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Abstract

The origin of cosmic magnetic fields is a important area of astrophysics. The

process by which they are created falls under the heading of dynamo theory, and is the

topic of this thesis. Our focus for the location of where these magnetic fields operate

is one the most ubiquitous objects in the universe, the accretion disk. By studying the

accretion disk and the dynamo process that occurs there we wish to better understand

both the accretion process and the dynamo process in stars and galaxies as well.

We analyse the output from a stratified zero net flux shearing box simulation

performed using the ATHENA MHD code in collaboration with Shane Davis. The

simulation has turbulence which is naturally forced by the presence of a linear instability

called the magnetorotational instability (MRI). We utilise Fourier filtering and the

tools of mean field dynamo theory to establish a connection between the calculated

EMF and the model predictions of the dynamically quenched alpha model. We find a

positive correlation for both components parallel to the large scale magnetic field and

the azimuthal components.

We have explored many aspects of the theory including additional contributions

from magnetic buoyancy and an effect arising from the large scale shear and the current

density. We also directly measure the turbulent correlation time for the velocity and

magnetic fields both large scale and small. We can also observe the effects of the

dynamo cycle, with the azimuthal component of the large scale magnetic field flipping

sign in this analysis.

We find a positive correlation between the divergence of the eddy scale magnetic

helicity flux and the component of the electromotive force parallel to the large scale

magnetic field. This correlation directly links the transfer of magnetic helicity to the
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dynamo process in a system with naturally driven turbulence. This highlights the

importance of magnetic helicity and its conservation even in a system with triply

periodic boundary conditions.
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Chapter 1

Introduction

The disk is a very common object in the Universe. We see these disks in a very wide

range of scales, from the structure of spiral galaxies, disks around supermassive black

holes in active galactic nuclei, stars accreting material off a companion, and in the

formation of stars and planets. Theoretical calculations and simulations extend this

list to include places where we don’t have the capability to observe directly but can

infer the presence of disks. This includes mergers between compact objects like white

dwarfs and neutron stars, around stellar mass black holes, and the final moments of a

core collapse supernova. This list is not exhaustive, but highlights how prevalent disks

really are in astrophysics.

To see why the disk shape is so common, we only need some fairly basic physics. If

we consider a spherical blob of gas, it will tend to collapse if the internal pressure is not

high enough. If the cloud is not rotating this will happen in an isotropic way. More

complicated treatments of this collapse process give rise to Bonnor-Ebert (Bonnor,

1956; Ebert, 1955) spheres and the Lane-Emden equation (Lane, 1870; Emden, 1907).

Random motions and/or turbulence will impart a net angular momentum and so the
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collapse process plays out somewhat differently. Instead of collapsing isotropically, the

centripetal force will act to prevent collapse in directions perpendicular to the angular

momentum vector. In the parallel directions, viscous forces in the gas will damp

vertical motions causing material to collect on the rotationally supported plane. The

thickness of this plane is determined by the gas pressure and the vertical component

gravity. The material in the plane, under the influence of gravity and internal pressure

gradients, will be in an orbit around the mass accumulating in the centre, giving rise

to the disk shape structure we see everywhere.

When the central object is the dominant source of gravity, the motion of the

material in the disk can be described as Keplerian rotation where material looses

angular momentum though the viscous forces present. As the angular momentum is

transferred outward, the material falls towards the central object. We call this process

accretion and so these disks are called accretion disks.

Disks are so common in the Universe, and yet we lack a deep understanding of

how they behave. For instance, jets and outflows are often observed in tandem with

disks and although observations for the launch of jets in these systems are not yet

sufficiently resolved, theoretical models involving magnetized outflows from disks (eg.

Blandford & Payne (1982)) or involving the interaction between rotating magnetized

stars and the disk are strongly favoured (see eg. Pudritz et al [PPVI] for a review).

Observations show these disks to be highly turbulent (Horne, 1995) and threaded

with magnetic fields (Donati et al., 2005). Worse, the picture presented in our simple

example has some worrying problems. If the particles in the disk are in orbits, then the

Rayleigh stability criterion states that the disk should be stable against perturbations.

We have a rough idea of the composition of the gas and so have an estimate for what

the viscosity of the gas should be, for example Spitzer (1962). The problem is when

we calculate an accretion timescale using this viscosity we get a timescale that is too
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large by orders of magnitude. Additionally, the magnetic field present in these disks is

too large if it were simply condensed from the background interstellar field as the gas

collapsed.

While there is much to understand, some progress has been made. Shakura &

Sunyaev (1973) used a parameter, α, to relate the viscosity to the pressure scale

height and sound speed in the disk. The viscosity is then argued to be enhanced

by turbulence and furthermore, magnetohydrodynamic (MHD) turbulence. The disk

structure can then be solved for observable quantities as functions of the α parameter.

As a result, the α parameter is often used to describe the accretion rate, angular

momentum transport, and turbulent stress in the disk.

In the Shakura & Sunyaev model, magnetic fields were also important for both

transporting angular momentum and as a source of magnetohydrodynamic turbulence.

The source of the turbulence was later found by Balbus & Hawley (1991) in their

rediscovery of a plasma fluid instability originally proposed by Chandrasekhar (1960)

and Velikhov (1959). This instability, called the magnetorotational instability (MRI)

relies on the interaction between the magnetic field, differential rotation, and the

plasma. The MRI is incredibly important as it provides a source of MHD turbulence,

transports angular momentum, and plays a central role in driving a magnetic dynamo.

The primary method of studying the dynamo and the MRI is to use a shearing box

simulation (Hawley et al., 1995). This work attempts to study the link between the

MRI and a mean field dynamo model by testing the predictions of the model against

such a local scale simulation. The goal is to be able to calculate quantities describing

the dynamo and accretion process using the large scale properties of the disk for use

in a global simulation where it is infeasible to resolve the microphysics.

Although the focus of this work is understanding the dynamo process in accretion

disks, we note also that dynamos are a ubiquitous process in the universe, and the
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standard approach to understanding them has so far proved disappointing. A deeper

understanding of the accretion disk dynamo may well prove helpful in improving our

understanding of stellar and galactic dynamos.

The following work will be divided into three major topics. The first we will

explain the background information needed to understand the models being developed.

We will cover hydrodynamics and magnetohydrodynamics, the standard Shakura &

Sunyaev model, and finally the mean field theory. The following chapter discusses the

techniques used to analyse the data and details of the simulation used to produce the

data. The third major chapter presents the results of this analysis.
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Chapter 2

Theory

2.1 Hydrodynamics

The goal of this chapter is to develop the α− Ω dynamo model by way of mean field

dynamo theory. To do this we will need the tools of magnetohydrodynamics which

relies on both electrodynamics and hydrodynamics.

2.1.1 Navier Stokes Equations

Before we start the derivation, there are some important assumptions which need to be

made. Mostly these fall under what is referred to as the Continuum Hypothesis. This

states that the fluid and its properties are continuous. The validity of this assumption

rests on comparing the mean free path of a particle to a characteristic length scale of

the problem.

Astrophysical systems cover a very large range of scales and densities, so we must

be careful about applying the continuum hypothesis. For instance, stars and accretion

disks are nearly perfect fluids owing to their relatively small scales and high densities.
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On the other hand, the interstellar medium and solar wind are relatively diffuse and

so the continuum hypothesis only holds on suitably large scales.

With these caveats in mind, we will start at the very beginning by considering a

distribution function of particles in phase space, f(x,v, t). Then we will construct an

equation to calculate the probability of finding a single particle in this phase space

volume with a given position, x and velocity, v as

∫∫
f(x,v, t) d3x d3v = N, (2.1)

where N is the total number of particles.

We assume all the particles are the same, that they collide, and that their total

number, momentum and energy is conserved. From this we can describe how the

phase space density changes due to collisions (Louiville’s Theorem states the phase

space volume does not change) with

df
dt =

(
∂f

∂t

)
col

. (2.2)

Using some calculus, we can define the total differential of f(x,v, t) as

df
dt = ∂f

∂t
+ ∂xi

∂t

∂f

∂xi
+ ∂vi

∂t

∂f

∂vi
, (2.3)

where we have used Einstein summation notation. Switching to vector notation we get

∂f

∂t
+ v · ∂f

∂x
+ g · ∂f

∂v
=
(

df
dt

)
col
. (2.4)

Here, g = ∂v
∂t

and is a place holder for forces. This equation is referred to as the

Boltzmann equation and is where we will derive the Navier-Stokes equations from by
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taking moments.

The first moment we will take is to multiply Equation (2.4) by the particle mass,

m, and integrate over d3v (with units given per volume) which gives

∫
m
∂f

∂t
d3v + ∂

∂x

∫
mvf d3v +

∫
m
∂(gf)
∂v

d3v =
∫
m (dft)col d3v. (2.5)

To make sense of this, we note that the mass density is given by ρ =
∫
mfd3v and so

we can identify the first term as ∂ρ
∂t
.

If we define the average of the velocity as,

U = 1
ρ

∫
mV f d3v, (2.6)

then the integral in the second term becomes, ∇ · (ρU ). If we can assume that f → 0

as v → ∞, then the third term vanishes by use of the divergence theorem. Finally,

the right hand side can be set to zero by enforcing conservation of particle number,

momentum and energy for colliding particles (molecular chaos theorem). Putting this

together yields,
∂ρ

∂t
+ (U · ∇) ρ+ ρ∇ ·U = 0 (2.7)

referred to as the continuity equation which represents conservation of mass.

Next we will derive the conservation of momentum equation. In this case, we will

multiply equation (2.4) by mv and integrate again. Through a similar process used

for the continuity equation, this gives,

ρ
∂U

∂t
+ ρ (U · ∇)U = ∇ · σ + f . (2.8)

We have left equation (2.8) in a general form which is usually referred to as the Cauchy
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Momentum equation. In this form, σ is the stress tensor while f represents body or

external forces such as gravity and electromagnetic forces.

The final step is to multiply by mv2 and integrate to get the conservation of energy

equation,
∂ε

∂t
+U · ∇ε = −p

ρ
∇ ·U − 1

ρ
∇ · F + 1

ρ
Ψ, (2.9)

where ε is the specific internal energy, F is the conduction heat flux, and Ψ is the

viscous dissipation rate.

The stress tensor is assumed to be isotropic and we define the diagonal elements

to give the pressure, p. The other parts of the stress tensor can be used to derive

the viscosity, which we will neglect here. Putting this together with the conservation

equations gives,

∂

∂t
ρ+∇(ρU) = 0 (2.10a)

ρ
∂

∂t
U + ρ (U · ∇)U = −∇p+ ρf (2.10b)

∂

∂t
E +∇ · (U (E + p)) = 0. (2.10c)

2.1.2 Helicity

The final part of this section will deal with a quantity known as the helicity. The

reasoning behind this is to set up its magnetic analogue which will be discussed in

Section 2.2.4.

The helicity is a topological quantity of a fluid defined as,

H =
∫
V
U · ω dV, (2.11)

where ω = ∇ × U is the vorticity. Physically it describes how twisted, knotted or
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linked the vortex lines in a fluid are.

This quantity is important since if the fluid is inviscid, incompressible and acted

on by conservative forces, it is a conserved quantity. It is noteworthy to point out

that in a real system, the helicity is destroyed by viscosity and so the conservation

is broken. Worse, since the helicity has units of E
L
where E is in units of energy, we

see that as the scale size decreases, the energy required for a given helicity decreases.

This scaling is generally referred to as cascading, whereby if some quantity is injected

at some higher scale it will cascade to smaller scales (the most recognizable example is

the well known 5/3 law where energy in a turbulent cascade has a one dimensional

power spectrum that scales as k−5/3). Since the energy per logarithmic interval has a

shallower dependence on eddy size than the helicity, it is trivial for the energy cascade

to carry helicity to ever decreasing length scales. Finally, at the smallest scales, viscous

losses are strongest and so the helicity is very efficiently destroyed by even small

amounts of dissipation.

Nevertheless, fluid motions are somewhat easier to understand conceptually than

magnetic phenomenon which will help us gain some insight into its magnetic analogue.

A physical analogy of the conservation of helicity can be seen in Figure 2.1.

Figure 2.1: As an analogy, consider an elastic band with a twist in it. Suppose now
we choose left handed and right handed twists to have opposite sign and define the
helicity as the addition of all the twists. Then we try to untwist the band, without
cutting it, we will end up creating a twist in the opposite sense. The net result is to
leave the helicity in the band unchanged.

9



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

Finally, the helicity shares many aspects with the current helicity and magnetic

helicity which will be discussed in the following section. All of these helicities play an

important role in the dynamo process discussed in Section 2.5.

2.2 Magnetohydrodynamics

To develop the mean field dynamo theory we will need to utilise the tools of magnetohy-

drodynamics (MHD). This is a rich field which describes the evolution of the velocity

and magnetic fields in a conducting plasma. It couples the equations developed in

Section 2.1 with Maxwell’s equations.

2.2.1 Assumptions

In addition to the assumptions of the Continuum Hypothesis, the magnetic field imposes

some new constraints. In the directions that are perpendicular to the magnetic field,

the Larmour radius and the skin depth must be small compared to the smallest length

scale of the problem. The scale in the parallel direction must be large compared to the

Landau damping scale. Finally, the ion gyration timescale must be short compared to

the system’s timescale. If the collision time scale is short compared any plasma time

scale, then the microphysical plasma time and length scales are irrelevant.

The final assumption to discuss is that of the resistivity, η. The resistivity is simply

defined as the inverse of the Ohmic conductivity. If η is negligible, then we are in the

regime of Ideal MHD, else we are dealing with Resistive MHD.

The simulation used to produce the data discussed in this work assumes Ideal MHD,

however numerical effects will act to mimic a resistive term giving rise to numerical

resistivity. As such, in this section we will derive the equations for Resistive MHD so

that we can follow the effects of the resistivity on our model.

10
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2.2.2 Maxwell’s Equations and Electrodynamics

The MHD equations, in part, describe the evolution of the magnetic field. The key

to this evolution lies with Maxwell’s equations and then later merging them with

equations (2.10). Maxwell’s equations are a collection of laws used to describe the

dynamics of electric and magnetic fields and their relations to charged particles.

Maxwell’s original work to model electricity and magnetism was based on fluid flow

and later a mechanical model, it is perhaps not surprising then that the mathematics

fit so nicely with those of fluid mechanics. Maxwell’s contribution was to collect the

then separate laws from Gauss, Ampere, Faraday, Coulomb, Poisson, Biot, and Savarte

along with his own addition of a displacement current to create a complete model.

The model predicted the presence of electromagnetic waves through use of the wave

equation and even a calculation of the speed of light.

The full set of equations (including the Lorentz force law) are as follows:

∇ ·E = ρc
ε0

(2.12a)

∇ ·B = 0 (2.12b)

∇×E = −∂B
∂t

(2.12c)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(2.12d)

F = q (E +U ×B) . (2.12e)

Equation (2.12a) is Gauss’ law describing the electric field, E from a distribution

of charge with density, ρc. Equation (2.12b) enforces the lack of a magnetic monopole.

Faraday’s law, Equation (2.12c), demonstrates the creation of an electric field from

a changing magnetic field, B. In a similar fashion, Ampere’s law Equation (2.12d),
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describes the generation of a magnetic field from a current, J and changing electric

field. Finally, though not usually included with the modern set of Maxwell’s equations,

is the Lorentz force law which describes the force on a particle with charge, q and

velocity, U , by the electric and magnetic fields. The units used here are SI so that ε0

is the permittivity and µ0 is the permeability of free space.

One final piece of information from electromagnetism will be needed to arrive at

the MHD equations, that is, the generalised Ohm’s law:

ηJ = E +U ×B (2.13)

where η is the resistivity.

2.2.3 Derivation

To derive the MHD equations, it would be entirely reasonable to start with the

Boltzmann equation and follow the same process we did in Section 2.1. For the sake

of brevity we will choose a more direct approach.

First we must make some more assumptions about the fluid, namely that it is

now a plasma with an equal number of positive and negative ions to remain overall

neutral. For simplicity, we will assume that the plasma is fully ionised, though this is

not strictly required. Additionally, we will set µ0 = 1 for ease of notation.

Next we will make a small change to Equation (2.12e) by calculating instead the

force density,

F = ρcE + J ×B. (2.14)
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Then we add this force to Equation (2.10b) through the body force term f ,

ρ
∂U

∂t
+ ρ (U · ∇)U = −∇p+ ρcE + J ×B + ρf , (2.15)

where we have left room in the f term in case we want to add gravity or other forces.

We now note that the plasma is neutral (ρc = 0) and so the term with the electric

field is zero. Now we use a vector identity along with Equation (2.12d),

J ×B = (∇×B)×B = 1
2∇B

2 − (B · ∇)B,

to get,

ρ
∂U

∂t
+ ρ (U · ∇)U + (B · ∇)B = −∇p∗ + ρf , (2.16)

where we have defined the effective pressure as p∗ = p+ 1
2B

2.

Adding the Lorentz force couples Maxwell’s equations to the Navier-Stokes equa-

tions, but now we need an equation to describe the evolution of the magnetic field.

This is accomplished through Faraday’s law, Equation (2.12c), and Ohm’s law, Equa-

tion (2.13). We first take the curl of Ohm’s law,

∇×E +∇× (U ×B) = η∇× J . (2.17)

We note that, ∇× J = ∇× (∇×B), and ∇×E = −∂B
∂t

to get,

∂B

∂t
= ∇× (U ×B) + η∇× (∇×B) . (2.18)

Finally, another vector identity,

∇× (∇×B) = ∇ ·B +∇2B,
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and Equation (2.12b) yields,

∂B

∂t
= ∇× (U ×B) + η∇2B. (2.19)

Through similar manipulation, we can get the conservation of energy equation as,

∂E

∂t
+∇ · (U (E + p∗) +B × (U ×B)) = 0. (2.20)

Collecting the conservation equations we arrive at the full set of resistive MHD

equations,

∂

∂t
ρ+∇ · (ρU) = 0 (2.21a)

∂

∂t
(ρU) + ρ (U · ∇)U + (B · ∇)B = −∇p∗ + ρf (2.21b)

∂

∂t
B = ∇× (U ×B) + η∇2B (2.21c)

∂

∂t
E +∇ · [U (E + p∗) +B × (U ×B)] = 0. (2.21d)

If we set the resistivity to zero in Equation (2.21c) the equations reduce to the ideal

MHD equations. Ideal MHD is notable since the magnetic field lines become frozen

into the fluid. Even though there is a small amount of numerical resistivity expected

in the simulation, the approximation of ideal MHD provides us with a useful insight

into the dynamics. Resistive MHD on the other hand, allows for diffusion of the field

lines across the fluid. Additionally, field lines are allowed to cross and reconnect which

has important implications in for example, the solar corona and plasma confinement.

14



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

2.2.4 Magnetic Helicity

One interesting aspect of MHD is the striking similarities between concepts in hy-

drodynamics and magnetic phenomenon. One of those similarities is the analogue of

the kinetic helicity we introduced in Equation (2.11). This analogue is the magnetic

helicity,

HM =
∫
V
A ·B dV, (2.22)

where A is the vector potential and ∇×A = B. From here on, we will write the

magnetic helicity with subscript M and the kinetic helicity with subscript K. Like the

kinetic helicity, the magnetic helicity is a topological invariant in ideal MHD.

The conservation of both the kinetic and magnetic helicities is broken when there

is a finite viscosity or resistivity. The key difference is that the magnetic helicity

converges to being conserved in the limit of zero resistivity, while the kinetic helicity

does not. Following our explanation of how the kinetic helicity conservation is broken,

the magnetic helicity has units of EL. This scaling means that the magnetic helicity

is concentrated on large scales, effectively protecting it from the dissipative effects of

resistivity acting on the small scale. We call this type of scaling an inverse cascade.

Perhaps the biggest difference between the kinetic and magnetic helicities, is that

due to the definition of HM relying on the vector potential, it is not a gauge invariant

quantity. There are ways of dealing with this though, such as a perfectly conducting

or zero net flux boundaries. Another way involves using the current helicity,

hc = J ·B, (2.23)

where we have now introduced the concept of helicity density. Out of simplicity, we
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will now refer to the kinetic, magnetic, and current helicities as,

hK = U · ω,

hM = A ·B,

hc = J ·B,

respectively.

These quantities will prove critical in the development of the mean field dynamo

model and indeed this entire work.

2.2.5 Dimensionless Quantities

To tie up the sections on hydrodynamics and magnetohydrodynamics, we will discuss

the dimensionless forms of these equations. Or rather, some dimensionless quantities

associated with them. We will derive perhaps the most common of these, the Reynolds

number and then simply state some of the others which will be relevant.

We begin by writing the viscid Navier-Stokes momentum equation,

ρ
∂U

∂t
+ ρ (U · ∇)U − µ∇2U = −∇p+ ρf , (2.24)

where µ is the dynamic viscosity. This equation is essentially Newton’s second law,

F = ma multiplied by the density, ρ, and so every term has units of ρ L
T 2 or ρV 2

L
.

To make the equation dimensionless we choose a characteristic length scale, L, and

velocity, V and then multiply by L
ρV 2 . Then we define dimensionless quantities,

U ′ = U

V
, p′ = 1

ρV 2 , f
′ = Lf

V 2 ,
∂

∂t′
= L

V

∂

∂
, ∇′ = L∇.

16
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Putting this together yields,

∂U ′

∂t′
+ (U ′ · ∇′)U ′ − µ

ρLV
∇′2U ′ = −∇′p′ + f ′.

This expression looks almost the same as our Navier-Stokes equation, except for the
µ

ρLV
term which we will define as,

Re ≡ ρLV

µ
, (2.25)

or the Reynolds number. In words, the Reynolds number tells us the relative strength

of inertial forces to viscous forces.

Often, the Navier-Stokes equation will be written as,

∂U

∂t
+ (U · ∇)U − 1

Re
∇2U = −∇p+ f , (2.26)

with the reasoning that fluids with the same Reynolds numbers and same geometry

are similar. The whole idea behind creating scale models in wind tunnels is that if

by adjusting the speed of the wind you can match the Reynolds number, then the

behaviour of the full scale can be inferred.

For our purposes, however, the Reynolds number has another important property.

That is, at large Reynolds numbers the fluid flow becomes turbulent. There is no precise

number where this occurs, but for terrestrial systems the boundary is at Re ≈ 103 and

fully developed turbulence at Re ≈ 105. Astrophysical flows, particularly Keplerian

flows found in accretion disks are thought to behave differently than terrestrial fluid

flows. For instance, even though accretion disks from simple scaling estimates have

Reynolds numbers of > 1010, the Coriolis force may stabilise a purely hydrodynamic

flow. In the presence of even a weak magnetic field however, the plasma becomes
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highly unstable and turbulent, owing to the MRI (Balbus & Hawley, 1991). There are

a host of other dimensionless quantities used in all areas of fluid mechanics and MHD,

we will define here only the relevant ones.

Reynolds Number Re ≡ ρLV 2

µ
Ratio of inertial to viscous forces

Prandtl Number Pr ≡ cpµ
k

Ratio of viscous to thermal diffusion rate

Rossby Number Ro ≡ V
Lf

Ratio of inertial to Coriolis forces

Magnetic Reynolds Number Rm ≡ V L
η

Ratio of magnetic advection to magnetic diffusion

Magnetic Prandtl Number Prm ≡ ν
η

Ratio of viscosity to resistivity

2.3 Shakura and Sunyaev α Model

We take a brief diversion from our discussion of MHD before we introduce the mean

field dynamo theory and the α model of accretion, Shakura & Sunyaev (1973).

The motivation for this model is to parametrise angular momentum transport in an

accretion disk. If we consider a disk of material, then this disk will be stable against

perturbations if Rayleigh’s stability criterion is satisfied, namely

∂(R2Ω)
∂R

> 0. (2.27)

If the disk is Keplerian, meaning each piece is in an orbit, then this criterion is always

satisfied and the disk should be stable. The viscosity of the fluid will define a timescale

for accretion or equivalently the angular momentum transport. Arguments based on

the properties of the material in the disk give an estimate of this timescale that is

longer than observed values by orders of magnitude (using for instance the values of

molecular viscosity from Spitzer (1962)). Shakura & Sunyaev noted that an effective

viscosity enhanced by turbulence and magnetic fields could explain the discrepancy.
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They began by assuming that the stress tensor scales with the sound speed,

WRφ = αc2
s. (2.28)

From this, we can define an effective viscosity, ν = αcsH, where cs is the sound speed

and H is the scale height. Since the Maxwell stress tensor can be included here,

magnetic fields were certain to be important but their role was not well understood.

In addition to providing a measure for the accretion rate, the α parameter can be

used to estimate other observables of the disk such as the midplane temperature and

density by choosing an opacity law. Even though it is rather dubious to parametrise

turbulence by a single value, α is still useful in describing the observable properties

of the disk. The model we wish to develop is motivated by being able to define an α

value based on the large scale properties as a function of position in the disk. Thus

providing a more fine grained approach with the intent of explaining local and transient

phenomenon in observed disks, or use as a subgrid model in global simulations of

accretion disks.

2.4 The Magnetorotational Instability

To explain the anomalous viscosity, Balbus & Hawley (1991) proposed a linear plasma

instability called the magnetorotational instability (MRI). This instability, originally

discovered by Velikhov (1959) and Chandrasekhar (1960) by analysing Couette flow

in a rotating hydromagnetic system was later applied to the astrophysical accretion

disk flow by exploring the weak field limit. The MRI functions on the principle that

a restoring force can be unstable in a differentially rotating system. The restoring

force in the accretion disk is due to the magnetic field applying tension between fluid
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elements and the differential rotation comes from the Keplerian velocity profile. A

visual representation can be seen in Figure 2.2.

More formally, the equations of motion for a fluid element at radius R0 in orbit

with angular velocity Ω can be solved using a linear perturbation approach to give

solutions of the form eiωt. Here ω satisfies,

ω2 = 4Ω2
0 +R

dΩ2

dR , (2.29)

where Ω0 = Ω(R0). For ω to be real, ∂(R2Ω)
∂R

> 0, which for an accretion disk with

a Keplerian velocity profile is satisfied. This result is referred to as the Rayleigh

Criterion. The types of solutions obtained this way are referred to as epicycles, wherein

a perturbed object will perform a retrograde orbit about its equilibrium point as it

orbits the central object with frequency κ.

To see how the magnetic tension (denoted by the placeholder, K) can destabilise,

we can do the same stability analysis. The resulting equation for ω is now,

ω4 − (2K + κ2)ω2 +K(K +R
dΩ2

dR ) = 0, (2.30)

where κ2 is epicyclic frequency. If K is small enough, then ω will have imaginary value

corresponding to exponential growth solutions. In the presence of a weak magnetic

field, the stability criterion is now,

∂(Ω2)
∂ lnR > 0, (2.31)

which is never satisfied in a Keplerian system. At some point depending on the

conditions in the disk, the magnetic energy will achieve a maximum value and we say

the MRI is saturated. Though it is unclear what factors might affect the saturation,
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in general the MRI saturates when the magnetic energy is in equipartition with the

turbulent energy and is some fraction of the local gas pressure which corresponds to

an α . 1.

Figure 2.2: Here we consider adjacent fluid elements in orbit threaded by a magnetic
field parallel to the angular momentum vector. If one of the fluid elements is displaced,
the magnetic tension between the elements will increase. This tension will lead to the
inner element falling to a lower orbit while the outer element will move to a higher orbit.
The net result will be to increase the magnetic tension more, leading to instability.
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2.5 Mean Field Dynamo

In this section we will develop the theory behind the model we employ. The basic idea

is that we take the MHD equations and define them for, in our case, an accretion disk

and separate them into two parts. The goal in doing this is to explain the large scale

phenomena in terms of the small scale or turbulent behaviour.

2.5.1 Mean Field Separation

Mean field theory has a rich history, and what follows shares similarities to Large Eddy

Simulations (Deardorff, 1970) and Reynold Averaged Navier Stokes. In the pioneering

works by Moffatt (1978); Parker (1979); Krause & Raedler (1980), mean field theory

was applied to the MHD equations. The first step of this process is to define what we

mean by separating the equations into two parts. and separation meant that a field,

B could be separated into a mean part and a fluctuating part,

B = B + b.

What we intend to do here is instead of a mean and fluctuating parts we will use

large and small scale parts. The goal in separating the scales is to isolate the effects

of the MRI on the large scale dynamo, as such the dividing line will be between the

large scale dynamo peak and the MRI forcing scale as described in Section 3.0.7. In

what follows, upper case letters will denote the total quantities, lower case will signify

small scale or fluctuating quantities, and a bar will represent large scale. Before we

can apply this to the MHD equations, we need to define the rules for this process.

Typically, these are referred to as the Reynolds averaging rules (Monin & I’Aglom,

1971; Reynolds, 1895).
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1. Linearity:

F +G = F +G

cF = cF

c = c

2. Derivatives:

∂tF = ∂tF

∂xF = ∂xF

3. Products:

FG = F G

4. Additional properties:

F = F

f = 0

FG = FG

Fg = 0

∂tf = 0

∂xf = 0
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With these rules in mind we begin by defining the large and small scale quantities,

B = B + b, U = U + u, J = J + j.

The two equations we will need are the momentum equation and the induction equation.

Averaging the induction equation gives,

∂B

∂t
= ∇×

(
U ×B

)
+ η∇2B

= ∇×
(
U ×B) + u× b

)
+ η∇2B. (2.32)

It is useful to define u× b as the turbulent electromotive force or EMF or E . If we

now subtract Equation (2.32) from Equation (2.21c) and combine terms we get,

∂b

∂t
= B · ∇u+ u · ∇B +G, (2.33)

where G = ∇×
(
u× b− u× b

)
.

If we apply the same treatment to the momentum equation, we get

∂U

∂t
=−U · ∇U − u · ∇u+B · ∇B + b · ∇b−∇(P + p)− 1

2(B2 + b2), (2.34)

and

∂u

∂t
=− (U · ∇)u− (u · ∇)U − (u · ∇)u+ (u · ∇)u

+ (B · ∇)b+ (b · ∇)B + (b · ∇)b− (b · ∇)b

−∇p+ 1
2∇b

2 − 1
2∇b

2 −∇b ·B
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2.5.2 Transport Coefficients

At this stage we will derive the standard approach in mean field dynamo theory. That

is, we wish to be able to describe the electromotive force in terms of the large scale

magnetic field, B. The common choice is to assume that the EMF can be expanded

in terms of derivatives of B,

Ei = αijBj + βijk∂kBj + . . . . (2.35)

Where α and β are pseudo-tensors and are referred to as the turbulent transport

coefficients.

If we assume the turbulence is homogeneous and isotropic, then the tensors reduce

to scalars and Equation (2.35) reduces to (keeping only the first derivative),

E = αB + βJ , (2.36)

where α = δijαij and β = βijkεijk. Because of the properties of B and E , α is really a

pseudo-scalar, meaning α = −α when x→ −x.

At this point the first major approximation comes in, namely we assume that G in

Equation (2.33) is small which is valid when b� B. This is usually referred to as the

first order smoothing approximation, or FOSA. Equation (2.33) then becomes,

∂b

∂t
= ∇×

(
u×B

)
. (2.37)

From here, the EMF can be solved by integrating this equation, taking the cross

25



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

product with u and filtering,

E = u×
∫ t

0
∇×

(
u×B

)
dt. (2.38)

This equation can be solved and give the simplest form of the transport coefficients

as α = −1
3τcu · ω and β = −1

3τcu
2, where τc is the correlation time derived from

approximating the integral.

There are a number of other approximation schemes to arrive at the transport

coefficients, such as Eddy Damped Quasi-normal Markovian (EDQNM) approximation

and Minimal Tau (MTA); a thorough discussion of these and other topics can be found

in Brandenburg & Subramanian (2005).

We recognise now that α is just the kinetic helicity from Equation (2.11). This

is the crucial piece in what is referred to as the α − Ω dynamo, where a poloidal

field is generated from a toroidal one. The α term plays the role of transforming and

amplifying the toroidal field into a poloidal one while the Ω effect is the shear turning

the poloidal into a toroidal.

2.5.3 Catastrophic Quenching

This form of the α − Ω dynamo enjoyed a lot of success in solar and geo dynamo

models. There are some serious problems with the model with criticism from Gruzinov

& Diamond (1994) and Cattaneo & Hughes (1996) about where the kinematic dynamo

assumptions are valid, for example.

One problem is that the FOSA assumption breaks when b was found to grow

much more quickly than B (Kulsrud & Anderson, 1992). Additionally, we made the

assumption that the turbulence was homogeneous and isotropic, but it can not be

isotropic, else the average of the EMF would be zero. Homogeneity must be broken as
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well to have any growth from ∇×
(
u×B

)
, Blackman & Field (1999).

The biggest concern with this model, however, is that of catastrophic α quenching.

Vainshtein & Cattaneo (1992) noted that the α effect was sharply suppressed in the

high magnetic Reynolds number regime resulting in quenching of the dynamo for even

small mean fields. Since astrophysical systems typically have enormous values of Rm

while simultaneously having large magnetic fields, this pointed to a failure of the model.

Vainshtein & Cattaneo (1992) worked out a correction factor of the form,

α = α0

1 +RmB
2
/B2

eq

, (2.39)

where B2
eq is the equipartition energy density.

2.5.4 Dynamic Quenching

The physical reasoning behind why the α effect quenches in these types of simulations

is largely due to the conservation of magnetic helicity which we defined in Section 2.2.4.

The reason has to do with how both the kinetic and magnetic helicity conservation

behaves in the presence of viscosity and resistivity (recall, numerical viscosity and

resistivity are present in simulations regardless of whether ideal MHD is employed).

Viscosity and resistivity dissipate energy most efficiently at small scales. Kinetic

helicity cascades down to small scales while the magnetic helicity cascades to larger

scales, this means that hK is most affected by dissipation while hM remains largely

untouched. This concept also helps explains the α effect’s dependence on Magnetic

Reynolds number.

To see the link between magnetic helicity conservation and the α effect, we take

a look at the magnetic α effect (Pouquet et al., 1976). It was soon discovered that

adding this term backreacted on the kinetic α term which acts as a natural, dynamic
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way of quenching α. The α term in Equation (2.36) is now,

α = αK + αM = −1
3τcu · ω + 1

3ρτcj · b. (2.40)

We can relate the α term to the magnetic helicity since j · b ≈ k2
fa · b (Mitra et al.,

2010), where a · b is the small scale magnetic helicity. This now ties in with our

discussion of the conservation of the kinetic and magnetic helicities as well as how

their spectral densities cascade. That is, the conservation of magnetic helicity places a

critical constraint on the dynamo theory. Therefore, any successful dynamo theory

must deal with the conservation of magnetic helicity or else it will pile up on small

scales and strongly quench the dynamo. We will see that the transfer of magnetic

helicity from small scales to large, i.e. a · b to A ·B also depends on the EMF. So a

nonzero EMF facilitates the accumulation of small scale magnetic helicity with a sign

which tends to cancel a nonzero EMF.

2.5.5 Magnetic Helicity Flux Driven Dynamo

In this section we will explore how the magnetic helicity flux driven by the current

helicity in the αM term can drive a dynamo (Vishniac & Cho, 2001). Since we are

working with a gauge dependant quantity, it is important to define which gauge we

are working with. That is, the Coulomb Gauge where, ∇ ·A = 0 and

A(r) =
∫ J(r′)

4π|r− r′| d
3r′. (2.41)

This gauge choice preserves an approximately constant proportionality between the

small scale current and magnetic helicities.
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We can define the time evolution of the vector potential as,

∂A

∂t
= U ×B −∇Φ− ηJ , (2.42)

where ∇2Φ = ∇ · (U ×B). Now, using the induction equation we can write

∂A ·B
∂t

= −ηJ ·B −∇ · [BΦ +A× (U ×B)− η (A× J)] . (2.43)

We define the divergence term as a flux of the magnetic helicity density, JH to get

∂t(A ·B) = −ηJ ·B −∇ · JH . (2.44)

Following our scale separation procedure, we can define the large and small scale

evolution equations,

∂t(A ·B) +∇ · JH = 2E ·B − 2ηJ ·B, (2.45)

and

∂t(a · b) +∇ · jh = −2E ·B − 2ηj · b, (2.46)

Where 2E · B appears in both equations with opposite sign, its role is to transfer

magnetic helicity between scales. The large and small scale magnetic helicity fluxes

are defined as,

JH =
(
E +∇Φ + ηJ

)
×A, (2.47)

and

jh = (ε+∇φ+ ηj)× a. (2.48)
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In these expressions, ∇2Φ = ∇ · (U ×B + E) and ∇2φ = ∇ · ε, where

ε = U × b+ u×B + u× b− u× b. (2.49)

The importance of these quantities rests largely with the conservation of magnetic

helicity. Accumulation of magnetic helicity will result in a contribution to the EMF

with the opposite sign as the kinematic term leading to the quenching discussed in

Section 2.5.3. If there is a non zero flux of magnetic helicity, then we expect a balance

between the divergence of this flux and the EMF.
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Chapter 3

Methods

In much of the work that follows, we will be using methods of Fourier analysis to both

solve differential equations, decompose the data into two parts, and to perform various

filtering techniques to the data. To that end, we need to define what the Fourier

Transform is and some of its properties.

The Fourier Transform (FT) stems from the study of Fourier Series where any

periodic function can be described by a possibly infinite set of sine and cosine waves.

The FT is then the generalisation of a Fourier Series by removing the condition of

periodicity, using the complex exponential form of the sine and cosine, and using an

integral instead of summation.

The FT and its inverse are defined as,

f̂(k) =
∞∫
−∞

f(x)e−ix·k dx, (3.1)

f(x) =
∞∫
−∞

f̂(k)eik·x dk,

Where we have defined the Fourier Transform on a 3-Dimensional domain so that
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x = (x, y, z) and k = (kx, ky, kz) and we denote dx = dx dy dz and dk = dkx dky dkz.

Traditionally, the FT transforms a function of amplitude versus time to amplitude

versus frequency. In the notation presented in Equation (3.1), we instead transform a

function defined in the spatial domain to one defined by wavenumbers, k. An example

of the box car function and its Fourier transform are given in Figure 3.1. The notation

used in this work will use bold letters to denote vector quantities and the hat symbol

to represent transformed quantities. For simplicity, we will sometimes refer to the

transformed domain as k-space.
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Figure 3.1: On the left is an example of a box car function centered around x = 0. On
the right is the Fourier Transform of the given box car function, note that it is a sinc
function (f(x) = sin(x)/x). This example will be of particular importance once we
discuss the filtering techniques using the Fourier Transform.

3.0.6 Differential Equations with Fourier Transforms

To understand why the FT is so useful, we will explore some of the techniques used in

this work and explain the salient properties as we go. The first technique is using the

FT to solve differential equations. The essential point is that by taking the Fourier

Transform we can turn a partial differential equation into an ordinary equation or an
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ordinary differential equation into a algebraic equation. We can show this by way of

example using the Poisson Equation (in 1 dimension),

∇2Φ(x) = ρ(x).

The first step is to take the Fourier Transform of this equation,

− k2Φ̂(k) = ρ̂(k).

It is straightforward to show that the FT of f ′(x) is ikf̂(k) (using integration by

parts),

Ff ′(x) =
∫ ∞
∞

f ′(x)e−ixk dx = ik
∫ ∞
∞

f(x)e−ixk dx = ikf̂(k)

Given this, the Poisson equation is transformed into an algebraic equation which

is easily solved. The final step is to invert transform to get the solution in the

spatial domain. This last step can be difficult if ρ(x) is complicated, luckily numerical

techniques exist which we will discuss in Section 3.0.8.

3.0.7 Filtering Techniques

The next technique used in this work is digital filtering, specifically lowpass and

highpass filtering. There is a vast wealth of resources on digital signal processing

but by necessity we will need to restrict our attention to some fairly simple concepts.

In simple terms, a lowpass filter is one in which given an input signal, only "low"

frequencies are allowed to be transmitted. Conversely, a highpass filter is one in which

"high" frequencies are transmitted. The "low" and the "high" frequencies passed are

set by the filter design according to a cutoff frequency, fc. We will use L to denote

a lowpass filter operation and δ to represent a highpass filter. These filters have the
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property that L = 1− δ and vice versa. This property also implies that given a signal,

A, it can be decomposed into two parts, A = LA+ δA.

The type of filter we have used in this work is referred to as an "ideal filter". It is

named so because it provides the sharpest possible cutoff of frequencies or scales. It is

also the least complicated to implement. In general terms, the implementation of a

filter is quite straight forward. The transformed filtered output is simply the product

of the Fourier Transformed signal with the filter function. The ideal lowpass filter

function is then actually just the box car function from Figure 3.1, it cuts off any

frequency with |f | > fc where fc is half the width of the box car function.

At this point it is worthwhile to look at another interesting property of the FT,

namely multiplication in k-space is equivalent to convolution in the spatial domain, or

Ff · Fg = F(f ∗ g).

The consequences of our filter shape are now apparent, the ideal lowpass filter is the

same as convolving our signal with a sinc function. This is usually referred to as

ringing due to the oscillatory nature of the sinc function. How undesirable the ringing

in the filtered output is depends on the goals of the filter. In our case, a sharp cutoff

in k-space is the most important effect and so the ringing is an acceptable trade off.

The value of the cutoff frequency used is chosen by examining the magnetic power

spectrum and noting where in k-space the MRI (kH/(2π) = 4) versus the large scale

dynamo (kH/(2π) = 0.8) are operating as shown in Figure 3.2. We choose a value of
kH/(2π)

= 2 as the cutoff according to this criterion as well as maximising the correlations

found in Chapter 4.
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Figure 3.2: Power spectrum of the magnetic energy, weighted by the wavenumber k
averaged over 250 orbits. The second peak in this spectrum at k

2π = 4 corresponds to
the scale where the MRI is injecting turbulence. The first peak we associate with the
large scale dynamo. The choice of cutoff frequency is designed to separate the effects
of these two processes. Figure courtesy of Dr. Shane Davis.

3.0.8 The Fast Fourier Transform

The discussion of Fourier Transforms has so far assumed that the functions have been

continuous and on an infinite domain. When working with data from a numerical sim-

ulation, this assumption no longer holds. Fortunately, the properties of the continuous

Fourier Transform still apply to its discrete version,

f̂n =
N−1∑
j=0

e−2πijn/Nfj,

fj = 1
N

N−1∑
n=0

e−2πijn/Nfn.
(3.2)

Though this is entirely correct, there is a major flaw with this approach to calculating

a discrete transform. Since we need to sum to N for each value of n or j, the scaling of
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this calculation goes as ON2 which is expensive computationally. Instead, we use the

Fast Fourier Transform (Cooley & Tukey, 1965), which exploits certain symmetries to

arrive at a solution which scales as ON logN . The particular implementation of the

FFT for this work uses the Numpy library in Python.

One important consequence of using a discrete transform, is that the domain on

which we transform a function is finite. Since the Fourier Transform assumes an

infinite domain, the resulting transform will then be periodic with a period equal to

the domain size. Fortunately, in our case the data happens to be periodic as well, so

Fourier Analysis will be a good fit.

3.1 Shearing Box Formalism

The central theme in accretion disk theory is the magnetorotational instability. There

is much that is not known about this instability and so many simulations have been

set up to investigate it. A major difficulty is that the turbulence generated by the

MRI covers many scales which means performing a global simulation of an accretion

disk is impractical given modern computational power. A local simulation is therefore

the best option and early simulations were most interested in finding which simple

quantities could predict the saturation amplitude of the MRI. A simulation performed

in Hawley et al. (1995) used a shearing box type geometry to successfully determine

the dependence of the saturated state of the MRI on certain physical quantities such

as the initial mean magnetic field. This simulation laid the groundwork for many other

local simulations used to study the properties of the MRI and the dynamo process.
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3.1.1 Description

In the shearing box formalism we consider a piece of an accretion disk at some radius,

R0, which is small compared to the total radius of the disk and whose dimensions are

small compared to R0. The piece is corotating at the orbital frequency, Ω. Finally

adopting a cartesian coordinate system where we map x to the radial, y to the

azimuthal and z to the vertical coordinate, we can write the MHD equations as,

∂

∂t
ρ+∇ · (ρU ) = 0 (3.3)

ρ
Du
Dt + (B · ∇)B = −∇p∗ + ρΩ2 (2qxx̂− zẑ)− 2Ωẑ × ρu (3.4)
∂

∂t
B = ∇× (U ×B) (3.5)

∂

∂t
E +∇ · [U (E + p∗) +B × (U ×B)] = 0. (3.6)

We have introduced a the total derivative notation, D
Dt ≡ ∂

∂t
+ u · ∇, and the shear

parameter q = −d ln Ω
d ln r . For a Keplerian accretion disk, q = 3/2. The last term of

Equation (3.4) corresponds to the Coriolis force while the second to last term represents

the effective gravitational + centrifugal potential. To further specify the equations,

the equation of state is chosen to be isothermal so that,

p = c2
sρ, (3.7)

where cs is the sound speed. Adittionally, in the simulation used throughout this work,

we have used the parameters set out in Davis et al. (2010). That is, the equation of

state is isothermal with a sound speed of cs = 5× 10−7, orbital frequency Ω = 10−3

and ρ0 = 1.

Where the shearing box derives its name is in how the boundaries are defined. We
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define x̂, ŷ, and ẑ to be the radial, azimuthal and vertical direction respectively. In

the azimuthal and vertical directions the box is strictly periodic, but to simulate the

shearing environment the radial direction is shearing periodic. This can be expressed

as (Hawley et al., 1995),

f(x, y, z) = f(x+ Lx, y − qΩLxt, z),

f(x, y, z) = f(x, y + Ly, z),

f(x, y, z) = f(x, y, z + Lz),

where Lx, Ly, Lz are the box dimensions and f is any function defined in the box.

The azimuthal velocity across the x-boundary is a special case and is defined as,

vy(x, y, z) = vy(x+ Lx, y − qΩLxt, z) + qΩLx. (3.8)

At t = nLy

qΩLx
where n is a positive integer, the box becomes purely periodic. These

special points will become important for dealing with Fourier decomposition. A visual

representation of the shearing effect is given in Figure 3.3.
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Figure 3.3: The boxes at t = 0 begin strictly periodic and over time slide past each
other. At some later time, given by the periodic points, the boxes will go back to a
configuration like at t = 0. Image from Hawley et al. (1995).

The shearing periodic boundary also places special constraints on Fourier Trans-

forms. Since the FT assumes periodic functions, and the radial direction is not, then

we need to modify our approach slightly. Normally we can define the wavevectors, k

as we do for the vertical and azimuthal directions,

ky = 2πny
Ly

, (3.9)

kz = 2πnz
Lz

, (3.10)

where ny, nz = . . . ,−1, 0, 1, . . .. For the radial direction, k is now a function of time

and we define it as,

kx(t) = 2πnx
Lx

+ qΩkyt. (3.11)

40



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

When taking Fourier Transforms, whether to filter or solve differential equations, it

is important that we do a change of variables y → y′ − qΩx(t − tn) where tn is the

nearest periodic point before transforming. Then change back after doing whatever

Fourier technique. This process is referred to as mapping and remapping.

3.1.2 Stratification and Zero Net Flux

An important consideration when investigating these local simulation is the initial

configuration of the magnetic field which threads it. In Hawley et al. (1995), the

initial field orientation was chosen to be vertical to emulate the effect of the dipole

field from the central object piercing the disk or an advected field. They found that

the saturation state of the MRI depended on the strength and orientation of this

initial field. If zero net flux is chosen, simulations find that the saturation level is

independent of the initial configuration. For this reason, this simulation was performed

with zero net flux. The initial configuration of the magnetic field is sinusoidal in the

radial direction. For simplicity, many shearing box simulations neglect vertical gravity.

As computing power increased higher resolution has been possible and worryingly a

dependence of the MRI activity on the box resolution has been found (Pessah et al.,

2007; Fromang & Papaloizou, 2007; Pessah et al., 2007; Käpylä & Korpi, 2011; Lesur

& Longaretti, 2007). While many simulations did neglect vertical gravity some did

not, for instance Brandenburg et al. (1995); Stone et al. (1996) include the effects of

vertical gravity. In these simulations however, the effects of increasing resolution and

long integration times were not established and so the convergence problem was not

noticed. A possible explanation might be that unstratified simulations lack an outer

scale or that a secondary instability may be at work (Vishniac, 2009).

Including vertical gravity allows the pressure and density to change as a function of
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vertical position. A pressure scale height is defined as the distance where the pressure

falls by a factor of e and is given by,

H = cs
Ω , (3.12)

where cs is the sound speed and Ω is the orbital frequency. Additionally, stratifica-

tion allows for magnetically buoyant motion of plasma in the vertical direction with

implications for instability or inclusion in the dynamo process. In support of this

idea, stratified simulations have now begun to show MRI activity that is independent

of resolution (Davis et al., 2010; Shi et al., 2010). Here we consider a zero net flux

shearing box where vertical gravity has been included. This choice means that the

density is stratified and is a function of z is given by,

ρ = ρ0e
− z2

H2 . (3.13)

Vertical gravity forces a special consideration for the gravitational potential, since

the vertical periodic boundary presents some problems. To keep discontinuities from

arising, the potential must be smoothly reversed at the vertical boundary. This is

done by applying a smoothing function,

([
(ξ ∓ 1)2 + ξ2λ2

]1/2 ∓ ξ)2
, (3.14)

to the gravitational potential,

Φ(z) = Ω2z2

2 . (3.15)

Here ξ = z0/z, z0 is the midplane or Lz/2, and λ = 0.1 is the width of the smoothing

function.
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The particular shearing box we are investigating here has a resolution given by

128 cells per scale height and an aspect ratio of 1H × 4H × 4H. An estimate of the

numerical resistivity is η = 5.8× 10−8 through looking at the errors in the induction

equation as calculated.

3.1.3 Analysis Procedure

The simulations were computed in collaboration with Shane Davis using the ATHENA

MHD code, details for this code can be found in Gardiner & Stone (2005); Stone

& Gardiner (2010); Stone et al. (2008). The parameters used in the simulation are

identical to those in Davis et al. (2010), particularly the run which they refer to as

S128R1Z4.

An estimate of the scalar resistivity and found to be approximately 5.8×10−8. This

value was found by measuring the errors in the induction equation and was computed

by Dr. Shane Davis. It should be noted that numerical resistivity does not necessarily

have the same properties as the scalar resistivity introduced in Section 2.2.

The outputs analysed correspond to a point in the simulation when the dynamo

has reached a saturated state after around 50 orbits. The outputs span a timescale

which corresponds to approximately 4.3 orbits.

An output containing the magnetic and velocity field as well as the density at every

cell location is generated at each timestep for a total of 426 files. Each file is read into

memory sequentially and ran through the analysis pipeline.

The filtering is done by first performing an FFT operation, multiplying by the

filter then performing an inverse FFT resulting in a filtered quantity (either high or

low pass depending on the filter used). In this way the filter design is modular and

can accommodate different filtering techniques such as the Hamming and Gaussian
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filter designs.

Spatial derivatives are performed by using the method outlined in Section 3.0.6

and includes the divergence, gradient and curl operations. Temporal derivatives are

performed using a central difference and 3 consecutive output files.

After each quantity is calculated, a horizontal average (over the x-y plane) is done

and is saved to the hard drive. These files can be read in again if plotting or other

analysis is desired.

The specific PYTHON functions used to generate these quantities can be found in

the Appendix.
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Chapter 4

Results and Discussion

4.1 Mean Field Assumptions

We begin the discussion of the shearing box simulation by testing some of the assump-

tions of mean field dynamo theory. Starting with the induction equation and checking

that the standard choices about which terms to drop are justified.

The plots generated in this chapter have been horizontally averaged (over the x− y

plane) and expressed as functions of the vertical direction, z. Finally, the quantities

being plotted are the time average over 4.3 orbits comprised of 426 individual outputs

from the simulation. This provides us with a sample that is large compared to the

correlation timescale and to provide robust time averages. The correlation timescale

will be formally calculated in Section 4.2.4, however the sample comprises a total

of ∼ 27tΩ compared to the correlation timescale of approximately 0.2tΩ. Our first

test will be to check that we can separate the large scale induction equation from the

small and to test the lowpass filter. We use the Pearson Correlation Coefficient (r)

to describe the correlation between the curves with +1 being a perfect correlation
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and −1 a perfect anti-correlation. The eventual correlation we will perform later in

the chapter involves the component parallel to the large scale magnetic field. Since

the azimuthal field is by far the strongest component, we will perform correlations

of vector quantities in the y-direction. The results of this test of scale separation is

shown in Figure 4.1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

z

1.5

1.0

0.5

0.0

0.5

1.0 1e 7 Scale Separation Test -- y-component

∇×(U×B−ηJ)−∇×(U×B +u×b−ηJ)

∇×(U×b +u×B +u×b−u×b−ηj)

r=1.00

Figure 4.1: Presented here is the test of the scale separation procedure for the y-
component of the induction equation. This test is done by subtracting the large scale
induction equation, defined in Equation (2.32) from the total. The result is compared
to the small scale induction equation as defined in Equation (2.33). We see a very
strong agreement here, with correlation of kτ = 0.99 suggesting the filters are doing a
good job of separating large scale from small.

Next we will test which terms are negligible, such as those dropped in FOSA. That
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is, we wish to see if ∂tb = ∇×
(
u×B

)
is a good approximation to the small scale

induction equation. The results of this test indicate that terms dropped are significant,

resulting in a decrease of 0.25 in the correlation. This shown in Figure 4.2.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

z

1.5
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0.5

0.0

0.5

1.0 1e 7 Small Scale Induction with FOSA

∇×(U×b +u×B +u×b−u×b−ηj)
∇×(U×b +u×B−ηj)

r=0.75

Figure 4.2: Here we see that the first order smoothing approximation results in some
loss of information at a cost of approximately 25% correlation.

Next, we investigate the effects of numerical resistivity on the small scale induction

equation. The test involves correlating the small scale induction equation with the

resistive term against the equation without the resistive term. We can see from

Figure 4.3 that the resistivity is a very minor effect for the small scale induction

equation.
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r=1.00

Figure 4.3: Plotted is the small scale induction equation with and without resistivity
included. The resistivity adds only a very small amount to the small scale induction
equation. Even in the inset, zoomed in by a factor of 5, we see the curves nearly lie
ontop of one another.

4.2 EMF Expansion

An additional test we can perform at this stage is to check some of the assumptions

that go into the calculation of the transport coefficients, α and β. In Section 2.5.2, we

described the standard method used to get α = −1
3τcu · ω by integrating

∂tE = u× ḃ. (4.1)
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What we will do here is calculate the whole expression,

∂E
∂t

= u× ḃ+ u̇× b, (4.2)

where dots represent time derivatives. Each of the terms can be expanded by plugging

in the small scale induction and momentum equations giving,

u× ḃ = u×
[
∇×

(
U × b+ u×B + u× b− u× b− ηj

)]
, (4.3)

and,

u̇× b =[−(U · ∇)u− (u · ∇)U − (u · ∇)u+ (u · ∇)u

+ (B · ∇)b+ (b · ∇)B + (b · ∇)b− (b · ∇)b

−∇p∗ + 3/2Ωuxŷ − 2(Ω× u)]× b, (4.4)

where the effective pressure is given by

p∗ = p− 1
2b

2 + 1
2b

2 + b ·B, (4.5)

and the last two terms correspond to the shear and Coriolis forces respectively.

These tests are given in Figures 4.4, 4.5, and 4.6

To test this aspect, we take a numerical derivative of the turbulent velocity and mag-

netic fields crossed with the appropriate quantity and compare against Equation (4.3)

and Equation (4.4). The specific time in the simulation these tests were performed was

arbitrary, however the result is indicative for any time during the simulation. Since

the numerical time derivatives of b and u are good approximations of the small scale

induction and momentum equations, we expect only a small deviation with errors due
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to the numerical time derivative and the inherent chaotic motions in the turbulent

quantities.

For the first test in Figure 4.4, there is a good match suggesting there are no issues

with the treatment of the small scale induction equation and this step of the transport

coefficient calculation. In Figure 4.5 however, we see a much lower correlation. It

is unclear why this is, however it does point to a problem in the calculation of the

coefficients and that the turbulence may be causing too much noise in this test or

there is an error in the calculation of the small scale momentum equation for the

radial/vertical components. Further investigation into this behaviour to find the

underlying cause is warranted. Finally, in Figure 4.6 the previous tests are combined

which provides some insight into the values of the correlation coefficients found later

in this chapter. That is, the low correlation observed for the test involving the small

scale momentum equation may be affecting the calculation of the transport coefficients

suggesting that this is a physical result.

50



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

z

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8 1e 11 Time Derivative of the EMF

〈
u×(b2−b0 )

2dt

〉
〈
u×∇×

(
U×b +u×B−ηj

)

r=0.73

Figure 4.4: Here the cross product of the turbulent velocity and the small scale
induction equation are plotted against the cross product of the turbulent velocity and
the numerical time derivative of the turbulent magnetic field. The strong correlation
(r = 0.73) suggests there are no problems with the treatment of the small scale
induction equation and the transport coefficients calculated from this term.
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6 1e 12 Time Derivative of the EMF

〈
(u2−u0 )

2dt
×b
〉

〈
tu×b

〉

r=0.24

Figure 4.5: Here the cross product of the turbulent magnetic field and the small scale
momentum equation are plotted against the cross product of the turbulent magnetic
field and the numerical time derivative of the turbulent velocity. A weak correlation
(r = 0.24) suggests there may be an issue with the calculation of the small scale
momentum equation or the turbulent motions may be at fault. Transport coefficients
calculated based on these assumptions may also be affected.
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Figure 4.6: The time derivative of the EMF with the calculations using the induction
and momentum equations. We see a weak correlation owing to the weak correlation
observed from the term involving the momentum equation.

4.2.1 Mean Field Predictions

In this section we will calculate the mean field α model predictions and compare them

against the EMF measured from the simulation. The preliminary values for τ are

determined in Section 4.2.4 and then a least squares regression is done within a factor

of 2 of that value to maximise the correlation. In this procedure, one value is chosen

for all of the data sets which are then time averaged.

In preparation for comparing the divergence of the magnetic helicity flux, we will

53



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

dot the expressions for the mean field with the large scale magnetic field. In our first

test we plot the standard α prediction against the measured EMF (dotted with the

large scale magnetic field) and can be seen in Figure 4.7. Since this model does not

account for the conservation of magnetic helicity, we should see the effects of quenching.

Indeed, a weak anti-correlation indicates the presence of the back reaction on the

EMF.
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u×b ·B

−τc
3
ω ·uB2 −τc
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J ·B−ηJ ·B

r=−0.25

Figure 4.7: Presented here is the standard mean field α model overplotted with the
measured EMF from the simulation. This plot represents a time average of the sample
data. The standard model in this case is based simply the kinetic helicity which we
expect should be a poor approximation based on the arguments about catastrophic
quenching. Indeed we see an anti-correlation with the EMF.

The dynamical quenching model adds the magnetic α term and we again dot this

with the large scale magnetic field in Figure 4.8.
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Figure 4.8: Here we present the time averaged mean field model including the magnetic
α effect. We now show a positive correlation between the measured EMF and the
model predictions suggesting the magnetic α is the dominant contribution to the
dynamo.

With the inclusion of the magnetic α term, we now see a positive weak correlation.

The strength of the correlation may be, in part due to the effects seen in Section 4.2.

Another possibility might be that the assumption of isotropy is invalid and so we

explore this idea in the next section.

56



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

4.2.2 Anisotropy

Up to this point, the mean field model makes the assumption that the turbulence is

isotropic, but we know that for the EMF to be non-zero it must be at least weakly

anisotropic. We will therefore drop this assumption and focus on the azimuthal direc-

tion. First we explain where the turbulent dissipation term that depends on b2 comes

from. If we take the time derivative of the EMF and plug in the definition of the small

scale momentum equation into u̇× b, there is a term which is (b · ∇B −∇P )× b.

By assuming that the components of the magnetic field are strongly correlated only

with themselves, the first term becomes −εijkb2
j∂jBk or b2J . The second term can

be simplified to be 2(k2
i /k

2)bj∂jBi by assuming the small scale fluid is approximately

incompressible. Putting these two terms together yields,

− εijk(1− 2k2
k/k

2)b2
j∂jBk. (4.6)

Our expression for the azimuthal EMF now becomes

(u× b)y = τc
(
αMyy + αKyy

)
By−τc

(
u2
z + Cxb2

z

)
∂zBx+τc

(
u2
x + Czb2

x

)
∂xBz−ηJy, (4.7)

where αMyy = 2bx∂ybz and αKyy = −2ux∂yuz. Additionally, C is a function to describe

the shape of eddies given by 1− 2k
2
i

k2 . In the isotropic limit C0 reduces to a factor of 1
3 .

For the anisotropic case we can estimate it by replacing k2
i with the components of

the magnetic field that are perpendicular to it or b2
j and b2

k. Because ∇ ·B = 0, the

term k2
z

k2 b2
z will be systematically smaller than the perpendicular components. As an

estimate, parallel components will have a factor of 1/5 while perpendicular will have a

factor of 2/5 in the isotropic limit. With these estimations we can construct an eddy
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shape factor as

Cx =
(

1− 4
b2
yb

2
x

b2
zb

2
y + 2b2

xb
2
y + 2b2

yb
2
z

)
(4.8)

Cz =
(

1− 4
b2
yb

2
z

b2
xb

2
y + 2b2

xb
2
z + 2b2

yb
2
z

)
. (4.9)

The results for Equation (4.7) are given in Figure 4.9. We find that the azimuthal

EMF is weakly correlated with the anisotropic mean field model for the whole data set

and at some points is strongly correlated. This suggests that the anisotropy may not

be playing a large role, and that the turbulence inherent in the EMF is the dominant

source of error. This makes sense since the EMF is an instantaneous measurement,

while the model is more of a temporal average.
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Figure 4.9: The calculated anisotropic EMF from the model overplotted with the EMF
calculated small scale fields. Each panel is an average over 27 time slices comprising a
total of 426 times. We can see a correlation between the model and the calculated
EMF which we will quantify in the averaged plot.

If we take an average of all the calculation in an attempt to increase the signal

to noise we get Figure 4.10. One reason for the weak correlation may be that we are

missing additional terms, for instance the magnetic buoyancy or higher order terms in

the EMF expansion. We look for these in the next section.
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Figure 4.10: The calculated EMF overplotted with the values calculated using the
model, averaged over all 426 time slices. A correlation exists between the direct
calculation of the EMF and the model calculation.

4.2.3 Additional Contributions

Since the simulation performed is a stratified one, there is a potentially important

contribution in the form of magnetic buoyancy. Sticking with our azimuthal view of

the EMF, we can estimate this contribution as large scale vertical motions weighted
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by the magnetic pressure, or

Ebuoyancy = UzB2Bx

B2
. (4.10)

In our calculation of the turbulent transport coefficients, there was a term which we

associated with the Coriolis force, 2Ω×u. This term, in principle, may have an effect

on the dynamo. Indeed, Rogachevskii & Kleeorin (2003) have provided evidence for a

"shear current" inducing an EMF. We make an additional term in our calculation of

the EMF based on this shear current which works out to be

κ = Ωτ 2
c

(
k2
z − k2

y

k2 − 3k2
xk

2
y

k4

)
b2
z∂zBy. (4.11)

If we assume that k2
y/k

2 is small then this reduces to,

κ = Ωτ 2
c

k2
z

k2 b
2
z∂zBy. (4.12)

The contributions to the EMF from buoyancy and the shear current are summarised

in Figure 4.11. From this, we conclude that the effects of magnetic buoyancy and the

shear current effect are negligible. The magnetic buoyancy may still play a role in the

dynamo, however it does not appear to make a dominant contribution to the EMF.

Similarly, the shear current effect may be important in other circumstances, however

given the conditions of the present simulation, this effect is small. This is not entirely

surprising, since the shear current effect is a higher order term.
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Figure 4.11: Calculated EMF with the model calculation, including buoyancy and
shear current effects. We see that the inclusion of buoyancy and the shear current
effect has marginally increased the correllation. We can conclude that during this
stage of the dynamo it is safe to exclude the effects of magnetic buoyancy and the
shear current effect.

The averaging process applied to this calculation is in Figure 4.12.
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Figure 4.12: Average of the calculated EMF with the model values, again we see
a marginal improvement in the correlation, however the value of the correlation is
consistent with no effect.

4.2.4 Turbulent Correlation Timescale

In our discussion of the EMF we have neglected to mention anything about the

turbulent correlation timescale, τc. We could leave it as a free parameter and then fit

it based on the correlations, but to get a sense of its value we can get this information
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from the simulation itself. There are two methods we can use to calculate it, and there

are several values for where it may apply.

In general, we approximate

∫ t

−∞
u(x, t) · u(x, t′) dt′ = u2τ, (4.13)

and so we expect that the correlation between any quantity at times t and t′ should de-

crease roughly exponentially as the time interval. The time constant of this exponential

is described by τ and given functionally by e−t/τ .

The first method then, is to calculate the correlations for each quantity in the same

location as a function of time, then fit an exponential. The second method calculates

the correlations as a function of time, and then simply numerically integrate to get τ .

There are many quantities for which we could calculate this τ for, and each of them

correspond to different processes. For instance, we expect there to be a difference

between the correlation time calculated from either the small scale magnetic field

or velocity and the large scale velocity. This difference should correspond to the

turbulence driven by the MRI (small scale) and that of the dynamo (large scale).

Additionally, there is no reason why the times should be exactly the same for each

direction or for b and u. We therefore calculate the turbulent correlation time for

each scale in each direction using both methods. A summary of these calculations is

found in Table 4.1. For reference, an example of the calculated correlations versus

time is presented in Figure 4.13. The plots for the rest of the values can be found

in Appendix A.1. A superimposed sinusoidal feature can be seen in the data, this

could be a high order breathing mode like those discussed in Blaes et al. (2011) or

related to the epicyclic frequency. In either case, they are unlikely to contribute to the

dynamo since they are antisymmetric, which was tested by taking partial derivatives
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U Ux Uy Uz B Bx By Bz

Fit: τ = 620 771 664 372 * 680 * 480
Integration: τ = 727 688 904 473 * 1039 * 532

u ux uy uz b bx by bz
Fit: τ = 200 210 190 200 190 170 210 130
Integration: τ = 181 192 182 164 271 247 297 158

Table 4.1: Presented here are the correlation time scales calculated through fitting
of an exponential and direct integration. The correlation times are given in units of
tΩ−1 where t is defined from the first output as t0 and incremented by the timestep
used by the simulation. The correlations were calculated as follows: for each time slice
we calculate 〈X(t0)·X(t′)〉

〈X(t0)2〉 where the anlgle brackes represent a volume average and X
is whatever quantity we are looking for, then either fit this quantitiy as a function
of time or integrate it. The missing values for B and By are due to the large scale
dynamo cycles causing strong correlations and so no calculation was possible for these
values.

and redoing the correlation procedure. The plots demonstrating this can be found in

Appendix A.1.

In the analysis of the correlation times for the large scale magnetic field, the

presence of dynamo cycles leads to correlations in the azimuthal and total magnetic

fields. For this reason, we are unable to use this method to get correlation timescales

for By and B. The other quantities are sufficiently decoupled from this cycle and so

we get a good fit for the exponentials.
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Figure 4.13: The correlation data for the turbulent velocity. The data are fit by an
exponential of the form Aet/τ + C, in all cases the values of A are close to 1 and the
values of C are close to 0 as expected.

The correlation times found through this method are estimates of the Lagrangian

turbulent correlation time. The τ quoted in the mean field models is the Eulerian

timescale, so we should take these estimates as lower bounds to the actual correlation

times. For this reason, we allow the value of τ to be a free parameter (within bounds
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of a factor of 2) while fitting the model predictions.

In many simulations of the MRI, the azimuthal field undergoes cycles. For reference,

see Davis et al. (2010) where these cycles can be seen in their "butterfly" or space-time

diagrams. The butterfly diagrams are characterised by correlated behaviour of the

azimuthal field over long periods of time and so we expect to see this correlated

behaviour while analysing the turbulent correlation timescale. Indeed, Figure 4.14

shows the correlation of the azimuthal field as a function of time. Our analysis suggests

a period of approximately 9.5 orbits. To fully analyse the effects this cycle might have

on our model, a full cycle should be analysed in the same way but due to computational

constraints was not performed in this work.
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Figure 4.14: The correlation of By as a function of time. On short time scales, the
exponential decay can be seen which is likely an artifact of small scale structures
mixing into the filter. Afterwards, the correlation proceeds nearly linearly towards a
complete anti-correlation (with a superimposed sinusoidal feature). We would expect
to see this correlation turn around and go back to ∼ +1 if we calculated the correlation
for a whole dynamo cycle.
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4.3 Code Property Tests

4.3.1 Magnetic Helicity Conservation

The flux of magnetic helicity plays a pivotal role in this model, but it relies heavily on

the magnetic helicity being conserved (or approximately conserved). And so, we test

this conservation here using the continuity equation,

∂tH +∇ · JH = −2ηJ ·B (4.14)

We show the results of this test in Figure 4.15.
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Figure 4.15: Shown here is the time derivative of the magnetic helicity, calculated
numerically using finite difference. The red curve is the magnetic helicity flux and
resistive term which were calculated from the fields and Equation (2.43). We see a good
correlation which suggests the code is conserving magnetic helcity at an instantaneous
point.

We can also test the conservation through use of the integral form of the magnetic

helicity as a function of time. A plot of the value of the magnetic helicity as a function

of time is given in Figure 4.16. There are some interesting features associated with

this test, namely that we see that the largest amounts of magnetic helicity appearing

about midway through our sample. This corresponds to a null point in the dynamo

cycle, where the large scale azimuthal magnetic field is flipping signs. The reasoning

for why we might see a accumulation of magnetic helicity during this time is due to the
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MRI. The length scale where the MRI is operating has a minimum when the dynamo

is at one of these null points. This places the minimum length of the MRI very close

to the dissipation scale in k-space which will lead to a maximum of magnetic helicity

non-conservation.

Additionally, this test shows a periodic signal in the production of magnetic helicity.

This could be a result of a numerical artefact from the code being used, or it could be

physical and related to some timescale in the simulation. A more detailed analysis of

the magnetic helicity conservation is required to determine the precise cause of these

cycles.
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Figure 4.16: In this plot, we show the integrated magnetic helicity as a function of
time (in units of tΩ). We see that overall the magnetic helicity in the box stays
roughly constant, which is consistent with this quantity being conserved. For reference,
the RMS value of the magnetic helicity is ∼ 10−10 which means this production of
magnetic helicity is not simply due to noise.
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4.3.2 Current Helicity

To link the magnetic α effect with the magnetic helicity, we stated that j · b ≈ k2
fa · b.

We test this assumption here and attempt to measure the forcing scale, kf . This result

is shown in Figure 4.17. The strong correlation between the current and magnetic

helicity is essential to be able to use the magnetic helicity flux to describe the dynamo.
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Figure 4.17: We overplot the current and magnetic helicities and fit a value for the force
carrying scale. We see a strong correlation which justifies the link between the current
helicity in the magnetic α term and the magnetic helicity flux. We can also estimate
the force carrying scale by fitting the curves with kf as a free parameter. Doing this
yields a value of kf = 55. Comparing this to the power spectrum in Figure 3.2 for the
magnetic field, we find that this value of kf is in good agreement with location of the
peak due to the MRI.

73



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

4.4 Magnetic Helicity Flux

The connection between the current and magnetic helicities links the mean field alpha

model with the dynamo being driven by the inverse cascade of magnetic helicity flux.

The next step then, is to calculate the flux of magnetic helicity to establish its role in

the dynamo process. The magnetic helicity flux is separated into large and small scale

parts using the mean field approach. We have already seen the continuity equation for

the total magnetic helicity flux, for completeness the same expression for the large

scale components is given in Figure 4.18 and small scale components in Figure 4.19.

It should be no surprise that these expressions match well, but it does show that there

is not a complete agreement owing to the short term variations in the numerical time

derivative, especially in the small scale.
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Figure 4.18: For the large scale magnetic helicity continuity equation, we see good
agreement. It is noteworthy that this expression includes the term describing the
transfer of magnetic helicity between scales, u× b ·B.
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Figure 4.19: The small scale continuity equation contains more noise than the total
and large scale components, though we still see a reasonable correlation here.

To make the link between the magnetic helicity flux and the dynamo, the transfer

term, −2E ·B should be a good estimator of divergence of the small scale magnetic

helicity flux. Figure 4.20 shows a moderate correlation where the errors can be

attributed to the conservation of magnetic helicity not being perfect and a small

amount of resistivity. This is a crucial step as it connects the discussion of the mean

field α model with that of the magnetic helicity flux transport as a means of driving

the dynamo.
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Figure 4.20: Here we link the component of the EMF parallel to the large scale
magnetic field to the divergence of the small scale magnetic helicity flux. We see a
moderate correlation (r = 0.52).

Following the same reasoning regarding the anisotropic nature of the turbulence,

we can look at the vertical contribution to the divergence of the magnetic helicity

flux and compare it to the azimuthal component of the EMF transfer term, this is

plotted in Figure 4.21. Again we see a moderate correlation which helps confirm that

anisotropy does not play a large role here and that the assumption of weak anisotropic

turbulence is acceptable.
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Figure 4.21: Here we show the link between the vertical transfer of magnetic helicity
and the azimuthal component of the EMF times the large scale magnetic field.

Finally, to close off this chapter we will compare some of the results to those found

in Vishniac & Shapovalov (2014). There, the authors performed a simulation in a

shearing box geometry but with forced turbulence rather than turbulence driven by

the MRI as in this simulation. An important result found was in equation (12) from

Vishniac & Shapovalov (2014),

bz
(
φ2 +U · a

)
, (4.15)

in relation to how much this term contributes to the divergence of the magnetic helicity
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flux. In Figure 4.22 we show a decrease of approximately 0.15 when correlating the

expression for the divergence term with and without the term in Equation (4.15).
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Figure 4.22: Here we show the divergence of the small scale magnetic helicity flux
with and without the term which depends on the shear. We see that this term is
approximately 15% of the total amplitude, consistent with the value seen in Vishniac
& Shapovalov (2014).

79



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

80



Chapter 5

Conclusions

To finish this discussion we will present a summary of the results found during this work.

First and foremost, we have established a link between the divergence of the magnetic

helicity flux and the component of the EMF parallel to the large scale magnetic field

in a local simulation driven by the MRI. In this way we have demonstrated that

the transport of magnetic helicity flux between scales can drive a large scale dynamo

in a realistic local simulation. Although this work is concerned only with a local

simulation of an accretion disk dynamo, it provides the most detailed example to date

of a magnetic helicity flux driven dynamo, a phenomena which we suspect forms the

basis of large scale astrophysical dynamos everywhere. We note in particular that this

approach removes the problem of alpha suppression, in which the small scale magnetic

helicity poisons the large scale dynamo. Instead, the inverse cascade of the small scale

magnetic helicity forms the basis of a successful dynamo.

In the process of demonstrating this connection, we have also verified the tools of

mean field dynamo theory and the dynamically quenched α dynamo. In addition, we

have provided a method in which to estimate the Lagrangian turbulent correlation
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timescale for the large and small scale magnetic and velocity fields. Included in this is

a more detailed estimate of the correlation timescale by doing the same calculation as

a function of the vertical coordinate.

The simulation used in this work was analysed at a state where the dynamo was

saturated. Recently Vishniac & Shapovalov (2014) has seen in simulations using forced

turbulence that the mean field α prediction and the transfer of magnetic helicity flux

is most correlated when the dynamo is first growing from the initial seed field to

saturation. During the saturated stage we correspondingly expect that the correlations

will be weaker. Further investigation into the pre-equipartition stage of the dynamo is

needed to test this hypothesis, however.

The mean field approach relies on the separation of the problem into two scales and

it is always possible to separate scales for a k less than the dimensions of the box. In

our case we separate scales and project onto the vertical direction, which is to say we

do a horizontal average. If the separation between scales is small compared to the box

size, then this projection will be noisy. Additionally, the time series will also show this

noise, Brandenburg & Subramanian (2005). Our choice of cut-off frequency, and thus

the quality of the scale separation are set by the driving scale of the turbulence (in this

case the MRI) and the resolution of the simulation. The forcing scale is more or less

fixed, however further work could involve a higher resolution simulation to allow more

small scale structure. Additionally, the tool to separate scales uses Fourier filtering

which introduces some of the problems discussed in Section 3.0.7. A more modern

approach is to use a multi-scale decomposition using wavelets. The main advantage

would be the ability to localise in space as well as scale, as opposed to just scale.

Our results of the previous chapter tend to show large amplitudes near the vertical

extents of the box which can skew some of the conclusions. A possible explanation

might be due to stratification, since the density in these regions is very low (< 10%
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of the midplane value), and the presence of large gradients in the magnetic and

velocity fields. The gravitational potential smoothly flipping sign in this region may

be important as well, though this aspect is unclear.

The validation of the mean field approach along with the importance of the transfer

of magnetic helicity flux allow us to estimate the value of the α parameter from the

large scale, or mean fields. The mean fields are the values that we can observe in a

physical system, or the elements corresponding to the smallest resolution in a global

accretion disk simulation. We can then estimate a value of α at any point in the disk

without needing to resolve the turbulent scale.

With a better understanding of the accretion process, the MHD turbulence driven

by the MRI, and the dynamo mechanisms we stand a good chance of being able to

describe some of the more mysterious phenomenon such as outflows, twinkling and

jets.
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A.2 Analysis Code

# Define some constants :
cs = 5.e-7
eta = 5.8e-8

# Generation Functions :

def Generate_Time_Derivatives (fs):
"""
Generates time derivatives for:
U, B, u, b, EMF , H, h

f: is the path to the vtk files
"""
dudt = zeros (( len(files) ,3,N[ -1]) ,dtype= float32 )
dbdt = zeros_like (dudt)
dUdt = zeros_like (dudt)
dBdt = zeros_like (dudt)
dEdt = zeros_like (dudt)

uav = zeros_like (dudt)
bav = zeros_like (dudt)
Uav = zeros_like (dudt)
Bav = zeros_like (dudt)
Eav = zeros_like (dudt)

Ht = zeros (( len(files),N[ -1]) ,dtype= float32 )
H = zeros_like (Ht)
h = zeros_like (Ht)
dHt = zeros_like (H)
dH = zeros_like (H)
dh = zeros_like (H)
for i in range(len(fs)):

N,D,B,U,t = read_data (files[i], time_out =True)
b = highpass (B)
u = highpass (U)
tm[i] = t
#make use of the fact that the average of the

derivative is the same as the derivative of the
average

uav[i] = av(u)
bav[i] = av(b)

94



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

Uav[i] = av(U)
Bav[i] = av(B)

Eav[i] = av(LP(cross(u,b)))

# Current Density
J = curl(B)
# Vector Potential
A = fft(-J)/k2
A[: ,0 ,0 ,0] = 0.
A = ifft(A)
a = highpass (A)
Ht[i] = av(dot(A,B))
H[i] = av(dot(LP(A),LP(B)))
h[i] = av(LP(dot(a,b)))

if(i > 0):
#Take the numerical derivatives
dt = tm[i]-tm[i -1]
dudt[i] = (uav[i]-uav[i -1])/dt
dbdt[i] = (bav[i]-bav[i -1])/dt
dUdt[i] = (Uav[i]-Uav[i -1])/dt
dBdt[i] = (Bav[i]-Bav[i -1])/dt
dEdt[i] = (Eav[i]-Eav[i -1])/dt
dHt[i] = (Ht[i]-Ht[i -1])/dt
dH[i] = (H[i] - H[i -1])/dt
dh[i] = (h[i]-h[i -1])/dt

return dudt , dbdt , dUdt , dBdt , dEdt , dHt , dH , dh

def Generate_MFT_EMF (f):
"""
Generates the standard MFT EMF terms
f is the path to the vtk file
"""
N,D,B,U,rho ,t = read_data (f, dens_inc =True , time_out =True)
b = highpass (B)
u = highpass (U)

#EMF
EMF = av(LP(cross(u,b)))

# alpha_M term , 1/(12 pi rho) <j dot b> <B>
alpha_M = av(LP(dot(curl(b),b))*LP(B)/3./ rho)

# alpha_K term , 1/3 <w dot u> <B>
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alpha_K = av(LP(dot(curl(u),u))*LP(B)/3.)

# diffusion term for u, 1/3 <u^2> <J>
diff_u = av(LP(dot(u,u))*LP(curl(B))/3.)

# diffusion term for b, 1/3 <b^2> <J>
diff_b = av(LP(dot(b,b))*LP(curl(B))/3./ rho)

# resistive term , eta <J dot B>
res = av(eta*LP(curl(B)))

return EMF , alpha_M , alpha_K , diff_u , diff_b , res

def anisotropic_EMF (f):
""" Takes path to vtk file as input , outputs the average

anisotropic mean field emf terms
"""
N,D,B,U,rho ,t = read_data (f, dens_inc =True , time_out =True)
b = delta(B)
u = delta(U)

#EMF , y- component
emf = av(LP(cross(u,b)))[1]

# alpha_M_yy term , 2 <b_x b_z ,y> <B_y > / rho
alpha_M_yy = 2.* av(LP(b[0]* ifft (1.j*k[1]* fft(b[2])))*LP(B

[1])/rho)

# alpha_K term , 2 <u_x u_z ,y> <B_y >
alpha_K_yy = 2.* av(LP(u[0]* ifft (1.j*k[1]* fft(u[2])))*LP(B

[1]))

#using the gaussian lowpass since it reduces the overshoot
#and a smoother shape function
bx2 = lowpass (b[0]*b[0], fc =2./128. , alpha =0.1 , wind=’gauss

’)
by2 = lowpass (b[1]*b[1], fc =2./128. , alpha =0.1 , wind=’gauss

’)
bz2 = lowpass (b[2]*b[2], fc =2./128. , alpha =0.1 , wind=’gauss

’)
ux2 = lowpass (u[0]*u[0], fc =2./128. , alpha =0.1 , wind=’gauss

’)
uy2 = lowpass (u[1]*u[1], fc =2./128. , alpha =0.1 , wind=’gauss

’)
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uz2 = lowpass (u[2]*u[2], fc =2./128. , alpha =0.1 , wind=’gauss
’)

#Shape function for (1 - k_z ^2 / k^2) <b_z ^2>
Cx = by2*bz2 / (bz2*by2 + 2* bz2*bx2 + 2* bx2*by2)
Cz = by2*bx2 / (bx2*by2 + 2* bx2*bz2 + 2* bz2*by2)
S = bx2*by2 / (2.* bz2*by2 + 2.* bz2*bx2 + bx2*by2)

# diffusion term for u, <u_x ^2> <B_z ,x>
diff_u_x = av(ux2*ifft (1.j*k[0]* LP(fft(B[2]))))

# diffusion term for u, <u_z ^2> <B_x ,z>
diff_u_z = av(uz2*ifft (1.j*k[2]* LP(fft(B[0]))))

# diffusion term for b, <b_x ^2> <B_z ,x>
diff_b_x = av ((1. -4.* Cz)*bx2*ifft (1.j*k[0]* LP(fft(B[2])))/

rho)

# diffusion term for b, <b_z ^2> <B_x ,z>
diff_b_z = av ((1. -4.* Cx)*bz2*ifft (1.j*k[2]* LP(fft(B[0])))/

rho)

# resistive term , eta <J_y >
res = av(eta*curl(LP(B))[1])

#shape function for the KR term
#KR term , Omega tau ^2 (s1+s2) <b_z ^2> B_y ,z
KR = av (0.001* LP(S*bz2)*ifft (1.j*k[2]* LP(fft(B[1])))/rho)

# buoyancy term , <U_z B^2> <B_x > / <B^2>
E_buoy = av(LP(u[2] * sqrt(dot(B,B)))*LP(B[0]) / LP(sqrt(

dot(B,B))))
return emf , E_buoy , alpha_M_yy , alpha_K_yy , diff_u_x ,

diff_u_z , diff_b_x , diff_b_z , res , KR

def Generate_Magnetic_Helicity_Flux (f):
N,D,B,U,t = read_data (files[i], time_out =True)
b = highpass (B)
u = highpass (U)

J = curl(B)
jc = highpass (J)

# Vector potential , \nabla x A = B, \nabla ^2 A = -J => A = J
/k^2
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A = fft(J)/k2
A[: ,0 ,0 ,0] = 0.
A = ifft(A)
a = highpass (A)

EMF = LP(cross(u,b))

#Total flux = B Phi + A x (U x B) - eta (A x J)
#E = -\nabla Phi , \nabla ^2 Phi = -\nabla \cdot E => Phi = k

\cdot E / k^2
phi = ifft(dot (1.j*k, -fft(cross(U,B)))/k2)
JHt = av(B*phi + cross(cross(U,B),A) - eta*cross(J,A))

#Large Scale flux = <B> <Phi > + <A> x (<U> x <B> + EMF) -
eta (<A> x <J>)

phi = ifft(dot (1.j*k, -fft(cross(U-u,B-b) + EMF))/k2)
JH = av(LP(B)*phi + cross(cross(LP(U),LP(B))+EMF , LP(A)) -

eta*cross(LP(J), LP(A)))

#Small scale flux = <b phi > + <a x e> - eta <a x j>
e = cross(LP(U),b) + cross(u,LP(B)) + cross(u,b) - LP(cross

(u,b))
phi = dot (1.j*k, fft(-e))/k2
phi [0 ,0 ,0]
phi = ifft(phi)
jh = LP( b*phi) + LP(cross(a, e)) - LP(eta*cross(a,jc) )

#small scale resistive term
res = 2.* av(eta*LP(dot(jc ,b)))

#Large scale resistive term
Res = 2.* av(eta*dot(LP(J),LP(B)))

#Total resistive term
Rest = 2.* av(eta*dot(J,B))

#Scale transfer term
EdB = 2.* av(dot(EMF ,LP(B)))

return JHt , JH , jh , Rest , Res , res , EdB

# Correlation times:
def Generate_tau (fs):

""" Generates the correlations time for <U>, <B>, u, b
"""
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corr_U = zeros(len(fs),dtype= float32 )
corr_u = zeros(len(fs),dtype= float32 )
corr_U_x = zeros(len(fs),dtype= float32 )
corr_U_y = zeros(len(fs),dtype= float32 )
corr_U_z = zeros(len(fs),dtype= float32 )
corr_u_x = zeros(len(fs),dtype= float32 )
corr_u_y = zeros(len(fs),dtype= float32 )
corr_u_z = zeros(len(fs),dtype= float32 )

corr_B = zeros(len(fs),dtype= float32 )
corr_b = zeros(len(fs),dtype= float32 )
corr_B_x = zeros(len(fs),dtype= float32 )
corr_B_y = zeros(len(fs),dtype= float32 )
corr_B_z = zeros(len(fs),dtype= float32 )
corr_b_x = zeros(len(fs),dtype= float32 )
corr_b_y = zeros(len(fs),dtype= float32 )
corr_b_z = zeros(len(fs),dtype= float32 )

# Generate the reference locations
N,D,Bt ,Ut ,t = read_data (fs[0], time_out =True)
t0 = t*1.
B0 = LP(Bt)
U0 = LP(Ut)
b0 = highpass (B0)
u0 = highpass (U0)

U2 = mean(dot(U0 ,U0))
B2 = mean(dot(B0 ,B0))

u2 = mean(dot(u0 ,u0))
b2 = mean(dot(b0 ,b0))

U2x = mean(U0 [0]* U0 [0])
U2y = mean(U0 [1]* U0 [1])
U2z = mean(U0 [2]* U0 [2])

B2x = mean(B0 [0]* B0 [0])
B2y = mean(B0 [1]* B0 [1])
B2z = mean(B0 [2]* B0 [2])

u2x = mean(u0 [0]* u0 [0])
u2y = mean(u0 [1]* u0 [1])
u2z = mean(u0 [2]* u0 [2])

b2x = mean(b0 [0]* b0 [0])

99



PhD Thesis – Benjamin B.H. Jackel McMaster University – Physics and Astronomy

b2y = mean(b0 [1]* b0 [1])
b2z = mean(b0 [2]* b0 [2])

for i in range(len(fs)):
N,D,Bt ,Ut ,t = read_data (fs[i], time_out =True)
B = LP(Bt)
U = LP(Ut)
b = highpass (B)
u = highpass (U)
# Correlation for large scale fields
corr_U [i] = mean(dot(U0 ,U))/U2
corr_U_x [i] = mean(U0 [0]*U[0])/U2x
corr_U_y [i] = mean(U0 [1]*U[1])/U2y
corr_U_z [i] = mean(U0 [2]*U[2])/U2z

corr_B [i] = mean(dot(B0 ,B))/B2
corr_B_x [i] = mean(B0 [0]*B[0])/B2x
corr_B_y [i] = mean(B0 [1]*B[1])/B2y
corr_B_z [i] = mean(B0 [2]*B[2])/B2z

# Correlation for small scale fields
corr_u [i] = mean(dot(u0 ,u))/u2
corr_u_x [i] = mean(u0 [0]*u[0])/u2x
corr_u_y [i] = mean(u0 [1]*u[1])/u2y
corr_u_z [i] = mean(u0 [2]*u[2])/u2z

corr_b [i] = mean(dot(b0 ,b))/b2
corr_b_x [i] = mean(b0 [0]*b[0])/b2x
corr_b_y [i] = mean(b0 [1]*b[1])/b2y
corr_b_z [i] = mean(b0 [2]*b[2])/b2z

def Generate_tauz_corr (fs):
""" Generates the correlations as a function of z for each

file from 0 to num
"""
N,D,Bt ,Ut ,t = read_data (fs[0], time_out =True)
t0 = t*1.
u0 = highpass (Ut)
b0 = highpass (Bt)
u2 = av(dot(u0 ,u0))
b2 = av(dot(b0 ,b0))
del Ut , Bt

c_u = zeros ((num , N[ -1]) , dtype= float32 )
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c_b = zeros ((num , N[ -1]) , dtype= float32 )

for i in range(len(fs)):
N,D,B,U,t = read_data (fs[i], time_out =True)
u = highpass (U)
b = highpass (B)
c_u[i] = av(dot(u0 ,u))/u2
c_b[i] = av(dot(b0 ,b))/b2

return c_u , c_b

# Utility Functions :
def read_data (file_in , dens_inc =False , time_out = False):

"""
Reads in data from file_in .vtk into N, D, b, u, (rho), (

time)

file_in : Path to the location of the vtk file
dens_inc : Flag to output the density , default = False
time_out : Flag to output the time of the simulation (from

ATHENA ), default = False

Variables are stored with vectors in the first column , e.g.
B[0], B[1], B[2]

The values at the (x,y,z) coordinates of the box are the
next 3 columns , e.g. B[:, x, y, z]

"""
import vtk as vtk
from vtk.util. numpy_support import vtk_to_numpy
from numpy import rollaxis , reshape , array , float32 , zeros ,

linspace

#Some vtk bookkeeping and object stuff
reader = vtk. vtkStructuredPointsReader ()
reader . SetFileName ( file_in )
reader . ReadAllVectorsOn ()
reader . ReadAllScalarsOn ()
reader . Update ()
#Find where ’time=’ is in the list , and take the next

element and cut off the comma
time = reader . GetHeader ().split ()
try:

time = float(time[time.index(’time=’)+1][: -1])
except :

time = float(time[time.index(’=’)+1])
data = reader . GetOutput ()
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# Dimensions of the box , store as a tuple
dim = data. GetDimensions ()
nx = dim [0] - 1
ny = dim [1] - 1
nz = dim [2] - 1
D = data. GetSpacing ()
N = (nx , ny , nz)

## #Read the raw data from the vtk file
#Data comes out with vector in the transposed form
try:

u = vtk_to_numpy (data. GetCellData (). GetArray (’velocity ’
)). reshape (nz ,ny ,nx ,3)

except :
u = vtk_to_numpy (data. GetCellData (). GetArray (’momentum ’

)). reshape (nz ,ny ,nx ,3)

b = vtk_to_numpy (data. GetCellData (). GetArray (’
cell_centered_B ’)). reshape (nz , ny , nx ,3)

if( dens_inc ):
rho = vtk_to_numpy (data. GetCellData (). GetArray (’density

’)). reshape (nz ,ny ,nx)
if time_out :

return (N,D,b.T,u.T,rho.T,time)
else:

return (N,D,b.T,u.T,rho.T)
if( time_out ):

if dens_inc :
rho = vtk_to_numpy (data. GetCellData (). GetArray (’

density ’)). reshape (nz ,ny ,nx)
return (N,D,b.T,u.T,rho.T,time)

else:
return (N,D,b.T,u.T,time)

v_k = zeros ((3,N[0],N[1],N[2]) , dtype= float32 )
x= linspace (-.5,.5,N[0])
for i in range(N[0]):

v_k [1,i ,: ,:] += -1.5*0.001* x[i]

return (N, D, b.T, u.T+v_k)

def define_k (N, D):
"""
Creates the 3d k arrays from N and D
To save space , each k vector is only length N
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K has dimensions of 3, with k[0] having shape (N[0] ,1 ,1)
etc.

"""
from numpy.fft import fftfreq
from numpy import array , pi , float32
nx , ny , nz = N
dx , dy , dz = D
#Use a matlab like ndgrid to create the wave - vectors with

the proper shape to take advantage of pythons
vectorization

kx = fftfreq (nx ,dx)*2.* pi
ky = fftfreq (ny ,dy)*2.* pi
kz = fftfreq (nz ,dz)*2.* pi

# Output a single vector
return array ([kx[:,None ,None], ky[None ,:, None], kz[None ,

None ,:]])

def fftvec (vec):
"""
performs a fft on a vector with 3 components in the first

index position
This is really just a wrapper for fft , fftn and their

inverses

The code will properly detect scalar vs vector quantities
and FFT appropriately . (As defined in read_data )

"""
#Use the annfft library if possible for speed (Needs to be

installed )
try:

from anfft import fft , fftn
fft_type = 1

except :
#Use numpy with mkl instead , this is required ,

otherwise this should be modified to use plain numpy
instead

import mkl
mkl. set_num_threads (8)
from numpy.fft import fft , fftn
fft_type = 0

from numpy import complex64 , shape , array , empty
if vec.ndim > 2:

if vec.shape [0] == 3:
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# " Vector ": first index has size 3 so fft the other
columns

if fft_type ==1:
return array ([ fftn(i, measure =True) for i in vec

]). astype ( complex64 )
elif fft_type ==0:

return fftn(vec , axes=range (1, vec.ndim)). astype
( complex64 )

elif fft_type ==2:
result = empty(vec.shape , dtype= complex64 )
result [0] = gpu_fft (vec [0]. copy ())
result [1] = gpu_fft (vec [1]. copy ())
result [2] = gpu_fft (vec [2]. copy ())
return result

else: # " Scalar ", fft the whole thing
if fft_type ==1:

return fftn(vec , measure =True). astype ( complex64 )
elif fft_type ==0:

return fftn(vec). astype ( complex64 )
elif fft_type ==2:

return gpu_fft (vec.copy ())
elif vec.ndim == 1: #Not a vector , so use fft

if fft_type ==1:
return fft(vec , measure = True). astype ( complex64 )

elif fft_type ==0:
return fft(vec). astype ( complex64 )

elif fft_type ==2:
return gpu_fft (vec. astype ( complex64 ))

else:
#0th index is 3, so its a vector
return array ([ fft(i) for i in vec ])

def ifftvec (vec):
"""
performs a fft on a vector with 3 components in the last

index position
This is a wrapper for ifft and ifftn , see fftvec
"""
try:

from anfft import ifft , ifftn
fft_type = 1

except :
#Use numpy compiled agains mkl
import mkl
mkl. set_num_threads (8)
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from numpy.fft import ifft , ifftn
fft_type = 0

from numpy import float32 , real , array , empty , complex64
if vec.ndim > 2:

if vec.shape [0] == 3:
# " Vector ": first index has size 3 so fft the other

columns
if fft_type ==1:

return array ([ ifftn(i, measure =True) for i in
vec ]). astype ( float32 )

elif fft_type ==0:
return ifftn(vec , axes=range (1, vec.ndim)).

astype ( float32 )
elif fft_type ==2:

result = empty(vec.shape , dtype= float32 )
result [0] = gpu_ifft (vec [0]. copy ()). astype (

float32 )
result [1] = gpu_ifft (vec [1]. copy ()). astype (

float32 )
result [2] = gpu_ifft (vec [2]. copy ()). astype (

float32 )
return result

else: # " Scalar ", fft the whole thing
if fft_type ==1:

return ifftn(vec , measure =True). astype ( float32 )
elif fft_type ==0:

return ifftn(vec). astype ( float32 )
elif fft_type ==2:

return gpu_ifft (vec.copy ()). astype ( float32 )
elif vec.ndim == 1: #Not a vector , so use fft

if fft_type ==1:
return ifft(vec , measure = True). astype ( float32 )

elif fft_type ==0:
return ifft(vec). astype ( float32 )

elif fft_type ==2:
return gpu_ifft (vec). astype ( float32 )

else:
#0th index is 3, so its a vector
return array ([ ifft(i) for i in vec ]). astype ( float32 )

def av(a):
"""
Takes a 3D array and computes the average over the x-y

plane
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If the first index has size 3, its a vector so output will
be a vector

"""
from numpy import mean
if a.shape [0] == 3:

return mean(mean(a, -2), -2)
else:

return mean(mean(a, 0), 0)

def lowpass (a, wind=’rect ’, alpha =0.1 , fc = 1./64.) :
"""
Function which takes the num_ks smallest k-value positions

in each dimension and filters the rest.
The input is expected to be of the form a[3 ,...] for a

vector .
Alpha defines the sharpness of the filter window if hamming

is chosen
fc is the cutoff frequency relative to the nyquist

frequency
"""
from numpy import shape ,ones ,zeros , float32
assert ( wind ==’rect ’ or wind ==’hamming ’ or wind ==’gauss ’ or

wind ==’shell ’)
#Does the filtering in 1 line
# -FFT
# -Window the data
# -IFFT
return ifftvec ( create_filter (a.shape , fc , alpha , wind)*

fftvec (a))

def tukey_filter (width , alpha):
"""
Creates a window with length width and sharpness alpha
1 is a cosine ( Hamming )
0 is a rectangle / boxcar / brickwall ( passing 0 will actually

give a divide by zero , so don ’t do that)
"""
from numpy import arange , ones , cos , pi , float32
# create the x values to pass to the function
x = arange (width). astype ( float32 )
#Do some fancy slicing with numpy arrays to create a

piecewise function
p1 = slice(None , int(alpha *( width -1) /2))
p2 = slice(int(alpha *( width -1) /2) , int (( width -1) *(1- alpha

/2)))
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p3 = slice( int (( width -1) *(1- alpha /2)), int(width -1) )
#Set default values to 1
result = ones(width)
# Create the piecewise function
result [p1] = 0.5*(1.+ cos(pi *(2.*x[p1]/ alpha /( width -1) -1.)))
result [p2] = 1.
result [p3] = 0.5*(1.+ cos(pi *(2.*x[p3]/ alpha /( width -1) -alpha

/2.+1.) ))
if width %2 == 0:

result [:- width /2: -1] = result [: width /2 -1] # mirror the
window to work in k-space

else:
result [:- width /2: -1] = result [: width /2]

return result

def gaussian_filter (length , cutoff ):
"""
Create a 1D gaussian filter with length and frequency

cuttoff
"""
from numpy import roll , exp , arange , insert
# return roll(exp (-( arange ( length ) - length /2) **2/2./ cutoff /

cutoff ),length /2)
# create first half of filter
filt = exp(- arange ( length )**2 / 2. / cutoff / cutoff )
# mirror the array
filt [:- length /2+1: -1] = filt [1: length /2 -1]

return filt

def shell_filter (dims , fcs):
"""
Create a spherical shell low pass filter

Want all the positions with (kx **2 + ky*2 + kz **2) > fc **2
to be = 0.

"""
# Because I’m lazy , going to put in a hard code the spacing
# the spacing is the same for the 128 ,512 ,128 runs
# as it is for the 128 ,512 ,512 runs
from numpy.fft import fftfreq
from numpy import ones , max , min
dx = 0.0078125
kx ,ky ,kz = define_k (dims ,[dx ,dx ,dx])
shell = ones(dims)
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shell [(kx **2 + ky **2 + kz **2) >kx[min(fcs)]**2] = 0.
return shell

def create_filter ( axis_dimensions , fc , alpha , wind = ’rect ’):
"""
Creates the 3D filter window to be multiplied by the signal
"""
from numpy import append , insert , ones , zeros , hstack ,

float32

#If its a vector , only look at 1: indeces
if axis_dimensions [0] == 3:

ad = axis_dimensions [1:]
else:

ad = axis_dimensions

# Define the cutoff frequency relative to the nyquist
fcx = int(ad [0]* fc)
fcy = int(ad [1]* fc)
fcz = int(ad [2]* fc)

# Rectangular , boxcar window
if(wind == ’rect ’):

fcx = int(ad [0]* fc)
fcy = int(ad [1]* fc)
fcz = int(ad [2]* fc)
f1 = zeros(ad [0])
f2 = zeros(ad [1])
f3 = zeros(ad [2])
f1[: fcx +1]=1.
f2[: fcy +1]=1.
f3[: fcz +1]=1.
f1[-fcx :]=1.
f2[-fcy :]=1.
f3[-fcz :]=1.

# hamming window -- actually the tukey window
elif(wind == ’hamming ’):

# Create the 1D filters in each dimension
f1 = 1.- tukey_filter (ad[0]-fcx , alpha)
f2 = 1.- tukey_filter (ad[1]-fcy , alpha)
f3 = 1.- tukey_filter (ad[2]-fcz , alpha)
#Pad the ones on the ends up to the cutoff desired
f1 = hstack (( ones ((ad[0]-f1.size)/2) ,f1 ,ones ((ad[0]-f1.

size)/2)))
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f2 = hstack (( ones ((ad[1]-f2.size)/2) ,f2 ,ones ((ad[1]-f2.
size)/2)))

f3 = hstack (( ones ((ad[2]-f3.size)/2) ,f3 ,ones ((ad[2]-f3.
size)/2)))

# Gaussian window
elif(wind == ’gauss ’):

f1 = gaussian_filter (ad[0], fcx *1.)
f2 = gaussian_filter (ad[1], fcy *1.)
f3 = gaussian_filter (ad[2], fcz *1.)

#Shell type window
elif(wind == ’shell ’):

return shell_filter (ad , [fcx , fcy , fcz ])

#This is needed if the array sizes get slightly borked
if f1.size != ad [0]:

f1 = insert (f1 , ad [0]/2 , 0.)
if f2.size != ad [1]:

f2 = insert (f2 , ad [1]/2 , 0.)
if f3.size != ad [2]:

f3 = insert (f3 , ad [2]/2 , 0.)

return f1[:,None ,None ]*f2[None ,:, None ]*f3[None ,None ,:]

# Define some vector calc functions
k = define_k (N,D)
k2 = dot(k,k)
k2[k2 ==0] = 1.

def dot(a, b):
"""
Warning : This shares a name with the numpy function
Custom dot product function for (3, nx , ny , nz) sized

arrays
DOES NOT COMPLEX CONJUGATE
*** Beware *** No checking is done about the size of the

input arrays , you ’ve been warned
This should actually work for any array with 3 as the first

index deonoting vector components .
So long as they are the same shape (or can broadcast )
"""
# Because of the way python -numpy arrays work , if the input

are arrays , this is the same as:
# b[0 ,...]*a[0 ,...] etc.
return sum(i*j for i,j in zip(a,b))
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def cross(a, b):
"""
Warning : This shares a name with the numpy function
Custom cross product routine for (3, nx , ny , nz) sized

arrays
The same warnings as the dot_p function apply.

Interestingly , I could also make this a wrapper for
numpy.cross(a, b, axis =0) as it does the same thing
"""
from numpy import array
return array ([a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a

[0]*b[1]-a[1]*b[0]])

def curl(y):
return ifftvec (cross (1.j*k, fftvec (y)))

def div(y):
return ifftvec (dot (1.j*k, fftvec (y)))

def curl(a):
return ifftvec (cross (1.j*k, fftvec (a)))

def grad(a):
a_ = fftvec (a)
return ifftvec (array ([1.j*k[0]*a_ , 1.j*k[1]*a_ , 1.j*k[2]* a_

]))

def a_dot_grad_b (a,b):
return array ([ dot(a,grad(b[0])), dot(a,grad(b[1])), dot(a,

grad(b[2]))])

## Code to do the corrections to the shearing box
transformations before FFT ’s are applied

def unwrap2 (v, N, D, time):
"""
Attempt to vectorize the original function , unwrap
This version has a significant speed up over unwrap 1 (

factor of about 50)
"""
from numpy import float32 , zeros , linspace , shape ,

array
Omega = 0.001
q = 1.5
dx ,dy ,dz = D
nx ,ny ,nz = N
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Lx = nx*dx
Ly = ny*dy
Lz = nz*dz
Ox = 0.5
#This apparently finds the nearest periodic point
dt = my_mod (time , Ly/(q * Omega * Lx))
x = array ([i*dx - Ox for i in range(nx)])
dy_tot = -q * Omega * x * dt
if v.shape [0] == 3:

return array ([ yshift (v[0], dy_tot /dy),yshift (v
[1], dy_tot /dy), yshift (v[2], dy_tot /dy)])

else:
return array( yshift (v, dy_tot /dy))

def rewrap2 (v, N, D, time):
"""
This version has a significant speed up over rewrap1 (

factor of about 50)
"""
from numpy import float32 , zeros , linspace , shape ,

array , arange
Omega = 0.001
q = 1.5
dx ,dy ,dz = D
nx ,ny ,nz = N
Lx = nx*dx
Ly = ny*dy
Lz = nz*dz
#This apparently finds the nearest periodic point
dt = my_mod (time , Ly/(q * Omega * Lx))
ky = arange (ny *1.)
ky[ky >ny /2] -= 1.* ny
ky /= Ly
dkx_tot = q * Omega * ky * dt
if(v.shape [0] == 3):

return array ([ kxshift (v[0], dkx_tot *Lx),kxshift (
v[1] , dkx_tot *Lx),kxshift (v[2], dkx_tot *Lx)])

else:
return array( kxshift (v,- dkx_tot *Lx))

def kxshift (y1 , dn):
from numpy import zeros , array , shape , empty_like
nx ,ny ,nz = y1.shape
inx = array ([ int(i) for i in dn])
frac = dn - inx
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inx[frac <0] -= 1
frac[frac <0] += 1.
ip = []
ipp = []
#The trick to speeding this up was to use array slices

instead of a mask
for i in range(ny):

ip. append ((( range(nx) + inx[i])%nx , i,slice(
None)))

ipp. append ((( range(nx) + inx[i] + 1)%nx , i,
slice(None)))

y2 = empty_like (y1)
#This creation of the list is the slowest part
# possibly the list comprehension is not efficient
for i in range(ny):

y2[:,i ,:] = (1.- frac[i])*y1[ip[i]] + frac[i]*y1
[ipp[i]]

return y2

def yshift (y1 , dn):
from numpy import zeros , array , shape , empty_like
nx ,ny ,nz = y1.shape
inx = array ([ int(i) for i in dn])
frac = dn - inx
inx[frac <0] -= 1
frac[frac <0] += 1.
ip = []
ipp = []
#The trick to speeding this up was to use array slices

instead of a mask
for i in range(nx):

ip. append ((i,( range(ny) + inx[i])%ny ,slice(None
)))

ipp. append ((i,( range(ny) + inx[i] + 1)%ny ,
slice(None)))

y2 = empty_like (y1)
#for i in range(nx):
# y2[i ,: ,:] = (1.- frac[i])*y1[ip[i]] + frac[i]*y1

[ipp[i]]
# return y2
return [(1. - frac[i])*y1[ip[i]] + frac[i]*y1[ipp[i]] for

i in range(nx)]

def mapped_fft2 (a, N, D, t):
from Functions import fftvec as fft

112



McMaster University – Physics and Astronomy PhD Thesis – Benjamin B.H. Jackel

return rewrap2 (fft( unwrap2 (a,N,D,t)),N,D,t)

def mapped_ifft2 (a, N, D, t):
from Functions import ifftvec as ifft
return unwrap2 (ifft( rewrap2 (a,N,D,-t)),N,D,-t)

def highpass_mapped2 (a):
return mapped_ifft2 ((1. - create_filter (a.shape , alpha=alpha ,

fc=fc ,wind= window ))* mapped_fft2 (a,N,D,t),N,D,t)

def lowpass_mapped2 (a, N, D, t, alpha , fc , wind):
#from Functions import fftvec as fft
#from Functions import ifftvec as ifft
fft = mapped_fft2
ifft = mapped_ifft2
from Functions import create_filter
from numpy import shape ,ones ,zeros , float32
assert ( wind ==’rect ’ or wind ==’hamming ’ or wind ==’gauss ’ or

wind ==’shell ’)
#Does the filtering in 1 line
# -FFT
# -Window the data
# -IFFT
# Create a rectangular window
return ifft( create_filter (a.shape , fc , alpha , wind)*fft(a,N,D

,t),N,D,t)

def ndgrid (*args , ** kwargs ):
"""
n- dimensional gridding like Matlab ’s NDGRID

The input *args are an arbitrary number of numerical
sequences ,

e.g. lists , arrays , or tuples .
The i-th dimension of the i-th output argument
has copies of the i-th input argument .

Optional keyword argument :
same_dtype : If False ( default ), the result is an ndarray .

If True , the result is a lists of
ndarrays , possibly with

different dtype. This can save
space if some *args

have a smaller dtype than others .
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Typical usage:
>>> x, y, z = [0, 1], [2, 3, 4], [5, 6, 7, 8]
>>> X, Y, Z = ndgrid (x, y, z) # unpacking the returned

ndarray into X, Y, Z

Each of X, Y, Z has shape [len(v) for v in x, y, z].
>>> X. shape == Y.shape == Z.shape == (2, 3, 4)
True
>>> X
array ([[[0 , 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0]],

[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]])

>>> Y
array ([[[2 , 2, 2, 2],

[3, 3, 3, 3],
[4, 4, 4, 4]],

[[2, 2, 2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4]]])

>>> Z
array ([[[5 , 6, 7, 8],

[5, 6, 7, 8],
[5, 6, 7, 8]],

[[5, 6, 7, 8],
[5, 6, 7, 8],
[5, 6, 7, 8]]])

With an unpacked argument list:
>>> V = [[0, 1], [2, 3, 4]]
>>> ndgrid (*V) # an array of two arrays with shape (2, 3)
array ([[[0 , 0, 0],

[1, 1, 1]],
[[2, 3, 4],

[2, 3, 4]]])

For input vectors of different data types , same_dtype =False
makes ndgrid ()

return a list of arrays with the respective dtype.
>>> ndgrid ([0, 1], [1.0 , 1.1, 1.2] , same_dtype =False)
[array ([[0 , 0, 0], [1, 1, 1]]) ,

array ([[ 1. , 1.1, 1.2] , [ 1. , 1.1, 1.2]]) ]
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Default is to return a single array.
>>> ndgrid ([0, 1], [1.0 , 1.1, 1.2])
array ([[[ 0. , 0. , 0. ], [ 1. , 1. , 1. ]],

[[ 1. , 1.1, 1.2] , [ 1. , 1.1, 1.2]]])
"""
from numpy import array , zeros , ones_like , append , shape
same_dtype = kwargs .get(" same_dtype ", True)
V = [array(v) for v in args] # ensure all input vectors are

arrays
shape = [len(v) for v in args] # common shape of the

outputs
result = []
for i, v in enumerate (V):

# reshape v so it can broadcast to the common shape
# http :// docs.scipy.org/doc/numpy/user/ basics .

broadcasting .html
zero = zeros(shape , dtype=v.dtype)
thisshape = ones_like (shape)
thisshape [i] = shape[i]
result . append (zero + v. reshape ( thisshape ))

if same_dtype :
return array( result ) # converts to a common dtype

else:
return result # keeps separate dtype for each

output
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