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Lay Abstract

The human papillomavirus (HPV) is a sexually transmitted infection that is known

to cause cervical cancer in women along with other genital cancers. Cervical cancer is

the fourth most common cancer in women, and thus researchers are looking to reduce

the number of cervical cancer cases and the number of HPV infections. In order

for HPV to cause cervical cancer, the infection must persist for a long time. Most

individuals clear the infection without any complication; however, some individuals

develop persistent infections. By using mathematical and computation models, we

hope to understand why and how HPV infections spread in the host. We develop

a criterion for when the infection may be able to establish in the host, and explore

conditions that could lead to clearance. Understanding when and how infections will

persist could inform treatment and monitoring of cervical cancer development.

iii



Abstract

Cervical cancer is the fourth most common cancer in women. It is caused by the hu-

man papillomavirus (HPV). There are many different types of HPV, some of which are

high-risk, highly associated with cancer, and low-risk. While HPV is very common—

most sexually active individuals will contract some sexually transmitted HPV infec-

tion in their lifetime—most infections are cleared without any complication. However,

persistent infections may establish and develop into cancerous lesions. Two vaccines

have been developed against the two most high-risk types, and have shown high lev-

els of efficacy thus far. However, infections are still occurring and it is not clear why

some individuals develop persistent infections while others do not. In this thesis, we

develop a model to describe how the infection spreads within the host. We express

the basic reproduction number R0, a threshold for the establishment of an infection.

We solve for the diseased equilibrium, providing insight about whether an infection

will persist or not. We develop a spatial model to examine how spatiality of the infec-

tion process affects the establishment or clearance. Lastly, we develop a multi-type

HPV model to examine whether competitive HPV types are able to coexist in the

host for different levels of competition. Ultimately, this work provides groundwork

for within-host modelling of HPV and can provide direction for future research.
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Chapter 11

Introduction2

Cervical cancer is a major health concern worldwide. With over 500,000 cases and3

approximately 260,000 deaths each year, the burden of cervical cancer is signifi-4

cant [6, 18, 20]. In particular, women in developing countries are at a higher risk for5

developing cervical cancer and may have limited access to health care for detection6

and treatment [6,18,20]. Since the 1990s, it has been known that all cases of cervical7

cancer are caused by persistent infection with the human papillomavirus (HPV) [2,25].8

This virus is also highly associated with other cancers affecting the anogenital and9

oropharyngeal tracts [49]. Furthermore, HPV infections are very common in almost10

all populations. HPV is the most common sexually transmitted infection, and it is be-11

lieved that most sexually active men and women will have at least one HPV infection12

at some point in their life [49]. At a 80-90% clearance rate, most infections are nat-13

urally cleared without any complications or symptoms [2, 33, 38, 57]. It is those with14

persistent infections who are at risk of developing cervical cancer [25,47]. Therefore,15

researchers are trying to learn more about HPV to prevent infection and to prevent16

the progression to cervical cancer and other cancers.17
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The human papillomavirus is a virus that infects the epithelium. In particular it18

infects the basal cells in the bottom-most layer of the epithelium [24,51,52]. The virus19

is able to utilize the DNA replication procedures of these basal cells to replicate its own20

viral DNA. HPV is only able to infect these cells after they have become uncovered by21

some abrasion to the epithelium. In the case of sexually transmitted HPV, this may22

occur during intercourse or sexual activity. Once the HPV virus particle infects the23

basal cell, it begins replicating its viral DNA. As the infected epithelial cells move up24

the epithelium, virus particles are assembled [51, 52]. When the cell reaches the top25

of the epithelium, it naturally undergoes cell death and flattens to form the top-most26

layer of the epithelium [51, 52]. During this cell death process, virus particles are27

released into the surrounding milieu and the infection cycle continues.28

In fact, HPV is able to delay the natural cell death process in the epithelium. Two29

viral proteins E6 and E7 have been shown to inhibit proteins p53 and Rb, respectively.30

The protein p53 is a tumour suppressant. It halts the DNA replication process of31

damaged DNA until the damage is fixed. If it isn’t fixed, it can also induce apoptosis,32

destroying the cell that would produce the damaged DNA [48]. The viral protein E633

promotes the degradation of p53, which inhibits the tumour suppressant ability [63].34

It has also been shown that the E6 protein can inhibit p53 without actually destroying35

it [30]. The other protein Rb has a major responsibility for initiating the first check36

point in the cell cycle [22]. It is able to repress the expression of replication enzyme37

genes which suppresses tumour development [63]. The viral protein E7 binds to the38

Rb protein and prevents the protein from initializing the check point. This supports39

excessive cell growth [63]. Thus, these viral proteins E6 and E7 have an important40

role in immortalizing infected cells, thus producing more viral copies overall. This41
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process also may lead to pre-cancerous or cancerous lesions. As the life span of the42

cell increases, the probability for a cancerous mutation to occur also increases. HPV43

types that produce proteins which interact effectively with these tumour suppressant44

proteins p53 and Rb are said to be cancer causing and high-risk, while those that do45

not interact well are considered low-risk. There is a lot of variability between HPV46

types and the impact they have on the host.47

There are over 100 different HPV types, over 40 of which are sexually transmitted48

and infect the anogenital tract [11,25,57]. Types are categorized into different species49

and genera. Types in the α-9 and α-7 species are highly associated with malignant50

lesion formation on the cervix [2,11,25,57]. In particular, HPV-16 (α-9) and HPV-1851

(α-7) are associated with 70% of all cervical cancer cases in women [6, 25]. Types52

highly associated with cancer formation are considered “high-risk.” Other high-risk53

types include 31(9), 33(9), 35(9), 39(7), 45(7), 51(5), 52(9), 56(6), 58(9), 59(7), 68(7),54

73(11), and 82(5) [2,11]. The numbers in the parentheses refer to the species in which55

the type belongs; all species are within the α genus. To combat the effects of HPV on56

cervical cancer, two vaccines were developed to protect against the two most high-risk57

types.58

Since 2006, two vaccines GardasilTM (GlaxoSmithKline) and CervarixTM (Merck &59

Co.) have been administered to protect against the two most high-risk HPV types [25].60

CervarixTM is a bivalent vaccine. It protects against two HPV types: HPV-16 and61

HPV-18. GardasilTM on the other hand is a quadravalent vaccine. In addition to62

providing protection against HPV-16 and -18, it also confers protection against HPV-63

6 and -11, two low-risk types associated with genital warts. Thus far, both vaccines64

have shown exceptional efficacy, up to 95% over eight years, and participants have65

3
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developed high antibody responses to the vaccine [31, 43]. While these vaccines are66

still in their infancy, preliminary longitudinal results show that antibody levels remain67

high. There is even evidence that vaccination against these types provides protection68

for unvaccinated individuals through herd protection [29]. Given these findings, it69

is believed that these HPV vaccines will have a significant effect in the reduction of70

HPV caused cancers, specifically cervical cancer.71

The advent of the HPV vaccines has led many researchers to examine the impact72

the vaccine will have on cancer cases and the burden of HPV overall. Because certain73

data are limited or because experiments and studies may be impractical or impossible,74

many researchers employ mathematical models to analyze the effects the vaccine75

and to make informed decisions on the vaccine coverage and implementation. Some76

models examine epidemiological and ecological benefits of the vaccine [9, 15, 16, 26]77

while others examine the effects of vaccinating certain populations, such as boys and78

men [14,26]. Some models even aim to understand factors for vaccine acceptance and79

uptake in the population [3]. These models suggest that the vaccination of HPV will80

provide numerous benefits epidemiologically and economically. Many scientists are in81

consensus that the vaccines will provide positive outcomes to control of HPV-related82

cancer. However, some researchers have also been examining the potential negative83

effects of the vaccine—in particular, type replacement.84

Type replacement is the ecological phenomenon wherein the removal of one strain85

of a pathogen, such as through vaccination, can increase the niche space for other86

strains, thus increasing the prevalence of the non-vaccine strains. In the context of87

HPV, these researchers set out to explore if the removal of HPV-16 and -18 through88

4
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vaccination can increase the prevalence of other high-risk types. If these other high-89

risk types do indeed increase in prevalence, then the benefits of the vaccine may not90

be as substantial as previously thought. In order to examine if type replacement is91

even possible, mathematical models have been used to analyze conditions for type92

replacement to occur.93

Mathematical models are important tools for examining concerns such as type94

replacement because information can be gathered about the potential for and impact95

of type replacement before it occurs in the population. Compartmental models have96

been developed and analyzed specifically to address the potential for type replace-97

ment in HPV [16,40,41]. Findings from these models suggest that type replacement98

is contingent upon the interactions between HPV types. Specifically, competition99

between the HPV types is a necessary condition for type replacement [16, 28]. If100

HPV types have neutral or facilitative interactions, then type replacement will not101

occur. In fact, if HPV types are facilitative, in that the presence of one supports102

another type, then a further decrease in the prevalence of the non-vaccine type may103

accompany vaccination. Therefore, in order to determine if type replacement will be104

a concern, interactions between HPV types will have to be examined further.105

Interactions between HPV types within the host are complex and not fully un-106

derstood. Population studies have shown that infections with multiple types of HPV107

are not uncommon. It is estimated that between 5-43% of individuals with HPV108

infections are infected with multiple types [7, 25]. This high rate of type coexis-109

tence within the host has led some researchers to suspect that HPV types are not110

competitive [7]. If HPV types occupy the same niche space, then by the Compet-111

itive Exclusion Principle two competitive organisms should not be able to occupy112

5



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

the same niche space. Because multiple HPV types are found in a high number of113

HPV infections, some researchers have concluded that HPV types are predominantly114

independent [56]. Therefore, they believe that type replacement is unlikely given this115

scenario for type interactions. While there is limited data that would suggest type116

replacement is occurring, there is one study [29] which showed that there was an117

increase in non-vaccine HPV types in vaccinated young women. This may be a sign118

of type replacement; however, it may also be confounding effects due to their sample119

population. A consensus has not yet been reached in terms of the potential or severity120

of type replacement, but it has been shown that type interactions play an important121

role and should be considered more carefully.122

To begin exploring HPV type interactions, we first discuss what is known about123

how HPV types compete with one another, whether for space or indirectly. Two HPV124

types may have indirect apparent competition between them through immune system125

cross-protection. That is, if the immune system has cross-protective effects between126

two types, then the presence of one may drive the elimination of the other through127

increased immune activity. It has been shown that type specific antibodies have128

cross-protective effects on HPV types in the same species [46]. While less is known129

about whether cross-recognition of similar HPV types by the CD4+ and CD8+ T-130

cells exists and if it confers noticeable levels of cross-protection, evidence for some131

cross-recognition is supported [36]. There is some evidence for coinfection within132

the same host cell. An in vitro study showed that coexistence is possible between133

HPV-18 and other HPV types [32]. However, in coinfection scenarios, HPV-18 often134

dominated the viral production of the host cell. This suggests resource competition.135

It seems there are still many questions that are unanswered surrounding HPV type136
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interactions, and it is important to consider the within-host dynamics that are going137

on between HPV types.138

To help elucidate some of the questions surrounding HPV interactions and the139

potential for type replacement, a mathematical within-host patch model was built140

and analyzed by Murall et al. [35]. In their paper, they summarize what is currently141

known and speculated about HPV interactions. Then they analyze long-term results142

of the mathematical models under a variety of different HPV interaction scenarios.143

They then compare these results with qualitative characteristics of population level144

studies looking at multi-type infections. They determined that even in scenarios145

of competition, coexistence is possible in the host. This suggests that even though146

multiple type HPV infections are not uncommon, HPV types may still be competitive147

within the host. From these findings, HPV type replacement should not be yet ruled148

out.149

However, a traditional multi-type patch model does not fully capture the complex150

infection cycle of HPV. In this thesis, we start by discussing some of the important151

biological factors at play in the infection process in Chapter 2. We then implement152

these important factors in the formation of our base within-host HPV model. In153

particular we introduce an abrasion process into our model which may drive or limit154

the spread of the infection in the host. We solve for the equilibria of the model and155

examine their stability. We also formulate an expression for the basic reproduction156

number R0, which provides a condition for the effective establishment of an infection157

within the host and also informs potential for clearance.158

In Chapter 3 of this thesis, we focus on how spatiality may affect the spread of159

HPV within the host. We develop a stochastic, spatial model derived from the base160
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model established in Chapter 2. We consider two different neighbourhood structures:161

a global and local neighbourhood. In the global neighbourhood model, we consider162

that infection sites in the epithelium are able to equally interact with all other sites163

in the epithelium. This scenario is considered to compare the stochastic simulation164

to the deterministic base model, and to confirm the rates of the events in the model.165

The local model considers sites only interacting with the four closest sites surrounding166

the focal site. This is to examine how locality on the epithelium may play a role in167

the establishment and clearance of HPV interactions.168

Lastly, in Chapter 4 we discuss in more detail some of the different ways HPV may169

compete within the host. We adapt our base model to consider two different HPV170

types. We examine a scenario of space competition and cross-reactivity. We consider171

independent immune responses primed against each of the two strains linked together172

by a factor of cross-reactivity. In this scenario, we find that coexistence between the173

two competing types is possible for certain levels of cross-reactivity. This further174

suggests that coexistence of multiple HPV types within the host is possible even175

when HPV types are competing with one another.176

In conclusion, we show that there are complex dynamics in within-host HPV177

modelling. Coexistence is possible in within-host models when considering two sepa-178

rately primed but cross-reactive immune responses. We also highlight unintentional179

asymmetry in super-infection patch models and some techniques in avoiding this180

asymmetry. This research aims to discuss and highlight particular considerations in181

within-host modelling and provide a basis for further research in within-host dynamics182

and the potential for type replacement of HPV.183
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Chapter 2184

Within Host Models for HPV185

2.1 Introduction186

Cervical cancer is the fourth most common cancer in women and the seventh over-187

all [18]. Fatality rates due to cervical cancer vary nationally but are higher in devel-188

oping nations [6, 18,20]. Persistent infections with the human papillomavirus (HPV)189

have been linked with 99% of all cervical cancer cases [2, 25]. HPV infects the ep-190

ithelium and can cause warts or lesions. There are over 100 different types of HPV,191

over 40 of which are sexually transmitted and infect the anogenital tract. The human192

papillomvirus is also ubiquitous in most populations: 75% of Canadians will have193

an HPV infection in their lifetime [37]. However, approximately 80-90% of people194

naturally clear HPV within two years of infection [2, 33, 38, 57]. It is the remain-195

ing 10-20% of individuals with persistent HPV infections who are most at risk of196

developing cervical cancer or other types of cancer.197

Natural infection with HPV is marked by a relatively weak immune response.198
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Many of those who naturally clear a transient HPV infection do not produce a de-199

tectable antibody response [2,5]. Of those who do present detectable antibody levels,200

concentrations are often low [2,5,51]. Because transient infections are cleared without201

any noticeable antibody levels, it is believed that the cell-mediated immune response202

accounts for the clearance of HPV infections [51, 52, 54]. It is still not fully under-203

stood why certain cases result in transient infection and others result in persistent204

infection [24]. Understanding the complex interactions between the host, virus, and205

the host’s immune response can be helpful for elucidating these open problems and206

potentially developing treatments. Mathematical models can be useful for examining207

these questions. Insights from current biological knowledge of HPV dynamics can be208

used to develop theoretical models, which can be analyzed in a rigorous fashion.209

In this chapter, we review the biological factors that drive HPV infections and from210

this develop a within host model for HPV infection. We analyze the values of the211

equilibria and their stability from this model. Importantly, we formulate an expression212

for the basic reproduction numberR0, which can be used to better understand factors213

that lead to clearance, persistence, and prevention. We make two alterations to the214

model by considering the development of memory cells and by introducing a delay in215

the immune response. Lastly, we examine how these alterations affect the dynamics216

of the model.217

2.1.1 Biological Factors218

To build a model of HPV infection within the host, we first consider the biological219

factors that drive the infection process. We will discuss how HPV infects the host,220

how viral DNA is replicated and released in the host, how HPV is detected by the221
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immune system, and how HPV is cleared by the immune system. We then use this222

information to inform the model and underlying assumptions, discussed in section 2.2.223

HPV solely infects the basal layer of the epithelium, the bottom-most layer [24,224

51,52]. These cells are responsible for cell DNA replication, and thus HPV is able to225

capitalize on the DNA replication processes in the cell to replicate its viral DNA. The226

cuboidal cells that make up the basal layer are normally protected by the squamous227

layer (the top-most layer) and stratum spinosa (the middle layer) of the epithelium,228

but they can be uncovered by micro-abrasions to the epithelium [24, 51]. These229

micro-abrasions are caused by a trauma to the epithelium; in the case of sexually230

transmitted HPV infections this occurs during sexual intercourse. HPV then infects231

these uncovered basal cells, and begins the infection cycle.232

After HPV has infected these cells, it begins to produce viral proteins necessary233

for DNA replication and the construction virus particles. The HPV infection cycle234

is intrinsically linked to the epithelial life cycle [51, 52]. Different viral proteins are235

expressed at different times in the epithelial cell cycle. Early in the cycle, while236

the infected cells are still near the basal layer, early proteins (E) are produced. As237

the infected basal cells move up the epithelium, late proteins (L) are expressed in238

higher numbers [51,55]. There are two important late proteins L1 and L2, which are239

the major and minor capsid proteins, respectively. They build the outer capsid of240

viral particles and are responsible for the implantation of viral DNA into uninfected,241

uncovered basal cells [51,54,55]. Virus particles are released at the end of the epithelial242

cell cycle. When epithelial cells approach the squamous layer, they die and flatten243

into the scale-like cells that make up the top-most layer of the epithelium. As these244

infected scale-like cells flake off, viral particles are released into the surrounding milieu245
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and can infected other susceptible sites, completing the infection cycle of HPV.246

In order to adequately explain how the immune system interacts with HPV, we247

will first briefly discuss a simplified description of the immune system. The human248

immune system is divided into two main responses: the innate immune response and249

the adaptive immune response. The innate immune response is the first line of defence250

against potential pathogens [51]. It has some protective effects; however, a main251

function of the innate immune response is to activate the adaptive immune response,252

which is done in part via inflammatory responses. Antigen presenting cells (APCs) are253

responsible for detecting, processing, and presenting antigen to the immune system254

in order to elicit antigen-specific immune responses [51]. APCs are triggered and255

activated during an inflammatory response. After being activated, APCs interact256

with antigen epitopes, migrate to the lymph nodes, and present them to naive T-cells257

there [51]. This initiates the adaptive immune response.258

The adaptive immune response develops antigen specific strategies to eliminate259

an infection and prevent reinfection. It is separated into to cell-mediated immune260

responses and humoral immune responses. We briefly discuss the main roles of each261

response in the clearance and prevention of infection. Primed T-cells are the main262

effector cells of the cell-mediated immune response and have various functions based263

on how they differentiate. Once T-cells become primed against a particular antigen,264

some differentiate into helper T-cells, which aid the immune response in a variety of265

ways, and into killer T-cells [51]. Killer T-cells are primed to detect viral proteins266

expressed on the surface of infected cells, and then subsequently destroy these infected267

cells [51]. In this way, primed killer T-cells eliminate the current infection.268
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The other arm of the adaptive immune response, the humoral response, has B-269

cells as its effector cells. Unlike T-cells, which require antigen to be presented via270

ABCs, naive B-cells are able to interact directly with antigen. B-cells, which have271

been primed against a particular antigen, produce and release antibodies into the sur-272

rounding milieu [51]. These antibodies then interact with virus particle, deactivating273

them and preventing further infection. In this way, the humoral response disallows274

the infection from spreading further. Another role of the B-cells is to differentiate275

into memory cells. These memory cells live for a long time within the host and help276

to jump start the immune process when the host comes into contact with the same277

antigen at a later time. Together, the cell-mediated and humoral responses of the278

adaptive immune system are often very effective at clearing and preventing further279

infection. Understanding how the immune system works in general can help provide280

insight to how HPV interacts with the immune system.281

The first way that HPV interacts with the immune system is avoiding it. HPV282

is quite effective at evading the immune system, which in turn results in a fairly283

weak immune response. As discussed previously, HPV virus particles are released284

when the epithelial cells flatten and die at the end of the epithelial cycle. In this285

way, HPV does not need to induce cell death in order to release viral particles; the286

cells die naturally [51, 52, 55]. This delays an inflammatory response, which in turn287

delays the adaptive immune response. Moreover, HPV locally infects the epithelium,288

which is an immune-privileged zone. The epithelium does not have much immune289

activity, which makes it difficult for immune responses to be triggered in the presence290

of antigen [51, 52, 55]. In these ways, HPV can impede the immune response, which291

limits the immune response against HPV. Even though HPV is effective at evading292
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the immune response, in most infections a response is triggered and often HPV is293

effectively cleared.294

Once the adaptive immune response is triggered, primed T-cells and B-cells work295

together to clear the HPV infection. Killer T-cells primed against the HPV antigen296

detect the early proteins E2 and E6, expressed on the surface of the infected basal297

cells [10, 17, 21] and eliminate the infected cells. B-cells are primed to produce anti-298

bodies by coming into contact with L1 viral protein epitopes [51, 53, 54]. Antibodies299

are produced and interact with and deactivate the viral L1 protein on the outer cap-300

sid, which prevents further implantation of viral DNA into susceptible cells [51, 54].301

Unfortunately, because HPV often elicits a weak immune response, antibody con-302

centrations are often quite low in natural infections [24, 51, 54]. Some individuals do303

not even acquire detectable antibody levels after infection [55]. Because of these low304

antibody levels, and the high rates of eventual HPV clearance, it is believe that the305

cell-mediated response is primarily responsible for clearing HPV infections [51,52,54].306

In order to combat the burden of HPV and HPV induced cancers, two vaccines307

have been developed. GardasilTM (Merck & Co.), a quadravalent vaccine, protects308

against four types of HPV: 16, 18, 6, and 11. The first two types are the most highly309

associated with cervical cancer, while the other two are most associated with genital310

warts. The second vaccine CervarixTM (GlaxoSmithKline) is bivalent and protects311

against HPV-16 and -18. These vaccines work in similar ways. Virus like particles312

(VLPs), which contain L1 capsid proteins but no viral DNA, are injected directly into313

muscle tissue. Because the vaccine is injected directly into the host, this puts the L1314

protein into direct contact with the immune system, which activates strong humoral315

and cell-mediated immune responses, preventing later infection [51, 54]. Three doses316
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of the vaccine produce high antibody concentrations, which after follow-up remain317

high in the patients [31,43]. These vaccines show high efficacy in preventing infection318

with these specific HPV types, thus lessening the burden of cervical cancer and other319

cancers caused by these HPV types.320

2.2 The Model321

Our model considers sites on the cervical epithelium. One site is essentially the322

resulting infectious portion of the epithelium that develops after infection of one323

basal cell unit. We organize the sites into different compartments based on infection324

status. The compartment denoted H refers to healthy sites, S refers to susceptible325

sites which have been uncovered by an abrasion, E refers to exposed sites which have326

been infected but are not yet producing virus, and I refers to sites that have reached327

the infectious stage of the viral cycle. These infectious sites produce and release virus328

particles V at rate f . These virus particles are naturally destroyed at a rate δ. Virus329

particles are able to infect susceptible sites at a rate βV . Healthy sites are abraded330

into susceptible sites at a rate χ and these susceptible sites recover back to healthy331

sites at a rate ρ. Once a site has become exposed with HPV, it matures into an332

infectious site at a rate σ. This completes the infection cycle of HPV.333

We also introduce an immune response through killer T-cells Z, which will be334

triggered by the presence of exposed and infectious cells. Production of immune cells335

occurs at a constant rate ζ without the presence of an infectious agent. Propagation336

of these cells due to the presence of HPV infection will depend upon the current337

number of immune cells Z and the combined number of infected cells (E + I). This338

process occurs at a rate of γ(E+I). These T-cells can effectively clear infections from339
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cells in the E and I compartments at a rate of αZ and have a natural death rate340

of µ. The entire process of this model is illustrated in Figure 2.1, a compartmental341

diagram highlighting the infection and clearance processes through flows.

H S E I

V

Z

γ

χ βV σ

ρ

f
δ

µ

αZ

αZ

ζ

Figure 2.1: Flow diagram of the infectious process of HPV within the host.

342

This model is also expressed as a system of differential equations (1) below.343
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dH

dt
= −χH + ρS + αZ

(E + I)

N
, (1a)

dS

dt
= χH − ρS − βV S

N
, (1b)

dE

dt
= βV

S

N
− σE − αZ E

N
, (1c)

dI

dt
= σE − αZ I

N
, (1d)

dV

dt
= fI − δV, (1e)

dZ

dt
= ζN + γZ

(E + I)

N
− µZ, (1f)

To simplify the analysis, we set N = 1 and consider H,S,E, and I to be the344

proportion of healthy, susceptible, exposed, and infectious sites, respectively.345

Parameter Estimation346

We begin by discussing the various biological parameters of the model and estimates347

of these parameters from the existing literature. There are a number of biological348

parameters in the system that require estimation from previous physiological and349

virological studies. Please see Table 2.1 below to review the various parameters that350

build up the model:351

Firstly, consider the abrasion-recovery process. We assume a rate of abrasion352

χ = 0.015. This is an estimate that we developed. We assume that in one occurrence353

of sexual intercourse, 10% of the basal cells become uncovered due to abrasion. If354

individuals have sexual intercourse at a rate of 1/7 (≈ 0.15) times per day on average,355

the rate of abrasion is χ = 0.10(0.15) = 0.015 day−1. We estimate the rate of recovery356

ρ from the average cycle of the epithelium, approximately 30 days. Now, we only357
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Table 2.1: Estimates for the parameters used in the models

Host
Parameters

Description Value Source

χ Abrasion rate of the epithelium 0.015 day−1 Est.
ρ Recovery rate of the epithelium after

abrasion
0.6 day−1 Est.

ζ Rate of baseline immune cell produc-
tion

0.01 day−1 Est. [42]

γ Rate of immune cell production in the
presence of HPV viral proteins

2day−1 [4]

µ Rate of immune cell death 0.5 day−1 [4]
ε Rate of memory cell proliferation 0.02 day−1 [4]
KM Carrying capacity of memory cells 0.01N cells [4]
N Site population size of the organ 10,000 sites Const.

Virus
Parameters

Description Value Source

f Rate of virus production 600 copies
(site·day)

[51]

δ Natural rate of viral destruction 0.138 day−1 [39]
σ Rate at which infectious sites can start

producing virus
0.03 day−1 Est.

Host-Virus
Parameters

Description Value Source

α Killing rate of infected sites due to the
immune response

0.5 day−1 [35]

β Infection rate of susceptible sites by
virus particles

0.003 day−1 [8]

require that only layer of the epithelium is recovered to shield the basal layer from358

infection. One layer of cells of the epithelium is approximately 10 micrometres of359

the 180 micrometres of the whole epithelium. Thus the average time of recovery360

for one layer of the epithelium is approximately (10/180)(30) = 1.67 days, and thus361

ρ = 0.60 day−1.362
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We also consider the estimates of HPV virus parameters. HPV requires the com-363

plete epithelial cell cycle in order to produce and release viral particles. Therefore, we364

estimate that the average time from an exposed site to become infectious is 1
σ

= 30365

days, and thus σ = 0.03 day−1. The rate of viral production can be determined from366

the amount of viral copies produced from the squamous layer per day. The burst size367

of a single infectious site is 1000 copies per cell [51], and we multiply this by the rate368

of layer recovery, ρ, thus the rate of viral production is f = 1000(0.6) = 600 copies369

per cell per day. The natural decay rate of of these viral particles is set to 0.138370

day−1 [39]. These viral particles can then infect uncovered basal cells at a rate 0.003371

day−1 [8].372

There are not many studies examining specific immune parameters during an373

HPV infection. Thus we use studies from other viral studies to inform our parameter374

estimates. A study by De Boer et al. [4] examined proliferation and apoptosis rates375

of CD8+ T-cells in response to Lymphocytic Choriomeningitis viral infections. They376

found that T-cells lived on average for 2 days before apoptosis, i.e., µ = 0.5 day−1.377

The proliferation rates of CD8+ T-cells occurred about about three per day, that is378

γ ≈ 3 day−1. However, proliferation rates can vary between individuals. Furthermore,379

HPV is not particularly immunogenic, so we can assume that γ = 2 day−1. When380

considering the rate at which primed T-cells are able to clear HPV, it is not completely381

clear. Because the epithelium is an immune privileged zone, we set the baseline382

immune response ζ to be quite low, ζ = 0.01 day−1 [42].383

We also consider memory cell dynamics in the immune system. The same study384

by De Boer et al. [4] found that the proliferation rate of memory cells was about385

ε = 0.01 day−1. Furthermore, the capacity of the memory cells recruited during an386
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infection was found to be about 5% of the peak population of T-cells [4].387

2.3 Results388

In this section, we solve for the equilibria of the model (1) and also derive the ex-389

pression for R0. We also showcase the numerically solved solutions of the model and390

discuss the dynamics of the model for different parameter values. In sections sec-391

tions 2.4 and 2.5 we introduce memory cells and an immune system delay process392

into the model and discuss how these effects alter the dynamics.393

2.3.1 The Healthy Equilibrium, HE394

We will first consider the case with no infection present, which we call the healthy equi-395

librium (HE ). The equilibrium is expressed as HE = (H̄, S̄, Ē, Ī, V̄ , Z̄) = (H̄, S̄, 0, 0, 0, Z̄).396

Given this equilibrium condition, we can find the remaining equilibrium values for the397

healthy and susceptible patches and the immune response. This is done by setting398

the differential equations to zero, and solving for the remaining H,S, and Z terms in399

the steady states.400

Z =
ζ

µ
, (2a)

H =
ρ

χ+ ρ
, (2b)

S =
χ

χ+ ρ
. (2c)
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These values provide the final expression for the healthy equilibrium HE :401

HE =

(
ρ

ρ+ χ
,

χ

ρ+ χ
, 0, 0, 0,

ζ

µ

)
(3)

The stability of the healthy equilibrium is examined in more detail in Appendix A.2.402

2.3.2 The Basic Reproduction Number, R0403

An important value in epidemiology is the basic reproduction number R0. The value404

of R0 is the average number of new infections from one infected individual in a405

fully susceptible population at the beginning of an outbreak. This parameter has406

many important implications for the control of infectious disease. Intuitively, if a407

system has an R0 < 1, then fewer than one individual will be infected on average at408

the onset of the disease, which means the disease cannot spread effectively through409

the population, resulting in no epidemic. In the case where R0 > 1, the disease410

is able to infect more than one individual on average, and an epidemic can occur.411

The severity of the epidemic and the magnitude of the control efforts to combat the412

disease depend on the value of R0. In the context of our model, we are not concerned413

with individual humans but rather sites in the epithelium. A complete infectious414

cycle can be thought of as a single infectious site I producing viral particles, these415

viral particles successfully infecting a susceptible site, and that newly exposed site416

E surviving latency to become infectious again. Thus in the context of our model,417

R0 < 1 means the HPV infection cycle is not completed on average and an infection418

is unable to establish. For R0 > 1 the infection cycle is completed more than once on419

average, and thus the infection may be able to establish and persist. This R0 value420

signifies the within-host reproduction number and only informs the establishment of421
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an infection after exposure to HPV, but does not inform the spread of HPV between422

individuals at the population level.423

We formulate an expression for R0 in more detail by closely examining the in-424

fection cycle of a singly infectious site at the beginning of the epidemic. Recall that425

the infectious site I is able to produce viral particles at a rate f , and it is cleared by426

the existing immune system at rate
αζ

µ
. Thus, the average number of viral particles427

produced before this site is cleared is equal to
fµ

αζ
. These virus particles are able to428

infect susceptible sites at a rate β and are cleared naturally at a rate δ. Because the429

proportion of the susceptible sites at the beginning of the epidemic is
χ

χ+ ρ
, these430

virus particles infect an average of
βχ

δ(χ+ ρ)
susceptible sites. These newly exposed431

sites become infectious at a rate σ, and are also cleared at a rate
αζ

µ
, thus the average432

number of exposed sites that survive latency is
σµ

σµ+ αζ
. This cycle is illustrated in433

more detail as a flow diagram in Figure 2.2.434

Multiplying the terms, we arrive at the following expression for R0.435

R0 =

(
fµ

αζ

)(
βχ

δ(χ+ ρ)

)(
σµ

σµ+ αζ

)
(4a)

=
fβχσµ2

αζδ(χ+ ρ)(σµ+ αζ)
(4b)

The derivation of this value is also confirmed using van den Driessche and Watmough’s436

method of the next generation matrix [59] discussed in detail in Appendix A.1. Thus437

given the formulation of R0 the healthy equilibrium HE is stable when R0 < 1438

and unstable otherwise. When applied to the parameters that were estimated and439

gathered from literature, we find that R0 = 23.86. It should be noted that this is440
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I

V

E

fµ

αζ

βχ

δ(χ+ ρ)

σµ

σµ+ αζ

Figure 2.2: A flow diagram illustrating the infection cycle of HPV: a singly infectious
site I produces virus particles to infect a susceptible site. This newly exposed site
then survives latency to become infectious, completing the cycle. This process is used
to formulate the expression for R0.

a hypothesized and imprecise estimate; however, it does provide a justification as to441

why HPV is able to infect so many individuals after being exposed to HPV. It is442

not an expression for the between-host reproduction number, and thus cannot inform443

how an infection will spread through the population.444

2.3.3 The Diseased Equilibrium, DE445

We now consider the case when the disease is effectively able to establish an infection446

in the host. We refer to this state as the diseased equilibrium (DE ), i.e., when447

E, I, V 6= 0. Setting each of the differential equations above to equal zero, we solve448
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for the disease equilibrium using Maple.449

H =
Z

2
αµ+ Z(γρ− αζ − µρ) + ρζ

(χ+ ρ)γZ
(5)

S =
−Z2

αµ+ Z(−χµ+ χγ + αζ) + χζ

(χ+ ρ)γZ
(6)

E =
σ(µZ − ζ)

γ(αZ + σ)
(7)

I =
σ(µZ − ζ)

γZ(αZ + σ)
(8)

V =
If

δ
=
fσ(µZ − ζ)f

δγZ(αZ + σ)
(9)

The solution for Z is a root of the cubic:450

P (Z) = Z3(α2δγ(χ+ρ))+Z2(ασ(βfµ+(χ+ρ)δγ))+Z(βfσ(χ(µ−γ)−αζ))−βχfσζ

(10)

This cubic is difficult to solve for explicitly, but we examine the shape of the poly-451

nomial in order to learn more about the roots, and thus the equilibrium. In Ap-452

pendix A.3, we show that there is only one positive root of P (Z) when R0 > 1, which453

shows that the diseased equilibrium DE is only biologically relevant when R0 > 1.454

Finally, we visualize the healthy equilibrium and diseased equilibrium, by solving455

the system of ODEs numerically in R for different values of R0. Considering Fig-456

ure 2.3, we see that for when R0 < 1 the infection dies out, whereas when the value457

of R0 > 1, the system reaches the diseased equilibrium.458

We also examine how the values of the diseased equilibrium change as the param-459

eters change. We plot the solutions for the value of the equilibrium as a function of460

the parameter values. We scale the equilibrium value V by the maximum value of461
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Figure 2.3: We consider the basic within host model for HPV for two different R0

values (varying δ and α in this case). We see that in the first panel for R0 = 23.86
the infection establishes and persists, reaching the DE . In the second panel, we have
that R0 = 0.768, and the infection dies out and approaches the HE .

V explored in order to show the dynamics on the same plot, as viral load is much462

higher in magnitude than the proportion of infected cells. In these plots, the values463

of R0 are also shown as a function of the parameter in question. We first consider464

how the rate of killer T-cell propagation γ affects the system. The expression for R0465

does not include this parameter, and thus R0 does not change if γ changes. This466

is observed because R0 is a measure of how a pathogen will spread in an infection-467

naive individual. Thus, the propagation rate due to presence of HPV will not have468

an effect on whether an infection will establish. It does have important implications469

for clearance, however. As γ increases, the the values E and I decrease, illustrated470
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in Figure 2.4. If these values are low enough, the infection may be cleared due to471

stochastic effects. This follows from the hypothesis that HPV is cleared predomi-472

nantly by the cell-mediated immune response. Variability between these propagation473

rates may explain why some individuals are able to clear infections naturally while474

others sustain persistent infections.475
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Figure 2.4: This plot shows the diseased equilibrium value as a function of γ. It can
be seen that the values of R0 (gray x’s) stay constant for all γ but the values for E, I,
and V all decrease as γ increases.

We also explore how the rate of abrasion of the epithelium of the host organ χ476

affects the diseased equilibrium. Increasing this parameter increases the rate at which477

sites are uncovered and thus become susceptible to infection. This larger proportion478

of available susceptible sites increases the number of infections that occur E and479

I. Interestingly, I and V increase and then decreases as χ increases. The viral480

production V and number of infectious sites I is maximized at χ = 0.0105 under481

these particular parameter values. This increase in the number of exposed sites but482
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decrease in infectious sites and viral load is subtle. As the abrasion rate increases,483

more susceptible sites are produced through micro-abrasions in the epithelium. This484

increases the number of infections that occur. Because more sites are being infected,485

the immune response Z is increased. This increases the clearance of both exposed486

and infected sites. More exposed sites are cleared before they can transition to being487

infectious. This effect results in a net increase in the number of exposed sites but the488

reduction of infectious sites, and thus a reduction in viral load. It is already known489

that the number of sexual partners is associated with HPV infections. It would be490

worth examining if these same risky behaviours are also risk factors for persistent491

HPV infections. That is, the increase in sexual activity with different partners may492

increase the chance for an individual to contract an HPV infection, but they may also493

help sustain present infections as well.494
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Figure 2.5: This plot illustrates the equilibrium value of the diseased equilibrium
as a function of χ. We see that as χ increases, E increases due to more available
susceptible sites to infect. However, I and V increase then decrease as χ increases,
most likely due to an increase in immune activity clearing infectious I sites.
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The other parameters affect the value of the diseased equilibria in predictable ways.495

As the rate of viral production f and rate of infection β increase, the equilibrium496

values E, I, and V also increase. Increasing the rate of clearance by the killer T-cells497

α has a large effect on reducing the viral load V and the present infection E and498

I. If we increase the rate at which abraded sites recover ρ, then we see a decline499

in the infected site equilibria E, I, and V . As δ increases we see a sharp decrease500

in V ,E, and I. This decrease is due to the elimination of virus particles preventing501

further infection. By increasing the rate at which exposed sites become infectious, σ,502

we increase the equilibrium value I and thus V . By increasing the viral load, we see503

an increase in E; however, for large values of σ exposed sites turn over to infectious504

so quickly that E begins to decline. Increasing the baseline level of immune cells505

increases the initial immune response, which has a negative effect on the infection506

equilibrium values, i.e., E, I, and V decrease. Conversely, increasing the rate at507

which immune cells die µ, decreases the number of infected sites that can be cleared508

before the immune cells die. That is, E, I, and V increase as µ increases. The figures509

of the equilibrium values as functions of the parameters can be found in Appendix B.510

2.4 Immune System with Memory Model511

An important question in HPV research is why some individuals develop memory512

following an HPV infection and why many individuals do not. Here we explore the513

effects of memory cells within the context of our current HPV model. To do this,514

we include one more compartment into our model (M) referring to memory cells.515

We will also make some simplifying assumptions regarding memory cells to provide516

analytic simplicity. Firstly, memory cells are developed in the current presence of517
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killer T-cells Z at a rate ε and are limited by a carrying capacity for memory cells,518

KM . Secondly, we assume that memory cells are long lasting and are not eliminated519

given the timescale of our model. If longitudinal studies or models are going to be520

considered examining the potential for HPV reinfection later in life, then a loss of521

memory cells should be explored. Thirdly, we assume that memory cells aid in the522

clearance of HPV similarly to how killer T-cells clear HPV.523

H S E I

V

ZM

γ

χ βV σ

ρ

f
δ

µ

α(Z +M)

α(Z +M)

ζε(1− M
KM

)

Figure 2.6: HPV Compartmental Model with Memory
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Adding this compartment changes the system of differential equations slightly:524

dH

dt
= −χH + ρS + α(Z +M)

(E + I)

N
, (11a)

dS

dt
= χH − ρS − βV S

N
, (11b)

dE

dt
= βV

S

N
− σE − α(Z +M)

E

N
, (11c)

dI

dt
= σE − α(Z +M)

I

N
, (11d)

dV

dt
= fI − δV, (11e)

dZ

dt
= ζN + γZ

(E + I)

N
− µZ, (11f)

dM

dt
= εZ

(
1− M

KM

)
, (11g)

N = H + S + E + I. (11h)

If we assume that there are no memory cells at the beginning of a naive infection,525

M0 = 0, then we can see that the R0 value for this system remains the same as before:526

527

R0 =
βfχσµ2

δ(αζ)(χ+ ρ)(σµ+ αζ)
(12)

However, due to the proliferation of memory cells that are able to clear the infec-528

tion, we must examine an expression for the effective reproductive number Re. As529

the system equilibrates, the memory cells approach the value KM , which can clear530

the infection at rate α. Thus the expression for the effective reproduction number is:531

532

Re =
βfχσµ2

δ(αζ + αKMµ)(χ+ ρ)(σµ+ αζ + αKMµ)
. (13)

In this sense, we may have that the infection is able to invade for R0 > 1, but if533
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Re < 1 then as time progresses, the production of memory cells will result in full534

clearance of the infection. If both R0,Re > 1, then the disease may persist. This is535

further illustrated in Figure 2.7.
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Figure 2.7: The following is a time series for the system with memory cells. In the
first panel, we see that R0 < 1 so the infection cannot invade. In the second and
third panels, we see that R0 > 1, so the infection can establish. However, in the
third panel, we have changed the value of KM such that Re < 1, and the infection is
eventually cleared.

536

2.5 The Immune Response Delay Model537

The human papillomavirus is a poor immunogen in that it does not elicit a strong538

immune response during infection. HPV is particularly good at evading the immune539

31



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

system, such that many individuals do not even seroconvert after infection. That is,540

they don’t produce long lasting antibodies.541

Because of this, we introduce a time delay from the start of an infection until the542

immune response is able to “see” the pathogen and proliferate a specific immune re-543

sponse. We set up a similar model to the one before, but introduce a switch statement544

into the immune response differential equation:545

dH

dt
= −χH + ρS + α(Z +M)(E + I), (14a)

dS

dt
= χH − ρS − βSV, (14b)

dE

dt
= βSV − σE − α(Z +M)E, (14c)

dI

dt
= σE − α(Z +M)I, (14d)

dV

dt
= fI − δV, (14e)

dZ

dt
= ζ + s(t)γZ(E + I)− µZ, (14f)

dM

dt
= s(t)εZ

(
1− M

KM

)
. (14g)

In this case the switch statement keeps the immune response to the pathogen “turned546

off” until after some threshold time Tstart, at which point the immune system detects547

HPV and is “turned on.” We also do not see the production of memory cells primed548

against this pathogen until this system is “turned on.” This function s(t) is a step549

function with the following definition:550

s(t) =

 0 t < Tstart

1 t ≥ Tstart

(15)
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In this case, we have an innate immune response to the pathogen HPV when t <551

Tstart and we have an active immune response when t ≥ Tstart. We define Tstart as552

the minimum time at which the cumulative infection increases above some immune553

detection threshold. That is, we set554

Tstart = min(τ), such that C(τ) > Cthresh (16)

where C(τ) = E(τ) + I(τ) is the cumulative infection at time τ . This simulates a555

period where the host is naive to the antigen until after enough antigen is produced556

to trigger an adaptive immune response. To examine this system in more detail, we557

analyze the equilibria for each state.558

2.5.1 Equilibria Analysis559

Notice here, that in the case of the healthy equilibrium HE (E = 0, I = 0), we have560

the exact same solution regardless of the switch value s(t):561

HE =

(
ρ

χ+ ρ
,

χ

χ+ ρ
, 0, 0,

ζ

µ

)
(17)

This leads to the same R0 values from the previous models regardless of the switch562

function value.563

R0 =
βfχσµ2

δαζ(χ+ ρ)(σµ+ αζ)
(18)

This is because at the beginning of an infection, regardless of the state of the switch564

parameter s(t), we have the same infection free steady state.565

While the healthy equilibrium has only one solution for both values of the switch566
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parameter (s(t) = 0 or s(t) = 1), there will be two different disease equilibria: one567

when the active immune system is turned off (s(t) = 0) and one when the active568

immune system is turned on (s(t) = 1). We will examine the solutions in both of569

these cases.570

Active Immune System Off, s(t) = 0571

By considering the case where t < Tstart, this system of differential equations simplify572

to the following:573

dH

dt
= −χH + ρS + αZ(E + I), (19a)

dS

dt
= χH − ρS − βSV, (19b)

dE

dt
= βSV − σE − αZE, (19c)

dI

dt
= σE − αZI, (19d)

dV

dt
= fI − δV, (19e)

dZ

dt
= ζ − µZ, (19f)

dM

dt
= 0. (19g)

Notice, starting the initial memory response M0 = 0, means that M(t) = 0 for all574

time t. Here we can see that Z = ζ
µ
, and using this we can easily solve this system of575

34



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

equations and obtain the following solution:576

H =
δαζ((αζ + σµ)(µρ− αζ) + βf

δ
σµ2)

βfσµ2(αζ + χµ)
, (20a)

S =
δαζ(σµ+ αζ)

βfσµ2
, (20b)

E =
δαζ(βf

δ
σµ2χ− αζ(σµ+ αζ)(χ+ ρ))

βfσµ(αζ + χµ)(αζ + σµ)
, (20c)

I =
δ(βf

δ
σµ2χ− αζ(σµ+ αζ)(χ+ ρ))

βf(αζ + χµ)(αζ + σµ)
, (20d)

V =
fI

δ
(20e)

Z =
ζ

µ
(20f)

Notice here that, if R0 < 1, i.e.,577

R0 < 1 (21)

βfχσµ2

δαζ(χ+ ρ)(σµ+ αζ)
< 1 (22)

βf

δ
χσµ2 < αζ(χ+ ρ)(σµ+ αζ) (23)

And from here we can see that the diseased equilibrium values E and I in (20)578

are negative when R0 < 1, outside of the biologically relevant domain. Thus, this579

equilibrium will not be obtained when R0 < 1 given a biologically relevant initial580

condition.581
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Active Immune System On, s(t) = 1582

In this case, we have that the active immune response has identified the antigen, and583

the system recruiting new immune cells directly proportional to the current concen-584

tration of immune cells and the number of infected (E and I) sites. This system of585

differential equations is then the following:586

dH

dt
= −χH + ρS + α(Z +M)(E + I), (24a)

dS

dt
= χH − ρS − βSV, (24b)

dE

dt
= βSV − σE − α(Z +M)E, (24c)

dI

dt
= σE − α(Z +M)I, (24d)

dV

dt
= fI − δV, (24e)

dZ

dt
= ζ + γZ(E + I)− µZ, (24f)

dM

dt
= εZ

(
1− M

KM

)
. (24g)

In this situation we obtain the same Disease Equilibrium as the previous models,587

which have previously been analyzed. We will conclude some details in regards to how588

the system switches from no active immune response to the active immune response.589

We have already discussed that the basic reproduction number R0 is the same for590

both s(t) = 0 and s(t) = 1, which means that in this situation, HPV would not be591

able to invade either system when R0 < 1.592

We simulate this deterministic system by using the ordinary differential equation593

solver package deSolve in R. We set up the system of differential equations as dis-594

cussed in system (14). We implemented the switch statement initially by setting the595
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Tstart to be the end time of the simulation, to allow for the naive system to begin.596

We updated the Tstart variable by keeping track of the cumulative infection C(t) and597

updated Tstart = τ to be the first time C(τ) > Cthresh using event and root options598

implemented in the ode() function in the deSolve package. The results of the model599

along with parameter values are shown in Figure 2.8 in the middle panel.600
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Figure 2.8: The left panel illustrates the base case when the immune response is
triggered immediately. The middle panel showcases the delayed immune response
with Cthresh = 3500, after which it settles onto the base equilibrium. The right panel
illustrates the case when the Cthresh = 8000 is never met, and thus the system settles
on the inactive immune response equilibrium.

Given this updating method, it may be possible that the the cumulative infection601

C(t) < Cthresh for all time t. In this situation, the host never develops an immune602

response specific to the antigen and the HPV infection is able to persist if established.603
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This is illustrated in the time series in Figure 2.8 in the right panel.604

2.6 Discussion605

Within host modelling is particularly helpful for understanding and disentangling606

many of the complex host-pathogen interactions that take place during an infection607

with HPV. In particular, these models can help us understand some of the current608

questions surrounding HPV infection, such as why certain individuals develop persis-609

tent infections, how clearance is possible without eliciting a strong immune response610

or even any antibody response, and what factors may result in latent infections with611

HPV. Importantly, these within host models provide a basis by which to further612

examine these questions. Further research may be done through observational and613

physiological studies and by using empirical evidence alongside models better tailored614

to answer specific questions.615

In this study, we developed various within host models that account for number of616

different immune response scenarios. Importantly, we formulate an expression for the617

within-host basic reproduction number R0. Using this value, we are able to better618

understand why an infection may or may not be able to establish within a host. We619

also explicitly solve for the equilibria of our models, and use these values to inform620

the likelihood of clearance. We can see that an infection can be reduced small enough621

such that the pathogen may be cleared due to some stochastic event. This can explain622

the variable clearance times of many individuals and may further explain persistent623

infections in about 10% of the population. What we show is the clearance is possible,624

and often likely even when the deterministic, continuous system converges to the625

Disease Equilibrium.626
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Furthermore, because we were able to analytically solve for the basic reproduction627

number and equilibria from our models, we are able to examine what parameters may628

potentially affect disease dynamics in a predictable way. In particular, we showed that629

the generation rate of T-cells in the presence of the pathogen (γ) has no effect on the630

ability of the pathogen to establish in our model. That is, the γ term does not appear631

in the expression for R0. This makes intuitive sense in that the immune response is632

triggered by the presence of the pathogen, and at the beginning of the infection there633

isn’t any established. However, this rate γ does have important implications for the634

value of the diseased equilibrium. As γ increases, both E and I decrease. It may be635

possible for the system to decrease these values below one individual infection site, in636

which case full clearance is established. However, in most cases, the immune response637

reduces the value of the diseased equilibrium such that clearance may occur through638

stochastic events. Therefore, it may be a likely case that persistent infections are due639

to weak CTL propagation in the host.640

We also consider how the parameter χ affects the value of R0. For values of641

χ� ρ, then R0 increases linearly as χ increases. Because abrasions in the epithelium642

of the cervix are caused during sexual intercourse and ρ is related to the natural cell643

replication cycle, it is sensible to assume that χ � ρ. In this way, an increase in χ644

can increase the chances of an infection establishing in the host and may decrease the645

probability of clearance.646

We also consider the case for the establishment of immune memory. Immune647

memory is important as it may be able to help clear current infections by reducing the648

equilibrium values of the exposed and infectious sites such that they are cleared more649

easily. As well, as the infection progresses and memory immune cells are established,650
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the effective reproduction Re number decreases. If this value decreases below one,651

then the infection will be cleared and a future infection will not establish, granted the652

memory cells remain for that duration of time. We do not consider a loss of immune653

cells in these models. Important questions regarding reinfection with certain HPV654

types later in life and the potential for latent infections are currently being examined,655

and mathematical models developed to help elucidate these problems should include656

factors that consider the loss of immune memory.657

Lastly, we consider the case where we introduce a delay in the activation of an658

immune response. In particular, we introduce a switch function that is triggered659

when the cumulative infection (E + I) reaches a particular threshold Cthresh. When660

the system is off (E + I < Cthree), we have no active immune response and the661

pathogen can spread in the host with no clearance apart from that by the already662

present innate immune response ( ζ
µ
). If the cumulative infection reaches the threshold,663

then the immune system is activated, and the system settles on the normal diseased664

equilibrium.665

This chapter provides solid groundwork for modelling the within-host spread of666

HPV. We consider the biological mechanisms used to inform the construction of our667

model. We examine the equilibria of the model, and discuss how clearance is possible668

even when the infection is able to establish. Ultimately, this work aims to provide669

the ground-work by which to explore within-host HPV dynamics in future studies.670
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Chapter 3671

A Spatial Simulation Model672

3.1 Introduction673

The human papillomavirus (HPV) is a pathogen that locally infects the bottom-most674

basal cells of the epithelium. These sites are only able to become infected after the675

top-most layer of the epithelium has been abraded, exposing the bottom-most layer676

basal cells. Virus particles then infect these susceptible sites and begin the infection677

cycle. Virus particles are developed within the host sites as the cells replicate and678

move up the epithelium. As the cells move closer to the top of the epithelium, the679

cells flatten and form the upper squamous layer. Virus particles are released into the680

surrounding environment as the cells undergo natural cell death and desquamate.681

In this section, we consider a localized infection structure. We assume that virus682

particles are only able to infect susceptible sites in a restricted neighbourhood. This683

differs from other within host models [34, 35] of HPV, which consider homogenous684

mixing. We run simulations with the local neighbourhood and compare it to an685

analogous simulation with a global neighbourhood to examine how the local structure686
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may affect the dynamics of the infection.687

We establish a base set of parameters that are derived from literature values and688

estimates. We run these base parameters for both the global neighbourhood and689

local neighbourhood to compare the differences in spatiality. We also compare the690

global neighbourhood results with the deterministic model results to confirm event691

rates. We show that the locality plays an important role on the establishment or692

clearance of an infection for the same parameter values. This suggests that when693

developing within host models to examine viral kinetic parameters, spatiality may be694

an important factor when fitting parameters to data, particularly when comparing it695

to population level data.696

3.2 Methods697

We develop a stochastic, spatial model and implement it as an adaptation of the698

Gillespie Algorithm [23]. We initialize the system as an organ of N sites arranged699

as a grid on a torus. Each site i has a neighbourhood of sites which it is connected700

to. The size of the neighbourhood at site i is N (i). In this chapter, we focus on701

two different neighbourhood structures: global and local. The global neighbourhood702

structure of a site includes all other sites with equal weighting. In this way, our spatial703

simulation mimics a homogenous system. The local neighbourhood only contains the704

four closest sites to the focal site—those North, South, East, and West of the site.705

The local structure is illustrated in Figure 3.1. This spatial model is an extension of706

the homogenous, deterministic model discussed in Chapter 2. The sites may have one707

of four different states: healthy, susceptible, exposed, and infectious. A healthy site i708

becomes susceptible after an abrasion event. This susceptible site may become healthy709
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i

Figure 3.1: Local neighbourhood illustration. The focal site i is connected to the
sites above, below, to the left, and to the right of the focal site. All these sites are
connected as such, and arranged as a lattice on a torus.

again after recovery, or it may become infected by a viral particle. After infection,710

it becomes exposed, where it then becomes infectious following a maturation event.711

These infectious sites are then able to produce virus particles, which can infect other712

sites. Both infectious sites and exposed sites can be cleared by the immune system713

Z, after which they become healthy again. To simplify our spatial model, we make714

the assumption of fast viral dynamics. We solve for V using a pseudo-equilibrium715

(Equation (1)), and use this to calculate rates of infection events.716

V =
fI

δ
(1)

To ensure that this substitution maintains the dynamics of the model, we compare the717

numerical solutions of the base model with the fast dynamics model in Figure 3.2.718

We see that the dynamics are very similar when we make the pseudo-equilibrium719

substitution into the deterministic model, and as such we apply this method when720
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Figure 3.2: These plots compare the dynamics of the basic deterministic model with
that of the fast-virus model. It can be seen that the dynamics of the sites are very
similar, and maintain the overall dynamics.

developing the spatial models.721

The Gillespie Algorithm developed for this particular model is discussed below.722

We begin by calculating the rates of the events. The rate of event j occurring on site723

i is represented as cj(i). We then calculate the rate of event j occurring by summing724

up over all the individual rates cj(i), cj =
∑

i cj(i). The total rate of events is the725
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summation of the total rates over all events j, c =
∑

j cj.726

The time to next event ∆t is sampled from an exponential distribution with pa-727

rameter c, ∆t ∼ Exp(c). Event j is selected with probability
cj
c

, and site i is selected728

with probability
cj(i)

cj
. The site i is updated accordingly (see Table 3.1), time is up-729

dated t = t + ∆t, and all the rates are also updated accordingly. The rates are730

derived in section 3.2.1 and are also listed in Table 3.1. The simulation terminates731

when t > tmax. This algorithm is summarized in Algorithm 1.732

Algorithm 1 Gillespie Algorithm

1: Initialize the population and set time, t = 0.
2: Calculate rate constants cj for each event j by summing up the individual rate

constants cj(i) over all sites i.
3: Sample the length of the time step from an exponential distribution ∆t ∼ Exp(c),

with parameter c =
∑

j cj.
4: Select the event which occurs with probability cj/c.
5: Execute the chosen event on site i chosen randomly with probability cj(i)/cj and

update the time, t = t + ∆t, and the states of the sites. Go to step 2 and
repeat until either t > tmax or the predetermined maximum number of iterations
is completed.

3.2.1 Calculation of the Event Rates733

We discuss the calculation of all the event rates and the subsequent probabilities of734

each event. An abrasion event occurs at a healthy site i at a rate of χ. Summing this735

up over all the healthy sites, we obtain the total rate of an abrasion ca over all the736

sites in the organ:737

ca =
H∑
i=1

χ = χH. (2)
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Similarly, the rate of a recovery event on a susceptible site i is ρ, and thus the rate738

of a recovery event over all the sites is739

cr =
S∑
i=1

ρ = ρS. (3)

We consider an infection event occurring when a infectious site i is able to infect a740

susceptible site j in its neighbourhood, NS(i). We normalize by dividing by the total741

number of neighbours of site i, N (i).742

cinf(i) = βVi =
βf

δ

NS(i)

N (i)
(4)

Summing this up over all infectious sites, we obtain the total rate of an infection743

event occurring744

cinf =
S∑
i=1

cinf(i) =
I∑
i=1

βf

δ

NS(i)

N (i)
. (5)

Instead of keeping track of all possible Infectious-Susceptible pairs, which can be745

computationally expensive, instead we sum of the rates of infection over all infectious746

sites:747

cinf =
I∑
i=1

βf

δ
=
βfI

δ
, (6)

and then randomly select an infectious site i and a neighbouring site j. If the neigh-748

bouring site j is susceptible, then the infection event is carried out and the states749

updated. Otherwise, it does not occur, and the states are kept the same.750

The rate of a maturation event occurring at an exposed site i is σ, and thus the751
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total rate of a maturation event occurring over all sites is752

cmat =
E∑
i=1

σ = σE. (7)

Lastly, a clearance event may occur at either an exposed or infectious site i with rate753

αZi, where Zi is the number of immune cells at site i. We can calculate the total rate754

of clearance of a site with state X by summing up over all X sites755

ccl,X =
X∑
i=1

αZi, (8)

where X is the number of sites of state X, which is either exposed or infectious sites756

in this case. The events and their corresponding rates are summarized in Table 3.1.757

Table 3.1: Event Rates

Event Action Individual Rate Total Rate
Abrasion (a) H → S ca(i) = χ ca = χH

Recovery (r) S → H cr(i) = ρ cr = ρS

Infection (inf) S → E cinf(i) = βf
δ
NI(i)
N (i)

cinf = βfI
δ

Maturation (mat) E → I cmat(i) = σ cmat = σE

Clearance (cl,E) E → H ccl,E(i) = αZi ccl,E =
∑E

i=1 αZi

Clearance (cl,I) I → H ccl,I(i) = αZi ccl,I =
∑I

i=1 αZi

We keep track of the immune cells Z deterministically. We update the number of758

immune cells at site i using Euler’s Method759

Zi(t+ ∆t) = Zi(t) +
dZi(t)

dt
∆t, (9)

47



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

where dZi

dt
is calculated based on the neighbourhood of the site i760

dZi(t)

dt
= ζ + γZi(t)

NE,I(i)

N (i)
− µZi, (10)

and where NE,I(i) = NE(i) + NI(i) is the number of neighbours surrounding i with761

state E or I. Furthermore, the step size ∆t is the same time step sampled from the762

exponential distribution: ∆t ∼ Exp(c). From the initial system, the expected value763

of ∆t ≈ 0.027 days. This value is small enough such that the Euler’s Method solution764

will not diverge from the true solution. This is further confirmed pictorially when765

comparing the stochastic results and the deterministic results (compare Figure 3.3766

and Figure 3.4).767

When considering the global neighbourhood i.e., N (i) = N for all sites i, we are768

able to make some simplifying assumptions. Firstly, that the number of infectious769

sites in a site i’s neighbourhood is just the total number of infectious sites, NI(i) = I.770

This reduces the rate of an infection event to be771

cinf =
S∑
i=1

βf

δ

I

N
=
βfSI

δN
. (11)

In a global neighbourhood, the immune cells are distributed evenly amongst sites,772

Zi = Z
N

. Thus the total rate of a clearance event occurring on exposed or infectious773

sites together is774

ccl,E and I =
E+I∑
i=1

αZi = α
Z(E + I)

N
. (12)

Thus we can just consider the total amount of immune cells in the global neighbour-775

hood scenario. We update the immune cells in the same way as (10) but over all the776
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sites777

dZ

dt
=

N∑
i=1

dZi
dt

, (13a)

=
N∑
i

ζ + γZi
NE,I(i)

N (i)
− µZi, (13b)

= ζN +
N∑
i=1

γZi
NE,I(i)

N (i)
− µZ, (13c)

= ζN + γ
Z(E + I)

N
− µZ. (13d)

Considering these global rates, we expect that the global neighbourhood simulations778

are qualitatively similar to the homogenous, deterministic model discussed in Chap-779

ter 2.780

After running the simulations for different parameter values, we calculate the781

proportion of infections that lead to clearance within two years, the mean time to782

clearance, and the 95% quantile ranges (QR) of time to clearance.783
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3.3 Results784

We run the system for 100 realizations, stopping when t > 730 days, or two years.785

We set the base parameter values to the those found in Table 3.2.786

Table 3.2: Parameter values used in spatial simulations

Parameter Description Value (day−1) Source
α Rate of clearance of infected sites by

the immune system
0.5 [35]

β Infection rate of a virus particle on a
susceptible site

0.003 [8]

f Rate of virus produced by infectious
site

600 copies
cell·day

[51]

δ Rate of natural viral decay 0.138 [39]
χ Abrasion rate of the epithelium 0.015 Est.
ρ Recovery rate of the epithelium 0.6 Est.
σ Maturation rate of newly exposed sites 0.03 Est.
γ Rate of T-cell propagation in presence

of pathogen
2.0 [4]

ζ Base T-cell repose rate 0.01 Est. [42]
µ Rate of T-cell death 0.5 [4]
N Number of sites 400 sites Const.

We also consider various other parameter values. In the global neighbourhood, we787

consider clearance parameters by setting the parameters to those found in Table 3.2788

but changing the rate of clearance due to primed T-cells to α = 2.0 day−1and changing789

the rate of primed T-cell propagation to γ = 14 day−1.790

We also run these base parameters (Table 3.2) for the local simulation, but also791

include a case where the local infection is able to establish. The establishment param-792

eters are the same as those set in the base simulation but changing the rate of primed793

T-cell propagation to γ = 0.2 day−1. These results are explained and visualized794

below.795
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3.3.1 Global Neighbourhood796

Figure 3.3: Stochastic simulation results for the global neighbourhood model with
base parameters. The bands include the 90% inter-quantile range for the different
realizations; the line is the mean of all realizations.

Comparing the stochastic results in Figure 3.3 to the deterministic model results797

in Figure 3.4, we see that the global simulation matches well with the deterministic798

solution. This suggests that the rates have been properly initialized for the spatial799

model.800

Under these parameter values, we see no clearance of the pathogen. To examine801
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Figure 3.4: Deterministic simulation results with base parameters.

the potential for stochastic clearance of the pathogen, we vary the host immune802

parameters γ (the rate of T-cell propagation) and α (the rate of clearance by the803

primed T-cells). We set α = 2 day−1and γ = 14 day−1. The time series can be found804

in Figure 3.5. Under these parameter values, clearance occurred 78% of the time,805

and the mean time to clearance was 260.8 and 95% QR (73.7, 541.7) days, while the806

median was 250 days. The distribution of clearance times can be found in Figure 3.7.807

We define clearance as the lack of infectious and exposed sites in the system, and we808

define time to clearance as the first instance after initial infection when both exposed809
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and infectious site are zero.810

Figure 3.5: Stochastic simulation results for the global neighbourhood model with
clearance parameters. We set α = 2 day−1and γ = 14 day−1and keep the remaining
parameter values the same. The bands include the 90% inter-quantile range for the
different realizations; the line is the mean of all realizations. This set of parameters
illustrates the stochastic clearance events.

We also compare these clearance results to the deterministic model time series811

(Figure 3.6). While it may seem that the system dies out, it actually has a basic812

reproduction value of R0 = 3.41. It’s that the diseased equilibrium values are so low813

that they are cleared by stochastic effects in the spatial model.814
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Figure 3.6: Deterministic simulation results with clearance parameters: α = 2.0
day−1and γ = 14 day−1.

Cross Sections in Time of the Global Neighbourhood Simulation815

We can see one realization for this at different snapshots in time (Figure 3.8). This816

illustrates how the infection occurs on the host organ. In the global neighbourhood,817

the infection is able to spread from one part of the organ to any other part of the818

organ as long as there is a a susceptible site for infection. The realization simulated819

in Figure 3.8 uses the parameter values in Table 3.2, and we see that the infection is820

sustained. We also observe similar snapshots in time for the scenario with clearance821
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Figure 3.7: Histogram of the distribution of clearance times when setting α = 2
day−1and γ = 14 day−1for the global neighbourhood structure. The mean is 260.8
days and the median 250 days.

parameters. Here it is seen that the infection dies out particularly quickly in this822

realization. The speed at which the infection is cleared using the clearance parameters823

can be illustrated through snapshots of the site states at different points in time824

in Figure 3.9.825
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Figure 3.8: This figure provides a snapshot of the organ at different times for one real-
ization. This provides a visualization of what happens during the infection. Because
this is a global neighbourhood structure, it can be seen that the infection spreads
across the organ and not in a connected fashion.

3.3.2 Local Neighbourhood826

We run the simulation for the local neighbourhood under a number of different param-827

eter values. For the same parameter values of the global simulation (see Table 3.2),828

the local simulation results in clearance in every realization. This can be seen in the829

time series in Figure 3.10.830
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Figure 3.9: This figure provides a snapshot of the organ at different times for one
realization. This provides a visualization of what happens during the infection. While
this is a global infection scenario, under the clearance parameters, the system clears
very quickly.

When we run the local simulation with the base parameters for 100 realizations,831

we see that each realization results in clearance. The mean time for clearance was832

found to be 5.0 with a 95% QR (4.53, 6.10) days, and the median time to clearance833

was 4.89 days. The distribution for clearance times can be found in Figure 3.11. This834

shows that with the same parameters, the local neighbourhood restricts the infection835

process so much that it dies out before it can even establish.836
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Figure 3.10: Stochastic simulation results for the local neighbourhood model with
base parameters. The bands include the 90% inter-quantile range for the different
realizations, the line is the mean of all realizations. We ran this for 100 realizations.
Under local infection, we see that clearance is much more common than in the global
neighbourhood.

We can also visualize this local infection process by examining the states at dif-837

ferent times during a realization Figure 3.12. In this figure, the infection quickly dies838

out, and there is no infection left.839

We can also examine what may happen if an infection were able to establish840

in this local neighbourhood. We set γ = 0.2 day−1in order to examine what may841
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Figure 3.11: Histogram for clearance time given the local neighbourhood simulation
using the base parameter values. The mean value is 5.02 days and the median 4.89
days.

happen when an infection is able to establish. In this scenario, the propagation rate842

of the primed T-cells is so low that the infection will be able to spread to surrounding843

susceptible sites before it can be cleared by the present immune response. We set these844

parameter values to illustrate the local infection process. We display the aggregated845

time series in Figure 3.13. In Figure 3.14, we take snapshots of the infection status of846

the sites at different points in time. We see here, that the infection is sustained, but847
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Figure 3.12: Here is a snapshot of a local neighbourhood realization for different
times. Here we can see that the infection quickly dies out.

also spreads locally from the initial point of infection. For this set of parameters, we848

run the simulation for one year, t = 365 days, and for 50 realizations. The infection849

established 100% of the time and is cleared 0% of the time after one year of infection.850

Because this scenario does not confer any clearance after one year, these parameters851

are likely to not be correct as the results are not consistent with the 80-90% clearance852

rate observed in population data.853
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Figure 3.13: Here is the time series for the the local neighbourhood simulation using
the establish parameters. These parameters are the same as the base parameters, but
setting γ = 0.2day−1. We see here that the infection is able to establish.

3.4 Discussion854

We adapted the base within-host model discussed in Chapter 2 to a stochastic spatial855

model. We considered two different neighbourhoods, a global and a local neighbour-856

hood. The global neighbourhood mimics a homogeneously mixed population and857

was used to compare the event rates to the base deterministic model. These mod-858

els strongly agreed within one another and had similar dynamics, suggesting that859
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Figure 3.14: Here is a snapshot of a local neighbourhood realization for different times
using the establish parameters, γ = 0.2day−1. Here the infection does not die out
right away, and we can see how it spreads in a local fashion.

the event rates were properly calibrated. Using the base model parameters, it was860

shown that clearance occurred 0% of the time, which is very unlikely given that most861

infections are cleared about 80-90% of the time [2, 33, 38, 57]. This suggests that862

the cell-mediated immune response is greater than in the parameters defined in base863

model (Table 3.2). By changing the immune parameters, rate of clearance due to864

primed T-cells α = 2 day−1and rate of primed T-cell propagation γ = 14 day−1, we865
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were able to obtain realistic clearance values. Under these parameters we observed a866

clearance rate of 78%, which is similar to the population clearance rates [2,33,38,57].867

Furthermore, the mean time to clearance was determined to 260.8 and 95% QR (73.7,868

541.7) days, median 250 days, or about 9 months. This may suggest that the immune869

parameters are greater than previously thought.870

Comparing the global and local neighbourhood simulation results provides some871

interesting outcomes. The local neighbourhood provided an extreme case of locality,872

where infectious sites were only able to infect susceptible sites directly in contact873

with the infectious site. The local structure significantly reduces the ability for the874

infection to establish before being cleared by the immune system when compared875

to the global neighbourhood structure. For the base parameters, the global model876

resulted in persistent infections for each realization, while the local model with the877

same parameters resulted in complete clearance for all realizations. In fact, using878

these same parameter values, we saw 100% clearance with a mean clearance time of879

5.02 days, median 4.89 days. This is much shorter than those infections discussed880

in literature [57] Therefore, locality can play an important role whether an HPV881

infection will establish or die out in the host.882

We also explore the case when the infection is able to establish in the case of883

the local neighbourhood structure. In this scenario, we set γ = 0.2 day−1, and884

there was 100% establishment with 0% clearance for 50 realizations after one year.885

Because of the large difference in results between the global neighbourhood and local886

neighbourhood, it is unlikely that HPV in fact spreads in either of these extremes887

completely.888

It is unlikely that HPV truly acts in either of these extreme scenarios, but rather889
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most likely has some locality but with a larger neighbourhood than solely those in890

direct contact with the focal site. When developing within-host mathematical models891

for parameter fitting to data, a homogenous mixing model may over or under estimate892

parameter values. For example, in our global neighbourhood, we were able to obtain893

approximately 89% clearance by using the the base parameter values but changing894

γ = 14 day−1and α = 2 day−1. In the other extreme, using the base parameters in895

the local neighbourhood simulation, we obtain 100% clearance. This suggests that896

the establishment or clearance of an infection is significantly affected by the spatiality897

of the infection process. Therefore, these points should be considered when building898

within-host models, especially when using these models to fit parameters to data.899
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Chapter 4900

Multistrain HPV Models901

4.1 Introduction902

The human papillomavirus has been shown to be responsible for almost all cases of903

cervical cancer, and is also highly associated with a number of other cancers such as904

anal cancer and oropharyngeal cancers. There are over 100 different types of HPV,905

over forty of which infect the anogenital tract. HPV types are differentiated from one906

another by the genetic sequence of the L1 capsid protein of the virus [19, 25]. HPV907

types are also categorized into low-risk and high-risk types based on their association908

with the development of cancerous and pre-cancerous lesions. Furthermore, HPV909

types are categorized into various genera. We focus on the alpha (α) genus as these910

types infect the mucosal regions. HPV types are further divided into different species911

within the α-genus based on phylogentic differences.912

Two important types of HPV are known to be the cause of the majority of cer-913

vical cancer cases: HPV-16 and HPV-18. HPV-16, a member of the α-9 species, is914

associated with 50% of cervical cancer cases, and HPV-18 (α-7) is associated with915
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20% [25]. To combat the burden of these HPV types, two different vaccines have been916

developed to protect against these two high-risk HPV types. CervarixTM is a bivalent917

vaccine that protects against these two high-risk types. GardasilTM, on the other918

hand, is a quadravalent vaccine and protects against these two high-risk types along-919

side two low-risk types—HPV-6 and -11—which are highly associated with genital920

warts. Both of these vaccines have shown significant levels of efficacy and are thought921

to be successful in reducing the number of high-risk HPV infections and subsequently922

the number of cervical cancer cases.923

While these vaccines show strong efficacy in protection against these two HPV924

types, there are other high-risk types that these vaccines do not confer protection925

against. This has led researchers to explore the potential for “type replacement” [16,926

28,35,41,56]. This is an ecological phenomenon wherein the protection against certain927

types of a pathogen increases the niche space for other pathogen types, potentially928

increasing the prevalence of these non-vaccine pathogen types. If type replacement929

were to occur alongside the vaccine program, then there may be an increase in high-930

risk, non-vaccine HPV types, which could limit the estimated protective effects of the931

HPV vaccine. Because these HPV vaccines are relatively new to the public, there is932

limited longitudinal data to support or refute the potential of HPV type replacement.933

There has been one study so far that illustrated a possible case of type replacement in934

young women [29]. It found that there was an increased prevalence of high-risk, non-935

vaccine HPV in young girls who were vaccinated but not in those girls who were not936

vaccinated. While this may provide some limited support for type replacement, more937

careful studies should be conducted to examine the possibility of type replacement in938

other populations.939
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In order to estimate the potential for HPV type replacement before it occurs in the940

population, researchers examined these questions using mathematical models. Past941

models have examined the potential for HPV type replacement at the population942

level. Major findings of these models show that type replacement will only occur943

if HPV types are competitive, in that they will fight for space or resources in the944

host [16, 28]. If types are independent or facilitative, then type replacement will not945

occur. In fact, if two HPV types are facilitative, then a vaccination effort may have946

additional benefits in reducing the prevalence of the facilitative, non-vaccine type947

alongside the vaccine type. It should be noted that these scenarios are contingent948

upon the ecological interactions between the two HPV types within the host.949

It is not yet fully understood how different HPV types interact within the host.950

Population level studies show that infections with multiple HPV types are quite com-951

mon. The Centers for Disease Control and Prevention report that 5 to 30% of individ-952

uals infected with mucosal HPV are also infected with multiple types [25]. Because953

of this high rate of multiple type infections, some researchers believe that HPV types954

interact independently or synergistically within the host [13, 56]. This high rate of955

multiple infections may not be due to within host facilitation. Rather they may be956

caused by an individual’s behaviour increasing the likelihood of being multiply in-957

fected with various HPV types. It is known that risk factors for HPV infection are958

predominantly based on sexual behaviours such as lifetime and recent sex partners,959

and these factors rather than type facilitation may be driving multiple HPV infections960

in some individuals [6,57]. While a consensus for how HPV types compete or do not961

compete is still not clear, there are some forms of competition that are known.962

It is known that there are some competitive interactions between HPV types, in963
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particular through cross-reaction in the immune system. Williams et al. [61] examined964

the T-cell cross-reactivity response between HPV 11 and other types. Furthermore,965

Scherpenisse et al. [46] showed cross-reactivity in the antibody response between HPV966

types within the same species (α-9 and α-7 species). These types of competition are967

referred to as apparent competition, as the presence of one pathogen can drive the968

elimination of the other through a cross-reactive immune response.969

Along with cross-reactivity, there is also evidence of resource competition in HPV970

coinfections. Because HPV types have a large portion of shared DNA, it is likely that971

they require similar cellular functions in order to produce viral particles. MacLaughlin972

et al. [32] examined the effects of coinfection on the virus production in an in vivo973

study. They found that cells coinfected with HPV-18 and another HPV type resulted974

in lower viral counts in the other HPV types compared to singly infected cells. In all975

cases, HPV-18 dominated cell resources, which may explain the success of HPV-18976

in developing persistent infections in women. Xi et al. [62] also compared viral loads977

in coinfected patients with viral loads in singly infected patients. They found that978

HPV-16 and HPV-18 viral loads were significantly lower in coinfections with HPV979

types from the same α-9 and α-7 species, respectively. They discuss the possibility980

of resource competition as the cause of the viral load reduction. However, they also981

attribute the magnitude of the decrease in part to cross-reactivity in the immune982

response.983

In this chapter we explore the potential for coexistence between two compet-984

ing types of HPV. We introduce two competing HPV types within our model, each985
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which elicits a separate but cross-reactive immune response. These HPV types com-986

pete directly through space competition and indirectly through immune system cross-987

reactivity (apparent competition). We show that for certain levels of cross-reactivity,988

coexistence is possible. Restricted to only two years, the unofficial threshold for per-989

sistent infections, we see that effective coexistence is possible for even larger levels of990

cross-reactivity than in the long term scenario. We do not add to the debate about991

whether type replacement is occurring or if it surely will or will not occur. We solely992

examine the coexistence of multiple HPV types in the host even in the presence of993

competition. This suggests that competition cannot be ruled out solely because of994

high rates of HPV coinfection in hosts.995

4.2 Methods996

We develop a mathematical, multi-strain model for the spread of HPV within the host.997

The multi-strain model considers two different HPV strains infecting the surface of998

the epithelium. Our model considers apparent competition through cross-reactivity999

in the immune response. We report these results in Section 4.31000

4.2.1 The Model1001

We consider a similar compartmental model to System (1) where sites in the cervix1002

epithelium are categorized by infection status: healthy (H), susceptible (S), exposed1003

(E), and infectious (I). In this model, we consider two pathogens, and thus sites1004

may be exposed or infectious with one of two types (E1, I1, E2, or I2). We distinguish1005

between type-specific virus particles. That is, sites infectious with type one (I1) will1006
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produce V1 virus particles and those infectious with type two (I2) will produce V21007

virus particles. We also consider type specific immune responses, that is we have1008

T-cells that are primed against one type (Z1) and T-cells primed against the other1009

type (Z2). We discuss various forms of competition that may play a role in HPV1010

dynamics.1011

A within-host, multistrain model has been examined previously by Murall et1012

al. [35]. Specifically, they review space competition, resource competition, and ap-1013

parent competition but also type facilitation and independence. Murall et al. [35]1014

consider resource competition as the acquisition and use of cellular processes in the1015

development of viral particles in coinfected sites. While an in vitro study [32] has1016

shown that different HPV strains are able to coinfect the same site, this same phe-1017

nomenon has not yet been examined in vivo. Furthermore, in almost all cases in the1018

study, one HPV type (specifically HPV 18) dominated cell functions over the other1019

coinfected type. In fact, viral production of the weaker coinfected type was signif-1020

icantly less in coinfected sites than in singly infected sites. This reduction was not1021

recorded for the dominant type, however.1022

Murall et al. consider the scenario of independence between HPV types, which1023

they define as no interaction at all. That is, coinfection is allowed unhindered, and1024

viral particles are able to produce viral particles of both types at the same rate as1025

solely infected patches. This means the coinfected sites are able to produce virus1026

past the normal capacity of the cells, which is biologically improbable. This implies1027

that independence is unlikely both between sites and within sites. The dominance of1028

HPV-18 viral production in coinfected sites [32] even suggests that neutrality may be1029

unlikely within the same host site. However, more work should be done to rule out1030
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neutrality. Furthermore, care must be taken for those wishing to examine the effects1031

of coinfection in patch models such as this; asymmetry through the super-infection1032

process may be unintentionally introduced into the model. This is highlighted in1033

more detail in Appendix C.1034

Furthermore, our model induces the necessity of abrasions for an infection event1035

to occur. To model the potential for coinfection, it would be required to keep track of1036

the abraded and non-abraded exposed and infectious sites for each strain, which com-1037

plicates a multiple HPV type super-infection model significantly. Because of this, and1038

with the unlikeliness of neutral interactions within the host site, we do not include this1039

form of competition into our model. We introduce two forms of competition through1040

space competition—HPV types are not able to super-infect the same site—and ap-1041

parent competition—HPV types may elicit and be cleared by an immune response1042

primed by a different type. The mechanisms for apparent competition are highlighted1043

in more detail below (Section 4.2.1 Apparent Competition).1044

Apparent Competition1045

We introduce apparent competition through cross-reactivity of similar HPV types.1046

The factor for cross-reactivity q varies between 0 and 1. When q = 0, that means1047

that the two types are not cross-reactive at all, and completely independent immune1048

responses are established. When q = 1, the types are 100% cross-reactive, and each1049

immune response can identify and clear both of the HPV types. There are two ways1050

we introduce cross-reactivity into the model: through propagation of T-cells primed1051
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against one strain by coming into contact with the other strain:1052

dZ1

dt
= ζ +

γ1Z1(E1 + I1)

N
+ q

γ1Z1(E2 + I2)

N
− µZ1 (1a)

dZ2

dt
= ζ +

γ2Z2(E2 + I2)

N
+ q

γ2Z2(E1 + I1)

N
− µZ2 (1b)

As well, we consider cross clearance of one type of pathogen by T-cells primed against1053

the other strain:1054

dE1

dt
= β1SV1 − σE1 −

α1Z1E1

N
− qα2Z2E1

N
, (2a)

dI1

dt
= σE1 −

α1Z1I1

N
− qα2Z2I1

N
, (2b)

dE2

dt
= β2SV2 − σE2 −

α2Z2E2

N
− qα1Z1E2

N
, (2c)

dI2

dt
= σE2 −

α2Z2I2

N
− qα1Z1I2

N
. (2d)

Using these competition interactions, we introduce our full multistrain model for1055

two HPV types. The system of differential equations defining our model can be1056

found in System (3), and a flow diagram visually explaining the model can be found1057

in Figure 4.1.1058
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dH

dt
= − χH + ρ+

(αZ1 + qαZ2)(E1 + I1)

N

+
(αZ2 + qαZ1)(E2 + I2)

N

(3a)

dS

dt
= χH − ρS − β1

SV1

N
− β2

SV2

N
, (3b)

dE1

dt
= β1

SV1

N
− σE1 − α1

Z1E1

N
− qα2

Z2E1

N
, (3c)

dE2

dt
= β2

SV2

N
− σE2 − α2

Z2E2

N
− qα1

Z1E2

N
, (3d)

dI1

dt
= σI1 − α1

Z1I1

N
− qα2

Z2I12

N
(3e)

dI2

dt
= σI2 − α2

Z2I2

N
− qα1

Z1I12

N
(3f)

dV1

dt
= f1I1 − δ1V1 (3g)

dV2

dt
= f2I2 − δ2V2 (3h)

dZ1

dt
= ζN +

γ1Z1(E1 + I1)

N
+ q

γ1Z1(E2 + I2)

N
− µZ1 (3i)

dZ2

dt
= ζN +

γ2Z2(E2 + I2))

N
+ q

γ2Z2(E1 + I1)

N
− µZ2 (3j)

We numerically solve this system of differential equations using the ode() function1059

in R. We solve for the equilibria by running the system until t = 10, 000 days, trying1060

to reach equilibrium. We find the values for the infection equilibria E and I in both1061

strains for different values of cross-reactivity, q. We also consider the same system,1062

but taking the values of E and I after two years, t = 730 days. The definition of1063

persistent infection is not yet well defined. However, it is commonly thought to be1064

an infection that lasts longer than two years. These results can be seen in Figure 4.3.1065
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Z1 Z2

E1 E2

I1 I2

V1 V2

χ ρ

β1SV1 β2SV2

σ σ

f1 f2

γ1 γ2

q

q

q

q

α1Z1 + qα2Z2 α2Z2 + qα1Z1

Figure 4.1: A flow diagram illustrating the within-host multi-strain HPV model.
The cross-reactive term q can be seen in how the exposed and infectious sites affect
the propagation of strain-primed T-cells and also in the clearance of exposed and
infectious sites.

4.3 Results1066

We analyze this system by examining how the system evolves for different values of1067

cross-reactivity, q ∈ [0, 1]. We define the elimination of one strain when the number of1068

exposed or infectious sites goes below one site. If the equilibrium value is below one,1069

then on average it will result in clearance of that strain in an actual host. Looking1070

when the number of exposed and infectious sites of a particular strain dips below one1071
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(horizontal gray line, Figure 4.2), we see that coexistence of the two HPV strains is1072

present for values of about q < 0.70. For values q > 0.70 we see that the second1073

strain (the “weaker” strain) dies out. This shows that if the HPV types illicit distinct1074

but cross-reactive immune responses, then coexistence is possible even when space1075

competition is present and the two strains are not able to infect the same sites. This1076

is illustrated in Figure 4.2.1077
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Figure 4.2: This plot shows the values of the disease equilibrium, E and I, as a
function of the cross-reactivity factor q in the case with complete space competition
x = 0. It can be seen that we have coexistence for both strain 1 and 2 for values
q < 0.70. Large values of q eliminates strain 2, the “weaker” strain, from the system.

When we examine the curves in more detail, we can observe some interesting1078

patterns. Consider first the curves for strain 2 (dotted) in Figure 4.2. We see that1079

as the level of cross-reactivity increases, both the curves for the exposed sites and1080
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infectious sites decrease. This is because as cross-reactivity is increased, the presence1081

of strain 1 increases the cross-reactive immune response against strain 2 enough to1082

deplete its numbers quite rapidly. This pattern continues until about q > 0.75 where1083

the strain 2 is depleted completely (flat line at y = 0). We induce “clearance” before1084

this, however. When strain 2 cross the gray line y = 1, then the strain will be1085

eliminated from the system necessarily as there are fewer than 1 infected individuals1086

in this case.1087

Now, examining the curves for strain 1 (dashed) we see some more complex dy-1088

namics. Similarly, as we increase the level of cross-reactivity from q = 0, we see a1089

reduction in the number of exposed (orange) and infectious (red) sites of strain 1.1090

This is again due to the increase in cross-reactive immune responses due to the pres-1091

ence of strain 2. However, for larger q values, approximately when 0.6 < q < 0.751092

then the equilibrium values for the exposed and infectious sites of strain 1 increase.1093

This is because the numbers of strain 2 infected sites are so low, that strain 1 is1094

able to recover from the cross-protective effects. We also see a reduction in both the1095

exposed and infectious sites of strain 1 when q > 0.75, which occurs when strain 2 has1096

been eliminated from the system. This is because strain 1 is cross-reacting with the1097

base immune response induced against strain 2, even when there is not any pathogen1098

of this type present in the system.1099

Examining the equilibria of E and I after two years, t = 365(2) = 730 days1100

(Figure 4.3), it can be seen here that coexistence is possible after two years for larger1101

values of q. In fact, we see that coexistence is possible for all values q < 0.8. However,1102

the equilibrium value in this case are very low, and clearance due to stochastic effects1103

becomes quite likely. The dynamics of these curves are similar to those found in the1104
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case when we let the system go to equilibrium (Figure 4.2), but are not as striking1105

because the system has not completely settled to the equilibrium value.1106
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Figure 4.3: This plot shows the values of E and I after two years as a function of the
cross-reactivity factor q in the case with complete space competition x = 0.

Importantly here, we can see that coexistence is possible for different values of1107

q < 0.70. This shows that competition between types within the host still confers1108

coexistence between the two strains. Thus, the high rates of multi-type infections1109

do not show that the HPV types are not competing. Previous mathematical models1110

suggest that competition is a requirement for type replacement [16], and current1111

epidemiological data have been used to suggest that the high rates of coinfection1112

with multiple types at the population level do not support competitive interactions1113

between HPV [13, 56]. However, we have shown that even when considering space1114

competition and cross-reactivity, coexistence is possible within the host. That is,1115
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coexistence between strains may still possible and the high rates of multiple strain1116

infections are not enough to rule of competition between HPV types. More work1117

should be done to consider the effects of within-host dynamics on the population1118

dynamics. Furthermore, HPV type replacement cannot necessarily be ruled out.1119

4.4 Discussion1120

We developed a two-type model for HPV that takes into account separate immune1121

responses, but which are linked through a cross-reactivity term. This is a form of1122

apparent competition that is very common in infectious diseases. We also induce1123

further competition through space competition. Sites can only be infected by one1124

HPV type. While there is in vitro evidence of type coexistence within the same1125

infected host cell [32], we do not incorporate this scenario into our model. Including1126

this would significantly complicate the model. Because we account for an abrasion1127

process in our infection cycle, we would be required to keep track of all abraded and1128

non-abraded infectious, exposed, and uninfected sites. Thus we decided to focus on1129

only space competition and apparent competition in our model.1130

We find that coexistence between the two HPV types is possible when the the1131

level of cross reactivity is below 70% cross-reactive. Furthermore, when restricting1132

the time to only two years, which is the unofficial threshold for persistent infections,1133

we see that coexistence is possible when the types are less than 80% cross reactive.1134

This considers strains of two different strengths. In all cases where coexistence is not1135

possible, the weaker strain dies out.1136

This shows that coexistence of HPV types is possible in the same host even though1137

the types may be competitive. This contradicts some theories that HPV types are1138
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not competitive with one another because of the high rates of coinfection in the1139

same patients. While the potential for type replacement has been determined to be1140

reliant on competition between HPV types, we do not make any claims that HPV1141

type replacement will or will not occur from this model. To do something like that,1142

researchers should consider linking within-host models with population level models1143

in some way. While HPV types may be competitive within the same host, how these1144

effects translate to population level effects is still not completely understood.1145
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Chapter 51146

Conclusion1147

This thesis establishes a mathematical model with which to examine the spread of1148

HPV within the host. We reviewed the biological mechanisms of infection and clear-1149

ance by the immune system to inform the construction of our model. Using this1150

model, we solved for the healthy equilibrium HE , when no HPV is present, and the1151

diseased equilibrium DE , when HPV is able to establish in the host. We found an1152

expression for the basic reproduction number R0, which provides a threshold for1153

whether an infection will be able to establish in the host and potentially persist. We1154

also examined some alterations to the model by including memory cells and a delay in1155

the immune response. By including memory cells, an infection was able to establish if1156

R0 > 1 but could be completely cleared if the effective reproduction number dipped1157

below 1, Re < 1. The delay in the immune response was found to not have much1158

change in the dynamics of the disease unless the immune response is never triggered.1159

We also examined how the parameter values effect the value of the diseased equi-1160

librium. We found that while γ, the rate of immune cell propagation, did not have1161

an effect on whether the infection will establish, it did have an important effect on1162
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the value of the diseased equilibrium. If γ is large enough, the diseased equilibrium1163

value decreased enough for clearance to occur through stochastic effects, which could1164

explain the 80-90% rate of clearance of infections after two years.1165

We also adapted this mathematical model into a stochastic spatial model. We1166

introduced two different neighbourhood structures (global and local) to examine how1167

spatiality may affect the spread, establishment, and clearance of an infection. We1168

found that for a set of base parameters estimated from literature, the global neigh-1169

bourhood model resulted in 100% establishment with 0% clearance. On the other1170

hand, running the same parameter values on the local neighbourhood model resulted1171

in no establishment and 100% clearance with a mean time to clearance of 5.12 days.1172

Neither of these cases seemed to encapsulate the actual rate of clearance of infections1173

(80-90%), so it is unlikely that a typical HPV infection spreads completely locally1174

or completely globally. We also showed that the locality of the infection process in1175

within-host models has an important impact on the establishment or clearance of an1176

infection. This has important implications when developing within-host models to1177

fit parameters to data. Depending on how you define the spatiality of the model,1178

parameter values may be under- or over-estimated.1179

Lastly, we examined the potential for coexistence between two competing HPV1180

strains. We explored two forms of competition between the HPV types: space com-1181

petition, where HPV types compete for infection sites, and apparent competition1182

through immune cross-reactivity. We also discussed the potential for resource com-1183

petition, the competition for cellular processes and resources in cells coinfected with1184

multiple types. However, we found that this form of competition is somewhat unlikely1185

for HPV, and importantly difficult to implement in our model without inducing some1186
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form of unintended bias. This bias is discussed in more detail in Appendix C. We1187

found that when the level of cross-reactivity was below q < 0.70, or rather the types1188

were 70% cross-reactive, then coexistence is possible. This suggests that researchers1189

are unable to use the high rates of multiple type infections as evidence that HPV1190

types are not competitive. While we did not add to the debate for the potential of1191

type replacement, we showed that because competition between types in the host1192

cannot be ruled out, type replacement should also not be ruled out as a potential1193

outcome of vaccination.1194

Ultimately, this thesis provided a basis with which to examine the spread of HPV1195

within the host using mathematical models. These models discussed in this thesis1196

can be adapted to help answer specific open questions. When developing complex1197

mathematical models to help understand complicated viral dynamics, it is important1198

to start with a base model and add complexities where necessary. This thesis provided1199

groundwork with which to develop more specific within-host HPV models.1200
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Appendix A1202

Deterministic Analysis1203

A.1 Derivation of R01204

We confirm our biological interpretation of the basic reproduction number by solving1205

for R0 using the next generation matrix method developed by van den Driessche and1206

Watmough [59]. Consider the set of disease free states Xs,1207

Xs = {x ≥ 0 |xi = 0, i = 1, ...,m}, (A.1.1)

where m is the number of compartments that refer to infected agents. Without loss of1208

generality, order the compartments such that the infected compartments come first.1209

For our model, we have1210

Xs = {Es, Is, Vs, Hs, Ss, Zs} = {0, 0, 0, Hs, Ss, Zs} (A.1.2)
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Because we are concerned with whether the infection will be able to effectively repro-1211

duce, we will examine the next generation matrix proposed by van den Driessche and1212

Watmough of the infectious units. In our model, the infectious units are the exposed1213

and infected classes E and I, and also the virus V .1214

dE

dt
= βSV − σE − αZE, (A.1.3a)

dI

dt
= σE − αZI, (A.1.3b)

dV

dt
= fI − δV. (A.1.3c)

We can partition these differential equations into two different parts. That is, F −V ,1215

where F refers to new agents in each class, and V represents all other movement1216

between the classes, such as elimination or movement from one class to another.1217

Thus we have that1218

F =


βSI

0

fI

 ; V =


σE + αZE

−σE + αZI

δV

 (A.1.4)
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We can consider the Jacobian of the system, which can be simplified to the matrices1219

F = ∂F
∂x

and V = ∂V
∂x

.1220

F =


0 0 βS

0 0 0

0 f 0

 =


0 0 βχ

χ+ρ

0 0 0

0 f 0

 (A.1.5a)

V =


σ + αZ 0 0

−σ αZ 0

0 0 δ

 =


σ + αζ

µ
0 0

−σ αζ
µ

0

0 0 δ

 (A.1.5b)

The next generation matrix is defined as FV−1. van den Driessche and Watmough1221

define R0 as the spectral radius of the next generation matrix ρ(FV−1).1222

FV−1 =


0 0 βχ

χ+ρ

0 0 0

0 f 0




1

αζ
µ

+σ
0 0

µσ

αζ(
αζ
µ

+σ)

µ
αζ

0

0 0 1
δ

 (A.1.6a)

=


0 0 βχ

χ+ρ

0 0 0

fµσ

αζ(
αζ
µ

+σ)

fµ
αζ

0

 (A.1.6b)

The eigenvalues of this system are the following.1223

λ0 = 0 (A.1.7a)

λ± = ±µ

√
βχσ

δαζ(ρ+ χ)(αζ + µσ)
(A.1.7b)
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Therefore, the spectral radius is ρ̄ = µ

√
βχσ

δαζ(ρ+ χ)(αζ + µσ)
. However, recall that1224

our infectious cycle requires going through two steps before we consider the full gener-1225

ation. Firstly, viral particles are produced and infect another site, then this site must1226

survive latency. In that require we require two generations, and we square the spec-1227

tral radius. This formalized the final expression for the basic reproduction number:1228

1229

R0 =
fβχσµ2

δαζ(χ+ ρ)(σµ+ αζ)
(A.1.8)

This confirms our biological derivation of the basic reproduction number.1230

A.2 Linearization of the Healthy Equilibrium, HE1231

To examine the stability of this system, we linearize the system at the HE and examine1232

the eigenvalues. To simplify our system, we will replace H = 1 − S − E − I, which1233

removes the variable H from the system,1234

dS

dt
= χ(1− S − E − I)− ρS − βV S

N
, (A.2.9a)

dE

dt
= βV

S

N
− σE − αZ E

N
, (A.2.9b)

dI

dt
= σE − αZ I

N
, (A.2.9c)

dV

dt
= fI − δV, (A.2.9d)

dZ

dt
= ζN + γZ

(E + I)

N
− µZ. (A.2.9e)
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We will now consider the Jacobian of this simplified system.1235

DFx̄ =



−χ− ρ− βV −χ −χ −βS 0

βV σ − αZ 0 βS −αE

0 σ −αZ 0 −αI

0 0 f −δ 0

0 γZ γZ 0 γ(E + I)− µ


(A.2.10a)

We then evaluate this Jacobian at the healthy equilibrium HE .1236

DFHE =



−χ− ρ −χ −χ −βχ
χ+ρ

0

0 σ − αζ
µ

0 βχ
χ+ρ

0

0 σ −αζ
µ

0 0

0 0 f −δ 0

0 γζ
µ

γζ
µ

0 −µ


(A.2.11)

To simplify the system, we rearrange the matrix accordingly to break this system into1237

blocks. The top, left block considers the healthy and susceptible compartments (S)1238

of our system; the middle block considers the immune response (Z); and the bottom,1239

right block considers the infection states (E, I, V )1240

DFHE =



−χ− ρ −χ −χ −βχ
χ+ρ

0

0 −µ γζ
µ

γζ
µ

0

0 0 σ − αζ
µ

0 βχ
χ+ρ

0 0 σ −αζ
µ

0

0 0 0 f −δ


(A.2.12)
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This is an upper triangular matrix, so we can examine the eigenvalues of the blocks1241

down the main diagonal. Examining the first submatrix, we have eigenvalue λ1
1 =1242

−χ− ρ. The eigenvalue of the second submatrix is clearly λ2
1 = −µ. We can see that1243

these parts of the system are stable as the eigenvalues corresponding to these blocks1244

are both negative. To consider the eigenvalues of the third submatrix, we examine1245

roots of the characteristic equation.1246

0 = (δ − λ)

[(
−σ − αζ

µ
− λ
)(
−αζ
µ
− λ
)]

+
βχfσ

(ρ+ χ)
(A.2.13a)

0 = λ3 + λ2

(
σµ+ 2αζ

µ
+ δ

)
+ λ

[(
σµ+ αζ

µ

)(
αζ

µ

)
+

(
δ(σµ+ 2αζ)

µ

)]
+
δαζ(σµ+ αζ)

µ2
− βχfσ

(ρ+ χ)
(A.2.13b)

According to the Routh-Hurwitz criteria for characteristic polynomials of degree three1247

1248

p(x) = a3x
3 + a2x

2 + a1x
1 + a0, (A.2.14)

in order for the system to be stable, we require that the coefficients of the polynomial1249

satisfy the following conditions, ai > 0, for all i ∈ {0, 1, 2, 3} and that a2a1 > a3a0 [27,1250

44]. We can see that the first three coefficients are clearly positive. Therefore, the1251
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first condition for this to be stable requires that a0 > 01252

δαζ(σµ+ αζ)

µ2
− βχfσ

(ρ+ χ)
> 0 (A.2.15a)

δαζ(σµ+ αζ)

µ2
>

βχfσ

(ρ+ χ)
(A.2.15b)

1 >
βχfσµ2

δαζ(σµ+ αζ)(ρ+ χ)
(A.2.15c)

1 > R0 (A.2.15d)

Thus we see that the healthy equilibrium is clearly unstable (as the first condition1253

fails) when R0 > 1. We must confirm the second condition a1a2 > a0a3 for R0 < 1.1254

We will first simplify and expand the right hand side of the inequality.1255

a0a3 =
δα(σµ+ αζ)

µ2
− βfχσ

(ρ+ χ)
(A.2.16a)

=
δα(σµ+ αζ)(ρ+ χ)− βfχσµ2

µ2(ρ+ χ)
(A.2.16b)

=
δα(σµ+ αζ)(ρ+ χ)(1−R0)

µ2(ρ+ χ)
(A.2.16c)

=
δα(σµ+ αζ)(1−R0

µ2
(A.2.16d)

=
(1−R0)(αζ)2δ

µ2
+

(1−R0)(αζ)δσ

µ
(A.2.16e)
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Similarly, we will expand the left hand term a1a2 and then show that a1a2 > a0a3.1256

a1a2 =

(
(σ + µ)(αζ)

µ2
+
δ(σµ+ 2αζ)

µ

)(
σµ+ 2αζ

µ
+ δ

)
(A.2.17a)

=
2(αζ)3

µ3
+

5(αζ)2δ

µ2
+

3(αζ)2σ

µ2
+

5(αζ)δσ

µ
+

(αζ)σ2

µ
+

2(αζ)δ2

µ
+ δσ2 + δ2σ

(A.2.17b)

>
(1−R0)(αζ)2δ

µ2
+

(1−R0)(αζδ)σ

µ
(A.2.17c)

= a0a3 (A.2.17d)

as (1−R0) < 5. Finally, we have shown using the Routh-Hurwitz criterion that all the1257

eigenvalues of the third submatrix are negative if and only if R0 < 1. In conclusion,1258

we have shown that the healthy equilibrium HE =

(
ρ

χ+ ρ
,

χ

χ+ ρ
, 0, 0, 0,

ζ

µ

)
is stable1259

for when R0 < 1 and unstable when R0 > 1.1260
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A.3 Stability of the Disease Equilibrium, DE1261

First, recall that the solution to the disease equilibrium is1262

H =
Z

2
αµ+ Z(γρ− αζ − µρ) + ρζ

(χ+ ρ)γZ
(A.3.18a)

S =
−Z2

αµ+ Z(−χµ+ χγ + αζ) + χζ

(χ+ ρ)γZ
(A.3.18b)

E =
σ(µZ − ζ)

γ(αZ + σ)
(A.3.18c)

I =
σ(µZ − ζ)

γZ(αZ + σ)
(A.3.18d)

V =
If

δ
=
fσ(µZ − ζ)f

δγZ(αZ + σ)
(A.3.18e)

(A.3.18f)

and the solution Z is the root to the polynomial1263

P (Z) = Z3(α2δγ(χ+ρ))+Z2(ασ(βfµ+(χ+ρ)δγ))+Z(βfσ(χ(µ−γ)−αζ))−βχfσζ.

(A.3.19)

We analyze the nature of the polynomial to show that the diseased equilibrium is1264

positive only when R0 > 1.1265

Lemma A.3.1. The polynomial P (z) has exactly one positive real root.1266

Proof. We will first start by showing that the polynomial (A.3.19) has at least one1267

positive real root. The polynomial P (Z) is of the form:1268

P (Z) = aZ3 + bZ2 + cZ + d, Z ∈ R, (A.3.20)
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where the coefficients are equal to:1269

a = α2δγ(χ+ ρ), (A.3.21a)

b = ασ(βfµ+ (χ+ ρ)δγ), (A.3.21b)

c = βfσ(χ(µ− γ)− αζ), (A.3.21c)

d = −βχfσζ, (A.3.21d)

To show that we have exactly one positive root we will apply Descartes’ Rule of1270

Signs [12]. The theorem states that the number of positive real roots of a polynomial1271

(ordered in decreasing order of the degree) is equal to either the number of times or1272

less than that by some even number. For example, if a polynomial has coefficients1273

which change sign three times, the number of positive real roots is either 3 or 1.1274

Considering another example, if another polynomial has coefficients change sign four1275

times, the number of positive real roots is either 4, 2, or 0. Examining the coefficients1276

of the polynomial P (Z), we see that a, b > 0, d < 0, and the coefficient c may be1277

negative or positive depending on the values of the parameters. However, regardless1278

of the value of c, we have only one change in the sign of the coefficients.1279

P (Z) =

switch, c>0︷ ︸︸ ︷
aZ3 + bZ2 + cZ + d︸ ︷︷ ︸

switch, c<0

(A.3.22)

If c < 0, then we see a switch in the sign of the coefficients between b and c only. If1280

c > 0, we see a switch in the sign of the coefficients between c and d only. As well,1281

if c = 0, then we see a switch in sign between coefficients b and d only. Because we1282

only have one sign change, we must have only one positive real root.1283
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Theorem A.3.1. The diseased equilibrium DE is negative, and thus biologically ir-1284

relevant, for R0 < 1.1285

Proof. In Lemma A.3.1 we showed that there was exactly one positive root for the1286

polynomial P (Z). This means that there is exactly one viable solution for the im-1287

mune system at the diseased equilibrium, Z, otherwise Z < 0 and our solution would1288

be biologically irrelevant. In order to show that the diseased equilibrium is not bio-1289

logically relevant for R0 < 1, we must show that at least one of the equations in the1290

system (A.3.18) is negative when R0. Looking at the system, we see that equations1291

E, I, V are only negative when (µZ − ζ) < 0, that is Z <
ζ

µ
, which is enough to1292

show that the DE is biologically irrelevant. If Z >
ζ

µ
, then we have that all of the1293

solutions to the DE (A.3.18) are positive. In order to do this, we will actually show1294

that Z <
ζ

µ
if and only if R0 < 1, which will be the result that we want.1295
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We examine the sign of P ( ζ
µ
):1296

0 < P ( ζ
µ
) =

ζ3α2δγχ

µ3
+
ζ3α2δγρ

µ3
+
ζ2ασδγχ

µ2
+
ζ2ασδγρ

µ2
− βζfσχγ

µ

(A.3.23a)

0 <
ζγ

µ3

(
ζ2α2δχ+ ζ2α2δρ+ ζασδχµ+ ζασδρµ− βfσχγµ2

)
(A.3.23b)

0 < ζ2α2δχ+ ζ2α2δρ+ ζασδχµ+ ζασδρµ− βfσχγµ2

(A.3.23c)

βfσχγµ2 < ζ2α2δχ+ ζ2α2δρ+ ζασδχµ+ ζασδρµ (A.3.23d)

βfσχγµ2 < δ(αζ)(αζ(χ+ ρ) + σµ(χ+ ρ)) (A.3.23e)

βfσχγµ2 < δ(αζ)(χ+ ρ)(αζ + σµ) (A.3.23f)

βfσχγµ2

δ(αζ)(χ+ ρ)(αζ + σµ)
< 1 (A.3.23g)

R0 < 1 (A.3.23h)

Thus we have shown that P
(
ζ
µ

)
> 0⇔ R0 < 1. By continuity of P (z) and because1297

there is only one positive real root, this means that there exists a Z ∈
(

0,
ζ

µ

)
such1298

that P (Z) = 0, i.e., the equilibrium Z <
ζ

µ
when R0 < 1 and Z >

ζ

µ
when R0 > 11299

for the DE . Therefore, looking back to the DE , we can see that E, I, and V are all1300

less than zero for when R0 < 1.1301

1302
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Appendix B1303

Examining Parameters in1304

Deterministic Model1305

In this appendix we examine how the different parameter values affect the diseased1306

equilibrium DE values. We plot the diseased equilibrium values for different values1307

the various parameters, obtaining the equilibrium values after running the system for1308

2000 time units.1309

Firstly we examine the effects that α, the rate of clearance by the primed T-cells,1310

has on the DE . We see that as α increases, the number of infected sites E, I and the1311

viral load V decrease because more of these infected sites are cleared by the immune1312

response. Similarly, the immune response Z also decreases because fewer T-cells are1313

required to clear the infection. This is illustrated in Figure B.0.11314

When examining the effects that the rate of infection by virus β has on the DE ,1315

we see that E increases as β increases, because more sites are becoming exposed to1316

infection. The number of infectious sites I and subsequently the viral load V increases1317

initially, but then decreases slightly. This is because as the number of exposed sites1318
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Figure B.0.1: The diseased equilibrium values as a function of α, the rate of clearance
by T-cells. As α increases, it is seen that the infection equilibrium values decrease,
while the number of healthy sites increases.

increases, so does the immune response Z and more exposed sites can be cleared1319

before they mature to becoming infectious. This is illustrated in Figure B.0.2.1320

Examining the effects of the abrasion rate χ on the DE , we see that more sites1321

can become infected after abrasion, increasing E as χ increases. A similar trend, the1322

initial increase but then subsequent decrease in infectious sites I and virus V , to the1323

effects of β is observed here. However, it is more apparent. As the number of E1324

sites increase due to more susceptible sites, the immune response Z also increases,1325

which clears exposed sites before they can become infectious. This is illustrated1326

in Figure B.0.3.1327

We also examine the effects of ρ the rate of recovery on the DE . We see that as ρ1328

increases the number of available susceptible sites decrease, which also decreases the1329

number of infected sites E, I and the viral load V . Subsequently, the lack of infection1330
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Figure B.0.2: The diseased equilibrium as a function of β, the rate of infection by a
virus particle. As β increases then the infection equilibrium values increase along with
the immune response, but then V and I decrease. This is because as more exposed
sites are present, the immune response is increased, and these exposed sites can be
cleared before maturing into infectious sites, depleting them for high values of β.
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Figure B.0.3: This plot illustrates the equilibrium values of the diseased equilibrium
as a function of χ. We see that as χ increases, E increases due to more available
susceptible sites to infect. However, I and V increase then decrease as χ increases,
most likely due to an increase in immune activity clearing infected I sites. The left
axis is the proportion of sites and the right axis is the value of R0.

reduces the immune response Z. This is illustrated in Figure B.0.41331

We also consider how the rate of viral production f affects the solution DE .1332

As f increases, the viral load increases V , which results in more infection E, I and1333

subsequently more immune response to the higher levels of infection Z. These findings1334

are recorded in Figure B.0.51335

Conversely, we examine how the rate of viral decay δ affects the DE . As δ increases,1336

there are fewer virus particles V , and thus less infection E, I, which results in a smaller1337

immune response Z. This is illustrated in Figure B.0.6.1338

The parameter σ, the rate of maturation of exposed sites into infectious sites, has1339

some pretty interesting effects on the DE solution. As σ increases, more exposed sites1340

transition to infected sites more quickly. This increases, I and V , which results in1341
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Figure B.0.4: The diseased equilibrium values as a function of ρ, the rate of cell
recovery. As ρ increases the number of susceptible sites decreases, which subsequently
decreases the number of infected sites. Healthy sites increase.
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Figure B.0.5: The diseased equilibrium values as a function of f , the rate of viral
production. As f increases, then the number of infected sites increases, and the
healthy sites decrease. In response to more infected sites, the immune response also
increases.
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Figure B.0.6: The diseased equilibrium values as a function of δ, the rate of natural
viral particle death. As δ increases the number of viral particles decreases significantly,
which reduces the number of infected sites and subsequently the immune response.

more infections initially. However, as σ increases larger, then we see fewer exposed1342

sites E because they are either transitioning to become infectious or are cleared by1343

the overall increased immune response Z. This is illustrated in Figure B.0.7.1344

While γ doesn’t have an effect on the value of R0, it does have an important role1345

on the value of the DE . As γ, the rate of propagation of primed T-cells, increases,1346

there are more T-cells present in the system Z, which decreases the overall infection1347

E, I and the viral load V . Illustrated in Figure B.0.8.1348

The base immune activity rate ζ also has an overall affect on the diseased equi-1349

librium value DE . As ζ increases, so does the overall immune response Z, which1350

decreases the overall infection E, I, and V . As seen in Figure B.0.9.1351

Lastly, we explore the effects of the T-cell death rate µ on the diseased equilibrium1352

value DE . As µ increases, the effective immune response Z decreases, which allows1353
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Figure B.0.7: The diseased equilibrium values as a function of σ, the rate of matu-
ration of exposed sites to infectious. As σ increases more exposed sites are able to
mature to infectious, which increases the viral load in the system, thus increasing the
overall number of infected sites. The immune response is also increased due to the
increase in infected sites.
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Figure B.0.8: This plot shows the diseased equilibrium values as a function of γ. It
can be seen that the values of R0 (gray x’s) stay constant for all γ but the values for
E, I, and V all decrease as γ increases. The left axis is the proportion of sites and
the right axis is the value of R0.

for the infection to establish and increase E, I, resulting in a higher viral load V .1354

This is observed in Figure B.0.10.1355
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Figure B.0.9: The diseased equilibrium value as a function of ζ, the base immune
response not in the presence of infection. As ζ increases, then the base number
immune response increases, which decreases the number of infected sites, and the
healthy sites thus increase.
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Figure B.0.10: The diseased equilibrium value as a function of µ, the natural death
rate of immune cells. As µ increases immune cells die more often, thus the immune
response decreases, which increases the number of infected sites. The number of
healthy sites decrease.
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Appendix C1356

Considering Super-Infections in a1357

Patch Model1358

The effects of super-infection has been an interesting question for virologists, epidemi-1359

ologists, and mathematical modellers for some time. In particular, some pathogens1360

establish in a host and spread to other parts of the host via the release of viral par-1361

ticles. This is similar to plant-seed dispersal, and patch models have been used to1362

model these viral processes [35]. However, when combining super-infection in a patch1363

model can introduce asymmetry and bias to coinfected patches. This as been explored1364

previously [1,58], and here we outline this asymmetry and propose two techniques to1365

avoid this asymmetry.1366

C.1 The Asymmetrical Case1367

First we will discuss the asymmetrical case that may be unintentionally implemented1368

by modellers. We consider patches which are uninfected x, patches infected with only1369
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one of each strain y1 and y2, and coinfected patches z. Coinfection occurs when one1370

singly infected strain is infected with a different strain. Coinfection with both strains1371

does not occur simultaneously. All infected strains are cleared at the same rate (we1372

set it to 1 for simplicity), which become healthy after clearance. This is illustrated1373

in the following flow diagram:

x y1

y2 z

Λ1

Λ2 Λ2

Λ1

Figure C.1.1: Flow diagram for the simple patch model with super-infection.

1374

This flow diagram is also expressed as a system of differential equations in Sys-1375

tem (C.1.1) below:1376

dy1

dt
= Λ1x− y1 − Λ2y1, (C.1.1a)

dy2

dt
= Λ2x− y2 − Λ1y2, (C.1.1b)

dz

dt
= Λ1y2 + Λ2y1 − z, (C.1.1c)

1 = x+ y1 + y2 + z, (C.1.1d)

where Λ1 = β1(y1+p1z) and Λ2 = β2(y2+p2z) are the forces of infection, and p1 and p21377

are the proportions of cell resources allocated to each of strains 1 and 2, respectively,1378
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in a coinfected patch.1379

We consider the boundary equilibria where only one strain y1 is present and the1380

other strain and the coinfected patches are not, (x̄, ȳ1, ȳ2, z̄) = (x̄, ȳ1, 0, 0). We solve1381

for x̄ and ȳ1.1382

x̄ =
1

β1

(C.1.2)

ȳ1 =
β1 − 1

β1

(C.1.3)

Notice here, that for a valid equilibrium, we require that β1 > 1, and thus we also1383

impose that β2 > 1. We also solve for the forces of infection at equilibria:1384

Λ1 = β1 − 1 (C.1.4)

Λ2 = 0 (C.1.5)

Now consider the average number of new strain two or coinfected patches given a1385

single patch infected with strain two, y2. This is the invasion reproduction number,1386

R. To determine this quantity, we must consider how new sites become infected with1387

strain two. Firstly, a completely susceptible site x̄ can become infected by either y2 or1388

a coinfected site that was first infected with y1. Note that in the later case, we must1389

have that the site initially infected with y1 survives long enough to be coinfected.1390

The number of susceptible x patches for infection is x̄.1391

x̄→ y2 :
β2

β1(1 + Λ1)
+

p2β2Λ1

β1(1 + Λ1)
=
β2

β1

(
1 + p2Λ1

1 + Λ1

)
(C.1.6)
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Similarly, we may have that a patch singly infected with strain 1 may become coin-1392

fected either by y1 or by a coinfected site z. Recall that the coinfected sites z come1393

from the new strain y2 first being infected by y1. The number of susceptible y1 patches1394

for infection is ȳ1.1395

ȳ1 → z :
β2(β1 − 1)

β1(1 + Λ1)
+
p2β2(β1 − 1)Λ1

β1(1 + Λ1)
=
β2

β1

(
(β1 − 1) + (β1 − 1)p2Λ1

1 + Λ1

)
(C.1.7)

We can sum these two cases and obtain an expression for R.1396

R =
β2

β1

(
1 + p2Λ1 + (β1 − 1) + (β1 − 1)p2Λ1

1 + Λ1

)
(C.1.8)

=
β2

β1

(
β1 + p2β1Λ1

β1

)
(C.1.9)

=
β2

β1

(1 + p2Λ1) (C.1.10)

=
β2

β1

(1 + p2(β1 − 1)) (C.1.11)

(C.1.12)

Here we see that 1+p2(β1−1) > 1, and thus R > 1 even when β1 > β2. This conflicts1397

with the Competitive Exclusion Principle, in that two organisms cannot occupy the1398

same niche, and the stronger one will win out. In this case, we may have that β1 > β2,1399

but strain one can still be invaded by coinfected strains. This is an example of the1400

asymmetry that can be caused when introducing superinfection into patch models.1401

Setting the value p1 = p2 = 0.5 and the transmission coefficients β1 = 3 and1402

β2 = 1.45, we obtain the following solution curve solved using R. This is illustrated1403

in figure C.1.2, where we see coexistence of patches infected with type y1 and those1404

which are coinfected z. Keeping the p1, p2 values the same (p1 = p2 = 0.5) and1405
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Figure C.1.2: This shows the case where the second pathogen, either as single infec-
tions y2 or as super-infections z, is unable to invade. This occurs when R < 1. In
this case, R = 0.96̄

changing β2 = 2.5 we show that coexistence is possible, countering the Competitive1406

Exclusion Principle. The system was numerically solved and the results can be shown1407

in Figure C.1.31408

The asymmetry introduced here is caused because of the exclusion of subsequent1409

super-infection after super-infection by opposing types has occurred. Consider two1410

patches, each initially infected with strain 1. The first patch, can be infected by1411
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Figure C.1.3: This plot exemplifies the asymmetry that is introduced into the system.
Even though the two strains occupy the same niche, and that strain 1 is stronger than
strain 2, coexistence is possible because of the advantage of super-infected sites, z.
Here R̄ = 1.66̄.

strain 2, and that patch is now immune to subsequent super-infection. Now consider1412

the second patch infected with strain 1, if it were come into contact with a virus1413

of strain 1, we would just consider it to be singly infected with strain 1 and thus1414

a super-infection event would not have occurred. However, it can still be infected1415

by strain 2. Therefore, in this way, patches may come into contact with a different1416

number of virus. In particular patches that come into contact with opposing types1417

110



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

become immune to subsequent super-infection, while patches may come into contact1418

with viruses of the same strain before being super-infected by an opposing strain.1419

In this way, a site which is coinfected by two different strains becomes advantageous1420

over a site that is infected by the same strains. This is the asymmetry that was1421

introduced into the previous model and is illustrated as a diagram in Figure C.1.4.1422

There are a number of ways to include super-infection that does not introduce this1423

form of asymmetry, and it is discussed further in Section C.21424

x y1 z

x y1 y1 z

Figure C.1.4: This illustrates the asymmetry that can form in patch models. If we do
not account for super-infection and subsequent recalcitrance of patches super-infected
with the same strain, we can introduce asymmetry. Consider the top case, where a
susceptible patch x comes into successful contact with virus of strain 1 (red square),
and becomes infected with strain 1. It then comes into contact with a virus of strain
2 (blue circle), and becomes super-infected with two different strains. After this, it
becomes recalcitrant to subsequent super-infection by any strain. In the bottom case,
after initial infection with strain 1, the patch comes into contact with a virus of strain
1 again. However, because it does not become recalcitrant to super-infection after
this second encounter, the patch can later be super-infected by a virus of strain 2. In
this way, the bottom patch was essentially infected three times while the top one only
twice. This confers a form of immunity to patches super-infected by two different
types, which imposes an artificial advantage.
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C.2 Symmetrical Super-Infection Scenarios1425

We have just highlighted how the initial implementation of super-infection can re-1426

sult in asymmetry in the system. Below we discuss some ways to implement super-1427

infection that does not lead to they asymmetrical effect. We run simulations for each1428

of the different scenarios and compare them to one another.1429

1. One may allow super-infection of 1 by 1 (and 2 by 2), and make these super-1430

infected sites recalcitrant, that is unable to be subsequently coinfected. We call1431

this the Same Strain Super-Infection Model.1432

2. The other method (that may work) is to allow for a patch to have k number of1433

super-infections, and subsequent ones replace earlier ones. In the case of two1434

strains, an obvious choice is k = 2. So if a strain is infected with type 1, then1435

type 2, then type 2 again, the type 1 is replaced with the newest incoming strain1436

2 and this patch is overall producing virus of strain 2. We refer to this as the1437

First-in-First-out Super-Infection Model.1438

C.2.1 Same Strain Super-Infection Model1439

We start by examining what happens when we allow same strain super-infection and1440

impose immunity to subsequent super-infected patches. We can do this by including1441

two new classes, z1 and z2 which are patches that have been super-infected by the1442

same strains, 1 and 2 respectively. Here we have that all zi for i = 1, 2 compartments1443

are immune to subsequent super-infection. This system can be visualized as a flow1444

diagram in Figure C.2.5.1445
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x y1
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Λ1
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Λ1

Λ1

Λ2

Figure C.2.5: Flow diagram for the super-infection patch model that considers same
strain super-infection and subsequent immunity to further super-infection.

It is written as a system of differential equations (C.2.13).1446

dy1

dt
= Λ1x− Λ1y1 − Λ2y1 − y1, (C.2.13a)

dy2

dt
= Λ2x− Λ2y2 − Λ1y2 − y2, (C.2.13b)

dz1

dt
= Λ1y1 − z1, (C.2.13c)

dz2

dt
= Λ2y2 − z2, (C.2.13d)

dz

dt
= Λ1y2 + Λ2y1 − z, (C.2.13e)

1 = x+ y1 + y2 + z1 + z2 + z, (C.2.13f)

where Λ1 = β1(y1 +p1z+z1) and Λ2 = β2(y2 +p2z+z2) are the forces of transmission1447

for strains 1 and 2, respectively. We assume that a patch that has been “super-1448

infected” by the same strain produces the same amount of virus as a singly infected1449
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patch.1450

We can visualize the Competitive Exclusion Principle if we have β2 < β1 (Fig-1451

ure C.2.6) or if p2 < p1 (Figure C.2.7), in which case the second strain is weaker, and1452

is eventually eradicated from the system. We see coexistence in this scenario only1453

when both β1 = β2 and p1 = p2.1454
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Figure C.2.6: Here we see when we allow for super-infection of the same type, followed
by immunity to subsequent super-infection, we obtain symmetry in the system. We
plot y1 + z1 (as they are producing the same amount of virus, blue:dashed), y2 + z2

(red:dotted), and z (purple:dash-dot). When 3 = β1 > β2 = 2.5, we see that strain 1
dominates and strain 2 and the super-infected patches die out.
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Figure C.2.7: Here we see when we allow for super-infection of the same type, followed
by immunity to subsequent super-infection, we obtain symmetry in the system. We
plot y1 + z1 (as they are producing the same amount of virus, blue:dashed), y2 + z2

(red:dotted), and z (purple:dash-dot). When 0.45 = p1 < p2 = 0.55, we see that
strain 2 dominates and strain 1 and the super-infected patches die out.

C.2.2 First-in-first-out Super-Infection Patch Model1455

Another method for imposing symmetry in a super-infection patch model is to allow1456

for continual superinfection. That is, no patches become recalcitrant after some1457

number of super-infections. Instead we patches can only “maintain” up to two strains1458

at any one time, accounting for super-infection of the same strain twice also. We1459
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impose a first-in-first-out (FIFO) method of superinfection. That is, if a patch is1460

infected first with strain 1, then super-infected with strain 2, and then again super-1461

infected with strain 2, the strain 1 is “kicked-out”, and it becomes 2-2 infected. This1462

is illustrated in figure Figure C.2.8.1463

x

y1 y2

z1 z12 z21 z2

Λ1 Λ2

Λ1 Λ2Λ2 Λ1

Λ2 Λ1 Λ1

Λ2

Λ2Λ1

Figure C.2.8: A flow diagram illustrating the infection process and super-infection
process of the First-in, First-out super-infection patch model. Susceptible patches
x can be initially infected by one of two strains into y1 or y2. They may be super-
infected by the same strain to become z1 or z2, or they may be super-infected by
different strains to become z12 or z21 respectively. The order of the number refers to
the order of infection. Then these super-infected sites can move between one another
based on what strain they are infected by, via a first-in-first-out method.

We can also represent this as a system of differential equations. We set the collec-1464

tion of susceptible patches as x, which can then be infected by strain 1 or strain 2 to1465

patches y1 or y2, respectively. After the initial infection, they can be super-infected1466
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by the same strain and move to compartment z1 or z2, respectively, or they may be1467

infected by the opposite strain and move to compartments z12 and z21, respectively.1468

Here, we set the order of the subscripts to mean the order of infection, e.g., z12 means1469

it was first infected by strain 1 then strain 2. These super-infected patches can then1470

be infected by any strain of virus and they move to the corresponding compartment1471

in a first-in-first-out method. For example, consider a patch is in the z12 class. It1472

can be infected by strain 1, it would “kick out” the first strain 1, and replace it with1473

strain 1, moving it to the z21 class. There is no qualitative difference between z12 and1474

z21 apart from the order of infection. If the z12 patch is infected with strain 2 again,1475

it will move to the z22 class, and be solely infected with strain 2. All infected patches1476

can be cleared, and become subsequently susceptible again at a constant rate, which1477

we set to 1 (this flow is not included in the diagram in Figure C.2.8). We represent1478

this as a system of differential equations in System (C.2.14).1479

dy1

dt
= Λ1x− Λ1y1 − Λ2y1 − y1, (C.2.14a)

dy2

dt
= Λ2x− Λ2y2 − Λ1y2 − y2, (C.2.14b)

dz1

dt
= Λ1y1 + Λ1z21 − Λ2z1 − z1, (C.2.14c)

dz2

dt
= Λ2y2 + Λ2z12 − Λ1z2 − z2, (C.2.14d)

dz12

dt
= Λ2y1 + Λ2z1 − Λ2z12 − Λ1z12 + Λ2z21 − z12, (C.2.14e)

dz21

dt
= Λ1y2 + Λ1z2 − Λ1z21 + Λ1z12 − Λ2z21 − z21, (C.2.14f)

1 = x+ y1 + y2 + z1 + z2 + z12 + z21, (C.2.14g)
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This system gets quite difficult to analyze, so we illustrate the symmetry of this model1480

by numerically solving this system in R using the deSolve package.1481
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Figure C.2.9: When we allow for unlimited super-infections, including those of the
same type, but recording only the most recent two super-infections (FIFO), we observe
symmetry in the patch model. We plot y1 + z1 (as they are producing the same
amount of virus, blue:dashed), y2 + z2 (red:dotted), and z (purple:dash-dot). When
3 = β1 > β2 = 2.5, we see that strain 1 dominates and strain 2 and the super-infected
patches die out.
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Figure C.2.10: When we allow for unlimited super-infections, including those of the
same type, but recording only the most recent two super-infections (FIFO), we observe
symmetry in the patch model. We plot y1 + z1 (as they are producing the same
amount of virus, blue:dashed), y2 + z2 (red:dotted), and z (purple:dash-dot). When
0.45 = p1 < p2 = 0.55, we see that strain 2 dominates and strain 1 and the super-
infected patches die out.

C.3 Discussion1482

We presented two methods to avoid asymmetry in two-strain super-infection patch1483

models. These techniques could be extrapolated to higher numbers of strains if de-1484

sired. One method induces immunity to subsequent super-infection following the first1485

119



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

super-infection event. The other allows for an arbitrary number of super-infection1486

events, but only keeping track of the two most recent super-infections. Depend-1487

ing on the assumptions of the models, one of these models may be suitable to use1488

to avoid asymmetry. This asymmetry, unintentionally favours coexistence of both1489

strains when the Competitive Exclusion Principle suggests otherwise. Ultimately, we1490

hope to showcase how it is easy to unintentionally and accidentally introduce asym-1491

metry in super-infection patch models. Thus, care should be taken when developing1492

such models, as they may suggest coexistence between strains or species even when1493

it is unlikely or impossible.1494
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Appendix D1495

Numerical Solver and Spatial1496

Simulation Code1497

All code was written in R. While R is predominately a statistical software it also has1498

functionality for solving ordinary differential equations and running simulations while1499

remaining non-proprietary.1500

D.1 Deterministic Model Solver Code for Within-1501

Host HPV Models1502

The gradient functions for the system of ODEs for each model were written in R,1503

and then the ode() function from the deSolve package [50] was used to numerically1504

integrate the system. In order to implement the switch function used in the immune1505

response delay model, we use the event and root functions of the deSolve package.1506

Below are the complete gradient function, the event function, the root function, and1507
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an example of solving the system.1508

1 vector.field <-1509

2 function(t,y,parms) {1510

3 with(as.list(c(parms ,y)),{1511

4 dB<-(-chi*B)+rho*S+alpha*(Z+M)*(E+I)/N1512

5 dS<-chi*B-bet*V*S/N-rho*S1513

6 dE<-bet*V*S/N-sigma*E-alpha*(Z+M)*E/N1514

7 dI<-sigma*E-alpha*(Z+M)*I/N1515

8 dV<- f*I-delta*V1516

9 dZ<- switch(t,Tstart)*gam*Z*(I+E)/N-mu*Z+zeta*N1517

10 dM<-switch(t,Tstart)*eps*Z*(1-M/(K*N))1518

11 dCum <-dI+dE1519

12 dTstart <-01520

13 res <-c(dB=dB ,dS=dS ,dE=dE ,dI=dI ,dV=dV ,dZ=dZ ,dM=dM ,dCum=dCum ,1521

dTstart=dTstart)1522

14 list(res)1523

15 })1524

16 }1525

171526

18 switch <-function(t,thresh){1527

19 x<-rep(-1,length(t))1528

20 if(length(thresh)==2){1529

21 off <-which(t<thresh [1]|t>thresh [2])1530

22 on<-which(t>= thresh [1]&t<= thresh [2])1531

23 }1532

24 else{1533

25 off <-which(t<thresh [1])1534

26 on<-which(t>= thresh [1])1535

27 }1536
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28 x[off]<-01537

29 x[on]<-11538

30 return(x)1539

31 }1540

321541

33 #event function for switching: it sets the initial condition to be1542

the same exept for1543

34 # t start which is restart to1544

35 event <-function(t,y,parms){1545

36 B<-y[1]1546

37 S<-y[2]1547

38 E<-y[3]1548

39 I<-y[4]1549

40 V<-y[5]1550

41 Z<-y[6]1551

42 M<-y[7]1552

43 Cum <-y[8]1553

44 Tstart <-t1554

45 return(y=c(B,S,E,I,V,Z,M,Cum ,Tstart))1555

46 }1556

1 library(deSolve)1557

21558

3 soln <- ode(1559

4 y=c(B=B0,S=S0,E=E0,I=I0,V=V0,Z=Z0,M=M0,Cum=E0+I0,Tstart=Tstart),1560

5 times=seq(from=0,to=tmax ,by=tmax/interNum),1561

6 func=vector.field ,1562

7 events=list(func=event ,root=T),1563
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8 rootfun=function(t,y,parms){with(as.list(y,parms),Cum -C.thresh)1564

},1565

9 parms=c(chi=chi ,rho=rho ,sigma=sigma ,1566

10 bet=bet ,f=f,mu=mu ,gam=gam ,1567

11 alpha=alpha ,zeta=zeta ,C.thresh=C.thresh ,1568

12 delta=delta ,K=K,N=N,eps=eps)1569

13 )1570

D.2 Spatial Simulation Code1571

For the spatial simulation, we set up a pipeline using Make to run the R code. First we1572

set up a parameter .R file to initialize all the necessary parameters for the simulation:1573

1 #parameters1574

2 alpha <-0.51575

3 bet <-0.0031576

4 gam <-21577

5 delta <-0.1381578

6 f<-6001579

7 chi <-0.0151580

8 rho <-0.61581

9 sigma <-0.031582

10 mu<-0.51583

11 zeta <-0.011584

12 eps <-01585

13 Km<-0.011586

141587

15 count <-11588
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161589

17 rowSize <-201590

18 colSize <-201591

19 organSize <-rowSize*colSize1592

20 sStart <-round (0.1*organSize)1593

21 eStart <-round (0.01*organSize)1594

221595

23 timeMax <-365*21596

24 runMax <-1000001597

25 realCountMax <-51598

Then we have a script that defines the functions that will be used by the simulation.1599

These functions do a number of different things including return a vector of the1600

neighbour positions of a focal site, finding the position or coordinates of a site in a1601

matrix, return the sites with a particular state in a neighbourhood of a focal site,1602

return a vector of sites given a particular state from the entire organ, and provide1603

criterion of clearance events and time to clearance for each realization.1604

1 #get the list of neighbour positions of a site ’s position1605

2 getNeigh <-function(site){1606

3 site.col <-coords(site)[1]1607

4 site <-site -11608

51609

6 vec <-c(1610

7 (site +1+ colSize)%%(colSize)+(site.col -1)*colSize ,1611

8 (site -1+ colSize)%%(colSize)+(site.col -1)*colSize ,1612

9 (site -1*colSize+rowSize*colSize)%%(rowSize*colSize),1613

10 (site+1*colSize+rowSize*colSize)%%(rowSize*colSize)1614

125



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

11 )1615

12 return(vec +1)1616

13 }1617

141618

15 #get the coordinates on the matrix from a numerical position1619

16 coords <-function(pos){1620

17 #returns a vector with the coordinates in the matrix given a1621

position1622

18 # returns row position and column position1623

19 xy<-c(ceiling(pos/colSize),pos%% colSize)1624

20 if(xy [2]==0){1625

21 xy[2] <-colSize1626

22 }1627

23 return(xy)1628

24 }1629

251630

26 #getting the numerical position from coordinates1631

27 positn <-function(coords){1632

28 return (( coords [1] -1)*colSize+coords [2])1633

29 }1634

301635

31 #function to get number of states of a particular state1636

32 #in a neighbourhood of a site1637

33 getNeighStates <-function(organ ,site ,state){1638

34 # transform site number to position row num , col num1639

35 neighlist <-getNeigh(site)1640

36 numNeigh <-neighlist[which(organ[neighlist ]== state)]1641

37 if(length(numNeigh)==0){1642

38 numNeigh <-NA1643
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39 }1644

40 return(numNeigh)1645

41 }1646

421647

43 #function to get total number of sites of a particular state1648

44 getTotalStates <-function(organ ,state){1649

45 temp <-which(organ== state)1650

46 return(which(organ ==state))1651

47 }1652

481653

49 #returns 1 if the system has cleared and 0 otherwise1654

50 # clearance is defined as trailing zeros in the vector1655

51 is.clear <-function(vec){1656

52 nonZeros <-which(vec!=0)1657

53 if(length(nonZeros) >0){1658

54 zeros <-which(vec ==0)1659

55 a<-which(max(nonZeros)<zeros)1660

56 if(length(a) >0){1661

57 b<-11662

58 }else{1663

59 b<-01664

60 }1665

61 }else{1666

62 b<-11667

63 }1668

64 return(b)1669

65 }1670

66 #A function applied to a time series data set1671
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67 #returns the smallest time when a clearence event occurs (NA1672

otherwise)1673

68 #A clearance event is defined as the first instance of tailing zeros1674

in E1675

69 timeToClear <-function(timeSeriesData){1676

70 with(as.data.frame(timeSeriesData),{1677

71 nonZeros <-which(E>0)1678

72 zeros <-which(E==0)1679

73 if(length(zeros) >0){1680

74 tail.zeros <-which(zeros >max(nonZeros))1681

75 if(length(tail.zeros) >0){1682

76 end.index <-zeros[min(tail.zeros)]1683

77 b<-time[end.index]1684

78 }else{#no tailing zeros1685

79 b<-NA1686

80 }1687

81 }else{#no zeros in the system1688

82 b<-NA1689

83 }1690

84 return(b)1691

85 })1692

86 }1693

We then run the simulation, the following is the code for the global simulation:1694

1 realCount <-11695

2 #initialize the timeSeries List1696

3 timeSeries <-list()1697

41698
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5 #start to do all the realizeations1699

6 while(realCount <= realCountMax){1700

7 #initialize the list1701

8 count <-11702

9 organ <-list()1703

101704

11 #organ [[1]] <-matrix(rep(1:4, rowSize*colSize/4),nrow=colSize)1705

12 #initialize a completely healthy site1706

13 organ [[1]] <-matrix(rep(1,rowSize*colSize),nrow=colSize)1707

14 #randomly set abrasions1708

151709

16 stSuscPos <-sample (1:( organSize),sStart)1710

17 organ [[1]][ stSuscPos]<-21711

18 #randomly set an infection1712

19 stExposePos <-sample (1:( organSize),eStart)1713

20 stExpose <-c(stExposePos ,getNeigh(stExposePos))1714

21 organ [[1]][ stExpose]<-31715

221716

231717

24 #get the initial counts1718

25 HealCount <-length(getTotalStates(organ [[count ]],1))1719

26 SuscCount <-length(getTotalStates(organ [[count ]],2))1720

27 ExpoCount <-length(getTotalStates(organ [[count ]],3))1721

28 InfeCount <-length(getTotalStates(organ [[count ]],4))1722

291723

30 ZCount <-11724

31 MCount <-01725

321726

33 #set time to zero1727
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34 #run count1728

351729

36 #set the timeSeries data frame1730

37 timeSeries [[ realCount ]]<-data.frame(matrix(rep(NA ,7*100),ncol =7))1731

38 colnames(timeSeries [[ realCount ]]) <-c("time","H","S","E","I","Z","M1732

")1733

391734

40 time <-01735

411736

42 while(time <timeMax&&count <( runMax +1)){1737

43 #calculate the rates:1738

44 c_a<-chi*HealCount1739

45 c_r<-rho*SuscCount1740

46 c_inf <-(bet*f/delta)*SuscCount*InfeCount/organSize1741

47 c_gen <-sigma*ExpoCount1742

48 c_clE <-alpha*(ZCount+MCount)*(ExpoCount)/organSize1743

49 c_clI <-alpha*(ZCount+MCount)*(InfeCount)/organSize1744

501745

51 c_tot <-c_a+c_r+c_inf+c_gen+c_clE+c_clI1746

521747

53 #sample a time step1748

54 u<-runif (1)1749

55 timeStep <-log(1-u)/(-c_tot)1750

561751

57 time <-time+timeStep1752

581753

59 #Choose and event:1754

60 event <-runif (1)1755

611756
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62 if(event <c_a/c_tot){1757

63 healList <-getTotalStates(organ [[count ]],1)1758

64 if(length(healList) >1){1759

65 eventSite <-sample(healList ,1)1760

66 }else{1761

67 eventSite <-healList1762

68 }1763

69 #update site1764

70 temp <-organ [[count ]]1765

71 temp[eventSite]<-21766

72 organ [[count +1]] <-temp1767

73 HealCount <-HealCount -11768

74 SuscCount <-SuscCount +11769

75 }else if(event <(c_a+c_r)/c_tot){1770

76 suscList <-getTotalStates(organ [[count ]],2)1771

77 if(length(suscList) >1){1772

78 eventSite <-sample(suscList ,1)1773

79 }else{1774

80 eventSite <-suscList1775

81 }1776

82 #update site1777

83 temp <-organ [[count ]]1778

84 temp[eventSite]<-11779

85 organ [[count +1]] <-temp1780

86 HealCount <-HealCount +11781

87 SuscCount <-SuscCount -11782

88 }else if(event <(c_a+c_r+c_inf)/c_tot){1783

89 suscList <-getTotalStates(organ [[count ]],2)1784

90 if(length(suscList) >1){1785
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91 eventSite <-sample(suscList ,1)1786

92 }else{1787

93 eventSite <-suscList1788

94 }1789

95 #update site1790

96 temp <-organ [[count ]]1791

97 temp[eventSite]<-31792

98 organ [[count +1]] <-temp1793

99 ExpoCount <-ExpoCount +11794

100 SuscCount <-SuscCount -11795

101 }else if(event <(c_a+c_r+c_inf+c_gen)/c_tot){1796

102 expoList <-getTotalStates(organ [[count ]],3)1797

103 if(length(expoList) >1){1798

104 eventSite <-sample(expoList ,1)1799

105 }else{1800

106 eventSite <-expoList1801

107 }1802

108 #update site1803

109 temp <-organ [[count ]]1804

110 temp[eventSite]<-41805

111 organ [[count +1]] <-temp1806

112 ExpoCount <-ExpoCount -11807

113 InfeCount <-InfeCount +11808

114 }else if(event <(c_a+c_r+c_inf+c_gen+c_clE)/c_tot){1809

115 #clearance E event occurs1810

116 expoList <-getTotalStates(organ [[count ]],3)1811

117 if(length(expoList) >1){1812

118 eventSite <-sample(expoList ,1)1813

119 }else{1814
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120 eventSite <-expoList1815

121 }1816

122 #update site1817

123 temp <-organ [[count ]]1818

124 temp[eventSite]<-11819

125 organ [[count +1]] <-temp1820

126 ExpoCount <-ExpoCount -11821

127 HealCount <-HealCount +11822

128 }else{1823

129 infeList <-getTotalStates(organ [[count ]],4)1824

130 if(length(infeList) >1){1825

131 eventSite <-sample(infeList ,1)1826

132 }else{1827

133 eventSite <-infeList1828

134 }1829

135 #update site1830

136 temp <-organ [[count ]]1831

137 temp[eventSite]<-11832

138 organ [[count +1]] <-temp1833

139 InfeCount <-InfeCount -11834

140 HealCount <-HealCount +11835

141 }1836

142 time <-time+timeStep1837

143 #update the immune cells1838

144 if(eps >0){1839

145 MCount <-max(MCount +(eps*ZCount*(1-MCount/(Km*organSize)))*1840

timeStep ,0)1841

146 }1842

133



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

147 ZCount <-max(ZCount +(zeta*organSize+gam*ZCount*(ExpoCount+1843

InfeCount)/organSize -mu*ZCount)*timeStep ,0)1844

1481845

149 #write to timeSeries list1846

150 timeSeries [[ realCount ]][count ,]<-c(time ,HealCount ,SuscCount ,1847

ExpoCount ,InfeCount ,ZCount ,MCount)1848

1511849

152 count <-count+11850

1531851

154 }#end of realization1852

155 realCount <-realCount +11853

156 }#end of simulation1854

After running the simulation, we aggregate the results into one list and get clearance1855

statistics for the simulation:1856

1 library(abind)1857

21858

3 #trunckate data to be the smallest dimension over all realizations1859

4 #Find minimum dimension1860

5 mindim <-runMax1861

6 for(i in 1: length(timeSeries)){1862

7 newdim <-dim(timeSeries [[i]]) [1]1863

8 if(newdim <mindim){1864

9 mindim <-newdim1865

10 }1866

11 }1867

12 #truckate data to mindim1868

13 timeSeries <-lapply(timeSeries ,function(x) return(x[1:mindim ,]))1869
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141870

15 for(i in 1:( realCountMax)){1871

16 #Reads input file name1872

17 tmpf <- timeSeries [[i]]1873

18 #Take the first data.frame and adjoin it into a multi -dim array1874

19 if(i==1){1875

20 Data.Array <-as.array(as.matrix(tmpf))1876

21 }1877

22 else{1878

23 #Take data and adjoin it to the multi -dim array1879

24 Data.Array <-abind(Data.Array ,tmpf ,along =3)1880

25 }1881

26 }1882

271883

28 #If eps=0 remove M from the list1884

29 if(eps ==0){1885

30 Data.Array <-Data.Array[,-7,]1886

31 }1887

321888

33 Data.Avg <-apply(Data.Array ,c(1,2),mean ,na.rm=T)1889

341890

35 head(Data.Array[,,1])1891

36 head(Data.Avg)1892

371893

38 #calculate the proportion of clearance1894

39 clear.mat <-apply(Data.Array ,c(2,3),is.clear)1895

40 clear.prop <-apply(clear.mat ,1,mean)1896

411897

42 clear.times <-apply(Data.Array ,3, timeToClear)1898
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431899

44 print(clear.prop)1900

45 print(clear.times)1901

46 print(mean(clear.times ,na.rm=T))1902

47 print(var(clear.times ,na.rm=T))1903

481904

49 x<-list(clear.prop=clear.prop ,1905

50 clear.times=clear.times ,1906

51 meanTime=mean(clear.times ,na.rm=T),1907

52 varTime=var(clear.times ,na.rm=T)1908

53 )1909

Then we either plot the system as a time series using the ggplot2 package [60], using1910

dplyr and dplyr to clean up the data for plotting:1911

1 library(tidyr)1912

2 library(dplyr)1913

3 library(ggplot2)1914

41915

5 theme_set(theme_bw())1916

61917

7 Data.Max <-apply(Data.Array ,c(1,2),max)1918

8 Data.Min <-apply(Data.Array ,c(1,2),min)1919

91920

10 Data.QuantLow <-apply(Data.Array ,c(1,2),function(x) quantile(x,probs1921

=0.05))1922

11 Data.QuantUp <-apply(Data.Array ,c(1,2),function(x) quantile(x,probs1923

=0.95))1924

12 print(names(Data.Avg))1925

136



M.Sc. Thesis - Spencer Hunt, B.Sc. hon. McMaster - Mathematics

131926

14 gData.Avg <-gather(as.data.frame(Data.Avg),state ,num ,-time)1927

15 gData.Up<-gather(as.data.frame(Data.QuantUp),state ,num ,-time)1928

16 gData.Low <-gather(as.data.frame(Data.QuantLow),state ,num ,-time)1929

171930

18 gData.Avg$up<-gData.Up$num1931

19 gData.Avg$low <-gData.Low$num1932

201933

21 col.pal <-c("dodgerblue","darkorchid1","orange","red","black","pink1"1934

)1935

221936

23 print(1937

24 ggplot(gData.Avg , aes(x=time , y=num))1938

25 + geom_line(aes(color=state ,linetype=state),size =1)1939

26 + geom_ribbon(aes(fill=state ,ymin=low ,ymax=up),alpha =0.3)1940

27 + scale_fill_manual(values=col.pal)1941

28 + scale_color_manual(values=col.pal)1942

29 + scale_linetype_manual(values=c(1,1,2,2,3,3))1943

30 )1944

Or we plot the simulation on a grid using the lattice package [45].1945

1 library(lattice)1946

2 library(gridExtra)1947

31948

41949

5 org.col.pal <-c("white","pink","red","firebrick")1950

61951

71952
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8 time.list <-c(1 ,100 ,1000 ,2500)1953

9 par(mfrow=c(2,2))1954

10 p<-list()1955

11 for(n in time.list){1956

121957

13 p[[ which(n==time.list)]]<-levelplot(organ [[n]],col.regions=org.1958

col.pal ,at=seq (0.5 ,4.5 ,by=1),1959

14 xlab="",1960

15 ylab="",1961

16 main=paste("Site States at time t =",round(timeSeries1962

[[ realCountMax ]][n,"time"]),"days"),1963

17 colorkey=list(col=org.col.pal ,tick.number=4,at=seq1964

(0.5 ,4.5 ,by=1),1965

18 labels=list(labels=c("H","S","E","I","")1966

,cex =1.1)1967

19 )1968

20 )1969

211970

22 }1971

231972

24 grid.arrange(p[[1]],p[[2]],p[[3]],p[[4]], ncol=2,nrow =2)1973

The local simulation uses the same process, but it has a slightly different im-1974

plementation of the simulation script. This is outlined below. The parameter file,1975

functions used in the simulation, and time series analysis and plotting are all the1976

same for the local simulation as the global simulation.1977

1 realCount <-11978

2 #initialize the timeSeries List1979
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3 timeSeries <-list()1980

41981

5 #start to do all the realizeations1982

6 while(realCount <= realCountMax){1983

7 #initialize the list1984

8 count <-11985

9 organ <-list()1986

101987

11 #organ [[1]] <-matrix(rep(1:4, rowSize*colSize/4),nrow=colSize)1988

12 #initialize a completely healthy site1989

13 organ [[1]] <-matrix(rep(1,rowSize*colSize),nrow=colSize)1990

14 #randomly set abrasions1991

15 stSuscPos <-sample (1:( organSize),sStart)1992

16 organ [[1]][ stSuscPos]<-21993

17 #randomly set an infection1994

18 stExposePos <-sample (1:( organSize),eStart)1995

19 stExpose <-c(stExposePos ,getNeigh(stExposePos))1996

20 organ [[1]][ stExpose]<-31997

211998

22 #get the initial counts1999

23 HealCount <-length(getTotalStates(organ [[count ]],1))2000

24 SuscCount <-length(getTotalStates(organ [[count ]],2))2001

25 ExpoCount <-length(getTotalStates(organ [[count ]],3))2002

26 InfeCount <-length(getTotalStates(organ [[count ]],4))2003

272004

28 #set up a matrix counting the number of sites2005

29 Zmat <-matrix(rep(1/organSize ,organSize),nrow=rowSize ,ncol=colSize)2006

30 ZCount <-sum(Zmat)2007

31 Mmat <-matrix(rep(0/organSize ,organSize),nrow=rowSize ,ncol=colSize)2008
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32 MCount <-sum(Mmat)2009

332010

34 #set time to zero2011

35 #run count2012

362013

37 #set the timeSeries data frame2014

38 timeSeries [[ realCount ]]<-data.frame(matrix(rep(NA ,7*100),ncol =7))2015

39 colnames(timeSeries [[ realCount ]]) <-c("time","H","S","E","I","Z","M2016

")2017

402018

41 time <-02019

422020

43 while(time <timeMax&&count <( runMax +1)){2021

442022

45 #infectiousMat <-(organ [[count ]]==2)*getNeighStateMatrix(organ2023

[[ count ]],4)2024

46 immuneEMat <-(organ [[count ]]==3)*Zmat+(organ [[count ]]==3)*Mmat2025

47 immuneIMat <-(organ [[count ]]==4)*Zmat+(organ [[count ]]==4)*Mmat2026

482027

49 #calculate the rates:2028

50 c_a<-chi*HealCount2029

51 c_r<-rho*SuscCount2030

52 c_inf <-bet*f/delta*InfeCount2031

53 c_gen <-sigma*ExpoCount2032

54 # Clearance events are equal to the immune response at a site2033

55 # with an E or I value2034

56 c_clE <-sum(alpha*immuneEMat)2035

57 c_clI <-sum(alpha*immuneIMat)2036

582037
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59 c_tot <-c_a+c_r+c_inf+c_gen+c_clE+c_clI2038

602039

612040

62 #sample a time step2041

63 u<-runif (1)2042

64 timeStep <-log(1-u)/(-c_tot)2043

652044

662045

67 #Choose and event:2046

68 event <-runif (1)2047

692048

70 if(event <c_a/c_tot){2049

71 healList <-getTotalStates(organ [[count ]],1)2050

72 if(length(healList) >1){2051

73 eventSite <-sample(healList ,1)2052

74 }else{2053

75 eventSite <-healList2054

76 }2055

77 #update site2056

78 temp <-organ [[count ]]2057

79 temp[eventSite]<-22058

80 organ [[count +1]] <-temp2059

81 HealCount <-HealCount -12060

82 SuscCount <-SuscCount +12061

83 }else if(event <(c_a+c_r)/c_tot){2062

84 suscList <-getTotalStates(organ [[count ]],2)2063

85 if(length(suscList) >1){2064

86 eventSite <-sample(suscList ,1)2065

87 }else{2066
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88 eventSite <-suscList2067

89 }2068

90 #update site2069

91 temp <-organ [[count ]]2070

92 temp[eventSite]<-12071

93 organ [[count +1]] <-temp2072

94 HealCount <-HealCount +12073

95 SuscCount <-SuscCount -12074

96 }else if(event <(c_a+c_r+c_inf)/c_tot){2075

97 infeList <-getTotalStates(organ [[count ]],4)2076

98 if(length(infeList) >1){2077

99 eventSiteI <-sample(infeList ,1)2078

100 }else{2079

101 eventSiteI <-infeList2080

102 }2081

1032082

104 #sample a neighbour around the infected site I2083

105 eventSiteS <-sample(getNeigh(eventSiteI) ,1)2084

106 #check to see if the sampled neighbour is susceptible2085

107 if(organ [[ count ]][ eventSiteS ]==2){2086

108 #update site2087

109 temp <-organ[[ count]]2088

110 temp[eventSiteS]<-32089

111 organ [[count +1]] <-temp2090

112 ExpoCount <-ExpoCount +12091

113 SuscCount <-SuscCount -12092

114 }else{2093

115 temp <-organ[[ count]]2094

116 organ [[count +1]] <-temp2095
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117 }2096

118 }else if(event <(c_a+c_r+c_inf+c_gen)/c_tot){2097

119 expoList <-getTotalStates(organ [[count ]],3)2098

120 if(length(expoList) >1){2099

121 eventSite <-sample(expoList ,1)2100

122 }else{2101

123 eventSite <-expoList2102

124 }2103

125 #update site2104

126 temp <-organ [[count ]]2105

127 temp[eventSite]<-42106

128 organ [[count +1]] <-temp2107

129 ExpoCount <-ExpoCount -12108

130 InfeCount <-InfeCount +12109

131 }else if(event <(c_a+c_r+c_inf+c_gen+c_clE)/c_tot){2110

132 eventSite <-sample (1: organSize ,1,prob=immuneEMat/sum(2111

immuneEMat))2112

133 #update site2113

134 temp <-organ [[count ]]2114

135 temp[eventSite]<-12115

136 organ [[count +1]] <-temp2116

137 ExpoCount <-ExpoCount -12117

138 HealCount <-HealCount +12118

139 }else{2119

140 #print(" Clear I")2120

141 eventSite <-sample (1: organSize ,1,prob=immuneIMat/sum(2121

immuneIMat))2122

142 #update site2123

143 temp <-organ [[count ]]2124
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144 temp[eventSite]<-12125

145 organ [[count +1]] <-temp2126

146 InfeCount <-InfeCount -12127

147 HealCount <-HealCount +12128

148 }2129

149 time <-time+timeStep2130

150 #update the immune cells2131

151 if(eps >0){2132

152 Mmat <-Mmat+(eps*Zmat*(1-Mmat/(Km*organSize)))*timeStep2133

153 Mcount <-sum(Mmat)2134

154 }2135

155 Zmat <-Zmat+(zeta+gam*Zmat*(( organ[[ count +1]]==3)+organ[[ count2136

+1]]==4) -mu*Zmat)*timeStep2137

156 ZCount <-sum(Zmat)2138

1572139

158 #write to timeSeries list2140

159 timeSeries [[ realCount ]][count ,]<-c(time ,HealCount ,SuscCount ,2141

ExpoCount ,InfeCount ,ZCount ,MCount)2142

1602143

161 count <-count+12144

1622145

1632146

164 }#end of realization2147

165 realCount <-realCount +12148

166 }#end of simulation2149
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D.3 Multi-type HPV Model Solver Code2150

The multi-type HPV model is implemented similarly to the base model. We de-2151

fine a gradient function in R and solve it using the ode() function in the deSolve2152

package [50]. The results are printed in the basic R plotting function.2153

Below is the gradient function2154

1 library(deSolve)2155

22156

3 MultiStrain.vf<-2157

4 function(t,vars ,2158

5 parms=c(K=1,N=1)) {2159

6 with(as.list(c(parms ,vars)),{2160

7 dB<--chi*B+rho*S+alpha [1]*Z1*(E1+I1)/N+alpha [2]*Z2*(E2+I2)/N+q2161

*alpha [1]*Z1*(E2+I2)/N+q*alpha [2]*Z2*(E1+I1)/N2162

8 dS<-chi*B-rho*S-bet [1]*S*V1/N-bet [2]*S*V2/N2163

9 dE1 <-bet[1]*S*V1/N-sigma*E1 -alpha [1]*Z1*E1/N-q*alpha [2]*Z2*E1/2164

N2165

10 dE2 <-bet[2]*S*V2/N-sigma*E2 -alpha [2]*Z2*E2/N-q*alpha [1]*Z1*E2/2166

N2167

11 dI1 <-sigma*E1 -alpha [1]*Z1*I1/N -q*alpha [2]*Z2*I1/N2168

12 dI2 <-sigma*E2 -alpha [2]*Z2*I2/N-q*alpha [1]*Z1*I2/N2169

13 dV1 <-f1*I1 -delta [1]*V12170

14 dV2 <-f2*I2 -delta [2]*V22171

15 dZ1 <-zeta*N/2+gam[1]*Z1*(E1+I1)/N+q*gam[1]*Z1*(E2+I2)/N-mu*Z12172

16 dZ2 <-zeta*N/2+gam[2]*Z2*(E2+I2)/N+q*gam[2]*Z2*(E1+I1)/N-mu*Z22173

17 res <-c(dB=dB ,dS=dS ,dE1=dE1 ,dE2=dE2 ,dI1=dI1 ,dI2=dI2 ,dV1=dV1 ,dV22174

=dV2 ,dZ1=dZ1 ,dZ2=dZ2)2175

18 list(res)2176

19 })2177
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20 }2178

and then solved using the following code.2179

1 library(deSolve)2180

22181

3 soln <-ode(2182

4 y=c(B=B0,S=S0,E1=E10 ,E2=E20 ,I1=I10 ,2183

5 I2=I20 ,V1=V10 ,V2=V20 ,Z1=Z10 ,Z2=Z20),2184

6 times=seq(from=0,to=tmax ,by=tmax/interNum),2185

7 func=MultiStrain.vf ,2186

8 parms=c(alpha=alpha ,bet=bet ,f=f,gam=gam ,2187

9 delta=delta ,zeta=zeta ,chi=chi ,rho=rho ,2188

10 sigma=sigma ,mu=mu,q=q)2189

11 )2190

D.4 Super-infection Patch Model Code2191

Once again the code for the super-infection patch models is very similar, we set up2192

three different patch model gradient functions and then solve them using the ode()2193

function in the deSolve package [50].2194

The asymmetrical patch model gradient is defined here.2195

1 ms.patch <-2196

2 function(t,vars ,2197

3 parms=c(K=1,N=1)) {2198

4 with(as.list(c(parms ,vars)),{2199
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5 S<-(1-y1 -y2-z)2200

6 Lam1 <-beta [1]*(y1+p[1]*z)2201

7 Lam2 <-beta [2]*(y2+p[2]*z)2202

8 dy1=Lam1*S-y1 -Lam2*y12203

9 dy2=Lam2*S-y2 -Lam1*y22204

10 dz=Lam2*y1+Lam1*y2 -z2205

11 dScheck = -(dy1+ dy2+ dz)2206

12 res <-c(dy1=dy1 ,dy2=dy2 ,dz=dz , dScheck=dScheck)2207

13 list(res)2208

14 })2209

15 }2210

The Same Strain Super-Infection model gradient is defined here.2211

1 ms.patch <-2212

2 function(t,vars ,2213

3 parms=c(K=1,N=1)) {2214

4 with(as.list(c(parms ,vars)),{2215

5 S<-(1-y1 -y2-z-z1-z2)2216

6 Lam1 <-beta [1]*(y1+p[1]*z+z1)2217

7 Lam2 <-beta [2]*(y2+p[2]*z+z2)2218

8 dy1=Lam1*S-y1 -Lam2*y1 -Lam1*y12219

9 dy2=Lam2*S-y2 -Lam1*y2 -Lam2*y22220

10 dz=Lam2*y1+Lam1*y2 -z2221

11 dz1=Lam1*y1 -z12222

12 dz2=Lam2*y2 -z22223

13 dScheck = -(dy1+ dy2+ dz+ dz1+ dz2)2224

14 res <-c(dy1=dy1 ,dy2=dy2 ,dz=dz ,dz1=dz1 ,dz2=dz2 , dScheck=dScheck)2225

15 list(res)2226
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16 })2227

17 }2228

And lastly, the FIFO Super-Infection model gradient is defined below.2229

1 ms.patch <-function(t,vars ,2230

2 parms=c(K=1,N=1)) {2231

3 with(as.list(c(parms ,vars)),{2232

4 #Parameters2233

5 S<-(1-y1 -y2-z12 -z21 -z1-z2)2234

6 Lam1 <-beta [1]*(y1+p[1]*z12+p[1]*z21+z1)2235

7 Lam2 <-beta [2]*(y2+p[2]*z12+p[2]*z21+z2)2236

8 #ODEs2237

9 dy1=Lam1*S-Lam2*y1 -Lam1*y1 -y12238

10 dy2=Lam2*S-Lam1*y2 -Lam2*y2 -y22239

11 dz12=Lam2*y1+Lam2*z1 -Lam2*z12 -Lam1*z12+Lam2*z21 -z122240

12 dz21=Lam1*y2+Lam1*z2 -Lam1*z21+Lam1*z12 -Lam2*z21 -z212241

13 dz1=Lam1*y1+Lam1*z21 -Lam2*z1 -z12242

14 dz2=Lam2*y2+Lam2*z12 -Lam1*z2 -z22243

15 dScheck = -(dy1+ dy2+ dz12 + dz21 + dz1+ dz2)2244

16 res <-c(dy1=dy1 ,dy2=dy2 ,dz12=dz12 ,dz21=dz21 ,dz1=dz1 ,dz2=dz2 ,2245

dScheck=dScheck)2246

17 list(res)2247

18 })2248

19 }2249

These are solved using the ode() function, we only show the example for the asym-2250

metric model. Solvers for the other models are programmed accordingly.2251
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1 library(deSolve)2252

22253

3 soln <-ode(y=c(y1=y1 ,y2=y2 ,z=z, Scheck=Scheck),2254

4 times=seq(0,tmax ,by=tmax/inter),2255

5 func=ms.patch ,2256

6 parms=c(beta=beta ,p=p))2257

72258

8 # add in susceptible patches2259

9 soln <- within(as.data.frame(soln), {2260

10 S <- 1-y1-y2-z2261

11 })2262

122263

13 #remove the Scheck2264

14 soln <-soln[,c(1:4 ,6)]2265

All results were plotted using the ggplot2 package [60] and using the dplyr and2266

tidyr packages to prepare the data frame for printing.2267

1 library(tidyr)2268

2 library(dplyr)2269

3 library(ggplot2)2270

42271

5 theme_set(theme_bw())2272

62273

7 print(names(soln))2274

82275

9 patches <- soln %>% gather(State , Num ,-time)2276

10 print(summary(patches))2277

112278
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12 col.pal <-c("blue","red","darkorchid","gray40")2279

132280

14 print(2281

15 ggplot(patches , aes(x=time , y=Num))2282

16 + geom_line(aes(color=State ,linetype=State),size =1)2283

17 + scale_color_manual(values=col.pal)2284

18 + scale_linetype_manual(values=c(2,3,4,1))2285

19 )2286
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