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Abstract

The promotion of Electric Vehicles (EV) has become a key measure of the governments

to reduce greenhouse gas emissions. However, range anxiety is a big barrier for

drivers to choose EVs over traditional vehicles. Installing more charging stations

in appropriate locations can relieve EV drivers’ range anxiety. To help decide the

location and number of public charging stations, we propose two optimization models

for two different charging modes - fast and slow charging, which aim at minimizing

the total cost while satisfying certain spatial coverage goals. Instead of using discrete

points we employ network and polygons to represent charging demands. Importantly,

we resolve the partial coverage problem (PCP) by segmenting the geometric objects

into smaller ones using Geographic Information System (GIS) functions. We compare

the geometric segmentation method (GS) and the complementary partial coverage

method (CP) developed by Murray (2005) to solve the PCP. After applying the

models to Greater Toronto and Hamilton Area (GTHA) and to Downtown Toronto,

we show that that the proposed models are practical and effective in determining the

locations and number of required charging stations. Moreover, comparison of the two

methods shows that GS can fully eliminate PCP and provide much more accurate

result than CP.
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Chapter 1

Introduction

Many countries around the world are drawing up plans to electrify their transportation

systems in order to reduce greenhouse gas emission and to improve air quality in urban

areas. The core of such plans is to promote the adoption of Electric Vehicles (EVs).

However, range anxiety is one of the primary barriers for drivers to choose EVs over

traditional Internal Combustion Engine (ICE) vehicles (Eberle and von Helmolt,

2010). Installing more EV charging stations is one of the strategies that can reduce

range anxiety. This leads to a facility location problem: how many charging stations

do we need and where are the best locations to install those charging stations? The

answer of this problem depends on many factors, including the driving ranges of EVs

and the cost of charging stations.

The driving range of EVs can vary greatly by model and manufacturer. Currently,

the longest EV driving range is 424 km (2014 Tesla Model S) while the shortest range

is 60 km (2013 Scion iQ EV). Most EVs have ranges between 100 km and 160 km

(U.S. Department of Energy, 2014).

EVs are charged through Electric Vehicle Supply Equipment (EVSE). According
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to Community Energy Association (2013), there are three levels of EVSEs. Level 1

EVSE, with a cost less than $1000, typically takes 10-20 hours to charge. The long

charging time makes Level 1 chargers suitable only for home usage. Level 2 can be

used for both commercial and home charging purposes. EVs will take 4-8 hours to

reach a full charge. Commercial Level 2 charging equipment costs between $3,500 and

$6,000 for a single cord station while residential Level 2 charging equipment is much

cheaper with cost around $1,000. Level 3 EVSE, also called fast charger, provides

the fastest way of charging EVs and can achieve 50% charge in 10 to 15 minutes. It’s

also the most expensive EVSE with its cost ranging between $60,000 and $100,000.

Home, work and public charging are three common EV charging scenarios (Na-

tional Renewable Energy Laboratory, 2014). Home charging is the dominant charging

scenario. At least 70% of the electricity that EVs use is charged at home (National

Renewable Energy Laboratory, 2014). Work charging happens at workplace where

people park their EVs during working hours. Public charging usually occurs at pub-

lic places such as shopping malls, hotels, restaurants, or public parking lots. Due to

different charging time required for different levels of EVSEs, Level 1 and Level 2

EVSEs are suitable for home and work charging. Level 2 and Level 3 are suitable for

public charging.

In this paper we focus on the design of a network of public charging stations. We

propose to locate the Level 2 & 3 charging stations based on different standards of

ranges. For Level 2 charging stations, because it usually takes hours to fully charge an

EV, the EVs are often charged at the parking spaces while the drivers are conducting

some other activities, e.g., shopping or dining. Therefore, the drivers will look for

charging stations within walking distance of the activity. Level 3 EVSE charges much

2
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faster, requiring about 30 minutes for a complete charge. Thus, it is appropriate for

mid-trip charging where the drivers usually conduct long distance driving and expect

to charge the EVs fast (Community Energy Association, 2013). In this scenario, the

drivers will look for charging stations within driving distance before the battery is

depleted.

Most traditional facility location models assume that the demands come from

discrete points, which are single-dimensional (Miller, 1996; Chen et al., 2013; Frade

et al., 2011; Xi et al., 2013). This approach is problematic and inaccurate for the

problem in this paper. It can cause error when measuring the distance between

the demand and the service facility, thus affecting the result of the facility locations

(Miller, 1996). Moreover, models using point representation suffer from the partial

coverage problem (PCP) and Modifiable Areal Unit Problem (MAUP), which will be

introduced in Chapter 3. To ensure better accuracy, we assume that the sources of

demand are multi-dimensional geometric objects, which are a better representation

of reality. We model the public Level 2 charging demand using Traffic Analysis Zones

(TAZ) (polygons) and the public Level 3 charging demand using links of the traffic

network (lines).

To identify the optimal locations for EV charging stations, we propose a method

which considers both Level 2 and Level 3 charging stations using the same frame-

work. Compared to previous similar studies on the locations of EV charging sta-

tions, this paper has three major innovations (Frade et al., 2011; Liu, 2012; Lee

et al., 2014). First, this model focuses on addressing range anxiety, making sure the

charging stations are accessible to the largest possible number of EVs within allowed

distances. Moreover, we discuss different definitions of range anxiety. Second, we use

3
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network/polygon segmentation techniques to avoid partial coverage, which can cause

models to be inaccurate. Third, the model can be applied to Level 2 and Level 3

charging stations under the same framework, offering a more comprehensive solution

strategy than existing models.

This model may be used by city planners to plan the EV public charging infras-

tructures, by businesses to estimate how many charging stations they need to install

to fulfill their customers’ needs or by utility companies to estimate the impact of the

charging loads on the grid network.

This paper is organized as follows. Section 2 reviews the literature of charging net-

work design. Section 3 discusses the PCP and the classical method to address it using

complimentary partial coverage. Section 4 describes the framework and mathematical

formulation for fast charging stations (Level 3). Section 5 describes the framework and

mathematical formulation for slower charging stations (Level 2). Finally, in Section

6, we apply the proposed model for Level 3 and Level 2 to the Greater Toronto and

Hamilton Area (GTHA) and Downtown Toronto respectively, and conduct numerical

studies to demonstrate the effectiveness of the proposed method.

4



Chapter 2

Literature Review

Numerous efforts have been made to tackle the EV charging station location problem.

In the remainder of this paper, we refer to Level 3 as fast charging and to Level 2 as

slow charging.

A large number of models have been developed for fast charging stations (Ge et al.,

2011; Chen et al., 2014; Hanabusa and Horiguchi, 2011; Lee et al., 2014; Lam et al.,

2014). A fast charging station serves mid-trip charging needs, so that the charging

demand is usually based on the number of EVs on the road and is closely related to EV

users’ travelling behavior. Traffic assignment is a commonly used tool for modeling the

EV drivers’ behavior (Lam and Lo, 2004). Hanabusa and Horiguchi (2011) apply the

stochastic user equilibrium method to estimate the traffic flow on the road network.

The goal of their model is to minimize the system’s total travel time and equalize

the charging load among charging stations using entropy maximization. Their model

focuses on the impact of charging stations on EV driver’s route choice but doesn’t

address the accessibility of charging stations to EVs. Chen et al. (2014) also utilize

user equilibrium traffic assignment method to model the traffic flows, however, no

5



M.Sc. Thesis - Xiaozhou Zhang McMaster - Computational Science and Engineering

facility location optimization model is developed to determine the optimal locations

of charging stations. Lee et al. (2014)’s stochastic model incorporates the traffic

assignment method endogenously and minimizes the total travel time and trip failure

penalty. With the exception of Lee et al. (2014)’s model, most of the models for Level

3 do not address the range anxiety issue by ignoring the driving range of EVs. But

Lee et al. (2014)’s model does not guarantee that EVs are able to reach a charging

station within a given distance. Lam et al. (2014) formulate the problem using a

network flow model of which the objective is to make sure every node on the network

has at least one adjacent charging station and the charging station sub-graph remains

a connected graph with the lowest cost. They use four different methods to solve the

problem, including a meta-heuristic algorithm Chemical Reaction Optimization. But

their model fails to consider the accumulation of demand on each charging station

when determining the station’s charging load. Also, their model suffers from serious

scalability issues.

Some studies are dedicated to slow charging stations (Frade et al., 2011; Xi

et al., 2013; Chen et al., 2013). These models generally use regression methods to

estimate charging demand of each area in the city. Frade et al. (2011) estimate the

daytime and nighttime charging demand in each traffic zone based on employment

and residence data respectively and then use an optimization model to maximize the

total coverage with a given number of charging stations. Xi et al. (2013) estimate

the charging need for each TAZ and the model aims at maximizing the usage of the

chargers. Chen et al. (2013) also use regression analysis based on travel survey data

to estimate charging demand in each TAZ and develop an optimization model to

minimize the total access cost of EVs to their nearest charging stations. In Frade

6
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et al. (2011) and Chen et al. (2013)’s models, when the distance between a TAZ and

a charging station is estimated, the centroid of a TAZ is used to approximate the

zone. This approach is problematic and inaccurate: It does not distinguish whether

an area is partially covered or fully covered. This problem can be resolved by the

segmentation technique introduced in Sections 3 and 4 of this paper.

Comparing the models for slow charging stations with those for fast charging

stations, it is clear that models for fast charging station are based on the traffic

network (lines) while models for slow charging station are based on zones (polygons).

Importantly, both slow and fast charging stations should be built to tackle the range

anxiety problem. Indeed, fast charging is indispensable for resolving range anxiety,

since long distance drivers need fast charging solutions. Nevertheless, fast charging

costs more and sets higher requirement on the capacity of the electric grid. As a

result, slow charging remains the dominant charging mode at present.

Most existing models only consider either slow or fast charging stations. To the

best of our knowledge, there is only one paper discussing multiple charging modes.

Liu (2012) uses an ad hoc method to estimate the number of Level 1&2 charging

posts in each residence community and parking lot based on economic and industrial

data, and decides the locations of Level 3 fast charging stations according to the

locations of gas stations. This ad hoc method requires less computation and is easy

to implement, but the result is less reliable than those obtained through optimization

models.

Table 2.1 is a summary of the models mentioned above. As noted in the second

column, most fast charging models use traffic assignment to estimate charging demand

while slow charging models estimate the demand using regression method. In the third
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column, with the exception of Chen et al. (2014) and Liu (2012), all the models

use optimization to decide the locations of charging stations. In the fourth column,

typical objectives among the models include minimizing travel time and cost, and

maximizing coverage. As we can see from the fifth column, slow charging station

models generally use the centroids of polygons to represent the demand location.

This approach inevitably leads to PCP, which is shown in the sixth column. The last

column shows that except Liu (2012)’s model, all the models are designed for single

mode charging.

To design an EV charging network, the proposed method should firstly be able

to include both the fast charging stations (for short time charging need) and slow

charging stations (for longer time charging need). Secondly, given the high cost of

installing public charging stations, the model should be particularly budget-sensitive.

In addition to $60,000-$100,000 for a Level 3 charging post and $3,500-$6,000 for

a commercial Level 2 charging post, one would also have to consider the cost of

renting/purchasing land for the station and other construction and operation costs

(Community Energy Association, 2013). Moreover, to solve the range anxiety problem

with a limited budget, the charging facilities should be accessible to as many EVs as

possible. Thirdly, to ensure accuracy, network/polygons should be used to estimate

fast/slow charging demand and the PCP must be resolved. Last but not least, to

estimate charging demand more accurately, trip generation method should be used

to estimate the demand for Level 2 charging and traffic assignment should be used

to estimate the demand for Level 3 charging.

8
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Table 2.1: A classification of existing works

Author(s)
Demand
Model

Decision
Model

Objective

Demand
Repre-
senta-
tion

Partial
Cov-
erage
Exists

Station
Type

Chen et al.
(2013)

Regression Optimization
Minimize total ac-
cess cost

Point YES
Slow
Charg-
ing

Chen et al.
(2014)

Traffic As-
signment

Ad hoc
Minimize total
travel time

Network N/A
Fast
Charg-
ing

Hanabusa
and
Horiguchi
(2011)

Traffic As-
signment

Optimization

Minimize total
travel time and
equalize electric
loads

Network N/A
Fast
Charg-
ing

Frade et al.
(2011)

Regression Optimization
Maximize covered
demand

Point YES
Slow
Charg-
ing

Ge et al.
(2011)

Ad hoc Optimization
Minimize charging
cost

Network N/A
Fast
Charg-
ing

Xi et al.
(2013)

Regression Optimization
Maximize charging
post usage

Point YES
Slow
Charg-
ing

Lam et al.
(2014)

Ad hoc Optimization Minimize cost Network N/A
Fast
Charg-
ing

Lee et al.
(2014)

Traffic As-
signment

Optimization
Minimize network
cost and trip failure

Network N/A
Fast
Charg-
ing

Liu (2012) Ad hoc Ad hoc
Minimize number
of charging stations

Polygon N/A

Fast and
Slow
Charg-
ing
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Chapter 3

Partial Coverage Problem

It is common practice to represent demand as discrete points in many location models

for the convenience of calculating the distance between demands and servers (Miller,

1996). This approach of demand abstraction is easy to implement but too simplistic

because it ignores the geometric characteristics of the demand, which could lead to

problems and significant error in the result. The point abstraction only allows the

demand to be either fully covered or not covered by a facility and does not account

for partial coverage. This may result in partial coverage for geometric objects, which

is called the partial coverage problem (PCP). PCP is illustrated in Figure 3.1 and

Figure 3.2.

A point on a network is considered covered by a charging station only if the

shortest network distance between this point and the charging station is less than the

EV driving range allowed. If all points of a link are covered by a charging station,

then that link is considered to be fully covered. Otherwise, the link is only partially

covered. In Figure 3.1, the link EF is covered by charging station C2, link GH

covered by charging station C1, and the middle link FG is not covered by any of the

10
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Figure 3.1: Partial coverage problem for lines

two charging stations. If we represent this road link by its middle point M, then road

link L is not covered by any charging stations, which is inaccurate.

Likewise, a point in a zone is considered covered by a charging station if and only

if the Euclidean distance between this point and the charging station is less than the

maximum walking distance. If all points in a zone are covered by a charging station,

then the zone is considered to be fully covered. This situation is illustrated in Figure

3.2. The TAZ D is partially covered by charging stations C1 and C2. The left part of

TAZ D is covered by charging station C2, the right part of D is covered by charging

station C1, and the middle part of D is not covered by either charging station. If

we use the centroid M to represent polygon D, then D is not covered at all by any

11
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Figure 3.2: Partial coverage problem for polygons

charging station, which is inaccurate as well.

Aside from PCP, location models using point abstraction also suffer from MAUP,

which means using different spatial units or scales for the same demand region can

result in different solutions (Murray, 2005; Wong, 2009)

To address the problems caused by simplified point representation of demand in

existing Set-Covering Problem (SCP), Murray (2005) develops a new SCP model

using spatial objects (points, lines, polygons) to represent demand instead of point

representation. In Murray (2005)’s model, complementary partial coverage (CP) by

more than a given number of facilities is accounted as complete coverage. Alexan-

dris and Giannikos (2010) extend Murray (2005)’s CP approach, applying it to the

12
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Maximum Covering Location Problem (MCLP). On the basis of Murray (2005)’s

CP approach, Alexandris and Giannikos (2010) introduce penalty to complementary

partial coverage, given that in many situations, Murray (2005)’s model may lead to

redundant non-complementary coverage. An example of redundant partial coverage

is given in Figure 3.3. Both circles cover more than half of square S but together

don’t cover the whole square area.

Figure 3.3: Redundant non-complementary partial coverage

Murray (2005)’s and Alexandris and Giannikos (2010)’ models can improve the

solution quality of SCP and MCLP. But their models are still subject to PCP and

MAUP. Indeed, redundant non-complementary coverage still widely exists in their

results, thus leading to more sites chosen than needed. In addition, their models

13
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cannot accurately evaluate the level of coverage.

To assess the performance of Murray (2005)’s CP approach on the charging station

location problem, an optimization problem for EV charging stations incorporating the

CP approach is formulated. This model resembles Murray (2005)’s model, minimizing

total cost while guaranteeing the least level of coverage; it also introduces Alexandris

and Giannikos (2010)’ idea of penalty on partial coverage. The formulation of the

modified model is as follows.

Indices:

i index for polygons split from TAZs / index for links split from road networks

j index for candidate charging station locations

Parameters:

dij the Euclidean distance from the candidate location j to the furthest point in

polygon i or the network distance between the candidate location j and the furthest

point on link i

wi the number of EVs in polygon i or the volume of road link i * the length of

road link i multiplying the length of road link i

R the maximum walking distance that EV drivers are willing to walk from charging

station to destination or the driving range of EVs with 10% battery level (we assume

that EV drivers will be alerted for charging when the battery level drops to 10% of

the total capacity)

cj the cost for locating a charging station at location j

B the budget for installing charging stations

α the least percentage of coverage

14
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β the penalty coefficient for multiplying partially covered demanddemand partially

covered by at least θ number of charging stations and not fully covered by any charging

station

ω the least level of coverage that will be considered in complementary partial

coverage

θ the least number of partial coverage needed to be treated as full coverage

Sets:

I set of polygons or road links

J set of all candidate charging locations

N(i) set of charging locations that can cover polygon i or link i, N(i) = {j|dij ≤

R}

W (i) set of charging locations that can partially cover polygon or link i by ω

M(j) set of polygons or links that are covered by charging station at j, M(j) =

{i|dij ≤ R}

Decision Variables:

xj binary; xj = 1 if and only if a charging station is located in location j

yi binary; yi = 1 if and only if i is covered by at least one charging station

vi binary; vi = 1 if and only if i is partially covered by at least θ charging stations

Model CP:

15
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min
∑
j∈J

cjxj (1)

s.t. yi ≤
∑

j∈N(i)

xj ∀i ∈ I (2)

θ · vi ≤
∑

j∈W (i)

xj ∀i ∈ I (3)

yi + vi ≤ 1 ∀i ∈ I (4)∑
i∈I

wi(yi + βvi) ≥ α
∑
i∈I

wi (5)

xj ∈ {0, 1} ∀j ∈ J (6)

yi, vi ∈ {0, 1} ∀i ∈ I (7)

The objective (1) is to minimize the total land cost for locating the charging

stations. Constraint (2) guarantees that i is considered fully covered if there is at

least one charging station located and can cover i. Constraint (3) ensures that i is

considered complementarily partially covered if there are at least θ charging stations

that each station can partially cover i at least at ω level of coverage. Constraint (4)

states that i can only be either fully covered or complimentarily partially covered in

order to avoid redundant coverage. Constraint (5) makes sure that at least α level

of total demand should be covered in this model. Parameter β (value no greater

than 1) means a demand i that is partially covered by multiple charging stations is

regarded as equal to or less than complete coverage. When β < 1, it is a penalty

to multiple partial coverage to reduce non-complementary partial coverage since the

model cannot accurately identify if multiple partial coverage is complementary or

redundant. Constraint (6) and (7) ensure the decision variables are binary. In Section

6, we will apply this model to GTHA and Downtown Toronto for fast and slow

16
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charging stations respectively, denoted by FC-CP for fast charging station and SC-

CP for slow charging stations.

Since Murray (2005)’s and Alexandris and Giannikos (2010)’ approach cannot

completely solve PCP, we will introduce a geometric segmentation (GS) approach to

eliminate PCP in Section 4 and 5.

17



Chapter 4

Fast Charging Stations

In this chapter, we develop a model with geometric segmentation (FC-GS) to deter-

mine the location of the fast charging stations. In previous works that are based on

network data, Flow Capturing Location Model (FCLM) and its extensions (Hodg-

son, 1990; Lee et al., 2014) have been applied to address fast charging station location

problem. However, in FCLM, a traffic flow is considered as captured if there is at least

one facility located on the path from its origin to the destination; while in FC-GS,

a traffic link is considered as covered if it is within a certain range of at least one

facility. FC-GS is more appropriate compared to FCLM for locating EV fast charging

stations for the following reasons.

Firstly, FC-GS makes sure that EVs will have access to a nearest charging station

within a given driving range while FCLM does not. According to previous research

(National Renewable Energy Laboratory, 2014), slow charging modes (Level 1 & 2)

take up more than 90% of the EV charging demand and is sufficient for daily trips

in most scenarios. As a solution to range anxiety, fast charging stations provide a

reasonable option for urgent, unplanned charging needs. In this situation, a fast

18



M.Sc. Thesis - Xiaozhou Zhang McMaster - Computational Science and Engineering

charging station serves as an emergency facility, which requires high accessibility.

FC-GS will guarantee that EVs can have access to a nearest fast charging station

within a given driving range, whereas FCLM has no such guarantee. Planners can

even adjust the level of coverage according to their needs. Moreover, FCLM can lead

to the undesirable scenario such that fast stations concentrate in the denser part of

the road network, and EVs on other parts of the road network may not be able to

reach the charging stations when needed.

Secondly, FC-GS is more practical to implement than FCLM. In an FCLM, facil-

ities can only be placed at the nodes of the road network. But in reality, a facility

is often placed at a distance from the road (off the network link). If the facility is

close enough to a road, it can be approximated as a node in FCLM. However, when

a facility is placed far away from a road, it is difficult to decide if it can capture the

flow on the road. FC-GS does not have this problem since there is no limit on the

location of the charging stations.

4.1 Framework

The framework of our model consists of five modules: data collection, geometric

segmentation, traffic assignment, facility location optimization and charging load es-

timation.

Data used as model input include the road network, candidate sites for charging

stations, the cost of each site, and data needed for traffic assignment.

Geometric segmentation is particularly noteworthy. In Figure 4.4, the left part of

link L is covered by charging station C2, the right part of L is covered by charging

station C1, and the middle part of L is not covered by any of the two charging
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stations. To avoid partial coverage, we can split link L into link L1, L2 and L3.

After the split, L1 and L3 are fully covered by C2 and C1 while L2 is not covered.

Therefore, the original road network can be transformed to a new network after the

coverage segmentation operation. In the new network, partial coverage does not exist:

A link is either completely covered or completely uncovered.

Figure 4.4: Splitting partially covered link

Traffic assignment is a common method used to forecast traffic in transportation.

It allocates travel demand (origin-destination matrices) to a road network according

to assignment rules. At the end of the assignment procedure, the whole traffic network

reaches equilibrium. Then the traffic volume can be calculated for each link (Lam

and Lo, 2004; Sheffi, 1995).
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Charging load estimation refers to how much charging demand goes to a certain

charging station. This involves splitting charging demand covered by more than

one charging station and summing up covered demand for each charging station. The

splitting of charging demand can be achieved by using Network Analysis and Intersect

function in ArcGIS, a Geographic Information System (GIS) software for mapping

and spatial analysis, developed by Environmental Systems Research Institute (ESRI).

The details of the facility location optimization model for fast charging stations

are presented in the next subsection.

4.2 Optimization Model

Model FC-GS is a variation of the classical maximum coverage problem with an

objective to minimize the total installation cost while maintaining given percentage

of coverage.

Indices:

i index for road links

j index for candidate charging station locations

Parameters:

li the length of link i

dij the shortest network distance from i to j

wi the traffic volume of link i

R the planned coverage range of the charging stations

cj the cost for locating a charging station at j

B the budget limit for installing charging stations
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α the least percentage of coverage

Sets:

I set of links

J set of all candidate charging locations

N(i) set of charging locations that can cover link i, N(i) = {j|dij ≤ R}

M(j) set of links that are covered by the charging station located at j, M(j) =

{i|dij ≤ R}

Decision Variables:

xj binary; xj = 1 if and only if a charging station is located at j

yi binary; yi = 1 if and only if road link i is covered by at least one charging

station

Model FC-GS:

min
∑
j∈J

cjxj (1)

s.t. yi ≤
∑

j∈N(i)

xj ∀i ∈ I (2)

∑
i∈I

wiliyi ≥ α
∑
i∈I

wili (3)

xj ∈ {0, 1} ∀j ∈ J (4)

yi ∈ {0, 1} ∀i ∈ I (5)

Objective (1) is to minimize the total cost of charging stations. Constraint (2)

states that i is considered covered if its demand is satisfied by at least one charging

station. Constraint (3) guarantees that at least α portion of the coverage of the

road network with traffic flow as the weight of each link. Normally we should use
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the number of EVs on each link to represent the fast charging demand. However,

since we can only calculate the traffic volume on each link, which means the same

vehicle will be counted on each link that is on its path, we use the length of each link

multiplied by the link traffic volume to represent the fast charging demand. It can

effectively represent the weight of each link compared to other links. Constraint sets

(4) and (5) guarantee that decision variables xj and yi are binary variables.
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Chapter 5

Slow Charging Stations

The maximum covering model for slow charging stations (SC-GS) is formulated in a

similar way to the Model FC-GS for fast charging stations. The main difference is

that for the slow charging model the demand for charging is based on TAZs rather

than the network links that are used in the fast charging model. In other words, we

assume that the slow charging demand arises from areas, instead of links.

We argue that planning for slow charging stations should be done based on the

central district of a city rather than on the whole metropolitan area as with fast

charging stations. There are two reasons for this choice. Firstly, the use of slow

charging station is for drivers to charge their EVs at their trip destinations (excluding

home), thus the slow charging stations should be located in places that people are

more likely to visit, such as workplaces, shopping malls, theatres and restaurants. As

a result, to ensure the cost-effectiveness of the level 2 charging stations, the less visited

areas and areas without parking lots should be of low priority in slow charging station

network design. Secondly, the range requirement of slow charging is different from

that of fast charging. The EV drivers will be satisfied if they could find slow charging
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stations within a walking distance of their activity places. In our experiment, we will

use 500 meters and 300 meters as the maximum covering ranges for a slow charging

station, which we assume are the possible maximum walking distances a driver might

be willing to walk from a charging station to the destination, or vice versa.

5.1 Framework

The framework of the model for slow charging stations contains the five modules: data

collection, trip generation, geometric segmentation, facility location optimization and

charging load estimation.

Data input for the model includes TAZ file, candidate sites for charging stations,

cost of each site and data needed for demand estimation.

The determination of demand consists of estimating the number of EVs that go

to a certain TAZ on a daily basis. The demand can be estimated through the trip

generation method in the travel forecasting process. Trip generation uses the land use

and demographic information to predict the total number of trips entering or leaving

a zone in the city (Meyer and Miller, 1984).

Conceptually, the geometric segmentation of TAZs is similar to that of the road

links in Section 3. The difference is that the geometric object we consider in this

section is a polygon and not a line. Specifically, the covering range of a charging

station is a circular area with the allowed maximum walking distance as its radius.

This case is illustrated in Figure 5.5. The TAZ D is partially covered by charging

stations C1 and C2. The left part of TAZ D is covered by charging station C2, the

right part of D is covered by charging station C1, and the middle part of D is not

covered by either charging station. To avoid partial coverage, we can split D into D1,
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D2 and D3. After the split, D2 and D3 are fully covered by C2 and C1 while D1 is

not covered.

Figure 5.5: Splitting partially covered TAZ

Charging load estimation for slow charging stations is similar to that for fast

charging stations. The splitting of commonly covered TAZ can be achieved by dis-

secting the commonly covered area with Thiessen Polygon generated from the chosen

charging station locations in ArcGIS.

We will present the facility location optimization model in the next subsection.
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5.2 Optimization Model

Indices:

i index for polygons split from TAZs

j index for candidate slow charging station locations

Parameters:

dij the Euclidean distance from the candidate location j to the furthest point in

polygon i

wi the number of EVs in polygon i

R the maximum walking distance which one is willing to walk from charging

station to destination, or vice versa

cj the cost for locating a charging station at j

B the budget limit for installing charging stations

α the least percentage of coverage

Sets:

I set of polygons

J set of all candidate charging locations

N(i) set of charging locations that can cover polygon i, N(i) = {j|dij ≤ R}

M(j) set of polygons that are covered by the charging station located at j, M(j) =

{i|dij ≤ R}

Decision Variables:

xj binary; xj = 1 if and only if a charging station is located at j

yi binary; yi = 1 if and only if polygon i is covered by at least one charging station
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Model SC-GS:

min
∑
j∈J

cjxj (1)

s.t. yi ≤
∑

j∈N(i)

xj ∀i ∈ I (2)

∑
i∈I

wiyi ≥ α
∑
i∈I

wi (3)

xj ∈ {0, 1} ∀j ∈ J (4)

yi ∈ {0, 1} ∀i ∈ I (5)

Clearly, Model SC-GS for slow charging stations is developed by geometric object

segmentation as in the Model FC-GS for fast charging stations. The differences are:

1) The former is by segmentation of polygons, while the latter is by segmentation of

road links. In other words, I represents links in Model FC-GS but polygons in Model

SC-GS; 2) dij represents the Euclidean distance between demand and charging station

in Model SC-GS while it represents length of the shortest path between demand and

charging station in Model FC-GS; 3) R is the maximum walking distance between

demand and charging station in Model SC-GS while it represents the minimum driving

range of EVs to be able to reach a closest charging station; 4) Model FC-GS uses the

product of link length and link flow quantity as an estimation of the demand of each

link, while Model SC-GS uses the number of EVs in each zone as the demand.
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Chapter 6

Numerical Experiments

6.1 Fast Charging Stations

Both model FC-CP and model FC-GS are applied to the Greater Toronto and Hamil-

ton Area (GTHA) road network. The candidate locations are chosen from 657 gas

stations in the GTHA area. We use the average housing price of the census tracts

to which each candidate site belongs to represent the cost of locating a charging

station at these sites. The original GTHA road network consists of 2511 links. We

use traffic flow data generated directly from TRAFFIC, a model that was developed

at the McMaster Institute for Transportation and Logistics (MITL) and has been

used extensively to estimate emissions from traffic flows for several Canadian cities.

(Rashidi et al., 2015; Maoh and Kanaroglou, 2009; Buliung et al., 2005).

For the model FC-CP, we set β = 1, ω = 50%, θ = 2, which means one road

link with partial coverage over 50% from 2 stations can be regarded as full coverage

without any penalty. Our experiment shows that any values of β < 1 and ω < 50%

lead to larger errors in the result or even no feasible solution. Model FC-CP for fast
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Table 6.2: Model sizes using different ranges (fast charging)

Model Cov. Range (km) Dec. Var. # Cons. #

FC-GS

Before Splitting 3168 2512
5 20032 19376

10 37902 37246
15 52758 52102
20 64249 63593

FC-CP 5/10/15/20 5679 7534

charging stations consists of 5679 decision variables and 7534 constraints.

For model FC-GS, we want to compare the results using range R = 5km, 10km,

15km, 20km and coverage level α = 85%, 90%, 95%, 99.9%. Using different ranges to

preprocess the road network data in ArcGIS, we get 19375 links from the original 2511

links using R = 5km, 37245 links for R = 10km, 52101 links for R = 15km and 63592

links for R = 20km. The number of links increases significantly after splitting. Then

the length of each new link is recalculated in ArcGIS. Table 6.2 shows the different

model sizes using different ranges. The number of decision variables and constraints

grows significantly with the increasing range. It is obvious that the size of model

FC-GS increases with the range while the size of model FC-CP remains irrelevant to

the range.

Using the Network Analysis module of ArcGIS, we get the coverage information

from each location to each link. The models are implemented using CPLEX 12.6 API

for Python and run on a Dell Latitude E5530 computer with Intel Core i7-3540M

3.00GHz CPU and 8GB memory.

Table 6.3 shows the computational results of the model FC-CP. Table 6.4 shows

the computational results of the model FC-GS. The solution time is the time used by
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Table 6.3: Computational results of Model FC-CP (R = 15km)

Targeted Cov. Sol. Time (Min) Station # True Cov.
85% 5.83 17 90.03%
90% 22.28 22 92.55%
95% 8.24 28 96.87%

99.9% Infeasible Infeasible Infeasible

the solver to solve the Mixed Integer Linear Programming (MILP) problem. Table 6.3

shows that there is a great discrepancy between the targeted covering level in model

FC-CP and the true covering level achieved by the optimal results of model FC-CP.

The true coverage is either higher or lower than the targeted coverage. This is easily

explained by Figure 6.6, where the two circles form complementary partial coverage

on the elliptical area. When the combined area of D1 and D2 is greater/smaller than

the combined area of D3 and D4, the resulting coverage will be greater/smaller than

the targeted coverage. Table 6.4 shows that the number of charging stations needed

decreases as the range increases, but increases with the level of coverage significantly

the number of charging stations needed for 99.9% coverage is almost twice the number

of stations needed for 95% coverage. So the marginal coverage increase by a charging

station will decrease as the total number of charging stations increases. By comparing

these two charts, we note that that the solution time is irrelevant to the model size.

Obviously, for the same range and coverage level, model FC-CP requires much more

number of charging stations than model FC.

We visualize the results of the two models with R=15km and α=90% in Figure

6.7, which compares the visualized results between model FC-GS and model FC-CP.

The underlying green lines are the road network. The thickness of the line reflects
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Table 6.4: Computational results of Model FC-GS

Cov. Range (km) Targeted Cov. Sol. Time (Min) Station #

5

85% 1.1 74
90% 0.4 111
95% Infeasible Infeasible

99.9% Infeasible Infeasible

10

85% 6.8 20
90% 2.9 26
95% 3.1 36

99.9% Infeasible Infeasible

15

85% 7.1 10
90% 5.1 12
95% 1.4 17

99.9% 0.4 33

20

85% 11.8 6
90% 6.3 7
95% 16.8 10

99.9% 1.6 19
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Figure 6.6: Coverage gap

the traffic volume on the road links. The blue lines are roads covered by charging

stations. Both graphs show that the models tend to choose to cover roads with more

traffic volume. By comparing the two graphs, it is noted that model FC-GS chooses

much less charging stations than model FC-CP and the chosen stations in model FC-

GS are more evenly distributed than those chosen by model FC-CP, which contains

several groups of charging stations that are very close to each other. This is a result

of non-complimentary partial coverage.

The results show that the model FC-GS is more effective in determining the

locations of fast charging stations.
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Figure 6.7: Comparison of visualized results (R = 15km, alpha = 90%)

6.2 Slow Charging Stations

Both the model SC-GS and the model SC-CP are applied to the Downtown Toronto

area. The original Downtown Toronto area consists of 64 TAZs. Using the Origin-

Destination matrix we get from Traffic Model (McMaster Institute for Transportation

and Logistics, 2014), we estimate how many vehicles will visit a TAZ in one day. By

assuming a certain proportion of EVs among all vehicles, we can estimate the number

of EVs that go to a TAZ on a daily basis. The 300 candidate locations are chosen

from Downtown Torontos Points of Interest (POI), including restaurants, parking lots,

schools and other businesses or public institutions in downtown. Similar to Model

FC, we use the average housing price of the census tracts to which each candidate
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Table 6.5: Model sizes using different ranges (slow charging)

Model Cov. Range (m) Dec. Var. # Cons. #

SC-GS
Before Splitting 364 65

300 7566 7267
500 17380 17081

SC-CP 300/500 428 193

site belongs to represent the cost of locating a charging station at these sites.

Model SC-CP for slow charging stations consists of 428 decision variables and 193

constraints. We set β = 1, ω = 50%, θ = 2 the same way as for fast charging stations.

For β, a value less than 1 will lead to no solution for SC-CP and a value less than

50% for ω with a value more than 3 for θ will lead to more error and more charging

stations selected. This situation is illustrated in the experiment results in Table A.10

and Figure A.13 in the Appendix.

For model SC-GS, we compare the results using different coverage level α = 85%,

90%, 95%, 99.9%, as well. After segmentation, the TAZs are split into 7266 and

17080 polygons by the coverage areas of the candidate locations, which are circular

areas with 300 and 500 meter radius respectively. Table 6.5 shows the different model

sizes of different models with different ranges. The weight of each polygon is the

number of EVs in each polygon. When splitting TAZ to polygons, EVs in each TAZ

are assigned to each polygon, too. The number of EVs assigned to each polygon is

proportional to its area.

The models are implemented in the same way and run on the same environment

as Section 6.1.

Table 6.6 shows the computational results of the model SC-CP for slow charging

35



M.Sc. Thesis - Xiaozhou Zhang McMaster - Computational Science and Engineering

Table 6.6: Computational results of Model SC-CP (R = 500m)

Targeted Cov. Sol. Time (Min) Station # True Cov.
85% 0.004 21 85.71%
90% 0.008 24 89.87%
95% 0.006 29 92.85%
99% 0.003 32 95.60%

Table 6.7: Computational Results of Model SC-GS

Cov. Range (m) Targeted Cov. Sol. Time (Min) Station #

300

85% 27.9 37
90% 127.1 45
95% 69.9 54
99% 247.8 70

500

85% 6.4 13
90% 30.9 16
95% 379.1 19
99% 570.0 25

stations. Due to its small problem size, the SC-CP for slow charging requires no

time (less than 1 second) to be solved. But the great discrepancy between true

coverage and targeted coverage level also exists in slow charging. Table 6.7 shows the

computational results of model SC-GS. We note that both the number of charging

stations and the solution time increase significantly with the increase of the percentage

of coverage. Comparing Table 6.6 and Table 6.7, it is clear that model SC-CP requires

more charging stations than model SC-GS.

Figure 6.8 shows the comparison of visualized results between model SC-CP and

model SC-GS with R = 500m and α = 90%. The areas in the circles are covered by

selected charging stations. The models tend to choose to cover TAZs with more EVs
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(polygons of darker colors). Also, it is evident that the result of model SC-CP suffers

from serious non-complementary partial coverage problem while the charging stations

selected by model SC-GS are evenly distributed and much less than charging stations

selected by SC-CP. It shows that model SC-GS is more effective in determining the

location of slow charging stations.

Figure 6.8: Comparison of visualized results (R = 500m, alpha = 90%)

6.3 Estimating Demand for Each Station

As we can see from the results of the experiment, facilities close to each other may have

shared covered demand areas/links. How much of the demand should be assigned to

each facility is a problem that needs to be addressed. We follow the rule that demand

should be assigned to its nearest facility.

For fast charging stations, we use the Network Analysis module of ArcGIS to

split the commonly covered demand network into different parts, and each part is
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assigned to one facility, ensuring that any point in the assigned link is closest to its

corresponding facility compared to other facilities. In this way, we can get the non-

overlapping covered demand road links for each charging station. By assuming 10%

EV market share, we get the number of EV kilometers each charging station covers.

The result is illustrated in Figure 6.9.

Figure 6.9: Divide fast charging demand

The estimation of charging demand for each fast charging station is listed in Table
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6.8.

For slow charging, we use Thiessen polygon generated from the selected charging

station locations to split the shared covered demand. Thiessen polygons are polygons

generated from a set of sample points on a plane. Each Thiessen polygon has a

sample point inside itself. Any point inside a Thiessen polygon is closer to its sample

point than any other sample point. The Thiessen polygons generated from the chosen

charging station locations of model SC-GS are illustrated in Figure 6.10.

Figure 6.10: Thiessen polygons
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By intersecting Thiessen polygons with the covered demand region, we split the

shared covered area into several equal parts and assign them to their closest charg-

ing stations. Figure 6.11 and 6.12 illustrate the process of using Thiessen polygons

to divide the shared demand and assign the demand to each charging station. By

assuming 10% EV market share, we get the number of EVs each charging station

covers. This is shown in Table 6.9.

Figure 6.11: Thiessen polygons splitting shared demand
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Figure 6.12: Divide slow charging demand
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Chapter 7

Conclusion

We proposed a method to locate both fast and slow charging stations to address

different charging needs under the same framework. The models are designed to

tackle range anxiety by minimizing the total cost while guaranteeing a level of demand

coverage. The model can also be easily adapted by limiting the budget or the number

of charging stations and maximizing the demand coverage. We use more realistic

geometric objects - networks and polygons - to represent the charging demand instead

of using discrete points. Moreover, we solve the PCP by using geometric segmentation

method.

The numerical study shows that the models are practical and effective in deciding

the locations of fast and slow charging stations. The result shows that the charging

stations have been evenly located in the urban areas. A comparison between the re-

sults of GS and CP shows that geometric segmentation can fully eliminate the partial

coverage issue and produce much more accurate and reliable result than complemen-

tary partial coverage approach. Although the segmentation of the links/polygons

significantly increases the problem size, the models remain solvable within reasonable

44



M.Sc. Thesis - Xiaozhou Zhang McMaster - Computational Science and Engineering

computation time.

In future research, this model can be improved in several directions. Firstly, the

capacities of the charging stations can be introduced to ensure that charging demands

can be fully served by their nearby charging stations, which arise from the capacities

of the electricity grid network. Secondly, we already know that EV drivers travel

behaviors affect the location decision of charging stations, but the locations of fast

charging stations may affect the travel decisions of EV drivers as well. For example,

long distance EV drivers may tend to choose traveling route by fast charging stations

and EV drivers may also choose restaurants with slow charging stations installed

when making their dining decisions. So we can combine the demand estimation and

facility location optimization together. Thirdly, we may implement the model within

ArcGIS to automate the whole process without intermediate steps. Last but not

least, heuristics can be developed to solve this problem more efficiently.
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Appendix A

Appendix

Table A.10: Computational results for SC-CP (R = 500m, alpha = 90% , beta = 1,
omega = 33%, theta = 3)

Targeted Cov. Sol. Time (Min) Station # True Cov.
85% 0.049 24 85.35%
90% 0.043 28 87.78%
95% 0.017 32 89.66%
99% 0.022 36 93.75%
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Figure A.13: Visualized result for SC-CP (R = 500m, alpha = 90% , beta = 1, omega
= 33%, theta = 3)
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