 002 loadedBuffer

CANtransmit will attempt to
load the message directly into
the hardware buffer if it is
available.

In this case, the buffer is empty
and the message is loaded.

Figure 2.5: After the second TxTask execution.

The StateUpdateTask will invoke the CANtransmit function on all messages in the

IL queue. The CANtransmit function will attempt to load messages directly into the

hardware buffer. In this case, it is empty, and CANtransmit loads Msg 002 directly

into the buffer, resetting the IL flag, as seen in Figure 2.5.

26

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Msg
ID

EN IL DLL P

002 1 1 0 2

100 1 1 0 4

200 1 1 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 4 4 1 5 ..

 Msg ID 002 100 200 300 400 ..

Buffer empty

After two more TxTask
executions, the buffer will
presumably have emptied by
now, and three message timers
will expire at the same time,
setting their respective IL flags.

Figure 2.6: During the fourth TxTask execution.

During the fourth execution of the TxTask, shown in FIgure 2.6, Msg 002 will

presumably have been able to transmit on the bus, emptying the buffer. During this

execution, three timers expire, and all of the appropriate IL flags are set before the

StateUpdateTask begins. Msg 002 will be loaded directly into the buffer as it was

before.

Msg
ID

EN IL DLL P

002 1 0 0 2

100 1 0 1 4

200 1 1 0 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 4 4 1 5 ..

 Msg ID 002 100 200 300 400 ..

CANtransmit(100)

msg 002 loadedBuffer

Msg 002 is loaded into the
buffer again. When Msg 100 is
processed, the buffer will
already be full, the CANtransmit
call will fail, and Msg 100 will
have its IL flag reset and its DLL
flag set

Figure 2.7: Calling CANTransmit with a full buffer.

27

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

When CANtransmit is called on Msg 100, the buffer will be full. This causes

CANtransmit to fail, and Msg 100 ’s IL flag is reset and its DLL flag is set, shown in

Figure 2.7. The same thing will happen to Msg 200.

Msg
ID

EN IL DLL P

002 1 0 0 2

100 1 0 0 4

200 1 0 1 4

300 1 0 0 5

400 1 0 0 9

Tx Task

CAN Driver

CAN Controller

Counter 2 4 4 1 5 ..

 Msg ID 002 100 200 300 400 ..

ISR

msg 100 loadedBuffer

Once Msg 002 has transmitted
and the buffer is empty, an ISR
will fire, loading the highest
priority message with an active
DLL flag. In this case, Msg 100 is
loaded and its DLL flag is reset

Figure 2.8: The ISR for the buffer emptying.

After Msg 002 has been able to transmit on the bus, freeing up the buffer, the

ISR will fire as in Figure 2.8, which will load the highest priority message currently in

the DLL queue into the buffer and reset that message’s DLL flag. In this case, Msg

100 is loaded. This covers the major behaviours for transmission in the Vector CAN

implementation, and this process continues indefinitely during the normal operating

mode of an ECU.

Fewer details were learned about the receive end behaviour of the Vector stack,

but there is typically one RX buffer per message ID. RX buffers may be overwritten,

and their contents are removed on a periodic basis (though it is unknown what a

typical polling rate for this is).

28

Chapter 3

The Tool

3.1 Target Configurations

Our initial requirements at the start were to model the Vector CAN implementation

and to capture the details that were lacking from current models and simulations,

causing unexpected priority inversions and timing behaviours to be observed on the

physical bench, when they had not been previously predicted by any available models.

To accomplish this, we had to determine which features or aspects of the physical

system that were not represented in the models were contributing to these unexpected

behaviours, and what level of fidelity in the model was necessary for each of these fea-

tures to capture the properties that lead to these unexpected behaviours. Focusing on

features with an ultimately negligible system-level behavioural impact, or modelling

levels of fidelity leading to more precision than necessary to meet our error tolerances

would be a poor expenditure of time and resources and would add unnecessary model

complexity, making the tool harder to maintain, extend, or integrate in the future,

and making generation, compilation, and simulation take longer.

29

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

These requirements were refined in a process of consulting with the analysis teams

from GM and relying on their experience in dealing with and addressing these un-

expected behaviours. From these discussions, we were able to identify what input

specifications we would need describing the system, which properties should be vari-

able, and to what degree they should be configurable in the model.

Being able to describe any possible network configuration with regards to how

many ECUs there are, which ECUs transmit what message IDs, what the DLCs are,

and which bus each ECU transmits on is considered essential to the core of the model.

Further, being able to distinguish between extended and standard frame identifiers

and include both, being able to allow for all ECUs to have some initialization offset

(the ECU being inactive for some period at simulation start), and robust buffer

configuration in terms of the number of available buffers and the ability to specify

the mapping scheme between messages and buffers, were all identified as being key

features. Being able to optionally disable the DLL queue (i.e., switching between

interrupt-based buffer loading and polling-based buffer loading), including error frame

behaviour, and allowing the model to be configured from an ARXML specification

were features that were determined to be important, but not critical.

Clock drift was originally thought to be unimportant, since the relatively small

amount of drift combined with CAN’s frequent resynchronization on the bit change

edge lead us to believe that the overall contribution to variations in the end-to-

end timing would be insignificant. While it is true that this means that ECUs are

very unlikely to sample an incorrect value due to sampling at the wrong time, it

was realized during the validation testing that clock drift would impact the release

schedule of messages and alter the sequencing of message availability in the system

30

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

over time for multiple ECUs with different clock drifts, and changing the sequencing

can have a significant impact on arbitration delays. These aspects of clock drift were

thus incorporated into the model.

Features such as modelling ECU power state/sleep mode transitions, and including

some environment/plant model to manipulate specific signal levels in the simulation

were determined to be much less important, and have been omitted from the model.

For ECU mode transitions, since it is possible and not unlikely for all ECUs to be

active simultaneously, considering only that scenario models the highest volume traffic

period, and modelling state transitions is unnecessary. For environment models, it

has been impractical to consider this because there has been no identifiable, good

method for interfacing the model with some external data or system that specifies

the signal levels. Lacking some sort of plant model that controls individual signal

models unfortunately means that there has been no good way to deal with messages

that are transmitted sporadically based on some event or signal update.

3.2 Overview

Broadly speaking, the simulation tool can be broken down into the model, which is a

custom Simulink library that contains two blocks (ECU, bus), and the model gener-

ation scripts, which are written in MATLAB code and are able to parse an ARXML

system description and custom Excel spreadsheet into the information required to

replicate instances of the generic ECU and bus blocks from the library into a system

level model and configure those instances appropriately. The generic ECU block is

configured with information like what messages to transmit and when (as well as what

those message DLCs and IDs are, etc.) and how many TX/RX buffers are available

31

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

and what messages they are able to accept. The generic bus block is configured with

information like the baudrate or how bit stuffing is handled. This chapter will cover

each component in more detail. An overview of the tool’s model generation is shown

in Figure 3.1.

Figure 3.1: An overview of the tool model generation flow.

The model generation scripts take an ARXML system description file (commonly

part of existing network design workflows) and an Excel spreadsheet detailing the

ECU CAN implementation details (which must be manually generated by the user)

as inputs and uses the custom SimEvents library to automatically generate a system

level SimEvents model of the specific CAN system described by the ARXML and

Excel files.

3.3 Model Generation Scripts

The model generation scripts collectively perform three tasks:

• Parse an ARXML system description file to build tables relating ECUs, buses,

32

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

and messages

• Lay out the ECU and bus elements with their interconnections as required by

the data collected from the ARXML file

• Configure the placed ECU and bus components with the relevant properties

To parse the ARXML files, a set of scripts provide functionality of manipulating or

navigating through XML objects in MATLAB, such as finding child nodes matching

a certain element type, finding the nearest parent node matching a certain element

type, or navigating to a specific node by reference. These are used to find all <CAN-

CLUSTER>s, <ECU-INSTANCE>s, and <CAN-FRAME-TRIGGERING>s in the

file, and associate the<CAN-FRAME-TRIGGERING>s with the appropriate<CAN-

FRAME>s to get cyclic timing data, and the appropriate <FRAME-PORT>s to

determine which ECUs transmit and receive the message on which cluster.

This process ignores LIN (a different type of network with strict message transmis-

sion schedules) frames and messages without available cyclic timing data. Sporadic

messages have been neglected because no effective way was found to import event

data. Either the data was unknown, or would come from an external signal generator,

which would need to interface with MATLAB through the Digital Signal Processing

(DSP) toolbox or some other method, and would also require modelling messages at

the signal level (currently, messages are only considered at the frame level).

After the ARXML file has been parsed into the necessary tables in MATLAB,

a script places an instance of the CAN ECU library block for each ECU found in

the ARXML file, and an instance of the CAN bus library block for each bus found

in the file. All ECUs are then interconnected to all buses using SimEvents routing

blocks. Although ECUs will only have a few channels connected to specific buses

33

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

in reality, the extra entity pathways appearing in the model will be unused, since

message entities will be routed according to the channel that was specified in the

ARXML file.

As these blocks are being placed in the system model being generated, the appro-

priate parameter data is taken from the tables from the ARXML file and set, such

as the baudrate for buses. In addition to the message data (ID, DLC, etc.), ECUs

also require some information not in the ARXML file, such as number of available

TX/RX buffers and the mapping between message IDs and buffers. This information

is provided separately in the spreadsheet file, and must be read in and set to the

appropriate ECU parameters. This spreadsheet must be manually specified for each

system, and no file already containing this information has been identified as part of

pre-existing GM workflows.

3.4 Generic ECU Library Block

The result of our efforts to understand the behavioural details of the Vector CAN

system transmission was a set of finite state machine models to describe the DLL

queue flag and IL queue flag for each message and the availability of a hardware TX

buffer, as shown in Figure 3.2. A key assumption made is that all ECUs have a single

processor for operations such as message copying or flag setting.

34

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

IL
i0

IL
i1

msgtimer
i

[dllenabled]
/ilreset

i

bufferpolled[buffavail]
/memcopy

IL Flag
i

DLL
i0

DLL
i1

ilreset
i
[dllenabled]

messagesent
/memcopy

DLL Flag
i

B
0

B
1

memcopy

messagesent

Buffer

Figure 3.2: A set of simple state machines defining the behaviour of the IL flag, DLL
flag, and buffer assuming a single buffer and i messages.

Each message has an associated IL flag, IL Flagi, and DLL flag, DLL Flagi. IL

Flagi starts in the ILi0 state, meaning that the IL flag is not set and the message is

not in the IL queue. DLL Flagi starts in the DLLi0 state, meaning that the DLL flag

is not set and the message is not in the DLL queue. Buffer starts in the B0 state,

meaning that the buffer is available.

If the buffer is available when the message timer expires (indicated by the msgtimeri

event), the ECU will copy the message directly into the buffer (the memcopy event),

bypassing the IL and DLL queues.

If the buffer is occupied (Buffer is in the B1 state; buffavail is false), then when

the message timer expires (msgtimeri), the message’s IL flag will be set (IL Flagi

transitions to the ILi1 state). If the DLL is enabled (dllenabled is true), the IL flag

35

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

will reset (IL Flagi transitions to ILi0) and signal the ilreseti event. When the DLL

is enabled, the DLL flag will be set immediately after the IL flag is reset (DLL Flagi

transitions to DLLi1 on the ilreseti signal if dllenabled is true). When transmission

successfully completes on the bus (the messagesent event), the buffer will become

available again (Buffer transitions to B0), and the DLL flag for the highest priority

message with the DLL flag set (DLL Flagi is in DLLi1) will reset (DLL Flagi transitions

to DLLi0) and initiate the next memcopy event to copy message i to the buffer. This

will cause the buffer to become occupied again.

If the DLL was not enabled (dllenabled is false), then instead the IL flag remains

set until the buffer is polled (the bufferpolled event) and the buffer is available (Buffer

is in B0; buffavail is true). At this point, the IL flag will reset (IL Flagi transitions

to ILi0) and initiate the next memcopy event to copy message i to the buffer. This

will cause the buffer to become occupied again.

Since SimEvents is designed for discrete event simulation and is suited for mod-

elling process flows, it makes more sense to transform these models and consider

the behaviour of individual message instances and treat the IL and DLL flags as

queues. Without worrying about the scenario in which a new message instance is

“created” (i.e., the message period expires and it again becomes ready to transmit)

before the old instance has been copied into a buffer, the basic flow model is depicted

in Figure 3.3. In this message activity flow, time delays may only be associated with

activities (not transitions), but there may also be no time delay for an activity. Each

activity is associated directly with an operation or resources within the SimEvents

model.

36

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 3.3: A message activity flow diagram.

Treating message instances as objects and modelling their flow through the system

more closely relates the behaviours to concepts that can be modelled within SimEvents

such as generators, queues, function blocks, server delays, and routing blocks.

The general topology of the ECU model, shown in Figure 3.4, is a star with a

central routing function (the state behaviour describing the message process flow) and

each branch representing a separate resource or operation. Elements like the buffer

allocation function, the IL queue, and the DLL queue all have their own branches,

and a branch for the ECU processor is used to handle delays associated with things

like flag set/reset delays, polling query delays, and buffer write times so that these

cannot happen concurrently for different messages (which would require an ECU with

multiple processors).

37

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Central
routing state

behaviour

Resource

Resource

Operation

Operation

External
ports out

External
ports in

Message
generation

Figure 3.4: The general topology of the ECU model in SimEvents.

Each state or activity in the message flow diagram of Figure 3.3 can be associated

with an operation or resource in the SimEvents model with corresponding parame-

ters as entity attributes. For example, the buffer copy delay is associated with the

processor resource (modelled as a single server in SimEvents), and a message moving

to that stage is given a processor delay time and an execution priority and is routed

to that branch of the SimEvents model. In this way, the message flow diagram can

be transformed fairly directly into SimEvents, and the task becomes using the ba-

sic SimEvents blocks to model the more complex behaviours required by the various

resources and operations.

The following sections will provide more detail about what was required to capture

the more complex behaviours and explain why certain parts were modelled in the way

that they were, where it may be unintuitive or non-obvious.

38

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

3.4.1 Boolean Routing Conditions

Often in the model, it is necessary to make routing decisions based on some boolean

condition. For example, when the buffer polling period elapses, messages from the

IL queue attempt to consume a required buffer resource. This action can succeed if

the appropriate buffer is available, or fail, if it is not. If the action does not fail, the

message should continue to arbitration, and if the action fails, then it should return to

the IL queue to wait for the next polling period. Output switches may route entities

based on a parameter, but the value must correspond to an output port/path, and

these ports are labelled starting from 1. Therefore, in the model, functions that

calculate these boolean results use 1 for success and 2 for failure.

3.4.2 MATLAB Functions on Entities

SimEvents provides a new MATLAB function block called an attribute function block

that is meant to work specifically with SimEvents entities, using entity attributes as

both inputs and outputs. These functions will only execute when an entity passes

through them, and they can not have any additional signal ports. Not being able to

have any inputs or outputs other than what is available as an entity attribute causes

some complications.

For example, to calculate message transmission time on the bus, bit length of the

message must be calculated using the DLC and by calculating any bit stuffing, and

then multiplying that result by the bit time. The bit time, however, is determined

by the bus rate, which is a parameter that is not an entity attribute.

To solve this problem, normal MATLAB function blocks are used. SimEvents

provides Get Attribute blocks that can extract the value of an entity’s attribute as a

39

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

signal, which can then be passed into the MATLAB function, along with any other

signals not originating from the entity. An output signal from this function can

then be used with a Set Attribute block. Figure 3.5 shows a sample of a MATLAB

function block data management view for a function that uses parameters and signals

from entities. Since MATLAB functions are continuous blocks, timed-to-event and

event-to-timed gateways must be used on the various signals as appropriate.

Figure 3.5: A MATLAB function block data management view.

However, there is still an issue for functions that write to data stores. Since the

system is event based, so are the required updates to data store memory, but a MAT-

LAB function will execute continuously, which will cause problems by attempting to

constantly write values to the data store. To solve this, the MATLAB functions can

be enclosed in a function call subsystem, which is a type of subsystem that will only

execute its contents when a function call is received. A function call generator can

then be used to create a function call whenever a message entity passes through it.

In this way, execution of the MATLAB function has been tied to an event of the

message passing through.

40

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 3.6: An example of how an entity uses a function requiring attributes and
other signals as inputs and/or outputs.

In Figure 3.6, the required attributes are passed directly to a MATLAB function

block contained in the Function-Call Subsystem, and the Single Server and Single

Server1 blocks provide a 0 time delay and serve to resolve a race condition by disam-

biguating the sequence of actions taken, since the outputs from function blocks will

update before a server completes its service.

3.4.3 Resource Consumption

When modelling finite consumable resources in SimEvents, examples available from

Mathworks model the resources as entities and use an entity combiner, as shown in

Figure 3.7.

41

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 3.7: A SimEvents demo from Mathworks describing how to model multiple
consumable resource pools.

This model is from the example Resource Allocation from Multiple Pools and

shows two different types of consumable resources. Consumer entities are generated

throughout the simulation and are routed to whichever of the two resources they

require. The entity combiner blocks will only function once there is an entity available

at all input ports, at which point they will consume those entities to produce a single

entity at the output with the combined properties of the inputs. Thus, consumers will

be forced to wait in the resource request queue until a resource entity from the pool is

also available at the combiner input. The entity splitter blocks take a combined entity

at the input port and produce the individual entities that were originally combined

at the output ports. The resource entity is fed back into the resource pool to be

usable again, and the consumer entity continues with further processing. Any delays

42

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

or operations that require the resource or coincide with its use are modelled between

the entity combiner and splitter blocks. The details of the resource pool are elaborated

in the model pictured in Figure 3.8.

Figure 3.8: The details of a resource pool subsystem.

The entity generator is triggered by a function call generator, which creates a

number of function calls at the simulation start. A path combiner collects resource

entities from this initial generator and from the output of the entity splitter block

and connects to a queue where resources may wait before the entity combiner input

port if there are no consumer entities waiting for the resource at the other combiner

input.

In a CAN system, the consumable resources we need to model are transmission and

reception hardware buffers, and our resource consumers are messages. In addition to

requiring a configurable number of buffers, we also require that the mapping scheme

between messages and buffers is also configurable. So, for example, we might have

three buffers, such that buffer b1 accepts messages m1, m3, and m5, buffer b2 accepts

messages m2 and m6, and buffer b3 accepts messages with priorities less than or equal

to the priority of message m4. Notice that in this case, resources are used by different

sets of consumers (i.e., they are distinct resource pools), and some consumers may

make use of multiple pools. This means that to model a configurable number of

43

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

buffer resources, a variable amount of resource pools are required, which means that

the topology of an ECU model would need to be modified based on a configuration

parameter.

This can possibly be accomplished by using a mask initialization script, which will

execute some MATLAB code every time the block mask is updated. The SimEvents

API can be used from within this script to add or remove component blocks/connections

to set up the appropriate paths to resource pools according to an updated mask pa-

rameter. This solution is awkward and this ECU modification process takes a bit

of time, which was expected to lead to longer system model generation times when

systems could contain dozens of ECUs.

Instead, resources have been modelled using data store elements to keep a record

of resource availability, and using MATLAB function blocks to check and manipulate

this record. Each data store is scoped to the resource owner (so RX and TX buffer

data stores are contained in the top level of the ECU subsystem), and each column is

an entry containing information for a different resource. For buffers, each entry con-

tains some resource ID, a mask/filter combination that identifies which message IDs

correspond to messages that can make use of that buffer, and the bufffer availability

(the value is 1 when the buffer is available, and 2 otherwise).

In this scheme, rather than having to identify a resource pool for each message

entity to route to in order to consume resources, a buffer policy function is used to

identify all columns in the buffer table with a mask/filter combination that accept

a message’s ID, and the corresponding resource IDs are saved as a parameter to the

message entity for use later in consuming a resource. A function is used to attempt

44

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

to consume the buffer, which uses the list of requested resource IDs determined pre-

viously to find the applicable columns in the buffer table and look up the availability

of each. If any buffers are listed as available, one is “consumed”, meaning that the

message entity is updated to save (as a parameter) the resource ID of that single

buffer, the availability value in the buffer table is updated to 2, and the message

entity’s routing parameter is set to 1 (successful operation). If no buffers are listed as

available, the buffer is not consumed, meaning that the only update is to set the mes-

sage entity’s routing parameter to 2 (failed operation). The message then goes either

on to arbitration (on success) or back to whichever queue it came from (on failure).

This is analogous to the entity combiner block used when modelling resources as en-

tities, except instead of blocking at the input when no resource is available to prevent

consumer entities from leaving the queue in the first place, they are instead routed

back into the queue. To release a buffer, a function uses the resource ID associated

with the message entity in the consumption function to modify the buffer table and

update that resource’s availability value to 1. This is analogous to the entity splitter

block used when modelling resources as entities.

3.4.4 IL and DLL Queueing

Since IL and DLL queueing are types of resource request queues, they relate to the

implementation of resource consumption described in Section 3.4.3.

First, since there is no longer an entity combiner that can detect the event that

a resource and consumer are available at the input ports and block progression from

the queue, the queues require a blocking gate, with some input signal that can be

modified on some other event to allow messages to proceed from the queue. For the

45

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

IL queue, which uses a polling-based system, the event occurs periodically on the

polling interval, and the signal is generated based on a periodic entity generator. For

the DLL queue, which uses an interrupt-based system, the event occurs whenever a

resource becomes available. This happens when an entity passes through the function

that releases a previously consumed resource. Since messages bypass the DLL queue

when a buffer is immediately available, we do not have to consider a case where a

message has to wait for a buffer that was never consumed, and will therefore never

have a corresponding release to trigger this event signal to the queue.

In both the case of the IL and DLL queues, because the fundamental SimEvents

queue block has no functionality for only allowing specific entities to proceed, we do

not consider the different resource pools, and our event signals cause every entity in

the queue to proceed to attempt resource consumption. In each of these events, we

require each message entity to proceed to the buffer consumption attempt only once.

If the result fails, the message is routed back to the queue, and if not blocked, will

proceed back to the consumption function. Since the gate is open over some finite

time in the simulation, but the loop may have no associated time delay, the messages

will be able to complete the loop more than once before the gate closes again when

connected as shown in Figure 3.9.

Figure 3.9: A gated queue that does not quite work as a model for the IL and DLL
queues

46

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

While this does not cause a problem of having an infinite loop and creating too

many simultaneous events, it is unclear exactly how many times an entity will be able

to loop through. To prevent this, a second queue with a gate is added into the loop

as in Figure 3.10, with that gate being driven by the negated condition of the first

gate. Since one of the two gates must always be closed, messages will complete the

loop precisely once per event.

Figure 3.10: A suitable model for the IL or DLL queue.

While the signal is active, messages will exit the first queue, and if they complete

the loop before the signal becomes inactive, they will collect in the second queue.

After the event has passed and the signal is no longer active, the gates will switch

and the messages will flow from the second queue back to the first queue.

3.4.5 Priority Queues

Priority queues in SimEvents may, under certain conditions, behave in a non-priority

manner.

In SimEvents, events are scheduled in an event calendar as they are initiated, such

as service completion events from server blocks or entity request events from gates.

At any given simulation time, SimEvents will process any events that are scheduled

47

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

to happen at the current simulation time. Events may be set to resolve in a random

order, or, as we are using it, based on an event priority. When event priorities may

or must be specified (such as for server completion or entity generation), they are

set as an integer on the interval [1,inf). Other events that do not have their priority

specified by the model creator are scheduled either at SYS1 or SYS2, which are the

highest priority.

When an entity enters a priority queue and becomes the new queue leader, a new

head of queue event is scheduled for immediate processing. This event is set at priority

SYS2 and cannot be modified. Since paths leading to the queue likely contain blocks

with user-specified priority, this leads to a situation where, if multiple entities would

enter the priority queue at the same simulation time, the event to process the first

new queued entity would be scheduled at a higher priority than the event that would

cause the second entity to enter the queue. Thus, if the second entity to arrive would

actually be of higher priority, then the wrong entity will have proceeded.

This can be resolved by adding an infinite server with zero service time before

the queue, and an enabled gate after the queue with an enable signal checking if the

server is empty. All entities that will enter the queue in that simulation instant first

go through the server and have their service completion events scheduled at the same

priority. The first entity to progress to the queue will still cause a new head of queue

event to schedule, but if there are other entities that will enter the queue at that

simulation time, they will still be in the server, and the gate will be blocked, causing

the queue event to do nothing. This continues until the server empties, and either

the queue event caused by the last entity will not be blocked, or, if the last entity

did not change the queue leader and trigger an event to be scheduled, the gate will

48

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

become enabled and schedule its own event to fetch the next entity. This is shown in

Figure 3.11.

Figure 3.11: A modified priority queue with an arbitrary event resolution priority.

3.4.6 Arbitration

While in the real system, each ECU will only arbitrate a single message when multiple

are available, it is assumed that the ECU will arbitrate the highest priority message

available to it, and thus arbitrating all messages across the system together will not

affect the results of arbitration. Because of this, in the model, after messages have

successfully consumed a buffer and become available for arbitration, they leave the

ECU subsystem and move to the appropriate bus subsystem, which contains a single

arbitration queue that is priority sorted by message ID. Multiple messages from a

single ECU may appear in the queue, which will not affect arbitration, but multiple

instances of the same message ID may also appear in the arbitration queue together.

The queue handles even priorities on a FIFO basis, which is still assumed to be the

correct behaviour for how an ECU determines which available message to arbitrate.

49

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

3.4.7 Extracting Simulation Results

In addition to being able to view a utilization statistic signal for each server acting as a

CAN bus that can be viewed directly on a SimEvents scope, it is useful and necessary

to be able to view other statistics such as bus logs (a table of times, message IDs, and

message content details for each message when it has completed transmission on a

bus; these types of logs are extracted from physical test benches), inter-arrival times

for messages, end-to-end timing, duration spent in software queueing, and time spent

arbitrating.

Rather than measuring these values directly, it is possible to place “probe” ele-

ments depicted in Figure 3.12 through the system that will extract attribute signals

from each message entity as it passes through, pass these signals to a bus, and log

that bus through SimEvent’s simulation logging utility, which will create an object

in the MATLAB workspace that contains, for all these signals, a table of times and

values, where the times correspond to whenever in the simulation an entity passed

through, and the values will correspond to the attribute values for that entity at that

time.

50

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 3.12: An example probe point.

A bus creator block is used to collect the various attributes and timers of a mes-

sage entity into a single signal, which is selected for data logging. The signal name

as it appears in the log object can be programmatically set to some unique name

like x prebuffer, where x is the ECU/bus name, and a suffix prebuffer indicates

that in the transmission flow, this probe is located just before a message is copied

to a hardware buffer. This signal can then be retrieved with a command like log-

sout.get(“ECU1 prebuffer”). The bus creator output signal properties dialogue and

the probe mask initialization script necessary to collect the data in the simulation

output logs are shown in Figure 3.13.

51

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

(a) Bus creator output
signal properties

(b) Probe point mask initialization code

Figure 3.13: Logged signal properties and the probe point subsystem mask initializa-
tion code

From here, post-processing could be done to find the time difference between

two points of interest by retrieving the logs from the probes, identifying a message

entity of interest based on attribute (e.g., message ID, buffer allocated, ECU ID of

transmitter), and comparing the recorded simulation times. While not currently in

the model, an incrementing counter could be added to each ECU and assigned as

an attribute to each message, which would allow for each instance to be uniquely

identified across the system based on the pair of attribute values for the counter and

the transmitting ECU.

52

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 3.14: Probe data in the MATLAB workspace.

Figure 3.14 shows how the probe data may be accessed in the MATLAB workspace.

The data can also be exported to other environments, such as a Microsoft XLSX file

(using MATLAB’s xlswrite function). Each time series contains the same time values,

and attribute values from the same time correspond to a single entity that passed

through the probe.

3.5 Generic Bus Library Block

The generic bus model is comparatively much simpler than the generic ECU model.

It includes message arbitration (using a priority queue), calculation of bit stuffing

53

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

(either calculating the actual bit stuffing over known fields and generating a random

value for the payload, or assuming worst-case bit stuffing over the entire frame), and

transmission delay. There is also an option to specify a percent chance for error in

transmission of a bit, generating error frames and requiring retransmission of the

message. The error behaviour is only loosely approximated since it is unclear if

additional error frame and retransmission traffic will cause a significant change in

overall bus and network performance at typical error rates, and therefore whether

or not a higher level of fidelity for modelling that feature would produce measurably

more accurate results.

Since frames in our model are represented as entities and physically moving

through the system, and due to the way buffer utilization and message acknowledge-

ments are tracked, there is one entity path into the bus and two entity paths out. The

path in comes from a path combiner that collects entities from all ECU transmission

out entity paths (which are connected to switches with the switch output determining

the bus channel). One path out goes to an entity replicator, which will produce one

copy of the entity for every ECU on the bus and send it to the ECUs’ receive in

entity paths, allowing those glsplecu to set message acknowledgements and consume

an RX buffer if the transmitted message matches a buffer’s filter/mask settings. The

additional path out connects to a switch which returns a copy of the entity to the

transmitting ECU if it was successfully transmitted, allowing the transmitting ECU

to see that the message has successfully transmitted and free the TX buffer resource.

Message entities are replicated once in the bus before the transmission delay to

produce three copies; one copy for the transmission out path from the bus, one copy

54

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

for the return out path from the bus, and the last copy is used to generate a non-

acknowledgement (NACK) error frame entity when appropriate. The entity for the

return out path is sent to a server for the transmission delay. If the message was

calculated to produce an error frame, its transmission delay was modified to be a

portion of what the full message frame transmission time would have been, plus

additional time from an expected error frame length. Then, the message will be

cycled back to the arbitration queue, and the bit stuffing, error, and transmission

delay will be recalculated the next time that message wins arbitration. If the message

did not produce an error frame, and transmission is not interrupted by a NACK error

frame, it will experience the full transmission delay before being sent back to the

transmitting ECU. For the transmission out path, the entity does not experience

any delays in the bus. Instead, corresponding delays are in the ECU model such that

entities being received go through an acknowledgement set/clear function at the same

simulation time as the final copy in the bus goes through an acknowledgement check

function. It is necessary for receiving ECUs to have the message entity at the start

of transmission for RX buffer usage. Although the set, check, and clear operations

happen at the same simulation time, event resolution priorities are set so that the

order is specified as set, check, and then clear. If the check operation determines

that the ACK flag was not set, then a NACK error frame entity is generated, which

interrupts the normal transmission of the otherwise successful message frame, and

adds its own transmission time on the server.

55

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

3.6 Problems Overcome

Most problems have been related to issues of how to implement specific features or

behaviours within SimEvents, either due to complexity of the target behaviour or the

limitations of how SimEvents or the default blocks work. Because of this, some of

these problems and their solutions are described in more detail in earlier sections,

and will be briefly covered here again, with a reference to the appropriate section.

3.6.1 Easy System Generation

A major problem with large scale CAN system modelling is that with many ECUs

and buses, placing all of the components, configuring all relevant information, and

correctly achieving the desired network setup (e.g., without accidentally entering

the wrong configuration data or placing components in the wrong place), is very

time consuming and difficult. To avoid this, model generation is accomplished by

taking the network data and ECU hardware/software details from separate input files

and using a MATLAB script to automatically place and configure all of the various

required model components using Simulink API function calls such as add block and

set param. More information can be found in Section 3.3.

3.6.2 Importing Configuration Data

Using separate input files for model generation and configuration presents two chal-

lenges. The first is identifying suitable input formats or sources, and the second is

then parsing those inputs to extract the necessary data. For the network configu-

ration, ARXML system descriptions are commonly produced as part of the existing

56

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

network design workflow, and are part of the current GM workflow as well. While

MATLAB provides a function xmlread that reads an XML format file into a tree

object in the workspace, the relevant network data contained within the system de-

scription file is decentralized, with some elements referencing information elsewhere

in the document using labels. Because of this, a series of support functions is needed

to extract numeric values from XML elements as well as navigate through the object

between references. Using these scripts, the data is gathered together into a set of

matrix objects in MATLAB that can be easily used to determine the network com-

ponent interconnections and to configure the ECUs’ message data. More information

can be found in Section 3.3.

3.6.3 Extensible Configuration for Buffer Resources

From what was learned about transmission and receive buffers in ECUs running the

Vector CAN stack, we determined that an ECU may use a wide number of buffers.

Typically, one RX buffer will be used per received message on an ECU, so the number

of required buffer resources will be determined by the amount of incoming messages.

On the transmit side, a low end ECU might use only a single buffer, but it could

also use two or three buffers, splitting the outbound messages into different message

ID groupings in an attempt to prevent certain priority inversion scenarios. While we

are not aware of any specific applications within GM making use of ECUs with more

buffers than this, like the 16, 32, or 64 TX buffer high-end ECUs, the decision was

made to be able to support an arbitrary number of transmit or receive buffers, with

methods for being able to assign message IDs to specific buffers in any way.

While SimEvents provides basic blocks for implementing finite resource allocation

57

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

in models, the way these resources behave is too restricted for our purposes. For

example, while an arbitrary number for each resource type can be specified, each

distinct resource (e.g. buffers usable by different groups of messages) requires its own

block, and which resource is consumed by an entity must be specified in a dialogue

box and cannot be based on an entity attribute. Because of this, resources in the tool

are dealt with using a data store with a table of information specifying which message

IDs may use each buffer and whether or not a buffer is available. Buffer consumption

and release is then handled in a MATLAB function block. More information can be

found in Section 3.4.3.

3.6.4 Impact of Scale on Compilation and Simulation Per-

formance

In development of the SimEvents model, there have been a couple of instances where

the size of the model (with regards to the number of components and connections)

has had a detrimental impact on compilation or simulation run time.

The first scaling problem encountered was that, in an earlier version of the tool, a

model created with more than twelve ECU components connected to a bus would fail

to compile and produce an error about having too many entity pathways (exceeding a

limit inherent to that version of SimEvents). This was due to the way that SimEvents

synthesizes entity pathways when output switches are connected with entity replica-

tion blocks. With an N output switch and an M output replicator, placing the switch

before the replicator would synthesize to N*M entity pathways, but connecting them

the other way would produce MN pathways. After the model was rearranged by

58

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

moving the output switches before replicator blocks, the number of synthesized en-

tity paths was drastically reduced and the limitation was no longer an issue. While

the internal limit in SimEvents has been removed in later versions (or made much

larger), the refactoring makes the model more efficient as long as entity pathways are

synthesized in the same way.

The second problem with scaling came from using Stateflow blocks for modelling

state behaviour. While this works fine for only one or few Stateflow blocks, copying

them several times as part of the ECU model causes simulation times to slow dras-

tically. Instead, state behaviours are implemented using MATLAB function blocks,

which do not cause the same drastic slow down. The issues with using Stateflow are

also discussed in Section 2.4.6.

3.6.5 Implementation of Vector Queueing Behaviours

The IL and DLL queues are priority based, but the condition for a message exiting the

queue and proceeding through the system depends on that message’s transmit buffer

being or becoming available. For some cases, such as when a higher priority message

may always use a buffer if it is usable by a lower priority message or when all messages

use the same buffer(s), the queues behave in the same way as a normal priority queue.

For other cases, however, the next message to progress from the queue may not be

the current head of the queue; the next message to progress from the queue is the

highest priority message in the queue with an available transmit buffer.

SimEvents provides no queues with a functionality of an “exit if...” condition, so

the buffer availability (the exit criteria) must be evaluated outside of the queue. To

accomplish this, a special queue model is created using gate blocks to regulate the

59

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

flow of message entities. When an event occurs to signal that the exit criteria should

be evaluated (on the TX buffer polling/TxTask period for the IL queue, or whenever

a buffer resource becomes available for the DLL queue), each entity exits the queue to

progress to a function to evaluate whether or not its buffer may be consumed. If the

buffer is successfully consumed, the entity proceeds to the next stage of the message

flow process, but if the buffer was unavailable, then the entity is routed back to the

relevant queue. Because this check process may occur over zero simulation time if

a delay parameter is not set, a second gate is used to prevent entities from looping

through this process excessively. More information can be found in Section 3.4.4.

3.6.6 SimEvents Priority Queues Exhibiting FIFO Behaviour

In some circumstances, the SimEvents priority queue block may exhibit FIFO be-

haviour, such that when multiple entities would arrive at the queue instantaneously,

the first entity to enter at that instant will proceed immediately before the other

entities may arrive and compete for priority. This is a consequence of the way that

SimEvents schedules events to resolve during simulation. What determines which

entity arrives first is determined by the event resolution priorities on the paths lead-

ing to the queue, or, if they are the same, then which entity’s generating block was

physically placed in the model first.

This can be resolved by using an infinite server and an enable gate, blocking the

queue events until all entities have had a chance to enter the queue in that simulation

instant. More information can be found in Section 3.4.5.

60

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

3.6.7 Clock Drift

While clock drift as a configurable feature was originally going to be omitted from the

model, it was discovered during validation testing that the clock drift actually pro-

duces a significant impact on the end-to-end response times due to the resequencing

of message availability. If two messages on two different ECUs have the same period

and release at the same time, then without clock drift, those messages will always

release together and arbitrate in the same order. However, if there was a different

clock drift between these two ECUs, then sometimes they would arbitrate properly,

sometimes the lower priority message would come earlier and block the higher pri-

ority message, and sometimes the messages would release at different times and not

interfere with each other at all.

In the model, ECUs may be configured with a clock drift in terms of ns/ms, such

that after 1ms of simulation time had passed, an ECU with a 1ns/ms drift would

have counted 1.000001ms for its TxTask timer. This ignores the fluctuations that

may occur when a clock runs slightly fast for a period of time but then slightly slow

for another period, but considering just the average drift helps to produce better

results. This is discussed further in Section 4.4.

3.7 Outstanding Problems

The biggest outstanding problems are the lack of appropriate input configuration

data for device properties and not having a method to interface the simulation with

an external system or another model to have specific signal levels/frame payloads or

to have external events to trigger sporadic messages.

61

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Details of the ECUs within GM that use the Vector CAN implementation with

regards to such things as the number of available buffer resources or the loop rate

of the TxTask may be known for some specific ECUs, or there may be a known

range of typical values, but there seems to be no document where this information

is centrally specified or recorded. If such a document does exist, it is unknown what

format the information would be available in, and there does not seem to be any

sort of standard for the specification of this information used in common practice.

The document format could range from something like a natural language hardware

requirement specification, which would not be a standardized format and would be

difficult to automatically parse, to something like another type of XML specification,

which would be simpler to automatically parse. Because of this, we have been unable

to provide an interface to configure those aspects of the simulation that would satisfy

the requirement of having the tool integrate into pre-existing GM workflow. Alterna-

tively, a spreadsheet format is used that allows for each ECU in the simulation (or a

“default”, for where a specific ECU is not included) to have its necessary information

provided as a row in the spreadsheet.

Though it is useful to simulate each frame as it would appear on a physical bus

with the correct payload, or to simulate messages that would be generated by an

external event, these would require either a method to interface the simulation with

another model or an external signal source, or they would require an abundance of

input data to configure the simulation specific to the simulated scenario. In physical

tests, real vehicle systems may be hooked up to test benches, or signals may be

simulated by hardware devices such as systems provided by dSPACE. This means

that system operation may determine or influence signal levels or sporadic message

62

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

event timing, or that the change in signal levels may be abstracted from how the

test scenario is actually configured. Because of this, information may not be readily

available to the testers to be used to configure the SimEvents simulation tool with

the same information. An alternative to this would be to provide a way to interface

SimEvents directly with these external signals and events. While this should be

possible through the use of the Mathworks Data Acquisition (DAQ) Toolbox, this is

beyond the scope of the current work and was not explored.

Other, less important issues that were never resolved are related to the lack of

certain behaviours or features being included in the model. These include ECU mode

switching (both in terms of CAN fault isolation and things like power saving sleep

modes), error frames, and gateway connections/message passing between multiple

buses.

With regards to mode switching, other models exist within GM that specifically

model these behaviours to measure power consumption, and from discussions with a

network analysis team at GM Technical Centre India (GMTCI), it was determined

that the case that all ECUs are in their active transmission/normal operation state

was a reasonably likely case that also represented the worst case for network traffic.

Because of this, it was decided that it was not worthwhile to attempt to model mode

switching and idle states.

For error frames and fault isolation, discussions with GM personnel working with

CAN errors or interference indicated that error rates high enough to significantly im-

pact network traffic or require ECUs to enter the error passive or bus off fault isolation

modes would suggest significant hardware failure that would require service. Thus,

while these cases may be useful to simulate for examining fail safe behaviour, they

63

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

were not considered for this tool. A method for configuring a bus with a transmission

failure rate (per bit) to interrupt a frame, causing an automatic retransmit and an

additional error frame, is included, but the behaviour is a rough approximation and

its correctness is untested.

While the tool can model ECUs connected to multiple CAN channels, as gateway

nodes are, there is no method of sporadic message generation for traffic on one channel

to generate traffic on another channel. This is due mainly to the fact that the library

elements of the tool were not modelled at the individual signal level, mostly due to

the difficulties in that regard mentioned earlier in this section.

3.8 The Current Simulation Tool

3.8.1 Assumptions

There are some current assumptions in the tool that limit the possible implemen-

tations of the CAN stack without some modification to the SimEvents model itself.

When message timers expire, they must wait in priority sorted software queues (some

implementations may use FIFO queues or a mixed queue system) until a buffer be-

comes available. Buffers may be loaded on an interrupt or polling basis, and the

polling rate need not necessarily be set to the same rate as the TxTask interval.

Message timers are assumed to be initialized such that there are no periodic message

times at time 0 (e.g., the first release of a 20ms period message would be at 20ms),

and any message offsets are applied in addition to the first release of that message.

Buffer assignments are controlled with a mask/filter system, so criteria such as ID >

64

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

x or ID < x cannot freely be implemented. However, conditions like ID < x are pos-

sible for powers of two using a mask/filter combination such as 0x7F0 for the mask

and 0x000 for the filter to give a match for IDs less than 0x010. The model can,

however, be easily modified to accomplish these types of assignments by changing the

buffer policy MATLAB function block code. Another assumption is that an ECU will

arbitrate its highest priority available message, regardless of which buffer is used (or,

alternatively, that the highest priority message will always be in the highest priority

buffer).

Of these assumptions, the message timer initialization, some software queue im-

plementation differences (but not all), and the buffer assignment limitations can all

be changed with very minor edits to the model and/or generation scripts. Other

differences would require more involved modifications.

3.8.2 Defining the Network Configuration

The network configuration has two parts: the layout and interconnection of the com-

ponents defined by the physical placement of the CAN library blocks and their in-

terconnections, and the configuration of bus or ECU-specific information such as

messages transmitted and the message properties or bus baudrates, which are set as

mask parameters for the specific blocks.

While it is possible to lay out and configure the system by hand, it is recommended

to use the model generation scripts which use an ARXML and an XLS or XLSX

input file, especially for larger systems. The scripts ensure that the model will be

created properly (as long as the input files are correct) and provide feedback through

the MATLAB command line output when the input files are missing information or

65

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

may have incorrect data included. For the physical connections between blocks as

generated by the script, it is difficult to only connect ECUs to buses to which they

have a connected CAN channel, so instead all ECUs have a physical connection to

all buses, and each message entity contains an attribute specifying the target channel

for routing. The extra connections, which are essentially unused channels, should not

affect the behaviour unless there is a conflict between the network configuration and

the ECU implementation, not physically having as many channels as the network

requires (it is assumed that this never happens, and the number of CAN channels is

not considered as an ECU parameter).

66

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

(a) The model library

(b) Part of a generated system model with 6
buses and 47 ECUs.

Figure 3.15: An example of a large scale system (right) that may be generated using
the library (left).

It is reasonable, particularly for smaller systems, to modify ECU or bus parameters

directly through the block masks to rapidly iterate different configurations without

67

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

having to modify the ARXML or spreadsheet file, for example to change a bus bau-

drate, message period, or add an extra transmit buffer. Otherwise, when reconfiguring

the model by regenerating it, generation for a large scale system as in Figure 3.15

takes approximately 3 minutes1.

3.8.3 Options

The ARXML document allows for periodic messages, with message ID, frame type

(between extended and standard), period, offset (additional time from the start of

the simulation before the first instance of a message is released), DLC, transmitter,

receiver(s), and bus to be defined. The ARXML document also allows for setting the

bus baudrates. This information also defines the network layout, since messages are

received and transmitted on channels connecting their ECUs to the bus that they

transmit on.

The spreadsheet document allows for ECU-specific information to be set. This

includes the TxTask period, buffer polling period, initialization offset (a duration from

the start of simulation in which the ECU will not participate in communications),

clock drift, and TX/RX buffer masks/filters (a message will only be able to use a

buffer when (mask & message ID) == (mask & filter ID); a filter with a mask of 0

will accept any messages).

Additional options that are not controlled through the current generation scripts

and user inputs are sporadic messages for transmission/reception, using worst case

bit stuffing in transmission time calculations (by default, payloads are randomly gen-

erated to get a distribution of bit stuffing and transmission times) for a bus, and

1In MATLAB 2015a on Windows 8.1 with an Intel Core i7-3630QM 2.40GHz CPU and 8GB
memory

68

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

specifying a bit error rate for each bus (the chance of an error occurring during a

frame being 1 - (1 - bit error rate)frame length).

3.8.4 User Input

A script extracts data from an ARXML system description file, which produces a set

of tables containing a list of buses in the network with their corresponding speeds, a

list of ECUs, a list of messages with their IDs, periods, DLCs, initial offsets, and target

bus, and lists that connect which ECUs transmit and receive which messages. A set of

scripts were written to assist in the navigation and manipulation of XML node objects

in MATLAB returned from the xmlread function, which allow for the ARXML data

extraction script to be more easily modified. These utilities include retrieving all/the

first child element(s) that match(es) a specified element type, retrieving the closest

parent element that matches a specified type, retrieving a list of names corresponding

to a list of elements, and navigating to a specific sub-node based on a referenced

<SHORT-NAME> element.

For ECU-specific CAN implementation configuration, we have been unable to

identify a hardware requirement specification document or anything similar already

existing within GM workflows that would provide the necessary information to con-

figure the model. In lieu of this, a simple spreadsheet document (XLS or XLSX

format) is used with columns to specify the TxTask period, buffer polling period (in

the case of the DLL queue being disabled; a period of 0 or inf implies that the DLL

queue is enabled), initialization time, clock drift, and TX/RX buffer masks and filter

IDs which define both the number of available buffers and the mapping policy to

messages. Masks are specified in their own column as a hex string (e.g. “0x7F0”),

69

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

and separated with a comma. Filters are specified in the same way, with the same

number of comma separated values, with the first filter value corresponding to the

first mask, the second filter to the second mask, etc. Each row specifies these values

for a different ECU, referenced by the ECU name that appears in the ARXML file for

that ECU as a <SHORT-NAME> property, or specifies a default, which is applied

to any ECUs not otherwise listed.

3.8.5 Retrieving Simulation Results

The system model is generated with a signal scope attached to the utilization statistic

of each bus, which will open at simulation start and show the average utilization as

the simulation progresses.

For other information, such as end-to-end timing or bus logs, data probes as de-

scribed in Section 3.4.7 may be added to the model (some have already been inserted

to collect end-to-end time and interarrival data). This data is saved to the workspace

in the logsout object, where it can be processed or written to a spreadsheet or other-

wise exported from MATLAB. A couple of scripts have been written that will extract

the end-to-end time and interarrival statistics from the appropriate elements of the

logsout object.

70

Chapter 4

Results

4.1 Polling vs Interrupts

To test the impact of the buffer loading policy, a scenario with a single ECU trans-

mitting two standard format frames with a period of 5ms was used. The modified

variables for the test were one message buffer versus two message buffers (either mes-

sage could use any buffer), loading TX buffers based on interrupt versus based on

polling (i.e., DLL queueing enabled versus disabled), and (when the buffers are loaded

based on polling; i.e., the DLL is disabled) a polling interval of 2.5ms versus 5ms.

The first message was given an ID of 0x1A2, and the second message was given an

ID of 0x1B2. Both messages carried a randomized 64 bit payload.

For this scenario, physical data was collected from a lab set up using STM32F

microcontrollers for ECUs, running software designed to behave the same way as the

Vector CAN stack, according to our understanding. Sample sizes are greater than 100

for each message in each case. The bus interarrival time of each message was measured

(which is the best measurement of actual message periodicity) in milliseconds, as well

71

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

as the end-to-end time (measured from the message timer expiring to the message

being received) in microseconds. All statistics are listed at a 95% confidence interval.

Physical bench Simulation Paired Error Paired P-value Unpaired P-value

1 message buffer

DLL enabled

2.5ms task period

0x1A2
Interarrival 93.62% 94.59%
End-to-end 0.00% 0.00%

0x1B2
Interarrival 98.49% 95.43%
End-to-end 0.00% 0.00%

5ms task period

0x1A2
Interarrival 5.000189±691e-6 92.55% 93.47%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 5.000087±1023e-6 99.10% 96.05%
End-to-end 471.980±0.694 0.00% 0.00%

DLL disabled

2.5ms task period

0x1A2
Interarrival 93.36% 93.86%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 75.50% 74.75%
End-to-end 0.00% 0.00%

5ms task period

0x1A2
Interarrival 98.69% 98.85%
End-to-end 0.00% 0.00%

0x1B2
Interarrival - - - -% -%
End-to-end - - - -% -%

2 message buffers

DLL enabled

2.5ms task period

0x1A2
Interarrival 5.000189±691e-6 93.67% 94.60%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 5.000087±1023e-6 98.79% 95.74%
End-to-end 471.980±0.694 0.00% 0.00%

5ms task period

0x1A2
Interarrival 5.000189±691e-6 91.36% 92.33%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 5.000087±1023e-6 99.70% 96.69%
End-to-end 471.980±0.694 0.00% 0.00%

DLL disabled

2.5ms task period

0x1A2
Interarrival 5.000189±691e-6 92.49% 93.47%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 5.000087±1023e-6 99.09% 96.36%
End-to-end 471.980±0.694 0.00% 0.00%

5ms task period

0x1A2
Interarrival 5.000189±691e-6 87.39% 88.40%
End-to-end 222.163±0.494 0.00% 0.00%

0x1B2
Interarrival 5.000087±1023e-6 98.17% 98.86%
End-to-end 471.980±0.694 0.00% 0.00%

5.000165±126e-6 5.000189±691e-6 -28e-6±695e-6

227.020±0.570 222.163±0.494 4.878±0.750

5.000124±770e-6 5.000087±1023e-6 13e-6±1335e-6

454.273±0.928 471.980±0.694 -17.653±1.132

5.000160±130e-6 -33e-6±703e-6

226.820±0.590 4.673±0.760

5.000119±772e-6 8e-6±1337e-6

454.040±0.920 -17.888±1.119

5.000162±126e-6 5.000189±691e-6 -29e-6±698e-6

227.172±0.587 5.020±0.757

5.000160±126e-6 5.000046±697e-6 112e-6±712e-6

2724.960±0.678 2721.890±0.450 3.120±0.799

5.000144±68e-6 5.000148±475e-6 -4e-6±484e-6

227.442±0.425 222.010±0.341 5.455±0.544

5.000165±129e-6 -28e-6±700e-6

227.030±0.575 4.888±0.757

5.000121±771e-6 10e-6±1332e-6

454.253±0.925 -17.673±1.133

5.000155±126e-6 -38e-6±698e-6

226.840±0.582 4.694±0.750

5.000114±779e-6 3e-6±1339e-6

453.808±0.926 -18.122±1.128

5.000160±130e-6 -33e-6±696e-6

227.050±0.584 4.908±0.764

5.000116±771e-6 8e-6±1332e-6

454.242±0.916 -17.684±1.128

5.000138±132e-6 -56e-6±700e-6

227.180±0.584 5.041±0.763

5.000096±771e-6 -15e-6±1325e-6

454.343±0.911 -17.582±1.112

Table 4.1: Physical and simulated results for the first scenario.

In Table 4.1, all inter-arrival times are reported in units of milliseconds, and all

end-to-end times are reported in units of microseconds. The p-values are provided for

a paired and unpaired t-test. Paired p-values indicate the probability that a randomly

sampled error would be farther away from 0 than the mean error, meaning that low

p-values show a greater chance of the average error being non-zero and the simulation

results being different from the physical results. The unpaired p-values compare the

simulated and physical results in aggregate, with lower p-values giving the chance

72

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

of a randomly sampled data point will be farther from the means of the simulated

and physical populations, meaning that high p-values indicate that the simulated and

physical populations have similar distributions and the simulated data more closely

matches reality.

The inter-arrival times show excellent matches, while the end-to-end times show

more error in many cases. Even in these cases, and all other cases, the magnitude of

the error is still under 10% of the physically measured value and still clearly shows the

trends or impacts of the different scenarios. These errors could be caused in part by

software jitter or other delays within the ECUs. Errors with wider confidence intervals

are typically for statistics of the 0x1B2 message, which makes sense since the lower

priority message’s timing is impacted by interactions with the higher priority message,

so the variance for the 0x1B2 message includes not only variability from its own inter-

release and transmission times, but also from the variability of the 0x1A2 message’s

transmission time. Also, in the case of one message buffer, the DLL disabled, and a

5ms task period, the simulation correctly identifies that the 0x1B2 message will be

starved and not appear as part of the network traffic.

The various configurations result in three broadly different behaviours, which are

shown plotted in Figures 4.1, 4.2, and 4.3. The plotted bounds show the maximum

and minimum observed values in the physical test and simulation, and the averages

are plotted with their 95% confidence interval error bars.

73

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
1A2 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 1 Transmit Buffer Polled at 2.5ms

Physical average
Simulated average
Physical bounds
Simulated bounds

Figure 4.1: Plot of end-to-end response times for the first scenario for the configura-
tion with one TX buffer, the DLL disabled, and a 2.5ms polling period.

At the scale shown in Figure 4.1, the difference between the simulated and the

physically observed values are hard to notice. The expectation is that since both

messages are released at the same time and since there is only a single TX buffer,

only one message will be able to transmit immediately. This means that the lower

priority message will have to wait until the next time the TX buffer is polled and

found empty, which in this case results in message 0x1B2 being delayed by 2.5ms.

The impact of this is seen clearly in both the physical and the simulated data.

74

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
1A2 1B2

R
es

po
ns

e
T

im
e

(µ
s)

215

220

225

230

235

240

245
End-to-End Response Times for 1 Transmit Buffer Polled at 5ms

Physical average
Simulated average
Physical bounds
Simulated bounds

Figure 4.2: Plot of end-to-end response times for the first scenario for the configura-
tion with one TX buffer, the DLL disabled, and a 5ms polling period.

Figure 4.2 shows a case similar to what was seen in Figure 4.1, except that the

data is missing for message 0x1B2 because that message is never able to transmit

on the bus. Since the polling interval in this configuration delays message 0x1B2

from being loaded into the buffer for an additional 5ms, the next instance of message

0x1A2 also becomes available at that time, and so when the buffer is polled and found

empty, message 0x1A2 is loaded, and message 0x1B2 is never able to be loaded into

a buffer and transmit on the bus.

75

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
1A2 1B2

R
es

po
ns

e
T

im
e

(µ
s)

200

250

300

350

400

450

500
End-to-End Response Times for Other Cases

Physical average
Simulated average
Physical bounds
Simulated bounds

Figure 4.3: Plot of end-to-end response times for the first scenario typical of config-
urations with two TX buffers and/or the DLL enabled.

Figure 4.3 shows a plot of the end-to-end response times for the configuration with

a single TX buffer, a 2.5ms TxTask period, and the DLL enabled. These results are

similar to all configurations with two TX buffers as well as the configurations with a

single TX buffer and the DLL enabled. The error is larger for message 0x1B2, but

when you consider that a single frame with 8 bytes takes approximately 225µs to

transmit on a 500KB/s bus, the results still show clearly that message 0x1A2 takes

one frame transmission time and message 0x1B2 takes two frame transmission times.

76

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
1A2 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
Comparison of End-to-End Response Time for Different Cases

Test data 1 TX buffer polled @2.5ms
Sim data 1 TX buffer polled @2.5ms
Test data 1 TX buffer polled @5ms
Sim data 1 TX buffer polled @5ms
Test data other cases
Sim data other cases

Figure 4.4: Plot of end-to-end response times for the first scenario showing a com-
parison between the three general behaviours.

Figure 4.4 shows a comparison of the end-to-end response times for all of the

configurations. For the results for configurations that produce behaviours like those

shown in Figure 4.3, labelled as “other cases”, all configurations are actually plotted,

but only a single line is apparent because of how similar the results are amongst

that set of configurations. Figure 4.4 shows the impact of the different configurations

on the network behaviour, and further shows that the simulation accurately reflects

those differences in the network behaviour that were observed on the physical bench.

77

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Physical bench Simulation

1 message buffer

DLL enabled
2.5ms task period 9.10% 9.91%

5ms task period 9.10% 9.91%

DLL disabled
2.5ms task period 9.14% 9.89%

5ms task period 4.55% 4.96%

2 message buffers

DLL enabled
2.5ms task period 9.10% 9.91%

5ms task period 9.10% 9.91%

DLL disabled
2.5ms task period 9.10% 9.91%

5ms task period 9.10% 9.91%

Table 4.2: Calculated and simulated utilization results for the first scenario.

Table 4.2 shows utilizations for the first scenario calculated from the physical

bench logs assuming a true bus rate of 500KB/s as well as the utilizations reported

in the simulation. While they don’t seem to be matched closely (the simulated uti-

lizations are approximately 9% - not percentage points - higher), the results are still

within the range of possible utilization values, and may be slightly larger due to the

random generation of data contents and the impact of bit stuffing. The decrease in

utilization for the configuration with a single TX buffer, the DLL disabled, and a

polling interval of 5ms due to the absence of message 0x1B2 on the bus is also shown

in the simulation data.

4.2 Number of Transmit Buffers

A second scenario with two ECUs transmitting a combination of eight messages was

used to test the effect of the number of transmit buffers on network behaviour. The

ECU TX1 transmits message ID 0x192 with a period of 5ms and message 0x1B2

with a period of 4ms. The ECU TX2 transmits message IDs 0x1A1 through 0x1A6,

all with a period of 4ms. All messages were transmitted with randomized payloads.

78

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

The DLL was always enabled with a TxTask period of 1ms. Two configurations

were tested; one configuration for a single TX buffer in both ECUs, and another

configuration for two TX buffers in both ECUs.

Physical data was also collected from our lab for the second scenario, and again, at

least 100 samples of each message were collected. Data is provided here for messages

0x192, 0x1A1, 0x1A3, 0x1A5, and 0x1B2.

Physical bench Simulation Paired Error Paired P-value Unpaired P-value

1 message buffer

0x192
Interarrival 4.998645±0.060419 5.000148±0.083495 -1527e-6±0.030607 92.14% 97.69%
End-to-end 396.422±52.962 398.415±55.689 -0.316±16.165 96.92% 95.90%

0x1A1
Interarrival 3.998191±7976e-6 3.998016±0.013013 145e-6±0.013248 98.27% 98.18%
End-to-end 324.195±23.373 307.639±20.706 18.03±11.301 0.20% 29.55%

0x1A3
Interarrival 3.998090±0.021649 3.998096±0.023266 18e-6±7640e-6 99.62% 99.97%
End-to-end 787.882±19.670 830.988±21.691 -42.289±5.691 0.00% 0.39%

0x1A5
Interarrival 3.996291±0.026936 3.996159±0.027716 128e-6±0.011839 98.83% 99.46%
End-to-end 1257.913±24.251 1346.527±26.169 -87.654±8.520 0.00% 0.00%

0x1B2
Interarrival 4.010742±0.108551 4.012096±0.109249 -1244e-6±0.043820 95.53% 98.61%
End-to-end 1358.772±116.941 1399.944±120.307 -43.667±32.559 0.90% 62.76%

2 message buffers

0x192
Interarrival 4.998641±0.024662 5.000128±0.032010 -1491e-6±0.020235 88.41% 94.18%
End-to-end 295.833±17.368 297.048±22.253 -0.533±14.378 94.15% 93.20%

0x1A1
Interarrival 3.998187±9465e-6 3.998016±0.012984 141e-6±0.013085 98.30% 98.32%
End-to-end 319.664±23.089 307.543±20.683 13.544±11.064 1.68% 44.02%

0x1A3
Interarrival 3.998086±0.022268 3.998048±0.023195 63e-6±7457e-6 98.67% 99.81%
End-to-end 785.031±19.585 831.083±21.624 -45.258±5.826 0.00% 0.20%

0x1A5
Interarrival 3.996288±0.026574 3.996111±0.027943 171e-6±0.014684 98.16% 99.28%
End-to-end 1252.677±23.823 1356.559±26.211 -102.964±10.400 0.00% 0.00%

0x1B2
Interarrival 4.010739±0.103409 4.012096±0.109276 -1247e-6±0.045340 95.67% 98.58%
End-to-end 1414.260±118.016 1435.659±124.203 -23.452±33.334 16.63% 80.49%

Table 4.3: Physical and simulated results for the second scenario.

Table 4.3 shows that while average end-to-end timing errors are larger for the

second scenario, they are still within 10% of the expected values. Also, this increased

error may be because having two ECUs means that their individual clock drifts may

alter the sequence of released messages on the bus due to having message releases

that are not precisely in line with the configured message periods. This is supported

by the unpaired t-test p-values being significantly higher for the end-to-end response

79

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

times in many cases. Section 4.4 provides further discussion of the impact of clock

drift on system behaviour and simulation results.

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500
End-to-End Response Times for 1 Transmit Buffer

Physical average
Simulated average
Physical bounds
Simulated bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.5: Plot of end-to-end response times for the second scenario for the config-
uration with a single TX buffer.

Figure 4.5 shows a plot of the end-to-end response times for all messages in the

second scenario and includes plots of the worst case response times as predicted by

Davis et al. [2007] (labelled “2007 CAN Refuted”) and Khan et al. [2011] (labelled

“2011 Khan et al.”). Bounds from Davis et al. [2007] assume that there are no

buffer-related priority inversions, and bounds from Khan et al. [2011] assume that

there may be some buffer-related priority inversion, but that all messages in an ECU

may use any available buffer. The worst observed values in the simulation are much

tighter to what was actually observed in the physical bench, and in all cases except for

0x1A1, were not too optimistic. The worst case response time calculated from Davis

et al. [2007] is actually too optimistic for message 0x192 by a significant amount.

This spike in worst case response time for message 0x192 is accurately predicted by

80

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

the simulation and the method from Khan et al. [2011], though the latter is overly

pessimistic, providing a bound over 1ms longer than what was actually observed.

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500
End-to-End Response Times for 2 Transmit Buffers

Physical average
Simulated average
Physical bounds
Simulated bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.6: Plot of end-to-end response times for the second scenario for the config-
uration with two TX buffers.

Figure 4.6 shows the plot for the configuration using two TX buffers for each ECU.

Again, except for the worst observed time for message 0x1A1 being slightly faster than

the worst observed time in the physical data, the simulation shows upper bounds that

are much tighter than the worst case response times predicted by Davis et al. [2007]

or Khan et al. [2011], while still not being too optimistic. In this scenario, there are

sufficient buffers to avoid the type of priority inversion seen between messages 0x192

and 0x1B2 in Figure 4.5, and both of the analytically derived worst case response

times are almost the same, with the exception of message 0x1B2, due to a slight

difference in the algorithm. Because that priority inversion is no longer caused, the

bounds calculated from Davis et al. [2007] hold for all messages.

81

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

200

400

600

800

1000

1200

1400

1600

1800

2000
Comparison of End-to-End Response Times for 1 and 2 Transmit Buffers

Test data 1 TX buffer
Sim data 1 TX buffer
Test data 2 TX buffers
Sim data 2 TX buffers

Figure 4.7: Plot of end-to-end response times for the second scenario showing a
comparison between the two configurations.

Figure 4.7 shows a comparison between the configurations, highlighting the impact

of adding an additional TX buffer. The most significant effect is on message 0x192,

due to a priority inversion scenario introduced by the buffer limitation. At times when

the 0x1A- messages and message 0x1B2 release at the same time, message 0x1B2 is

loaded into the TX buffer but must wait for the other messages to finish transmitting

before it may win arbitration. Since this takes more than 1ms, if this happens when

message 0x192 will be released after 1ms, then message 0x192 must also wait for the

remaining 0x1A- messages to finish transmitting so that message 0x1B2 may transmit

and free the buffer. When there are two TX buffers, message 0x192 may simply use

the second buffer and arbitrate at the next SOF. This is the same type of priority

inversion discussed in Section 1.3.

The result of this is a decrease in message 0x192 ’s average response time and a

significantly lower maximum observed value when the second buffer is added. Both

82

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

of these changes are reflected accurately in the simulation data. For the other, less

significant changes, such as the slightly decreased average response times of messages

0x1A6 or 0x1B2, the simulation data shows a similar (in terms of magnitude and

direction) change between the configurations.

Physical bench Simulation

1 message buffer 44.51% 48.20%

2 message buffers 44.53% 48.20%

Table 4.4: Calculated and simulated utilization results for the second scenario.

Again, Table 4.4 shows utilizations over-reported by about 9%, but still being

within the theoretical maximum utilization. There is no significant difference in

utilization between these two cases because the priority inversion seen with a single

TX buffer, while greatly impacting the end-to-end response time of message 0x192,

does not change the number of message instances (and therefore the amount of bus

usage) seen within a set period of time.

4.3 Message to Buffer Mapping

Results from Sections 4.1 and 4.2 show that the simulation produces reasonably ac-

curate results. To test the impact of modifying the message to buffer mapping (i.e.

which buffers are able to be used by which messages), we have no physical bench

data, but the simulation is used as a baseline to compare with the analytical models.

Two different scenarios are used for this, both similar to the second scenario but

with some additional messages. The third scenario has an extra message 0x182 trans-

mitted by TX1 at a 5ms period. Three configurations are considered, with two TX

83

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

buffers and the DLL enabled in all three. The difference between the configurations

is that one has no buffers dedicated to any specific set of messages, one has one buffer

dedicated to messages of ID 0x18-, and the last has one buffer dedicated to messages

of ID 0x19-.

Message ID
182 192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 2 Transmit Buffers

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.8: Plot of end-to-end response times for the third scenario for the configu-
ration with no dedicated buffers.

In Figure 4.8, the bounds from both analytical methods are higher than what

is actually observed in simulation. The method from Khan et al. [2011] predicts a

priority inversion scenario for message 0x182 for when both buffers become occupied

by messages 0x192 and 0x1B2 that would have made the bound from Davis et al.

[2007] too optimistic. This priority inversion is never seen in the simulation, and the

reasons behind this and how it can cause different results from those predicted by

Khan et al. [2011] is explained in Section 4.5.

84

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
182 192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 2 Transmit Buffers (Dedicated Buffer for IDs 0x18-)

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.9: Plot of end-to-end response times for the third scenario for the configu-
ration with a buffer dedicated to messages 0x18-.

Figure 4.9 shows a case typical of what might be seen in practice, where, with

multiple buffers, a buffer is reserved for the highest priority messages. Message 0x192

now competes with message 0x1B2 for a single TX buffer resource, and we can see a

priority inversion that did not happen when there were no dedicated buffers, causing

the worst response time to be significantly higher, and even taking longer than the

bounds from either analytical method. This is the first case where we can see a bound

from the method in Khan et al. [2011] being too optimistic.

85

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
182 192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 2 Transmit Buffers (Dedicated Buffer for IDs 0x19-)

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.10: Plot of end-to-end response times for the third scenario for the configu-
ration with a buffer dedicated to messages 0x19-.

Figure 4.10 shows a slightly different case where a specific message class, but not

necessarily the highest priority class, has a dedicated TX buffer resource. Again, a

new priority inversion scenario is seen, this time with messages 0x182 and 0x1B2

contending for the remaining single buffer. Like in the previous configuration, this

causes the response time for message 0x182 to increase significantly and become worse

than the bounds predicted by either analytical method.

A fourth scenario, also used to illustrate some of the possible impacts of different

buffer assignment policies, is the same as the third test scenario, but with an addi-

tional message 0x1C2 transmitted by TX1 at a period of 4ms. In both examined

configurations there are two TX buffers, and the difference is that in one case, neither

buffer is dedicated to a specific set of messages, and in the second case, a buffer is

dedicated to the highest priority messages, 0x18-.

86

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
182 192 1A1 1A2 1A3 1A4 1A5 1A6 1B2 1C2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 2 Transmit Buffers

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.11: Plot of end-to-end response times for the fourth scenario for the config-
uration with no dedicated buffers.

Figure 4.11 shows the configuration with no dedicated buffers, and a huge priority

inversion can be seen for messages 0x182 and 0x192. Though overly pessimistic, the

bounds from Khan et al. [2011] do predict this priority inversion and are still above

all worst case observed times. The bounds from Davis et al. [2007] do not consider

buffers at all, and therefore are too optimistic for both messages.

87

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
182 192 1A1 1A2 1A3 1A4 1A5 1A6 1B2 1C2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500

3000
End-to-End Response Times for 2 Transmit Buffers (Dedicated Buffer for IDs 0x18-)

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.12: Plot of end-to-end response times for the fourth scenario for the config-
uration with a buffer dedicated to messages 0x18-.

Figure 4.12 again shows the configuration where the highest priority class has a

dedicated TX buffer resource. In this case, message 0x192 experiences a slightly worse

priority inversion scenario and has an increase in the worst observed response time.

Because the bounds for that message from Khan et al. [2011] were overly pessimistic to

begin with, they are still higher than this new, increased maximum. Message 0x182,

having a dedicated buffer resource, is now able to arbitrate at the start of frame

immediately following its release and no longer experiences any priority inversion

due to buffer constraints. This causes the bound for that message from Davis et al.

[2007] to hold, while the bound from Khan et al. [2011] becomes even more overly

pessimistic, overestimating the worst case response time by about 400%.

88

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

4.4 Clock Drift

To account for the drift in the model, calibration tests were performed with the ECUs

to see what the average inter-arrival times were for messages with some configured

period, and this average observed period on the bus was used to set a clock drift in the

model. For example, if a 10ms message was observed on average every 9.999930ms,

the ECU was configured with a drift of -7ns/ms. This method still disregards slight

fluctuations that may exist in reality, such as if that 10ms message might be released

after 9.999850ms in one instance or 10.000020ms in another.

This was important for accurately producing data in comparison for the scenarios

for which we had physical lab data, and using the same ECU configurations allows

us to produce simulation results for other scenarios that may be more realistic.

With regards to the scenario from Section 4.2, because clock drifts can impact the

message sequencing and response times, and because the physical test was only run

long enough to collected 100 samples of each message (500ms), additional simulations

were run to simulate 5 minutes of network activity for the two configurations.

89

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
End-to-End Response Times for 1 Transmit Buffer (5 Minutes of Simulated Activity)

Physical average
Simulated average
Physical bounds
Simulated bounds

Figure 4.13: Plot of end-to-end response times for the second scenario for the config-
uration with a single TX buffer with 5 minutes of simulation data.

While the simulated bounds shown in Figure 4.13 are the same as compared to

Figure 4.5, the key difference is the significantly lower average response times for

messages. This is because, due to the drift, for most of the 5 minutes simulated, the

messages transmitted by TX1 will not release around the same time as the messages

transmitted by TX2, resulting in less blocking and arbitration loss, decreasing average

message response. This is especially true for message 0x1B2, which would otherwise

have to lose arbitration against all of the 0x1A- messages every instance, and message

0x192, which may face a significant priority inversion when that occurs.

90

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
End-to-End Response Times for 2 Transmit Buffers (5 Minutes of Simulated Activity)

Physical average
Simulated average
Physical bounds
Simulated bounds

Figure 4.14: Plot of end-to-end response times for the second scenario for the config-
uration with two TX buffers with 5 minutes of simulation data.

Figure 4.14 shows similar decreases in the average response times to those seen in

Figure 4.13 for the same reason of the two ECUs mostly not releasing their messages

around the same time. An important thing to notice from this is that while adding

the additional buffer has a significant impact on the worst observed response time

for message 0x192 and a moderate to significant impact on the average response

times for some messages over the approximately 500ms test, when network activity

is simulated long term, the additional buffer has almost no impact on the simulated

average response time. This shows that while the worst case response time for a

message may seem dire, it may be an acceptably rare occurrence and the typical

network performance may still be acceptable at a less optimal configuration.

91

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500
End-to-End Response Times for 1 Transmit Buffer with No Clock Drift

Physical average
Simulated average
Physical bounds
Simulated bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.15: Plot of end-to-end response times for the second scenario for the config-
uration with a single TX buffer and no clock drift.

Figure 4.15 shows the results for the case with a single TX buffer if there was

no ECU clock drift information configured. Messages have longer response times on

average because they are more consistently having to arbitrate, or face the priority

inversion scenario in the case of message 0x192. Most notably, message 0x1B2 has a

much higher average response time since it will now never have instances that are able

to transmit immediately; every instance must arbitrate and lose against the 0x1A-

messages.

4.5 ECU Software Behaviours

The simulation tool makes certain assumptions about the behaviour of some of the

ECU software that are expected to hold true in practical CAN applications. The first

assumption is that all messages on an ECU are timed by a single TxTask, meaning

92

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

that no matter what happens with fluctuations in the timing of the ECU, all messages

that are scheduled at, for example, 5ms will be released at the same time. The other

key assumption is that messages are processed in priority sequence, meaning that

for multiple messages releasing simultaneously, the highest priority message will be

processed first and use the available TX buffer (if there is one).

This can have significant impact on network behaviour. Referring back to Section

4.2, message 0x192 may experience a priority inversion with message 0x1B2 in the

buffer for the configuration using a single TX buffer. Under our assumptions, this

will never happen when both messages release at the same time, since message 0x192

will always get the buffer in that situation. Since message 0x1B2 must arrive strictly

earlier to use the buffer, it can come either 1ms, 2ms, 3ms, or 4ms before message

0x192, which will then experience some priority inversion if message 0x1B2 is still in

the buffer. Message 0x1B2 may be delayed by the transmission of the 0x1A- messages,

and assuming that they release at the same time (which would be the worst case), the

transmission of those messages takes approximately 1350µs, meaning that message

0x192 may only experience priority inversion in the case when it arrives 1ms after

message 0x1B2. Without making those assumptions, the worst case considered by

Khan et al. [2011] is when all of the messages are released together and message 0x1B2

is buffered first. This is why the bound from Khan et al. [2011] is overly pessimistic

by a little over 1ms as shown in Figure 4.5.

To further illustrate the impact that these assumptions can have on the network

behaviour, we consider a scenario similar to Section 4.2, except in one case, message

0x192 transmits at a 4ms period, and in the other case, message 0x192 transmits

at a 4.000001ms period and the TxTask period is 1µs instead of 1ms (this produces

93

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

behaviour very similar to if the message had a 4ms but message 0x1B2 just got copied

to the buffer first).

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500
End-to-End Response Times for 1 Transmit Buffer (Assume 0x192 Buffers First)

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.16: Plot of end-to-end response times for the second scenario with message
0x192 at a 4ms period for the configuration with a single TX buffer and assuming
message 0x192 buffers first.

Figure 4.16 shows that under these assumptions, since message 0x192 and 0x1B2

always release together, message 0x192 will get the buffer every time and never ex-

perience the priority inversion predicted by the bounds from Khan et al. [2011].

94

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

R
es

po
ns

e
T

im
e

(µ
s)

0

500

1000

1500

2000

2500
End-to-End Response Times for 1 Transmit Buffer (Assume 0x1B2 Buffers First)

Average
Bounds
2007 CAN Refuted bounds
2011 Khan et al. bounds

Figure 4.17: Plot of end-to-end response times for the second scenario with message
0x192 at a 4ms period for the configuration with a single TX buffer and assuming
message 0x1B2 buffers first.

Figure 4.17 shows that when we set up the case such that our assumption is

violated and message 0x1B2 is buffered first even when message 0x192 is released at

the same time, we see an even more extreme priority inversion which actually comes

much closer to the bound predicted by Khan et al. [2011]. The average response time

for that message also becomes radically worse because of this.

4.6 Comparison With Other Simulations

A case study with results is found in Li et al. [2008] for a CAN simulation with a

model developed in SimEvents.

95

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Message ID DLC Period (ms) Message ID DLC Period (ms)

0x01 1 1000 0x0A 2 10

0x02 2 5 0x0B 1 100

0x03 1 5 0x0C 4 100

0x04 2 5 0x0D 1 100

0x05 1 5 0x0E 1 100

0x06 2 5 0x0F 3 1000

0x07 6 10 0x10 1 1000

0x08 1 10 0x11 1 1000

0x09 2 10

Table 4.5: The case study configuration information from Li et al. [2008].

(a) Results from Li et al. [2008]

Message ID
1 2 3 4 5 6 7 8 9 A B C D E F 10 11

R
es

po
ns

e
T

im
e

(µ
s)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000
End-to-End Response Times for a Case Study from a Paper on CAN Simulation with SimEvents

Average
Bounds
2007 CAN Refuted bounds

(b) Results from the simulation

Figure 4.18: Plots of end-to-end response times for the case study described by Table
4.5.

Figure 4.18 shows the results for end-to-end response times for the case study for

both this simulation tool and the results published in Li et al. [2008]. The calculated

values from Li et al. [2008] seem to provide a more pessimistic bound for message

0x0C than the calculated value from Davis et al. [2007], but otherwise seem the

96

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

same. More interestingly, the simulation results appear nearly identical. Because Li

et al. [2008] has no consideration for transmit buffers, clock drift, or any other such

concerns that may be configured in the simulation, the network was set up with the

17 messages divided over four transmitting ECUs, with five universally accepting TX

buffers per ECU. The utilization results reported by Li et al. [2008] showed 41.5%,

whereas in this simulation the utilization was reported to be 56.28%, which provides

the more pessimistic prediction and is still within the possible limit (as asserted in Li

et al. [2008]) of 57.31%. These utilization results are in line with those seen for the

simulation in Sections 4.1 and 4.2.

For another comparison, CANoe simulation was also run for the scenario used in

Section 4.2. End-to-end times are not reported, and configuration options in CANoe

are limited to setting message periods and transmitting nodes. The data is compared

against the single buffer configuration, because those are the results that seem to be

more closely matched.

Message ID
192 1A1 1A2 1A3 1A4 1A5 1A6 1B2

In
te

r-
A

rr
iv

al
 T

im
e

(m
s)

2

2.5

3

3.5

4

4.5

5

5.5

6
Inter-Arrival Times for 1 Transmit Buffer

Physical average
Simulated average
CANoe average
Physical bounds
Simulated bounds
CANoe bounds

Figure 4.19: Plot of inter-arrival times for the second scenario for the configuration
with a single TX buffer including results from CANoe simulation.

97

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

Figure 4.19 shows that the simulation accurately reflects the spread seen in the

inter-arrival times of the physical system, whereas the CANoe minima and maxima

are much farther away from those actually observed in the physical system for most

messages.

Physical bench CANoe Paired Error Paired P-value Unpaired P-value

0x192 4.998645±0.060419 97.01% 96.29%
0x1A1 3.998191±7976e-6 90.22% 96.18%
0x1A3 3.998090±0.021649 97.45% 99.19%
0x1A5 3.996291±0.026936 93.73% 86.27%
0x1B2 4.010742±0.108551 86.61% 88.59%

5.001029±0.039773 1801e-6±0.095071

4.001604±0.056947 -8764e-6±0.140876

3.998836±0.058675 -2508e-6±0.154666

4.000678±0.019714 -2416e-6±0.060631

3.999757±0.058349 0.017625±0.206435

Table 4.6: Physical and CANoe simulation results for the second scenario for the
configuration with a single TX buffer.

Table 4.6 shows the results and t-test p-values comparing the CANoe inter-arrival

times to the inter-arrival times seen in the physical test. While the results are still

good, the p-values are slightly better for most cases in Table 4.3.

4.7 A Practical Case

While there is no physical bench data for comparison, we are also able to run and

gather simulation results for a more realistic deployment scenario provided by GM

TCI. Sample data is included for messages transmitted on a single bus and received

by a single ECU, as well as the utilization level of that bus (there are other messages

transmitted on that bus and not received by the monitored ECU, which do not have

data included here). It takes approximately 11.5 minutes to compile and run to

simulate one minute of network activity. Of this time, 30 seconds is compilation

(which remains constant no matter how long the simulation is run for, and takes less

98

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

time for simpler models), so the time scaling is about 11:11.

For this test, since there are no known ECU hardware details, for all ECUs it is

assumed that there is a 2.5ms TxTask period, the DLL is enabled, and there are three

TX buffers usable by any message. Also, during model generation, it was found that

in the system description, two messages were missing ID information, two networks

had a duplicate message ID, and one message was missing any cyclic timing data.

Interarrival End-to-End

1 19.999999±0.013652 235.600±2.486

2 50.000000±0.040519 1294.051±20.472

3 10.000000±9641e-6 566.953±7.086

4 99.999991±366e-6 2818.857±20.620

5 99.999990±379e-6 3013.536±7.156

6 99.999989±416e-6 3741.378±7.730

7 99.999989±437e-6 4095.995±9.917

8 99.999990±454e-6 4275.452±3.357

9 99.999993±554e-6 6213.969±1.331

10 99.999995±571e-6 6456.647±0.750

Table 4.7: Sample of results from the network configuration provided by GM.

Table 4.7 shows the end-to-end response times and inter-arrival times for a set of

messages received by a single ECU on one bus. The simulated utilization for the bus

(which had additional traffic with information not provided here) is 10.04%.

Although there is no physical data for comparison with the GM results, they

still give a positive indication for the tool if we examine the trends in the results

with respect to what we would expect. Generally, lower priority messages should

have longer end-to-end times and larger variances. For end-to-end times, this is

1In MATLAB 2015a on Windows 8.1 with an Intel Core i7-3630QM 2.40GHz CPU and 8GB
memory

99

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

because they must wait for higher priority messages to transmit. For variance, this is

because, since the end-to-end time spans the time while the higher priority messages

are transmitting, the variance also captures any variability in those transmission

times. This can be seen in Table 4.7.

Message ID
1 2 3 4 5 6 7 8 9 10

In
te

r-
A

rr
iv

al
 T

im
e

(m
s)

0

20

40

60

80

100

120
Inter-Arrival Times

Average
Bounds

Figure 4.20: Plot of inter-arrival times for the scenario provided by GM.

An exception to the trend in variance for the first three messages is due to their

periods. Ignoring any messages not included in the sampled results, the messages on

the bus have periods of either 10ms, 20ms, 50ms, or 100ms (based on the average

interarrival times), as shown in Figure 4.20. As an example, any messages with a

period of 10ms will only be expected to interact with message with a period of 20ms

every second instance, and with messages with a period of 50ms every fifth. This

means that messages with periods lower than 100ms can have different instances

interacting with different sets of other messages. Instances that interact with all

other messages will have different timing behaviours from instances that interact

with fewer or no other messages, and so we would expect a greater variance in the

100

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

timing behaviour for those messages with periods less than 100ms, which can be seen

in Figure 4.21. Further, it is expected that the average end-to-end time for these

messages should be lower than we would expect from a slower message at a similar

priority level, because for instances with fewer message interactions, the end-to-end

timing does not include the transmission times of several higher priority messages,

bringing down the average end-to-end time. There are still some points of data that

conflict with expected trends, such as the relatively low variance seen with the last

three messages, but these could be caused by interactions with other messages on the

bus not being observed.

Message ID
1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e

(µ
s)

0

1000

2000

3000

4000

5000

6000

7000
End-to-End Response Times

Average
Bounds

Figure 4.21: Plot of end-to-end response times for the scenario provided by GM.

Figure 4.21 shows that wide ranges in worst and best observed response times are

not necessarily related directly to the overall variance in response time. Message 3,

for example, has a much wider range than message 2 despite having a much smaller

overall variance. This is because the worst-case scenario that occurs with the 100ms

period messages is much less frequent for the 10ms period message 3 (happening

101

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

once in every ten instances) than it is for the 50ms period message 2 (happening

for half of the instances). Figure 4.21 also shows that even with accurate worst-case

response time predictions, the average response times would be considerably faster for

the first three messages and probably more useful for evaluating predicted network

performance.

4.8 Conclusions

Comparisons to a physical test bench have been promising, indicating that the sim-

ulation produces accurate or at least reasonably accurate results, as seen in Sections

4.1 and 4.2. Further, the variety of adjustable ECU specific behaviours such as the

number of buffers or the buffer usage and loading policy allow the simulation to reveal

a number of network behaviour variations that may occur between different real-world

implementations. These differences in behaviour are not captured by current CAN

analytical models, as shown in Sections 4.2 and 4.3, and can cause the worst case

response times predicted by those methods to either be too optimistic, suggesting

limits lower than what may be seen, or uselessly pessimistic, suggesting limits several

times higher than what will actually happen. Further, the incorporation of practical

assumptions of software behaviour likely to be seen in real systems combined with

the ability to account for clock drifts of ECUs lets the simulation produce worst case

results closer to the actual worst case that may be seen in a physical system, as

well as producing average response results that may reveal when a system behaves

acceptably in the typical case despite having poor worst case results.

This simulation has more options for configuring implementation details than

appears in other simulation tools, and as Section 4.6 shows, this simulation performs

102

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

comparably to or possibly even better than other tools and is capable of performing

lower-fidelity simulations by underspecifying implementation details.

103

Bibliography

A. Cervin, D. Henriksson, and M. Ohlin. TrueTime 2.0 beta - Reference Manual.

Lund University, 2010.

R. Davis, A. Burn, R. Bril, and J. Lukkien. Controller Area Network (CAN) schedu-

lability analysis: Refuted, revisited and revised. Real-Time Systems, 35:239–272,

2007.

M. Di Natale. Understanding and using the Controller Area Network. Lecture Hand-

out, U.C. Berkeley, Oct 2008. http://inst.eecs.berkeley.edu/ ee249/fa08/.

M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal. Understanding and Using the

Controller Area Network Communication Protocol: Theory and Practice. Springer

Science & Business Media, 2012.

J. Hao, J. Wu, and C. Guo. Modeling and Simulation of CAN Network Based on

OPNET. In IEEE 3rd International Conference on Communication Software and

Networks (ICCSN), 2011, pages 577–581. IEEE, 2011.

M.G. Harbour, M.H. Klein, and J.P. Lehoczky. Fixed priority scheduling of periodic

tasks with varying execution priority. In 12th IEEE Real-Time Systems Symposium,

pages 116–128. IEEE Computer Society Press, Dec 1990.

104

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

T. Herpel, K.S. Hielscher, U. Klehmet, and R. German. Stochastic and Deterministic

Performance Evaluation of Automotive CAN Communication. Computer Networks,

53:1171–1185, 2009.

J.W. Hofstee and D. Goense. Simulation of a Controller Area Network-based Tractor

- Implement Data Bus according to ISO 11783. Journal of Agricultural Engineering

Research, 73:383–394, 1999.

D.A. Khan, R.I. Davis, and N. Nayet. Schedulability Analysis of CAN with Non-

abortable Transmission Requests. In 16th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA’11), Sep 2011.

J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines.

In 11th IEEE Real-Time Systems Symposium, pages 201–209. IEEE Computer

Society Press, Dec 1990.

F. Li, L. Wang, and C. Liao. CAN (Controller Area Network) Bus Communication

System Based on Matlab/Simulink. In 4th International Conference on Wireless

Communications, Networking and Mobile Computing, 2008 (WiCOM’08), pages

1–4. IEEE, 2008.

Documentation/SimEvents/SimEvents Examples. MathWorks, 2014.

J. Matsumura, Y. Matsubara, H. Takada, M. Oi, M. Toyoshima, and A. Iwai. A Simu-

lation Environment Based on OMNeT++ for Automotive CAN-Ethernet Networks.

In 4th International Workshop on Analysis Tools and Methodologies for Embedded

and Real-time Systems (WATERS2013), pages 1–6, 2013.

105

M.A.Sc. Thesis - Grant Whinton McMaster - Software Engineering

A. Meschi, M. Di Natale, and M. Spuri. Priority inversion at the network adapter

when scheduling messages with earliest deadline techniques. In 8th Euromicro

Workshop on Real-Time Systems, pages 243–248, Jun 1996.

N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in Automotive Com-

munication Systems. In Proceedings of the IEEE, volume 93, pages 1204–1223, Jun

2005.

T. Nolte, H. Hansson, and C. Norstrom. Probabilistic worst-case response-time anal-

ysis for the Controller Area Network. In 9th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS’03), pages 200–207, May 2003.

W. Prodanov, M. Valle, and R. Buzas. A Controller Area Network Bus Transceiver

Behavioral Model for Network Design and Simulation. IEEE Transactions on In-

dustrial Electronics, 56:3762–3771, 2009.

S. Punnekkat, H. Hansson, and C. Norstrom. Response time analysis under errors for

CAN. In 6th Real-Time Technology and Applications Symposium, pages 258–265.

IEEE Computer Society Press, May 2000.

RTaW-Sim User Manual. RealTime–at–Work, 2014.

K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time communications:

Controller Area Network (CAN). In 15th Real-Time Systems Symposium (RTSS94),

pages 259–263. IEEE Computer Society Press, 1994.

Vector: CANoe & Modules. Vector Informatik GmbH, 2014.

106

