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Abstract

A growing need for clean and sustainable energy is causing a significant shift in the

electricity generation paradigm. In the electricity system of the future, integration of

renewable energy sources with smart grid technologies can lead to potentially huge

economical and environmental benefits ranging from lesser dependency on fossil fuels

and improved efficiency to greater reliability and eventually reduced cost of electricity.

In this context, microgrids serve as one of the main components of smart grids with

high penetration of renewable resources and modern control strategies.

This dissertation is concerned with developing optimal control strategies to man-

age an energy storage unit in a grid-connected microgrid under uncertainty of elec-

tricity demand and prices. Two methods are proposed based on the concept of rolling

horizon control, where charge/discharge activities of the storage unit are determined

by repeatedly solving an optimization problem over a moving control window. The

predicted values of the microgrid net electricity demand and electricity prices over the

control horizon are assumed uncertain. The first formulation of the control is based on

the scenario-based stochastic conditional value at risk (CVaR) optimization, where

the cost function includes electricity usage cost, battery operation costs, and grid

signal smoothing objectives. Gaussian uncertainty is assumed in both net demand

and electricity prices. The second formulation reduces the computations by taking a
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worst-case CVaR stochastic optimization approach. In this case, the uncertainty in

demand is still stochastic but the problem constraints are made robust with respect to

price changes in a given range. The optimization problems are initially formulated as

mixed integer linear programs (MILP), which are non-convex. Later, reformulations

of the optimization problems into convex linear programs are presented, which are

easier and faster to solve. Simulation results under different operation scenarios are

presented to demonstrate the effectiveness of the proposed methods.

Finally, the energy management problem in network of grid-connected microgrids

is investigated and a strategy is devised to allocate the resulting net savings/costs of

operation of the microgrids to the individual microgrids. In the proposed approach,

the energy management problem is formulated in a deterministic co-operative game

theoretic framework for a group of connected microgrids as a single entity and the in-

dividual savings are distributed based on the Shapley value theory. Simulation results

demonstrate that this co-operation leads to higher economical return for individual

microgrids compared to the case where each of them is operating independently.

Furthermore, this reduces the dependency of the microgrids on the utility grid by

exchanging power locally.
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Notation and abbreviations

Notations and abbreviations:

CVaR - Conditional Value at Risk

DAB - Dual Active Bridge

DER - Distributed Energy Resources

DG - Distributed Generations

DLC - Direct Load Control

DSM - Demand-Side energy Management

EMS - Energy Management System

LP - Linear Program

MPC - Model Predictive Control

MILP - Mixed Integer Linear Program

RTP - Real-Time Pricing

ToUP - Time-of-Use Pricing

VaR - Value at Risk
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Chapter 1

Introduction and Problem

Statement

1.1 Motivation

In 2014, more than 67% of the electricity supply in the United States was generated

by burning fossil fuels (i.e., coal, natural gas and petroleum) according to the US

Energy Information Administration EIA [2014]. Although fossil fuels are considered

to be inexpensive sources of energy, they are unsustainable and exploitation of such

resources may lead to catastrophic effects on the earth climate and human health.

Renewable energy sources such as wind and solar energy offer sensible and sustainable

alternatives to fossil fuels. However, utilizing renewable energy sources poses its

own challenges like finding suitable location for harvesting these sources and more

importantly reliability concerns due to their intermittent nature. Reliability issues

can partly be addressed by efficient integration of renewable resources with smart

grid technologies.
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Conventional power grid only permits a one-way flow of power from major elec-

tricity generators to consumers. However in recent years, a gradual transition to a

smart grid environment has begun to allow for bi-directional flow of power between

the grid and the end-users for better integration of clean sources of energy and storage

capacity in the power system . Potential economical and environmental benefits aris-

ing for such model of grid operation are enormous, ranging from lesser dependency

on fossil fuels, improved efficiency to greater reliability and eventually reduced cost

of electricity.

As opposed to the centralized electricity generation paradigm in which electric-

ity is produced in a large facility and transmitted to the consumers through long

distribution networks, decentralized energy generation benefits from distributed en-

ergy generation in smaller scales. In this regard, microgrids with energy management

system (EMS) can be considered as an effective platform for introducing distributed

energy generation into the grid system.

A microgrid is a small electric grid system which could include a mixture of dis-

tributed energy sources (e.g., wind turbines, solar panels, fuel cells, and microtur-

bines), loads (including controllable loads as HVAC unit) and storage devices (e.g.,

batteries, ultra-capacitors and flywheels) as well as a control unit. The control unit

is responsible for operating the microgrid in an efficient way with the aim of reducing

the cost of electricity for the consumer(s). It essentially determines charge/discharge

activities of the storage devices, controls the HVAC unit, and may also help the grid

with peak reduction, load shifting etc. Figure 1.1 depicts the main components of a

grid-connected microgrid with EMS.

The intermittent nature of renewable energy sources stem from the fact that they
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Energy 

Management  

System 

Smart 

Appliances 
Electric 

Vehicle 
HVAC 

Renewable Resources 

Storage Devices 

Power 

Control and 

Communications 

Loads 

Figure 1.1: Schematic of a grid-connected microgrid with storage devices and Energy
Management System

are not continuously available due to external factors like weather condition. The

wind speed and sun radiations can vary significantly throughout day and night times

resulting in large fluctuations in the output power of wind turbines and solar panels.

On-site energy storage systems can be utilized to mitigate variations in the wind and

solar power, by storing excess energy when available, and delivering it to the con-

sumers when in demand. An energy management system can make optimal decisions

with respect to charge/discharge of energy storage devices considering factors such

as predicted energy demand, predicted energy generation from renewable sources,

weather forecast, and electricity pricing. This can be achieved by formulating and

solving relevant constrained multi-objective optimization problems, off-line or on-line.
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There can be considerable uncertainty in the predicted values of demand, gen-

eration, and prices, and the solution obtained through optimization must be robust

with respect to prediction errors. If unaccounted, these uncertainties may degrade

the system performance. Our goal in this dissertation is to use modern optimization

and modeling tools to design a controller that can efficiently operate a microgrid and

account for the uncertainties in the system. The proposed controller performs as a

high-level power optimizer in a hierarchical control structure. It provides power flow

commands to a power converter device connecting the energy storage device to the

microgird at a time scale in the order of minutes. A low-level power control system

is also needed that would operate at a much faster time scale to enforce these power

commands, and also handle voltage and frequency regulations, as required. A block

diagram of the proposed controller is presented in a model predictive control (MPC)

framework in Figure 1.2. It is noted that this thesis is only concerned with the high-

level power scheduling control to ensure a certain degree of robustness to uncertainties

in the net demand and electricity prices; the low-level control and protection system

remains out of the scope of this dissertation.

Microgrids can gain access to greater local storage and energy resources through

co-operations. Efficient co-operation of micro-grids increases the resiliency of the grid,

would reduce power loss by using local resources and transmission lines, and decrease

the dependency of local microgrids to the utility grid. In general, there is a limited

storage capacity in microgrids which may not be sufficient to effectively deal with the

fluctuations in their demand. Allowing local exchange of energy between individual

microgrids may potentially compensate for the limited capacity, this reduce individual

battery usage and prolong the life of the batteries.

4
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Figure 1.2: Block diagram of an MPC-based hierarchical energy management system

1.2 Problem Statement and Thesis Contributions

This thesis investigates the energy management problem for grid-connected micro-

grids with batteries as on-site storage devices under presence of uncertainty in the

electricity prices and predicted load and renewable power generation. In particular,

solutions for the following problems are proposed:

• Optimal Energy Management under Uncertainty in Demand and Power Gener-

ated by Renewable Energy Sources

The output power of renewable resources as well as the actual electricity usage of

the loads are two of the system parameters which can be subject to uncertainty.

In this work, a net demand vector is defined as the difference between the output

5
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power of the renewable resources and the electricity usage of the consumers. The

primary concern here is to design a controller which is robust to variations of the

net demand power. In particular, energy management problem is formulated as

a mixed integer linear problem (MILP) as well as a linear problem (LP) within

an on-line rolling horizon model predictive control framework. The uncertainty

in the net demand vector is modeled as a Gaussian distribution around the

predicted values and a stochastic scenario-based approach based on conditional

value at risk (CVaR) minimization is proposed to make decisions which are

robust to the uncertain variations of demand around its nominal values. The

controllers decision vector consists of the rate by which batteries should either

be charged or discharged.

• Optimal Energy Management with Joint Uncertainty in Demand and Electricity

Prices

Although, there are many cases in which electricity prices are known, spe-

cially for small-scale consumers, here we are looking at a future model of smart

grid operation which allows market-based pricing of energy for small-scale con-

sumers/producers of electricity. Electricity price forecasts are mainly based on

statistical analysis of historical market prices. However, actual electricity mar-

ket prices are influenced by many factors including demand and supply vari-

ations. Consequently, the actual prices may differ from the predicted values.

In this problem, both demand and pricing signals are assumed to be uncertain

and have independent variations around their nominal values. Two different ap-

proaches are proposed to formulate and solve the optimization problem under

the presence of these uncertainties. The first method employs scenario-based

6
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minimization of CVaR of the cost, considering joint Gaussian uncertainty in

the electricity demand and prices around their nominal predicted values. The

resulting optimization problem in each step of the rolling horizon is of a MILP

form. Furthermore, a reformulation of the energy management problem is pro-

posed that avoids binary variables in a standard LP form.

The required number of sample scenarios to efficiently approximate the CVaR

minimization problem grows exponentially in proportion to the number of un-

certain parameters. In order to speed up the optimization, a second method is

proposed in which scenario-based minimization only takes samples from net de-

mand with Gaussian uncertainty. Electricity prices are assumed to vary within

known bounds and this uncertainty is handled by worst-case robust approach.

In particular, a reformulation of a constraint in CVaR minimization ensures

that the worst-case cost with respect to price variations is considered in the

optimization.

• Optimal Energy Management for Co-operative Microgrids with Renewable En-

ergy Sources

Co-operation of microgrids may result in higher economical return for the in-

dividual players by exploiting the fluctuations in demand as well as renewable

energy. Furthermore, it reduces the dependency of the microgrids on the utility

grid by exchanging power locally. In this thesis, a strategy is devised in order

to allocate individual savings of a co-operative network of microgrids intercon-

nected with the utility grid. In the proposed approach, the energy management

problem is formulated in a deterministic co-operative game theoretic framework

for a group of connected microgrids as a single entity and the individual savings

7
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are distributed based on the Shapley value ( Roth [1988]).

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the literature on

control strategies in energy management problem of microgrids. The energy manage-

ment problem under uncertainty of electricity prices and net demand is formulated

and solved by a scenario-based stochastic CVaR optimization in Chapter 3. Chapter 4

presents a less computationally expensive formulation of the problem by applying a

Worst-Case CVaR approach. In order to demonstrate the effectiveness of the pro-

posed methods, both chapters 3 and 4 are concluded with simulation results under

different scenarios. Chapter 5 develops a LP formulation of the optimization problem

for the proposed robust approaches introduced in chapter 3 and 4. This is followed

by a multi-microgrid formulation of the problem in Chapter 6, where the energy man-

agement problem is solved in a co-operative game theoretic framework. The thesis is

concluded in Chapter 7 where some possible directions for future work are discussed.

1.4 Related Publications

• R. Khodabakhsh and S. Sirouspour (2015, August). On-line Optimal Control of

Energy Storage in a Microgrid by Minimizing Conditional Value-at-Risk. IEEE

Transactions on Smart Grid (submitted).
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Chapter 2

Literature Review

Microgrid control includes different aspects like managing distributed energy resources

(DER) (such as micro turbine, wind turbine, fuel cell, and photovoltaic system), syn-

chronization with the main utility grid, droop control, load and energy management,

and optimizing the storage units. This chapter is divided into five sections. Sec-

tion 2.1 provides a brief review on control strategies in microgrids including the DER

management, synchronization with the main grid, and droop control. The rest of this

chapter is concerned with the literature on storage units optimization and energy

management of microgrids, which form the primary areas of the contributions of this

thesis.

The energy management problem can be formulated and solved in two different

scenarios. In the first one, electricity demand is assumed to be controllable, therefore,

the controller seeks to reshape the demand signal to meet a certain set of criteria.

However, in the second scenario, demand is assumed to be given and the controller

governs the interactions between components of microgrid to compensate for the fluc-

tuations in demand and minimize a global cost function. In this chapter, we refer to
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the first and second scenario as demand-side and utility-oriented energy management

problem, respectively. In Section 2.2, we review the papers that study the demand-

side energy management problem and Section 2.3 is devoted to utility-oriented studies.

Section 2.4 also investigates different methodologies employed to address the energy

management problem. These include off-line, on-line model predictive control, ro-

bust, and stochastic approaches. Finally, a brief literature review on relevant control

strategies in multi-microgrid energy management problem is provided in Section 2.5.

2.1 A General Overview onMicrogrid Control Strate-

gies

Optimal control of DER can potentially improve the grid reliability and provide dif-

ferentiated services to the customers. Mehrizi-Sani and Iravani [2010] introduced a

method for controlling DER units of microgrids in both islanded and grid-connected

modes based on the potential functions concept. The controller minimizes the po-

tential functions associated with DER units based on a gradient decent method in

a discreet-time manner and the control goal of each unit is obtained at the mini-

mum of its corresponding potential function. Logenthiran et al. [2008] developed an

agent-based model for optimal control of DER in AC microgrids by using the JAVA

Agent Development (JADE) framework. A decentralized control strategy for optimal

operation of microgrids with multiple DER units in autonomous mode is provided in

Etemadi et al. [2012]. The proposed control scheme provides power management of

the microgrid, frequency control, and local control of the DER units.

Voltage and frequency droop control enables efficient power sharing along with
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voltage regulation in microgrids with multiple distributed generations (DG). Droop

control strategies are studied in both islanded and grid-connected operating modes

of microgrids (e.g., see Mohamed and El-Saadany [2008], Majumder et al. [2009], Sao

and Lehn [2008], Kim et al. [2011], Shafiee et al. [2014]). In Kim et al. [2011], a mode

adaptive microgrid control strategy based on droop control is proposed for optimal

management of power flow between microgrid converters in a decentralized manner.

The proposed control scheme enables a smooth transition between the operation

modes of the microgrid by using integral and derivative controllers in grid-connected

and islanded modes, respectively. Shafiee et al. [2014] presented a distributed control

strategy in droop-controlled microgrids including frequency, voltage, and reactive

power sharing controllers. The proposed decentralized controller aims at removing

voltage and frequency steady state errors along with optimal reactive power sharing

between DG units.

In Rekik et al. [2015], a synchronization technique is presented for interconnecting

a microgrid including wind turbine generators to an electrical network. The proposed

method ensures a smooth reconnection to the utility grid with considering the fluctua-

tions in renewable output power and demand. The synchronization is carried out in a

grid-connected power converter which regulates and adapts the magnitude, frequency

and phase of the microgrid voltage to those of the main grid.

2.2 Demand-Side Energy Management Studies

Load management also referred to as demand-side energy management (DSM) dates

back to the early 1980s (Gellings [1985]) and has received significant interest in both

research and industry. DSM programs offered by utility companies allow energy users
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to gain revenue by adjusting their demand in favor of the energy providers. This way,

grid stability is maintained through demand adjustment rather than manipulating the

supplied energy. DSM programs have been investigated in residential or commercial

load management with the aim of reshaping consumers’ consumption pattern (e.g., see

Gottwalt et al. [2011], Mohsenian-Rad et al. [2010a,b]). Direct load control (DLC) and

smart pricing are two popular techniques employed in residential load management.

In DLC programs, a mutual agreement grants the right to the utility company to

remotely control the energy consumption of the consumers (Ruiz et al. [2009], Gomes

et al. [2007], Weers and Shamsedin [1987]). However, concerns regarding privacy is-

sues of DLC programs make them less attractive in practice. On the other hand,

smart pricing programs intend to encourage the consumers to reduce their electricity

demand by providing real-time pricing (RTP) and time-of-use pricing (ToUP) tar-

iffs (Herter [2007], Triki and Violi [2009], Chen et al. [2010], Mohsenian-Rad et al.

[2010a]). (Triki and Violi [2009]) proposed a dynamic retail tariff structure for utility

companies by applying stochastic programming. (Chen et al. [2010]) utilized two

market models to shape and design demand response while maintaining the balance

with supply at all times. Their objective is to find a compromise between the costs

and utilities among customers as well as the costs and utilities over time. This can

motivate customers to shift their usage to off-peak periods which eventually reshapes

the demand profile to flatter form. (Mohsenian-Rad et al. [2010a]) developed a game-

theoretic approach to solve the demand-side energy management problem of residen-

tial settings by providing a simple pricing mechanism. In the proposed approach,

users who share the same energy source are the game players and their objective is

to minimize the individual electricity cost. The optimal solution is obtained at the
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Nash equilibrium of the formulated problem and reduces the peak-to-average ratio in

total demand as well as the total energy cost.

2.3 Utility-Oriented Optimization Studies

Unlike the DSM programs, utility-oriented methodologies intend to optimize a utility

or cost function by controlling the elements in microgrids (e.g., batteries, Electric

Vehicles, and controllable loads) given the demand data as model parameters. Stor-

age devices increase the flexibility and reliability of the microgrids by compensating

for the factors that impose uncertainties on the system including intermittent en-

ergy sources, variability of electricity prices, and consumers’ demand. (Levron et al.

[2013]) proposed an algorithm to address the energy management problem by con-

sidering the limitations imposed by storage devices including power, voltage, and

current constraints. In (Mohamed and Koivo [2007], Hafez and Bhattacharya [2012]),

a multi-objective optimization problem is employed to model the energy management

of microgrids consisting of batteries as storage devices, which aims at reducing the

emissions and operating cost of the microgirds. In (Zhou et al. [2011]), an algorithm

is introduced for the control of a hybrid ultacapacitor-battery as storage device. It is

argued that this combination could yield a high-power and high-energy storage system

that can improve microgrid efficiency and reduce its net energy cost. The proposed

algorithm deploys bidirectional dual active bridge (DAB) converters to assign steady

and transient power demand to the batteries and the ultracapacitors, respectively.
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2.4 Energy Management Techniques

The works in the energy management literature can also be categorized based on their

approach for formulating and solving the problem. Off-line approaches have been ex-

tensively studied in EMS (Handschin et al. [2006], Deng et al. [2011], Levron et al.

[2013]). Such approaches are mainly based on the assumption of availability of data

at the moment of decision. However, due to the uncertain nature of the microgrids

including renewable sources, this type of assumptions lead to inefficient decisions.

Although there have been efforts to account for uncertainties and disturbances us-

ing off-line robust and stochastic optimization techniques, e.g. see Handschin et al.

[2006], Chaouachi et al. [2013], Mohammadi et al. [2013], lack of feedback from the

actual system can substantially limit the performance of such techniques. In addition

to off-line optimization-based approaches, on-line MPC or rolling horizon control ap-

proaches have also been studied in the EMS literature (Peters et al. [2011], Zong et al.

[2012], Hooshmand et al. [2012], Prodan and Zio [2014], Bruni et al. [2015], Silvente

et al. [2015]). These methods benefit from the feedback mechanism of the controller

to compensate for the system prediction errors including demand and energy market

prices. In (Parisio and Glielmo [2011]), an online MPC-based control strategy is de-

veloped to solve the energy management problem by assuming availability of precise

information on microgrid state as well as future loads of the system.

Online optimization-based MPC techniques rely on solving a real-time optimiza-

tion problem. The system parameters of the underlying optimization model are highly

exposed to uncertainty due to the intermittent nature of renewable energy sources,

consumers’ demand as well as variations in electricity market prices. Consequently,
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disregarding these uncertainties may cause the problem to become infeasible or the so-

lution to be sub-optimal (Ben-Tal and Nemirovski [2000]). Several probabilistic and

non-probabilistic approaches have been proposed to account for such uncertainties

in the energy management problem. A robust optimization approach for modeling

the uncertainty in the net demand of microgrids with storage devices and renewable

energy sources is proposed in (Malysz et al. [2014]). The model solves a worst-case

robust optimization which is subject to a box uncertainty around the predicted values

of the consumers’ demand. In (Zhang et al. [2012]), the energy management problem

of a grid-connected microgrid is addressed considering the worst-case transaction cost

induced by the uncertainty of renewable resources.

Although worst-case robust optimization provides a simple framework to deal with

the optimization problems under uncertainty, over-conservatism and risk aversion

makes it less attractive in practical applications (Thiele [2010]). Conditional Value

at Risk (CVaR), introduced by Rockafellar and Uryasev (Rockafellar and Uryasev

[2000]), is a coherent risk measure and has been widely used in finance and portfo-

lio optimization (Fabozzi et al. [2007]). Unlike the conventional robust optimization

approaches, CVaR-based optimization provides more flexibility by using the distribu-

tional information on the system uncertain parameters. In fact, CVaR minimizes the

risk of the system being exposed to high losses rather than minimizing the worst-case

cost. Recently, CVaR has been applied to energy management problem of microgrids

as a risk-aware stochastic approach to account for system uncertainties (Zhang and

Giannakis [2013], Wu et al. [2014], Siddiqui [2010]). (Zhang and Giannakis [2013])
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formulated a stochastic optimization problem with a CVaR-based regularizer in mi-

crogrids with highly penetration of wind turbines. A CVaR-based real-time schedul-

ing of residential appliances including air conditioner, hair dryer, electric vehicle and

batteries has been studied in (Wu et al. [2014]).

2.5 A Brief Review onManagement of Multi-Microgrids

Systems

Several centralized approaches have been investigated in power flow problem of mul-

tiple distribution networks (Bruno et al. [2011], Paudyal et al. [2011]). However, the

resulting centralized solutions suffer from scalability (Bruno et al. [2011]) and pri-

vacy issues (Paudyal et al. [2011]) which makes them unattractive. Alternatively,

decentralized techniques have been proposed to address the power flow problem in

distributed networks (Colson and Nehrir [2011], Nguyen and Le [2013]). (Colson

and Nehrir [2011]) developed a real-time decentralized multi-agent controller for op-

timal management of available resources in a multi-microgrid system. In the pro-

posed model, agents assigned to the microgrids are authorized to make decisions

independently to achieve user-defined local objectives. In the meantime, they have

the capability to co-operate together to pursue their common goals and reduce their

dependency on the utility grid. (Nguyen and Le [2013]) proposed an optimal energy

management co-operative framework for a group of interconnected microgrids. The

proposed model employs a scenario-based two-state stochastic optimization approach

to tackle the system uncertainty associated with renewable energy generation.

Game theoretic methods have been extensively applied to address the energy
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management problem of a group of microgrids( Alam et al. [2013], Chakraborty et al.

[2015]). ( Chakraborty et al. [2015]) presented an on-line strategy for exchanging en-

ergy in co-operative microgrids by proposing a coalition formation method. The pro-

posed method benefits from a hierarchical priority based coalition scheme (HRCoali-

tion) to minimize the power loss and dependency on the utility grid and at the same

time maximize the power transfer within the microgrids in coalition. ( Alam et al.

[2013]) presented a coalitional model of energy exchange in a group of interconnected

residential settings equipped with batteries and wind turbines or solar panels as mi-

crogeneration units. The proposed model benefits from Shapley Value and simulation

results indicate significant reduction in battery as well as energy cost. However, their

model does not consider utility oriented goals related to grid and battery signal shap-

ing features.
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Chapter 3

A CVaR-based Control Strategy in

Energy Management of Microgrids

This chapter studies the control of batteries as storage units in a grid-connected micro-

grid with explicit consideration of uncertainty in the formulation of the optimization

problem. In this problem, both electricity demand and prices are assumed to be un-

certain and have independent variations around their nominal values. The goal here is

to design a robust controller that can efficiently manage the batteries and account for

such uncertainties in the system. In this regard, a stochastic scenario-based approach

based on CVaR minimization is proposed to ensure a certain degree of robustness to

the fluctuations of electricity demand and prices around their nominal values. The

proposed method is based on the concept of rolling horizon control, where battery

charge/discharge activities are determined by repeatedly solving a MILP optimization

problem over a moving control window.

This chapter is divided into four sections. A non-robust MILP optimization for-

mulation of the problem is presented in Section 3.1. This is followed by a brief
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introduction on CVaR in Section 3.2. Moreover, a robust formulation of the problem

based on CVaR minimization is proposed in Section 3.3. Simulation results under

different scenarios are presented in Section 3.4 to evaluate and compare performance

of the proposed robust approach to its non-robust counterpart.

3.1 Non-robust Formulation

The non-robust formulation presented in this section is mainly based on the work

in Malysz et al. [2014] and constitutes a reference for comparison with the robust

approaches proposed in this dissertation. The non-robust formulation is based on the

assumption that microgrid net demand power, i.e., the difference between the user

demand and power from renewable sources, as well as the market price of electricity

are precisely predicted. This work is not concerned with the prediction algorithm and

assumes the predicted data are available as inputs to the controller. Although this

thesis assumes battery for energy storage, its results could be easily extended to other

types of storage devices. A similar discrete-time battery model as in Malysz et al.

[2014] is employed in which two different modes of battery operation are considered. In

its green zone rates, the battery can operate safely for an arbitrary long period of time,

whereas in its red zone, the battery can temporarily increase its charge/discharge

rates over their normal limits for a short period of time. The controller essentially

determines the rates by which the battery should be charged or discharged. The goal

is to minimize the cost of electricity, ensure smoothness of the power profile at the

point of common coupling to the grid, reduce battery operating cost, while supplying

the user power demand.
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In this work, the control values are optimized considering the following cost func-

tion associated with the decisions and system parameters,

J ,cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat (a)

+ cTsmgug + cTsmbub (b)

+ cpeakp
ob
g + cflat(p

max
g − pming ) (c)

+ CE (d).

(3.1)

The sum of the terms in (a) represents the cost associated with operating the

batteries in green or red zone. Here, pgcbat and pgdbat are the green zone power rates

for charging and discharging the batteries and cbatg is the associated cost. Similarly,

prcbat and prdbat represent red zone charging and discharging power rates, and cbatr is

its corresponding cost. The term (b) penalizes the grid and battery signal non-

smoothness where, ub and ug represent magnitude of the variations in battery and

grid power rates in consecutive horizon time-steps. The first term in (c) reduces the

peak in demand at point of common coupling by penalizing excess demand pobg over

a baseline power rate pbaseg set by the user (see Malysz et al. [2014] for details). The

second term flattens the grid power signal pg by penalizing the difference between

its maximum and minimum values. The last term in (d) also represents the cost of

electricity bought/sold from/to the utility grid and is defined as follows

CE = cTbuypb + cTsellps, (3.2)

where cbuy and csell represent the electricity buying and selling prices, and pb and ps

are time-averaged energy bought or sold, respectively. They are defined as
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pb , max
(
pd + pgcbat + prcbat − p

gd
bat − p

rd
bat, 0

)
, (3.3)

ps , min
(
pd + pgcbat + prcbat − p

gd
bat − p

rd
bat, 0

)
= pd + pgcbat + prcbat − p

gd
bat − p

rd
bat − pb.

(3.4)

Substituting (3.4) in (3.2) yields

CE = (cTbuy − cTsell)pb

+ cTsell(pd + pgcbat + prcbat − p
gd
bat − p

rd
bat).

(3.5)

Assuming cbuy ≥ csel, the nonlinearity introduced in the cost by the max function

in (3.3) can be eliminated using the following constraints

pb ≥ pd + pgcbat + prcbat − p
gd
bat − p

rd
bat,

pb ≥ 0.

(3.6)

Substituting (3.5) in the loss function introduced in (3.1) results in the following

optimization problem
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min (cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat

+ cTsmgug + cTsmbub

+ cpeakp
ob
g + cflat(p

max
g − pming )

+ (cTbuy − cTsell)pb + cTsell(pd + pgcbat + prcbat − p
gd
bat − p

rd
bat))

subject to:

pb ≥ pd + pgcbat + prcbat − p
gd
bat − p

rd
bat,

pb ≥ 0.

(3.7)

The following subsection introduces additional constraints which are imposed by

limits on battery power/energy and grid power signal(Malysz et al. [2014]).

3.1.1 Additional Constraints

In this work, a discrete-time model for battery storage devices is employed as follows

Ek+1 = Ek + ηchkp
c
batk − η

−1
d hkp

d
batk − P

loss
bat hk, (3.8)

where Ek represents the energy of battery at time step k in kWh, hk is the length

of the time step measured in hours, P loss
bat is the self discharging power of the battery

in kW per hour, pcbat and pdbat, ηc, and ηd represent battery charging and discharging

power and efficiency, respectively. The following inequality constraint ensures that
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the battery energy level remains within safe limits at each time step,

Emin
bat ≤ ηc

k∑
i=1

hi(p
gc
bati

+ prcbati)− p
loss
bat

k∑
i=1

hi

−η−1d
k∑
i=1

hi(p
gd
bati

+ prdba) + E0
bat ≤ Emax

bat for k ∈ [1, Nh],

(3.9)

where E0
bat is battery energy level at the beginning of the control horizon, and Emin

bat

and Emax
bat denote minimum and maximum allowable battery energy levels.

Battery charging/discharging powers are also constrained through the following

constraints

0 ≤ pgcbat ≤ pgc,maxbat δcd

0 ≤ prcbat ≤ prc,maxbat δcd

0 ≤ pgdbat ≤ pgd,maxbat (1− δcd)

0 ≤ prdbat ≤ prd,maxbat (1− δcd)

0 ≤ prcbat ≤ prc,maxbat δr

0 ≤ prdbat ≤ prd,maxbat δr,

(3.10)

where the scalar constants pgc,maxbat , pgd,maxbat , prc,maxbat , prd,maxbat represent the maximum bat-

tery charging and discharging rate in the green and red zones, respectively. Moreover,

δcd, δr are binary vectors of length Nh which indicate the state of the batteries at each

time step (i.e., charging/discharging and green/red zone operation). Furthermore, to

make sure that the green zone rates are used first we should have

pgc,maxbat δr − pgc,maxbat (1− δcd) ≤ pgcbat,

pgd,maxbat δr − pgd,maxbat δcd ≤ pgdbat.

(3.11)
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For safety reasons, red-zone power rates can be only activated for a maximum time

of T onmax, after which a minimum cool down time of T offmin is needed before red-zone

rates could be used again. The constraints concerning these maximum on-time and

minimum off-time are presented in the following

j+T onmaxj∑
k=j

hkδrk ≤ T onmax ∀j ∈ [jmin, jmax] (3.12)

jmin = 2−minh1l>T onmaxl ∈ Z (3.13)

jmax = max∑Nh
k=γ hk>T

on
max

γ ∈ Z (3.14)

T onmaxj = min∑j+τ
k=j hk>T

on
max

τ ∈ Z (3.15)

δrj−k−1
− δrj−k ≤ 1− δrj

∀k ∈ [1, T offminj
− 1], ∀j ∈ {[1, Nh]|T offminj

≥ 2}
(3.16)

T offminj
= min∑j−1

k=j−r hk≥T
off
min
τ ∈ Z, τ ≥ 1 (3.17)

The battery signal smoothness is also imposed by the following constraint

−∆pbath ≤ −ubk ≤ pgcbatk + prcbatk − p
gd
batk
− prdbatk

− pgcbatk−1
− prcbatk−1

+ pgdbatk−1
+ prdbatk−1

≤ ubk ≤ ∆pbath

(3.18)

In order to prevent abrupt changes in the microgrid power profile at the point of
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common coupling to the utility grid, the following linear constraint should be imposed.

−ugk ≤p
gc
batk

+ prcbatk − p
gd
batk
− prdbatk + pdk

− pgcbatk−1
− prcbatk−1

+ pgdbatk−1
+ prdbatk−1

≤ ugk

∀k ∈ [1, Nh],

(3.19)

where ug is an auxiliary optimization variable representing the magnitude of the

variations in grid power rates in consecutive horizon time-steps.

The following constraint in conjunction with a term in the cost reduces the differ-

ence between the microgrid minimum and maximum powers at the point of coupling

to the grid

pming 1 ≤ pgcbat + prcbat − p
gd
bat − p

rd
bat + pd ≤ pmaxg 1, (3.20)

where pming and pmaxg are scalar optimization variables corresponding to minimum and

maximum grid power rates.

The following inequality in (3.21) is also added to reduce the peak usage over

some baseline denoted by pbaseg

pgcbat + prcbat − p
gd
bat − p

rd
bat + pd ≤ pbaseg 1 + pobg 1. (3.21)

The optimization problem being solved at each step of the rolling horizon controller

is as follows
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min (cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat

+ cTsmgug + cTsmbub

+ cpeakp
ob
g + cflat(p

max
g − pming )

+ (cTbuy − cTsell)pb + cTsell(pd + pgcbat + prcbat − p
gd
bat − p

rd
bat))

subject to:

pb ≥ pd + pgcbat + prcbat − p
gd
bat − p

rd
bat,

pb ≥ 0

+ the linear constraints in (3.9)-(3.21).

(3.22)

Since the optimization problem in (3.22) is linear and contains both continuous

and binary decision variables, at each time-step a MILP problem is solved and the

optimal values for the following decision variables are obtained.

pgcbat, p
rc
bat, p

gd
bat, p

rd
bat, pb ∈ RNh

ub, ug ∈ RNh

pobg , p
max
g , pming ∈ R

δcd, δr ∈ ZNh .

(3.23)

The non-robust formulation presented in this section is based on the assumption

that electricity demand and price signals are precisely predicted. However, there can

be considerable uncertainty in predicted values of demand and prices, and the solution

obtained through optimization must be robust with respect to the prediction errors.

If unaccounted, these uncertainties may degrade the system performance and lead to

sub-optimal solutions to the energy management problem. The goal here is to design
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a robust controller which accounts for these uncertainties in the system. The rest of

this chapter is concerned with developing a CVaR-based controller which models the

uncertainties in electricity demand and prices with a Gaussian distribution around

their predicted nominal values.

3.2 A Brief Introduction on CVaR

Let f(x, y) be the loss associated with a set of decision variables denoted by x and

random model parameters y. The objective is to obtain the optimal value of the

decision variable x which would minimize the loss subject to uncertainty in parameter

y. A conservative solution to this problem is to find the set of decision variables that

would minimize the worst-case cost for all possible realizations of y, i.e.,

min
x

max
y

f(x, y) (3.24)

Alternative methods using a probabilistic framework where the probability density

function of y denoted by Py is known may yield less conservative solutions to this

problem. One possible solution can be obtained by minimizing the β-percentile of

the distribution associated with f(x, y) induced by Py, β-V aR, defined as

β-V aR , min{α ∈ R : P{f(x, y) ≤ α} ≥ β} for 0 ≤ β ≤ 1. (3.25)

In other words, for a given confidence level β, β-V aR is defined as the smallest

cost α, such that, probability of losses above that level is at most 1−β. This has been

a very popular risk measure in finance and portfolio optimization, e.g. see Fabozzi
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et al. [2007]. However, VaR suffers from undesirable mathematical properties like lack

of convexity and subadditivity which makes it unattractive in practical optimization

problems(Artzner et al. [1999]). To avoid these problems, an alternative risk measure,

CVaR for a given confidence level β, is defined as

β-CV aR , Ey(f(x, y)|f(x, y) > β-V aR) (3.26)

which is the conditional expected value of the cost, conditioned on its value exceeding

the β-percentile.

In contrast to conventional robust optimization approaches, minimization of CVaR

offers more flexibility in selection of the objective and can potentially improve per-

formance by using distributional information on the uncertain parameter y. In fact,

minimizing CVaR of the cost, minimizes the risk of the system being exposed to high

losses rather than minimizing the worst-case cost. Moreover, for linear cost functions,

minimizing CVaR can be formulated as a simple linear programming problem which

makes it attractive in practical applications.

Similarly, for a given confidence level β, β-CV aR is the conditional expectation

of costs exceeding β-V aR,

β-CV aR , Ey(f(x, y)|f(x, y) > β-V aR), (3.27)

where Ey is the expectation of f(x, y) for a fixed x over y.

Figure 3.1 illustrates the definition of VaR and CVaR with confidence level β.

The CVaR in (3.27) can be approximated to take a linear form as demonstrated in

(Rockafellar and Uryasev [2000]). To this end, note that the conditional expectation
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Figure 3.1: Graphical Representation of β-V aR and β-CV aR

in (3.27) can be rewritten as

β-CV aR =
1

P (f > β-V aR)

∫
f(x,y)>α

f(x, y)p(y)dy. (3.28)

Note that P (f > β-V aR) is equal to 1− β. Thus, we have

β-CV aR =
1

1− β

∫
f(x,y)>α

f(x, y)p(y)dy, (3.29)

Let us define Fβ on X → R in terms of β-CV aR and β-V aR defined in (3.29) and

(3.25), respectively.

Fβ(x, α) = α +
1

1− β

∫
f(x,y)≥α

(f(x, y)− α)p(y)dy

= α +
1

1− β

∫
[f(x, y)− α]+ p(y)dy,

(3.30)
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where

β-CV aR = minα∈RFβ(x, α), (3.31)

and

[t]+ =


t t > 0

0 otherwise.

(3.32)

The integral in (3.30) can be approximated by generating samples of y drawn from

py, i.e.,

Fβ(x, α) ≈ α +
1

N(1− β)

N∑
i=1

[f(x, yi)− α]+ , (3.33)

where α is the β-V aR, N is the number of samples generated to approximate the cost

distribution, and yi refers to the ith generated sample of the uncertain parameters

vector.

The auxiliary variables zi|Ni=1 are defined to replace [.]+ as follows

Fβ(x, α) ≈ α +
1

N(1− β)

N∑
i=1

zi, (3.34)

where

zi , [(f(x, yi)− α]+ = max(0, f(x, yi)− α). (3.35)

Finally, the equivalent optimization problem for minimizing β-CV aR is formu-

lated as

min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to: zi > 0,

zi > f(x, yi)− α.

(3.36)

30



M.A.Sc. Thesis - Raheleh Khodabakhsh McMaster - Electrical Engineering

3.3 CVaR Optimization-based Rolling Horizon En-

ergy Management

This section assumes that the electricity demand and prices are subject to uncer-

tainty and an online optimal rolling horizon-based controller is presented to account

for the fluctuations of these signals. The proposed method employs scenario-based

minimization of CVaR of the cost, considering joint Gaussian uncertainty in the

electricity demand and prices around their nominal predicted values. The resulting

optimization problem in each step of the rolling horizon is of a MILP form.

The control values are optimized considering the following cost function associated

with the decisions and system parameters,

J ,cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat (a)

+ cTsmgug + cTsmbub (b)

+ cpeakp
ob
g + cflat(p

max
g − pming ) (c)

+ Cu (d).

(3.37)

The battery operating costs, battery and grid signal smoothing costs, and grid signal

flattening cost remain similar to those in the previous section. The last term in (d),

which is uncertain here, represents the actual cost of electricity bought/sold from/to

the utility grid and is defined as

Cu = cTbuypb + cTsellps, (3.38)

where cbuy and csell represent the electricity buying and selling prices, and pb and ps

are time-averaged energy bought or sold, respectively. Here, unlike the non-robust
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formulation, both electricity prices and net demand could be subject to uncertainty.

Consequently, this makes time-averaged buy/sell energies as a function of demand,

uncertain as well.

Incorporating the aforementioned loss function in (3.37), into the CVaR optimiza-

tion yields the following optimization problem

min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to:

cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat

+ cTsmgu
i
g + cTsmbub

+ cpeakp
obi

g + cflat(p
maxi

g − pminig )

+ cTbuy,ip
i
b + cTsell,i(p

i
d + pgcbat + prcbat − p

gd
bat − p

rd
bat − pib) ≤ zi + α,

zi ≥ 0,

pib ≥ pid + pgcbat + prcbat − p
gd
bat − p

rd
bat (a),

pib ≥ 0 (b),

∀i ∈ {1, . . . , N},

(3.39)

where variables with index i correspond to the ith generated sample vector which is

drawn from a certain measure Py. Here, the uncertain vector consists of the electricity

prices and net demand signal. It is worthy to note that constraints (3.39) (a) and (b)

are imposed by removing the max function used in definition of time-averaged energy

bought from the grid as follows
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pib , max
(
pid + pgcbat + prcbat − p

gd
bat − p

rd
bat, 0

)
. (3.40)

3.3.1 Additional Constraints

The battery energy, power rate, battery signal smoothness , and red zone constraints

in (3.9)-(3.18) remain unchanged. The grid signal smoothing, peak shaving, and

flattening constraints are replaced with the following forms

−uigk ≤p
gc
batk

+ prcbatk − p
gd
batk
− prdbatk + pidk

− pgcbatk−1
− prcbatk−1

+ pgdbatk−1
+ prdbatk−1

− pidk−1
≤ uigk

∀i = 1, ..., N, k ∈ [1, Nh],

(3.41)

here uig is an auxiliary variable corresponding to the ith generated sample vector of

net demand.

pmin,ig 1 ≤ pgcbat + prcbat − p
gd
bat − p

rd
bat + pid ≤ pmax,ig ∀i = 1, ...., N, (3.42)

where pmin
i

g and pmax
i

g are the auxiliary optimization variables indicating the maxi-

mum and minimum grid power rates corresponding to ith sample of the net demand.

pgcbat + prcbat − p
gd
bat − p

rd
bat + pid ≤ pbaseg 1 + pob,ig 1 ∀i = 1, ...., N, (3.43)

Since the optimization problem in (3.39) is linear and contains both continuous

and binary decision variables, at each time-step a MILP problem is solved to find the

optimal values for the following decision variables
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pgcbat, p
rc
bat, p

gd
bat, p

rd
bat ∈ RNh

ub, u
i
g, p

i
buy ∈ RNh for i = 1, ..., N

pob,ig , pmax,ig , pmin,ig , zi ∈ R for i = 1, ..., N

α ∈ R

δcd, δr ∈ ZNh

(3.44)

subject to extra linear constraints (3.9)-(3.18),(3.41)-(3.43).

The battery charge/discharge command is simply computed from the first sample

of the optimal decision vectors as

Table 3.1: Decisions on Battery Activity

δcd δr Charging Power Discharging Power

0 0 0 pgdbat(1)
0 1 0 prdbat(1)
1 0 pgcbat(1) 0
1 1 prcbat(1) 0

3.4 Simulation Results

Simulations are performed on a commercial/residential setting data (with peak us-

age less than 24 kW) provided by Burlington Hydro Inc, with winter time of use

electricity pricing, i.e., 6.2 ¢/kWh 7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8 ¢/kWh

7am-11am and 5pm-7pm and cost of selling energy back to the grid, i.e., 5 ¢/kWh

7am-7pm (Independent electricy system operator, IESO). All other costs includ-

ing the flattening cost, grid and battery signal smoothing costs are set to small

non-zero values. The battery characteristics are Emin
bat = 0kWh, Emax

bat = 50kWh,
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pgc,maxbat = pgd,maxbat = prc,maxbat = prd,maxbat = 10kW , Tmaxon = Tminoff = 2h, P loss
bat = 0,

ηc = 0.95, and ηd = 0.9. The time horizon used is 24 h with variable time-step vector

h=[0.5 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3], therefore Nh = 14 and the rolling horizon

controller updates the decisions every half an hour. The hourly electricity buy/sell

costs, i.e., cbuy and csell are determined by the time of day, hourly buy/sell prices, and

employed rolling horizon vector h. For example at midnight cbuy=[3.1 3.1 3.1 3.1 6.2

6.2 12.4 17 21.6 20 27.6 29.2 23.2 18.6]T and csell=[0 0 0 0 0 0 0 5 10 10 15 15 5 0]T .

The energy management problem is formulated and solved in two different scenar-

ios, the first one assumes that the only uncertain parameter is the net demand vector

and the second one models the uncertainty in both electricity prices as well as net

demand signal. The simulations are performed in one winter month under different

magnitudes of actual uncertainty in the demand as well as electricity costs. Varia-

tions of the uncertain parameters are modeled by Gaussian distribution around their

nominal values in the CVaR optimization. Standard deviation of the Gaussian noise

in the optimization is set to ∆pd, 0.5∆cbuy, and 0.5∆csell, while actual uncertainties in

the parameters are multiple of these constants. Here, ∆pd, ∆cbuy, and ∆csell are the

square root of the nominal values of demand and electricity prices, respectively. Per-

formance of the proposed robust approach is compared to its non-robust counterpart

through a series of Monte-Carlo simulations in which the nominal data is perturbed

by Gaussian noise with standard deviation of up to two times square root of the nom-

inal values. Matlab is used with IBM ILOG CPLEX MILP as optimization solver

using an Intel(R) Core(TM) i7-3770 CPU and 32 GB RAM to solve the optimization

problem.
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3.4.1 Impact of CVaR Factor β

A daily non-rolling horizon optimization is performed to investigate the effect of the

values of β (0, 0.3, 0.6, 0.9) on the mean of cost distribution under presence of

uncertainty in net demand. The average cost values are computed through a Monte-

Carlo simulation with 1000 realized samples of demand which are generated from

perturbing the nominal data by Gaussian noise with standard deviation of two times

square root of the nominal values. From Table 3.2, it can be seen that different β

values lead to slight difference in the daily average cost.

Table 3.2: Average daily cost with different values of β

β 0 0.3 0.6 0.9

Cost($) 15.79 15.82 15.84 15.8642

In the rest of this thesis, all the CVaR simulations are based on β = 0.9. Figure 3.2

depicts the expected shortfall (10%) of monthly cost distribution for non-robust and

robust rolling horizon controllers in a fixed uncertainty level of demand, i.e., 2∆pd. A

Monte-Carlo simulation with 1000 samples is performed to obtain the cost distribution

in the specified uncertainty level. This provides a better insight of the CVaR objective

which is to minimize the expected losses exceeding a certain range.
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Figure 3.2: Comparison of expected shortfall (10%) of cost distribution for the non-
robust and robust controllers in a fixed uncertainty level of net demand, i.e., 2∆pd.

3.4.2 Comparing Performance of Robust Controller to its

Non-robust Counterpart under Presence of Uncertainty

in Net Demand

In the first scenario the net electricity demand is the only uncertain parameter and the

number of generated samples in the optimization is set to N = 100. The proposed

approach models the uncertainty based on a Gaussian Distribution with standard

deviation of ∆pd. Here ∆pd is defined as the square root of the nominal values. The

monthly saving results are plotted in Figures 3.3 and 3.4 with two different maximum

battery energy level. It is worthy to note that the net saving of the non-robust

controller exceeds that of its robust counterpart at small levels of uncertainty in the

demand. This is the price that the robust controller has to pay for better performance

at higher uncertainty levels. Moreover, with smaller battery capacities (Emax
bat = 50),

the gap between savings of the robust and non-robust controller is noticeably higher

than in the case with larger battery capacity (Emax
bat = 100). This is due to the
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fact that there is no penalty in battery usage and non-robust controller exploits the

batteries to compensate for the non-optimal decisions.
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Figure 3.3: Comparison of the non-robust and robust controllers under uncertainty
of net demand with Emax

bat = 50, winter time of use electricity pricing, i.e., 6.2 ¢/kWh
7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8 ¢/kWh 7am-11am and 5pm-7pm and cost of
selling energy back to the grid, i.e., 5 ¢/kWh 7am-7pm. Standard deviation of the
Gaussian distribution in the robust controller is set to ∆pd.

3.4.3 Comparing Performance of Robust Controller to its

Non-robust Counterpart under Presence of Uncertainty

in Net Demand and Electricity Prices

As stated before, the second scenario assumes that electricity prices are exposed

to uncertainty too. Therefore, the vector of uncertain parameters consists of both

electricity prices and demand, and hence a sufficiently large number of samples should

be generated to obtain a precise approximation of the cost distribution. Table 3.3

shows the impact of number of samples on the optimization computational time per

time-step of the rolling horizon controller as well as cost improvement comparing to
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Figure 3.4: Comparison of the non-robust and robust controllers under uncertainty of
net demand with Emax

bat = 100, winter time of use electricity pricing, i.e., 6.2 ¢/kWh
7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8 ¢/kWh 7am-11am and 5pm-7pm and cost of
selling energy back to the grid, i.e., 5 ¢/kWh 7am-7pm. Standard deviation of the
Gaussian distribution in the robust controller is set to ∆pd.

the non-robust controller.

A similar CVaR-based approach with N = 300 is used to model the joint un-

certainty in electricity prices and demand vector. It should be noted that standard

deviation of the Gaussian distribution used in the optimization is set to ∆pd in net de-

mand signal, 0.5∆cbuy and 0.5∆csell in the electricity prices. Here, ∆pd,∆cbuy,∆csell

are defined as the square root of the nominal values. The monthly savings are plotted

as a function of different magnitudes of actual uncertainty in demand in Figure 3.5

and actual uncertainty in costs in Figure 3.6. Figure 3.5 presents the monthly saving

of the controllers at three different levels of uncertainty in cost of buying electricity,

i.e., 0.5∆cbuy, ∆cbuy, and 1.5∆cbuy in (a), (b), and (c), respectively. The uncertainty

levels are controlled by standard deviation of the Gaussian noise generated to evaluate

performance of the controllers. It is worth noting that net saving of the non-robust
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Table 3.3: Impact of the number of samples generated to approximate the cost
distribution, i.e., N on the computational time per time-step of the rolling horizon
controller (using an Intel(R) Core(TM) i7-3770 CPU and 32 GB RAM) and cost
improvement over the non-robust controller

Approach and Number of Samples Optimization Time(s) Cost Improvement

CVaR with N=100 5 4.7%

CVaR with N=200 10 17.75%

CVaR with N=300 12 21%

controller exceeds that of its robust counterpart at small degrees of uncertainty in de-

mand signal. This is the price that robust controller has to pay for better performance

at higher uncertainty values. Moreover, the smallest uncertainty level in demand for

which the robust controller outperforms its non-robust counterpart decreases from

Figure 3.5 (a) to (c). Figure 3.6 also presents the monthly saving of the controllers

at three different levels of uncertainty in net demand, i.e., 0.5∆pd, ∆pd, and 1.5∆pd

in (a), (b), and (c), respectively. It is pointed out that as the uncertainty in demand

increases from Figure 3.6 (a) to (c), the gap in the savings of the controllers increases

as well.

3.4.4 Grid and Battery Signals

This section presents the grid and battery power signals associated with the proposed

robust controller under joint uncertainty of demand and electricity prices. The sim-

ulations are performed using the same commercial/residential setting as that in the

previous section but with different battery specifications, i.e., Emin
bat = 0kWh, Emax

bat =
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Figure 3.5: Comparison of the robust controller to its non-robust counterpart in the
presence of uncertainty in both electricity prices and demand signal. Performance is
plotted as a function of actual uncertainty in demand as a multiple of ∆pd along the
horizontal axis. The uncertainty level in cbuy is set to 0.5∆cbuy, ∆cbuy, and 1.5∆cbuy
in (a), (b), and (c), respectively.
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Figure 3.6: Comparison of the robust controller to its non-robust counterpart in the
presence of uncertainty in both electricity prices and demand signal. Performance is
plotted as a function of actual uncertainty in demand as a multiple of ∆cbuy along
the horizontal axis. The uncertainty level in pd is set to 0.5∆pd, ∆pd, and 1.5∆pd in
(a),(b), and (c), respectively.
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15kWh, pgc,maxbat = pgd,maxbat = prc,maxbat = prd,maxbat = 3kW , Tmaxon = 2h, Tminoff = 0.5h,

P loss
bat = 0, ηc = 0.95 ,and ηd = 0.9. The horizon vector employed, as well as elec-

tricity buy/sell prices are similar to those in the previous section. Figure 3.7(a)

depicts the grid power profile without the presence of controller. In Figure 3.7(b),

the peak demand is penalized with cpeak = 1 $/kW over a power baseline set to 9.5 kW

and the controller attempts to keep the peak usage below that level. Figures 3.7(c)

and (d) elucidate the flattening and smoothing of the grid signal with cflat = 0.1

$/kW and csmg = 0.1h $/kW , respectively. A sub objective of battery usage with

cbatg = cbatr = 0.1h $/kW is added and the effect is depicted in Figure 3.8(a). Then,

battery smoothness is penalized with csmb = 0.05h $/kW in Figure 3.8(b). Note

that the red lines in grid power profiles indicate upper and lower envelopes of the

grid power generated by N = 1000 different realizations of the demand signal within

an uncertainty interval around the nominal values. It can be seen in Figures 3.8

(a) and (b) that penalizing batteries lead to less battery activity and consequently

non-smoothness of the grid signal compared to the scenarios presented in Figures 3.7

(b),(c), and (d).
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Figure 3.7: Grid and battery signals, (a) net demand profile; grid power profile with
no controller, (b) grid power profile with only peak usage reduction (top figure);
battery power profile (middle figure); battery energy profile (bottom figure) (c) grid
power profile with only flattening objective (top figure); battery power profile (mid-
dle figure); battery energy profile (bottom figure) (d) grid power profile with only
smoothing objective (top figure); battery power profile (middle figure); battery en-
ergy profile (bottom figure). Note the dot-dashed (green) line indicate green zone
power rate limits, and the dashed red lines indicate maximum power rate limits in
red zone.
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Figure 3.8: Grid and battery signals, (a) grid power profile with grid flattening,
smoothing, and battery usage penalty (top figure); battery power profile (middle fig-
ure); battery energy profile (bottom figure) (b) grid power profile with grid flattening,
smoothing, battery usage, and battery smoothing sub objectives (top figure); battery
power profile (middle figure); battery energy profile (bottom figure). Note the dot-
dashed (green) line indicate green zone power rate limits, and the dashed red lines
indicate maximum power rate limits in red zone.
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Chapter 4

Energy Management based on

Worst-case Conditional Value at

Risk

4.1 Introduction

Imprecise assumption on the distribution of uncertain parameters can lead to poor

performance of the stochastic approach introduced in the previous chapter. More-

over, the required number of sample scenarios to effectively approximate the CVaR

minimization problem grows exponentially in proportion to the number of uncertain

parameters. In order to speed up the optimization, a second method is proposed in

which scenario-based minimization only takes samples from net demand with Gaus-

sian uncertainty. Electricity prices are assumed to vary within known bounds and

this uncertainty is handled by a worst-case robust approach. In particular, a refor-

mulation of a constraint in CVaR minimization ensures that the worst-case cost with
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respect to price variations is considered in the optimization. In this chapter, the joint

uncertainty problem is formulated and solved based on a combination of worst-case

robust optimization and CVaR approach proposed in Chapter 3.

The rest of this chapter is organized as follows. In Section 4.2, a brief introduction

on robust counterpart optimization for linear problems is presented. In Section 4.3,

a worst-case CVaR-based approach is proposed to address the energy management

problem under uncertainty of electricity prices as well as net demand. Finally, simu-

lation results are presented in Section 4.4.

4.2 Robust Counterpart Formulation for Linear Op-

timization Problems

Consider the following Linear Problem (LP)

min cTx

s.t.
∑
j

ãijxj ≤ b̃i ∀i,
(4.1)

where ãij and b̃i denote the actual values of the parameters under presence of un-

certainty. Let us consider the ith constraint where only the Left Hand Side (LHS)

parameters are subject to uncertainty. The uncertainty can be modeled as following

ãij = aij + δij âij ∀j ∈ Ji, (4.2)

where aij and âij represent the nominal values and the positive perturbations of the

uncertain parameters, respectively. δij also denotes the random variables which are
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drawn from a known uncertainty set.

The main idea of robust counterpart optimization is to transform the above uncer-

tain problem to a deterministic LP which attempts to find a feasible solution under

all realizations of uncertain parameters within an uncertainty set. A comprehensive

literature on different uncertainty sets and their corresponding robust counterpart

can be found in Li et al. [2011]. In this thesis, a combined box and polyhedral uncer-

tainty set is employed for formulating a robust counterpart optimization problem on

a rolling horizon basis.

4.2.1 Box Uncertainty Set

A box uncertainty denoted by U with adjustable parameter L is defined as follows

(Li et al. [2011])

U = {δ | |δj| ≤ L, ∀j ∈ Ji}, (4.3)

where index j corresponds to the jth uncertain coefficient in the ith inequality. Fig-

ure 4.1 illustrates the shape of a box uncertainty set for (4.2) with j = 1, 2.

L

 

 

 

 

 

 

Figure 4.1: Illustration of box uncertainty set
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4.2.2 Polyhedral Uncertainty Set

The polyhedral uncertainty set denoted by Up is also described based on the `-norm

of the uncertain parameter as depicted in Figure 4.2.

Up = {δ |
∑
j

|δj| ≤ Γ}, (4.4)

where the size of the uncertainty set is determined by an adjustable parameter denoted

by Γ.

 

 

 

 

 

 

Figure 4.2: Illustration of polyhedral uncertainty set

4.2.3 “Box+Polyhedral” Uncertainty Set

This uncertainty set is defined as the intersection between the box and polyhedral

uncertainty set as follows (Li et al. [2011])

UBP = {δ |
∑
j

|δj| ≤ Γ, |δj| ≤ L, ∀j ∈ Ji}. (4.5)

Figure 4.3 illustrates the combined box and polyhedral uncertainty set for different

values of Γ. Please note that the intersection between these two uncertainty sets does
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not reduce to any of them if the following inequality constraint is satisfied

L ≤ Γ ≤ L|Ji| (4.6)

𝟎 < 𝚪 < 𝑳 𝚪 = 𝑳 𝑳 < 𝚪 < 𝑳 𝑱𝒊  𝚪 ≥ 𝑳 𝑱𝒊  

Figure 4.3: Illustration of combined box and polyhedral uncertainty set

The robust counterpart of the linear constraints in (4.1) induced by a “Box+Polyhedral”

uncertainty set is as follows (see the proof in Li et al. [2011])



∑
j aijxj + L

∑
j wij + Γzi ≤ bi (a)

zi + wij ≥ âij|xj| ∀j ∈ Ji (b)

zi, wij ≥ 0,

(4.7)

where wij and zi represent additional auxiliary optimization variables defined to ob-

tain the robust counterpart LP. Note that the constraint (4.7) (b) contains absolute

value function. In order to remove this non-linearity, an equivalent robust formulation

can be obtained as follows
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

∑
j aijxj + L

∑
j wij + Γzi ≤ bi

zi + wij ≥ âijuj, ∀j ∈ Ji

−uj ≤ xj ≤ uj, ∀j ∈ Jizi, wij ≥ 0,

(4.8)

where, the term xj is substituted with auxiliary variable uj and the constraints −uj ≤

xj ≤ uj.

4.3 Application of a Worst-case CVaR Approach

in Energy Management Problem under Uncer-

tainty of Electricity Demand and Prices

In this section, a worst-case CVaR formulation of the energy management problem

considering the worst-case cost with respect to price variations in a “Box+Polyhedral”

uncertainty set is proposed. In other words, the constraints are ensured to remain

feasible under all the realizations of electricity prices within the uncertainty set. Con-

sider the following optimization problem

min
α,x

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to: zi > 0,

zi > f̃(x, yi, c̃)− α,

(4.9)

where f̃(x, yi, c̃) represents the true value of the loss associated with a certain strategy

x, true value of electricity prices denoted by c̃ and a set of demand samples denoted
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by yi, generated from a Gaussian distribution and is defined as follows:

f̃(x, yi, c̃) = cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat

+ cTsmbu
i
g + cTsmbub

+ cpeakp
obi

g + cflat(p
maxi

g − pminig )

+ (c̃Tbuy − c̃Tsell)pibuy + c̃Tsell(p
i
d + pgcbat + prcbat − p

gd
bat − p

rd
bat)

for i = 1, ..., N.

(4.10)

In this chapter, the uncertainty in electricity prices are modeled with assumption

of independent variations of buy/sell electricity price signals around their predicted

nominal values and the uncertainty in these two parameters is modeled as follows

c̃buy = cbuy + δ1ĉbuy, (4.11)

c̃sell = csell + δ2ĉsell, (4.12)

where cbuy and csell represent the nominal value of the parameters; ĉbuy and ĉsell

represent constant positive perturbation and δ1 and δ2 are random variables which

are subject to uncertainty. Considering a “Box+Polyhedral” uncertainty set yields

the following robust counterpart optimization problem
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min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to:

zi > 0,

zi + α > cTbatgp
gc
bat + cTbatgp

gd
bat + cTbatrp

rc
bat + cTbatrp

rd
bat

+ cTsmbu
i
g + cTsmbub

+ cpeakp
obi

g + cflat(p
maxi

g − pminig )

+ cTbuyp
i
buy + cTsell(p

i
d + pgcbat + prcbat − p

gd
bat − p

rd
bat − pibuy)

+ ΨTwi1 + ΨTwi2 + Γwi3 for i = 1, ..., N,

wi1j + wi3j ≥ ĉTbuyp
i
buy,

wi2j + wi3j ≥ ĉTsellu
i,

− ui ≤ (pid + pgcbat + prcbat − p
gd
bat − p

rd
bat) ≤ ui,

for j ∈ [1, Nh], i = 1, ..., N,

+ the linear constraints in (3.9)-(3.18), (3.41)-(3.43).

(4.13)

Here, w1,w2, u
i ∈ RNh and w3 ∈ R are additional auxiliary variables needed for

the robust worst case optimization (Li et al. [2011]) and x refers to the optimization

variables consisting of the following elements

pgcbat, p
rc
bat, p

gd
bat, p

rd
bat, w1, w2 ∈ RNh

ub, u
i
g, p

i
b ∈ RNh (fori = 1, ..., N)

pmax,ig , pmin,ig , zi, α, w3 ∈ R (for i = 1, ..., N)

δcd, δr ∈ ZNh .

(4.14)
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Since the optimization problem in (4.13) is linear and contains both continuous

and binary decision variables, at each time-step a MILP optimization problem is

solved to find the optimal values of the variables in (4.14).

The battery charge/discharge command is simply computed from the first sample

of the optimal decision vectors as shown in Table 4.1.

Table 4.1: Decisions on Battery Activity

δcd δr Charging Power Discharging Power

0 0 0 pgdbat(1)

0 1 0 prdbat(1)

1 0 pgcbat(1) 0

1 1 prcbat(1) 0

4.4 Simulation Results

4.4.1 Comparing Performance of the Proposed Robust Con-

troller to its Non-robust Counterpart under Presence

of Uncertainty in Net Demand and Electricity Prices

Simulations are performed on a commercial/residential setting data (with peak usage

less than 24 kW) provided by Burlington Hydro Inc, with winter time of use electric-

ity pricing, i.e., 6.2 ¢/kWh 7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8 ¢/kWh 7am-11am

and 5pm-7pm and selling price, i.e., 5 ¢/kWh 7am-7pm (Independent electricy sys-

tem operator, IESO). All other costs including the flattening cost, grid and battery
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signal smoothing costs are set to small non-zero values. The battery characteristics

are Emin
bat = 0kWh, Emax

bat = 50kWh, pgc,maxbat = pgd,maxbat = prc,maxbat = prd,maxbat = 10kW ,

Tmaxon = Tminoff = 2h, P loss
bat = 0, ηc = 0.95, and ηd = 0.9. The time horizon used is

24 h with variable time-step vector h=[0.5 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3], therefore

Nh = 14 and the rolling horizon controller updates the decisions every half an hour.

The hourly electricity buy/sell costs, i.e., cbuy and csell are determined by the time

of day, hourly buy/sell prices, and employed rolling horizon vector h. For example

at midnight cbuy=[3.1 3.1 3.1 3.1 6.2 6.2 12.4 17 21.6 20 27.6 29.2 23.2 18.6]T and

csell=[0 0 0 0 0 0 0 5 10 10 15 15 5 0]T . The assumptions on controller’s robust-

ness with respect to net demand signal (standard deviation of Gaussian noise used

to model the demand variations) is preserved as in the previous chapter, i.e., ∆pd.

The robust counterpart formulation of the problem is obtained with tuning the pa-

rameters of “Box+Polyhedral” uncertainty set, Ψ, and Γ to 1 and two times square

root of Nh, respectively. The constant positive perturbations in modeling electricity

prices, i.e., ˆcbuy and ˆcsell, are also set to square root of the nominal electricity buy

and sell prices, respectively. The simulations are performed in one winter month un-

der different magnitudes of actual uncertainty in the demand as well as electricity

prices. Performance of the proposed robust approach is compared to its non-robust

counterpart through a series of Monte-Carlo simulations in which the nominal data is

perturbed by Gaussian noise with standard deviation of up to two times square root

of the nominal values. Matlab is used with IBM ILOG CPLEX MILP as optimiza-

tion solver using an Intel(R) Core(TM) i7-3770 CPU and 32 GB RAM to solve the

optimization problem.

The monthly savings are plotted as a function of different magnitudes of actual
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uncertainty in demand in Figure 4.4 and actual uncertainty in costs in Figure 4.5.

Figure 4.4 presents the monthly saving of the robust and non-robust controllers at

three different levels of uncertainty in cost of buying electricity, i.e., 0.5∆cbuy, ∆cbuy,

and 1.5∆cbuy in (a), (b), and (c), respectively. The uncertainty levels are controlled

by standard deviation of the Gaussian noise generated to evaluate performance of the

controllers. It is worth noting that net saving of the non-robust controller exceeds

that of its robust counterpart at small degrees of uncertainty in demand signal. This

is the price that the robust controller has to pay for better performance at higher

uncertainty values. Moreover, the smallest uncertainty level in demand for which the

robust controller outperforms its non-robust counterpart decreases from Figure 4.4 (a)

to (c). Figure 4.5 also presents the monthly saving of the controllers at three different

levels of uncertainty in net demand, i.e., 0.5∆pd, ∆pd, and 1.5∆pd in (a), (b), and

(c) , respectively. It is pointed out that as the uncertainty in demand increases from

Figure 4.5 (a) to (c), the gap in the savings of the controllers increases as well.

4.4.2 Grid and Battery Signals

This section presents the grid and battery power signals associated with the proposed

robust controller under joint uncertainty of demand and electricity prices. The sim-

ulations are performed using the same commercial/residential setting as that in the

previous section but with different battery specifications, i.e., Emin
bat = 0kWh, Emax

bat =

15kWh, pgc,maxbat = pgd,maxbat = prc,maxbat = prd,maxbat = 3kW , Tmaxon = 2h, Tminoff = 0.5h,

P loss
bat = 0, ηc = 0.95 ,and ηd = 0.9. The horizon vector employed, as well as electric-

ity buy/sell prices are similar to those in the previous section. Figure 4.6(a) depicts

the grid power profile without the presence of controller. In Figure 4.6(b), the peak
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Figure 4.4: Comparison of the robust controller to its non-robust counterpart in the
presence of uncertainty in both electricity prices and demand signal. Performance is
plotted as a function of actual uncertainty in demand as a multiple of ∆pd along the
horizontal axis. The uncertainty level in cbuy is set to 0.5∆cbuy, ∆cbuy, and 1.5∆cbuy
in (a), (b), and (c), respectively.
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Figure 4.5: Comparison of the robust controller to its non-robust counterpart in the
presence of uncertainty in both electricity prices and demand signal. Performance is
plotted as a function of actual uncertainty in demand as a multiple of ∆cbuy along
the horizontal axis. The uncertainty level in pd is set to 0.5∆pd, ∆pd, and 1.5∆pd in
(a),(b), and (c), respectively.
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demand is penalized with cpeak = 1 $/kW over a power baseline set to 9.5 kW and

the controller attempts to keep the peak usage below that level. Figures 4.6(c) and

(d) demonstrate the flattening and smoothing of the grid signal with cflat = 0.1

$/kW and csmg = 0.1h $/kW, respectively. A sub objective of battery usage with

cbatg = cbatr = 0.1h $/kW is added and the effect is depicted in Figure 4.7(e). Then,

battery smoothness is penalized with csmb = 0.05h $/kW in Figure 4.7(f). Note

that the red lines in grid power profiles indicate upper and lower envelopes of the

grid power generated by N = 1000 different realizations of the demand signal within

an uncertainty interval around the nominal values. It can be seen in Figures 4.7

(a) and (b) that penalizing batteries lead to less battery activity and consequently

non-smoothness of the grid signal compared to the scenarios presented in Figures 4.6

(b),(c), and (d).
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Figure 4.6: Grid and battery signals, (a) net demand profile; grid power profile with
no controller, (b) grid power profile with only peak usage reduction (top figure); bat-
tery power profile (middle figure); battery energy profile (bottom figure), (c) grid
power profile with only flattening objective (top figure); battery power profile (mid-
dle figure); battery energy profile (bottom figure), (d) grid power profile with only
smoothing objective (top figure); battery power profile (middle figure); battery en-
ergy profile (bottom figure). Note the dot-dashed (green) line indicate green zone
power rate limits, and the dashed red lines indicate maximum power rate limits in
red zone.
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Figure 4.7: Grid and battery signals, (a) grid power profile with grid flattening,
smoothing, and battery usage penalty (top figure); battery power profile (middle fig-
ure); battery energy profile (bottom figure) (b) grid power profile with grid flattening,
smoothing, battery usage, and battery smoothing sub objectives (top figure); battery
power profile (middle figure); battery energy profile (bottom figure). Note the dot-
dashed (green) line indicate green zone power rate limits, and the dashed red lines
indicate maximum power rate limits in red zone.
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Chapter 5

LP Formulations of Energy

Management Optimization without

Binary Variables

Growth in the number of integer variables may cause the MILP problems to become

computationally intractable. This chapter aims at developing equivalent linear for-

mulations of the proposed robust optimizations introduced in Chapters 3 and 4 with-

out the binary variables, by simplifying the battery operation model. Furthermore,

the performance of the resulting linear robust optimizations are evaluated and com-

pared to their non-robust counterparts in different scenarios. The rest of this chapter

is organized as follows. A linear formulation of the CVaR approach introduced in

Chapter 3 is presented in Section 5.1. Section 5.2 introduces a linear formulation of

the Worst-Case CVaR approach introduced in Chapter 4. This chapter is concluded

by presenting simulation results in Section 5.3.
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5.1 Linear CVaR

In this section, a rolling horizon controller is proposed to account for the uncertainties

in net demand and electricity prices. The proposed controller employs a 24-hour ahead

prediction window of net demand power vector and electricity prices to make optimal

battery charge/discharge decisions at each time step.

The control values are optimized considering the following cost function associated

with the decisions and system parameters,

J ,ccp
+ − cdp− (a)

+ cTsmgug (b)

+ cpeakp
ob
g + cflat(p

max
g − pming ) (c)

+ cu (d).

(5.1)

The sum of the terms in (a) represents the cost associated with operating the

batteries. Here, p+ and p− are power rates for charging and discharging the batteries

and cc and cd are the associated costs. The term (b) penalizes the grid signal non-

smoothness where, ug represents the magnitude of the variations in battery and grid

power rates in consecutive horizon time-steps and csmg is the associated cost. The first

term in (c) reduces the peak in demand at point of common coupling by penalizing

excess demand pobg over a baseline power rate pbaseg set by the user (see Malysz et al.

[2014] for details). The second term flattens the grid power signal pg by penalizing the

difference between its maximum and minimum values. The last term in (d), which

is uncertain, represents the actual cost of electricity bought/sold from/to the utility

grid and is defined as follows
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cu , cTbuypb + cTsellps, (5.2)

where cbuy and csell represent the electricity buying and selling prices, and pb and ps

are time-averaged energy bought or sold, respectively. They are defined as

pb , max (pd + pbat, 0) , (5.3)

ps , min (pd + pbat, 0)

= (pd + pbat − pb),
(5.4)

where pbat represents total power of batteries and is related to individual charg-

ing/discharging powers as following

p+ = max(pbat, 0),

pbat = p+ + p−.

(5.5)

Substituting (5.4) in (5.2) yields

Cu = (cTbuy − cTsell)pb

+ cTsell(pd + pbat).

(5.6)

Assuming cbuy ≥ csel and cc > 0, the nonlinearity introduced in the cost by the

max function in (5.3) and (5.5) can be eliminated using the following constraints
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pb ≥ pd + pbat,

pb ≥ 0,

p+ ≥ pbat,

p+ ≥ 0.

(5.7)

Incorporating the loss function J in (5.1) into the CVaR optimization framework

yields a Linear Programming (LP) problem as follows

min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to:

cTc p
+ + cTd (p+ − pbat)

+ cTsmgu
i
g

+ cpeakp
ob,i
g + cflat(p

max,i
g − pmin,ig )

+ (cTbuy,i − cTsell,i)pib + cTsell,i(p
i
d + pbat) ≤ zi + α

zi ≥ 0,

(5.8)

pib ≥ pid + pbat

pib ≥ 0 ∀i ∈ {1, . . . , N}

p+ ≥ pbat,

p+ ≥ 0,

(5.9)
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Emin
bat ≤ ηc

k∑
i=1

hip
+ − plossbat

k∑
i=1

hi

−η−1d
k∑
i=1

hi(pbat − p+) + E0
bat ≤ Emax

bat for k ∈ [1, Nh],

(5.10)

0 ≤ pbat ≤ pmaxbat

0 ≤ p+ ≤ pmax,

(5.11)

ηch
Tp+ − η−1d hT (pbat − p+)−Eloss

bat h
T1 =

Efinal
bat − E

0
bat,

(5.12)

−∆pbath ≤ pbatk − pbatk−1
≤ ∆pbath , (5.13)

−uigk ≤pbatk + pidk − pbatk−1
− pidk−1

≤ uigk

∀i = 1, ..., N, k ∈ [1, Nh],

(5.14)

pmin,ig 1 ≤ pbat + pid ≤ pmax,ig ∀i = 1, ...., N, (5.15)

pbat + pid ≤ pbaseg 1 + pob,ig 1 ∀i = 1, ...., N, (5.16)

where variables with index i are additional optimization variables corresponding to

the ith generated sample vector which is drawn from a certain measure Py.

In this work, a discrete-time model for battery storage devices is employed as

follows

Ek+1 = Ek + ηchkp
+
k − η−1d hkp

−
k − P loss

bat hk, (5.17)
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where Ek represents the energy of battery at time step k in kWh, hk is the length

of the time step measured in hours, P loss
bat is the self discharging power of the battery

in kW per hour, p+ and p−, ηc and ηd represent battery charging and discharging

power and efficiency respectively. The inequality constraint in (5.10) ensures that

the battery energy level remains within safe limits at each time step; here E0
bat is

battery energy level at the beginning of the control horizon, and Emin
bat and Emax

bat

denote minimum and maximum allowable battery energy levels. Battery powers are

also constrained through (5.11), where the scalar constants pmaxbat , p
max represent the

maximum battery rates.

The equality constraint (5.12) simply relates the battery initial energy level E0
bat

to is final energy level Efinal
bat , and is based on the battery model in (5.17). The

inequality constraint in (5.13) imposes some smoothness on the battery activities.

The microgrid power profile at the point of common coupling to the utility grid is

smoothened via (5.14) and the associated term in the cost; here uig is an auxiliary

variable corresponding to the ith generated sample vector of net demand. The con-

straint (5.15) in conjunction with a term in the cost reduces the difference between

the microgrid minimum and maximum powers at the point of coupling to the grid.

The inequality in (5.16) is also added to reduce the peak usage over some baseline

denoted by pbaseg . The reader is referred to Malysz et al. [2014] for further information

on the cost objective and constraints.

A Gaussian distribution is assumed to generate samples of net demand and elec-

tricity prices, but other distributions could easily be employed as well. At each

time-step the LP problem defined in (5.8) is solved to find optimal values for the

following decision variables
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pbat, p
+ ∈ RNh ,

uig, p
i
b ∈ RNh (for i = 1, ..., N),

pob,ig , pmax,ig , pmin,ig , zi, α ∈ R (for i = 1, ..., N).

(5.18)

The battery charge/discharge command is simply computed from the first sample

of the optimal decision vectors p+ and pbat − p+.

5.2 Linear Worst-case CVaR

In this section, the joint uncertainty problem is formulated and solved based on a

combination of Worst-case robust and CVaR approach. Particularly, variations of net

demand is modeled by a Gaussian distribution while electricity prices are assumed to

vary within an uncertainty set around their nominal values. A similar LP problem

as the previous section is formulated and solved except that the constraints including

electricity prices are “robustified” with respect to their worst case values. In other

words, the constraints are ensured to remain feasible under all the realizations of

electricity prices within the uncertainty set. The optimization problem to solve is

given as

min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to: zi > 0

zi > f̃(x, yi, c̃)− α

+ the linear constraints in (5.9)-(5.16),

(5.19)
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where f̃(x, yi, c̃) represents true value of the loss associated with a certain strategy x,

true value of electricity prices denoted by c̃ and a set of demand samples generated

from a Gaussian distribution denoted by yi, i.e.

f̃(x, yi, c̃) = cTc p
+ − cTd (pbat − p+)

+ cTsmgug
i

+ cpeakp
ob,i
g + cflat(p

max,i
g − pmin,ig )

+ (c̃Tbuy − c̃Tsell)pib

+ c̃Tsell(p
i
d + pbat)

for i = 1, ..., N.

(5.20)

The key point here is that samples only need to be generated for the net de-

mand values with smaller sample space dimensions, yielding considerable reduction

in computations. Assume that electricity prices can be modeled as

c̃buy = cbuy + ζ1ĉbuy, (5.21)

c̃sell = csell + ζ2ĉsell, (5.22)

where cbuy and csell represent nominal prices, ĉbuy and ĉsell are constant positive per-

turbations, and ζ1 and ζ2 are random variables which are subject to uncertainty. This

chapter also models variations of electricity prices by a “Box+Polyhedral” uncertainty

set denoted as U .

The only set of constraints involving the electricity prices in (5.19) are zi >
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f̃(x, yi, c̃)− α ∀i = 1, ..., N . Their robust counterpart become

cTc p
+ − cTd (pbat − p+)

+ cTsmgu
i
g

+ cpeakp
ob,i
g + cflat(p

max,i
g − pmin,ig )

+ cTbuyp
i
b + cTsell(p

i
d + pbat − pib)

+ ΨTwi1 + ΨTwi2 + Γwi3

≤ zi + α for i = 1, ..., N,

(5.23)

where w1, w2 ∈ RNh and w3 ∈ R are additional auxiliary variables needed for the

robust worst case optimization (Li et al. [2011]). It is also necessary to add the

following extra robust counterpart constraints to the optimization formulation

wi1j + wi3j ≥ ĉTbuyp
i
b for j ∈ [1, Nh], i = 1, ..., N, (5.24)

wi2j + wi3j ≥ ĉTsell|pid + pbat − pib| forj ∈ [1, Nh], i = 1, ..., N. (5.25)

Note that constraint (5.25) contains absolute value function. In order to remove

the imposed non-linearity, an equivalent robust formulation can be obtained as follows

wi2j + wi3j ≥ ĉTsellu
i,

− ui ≤ pid + pbat − pib ≤ ui,

for j ∈ [1, Nh], i = 1, ..., N.

(5.26)
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At each time-step, the following LP optimization problem is solved

min
α,x,zi

(
α +

1

N(1− β)

N∑
i=1

zi

)

subject to: zi > 0

+ the constraints in (5.9)-(5.16)

+ (5.23),(5.24) and (5.26).

(5.27)

where x refers to the optimization variables consisting the following elements

pbat, p
+, w1, w2 ∈ RNh ,

uig, p
i
b, u

i ∈ RNh (for i = 1, ..., N),

pmax,ig , pmin,ig , pob,ig , zi, α, w3 ∈ R (for i = 1, ..., N).

(5.28)

The battery charge/discharge command is simply computed from the first sample

of the optimal decision vectors p+ and pbat − p+.

5.3 Simulation Results

Simulations are performed on a commercial/residential setting data (with peak usage

less than 24 kW) provided by Burlington Hydro Inc, with winter time of use electricity

pricing, i.e., 6.2 ¢/kWh 7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8 ¢/kWh 7am-11am

and 5pm-7pm Ele [2012] and selling prices, i.e., 5 ¢/kWh 7am-7pm (Independent

electricy system operator, IESO). All other costs including the flattening cost, grid

and battery signal smoothing costs are assumed to be small non-zero values. The

battery characteristics are Emin
bat = 0kWh, Emax

bat = 50kWh, pmaxbat = 10kW , P loss
bat = 0,
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ηc = 0.95, and ηd = 0.9. The time horizon used is 24 h with variable time-step vector

h=[0.5 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3], therefore Nh = 14 and the rolling horizon

controller updates the decisions every half an hour. The hourly electricity buy/sell

costs, i.e., cbuy and csell are determined by the time of day, hourly buy/sell prices, and

employed rolling horizon vector h. For example at midnight cbuy=[3.1 3.1 3.1 3.1 6.2

6.2 12.4 17 21.6 20 27.6 29.2 23.2 18.6]T and csell=[0 0 0 0 0 0 0 5 10 10 15 15 5 0]T .

The energy management problem is formulated and solved in two different scenar-

ios. In the first scenario, the net electricity demand is the only uncertain parameter.

A rolling horizon CVaR-based controller is proposed to model the uncertainty in de-

mand based on a Gaussian Distribution with standard deviation of ∆pd. Here ∆pd

is defined as the square root of the nominal values. The second scenario assumes

that the electricity prices are exposed to uncertainty too. In this regard, two different

approaches are proposed, the first one models the uncertainty in net demand and elec-

tricity prices by Gaussian distributions around their predicted nominal values while

the second one models the uncertainty in electricity prices by a “Box+Polyhedral”

uncertainty set. The simulations are performed over one winter month under different

magnitudes of actual uncertainty in the demand as well as electricity costs. Perfor-

mance of the proposed approaches are compared with their non-robust counterpart

through a series of Monte-Carlo simulations in which the nominal data is perturbed

by Gaussian noise with standard deviation of up to two times square root of the nom-

inal values. Matlab is used with IBM ILOG CPLEX MILP as optimization solver

using an Intel(R) Core(TM) i7-3770 CPU and 32 GB RAM to solve the optimization

problem.

72



M.A.Sc. Thesis - Raheleh Khodabakhsh McMaster - Electrical Engineering

5.3.1 Uncertain Net Demand

A CVaR-based approach as in (5.8), in a rolling-horizon basis is adapted to model the

variations in net demand signal by a Gaussian distribution with standard deviation

of ∆pd around the nominal values. The number of demand samples generated to

approximate cost distribution, N , and CVaR parameter β, are set to 100 and 0.9,

respectively. A series of Monte-Carlo simulations is carried out to evaluate the per-

formance of proposed robust approach and compare it to its non-robust counterpart.

Therefore, monthly electricity savings for 1000 realizations of demand samples are

calculated based on one set of decisions and the average cost is plotted in Figure 5.1

as a function of actual uncertainty in demand. It is worthy to note that net saving

of the non-robust controller exceeds that of its robust counterpart at small levels of

uncertainty in demand signal. This is the price that the robust controller has to pay

for better performance at higher uncertainty values.
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Figure 5.1: Comparison of the robust controller to its non-robust counterpart in the
presence of uncertainty in demand signal. Monthly electricity savings are plotted as
a function of actual uncertainty in demand.
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5.3.2 Uncertain Net Demand and Electricity Prices

A similar CVaR-based approach as in (5.8) is applied to address the joint uncertainty

in demand and electricity prices by modeling the uncertainty based on Gaussian

distribution around their nominal values. Here, the sampling space consists of both

electricity prices and net demand and hence a sufficiently large number of samples

should be generated to obtain a precise approximation of the cost distribution. Since

the number of constraints in the (5.8) is proportional to the number of generated

samples, this impacts the computational burden of the problem. The following table

shows the impact of number of samples on the optimization computational time

per time-step as well as monthly cost improvement comparing to the non-robust

controller.

Table 5.1: The minimum number of samples required for different cost improvements
and their corresponding simulation time per time-step of the rolling horizon controller
(using an Intel(R) Core(TM) i7-3770 CPU and 32 GB RAM)

Cost Improvement CVaR Worst-case CVaR

up to18% N = 200, T = 8s N = 50, T = 1.3s

18− 26% N = 300, T = 10s Not Possible

This section compares the performance of the proposed robust approaches to

their non-robust counterpart for different uncertainty levels in demand and electric-

ity prices. The first approach is simulated with N = 300 samples and the number

of samples is reduced to N = 50 for the worst-case CVaR approach. Standard de-

viation of the Gaussian distribution used to model the variations of parameters in

the first approach is set to ∆pd in net demand signal, 0.5∆cbuy and 0.5∆csell in
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the electricity prices. where, ∆pd,∆cbuy,∆csell are defined as the square root of the

nominal values of electricity demand, buy, and sell prices. The second approach ob-

tains the robust counterpart formulation of the problem by tuning the parameters of

“Box+Polyhedral” uncertainty set, Ψ, and Γ to 1 and two times square root of Nh,

respectively. The constant positive perturbations in modeling electricity prices, i.e.,

ˆcbuy and ˆcsell, are also set to square root of the nominal electricity buy and sell prices,

respectively.

The monthly savings are plotted as a function of different magnitudes of actual

uncertainty in demand in Figure 5.2 (a,b,c) and actual uncertainty in costs in Fig-

ure 5.2 (d,e,f). Figure 5.2 (a,b,c) depicts the monthly saving of the controllers at three

different levels of uncertainty in cost of buying electricity, i.e. ∆cbuy, 1.5∆cbuy, and

2∆cbuy , respectively. The uncertainty levels are controlled by standard deviation of

the Gaussian noise generated to evaluate performance of the controllers. It is worth

noting that net saving of the non-robust controller exceed that of its robust counter-

parts at small degrees of uncertainty. This is the price that the robust controller has

to pay for better performance at higher uncertainty values. Moreover, the smallest

uncertainty level in demand for which the robust controllers outperform their non-

robust counterpart decreases from Figure 5.2 (a) to (c) as a consequence of higher

uncertainty in cost of buying electricity. Figure 5.2 (d,e,f) also presents the monthly

saving of the controllers at three different levels of uncertainty in net demand, i.e.

∆pd, 1.5∆pd, and 2∆pd in (d), (e), and (f), respectively.
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Figure 5.2: Comparison of the robust controllers to their non-robust counterparts in
the presence of uncertainty in both electricity prices and demand signal. Performance
of the controllers is plotted as a function of actual uncertainty in demand in (a),(b)
and (c) and actual uncertainty in buying price in (d), (e) and (f) . The uncertainty
level in cbuy is set to ∆cbuy, 1.5∆cbuy and 2∆cbuyin (a),(b) and (c), respectively. The
uncertainty level in pd is set to ∆pd, 1.5∆pd and 2∆pd in (d),(e) and (f).

5.3.3 Grid and Battery Signals

Figures 5.3 and 5.4 depict the grid and battery power signals associated with the

proposed robust controllers under joint uncertainty of demand and electricity prices.

The simulations are performed using the same commercial/residential setting as that

in the previous section but with different battery specifications, i.e., Emin
bat = 0kWh,

Emax
bat = 15kWh, pmaxbat = 5kW , P loss

bat = 0, ηc = 0.95 ,and ηd = 0.9. The horizon vector

employed, as well as electricity buy/sell prices are similar to those in the previous
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section. Figures 5.3 and 5.4 (a) show the grid power profile without presence of

the controller. Then, the peak demand is penalized with cpeak = 1 $/kW over a

power baseline set to pbaseg = 9.5 kW and the controller attempts to keep the peak

usage below that level. The grid signals associated with first and second proposed

robust approaches are presented in Figures 5.3 and 5.4(b), respectively. Figures 5.3

and 5.4 (c) also demonstrate the flattening and smoothing of the grid signal with

cflat = 1 $/kW and csmg = 0.1h $/kW, respectively along with a sub-objective of

battery usage with cc = cd = 0.1h $/kW. Note that in all the plots uncertainty

in electricity prices is set to a certain level, i.e., 0.5∆cbuy and 0.5∆csell, and the

red lines in grid power profiles indicate upper and lower bounds of the grid power

with N = 1000 different realizations of demand signal within an uncertainty interval

around the nominal values. It can be seen that penalizing batteries in both approaches

lead to less battery activity and consequently to non-smoothness of the grid signal.
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Figure 5.3: grid and battery signals with different sub-objectives (CVaR approach):
a) net demand profile; grid power profile with no controller b) grid power profile
with only flattening sub objective (top figure); battery power profile (middle fig-
ure); battery energy profile (bottom figure) c) grid power profile with grid flatten-
ing, smoothing, and battery usage sub objectives (top figure); battery power profile
(middle figure); battery energy profile (bottom figure). Note that the red lines in
grid power profiles indicate upper and lower envelopes of the grid power generated
by N = 1000 different realizations of demand signal within an uncertainty interval
around the nominal values.
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Figure 5.4: grid and battery signals with different sub-objectives (WCVaR approach):
a) net demand profile; grid power profile with no controller b) grid power profile with
peak reduction sub objective (top figure); battery power profile (middle figure); bat-
tery energy profile (bottom figure) c) grid power profile with grid flattening, smooth-
ing, and battery usage sub objectives (top figure); battery power profile (middle
figure); battery energy profile (bottom figure). Note that the red lines in grid power
profiles indicate upper and lower envelopes of the grid power generated by N = 1000
different realizations of demand signal within an uncertainty interval around the nom-
inal values.

78



Chapter 6

The Value of Coalition in a

Multi-Microgrid System

This chapter studies the energy management problem of a multi-microgrid network

interconnected with utility grid. In particular, a smart EMS is designed to get the

most out of available resources including the generated energy and storage devices.

The proposed controller benefits from a 24 hour ahead prediction of individual mi-

crogrids’ net demand and makes optimal decisions in a centralized manner. In this

framework, the microgrids constitute a single entity pursuing a common goal which

is to keep the balance between the demand and supply of the network. In the mean-

time, they have the opportunity to sell their surplus resources back to the utility grid

to gain extra revenue. Efficient co-operation of micro-grids increases the resiliency

of the grid, reduces power loss by using local resources and transmission lines, and

reduces the dependency of local grids to the utility grid. Moreover, there is a limited

capacity of storage facilities in microgrids which may not be sufficient to account for

the fluctuations in demand. Allowing local exchange of energy between individual
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microgrids may potentially compensate for the limited capacity. Consequently, this

reduces the individual battery usage and prolongs the life of batteries. The rest of

this chapter is organized as follows; the energy management problem is formulated in

Section 6.1, Section 6.2 briefly introduces the Shapley value concept. This is followed

by application of Shapley value to the energy management problem of co-operative

Microgrids in Section 6.3.

6.1 Problem Formulation

Let us consider a system including N interconnected microgrids with one common

point of coupling to the utility grid. The net demand power associated with each

microgrid is denoted by pd,i, i = 1, .., N and is defined as the difference between the

output power of renewable resources and the electricity usage of consumers. The

same discrete-time battery model as in the Chapters 3 and 4 is employed where two

different modes for the operation of batteries are considered. The first one referred to

as the green zone in which battery can operate safely for an arbitrary period of time

and the second one as red zone in which power rate of battery could be temporarily

increased for a limited time.

Let the local variables associated to the ith microgrid be concatenated in a vector

denoted by xil, i = 1, ..., N and global decision variables of the multi-microgrid system

denoted by xg, as follows
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xil = pigc, p
i
rc, p

i
gd, p

i
rd ∈ RNh (a)

pibl, p
i
sl, p

i
bg, p

i
sg ∈ RNh (b)

δibs, δ
i
cd, δ

i
r ∈ ZNh (c)

xg = δm ∈ ZNh (d),

(6.1)

where the variables in (a) represent battery charging and discharging powers in green

and red zone, respectively. The terms in (b) represent the powers which are exchanged

locally among the microgrids and globally from/to the utility grid, respectively and

the binary variables in (c) indicate the state of each microgrid (buying/selling, charg-

ing/discharging, and green/red zone operation). The binary vector in (d) also deter-

mines the buying/selling state of the main grid.

The energy management problem is formulated as a MILP form as follows

min
xl,xg

∑
i

cibuyp
i
bg −

∑
i

cisellp
i
sg +

∑
i

clp
i
bl (6.2)

subject to:

Emin
bat,i ≤ Ebat,i ≤ Emax

bat,i ,

(6.3)

ηc,ih
T (pgc,ibat + prc,ibat )− η

−1
d,i h

T (pgd,ibat + prd,ibat )− Eloss,i
bat hT1 = Efinal,i

bat − E0,i
bat ∀i = 1, ..., N,

(6.4)

pibl + pibg − pisl − pisg + (pigc + pirc)− (pigd + pird) = pid ∀i = 1, ..., N, (6.5)
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0 ≤ pibat,gc ≤ pibat,gcmaxδ
i
cd,

0 ≤ pibat,rc ≤ pibat,rcmaxδ
i
cd,

0 ≤ pibat,gd ≤ pibat,gdmax(1− δicd),

0 ≤ pibat,rd ≤ pibat,rdmax(1− δicd),

0 ≤ pibat,rc ≤ pibat,rcmaxδ
i
r,

0 ≤ pibat,rd ≤ pibat,rdmaxδ
i
r ∀i = 1, .., N,

(6.6)

pgcmax,ibat δir − p
gcmax,i
bat

(
1− δicd

)
≤ pgc,ibat

pgdmax,ibat δir − p
gdmax,i
bat δicd ≤ pgd,ibat ∀i = 1, ..., N,

(6.7)

j+T on,imaxj∑
k=j

hkδ
i
rk ≤ T onmax ∀j ∈ [jmin, jmax] (6.8)

jmin = 2−minh1l>T on,imax
l ∈ Z (6.9)

jmax = max∑Nh
k=γ hk>T

on,i
max

γ ∈ Z (6.10)

T onmaxj = min∑j+τ
k=j hk>T

on,i
max

τ ∈ Z (6.11)

δrij−k−1
− δrij−k ≤ 1− δrij

∀k ∈ [1, T offminj
− 1],∀j ∈ {[1, Nh]|T offminj

≥ 2},∀i = 1, .., N,

(6.12)

T off,iminj
= min∑j−1

k=j−r hk≥T
off,i
min

τ ∈ Z, τ ≥ 1 (6.13)
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−∆pbath ≤ −uibk ≤ pgc,ibatk
+ prc,ibatk

− pgd,ibatk
− prd,ibatk

− pgc,ibatk−1
− prc,ibatk−1

+ pgd,ibatk−1
+ prd,ibatk−1

≤ uibk ≤ ∆pbath ∀i = 1, ..., N,

(6.14)

−ug,ik ≤p
sl,i
k + psg,ik − pbl,ik − p

bg,i
k + pd,ik

− psl,ik−1 − p
sg,i
k−1 + pbl,ik−1 + pbg,ik−1 − p

d,i
k−1 ≤ ug,ik ∀i = 1, ..., N,

(6.15)

pigmin ≤ pisl + pisg − pibl − pibg + pid ≤ pigmax ∀i = 1, .., N, (6.16)

0 ≤ pibl + pibg ≤ pibl,maxδ
i
bs

0 ≤ pisl + pisg ≤ pisl,max(1− δibs) ∀i = 1, .., N,

(6.17)

∑
i

pibl =
∑
i

pisl ∀i = 1, ..., N, (6.18)

0 ≤
∑
i

pibg ≤ δmpg,max

0 ≤
∑
i

pisg ≤ (1− δm)pg,max,

(6.19)

where variables with index i are local variables corresponding to the ith microgrid.

The optimization cost function consists of two terms; the first one is the aggregate of

global electricity cost which is summed over all the microgrids and the second term

is the cost associated with local transmission of energy. The inequality constraint in
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(6.3) ensures that the battery energy level remains within safe limits at each time-

step; here Emin
bat,i and Emax

bat,i denote minimum and maximum allowable battery energy

levels corresponding to ith microgrid. Ebat,i is also defined as follows

Ei
bat =ηc,i

k∑
j=1

hj(p
gc,i
batj

+ prc,ibatj
)− ploss,ibat

k∑
j=1

hj

− η−1d,i
k∑
j=1

hj(p
gd,i
batj

+ prd,iba ) + E0,i
bat.

(6.20)

The equality constraint (6.4) simply relates the battery initial energy level E0,i
bat

to its final energy level Efinal,i
bat . Equality constraint (6.5) also ensures the power

balance for individual microgrids. Battery powers are also constrained by (6.6), where

the scalar constants pibat,gcmax, p
i
bat,rcmax, p

i
bat,gdmax, p

i
bat,rdmax represent the maximum

battery rates in the green and red zones, respectively. The constraint in (6.7) is

added to ensure the green zone rates are used first. For safety reasons, red-zone power

rates can be only activated for a maximum time of T onmax, after which a minimum

cool down time of T offmin is needed before red-zone rates could be used again. The

constraints concerning these maximum on-time and minimum off-time are presented

in (6.8)-(6.13). The inequality constraint in (6.14) imposes some smoothness on the

battery activities. The microgrid power profile at the point of common coupling to

the utility grid is smoothened via (6.15) and the associated term in the cost; here uig

is an auxiliary variable corresponding to the ith microgrid. The constraint (6.16) in

conjunction with a term in the cost reduces the difference the microgrid minimum

and maximum powers at the point of coupling to the grid, i.e., pmin
i

g and pmax
i

g .

Constraints (6.17) also limit the individual line capacities, where δibs is a binary vector

indicating the buying/selling state of ith microgrid, and pibl,max, p
i
sl,max are maximum
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buy/sell power rates of each line. Locally exchanged powers must also add up to

zero which is taken into account by constraint (6.18). Main grid line capacity is also

constrained by (6.19), where pbg,max, psg,max represent the maximum allowable power

rates of the main grid.

6.2 Shapley Value

A co-operative game consists of N players and a characteristic function V : 2[N ] → R,

which is defined on all possible coalitions of the players and generates the total

cost/profit associated with each coalition. The primary idea of Shapley value theorem

is to allocate players’ individual share of cost, proportional to their marginal contri-

butions. The Shapley value associated with each player is the average of marginal

contributions over all the possible orders by which the players could form a complete

coalition and is defined as follows

Φi =
1

N !

∑
R

(V (PR
i ∪ {i})− V (PR

i )), (6.21)

where R runs over all possible permutations of the players and PR
i is the set of players

preceding i in R. The denominator also indicates the total number of permutations

of N players.

Let us consider the problem with N = 3. The possible permutations of the players

numbered from 1 to N and the share of each player is listed in Table 6.1. It is noted

that each permutation indicates the order in which players join the game and different

sequences lead to different marginal contributions for individual players. In order to

find the Shapley value associated with each player, individual coalition problems
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Table 6.1: All the possible permutations and their corresponding share of players

Permutaion Player 1 Player 2 Player 3

(1-2-3) V (1) V (1, 2)− V (1) V (1, 2, 3)− V (1, 2)

(1-3-2) V (1) V (1, 3, 2)− V (1, 3) V (1, 3)− V (1)

(2-1-3) V (2, 1)− V (2) V (2) V (2, 1, 3)− V (2, 1)

(2-3-1) V (2, 3, 1)− V (2, 3) V (2) V (2, 3)− V (2)

(3-1-2) V (3, 1)− V (3) V (3, 1, 2)− V (3, 1) V (3)

(3-2-1) V (3, 2, 1)− V (3, 2) V (3, 2)− V (3) V (3)

should be solved. Once the characteristic function V is obtained, the average value

of each player’s cost over all the permutations is the Shapley value assigned to the

player.

6.3 Application of Shapley Value in Energy Man-

agement Problem of Co-operative Microgrids

In this problem, the characteristic function returns the electricity cost associated with

each coalition problem. For instance, V (1, 2) represents the total electricity cost asso-

ciated with co-operation of microgrids 1 and 2, while V (1, 2, 3) is the electricity cost

of all microgrids co-operating together. Individual coalition problems are formulated

and solved by developing a rolling horizon controller which employs a 24 hour ahead

prediction window of net demand power associated with each microgrid. Simulations

are performed on three commercial settings (peak usage less than 10 kW) with winter
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time of use electricity pricing, i.e., 6.2 ¢/kWh 7pm-7am, 9.2 ¢/kWh 11am-5pm, 10.8

¢/kWh 7am-11am and 5pm-7pm and electricity selling prices, i.e., 5 ¢/kWh 7am-7pm

(Independent electricy system operator, IESO). All other costs including the flatten-

ing cost, grid and battery signal smoothing costs are set to small non-zero values. The

battery characteristics are assumed to be the same for all three microgrids as follow-

ing: Emin
bat = 0kWh, Emax

bat = 50kWh, pgc,maxbat = pgd,maxbat = prc,maxbat = prd,maxbat = 10kW ,

Tmaxon = Tminoff = 2h, P loss
bat = 0, ηc = 0.95, and ηd = 0.9. The time horizon used is

24 hour with variable time-step vector h=[0.5 0.5 0.5 0.5 1 1 2 2 2 2 3 3 3 3], therefore

Nh = 14 and the rolling horizon controller is rolled through one week and updates

the decision variables every half an hour. The hourly electricity buy/sell costs, i.e.,

cbuy and csell are determined by the time of day, hourly buy/sell prices, and employed

rolling horizon vector h. For example at midnight cbuy=[3.1 3.1 3.1 3.1 6.2 6.2 12.4 17

21.6 20 27.6 29.2 23.2 18.6]T and csell=[0 0 0 0 0 0 0 5 10 10 15 15 5 0]T . Matlab is used

with IBM ILOG CPLEX MILP as optimization solver using an Intel(R) Core(TM)

i7-3770 CPU and 32 GB RAM to solve the optimization problem.

Individual coalition problems are solved (6.2) and the characteristic function is

obtained as follows
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V =



V (1) = 42.2300($/week) Individual operation of microgrid 1

V (2) = 42.8861($/week) Individual operation of microgrid 2

V (3) = 43.1312($/week) Individual operation of microgrid 3

V (1, 2) = 75.2724($/week) Coalition of microgrids 1 and 2

V (1, 3) = 76.1933($/week) Coalition of microgrids 1 and 3

V (2, 3) = 76.3033($/week) Coalition of microgrids 2 and 3

V (1, 2, 3) = 111.7052($/week) Complete coalition.

(6.22)

Substituting the characteristic function values from (6.22) into the Table(6.1) and

averaging over all the coalitions yields the following individual costs for each player.

Φi =


36.78($/week) i = 1

37.1684($/week) i = 2

37.7514($/week) i = 3.

(6.23)

This yields about 13%, 13.33% and 12.47% reduction in weekly cost of microgrids

1,2 and 3 compared to the case where each of them would operate individually, as a

grid-connected microgrid.

6.3.1 Shapley Value as a Function of Infrastructure Cost

This section studies the effect of infrastructure cost in Shapley value of individual

microgrids. Here, infrastructure cost, denoted by cl, refers to the cost associated with
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local transmission of energy and is defined as a multiple of buying electricity prices,

i.e., cbuy. Figure 6.1 represents the Shapley value assigned to individual microgrids

as a function of cl.
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Figure 6.1: Shapley value of individual microgrids as a function of infrastructure cost

Shapley value of the microgrids grows as the infrastructure cost increases from

cl = 0 to cl = 0.16cbuy. At this point, Shapley value of ith microgrid converges to

its individual operation cost or V (i) and becomes independent of the infrastructure

cost. As mentioned before, the optimization cost function denoted by J , consists of

two terms as follows

J ,

(∑
i

cibuyp
i
bg −

∑
i

cisellp
i
sg

)
︸ ︷︷ ︸

(a)

+

(∑
i

clp
i
bl

)
︸ ︷︷ ︸

(b)

, (6.24)

where (6.24)(a) is the aggregate of global electricity cost and (6.24)(b) refers to the
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cost associated with local transmission of energy. For values of cl ≥ 0.16cbuy, utiliza-

tion of local transmission lines is not optimal any more, and therefore, each microgrid

exchanges energy with its connected utility grid.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation was concerned with optimal energy/cost management of grid-connected

microgrids with batteries as storage units, under uncertainty of electricity demand

and prices. Two on-line MPC-based control methods were proposed to account for

the uncertainty in predicted values of demand and price. The first method employed

a scenario-based minimization of CVaR of the cost that assumes a Gaussian distribu-

tion for variations of both net demand and electricity prices around their predicted

values. A precise approximation of CVaR requires a large number of sample scenarios,

which increases the computational time of the problem. Therefore, a second method

was proposed in which electricity prices were eliminated from sample space and the

uncertainty was handled by a combination of worst-case robust and CVaR approaches.

In particular, the uncertainty in demand and electricity prices were jointly handled

by scenario-based CVaR and worst-case robust, respectively.

The cost function consists of different components including electricity usage cost,
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battery operation costs, and grid signal smoothing objectives. The resulting optimiza-

tion problems for both methods were of MILP forms in each step of the rolling horizon.

Performance of the proposed robust approaches were evaluated and compared to their

non-robust counterpart through a series of Monte Carlo simulations. The simulation

results indicate up to 30% and 20% improvement in the monthly electricity savings

for the CVaR and the worst-case CVaR approaches compared to their non-robust

counterparts, respectively.

To further reduce the complexity, a LP reformulation of the energy management

problem was proposed in which binary variables are avoided. This yielded convex

optimization problems that could be solved faster than their non-linear counterparts.

Consequently, the elimination of binary variables makes the proposed approaches

more scalable in energy management problem of multi-microgrids with larger opti-

mization variable sets.

Finally, a game theory-based strategy was proposed to allocate individual savings

of a co-operative network of microgrids interconnected with the utility grid. In the

proposed approach, the energy management problem was formulated in a determin-

istic co-operative game theoretic framework for a group consisting of 3 connected

microgrids as a single entity and the individual savings were distributed based on the

Shapley value. The proposed approach yielded about 13% reduction in weekly cost

of microgrids compared to the case where each of them would operate individually,

as a grid-connected microgrid.

92



M.A.Sc. Thesis - Raheleh Khodabakhsh McMaster - Electrical Engineering

7.2 Future Work

Some possibilities for future research based on the work presented in this dissertation

are discussed below.

• The formulation provided in this work can be further extended to consider

other types of storage devices, such as thermal storage, flywheels, and energy

capacitors.

• Electric vehicles can also be integrated with the proposed formulation in this

work. This increases the overall uncertainty in the system and the robust con-

troller should be properly modified to account for the imposed uncertainties.

• The computational burden of the proposed strategy to distribute individual

savings of co-operative network of microgrids, scales up with the number of

microgrids. Sampling methods can be used to approximate the Shapley value

and hence make the proposed approach scalable in larger communities.
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