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Abstract

Infrared spectroscopy has been used to study URu2Si2. This heavy fermion material

exhibits novel behaviour including a phase transition with an unknown order param-

eter. In spite of many years of study using numerous experimental techniques and

theoretical modelling, the nature of this ordering transition remains elusive.

Optical spectroscopy has been applied to study the scattering mechanism of the

quasiparticles in the coherent state above the transition. It is found that the scattering

is incoherent above the hybridization temperature and gradually develops a Drude

peak as the temperature is lowered into the coherent regime. As the temperature

approaches the transition from above, the scattering is almost entirely Fermi liquid

in character. It is observed that the scaling between the frequency and temperature

terms in the Fermi liquid region is anomalous and diverges from the predicted value

of 4, with profound implications for the nature of Fermi liquid behaviour generally.

Infrared spectra also clearly show the charge gap in the ordered state. It is found

that the gap is anisotropic, with a different character in the c-axis than in the ab-plane

of the tetragonal crystal, and that a second small gap appears at lower temperature

in the c-axis. The gap does not have a mean-field temperature dependence. The gap

is well-modelled by a Dynes density of states with case I coherence factors, typical of

a nesting-induced incommensurate density wave.
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Doping induces antiferromagnetism in place of the hidden order, and at higher

temperatures, which is also studied by spectroscopy. It is found that the Fermi liquid

temperature region rises in temperature in tandem with the phase transition, so

that the transition is always preceded by Fermi liquid behaviour but with anomalous

scaling between frequency and temperature. The character of the charge gap does

not change between the hidden order and antiferromagnetic states, indicating that

the same mechanism is responsible for the charge gap in both phases.
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Chapter 1

Introduction and Problem

Statement

This thesis presents the work I have done in pursuit of the degree of Doctor of Phi-

losophy in Physics at the most esteemed and honourable institution of McMaster

University. It is primarily focused on presenting the data acquired using optical spec-

troscopy on the heavy fermion compound URu2Si2as well as describing the techniques

of infrared spectroscopy. It is designed as a sandwich thesis, in which manuscripts

either published or in the process of wending their way thence are included as the

body between introductory and concluding chapters.

1.1 Hidden order in URu2Si2

Phase transitions are a subject of continuing interest in condensed matter physics.

The determination of the ground state of these systems is fundamental to under-

standing the physics responsible for the behaviour of condensed matter systems at
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low temperatures. The order parameter of phase transitions is key to understanding

the mechanism driving the transition and, therefore, the ground state of the system.

The heavy fermion material URu2Si2 is an example of a correlated electron system.

Typically, solid state systems are understood by taking the one-electron energy levels

and filling them up to the Fermi energy. In correlated systems this approach ceases to

be valid, as the one-electron levels no longer describe the system because they neglect

the interactions of the electrons with one another and the effects of the electrons on

the lattice. The general approach to such systems is to renormalize them so that they

can be described in terms of single-particle states where the charge carriers are now

composite objects called quasiparticles.

In URu2Si2 specific heat measurements (Palstra et al., 1986; Maple et al., 1986)

detected a phase transition at low temperatures, and it was assumed to be antifer-

romagnetic. Studies (Broholm et al., 1987) quickly revealed that the ordered mo-

ment was anomalously small, but antiferromagnetic nonetheless and the material was

largely consigned to the category of heavy fermion materials with magnetic order

and a superconducting transition at low temperatures. On its own, this made it an

anomaly in that magnetism and superconductivity were widely regarded as natural

enemies. Heavy fermion superconductors were already being studied for violating

this presumed rule, but the presence of superconductivity in a magnetically ordered

system was particularly curious. Even though superconductivity had been considered

”solved” by the Bardeen-Cooper-Schrieffer (BCS) model thirty years earlier, it was

becoming apparent that there was a great deal still to be understood.

It was realized (Mydosh and Oppeneer, 2011) that the tiny antiferromagnetic
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ordered moment was far too small to account for the entropy change at the tran-

sition, and that magnetic ordering wasn’t the origin of the phase transition. This

began a lengthy process of searching for an order parameter to actually explain what

was happening. Complicating matters is the emergence of an unequivocal antiferro-

magnetically ordered state with modest applied pressure, crossing a first-order phase

boundary from hidden order.

Magnetic fields have a fairly small effect on the hidden order state, and it seems

quite robust. There is evidence that the magnetic field can destroy hidden order and

that it re-emerges at even higher fields (Tripathi et al., 2007), leaving a considerable

puzzle about how it interacts with applied magnetism. The tiny ordered moment

appears to be extrinsic (Matsuda et al., 2008), caused by impurities in the lattice,

and evidence from NMR suggests that hidden order actually suppresses magnetism.

There is unambiguous evidence for the opening of a gap in the density of states at

the hidden order transition. Both magnetic and electronic excitations become gapped

at the transition, and the density of states is strongly suppressed. The scattering rate

drops dramatically as the gap removes scattering states, but the loss of carrier density

initially causes a small rise in the resistivity, giving it a bump at the transition.

Optical spectroscopy is an ideal tool for the study of the electronic excitation

spectrum in such a system. It is possible to measure transitions down to very low

frequencies using fairly simple techniques; 2 meV is not unusual as a low frequency

cutoff for infrared spectrometers, and 3 meV is fairly standard with a pumped helium-

cooled detector and a mercury arc source. Very fine resolutions are available, with 0.1

meV resolution at low frequencies easily achievable and 0.25 meV resolution standard.

It is straightforward to cover several orders of magnitude in frequency using tabletop
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spectrometers and sources.

Ultimately, the hidden order state remains a mystery to this day, despite much

work over the past five years by groups around the world. The possibility of a new

quantum ground state, never seen before, lurking before us in an unassuming shard

of metallic rock is tantalizing to say the least, and the search continues to identify the

physical origin of the ordering. By illuminating the effects of the transition on the

charge dynamics of the system, optical spectroscopy promises insight into the nature

of this fascinating puzzle.

1.2 Thesis outline

The introductory chapters are broken down into discussions of the basic physics of

correlated electron systems in general and heavy fermion systems in particular, a

discussion of the methods of acquisition and analysis of optical data, and a review of

the current state of experimental understanding of the hidden order state in URu2Si2.

A detailed description of the modifications and innovations in the measurement of

reflectance and the analysis of the data that have been made in the process of com-

pleting this work is also included, as in practical terms that is where most of my time

over the last five years has been spent.

The body chapters will describe work done over the past five years in understand-

ing the electrodynamics of URu2Si2. The first paper included is not chronologically

the first paper written; it is an article that was submitted to Philosophical Magazine

for a focus issue on hidden order. It summarizes the optical results on URu2Si2up

to that date, however, and is therefore a useful introduction to the topic. It also

4
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attempts a synthesis of disparate results, and attempts to integrate the various opti-

cal studies into a coherent whole. It therefore makes a good starting point for what

follows. The second paper is focused primarily on the temperatures above the hidden

order state and understanding the Fermi-liquid behaviour of the material in its nor-

mal state. The third paper studies the anisotropic optical conductivity and discusses

the importance of the differences in the optical conductivity between the ab plane

and c axis of the tetragonal structure. This was the first report of the optical con-

ductivity of the hidden order state in the c-axis. Finally, the fourth paper describes

the enhancement of the hidden order and its change to antiferromagnetism when the

crystal is doped with either Os or Fe, and the similarities and differences between the

doping-induced antiferromagnetic state depending on the dopant. This is the first

study of the electrodynamics of the antiferromagnetism in this material.

The concluding chapters include an attempt to bring the results of the different

studies presented in the body together into a coherent picture of the electrodynamics

of the hidden order state, and especially how it evolves with temperature, chemical

pressure, and electronic doping, as well as the other changes or constants in the con-

ductivity both in and out of the hidden order state. These results are then compared

with and integrated into the body of knowledge of the hidden order state from other

experimental probes. The final chapter summarizes the conclusions of this work.

5



Chapter 2

Literature Survey

The hidden order state in URu2Si2 has been the subject of intense experimental

and theoretical investigation over the past several decades, with a burst of activity

in the past six or seven years or so. New techniques as well as improvements in

older techniques have allowed experiments that were previously impossible, while a

range of new theoretical interpretations have both inspired and been inspired by these

new experiments. In this chapter, I will summarize the state of hidden order as it

is currently understood, including theoretical investigations and proposals for the

hidden order parameter and especially the results of recent experiments and what

they mean for the underlying physics as well as the various proposed theories.

The transition at 17.5 K in URu2Si2 was observed in the resistivity as a small bump

(Palstra et al., 1985) and in the specific heat (Palstra et al., 1986; Maple et al., 1986),

which identified it as a second order phase transition. As the interaction between f

electron spins is antiferromagnetic, and as antiferromagnetic fluctuations are proposed

to be responsible for the pairing in the subsequent superconducting state at low tem-

perature (Palstra et al., 1986; Tripathi et al., 2007) it was naturally assumed that
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this phase transition was an indicator of antiferromagnetic ordering. However, sub-

sequent neutron scattering measurements (Broholm et al., 1991) demonstrated that

the maximum ordered moment was no greater than 0.03 µB per U atom. Certainly a

tiny ordered moment, but an antiferromagnetically ordered moment nonetheless.

It was apparent, however, that the antiferromagnetism was insufficient to account

for the entropy quenched at the transition, which was of the order R ln 2 (where R is

the gas constant) (Tripathi et al., 2005). The various alternatives were subsequently

sequentially eliminated. The absence of any lattice modulation ruled out static density

wave order or a structural transition. Neutron scattering (Broholm et al., 1987) ruled

out long-range magnetic ordering. Subsequent work has focused on establishing the

characteristics and phenomenology of the hidden order state, while theorists propose

models that either guide experiment or are informed or contradicted by it.

This chapter is intended to describe the current state of research on URu2Si2 as

it stands at the time of writing. I will describe herein the current research efforts and

their results with a particular focus on the recent experiments of the last eight years or

so; most important experiments prior to that have been described in the introductory

chapter (Chapter 1), but where this is not the case the relevant work will be mentioned

and cited. I will discuss the salient features of some of the models that have been

proposed recently as well. As with any active field with many different groups, both

theoretical and experimental, working at once, there is some confusion about results

and their interpretation. Experiments do not always agree with each other, and

different probes of the same properties find different values for the same physical

quantities. Likewise, many of the models that have been proposed are mutually

exclusive and have more than one way of being compared with present experimental
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data. Where such controversy exists and I am aware of it I will draw attention to it

without necessarily supporting either argument; the merits of the two positions can

be weighed by the reader at their discretion.

2.1 Transport, quantum oscillations, and de Haas/van

Alphen

Measurements of the resistivity (Palstra et al., 1986) of URu2Si2 show that it is a fairly

typical heavy fermion semimetal. At temperatures above Tcoh ∼70 K the resistivity

is large and increases with decreasing temperature as expected for a single-impurity

Kondo effect. Below Tcoh the resistivity decreases as the temperature is lowered, as

expected for the formation of a Kondo lattice state and the onset of coherence. The

resistivity is anisotropic with the c-axis having a much lower resistivity, by a factor of

about 3, but the same qualitative overall behaviour. Figure 2.1 shows the resistivity

and specific heat of URu2Si2.

The transition can be identified in the resistivity by a small bump feature at the

transition temperature (Palstra et al., 1986; McElfresh et al., 1987; Zhu et al., 2009).

This is caused by a competition between the mobility of the carriers and the gapping

of the Fermi surface as the temperature is lowered, carrier density goes down, causing

an upturn in the resistivity, before the carrier mobility increases by a larger amount

and the resistivity turns down again. In the HO state, the carriers exhibit behaviour

typical of a gapped Fermi liquid, and the resistivity can be fit by a Fermi liquid term

and an exponential term that goes like e
∆
T . More recent results (Tateiwa et al., 2012)

suggest that the Fermi-liquid fit is inadequate, and a generalized power law Tn is

8
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Figure 2.1: Left panel: the resistivity of URu2Si2 in both the ab plane and c axis.
The resistivity is anisotropic, and there is a small anomaly at the HO transition tem-
perature, at THO=17.5K. The high-temperature resistivity rises as the temperature
is lowered due to the single-impurity Kondo effect. At the coherence temperature
the resistivity starts to decrease as the temperature continues to fall, as the magnetic
impurities are screened out by the conduction electrons and cease contributing to
scattering. After Palstra et al. (1986). Right panel: the specific heat anomaly at the
HO transition, showing the second order character of the transition and exponential
decrease below the transition. After Maple et al. (1986).

required to fit the data in the HO state. The exponent n varies from 1.5 at zero

pressure up to the Fermi liquid value of 2 in the AFM state under pressure.

Specific heat measurements (Palstra et al., 1985) show a clear signature of a

second order phase transition at the ordering temperature. The right panel of figure

2.1 shows the specific heat of URu2Si2. The effective mass of the carriers can be

estimated (Maple et al., 1986) to be around 25me, where me is the bare electron

mass. This is not compatible with later optics (Nagel et al., 2012) and STM (Schmidt

et al., 2010) measurements, which see an effective mass of ∼5me. Similarly the gap

observed in specific heat is inferred to be on the order of 11 meV, which is much

larger than the gaps observed in conventional spectroscopy techniques such as optics

and ARPES. It is at present not well understood how to resolve this discrepancy, but

it is presumably related to the way that specific heat averages over all the electronic

states and bands.
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2.2 Spectroscopy: Optics and Raman

Much work on the study of the charge dynamics of URu2Si2 has been done by using the

various electronic spectroscopy techniques, each with its advantages and limitations.

The results offer complementary information about the behaviour of URu2Si2 as it

crosses from the heavy-fermi-liquid regime to the hidden order state.

The optical conductivity of URu2Si2 was first studied in the 1980s by Bonn et al.

(Bonn et al., 1988). Figure 2.2 shows the optical conductivity and reflectance data

on URu2Si2 from Bonn et al. It shows a distinct energy gap developing below the

hidden order transition, visible as a sharp absorption line in the reflectance spectrum,

that appears only below 17.5 K. There is a broader suppression of the reflectance in

the region above ∼12 meV with an onset below the hybridization temperature of

70 K, where the resistivity turns over and begins to decrease as the temperature is

lowered. The optical conductivity, which Bonn et al. obtain from their low frequency

measurements by extrapolating the reflectance to higher frequencies by simulating

with Lorentzian oscillators and then performing Kramers-Kronig inversion, shows

that the behaviour of the energy gaps is qualitatively different. The higher-energy,

higher-temperature gap, hereafter referred to as the hybridization gap, is broad, has

no distinct onset, and the spectral weight lost in the gap is not recovered at low

frequency. The lower energy, lower temperature gap, hereafter referred to as the

hidden order gap, is sharp, well defined, and shifts the spectral weight to a peak in

the conductivity that appears immediately above the gap energy.

More work has been done on the optical conductivity of URu2Si2; much of it has

been done by me, however, and forms the body of this thesis, so I will leave the

discussion of this work for subsequent chapters. Likewise, much of the work of other
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Figure 2.2: The optical conductivity (left panel) and reflectance (right panel) of
URu2Si2. The hybridization can be seen as a suppression of the conductivity and
reflectance above 100 cm−1 between 90 K and 20 K. The hidden order is characterized
by a sharp absorption feature in the reflectance at 40 cm−1 that corresponds to the
opening of a gap in the Fermi surface with spectral weight recovery in a peak that
appears immediately above the gapped region in the HO state. After Bonn et al.
(1988).

groups on the optical properties of URu2Si2 is discussed and key points summarized

in chapter 4, and I don’t wish to spoil the narrative flow of my thesis by giving away

the game prematurely, so I will leave further consideration of the work of Guo et al.

and Levallois et al. for later.

Time-resolved terahertz measurements performed on URu2Si2 by Liu et al. (Liu

et al., 2011) show evidence for the existence of two distinct gapping processes, both

with onsets above the hidden order transition. One seems to be associated purely with

the hybridization gap, while tother onsets around 25 K and increases in magnitude

(both delay time and amplitude) as the temperature is lowered. This only adds to

the confusion surrounding the issue of order parameter fluctuations, as the authors

attribute the onset of the second decay process with the appearance of the order

parameter fluctuations suggested by Balatskys team (Haraldsen et al., 2011; Dubi

and Balatsky, 2011). It makes more sense to attribute this second lifetime to the
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other electronic structure changes occurring in the temperature range immediately

above the hidden order transition due to hybridization.

Recent Raman measurements have raised the question of whether and in what

manner the lattice symmetry changes upon entering the hidden order state. The

well-known A2g mode that appears as the hidden order state is entered and roughly

tracks the strength of the transition (Cooper et al., 1987; Buhot et al., 2014; Kung

et al., 2014). It is associated with the D4h space group of the body-centred tetragonal

lattice. Controversy has erupted, however, over whether this mode is pure in the HO

state or leaks into the other polarizations, indicating the weakening of the symmetry.

The nature of the symmetry in the hidden order phase, and whether the tetragonal

symmetry of the crystal is preserved or rendered orthorhombic (Tonegawa et al.,

2014), is still an open question. The suggestion that the very weak orthorhombicity

deduced from x-ray measurements is responsible for the Raman signals in the A1g and

B1g channels (Kung et al., 2014) supports this notion, but its absence in the same

measurements performed by a different group (Buhot et al., 2014) and the extreme

weakness of the signal relative to the scatter of the data points makes me extremely

hesitant to commit one way or the other on this issue. I will note that the weakness

of the signal in Raman scattering is consistent with x-ray measurements, in which

the orthorhombic distortion is on the order of 10−5 (Tonegawa et al., 2014), so I’m

not prepared to throw out the observation as wishful thinking just yet.
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2.3 Scanning-tunneling microscopy and angle-resolved

photoemission spectroscopy

STM measurements have done much to illuminate the electronic structure changes

that URu2Si2 undergoes at the HO transition. A light band that crosses the Fermi

surface above the transition is seen hybridizing at the transition and becomes a much

heavier band with a gap just above EF . This can be seen in figure 2.3. This observa-

tion strongly implies that the hybridization and the formation of the heavy fermion

state (or Kondo lattice state, alternatively) is not complete until the hidden order

transition. The fact that the heavy quasiparticles involved in the transition are known

from specific heat to have an effective mass of ∼25me while the heavy band that forms

at the transition has an effective mass of ∼5me raises further questions about exactly

which quasiparticle bands, and therefore which parts of the Fermi surface, are in-

volved in the transition. The observation from quantum oscillations that there is no

significant change from the hidden order state to the large-moment antiferromagnet

state implies that the electronic restructuring must be similar across both transi-

tions. Two questions are thereby raised: why is the hybridization in this material,

and none of the many other heavy-fermion materials, associated with a second-order

phase transition? And why does this lead to hidden order at zero pressure, but to

antiferromagnetism under so many other sets of conditions (doping, pressure, etc.)?

These questions will, one hopes at any rate, be answered by the final explanation of

the order parameter (whatever that may turn out to be).

A number of other interesting points are raised by the STM measurements of

Schmidt et al. and Aynajian et al. with implications for possible theoretical models

13
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Figure 2.3: The hybridization of the light and heavy bands occurring at the hidden
order transition in two primary directions in k space. Above the transition (top
panels), light hole bands are seen crossing the Fermi surface. Below the transition
(bottom panels) in both directions the light bands have each evolved into two heavy
bands. After Schmidt et al. (2010).
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and proposed order parameters (Schmidt et al., 2010; Aynajian et al., 2010). Neither

sees any evidence for a conventional density wave state, nor any evidence of crystal

field splitting. Aynajian et al. fit their energy gap to a mean-field prediction and find

that it fits nicely, with the caveat that their fit has the gap closing at 16 K instead

of 17.5 K. This they ascribe to their measurements being performed on the surface of

the material and assume that in the bulk it will match specific heat measurements.

However their fit of the gap matches that in the optical conductivity (Hall et al.,

2012) very well, which is certainly a bulk probe. Their measurements therefore in fact

lend support to the energy gap deviating from mean-field behaviour at temperatures

close to the transition.

ARPES measures both the energy and momentum dependence of the quasiparti-

cles, allowing full imaging of the electronic excitation spectrum, with the caveat that

they cannot directly measure states above the Fermi level (as no charges exist to be

excited at these energies) and they are limited to performing surface measurements

on cleavage planes. ARPES therefore is an extremely useful probe for determining

the exact shape of the Fermi surface. Measurements on URu2Si2 reveal a number of

interesting details (Santander-Syro et al., 2009; Boariu et al., 2013; Dakovski et al.,

2014). Among these is the momentum dependence of the energy gap both in the

hybridization temperature regime and in the hidden order state, the characteristics

of the bands crossing the Fermi level and their evolution with temperature, and the

nature of the quasiparticle scattering above and below the transition temperature.

The nature of the bands crossing the Fermi level at the HO transition is a question

that ARPES is particularly well-suited to answering. Early measurements from the

late nineties (Yang et al., 1996; Ito et al., 1999) were able to identify the itinerant U-5f
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character of the bands in the hybridization regime, suggesting that the hybridization

of these electrons was responsible for the increase in effective mass. These results did

not probe the HO state, however, as they were unable to reach sufficiently low temper-

ature, and the correspondence between band-structure calculations and observations

was lacking, leading to a necessary openness of the conclusions to interpretation (Ito

et al., 1999; Mydosh and Oppeneer, 2011). The localized or itinerant character of

the carriers remains a point of contention between competing models of the order

parameter (Mydosh and Oppeneer, 2014), as most measurements are suggestive of

an itinerant character but it is difficult to account for the Ising anisotropy in itinerant

models.

More recent ARPES measurements have illuminated the characteristics of the

electronic structure as the hidden order transition establishes itself in the material.

High-energy ARPES measurements (Santander-Syro et al., 2009) observe a heavy

quasiparticle band cross the Fermi surface and become coherent at THO. This sug-

gests that coherence does not develop in the carriers until the hidden order transition

occurs. This is in contrast to the usual understanding of the resistivity drop in heavy

fermion materials as being the result of the development of coherence as the magnetic

impurities are screened out by conduction electrons, but is in agreement with STS

measurements (Schmidt et al., 2010) (which see hybridization occur only at the tran-

sition) and optics (Nagel et al., 2012) (which sees a strong incoherent background

become gapped at the transition). Further measurements (Chatterjee et al., 2013)

reveal the presence of incoherent heavy bands that hybridize at the HO transition

with lighter conduction bands, forming a heavy Fermi liquid in the HO state.

Time-resolved measurements (Dakovski et al., 2014) indicate that short-lived
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Figure 2.4: ARPES data shows the heavy bands dispersing below the Fermi level in
the HO state. Panel b) and c) show the energy and momentum distribution curves,
respectively, from the integrated intensity in panel a). Panel d) shows the heavy
band near EF that crosses the Fermi level at the transition, as well as the conduction
bands. After Santander-Syro et al. (2009).
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quasiparticles at the Fermi-surface hot spots become much longer lived upon enter-

ing the hidden order state. Measurements comparing the behaviour of the electronic

structure in different crystal directions (Boariu et al., 2013) suggest that the hy-

bridization and hidden order affect different parts of the Fermi surface; a gap of ∼11

meV exists at the X-point above THO and remains unchanged upon entering the HO

state. This is compatible with optical measurements, which put the hybridization gap

around 12 meV. The HO gap, by contrast, opens at the Γ and Z points, and exists

only below the transition temperature. Further measurements (Chatterjee et al.,

2013) once again show hybridization occurring only at the HO transition and as a

sharp change rather than a gradual crossover to a heavy Fermi liquid with a much

lower scattering rate. This further begs the question of why this phenomenology,

which is relatively common in f electron materials, is so different in URu2Si2 and is

associated with a second order phase transition here but nowhere else. The question

remains unanswered, although several ways of addressing it have been advanced such

as hybridization between non-Kramers and Kramers bands (Chandra et al., 2015).

2.4 Neutron scattering

The first neutron scattering results (Broholm et al., 1987) showed that there was a

tiny ordered moment in the HO state, about 0.04 µB per U, ordered antiferromagnet-

ically along the c direction. This order has subsequently been shown to be extrinsic

to the HO state (Matsuda et al., 2008). More recent neutron scattering measure-

ments have illuminated the magnetic excitation spectrum above(Janik et al., 2009)

and below (Wiebe et al., 2007) the transition. Figure 2.5 shows the excitation spec-

trum in the left panel. Above THO, there is a continuum of magnetic fluctuations at
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Figure 2.5: Neutron scattering data on URu2Si2 after Wiebe et al. (2007) (left panel)
and Bourdarot et al. (2010) (right panel). The left panel shows the modes at the
commensurate and incommesnurate wave vectors corresponding to spin fluctuations.
It also shows that the commensurate and incommensurate excitations in the HO state
develop different sized energy gaps. The right panel shows the OP behaviour of the
dynamical susceptibility, suggesting that it tracks the order parameter. However, as
it does not become critical (that is, it does not go to zero at the transition) it cannot
itself be directly related to an order parameter.

the commensurate wave vector Q0=(1,0,0) and at the incommensurate wave vector

Q1=(1±0.4,0,0). At the HO transition these become gapped, with gaps of 2 meV

and 4 meV respectively. The gapping of the incommensurate modes is responsible

for much of the loss of entropy at the transition.

Further neutron scattering measurements Villaume et al. (2008) identified the

gapped inelastic excitations along the commensurate wave vector as a signature of

the HO state. Under pressure, the mode collapses into an antiferromagnetic Bragg

peak. The commensurate excitation spectrum remains gapped and inelastic in the

AFM state, with the gap rising to higher energy. As the commensurate excitations

are associated with the of AFM order, this is reasonable, but it leaves unanswered

what role it plays in the HO state as the nesting is present in both but only in the
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AFM state does it lead to magnetic ordering.

The dynamical spin susceptibility (Bourdarot et al., 2010) at the commensurate

wave vector was measured carefully across THO, and found to have mean-field-like

order parameter behaviour. This can be seen in the right hand panel of figure 2.5.

It does not go to zero at the transition, but rather relaxes slowly as the temperature

is raised. The energy gap of the excitations, meanwhile, has a sudden onset at the

transition, increasing from zero above THO to nearly its full value directly below. The

origin of the gapping, and whether the spin gap drives the charge gap or vice versa,

remains unclear; the authors suggest a dual picture of itinerant electrons responsible

for the spin gap and localized bands gapping at the Fermi level. Bourdarot et al.

extract a Fermi surface gap of ∼7.7 meV, larger than the spin gaps and in rough

agreement with specific heat but much larger than is seen by charge spectroscopies

(Schmidt et al., 2010; Hall et al., 2012). This gap increases suddenly at the onset of

AFM ordering and is then constant in the AFM phase.

2.5 Nuclear magnetic resonance, torque magne-

tometry, and polar Kerr effect

Nuclear magnetic resonance measurements have focused on the magnetism and the

density of states in URu2Si2. Unlike neutron scattering, NMR is a local probe of

magnetism that can identify regions of magnetism and investigate the magnetism at

specific lattice sites. Early NMR work (Matsuda et al., 2001) showed that the AFM

moment in the HO state was the same as in the HO state, and the volume fraction

increased with applied pressure. This indicated that the small antiferromagnetic
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moment seen in the HO state is caused by strain regions in the lattice due to impurities

rather than being a feature of the ordered state. Subsequent work (Takagi et al.,

2007) has confirmed that the SMAFM state is extrinsic and not a characteristic of

the HO order parameter, and further that the HO actually suppresses magnetism at

the Si sites in the lattice, indicating that the HO state is actually incompatible with

magnetic order.

New susceptibility measurements (Okazaki et al., 2013) dubbed torque magne-

tometry detect a susceptibility anisotropy in the basal plane of the tetragonal crystal

structure in the HO state that is not present in the normal state above the transi-

tion, indicating a breaking of the four-fold rotational symmetry present in the crystal

structure. They attribute this to an electronic-nematic state. The anisotropy is not

present in larger samples, however, which they attribute to domain formation. NMR

measurements investigating this feature (Kambe et al., 2011) find an anisotropy that

is much smaller, ∼15 times smaller, in a much larger sample. They exclude domain

formation, since NMR is insensitive to domains as it is a local probe. Instead they

propose a sample-size dependence to the anisotropy, a proposal whose implications

are not yet understood and which requires further investigation. The breaking of

rotational symmetry in the HO state is under theoretical investigation for its im-

plications for the various models that have been proposed (Mydosh and Oppeneer,

2011).

The question of time-reversal symmetry breaking in the HO state arises naturally

from the question of multipoles and magnetic ordering. Although the AFM state is

found to be extrinsic and not related to the hidden order, and that the hidden order

is in fact hostile to magnetism, nonetheless time-reversal symmetry breaking is a
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way to differentiate between proposed models of HO. Polar Kerr effect measurements

(Schemm et al., 2015) detect time-reversal symmetry breaking in the superconducting

state of URu2Si2 but no evidence for TRS breaking in the HO state was seen. This is

in contrast to the NMR and µSR measurements, which see evidence for TRS breaking;

the difference could be the local versus bulk nature of these probes (Mydosh and

Oppeneer, 2014).

More recent NMR results (Shirer et al., 2012, 2013) suggest that the hidden

order produces a suppression of the density of states well above the transition tem-

perature. This is compared with pseudogap data caused by precursor fluctuations in

other materials. However it is not clear that they can resolve the difference between

precursor fluctuations and the expected behaviour caused by the hybridization and

coherence, as optical data has already shown that the density of states becomes sup-

pressed above the transition as expected for a heavy fermion material. The question

of precursor fluctuations is similarly controversial, with ARPES detecting no evidence

for it (Boariu et al., 2013) and at least one PCS paper that is typically taken as evi-

dence for the opening of a gap above the transition (Park et al., 2012) is considered

discredited (Lu et al., 2012) by others in the field and doesn’t agree with other PCS

measurements or any other electronic spectroscopy measurements.

2.6 Antiferromagnetism: Pressure and doping

The tiny antiferromagnetic moment of ∼0.03 µB per U increases to 0.4 µB per U

atom at a pressure of 0.5 GPa at low temperature (Amitsuka et al., 1999). A first-

order phase boundary separates the HO and LMAFM states. µSR (Luke et al.,

2004; Amato et al., 2004) and NMR (Matsuda et al., 2001, 2003) measurements
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demonstrate that the small AFM moment in the HO state is constant but that the

volume fraction increases with pressure across the HO/AFM phase boundary. This

led to the understanding that the tiny AFM moment in the HO state is extrinsic and

caused by stress regions due to impurities creating puddles of LMAFM in the HO

state (Matsuda et al., 2008).

Quantum oscillation measurements (Hassinger et al., 2010) show very similar

frequencies in both the antiferromagnet phase and the HO phase, implying similar

Fermi surfaces. The measurements performed at relatively modest pressures and

fields are probably applicable at higher pressures, and other evidence which sees a

field-reentrant hidden order phase under pressure (Aoki et al., 2009) puts the SdH

measurements squarely in the AFM state. This suggests that the lattice doubling

present in the AFM state exists in the HO state, though the magnetic ordering itself

is absent, and that the order parameter reorders the Fermi surface in the same way

regardless of whether underlying magnetic ordering occurs or not.

The LMAFM state is associated with the AFM wave vector Q=(1,0,0) and the

excitations at this wavevector are not gapped in the LMAFM state (Bourdarot et al.,

2005). In contrast, the excitations at the incommensurate wavevector Q*=(1.4,0,0)

remain gapped in the LMAFM state and the gap increases from ∼4 meV to ∼6.5

meV at a pressure of 1.67 GPa (Villaume et al., 2008). This is accompanied by an

increase in the temperature of the HO/AFM transition, from 17.5 K in vacuum to

over 20 K at 2 GPa pressure, as seen in the specific heat (Fisher et al., 1990) and

resistivity (Jeffries et al., 2007). The gap inferred from both resistivity and specific

heat increases with increasing pressure, and there are no changes to the behaviour of

the transport properties as HO gives way to LMAFM with increasing pressure.
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Recent point contact spectroscopy measurements (Lu et al., 2012) show the same

increase in the transition temperature with pressure that other measurements do.

Notably, the high temperature onset of the transition suggested by other PCS mea-

surements (Park et al., 2012) was absent in their low pressure data and the asym-

metric twin peak structure emerged only below the transition temperature both in

vacuum and under hydrostatic pressure; the authors attribute this to the softness

of their contact using silver epoxy. They do note that after pressure cycling, they

observe the onset of hidden order persisting up to higher temperatures, indicating an

extrinsic effect. In spite of the increased transition temperature under pressure, no

increase in the gap associated with the formation of the ordered state is observed, in

contradiction of specific heat and resistivity measurements as well as the behaviour

of the incommensurate neutron mode (Villaume et al., 2008) and, as will be shown,

optical spectroscopy.

Neutron scattering experiments under pressure track the evolution of the magnetic

modes into static order in the AFM state. The Q=(1,0,0) Bragg peak associated with

antiferromagnetic order is strongly enhanced (Amitsuka et al., 1999) by the appli-

cation of pressure, while the gapping of this mode in the HO state disappears upon

entering the AFM phase (Bourdarot et al., 2005). The incommensurate excitations

at Q*=(1.4,0,0) remain gapped, by contrast, and indeed the size of the gap is consid-

erably enhanced by the application of pressure (Villaume et al., 2008).

Recent studies have shown that isoelectronic doping of Fe (Kanchanavatee et al.,

2011; Das et al., 2015) or Os (Kanchanavatee et al., 2014; Wilson and Luke, 2015) onto

the Ru sites induces antiferromagnetism without the need for hydrostatic pressure.
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The question of whether this antiferromagnetic state is equivalent to the pressure-

induced one is undecided. Simple chemical pressure seems not to be the mecha-

nism responsible for the antiferromagnetism in even the Fe-doped material (Wil-

son and Luke, 2015) but, unlike the antiferromagnetism induced by doping with Rh

(Yokoyama et al., 2005) which reduces the transition temperature, both Os and Fe

doping raise the transition temperature before crossing a phase boundary to anti-

ferromagnetism, just like hydrostatic pressure does. The most reasonable conclusion

at this point is that the doping induces antiferromagnetism by the same mechanism

that hydrostatic pressure does, even if the magnetic moments are not the same (Das

et al., 2015; Wilson and Luke, 2015) as the hydrostatic pressure case.

2.7 Comments on theoretical models

A number of different models have been proposed to explain the phase transition in

URu2Si2. Sometimes, proposals for the order parameter come directly from exper-

iment, when some quantity or other is found to have the temperature dependence

expected of an order parameter from mean-field theory (the hybridization observed

by Schmidt et al. for example (Schmidt et al., 2010)). Most, however, are proposals

based on some sort of calculation, showing that the properties of a proposed model

fit those of the HO state.

Band structure calculations (Elgazzar et al., 2009; Oppeneer et al., 2011) have

recently focused on identifying the nesting vectors and hot spots in the Fermi surface

associated with the hybridization-to-antiferromagnetism transition under pressure.

This allows calculations to be done on well-understood states involving long-range

magnetic order, which means the tools of conventional condensed matter theory can
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be brought to bear on the problem of URu2Si2. As the Fermi surface is believed to

be the same (Hassinger et al., 2010) in the LMAFM state and the HO state the

calculated band structure and Fermi surface should be applicable in the HO state.

As a result, the electronic band structure is well understood in the HO state, even

though what creates the ordering is still unknown.

As long-range magnetic dipolar ordering has essentially been ruled out as the

driver of the transition, perhaps naturally several theories have proposed higher or-

der multipoles as being responsible for the hidden order state, including quadrupo-

lar, octupolar, dotriacontadipolar, and hexadecapolar ordering (for a summary, see

Mydosh and Oppeneer (Mydosh and Oppeneer, 2014)). Most of these have been

excluded experimentally; hexadecapolar ordering remains a possibility though there

is no direct evidence for it.

At present, theories of the HO are divided into categories of either itinerant or

localized models. The localized models face the difficulty that there is no evidence for

local moments or crystal fields, while the itinerant models have difficulty explaining

the Ising anisotropy and the absence of any in-plane magnetic moment (Mydosh and

Oppeneer, 2014). Among the itinerant models, the difference between the incommen-

surate and commensurate wavevectors as the ordering wavevector is a distinguishing

feature between several of them, although several others have been shown not to

require in-plane magnetic moments that have not been detected. Among the local-

ized models, of particular interest from the point of view of interpreting optical data

are the models of Haule and Kotliar (Haule and Kotliar, 2009) and Chandra et al.

(Chandra et al., 2013, 2015).

The model of Haule and Kotliar proposes an arrested Kondo hybridization leading
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to a hexadecapolar ordering at low temperatures. Their complex order parameter

has a real part associated with the HO state and an imaginary part that leads to

an antiferromagnetic state; as there is no mixing between the real and imaginary

parts there must be a phase transition from one to the other. Both of their order

parameters have Q=(1,0,0) as their ordering wavevector. Aside from the absence of

any crystal fields in the system (or at least their ability to elude detection so far),

resonant x-ray scattering may be the only way to confirm or refute this model for

certain; circumstantial evidence from optics may support it, however, as we shall see.

The model of Chandra et al. has been dubbed hastatic order, from the Latin

”hasta” for spear. They suggest that hybridization of a non-Kramers doublet leads

to broken double-time-reversal symmetry in the HO state. This leads to a second-

order phase transition upon hybridization, rather than the usual gradual crossover

from hybridization of a Kramers doublet. This proposal naturally explains the large

Ising anisotropy as well as the origin of the hybridization at the transition. It further

naturally accommodates the antiferromagnetism induced by applied pressure, as both

result from the same order parameter. The trouble is that hastatic order predicts

a small in-plane magnetic moment that has been ruled out by neutron scattering

measurements (Das et al., 2013). Current questions surrounding whether purely

itinerant models can fully explain the Ising anisotropy and whether domain formation

is possibly responsible for the absence of an in-plane moment in neutron scattering

are yet to be resolved, but the theory remains promising.

The model of resonant impurity scattering proposed by Maslov and Chubukov

(Maslov and Chubukov, 2012) deals specifically with the case of Fermi-liquid-like

scattering of carriers in the case of URu2Si2. In this picture, it is not only the usual
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electron-electron scattering that leads to an observed quadratic dependence of the

scattering on temperature and frequency, but the presence of resonant impurities also

contributes and gives a quadratic dependence to the scattering in both T and ω. The

proportionality constant between the T and ω terms then gives the relative strength

of each effect. This issue is explored in more detail in subsequent chapters.
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Chapter 3

Experimental techniques and

methods of analysis

3.1 Infrared reflectance spectroscopy

Infrared spectroscopy presents its own challenges, both in managing frequency ranges

and in performing measurements. In these experiments, the technique used was

normal-incidence reflectance Fourier-transform spectroscopy.

3.1.1 Fourier transform infrared spectroscopy

Optical measurements are useful because they give the energy-dependence of the

optical properties of the material being examined. Spectroscopy requires, therefore,

measuring the reflectance at every frequency of light incident on the sample. The

simplest way to do this is by shining light of discrete frequencies on the sample and

measuring the reflectance; in practice, finding enough lasers or LEDs to cover the
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entire spectrum is impractical. An alternative would be to take a beam of white light

and decompose it into different frequencies using a prism or a diffraction grating.

There is, however, a better way.

Fourier-transform spectroscopy uses a Michelson interferometer to project an in-

terferogram onto the sample. A coherent beam of light is passed into the interfer-

ometer cavity, where it is divided into two beams by a beamsplitter. These beams

travel down the ”arms” of the interferometer, reflect off of mirrors (a scanning mirror

and a fixed mirror, respectively) and then are recombined and pass into the sample

compartment.

The position x of the scanning mirror along its track is recorded along with the

intensity I of light at the detector. This is then plotted as an interferogram. As

the mirror scans, each frequency gives a minimum in its intensity when the scanning

mirror is at a position that causes the optical path to differ from that passing through

the other arm of the interferometer by a factor of λ/2 where λ is the wavelength. When

the path lengths are equal, the intensity is at its maximum value as all frequencies

interfere constructively. The interferogram is built of many different signals, each with

a different wavelength. This fact allows the interferogram to be Fourier transformed

to give the frequency dependent power spectrum P (x) using the equation

P (ω) =
1

2π

∫ ∞
0

I(x)e−iωxdx (3.1)

FTIR offers a number of advantages over conventional diffraction grating spec-

trometry. There is no loss due to the grating and no higher-order diffraction effects.

Stray light is much less of a problem as only the modulation of the light contributes to

the signal. The resolution is controlled by the length of the scan and can be increased
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simply by increasing the distance that the mirror moves. Interpolation is easy; the

edges of the interferogram can have zeros added to them to provide additional data

point density.

A concern is the apodization, or the process by which the signal, which will typi-

cally be close to zero but not exactly zero at the edges of the interferogram, is brought

down to zero for the Fourier transform. Simply adding zeros to the edges of the inter-

ferogram will introduce a sudden discontinuous jump, which in general has a broad

spectral component and can show up as additional, spurious noise in the spectrum.

A variety of methods for apodization exist, in practice for the larger samples studied

here they were not found to give any difference to the noise.

3.1.2 The Bruker IFS 66v/s measurement system

Many of the measurements included in this thesis were performed using a commercial

Bruker IFS 66 v/s spectrometer (hereafter referred to simply as ”the Bruker”). The

Bruker can be seen in Figure 3.1. It includes sources for the frequency ranges from

the far infrared to the ultraviolet, and a variety of useful optical components. It

includes a He-Ne laser for proper calibration of the position of the scanning mirror

so that each scan is measured to a high accuracy.

The Bruker uses water-cooling to keep the sources from overheating, and an air

track for the scanning mirror. The source is selected by the OPUS program but must

be turned on manually with the external power supply. Four sources are available:

mercury arc lamp, Globar blackbody source, a tungsten filament source, and a deu-

terium lamp, for the far, mid, and near infrared and the ultraviolet, respectively. The

image size is controlled by a rotating aperture wheel and a plane mirror directs the
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Figure 3.1: Schematic representation of the Bruker IFS 66 v/s spectrometer. The
light path is shown by the dashed line and the individual components are labelled.
After Purdy (2010).

light into the interferometer compartment.

One of the most important features of the Bruker system is the beamsplitter.

Each frequency region has a beamsplitter optimized for those wavelengths. The far

infrared region uses two different beamsplitters, both made with a mylar (polyethylene

terephthalate) coating of different thicknesses. The 50 micron mylar beamsplitter is

used for the very low frequencies, with energies between 2 meV and 6 meV, while a

6 micron beamsplitter with a germanium coating used from 5 meV to 60 meV. The

thin mylar beamsplitter produces fringes that interfere with the measurements and

so are somewhat limited in their frequency ranges. A KBr beamsplitter and a quartz

beamsplitter are used in the middle infrared and near infrared/visible/ultraviolet,

respectively.

Within the Bruker the light is controlled by a series of mirrors that can be used
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Figure 3.2: The Sciencetech SPS 200 spectrometer (left) showing the gold roof mirrors
and the wire grid polarizers. The geometry of the Martin-Puplett spectrometer is
shown in the right panel (from Martin and Puplett (1970)).

to focus the light onto the sample. The light enters the main compartment from the

interferometer by reflection off of an ellipsoidal mirror. It is directed by two plane

mirrors onto a parabolic collection mirror that focuses the light at the sample. The

sample acts as a plane surface that reflects the light back to another parabolic mirror

that focuses the light at the detector. The width of the light beam reaching the

sample is controlled by an aperture in front of the first collection mirror at the focal

point of the ellipsoidal mirror to eliminate stray light.

3.1.3 The Sciencetech SPS 200 measurement system

The Sciencetech SPS 200 polarizing interferometer (”the SPS” hereafter) operates on

a slightly different principle to the Bruker’s Michelson interferometer. The SPS is

a polarizing roof-mirror interferometer that uses wire-grid polarizers and polarizing

beamsplitters as its optical components. It is optimized for use in the far infrared,

with large mirrors that use a gold coating. The SPS is shown in Figure 3.2.
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The SPS includes a scanning-mirror interferometer but with additional polarizers

for use in Martin-Puplett mode. The input polarizer is at 45 degrees to the beam-

splitter. The roof mirrors flip the polarization of the light, and the output polarizer

is once again at 45 degrees to the beamsplitter polarizer. The result is that the light

is elliptically polarized with ellipticity dependent on the path difference between the

two arms of the mirror when it reaches the output polarizer. The beam that passes

through the output polarizer is linearly polarized with intensity varying with path

difference, as in a Michelson interferometer.

3.2 Experimental procedure

Actually carrying out the experiments is a complicated process that often takes many

hours at a time and that cannot, sadly, be spread out over several working days

because of the limitations of the detectors. Over the past five years, I’ve spent a

great deal of time tweaking and optimizing the experimental procedure, and then

doing it all over again for a new measurement system. Fortunately, I was not called

upon to make my own samples, and I am indebted to those who provided the materials

that have been used to get the data that is now in this thesis. I will, therefore, not

dwell on the procedure of actually growing crystals, which is described briefly in the

manuscripts that form the body of this thesis.

3.2.1 Preparing and aligning the samples

Preparing samples for optical measurements involves preparing and mounting the

samples themselves on brass cones, aligning the cones so that the light reflected by
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the sample actually hits the collection mirrors, and then aligning the mirrors so that

the light hits the sample and then hits the detector. Sample preparation begins when

the sample enters the lab. It is logged, its size and shape are recorded, and it is stored

in a desiccator in a clearly-labelled container. If it is not atmosphere-sensitive it can

be stored in an appropriate box, such as a toolbox or fishing-tackle box.

In order for a sample to be useful for optical measurements, it must have a few

key characteristics. Ideally, it will be a large single-crystal. It will have a flat, smooth

surface suitable for reflectance measurements on one side, and a parallel flat surface

that need not necessarily be smooth on the other side. The reflecting surface will

need to be either a cleavage plane or, where this is not possible, it will need to be

polished smooth. Typically this will be smoother than half the wavelength of the

light that is being used. Different powders of Al2O3 act as an abrasive to smooth out

the roughness of the surface caused by cutting.

In the case of URu2Si2, polishing the sample seemed to destroy the optical signa-

ture of the hidden order for some reason. Small fissures in the surface or other surface

damage seems the likely culprit, but despite being mirror-smooth in the visible the

infrared reflectance no longer even showed the phonons characteristic of the material.

To a lesser extent cutting the sample had the same effect, though not as strong. As

URu2Si2 has a cleavage plane in the ab-plane this is the one that typically gets the

most attention but in order to measure the c-axis, the samples needed cutting. A

solution was required. In the end, it turned out that simply cutting the sample and

then washing the surface in HF acid was sufficient to restore the optical properties

of a clean surface. Discovering this took considerable trial and error, many failed

experiments, a lot of time trying different acids, and a half-dozen melted pairs of
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Figure 3.3: The samples, mounted on cones, which are in turn mounted on the copper
sample holder that is attached to the cryostat. The aligning screws are visible on the
cones. The samples depicted here are Sr2IrO4 and are less than 1 mm2 in size.

tweezers.

The sample is washed with acetone to remove any surface contaminants (as

URu2Si2 does not react with acetone and acetone evaporates without leaving any

residue) and then attached to a brass cone using five-minute epoxy. The samples

mounted on cones are shown in figure 3.3. The purpose of the cone is to direct any

light that does not hit the sample away from the collection mirror, so any surface

not covered by the cone must be at an angle, sloping away from the light path. This

means that the flat surface on top of the cone where the sample is mounted should be

approximately the size of the sample to maximize the area of contact for the epoxy

but no larger than necessary. As a result, each cone must be machined specifically

for the sample with which it is to be used. A CNC milling machine and lathe are

used to make the cones out of brass rods.

In each cone, there are six screw holes, two of which are threaded. The holes that
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are not threaded are used to screw the brass cone into the copper sample holder. The

threaded holes are used for set screws. The angle of the cone can be adjusted using

the screws.

The alignment procedure is as follows. First, the reference mirror on its cone is

mounted onto the copper sample holder. The cone must be in a neutral position

vertically (the surface of the sample is not tilted up or down relative to the sample

holder) and should be about the mid-point of its range of motion horizontally. The

set screws are tightened enough that the cone is held firmly in place and cannot

move. The cryostat is then mounted onto the translating stage and positioned so

that the reference is directly in the light path. The copper sample holder is then

rotated carefully on the cryostat until the image from the reference is centred on the

collection mirror and screwed into place.

At this point, the sample cones are mounted onto the sample holder, loosely and

without tightening the set screws. The cryostat is then mounted in a bracket that can

translate forwards and backwards, and a laser is shone onto the reference so that the

reflected beam hits a paper target. The location of the reflection is marked, and the

cryostat is translated so that the laser now hits the first sample at the same location

that the reference was previously. The reflected beam should be coincident with the

mark from the reference reflection; if it is not, the screws are tightened or loosened in

order to move the image onto the target. This procedure is repeated for the remaining

samples.

Once it is time for the measurements, an Al cylinder used as a radiation shield

is screwed into place covering the copper sample holder. This shield has holes in it

through which light can reach the samples but which will reflect any other radiation
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that would be incident on the copper. The cryostat is then mounted onto the trans-

lating stage with a rubber o-ring to seal the vacuum. This o-ring should be carefully

inspected for damage as it tends to wear at the edges, and greased lightly before each

use. The cryostat is held in place by six threaded rods that are bolted on each side.

As the cryostat arm that includes the sample holder and the flange that seals the

vacuum are not perpendicular to each other for some reason, the bolts must be left

loose on one side so that the cryostat arm and sample holder remain centred in the

sample chamber.

With the cryostat installed and sealed, the evaporator plate is screwed into the

evaporator (see below) and the leads tested for grounds. The evaporator box is

mounted onto the bottom of the sample chamber and sealed into place. At this

point, the sample chamber can be evacuated using the mechanical pump and the

turbopump. There is a window between the sample chamber and the spectrometer

itself to keep the two vacua isolated; this window must be correct for the spectral

region of interest to ensure that it is both transparent and contains no absorption

features in these frequencies.

With the pumps switched on, the sample chamber must be pumped for at least

three hours to ensure good vacuum, or until the pressure gauge reads below 5 mTorr.

The transfer line to the liquid helium storage dewar can then be inserted into the

cryostat to begin cooling. Once this is done, with the detector in position, the correct

beamsplitter for the spectral region of interest installed in the spectrometer, and the

source activated, the reference is moved into the light path and the collection mirror

adjusted so that the signal at the detector is maximized. At this point, the elliptical

mirror that shines the light onto the mirror should be moved as little as possible to
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avoid having light fall on the aluminium radiation shield.

If the spectral region under consideration is the mid-infrared (MIR) or above,

the auto-align function of the Bruker can be used to align the fixed mirror in the

interferometer to maximize the signal. This tilts the mirror to ensure the greatest

overlap of the two beams in the interferometer at the sample, and uses the detector

interferogram signal to determine when it has the optimal alignment. The sample

positions are then optimized: the cryostat is moved so that the next sample passes

the light path, and then is slowly lowered into the beam until the detector signal is

maximized. The motor position for each sample is recorded and will be fixed from

this point on, though this step will be repeated for the reference at each temperature

point down to 50 K (below which thermal expansion effects are negligible).

Once the signal has been maximized at the detector, the alignment is complete.

3.2.2 Temperature dependent measurements and the self-

reference method

The measurement system used for these experiments is capable of achieving low tem-

peratures with high stability. Temperature stability is not crucial in many cases as

reflectance changes in the far infrared at very low temperatures are generally negligi-

ble over a degree or two. In the case of URu2Si2 however, in the HO or AFM state the

depth of the absorption can change by a factor of 2 or more depending on how close

to the transition the measurement is. Temperature stability must be better than 0.1

degrees.

A large dewar of liquid helium is used to cool the sample. A transfer line is inserted

into the dewar, carefully controlling the pressure in the storage dewar as the transfer
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line is lowered into the liquid. The other end of the transfer line is inserted into the

cryostat so that the liquid helium contacts the metal surface of the cryostat base.

Into this is screwed a large copper sample holder that exchanges the heat between

the sample cones and the liquid helium cryogen. A helium return line is connected to

the storage dewar in order to release the pressure that slowly builds up, and another

is connected to the cryostat exhaust port.

The temperature is controlled by means of balancing the heat applied by the heater

and the cooling provided by the helium. Stabilizing the temperature is done using

a PID controller attached to the heater. The PID settings are adjusted according

to the temperature desired, as the response to changing heat input depends on the

temperature. The response to greater heat input is much faster at low temperatures,

both because of the small heat capacity and the much smaller temperature gradients

once equilibrium has been achieved at low temperature.

In order to get good data at low temperatures that show the temperature-dependence

of the material, two competing priorities need balancing. The first is that, on the

one hand, scanning for longer times reduces noise. On the other hand, scanning for

too long can introduce drifts to the system, as tiny changes in the equilibrium tem-

perature of the detector can shift the baseline of the measurements; small changes

in temperature slightly affect the optical path, and so on. The length of time spent

scanning needed to achieve low noise also depends heavily on the physical size of

the sample. For most samples with areas on the order of 5-10 mm2 as little as five

minutes scanning time yields noise less than 0.2%, but for smaller samples or when

greater accuracy is needed scanning times as long as 15 minutes can be used.

The translating stage that moves the samples into the measurement position can
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accurately reproduce the position of the motor, but the sample itself can have tiny

variations in its position due to the looseness of the chain that turns the threaded

rods, slipping of the stage on the rods, or other factors. Because of this, there is

inevitably greater noise in the measurements of a sample after motion. In order

to avoid this problem, temperature ratios are measured using what I call the ”self-

reference” method.

The procedure for doing this is as follows: the sample position is held fixed while a

complete reflected spectrum is measured on the sample at a chosen reference temper-

ature. When measuring a phase transition, this reference temperature must be above

the transition temperature but not so high that thermal expansion of the sample

holder becomes important. The temperature is then lowered to the base temperature

of the apparatus, around 8 K depending on the stability desired. A complete spec-

trum is measured on the sample at the lower temperature, taking care to allow the

temperature to stabilize within at most 0.1 K. The sample is then warmed back up

to the reference temperature and another complete spectrum is measured.

The only variations between the spectra at the reference temperature and lower

temperature will be due to real physical effects and ”drifts” in the system (drift

being a catch-all term for the various ways the baseline can shift due to temperature

variations, optical path changes, and so on). Measuring the sample at the reference

temperature twice, before and after the lower temperature of interest, allows me to

eliminate the effects of drifting by averaging the two and using the average as the

reference spectrum. In this way, the sample at a fixed temperature acts as its own

reference sample. This is what is meant by ”self-reference”.

By using the self-reference method, I achieved signal-to-noise ratios of 500:1 or
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better on samples as small as 2x2 mm. It also considerably reduces the length of time

required for the measurements, by cutting down to a minimum the number of times

the mirror needs to be scanned to only when the sample being measured is changed,

and cutting down on the number of measurements needed after evaporation (see next

section) to only one temperature below 50 K.

The self-reference temperature ratio method works only below about 50 K for

several reasons. One is that the thermal expansion of the copper sample holder starts

to become important above about 50 K compared with the lowest temperatures.

Another is that above 50 K controlling the temperature becomes much more difficult,

as the amount of heat required to change the temperature by a few degrees becomes

large compared with how quickly helium can be applied to cool the sample.

The difficulty can be mitigated somewhat by changing the temperature very slowly

to avoid strong temperature gradients, but above 50 K the time needed to achieve

temperature stability becomes much longer than the time over which systematic drifts

become important. As a consequence, measurements of the gold mirror are needed

at every temperature and the self-reference method no longer works. In addition, the

position of the sample in the light beam shifts and the new optimal position must be

found by repeating the optimization procedure described above.

3.2.3 The evaporation of a known-reflectance material and

the absolute reflectance

In order to account for the variable geometry of the sample, some sort of reference

correction is needed. In transmittance measurements this is easy to do; one need

only shine the same light through an aperture of the same size without an absorbing
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Figure 3.4: The evaporator plate with tungsten filaments wound into coils attached to
the mounting screws. Gold wire can be seen wrapped around the coils of the topmost
tungsten filament.

sample in the way and the job is done. In reflectance measurements, the challenge is

somewhat greater as in practice it is generally not feasible to prepare samples with

a specific convenient geometry or to prepare a reference the same size and shape as

the sample.

In order to solve this problem, it is convenient to evaporate a material of known

reflectance onto the surface of the sample. In most cases, gold is a suitable choice

because it evaporates easily and does not bond to the surface of the sample, so it

can be removed with a piece of scotch tape and the sample can be re-used without

any further work. However, the reflectance of gold, while >99% in the far infrared,

falls to ∼98% by 104cm−1 and to only 37% by 2.2 ×104cm−1. In measurements of

the ultraviolet, then, Al is used instead. Because this is much harder to remove

from sample surfaces (and on some samples impossible without polishing) the UV

measurements are typically only done after all other measurements are complete.
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To evaporate gold onto the sample, a special evaporation chamber is used. Figure

3.4 shows the evaporator plate with tungsten filaments. The evaporator consists of a

metal plate through which screws are threaded. The screws are electrically isolated

from the metal plate with a vacuum-tight epoxy. Outside the box, wires are attached

to the screws that lead to the power supply. On the inside of the box, tungsten

filaments that have been wound into coils are held in place around the screws by a

pair of washers sandwiched between two nuts.

Preparing the evaporator coils involves considerable work. First, the carbon coat-

ing on the tungsten wire must be sanded away, along with any oxidized tungsten.

Then, three pieces of gold wire measuring 6 mm in length are tightly wound a min-

imum of three times each around the tungsten filament approximately 5 mm apart.

The tungsten wire is then wound around a hexagonal hex key 3 mm in diameter to

make a coil. The ends of the coil must be parallel, and must be bent to wrap around

the screws in the evaporator plate. No part of the coil can touch the plate, another

screw, or the sides of the evaporation chamber.

There are two principle challenges with the evaporation. The first is determining

the correct current to use; the tungsten must heat up enough to melt and evaporate

the gold in vacuum, but not so much that the evaporation happens at the wire rather

than on the surface of the droplet. If the gold is heated too much the vapour will

detach the droplet from the wire before the evaporation can complete.

The second challenge is ensuring that the gold droplets do not run together and

fall off of the wire under their own weight. Through careful testing, we determined

that for tungsten wire measuring .005 inches thick the procedure should be to use 3

pieces of gold wire separated by approximately one half of a full turn of the coil, and
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an applied current of 3 A for 20 s followed by 4 A for 10 s. This ensures complete

evaporation of the gold. If this procedure is done incorrectly, solid beads of gold will

be found in the sample chamber or evaporator box after the experiment is complete.

In order to evaporate gold, the sample must be warmed up. Typically it is warmed

to room temperature. This allows temperature stability to be easily maintained while

measurements before and after the gold evaporation are carried out to ensure that it

has been successful. Occasionally, the reflectance of the reference sample will change

slightly after the evaporation. This may be due to a small amount of light hitting

the radiation shield that now has gold on it, or to some amount of tungsten being

deposited on the reference during the evaporation.

Once the evaporation is complete, the sample is cooled back down and the gold

spectrum is measured on the sample at the original reference temperature. The

absolute reflectance at the reference temperature is then computed using the following

equation:

Rabs(sample) =
R(sample)

R(mirror)
× Revap(mirror)

Revap(sample)
×Rcorr (3.2)

where Rabs is the absolute reflectance, Revap indicates the reflectance is measured after

gold evaporation (or Al as the case may be), R(sample) is the spectrum reflected by

the sample, and R(mirror) is the spectrum reflected by the gold reference mirror.

Rcorr is a correction given by the equation

Rcorr =
R(ref, 295K)

Revap(ref, 295K)×Rabs(Au,Al)
(3.3)

which corrects for any changes in the mirror spectrum due to the evaporation as
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well as the reflectance of the material evaporated onto the sample surface. The

temperature-dependent absolute reflectance of the sample is obtained by multiplying

the temperature ratios by the absolute reflectance at the reference temperature:

Rabs(T ) =
R(T )

R(Tref )
×Rabs(Tref ) (3.4)

It is possible to forego the measurements at room temperature when time is the

determining factor, such as a long experiment when helium in the detector is running

out. In this case, the evaporation can be done as low as 180 K, the temperature at

which water ice sublimates in vacuum (water ice is the last contaminant to sublimate

as the sample warms). It is advisable, however, to do the evaporation no lower than

200 K as the rapid warming of the system creates strong temperature gradients and it

is impossible to ensure that the sample temperature is the same as the thermometer

temperature. Doing this saves an hour or two over warming to room temperature at

the cost of being unable to track the success of the evaporation and stability of the

reference signal.

3.2.4 Detector preparation and spectral range considerations

Each region of the spectrum has its own combination of beamsplitters, windows,

filters, sources, and detectors. Preparing the detectors can range from the relatively

straightforward (plug it in, turn it on) to a process that takes up as much as half of

the experiment time.

For the mid-infrared and near-infrared, a mercury-cadmium-telluride (MCT) de-

tector is used. MCT is a semimetal with a tunable bandgap, making it ideal for
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infrared detectors since the bandgap can be tailored specifically to the frequency re-

gion of interest and the material is transparent at lower frequencies. In order to use

the MCT detector, it is cooled with liquid nitrogen and biased with a pair of large

boat batteries. A preamplifier connects the detector to the power supply, and its

output is fed into the Lakeshore electronic low-noise lock-in preamplifier.

With the MCT detector, the frequency ranges of interest necessitate the use of a

KBr window rather than the polyethylene window used in other parts of the spectrum.

This window separates the sample chamber from the spectrometer and must be fully

transparent in the frequency range being studied. The KBr window is hygroscopic,

however, and must be stored in a desiccator when not in use. If it absorbs water from

the air it becomes opaque and must be replaced. The KBr beamsplitter is also used

in the MIR region; in the NIR a quartz beamsplitter is used as it is more efficient in

the higher frequencies.

The two Si bolometers used in the experiments are very similar, with the exception

that one is designed to work at 4.2 K and the other is designed to work at 1.2 K.

The IR Labs bolometer is shown in Figure 3.5. Both are cooled with liquid helium

(LHe) and the 1 K bolometer is pumped down to lower temperature. The procedure

for using them is the same up until pumping the LHe starts.

The bolometer jacket must be pumped until the pressure inside as measured by

a vacuum ionization gauge reads 4 x 10−5 Torr or lower; using the diffusion pump

with the liquid nitrogen trap, however, it should be possible to achieve a vacuum

approximately ten times better. It is important that the jacket be opened to the pump

as slowly as possible to ensure that the sudden pressure change does not damage the

Al foil radiation shielding or the sensitive wiring within.

47



Ph.D. Thesis - Jesse S. Hall McMaster - Physics

Figure 3.5: The IR Labs bolometer system. This is a representative example, the
actual bolometers used vary slightly in model design as well as in modifications (the
system depicted here does not have a resistance thermometer on the cold plate, for
example). The image is taken from the IR Labs website.
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Once the pressure is low enough, the precooling can begin. First the bottom pot

(see Figure 3.5) is filled with liquid nitrogen using a long, thin tube that reaches

down to the bottom. Once this is filled, the top pot can be filled with liquid nitro-

gen. The thermometer on the cold plate is used to monitor the cooling; once the

resistance is high enough, typically ∼140 Ω, and is no longer climbing, the system

has reached thermal equilibrium at liquid nitrogen temperature. The liquid nitrogen

is now expelled from the bottom pot using pressurized helium gas; it is essential that

the tube used to fill the pot with nitrogen reaches the bottom of the pot so that all

of the liquid is expelled. The helium pot is then filled with liquid helium, with the

resistance thermometer reading at least 800 Ω once liquid has begun to collect in the

pot.

Once the bottom pot is full, the procedure diverges for the two detectors. The

4 K detector has a short piece of rubber hose connected to its exhaust port, to stop

any air from getting into the helium pot. The 1 K detector must be pumped, which

means connecting the pumping port and slowly opening the helium volume to the floor

pump. The resistance thermometer will then climb from 860 Ω to between 7.5 and

11.5 kΩ. It takes several hours for the detector to stabilize at its lowest temperature,

and so for the 4 K detector it is usually advisable to let it settle overnight. With the

1 K detector this is not always practical as the holding time is typically only about

20 hours, so for longer experiments repeated scans are used to assess the stability. If

the stability is within 0.1% over half an hour, that is sufficient for measurements to

begin.
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3.2.5 Fault identification and repair

As with so many things, there are more ways for an optical experiment to fail than

there are ways for it to succeed. Because of this, a good deal of my time in the lab

was spent identifying problems and then fixing them. It is easy to underestimate the

difficulty of doing this. In practice it is rarely so simple as looking at an obviously

malfunctioning piece of equipment, seeing a broken wire, exclaiming ”well, there’s

your problem”, and resolving the deficiency to the cheers of the adoring public. What

actually happens is that the noise is too large, or the stability too poor, or the

evaporation doesn’t work, or the motor for the translating stage seizes up for no

apparent reason. A test protocol must then be designed, the system rigorously and

carefully tested, the fault painstakingly isolated, and the defect corrected. Fixing

the problem may be as simple as replacing a faulty component or as complex as

re-designing part of the measurement system.

Temperature control difficulties are the most persistent and also the easiest to

address. One such problem is that over time, the base temperature will gradually

creep upwards, so that while once you could achieve 7 K with decent stability, now

12 K is a lucky break. The culprit here is oxidization of the copper sample holder,

which over time turns dull and black. Removing the surface oxide with metal polish

until it is smooth and shiny immediately corrects the problem.

Stable low temperature measurements often depend on how much liquid helium

is actually in the storage dewar. If it is full, the volume available for boil-off gas is

small and the pressure inside the dewar rises very quickly, increasing the flow rate

of helium in the transfer line. As the flow rate increases, the pressure at the end of

the line pushes back on the flowing liquid, creating pressure oscillations that result in
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wildly swinging temperatures. The heater tries to compensate for this but is unable to

change the applied heat quickly enough, and the helium boiling at the heater makes

the problem worse. If this happens, the only solution is to reduce the pressure in

the storage dewar to ∼2 psi or so, raise the temperature of the sample above 20 K,

and allow the oscillations to die off before trying to slowly cool the sample to base

temperature again, monitoring the pressure in the storage dewar carefully.

Systemic drifts are also a problem that must be overcome for successful mea-

surements. In theory, the reference mirror corrects for drift. In practice, due to

non-linearities in the detectors, the correction is imperfect and the reference mirror

can only compensate when the drift is at most 4-5%. Initially, when the translating

stage system was installed, drifts as high as 20% were observed. This, clearly, simply

would not do.

One factor turned out to be poor alignment of the mirrors inside the Bruker. We

would align the mirrors on the sample, but when the transfer line was installed it

would shift the position of the cryostat slightly and throw the alignment off. Another

problem was the position of the storage dewar relative to the cryostat. As the pressure

in the storage dewar varies, the transfer line flexes slightly, applying a force to the

cryostat and moving the samples. If the transfer line pushes the cryostat in the plane

of the light path, the effect is easily ignored. If it pushes side-on, however, part of the

reflected image of the sample can shift off of the collection mirror, causing a significant

decrease in the amount of light reaching the detector. This appears as a change in the

baseline that is not generally constant with time and cannot be effectively canceled

out with the mirror.

The alignment of the samples to the reference must be done painstakingly and

51



Ph.D. Thesis - Jesse S. Hall McMaster - Physics

carefully; this will almost always be the largest source of instability and often doesn’t

show up as a constant ”drift” but rather as an overall inconsistency of the baseline.

If the sample image lands on the collection mirror off-centre, so that part of the

image is at the edge or even off of the mirror, then tiny shifts in sample position with

temperature, dewar pressure, etc. will result in less light reaching the detector. It is

crucial that the sample image be centred and be small enough that it does not extend

beyond the edges of the collection mirror.

One possible source of trouble is inevitably that the light hits the Al radiation

shield that covers the samples. It is usually desirable to have as large a beam of light

as possible; this ”overfills” the sample, especially for small samples, so that small

movements of the system do not significantly change the amount of light reaching the

sample. However, if the light beam is too broad, the light will hit the radiation shield.

For large samples this will represent a small fraction of the total reflected light and

can be largely ignored, but for small samples even a tiny amount of reflection from

the shield will result in the reflectance of the Al overwhelming the signal from the

sample. There is therefore a delicate balancing act between getting as much light as

possible and getting as much light from only the sample as possible. The width of

the beam is controlled by an aperture.

Another problem with the beam being too broad is that finding the optimum

position for the sample is difficult. As the sample is moved, less light hits the sample

itself, but more light hits the shield. The shield is cylindrical so it reflects light in all

directions, unlike the flat sample that reflects it straight back towards the collection

mirror. But if the sample is small compared to the beam size, the two can result in

a comparable signal at the detector. In some cases, it becomes necessary to do the
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sample positioning entirely by eye, or to move between the theoretical optimal position

for each sample (the samples should be 1.008 cm apart by design specification).

Carefully maintaining the detectors is crucial. The MCT detector, used in the MIR

and NIR measurement, must be pumped frequently (roughly every four months) with

the diffusion pump, as the water ice absorption line at ∼3200 cm−1 appears in its

sensitivity region. The MCT detector is powered by a pair of batteries intended for

use in a motor boat and connects to them using a large power box that also serves to

charge the batteries. It is vital that the batteries remain fully charged, as they lose

their voltage very quickly below full charge and this introduces significant drifts to

the system that are not fully compensated by the reference mirror. At low battery

voltages the bias too low and the detector ceases to function entirely.

The IR Labs bolometers each have their own unique ways of failing as well. The

batteries that are used to bias the detector and the JFET, respectively, can fail

and need replacing frequently. The JFET becomes very noisy when the battery

begins to fail; the bolometer begins to drift and the non-linearities become even

more pronounced. This shows up as ”intensity following”: two measurements of

the reference mirror at different times will have the same characteristic peaks as the

spectrum with the beamsplitter fringes. Variations in the temperature of the detector,

by as little as a few hundredths of a Kelvin, also cause this effect. For this reason, it is

very important to let the temperature of the detector stabilize before measuring, and

to keep the liquid nitrogen level as close to full as reasonably possible. At the same

time, refilling the nitrogen destabilizes the system for several minutes afterwards, so

it must be done during a break in the measurements.

The detectors can fail in more obvious ways as well. Probably the most common
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fault is a failure to hold liquid helium after filling. If the helium lasts less than

an hour, there is a heat leak somewhere and the detector needs to be taken apart.

Usually, a piece of foil tape or radiation shielding has come loose and made a contact

either between the nitrogen-temperature shield and the outer jacket or between the

helium pot and the nitrogen-temperature shield. If the liquid helium lasts for more

than an hour, it is more likely that the fill was done incorrectly and there was not

very much helium in the pot.

The 4 K detector typically holds helium for at least 40 hours, but when I first

started using it the maximum holding time was closer to ten hours. It turned out

that the culprit was the Teflon pins that hold the nitrogen shield centred inside the

detector. These had broken, and the nitrogen shield was hanging at an angle, very

close to one of the jacket walls (though not quite touching). There are also three

Teflon rods that hold the helium pot centred inside the nitrogen shield. These had

broken as well in both the 1 K and 4 K bolometers. This manifested itself as an

extreme sensitivity to external vibrations and a rapid boiling of the liquid nitrogen.

The rods were replaced and tightened to hold the helium can (and by extension the

detector) stable.

Probably the most frequent point of failure in the experimental system was the

evaporation, or at least this has been the case historically. Everything from gold

failing to fully evaporate to depositing a purple residue which was probably tungsten

on the samples has interfered with the evaporation process. Another problem was

trying to ensure an even coating of gold on the samples, without getting any more

gold than necessary on them or getting any on the reference mirror. Getting any

evaporation products on the reference mirror significantly shifts its reflectance and
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can affect the baseline considerably.

Initially, shields were used between the tungsten filaments to stop the gold from

contaminating the reference, which was made of stainless steel. This caused problems

with grounding, however, as the heated tungsten wires would flex slightly, contact

the brass shields, and fail to reach sufficient temperature to evaporate the gold. An

attempt to solve this using glass or pyrophyllite clay washers to isolate the brass

shields from the evaporator plate proved to be too cumbersome and temperamental.

Eventually, the shields were removed completely and the evaporation was done with-

out them. The stainless steel reference was swapped for a pure gold one, reducing

the change observed after evaporation to typically less than 2%.

The ability to attain and maintain a good vacuum is also a consideration. There

are three independent vacuum systems in the experiment: the spectrometer, the

sample chamber, and the detector. The detector vacuum can be assessed during

pumping for the bolometers, as failure to reach low pressure can mean a leak. The

obvious culprit is the window, which is also the most difficult to test as it is permeable

to helium and so cannot be leak-checked. Replacing the window is a considerable

hassle and so other leaks should be eliminated before doing this. The spectrometer

can leak but if the leak is small this is usually not a significant problem, and an easy

fix as greasing the o-rings, tightening the lid screws, etc., will usually resolve it.

The sample chamber vacuum is important as a poor vacuum results in ineffective

evaporation. It must, therefore, be carefully monitored and maintained. The chief

culprit is often the o-ring at the flange connecting the cryostat to the sample chamber.

Because of the careful process of tightening the nuts to ensure that the cryostat is

properly aligned, it is easy to wind up with a small leak. Another possibility is a tiny
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leak in the bellows that connects the two parts of the translating stage together. A

leak in the sample chamber will make itself known by a sudden jump in the pressure

inside the sample chamber upon warming up from low temperature, typically around

60-80 K.

3.3 Measuring the DC resistivity

The zero-frequency limit of the optical conductivity is the same DC conductivity that

is measured by transport experiments. As in practice it is not possible to measure

light with zero frequency, transport measurements are useful to ensure an accurate ex-

trapolation to zero frequency of the optical data. The measurements were performed

using an Oxford Maglab system.

A 4-point contact geometry for measuring DC resistivity was used. This involves

using four wires connected to the sample in order to measure the resistance by running

a current through the sample and then measuring the voltage. The resistance of the

material is then computed using the formula

R =
V

I
(3.5)

from Ohm’s law, with R the resistance, V the voltage, and I the frequency. The

resistivity is a property of the material, however, while the resistance that is measured

depends on a number of other factors like sample thickness, applied current, and so

on. The resistivity can be computed from the resistance and the size and shape of

the sample as
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ρ =
R · A
l

(3.6)

where A is the cross-sectional area of the sample and l is the distance between the

contacts where the voltage is measured.

In order to perform these measurements, thin silver wires must be attached to the

sample using either silver epoxy or silver paint. The epoxy or paint must be very

carefully applied in order to ensure an even contact and that any stray epoxy does

not contaminate the result by giving the current an easier path to flow or changing

the sample thickness. In the case of 4-wire measurements, the contact should run the

entire thickness of the sample so that the current travels evenly through the sample.

If it isn’t practical to connect the wires to the entire thickness, epoxy can be used to

ensure that the contact covers the side of the sample.

Temperature dependent measurements are taken by cooling the sample to base

temperature and then warming it up by applying heat. The temperature is stabi-

lized before the measurements are taken. The challenge here is setting the stability

conditions for the temperature. If the computer is over-eager and the time it checks

the stability is too short, the measured resistivity will not be at the temperature

recorded by the measurements system. Waiting too long for stability, however, makes

the stability worse as well as making the measurements take far too long. It is more

important to have good stability when the resistivity changes with temperature are

large, as is the case in URu2Si2.

As the resistivity and the derivative are both desirable quantities, the temperature

steps should be very small, especially in regions where the resistivity changes rapidly

such as near the phase transition. Taking data too often, however, achieves good
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temperature resolution but gives larger noise in the derivative and takes far too long

(it is not practical to measure for more than a day). In general, T steps were 0.5 K

in regions of interest and 1 to 2 K at higher or lower temperatures.

Even once the measurements are complete there will in general be some variation

compared with the literature values for both the resistivity and the temperature.

Temperature variations are easily fixed, as the transition can be pinned to the known

value of 17.5 K for URu2Si2, and everything shifted linearly by a degree. Resistivity

errors are not so easily fixed, and even within the literature the values typically vary by

20% or more. This is due to uncertainty in the geometry of the contacts and variations

in sample thickness. In practice, therefore, some variation in the resistivity (and

therefore the height of the Drude peak in optical conductivity) between measurements

is unavoidable.

3.4 Analysis of the data

Once the data has been measured, the analysis process can begin. At this point it

is still far from being useful for the drawing of conclusions about electrodynamics.

Rather, at this point, one has a bunch of absolute reflectances across different fre-

quency ranges. It is still necessary to connect the spectral regions to achieve a single

absolute reflectance curve, extract the complex phase of the reflection coefficient, and

compute the optical constants.

To assist in data analysis, the datan program suite is used. This is provided by

the website of Dr. David Tanner at the University of Florida, and can be found here:

http://www.phys.ufl.edu/ tanner/datan.html. Where these programs have been used,

it will be explicitly stated that this is so and the method they use to calculate the
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results described. Within the program folder, the manual man.pdf explains the use

and specific functions of the available programs; herein only those actually used in

this work are discussed.

3.4.1 Preparing the data for analysis

The detectors each give data over a relatively small region of the spectrum of interest.

In order to get a complete reflectance spectrum across the entire spectral range, the

different curves must be combined. This is all too often easier said than done, as the

region of overlap can be quite small and is usually at the very edge of the detector

sensitivities, making it noisy.

Worse still, different bolometer loading effects can affect the sensitivity of the

detectors, resulting in data that does not coincide: one reflectance curve will be

higher than the other. The response of the bolometer changes with the total amount

of signal, or the load, and a large change in the input signal that is sufficient to change

the response is called ”loading”. This typically happens when the reflectance of the

sample is much smaller than the reflectance of the gold overcoating and when the

intensity of light from the source is very large, so it disproportionately affects the

higher frequencies.

The usual procedure is to take the lowest measured frequencies as giving the

correct (or nearly correct) values, and then normalizing the other curves at higher

frequencies to these. This is usually fairly straightforward as the overlap regions are

generally fairly close to linear, but if the slopes are different it becomes more difficult.

A program from the datan-win suite called mav.exe can be used to merge the two files

together. It normalizes the integrals of the data sets to one another in the overlap
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region and multiplies the higher-frequency data set to match the lower-frequency data

set. It then uses a weighted average function to combine the two together.

3.4.2 The Kramers-Kronig transform

At this point, one has a complete spectrum extending from the far infrared to the

ultraviolet, roughly 2.5 meV to 5 eV. There is crucial information missing however:

the phase of the reflectance, the imaginary part of the complex reflectance function,

remains to be determined.

Fortunately, the real and imaginary parts of the reflectance are not independent of

one another. The Kramers-Kronig transform relates the two of them and allows the

complex phase to be determined from the real reflectance amplitude. For any linear

response function subject to causality, say the conductivity ~J = σ ~E that relates

the current to the applied electric field, the real and imaginary parts of σ(ω) =

σ1(ω) + iσ2(ω) are not independent of one another, but rather are linked together by

the following relation:

σ2(ω) = −2ω

π

∫ ∞
0

σ1(ω′)

ω′2 − ω2
dω′ (3.7)

which is the Kramers-Kronig relation. The integral requires knowledge of the real

part of the function up to infinite frequency, an impossibility in practice. For discrete

data, it becomes a summation done using a computer program.

For the reflectance, the KK transform is evaluated using the program KK.exe from

the datan-win suite. The program requires a high-frequency extrapolation and a low-

frequency extrapolation and then computes the transform of the reflectance. The

high frequency extrapolation can be dealt with in two ways by the program: either
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taking an assumed value, or using x-ray data at high frequencies. Each method has

advantages and disadvantages.

The x-ray data is more accurate, but there is a significant missing region between

where the UV data cuts off and where the x-ray data begins. The program must

create a ”bridge” between the two, and the accuracy of the final result will depend

on how good this bridge is. This is done using either a power law in ω, a power law

in 1/ω, a cubic spline, or a straight line. The fits are to the end of the UV optical

data and the lowest frequencies of the x-ray data.

The alternative is to use a high frequency extrapolation without any optical data.

The program handles this by taking two values of the reflectance: it is a function of ω

raised to a negative power between 0 and 2 up to a cutoff frequency, and thereafter it

is taken as proportional to ω−4. The program allows different values of the cutoff and

the power of ω to be tried; in practice changing these values makes little difference

in the low frequency region, manifesting as a slightly shifted constant background

although it can affect the height of features like peaks and phonons.

For most of the data presented here, the latter method is used, with R ∝ ω−1

and a cutoff at ω = 106. The reason I chose to do it this way is partly because the

x-ray optics program didn’t become available until part way through and I wanted

to keep the analysis consistent, but primarily because when I tried it I couldn’t get

the bridge section to give sensible values since the reflectance of URu2Si2 has been

measured to quite high frequency. In any case, the simple extrapolation yielded quite

reasonable results and there was no need to go through the tedious process of trying

to get the more rigorous method to work only to reproduce what the simpler version

could already do.
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3.4.3 Low-frequency extrapolation and the DC resistivity

The KK.exe program also requires a low-frequency extrapolation, and this is where

some minor problems arise. The problem is that we are drawing conclusions from

our data based on the lowest frequencies. The obvious potential, then, is to base the

extrapolation on the behaviour we expect to see, and when we see that behaviour

taking it as confirmation that the extrapolation was correct in a circular chain of

reasoning. Guarding against wishful thinking or the desire to explicitly confirm a

prejudice must be done mercilessly.

The options within the kk.exe program for low frequency extrapolations are all

based on a particular assumption about the underlying behaviour of the material. As

the ”DC” reflectance (the reflectance at zero frequency) must be unity for a metal,

the only question is how to get from the lowest data point to one at zero frequency.

The program uses an extrapolation of the form R = 1− Aωp where the value of p is

dependent on the model and A is a fit parameter chosen to make the extrapolation

match the data. The simplest is the Hagen-Rubens formula, based on the Drude

model, which gives R ∝ (1−
√
ω/σ).

The low-frequency extrapolation is essentially an assumption about the nature

(and, by extension, the mechanism) of the scattering at low frequencies. Under the

assumptions about the scattering of the Drude model, the Hagen-Rubens formula

gives a good approximation to the low frequency reflectance. However, the dominant

scattering mechanism may not be simple impurity scattering as assumed by the Drude

model. If other scattering mechanisms are involved, the low-frequency reflectance

will deviate from the simple form of 1−√ω of Hagen-Rubens. However, in the very

low frequency limit the Hagen-Rubens value is generally close enough for practical
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purposes.

The kk.exe program allows several other low frequency extrapolations, including

marginal Fermi liquid, with R = 1−Aω, appropriate for cuprate superconductors in

their normal state; a two-fluid model for superconductors, with R = 1−Aω2 for two

electron fluids, one in a superconducting condensate and one in the normal, resistive

state; and a model for superconductors with R = 1 − Aω4. There is also the option

to use the DC resistivity to extrapolate to zero frequency using this value.

In practice, what I have done is as follows. I always use the Hagen-Rubens extrap-

olation to do the KK transform, as the differences between the different techniques

are very small since the reflectance is above 90% by the time the extrapolation starts.

Then, the low-frequency part is replaced with a Drude peak drawn by ”hand” (plotted

using the computer), fitted to the measured conductivity at the edge, and with the

measured DC resistivity/conductivity input (again by ”hand”) as the zero-frequency

limit. This is then used to calculate the reflectance in the low frequency limit and

compared to the Hagen-Rubens extrapolation. If the two agree in the measured region

within 1%, this is considered acceptable.

There is a limit to the accuracy of optical measurements, due to the aforemen-

tioned considerations related to the detector stability, reference stability, temperature

stability, and so on; in practice, there is typically a variation of up to 0.5% in the

absolute reflectance between measurements of the same frequency and temperature

range on the same sample. While not a significant consideration at higher frequencies,

in the very low frequency limit where the reflectance is close to unity small variations

can cause large effects in the optical conductivity. In order to combat this, the re-

flectance is normalized at the lowest frequency (typically below 3 meV) according to
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the Hagen-Rubens formula using the DC resistivity in the formula. This adjustment

is typically a multiplication by a constant on the order of 1± 0.003 or less; any more

than a half-percent shift and the data is considered flawed and discarded in favour of

new measurements.

3.4.4 Fitting the optical conductivity and extracting the elec-

tronic gap

The optical conductivity of URu2Si2 in the hidden order state shows a distinctive

depression followed by a peak that recovers the spectral weight lost in the depression.

This is immediately reminiscent of a density wave gap, as seen in Cr (S. Barker et al.,

1968) and Bechgaard salts like (TMTSF)2PF6 (Degiorgi et al., 1996). As a result, a

simple model for the Dynes density of states (see previous chapter) is used to give a

quantitative measure of the change in the Fermi surface and a reasonable estimation

of the value of the gap.

The model used is straightforward. The gap is described by the formula

nD(E) = |Re E/∆ + iγ√
(E/∆ + iγ)2 − 1

| (3.8)

which includes parameters ∆ for the gap, γ for the quasiparticle lifetime. A cut-

off frequency ωc is introduced when computing the conductivity to account for the

bandstructure:

64



Ph.D. Thesis - Jesse S. Hall McMaster - Physics

σD(ω) = Re
1

ω

∫ ωc

∆

nD(ω′)nD(ω − ω′)dω′ (3.9)

The optical conductivity is given by summing over the states above and below the

gap, giving the number of available transitions from filled states to empty states.

This model, a Dynes density of states for an s-wave gap with case I coherence

factors (as described in the previous chapter) is purely phenomenological in the sense

that no assumptions are made about the underlying order parameter or nature of

the transition that justify the use of a Dynes model. The microscopic details are not

included in any way: the Dynes model is a consequence of mean-field BCS theory

and can be derived from a microscopic model but here we just use the result without

worrying about the underlying mechanisms. Nonetheless, it is valid for density waves,

and the strong incommensurate nesting (Elgazzar et al., 2009; Wiebe et al., 2007) and

the structure of the density of states (Park et al., 2012; Chatterjee et al., 2013) suggest

that it is a valid description of the phenomenology.

In the fit, there is also a Drude peak that is not explicitly included in the formula

above, but was used for fitting the conductivity data. The height of the Drude peak

is fixed by the DC conductivity, so this introduces only one other free parameter,

namely γD the Drude width. In practice, however, the Drude width is constrained by

the scattering rate measured and so cannot be fitted arbitrarily.

In order to do the fit, the procedure used was as follows: First, the Drude peak

is subtracted from the optical conductivity. The value of γD is adjusted in order to

keep σ1 positive. The conductivity that is left is then fitted by varying the values for

γ, ωc, and ∆, with the peak of the spectral weight recovery roughly corresponding
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to the cutoff, the rise of the conductivity from zero being the gap, and the width

determined by the quasiparticle lifetime parameter.

The fits are done by eye: I adjusted each value in order to get the best fits possible.

In general, the software I had available had difficulty handling four free parameters

across three equations, while using simple fitting algorithms yielded nonsensical re-

sults. The quality of the fit was evaluated by computing the residuals up to the cutoff

frequency; above this frequency, the details of the bandstructure are not included in

this simple model and this region is therefore not considered.
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Chapter 4

Optical properties of condensed

matter systems

4.1 Introduction

The two scales on which light and solid matter interact are difficult to immediately

reconcile. On the one hand, we have the macroscopic properties of materials like

dielectric constant and permeability, and Snell’s law and index of refraction. On the

other hand, we have individual photons with fixed energies interacting with electrons

within the energy bandstructure of crystalline solids. The question, then, is how to

understand both types of behaviour together and how the macroscopic properties that

can be measured by experiment are used to understand the underlying behaviour of

interest of the electrons in the material.
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4.2 Optical properties of solids

The usual starting point for discussions of electromagnetic waves is the Maxwell

equations, and this description will be no different. For electric fields E, magnetic

fields B and charge distributions ρ, Maxwell’s equations, in CGS units with µ=1 (since

in real materials magnetic effects due to incident light are usually insignificant), are

∇ · E =
ρ

ε

∇ ·B = 0

∇× E = −∂B

∂t
(4.1)

∇×B =
4πσ

c
E +

ε

c

∂E

∂t

In free space this is simple. There is no free or bound charge, no magnetic

monopoles, and no currents, so the equations are nicely simplified. In real mate-

rials, however, there is some divergence from simplicity. Although free net charge

is typically still zero, two quantities account for the properties of the material in

Maxwell’s equations: the dielectric constant ε̃ and the conductivity σ̃. These two

generally complex quantities describe the formation of currents due to the electric

field and displacement currents due to the time variation of the field, and are related

to one another.

Maxwell’s equation for the electric field can be re-written as a wave equation

∇2E =
ε

c2

∂2E

∂t2
+

4πσ

c

∂E

∂t
(4.2)
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which has solutions in the form of plane waves

E(r, t) = E0e
i(k̃·r−ωt) (4.3)

In vacuum, the phase velocity would be c=ω/k. In a material with current and charge

distributions, however, it is

k =
ω

c

√
ε+ i

4πσ

ω
(4.4)

= n
ω

c
(4.5)

The velocity of propagation is therefore lower in a material than it is in vacuum,

by a complex factor of ñ called the refractive index and defined as ñ =
√
ε̃. For

convenience this can be separated into real and imaginary parts ñ = n + iκ. For our

travelling wave, this gives

E(r, t) = E0e
iω(n·r

c
−t)e

−κωr
c (4.6)

which shows why the imaginary part of the refractive index κ is called the extinction

coefficient while the real part gives the phase velocity as c/n.

The reflectance relates the intensity of the incoming light to the intensity of re-

flected light, as

r =
Er

Ei

(4.7)

which, at normal incidence and assuming the interface is between the vacuum and
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the material, with appropriate boundary conditions, gives:

r =
1− ñ
1 + ñ

(4.8)

The relationship between the reflectance coefficient R = Ir
Ii

= (Er
Ei

)2 = r∗r and

the physical properties of the system is contained in this expression. The reflectance

coefficient R is the magnitude of the reflectance, and it is what is actually measured.

The reflectance can be written, then, as a real magnitude and a complex phase factor

θ

r =
√
Reiθ (4.9)

The reflectance coefficient and phase factor give the real and imaginary parts of

the index of refraction as

n =
1−R

1 + r − 2
√
Rcosθ

(4.10)

κ =
−2
√
Rsinθ

1 + r − 2
√
Rcosθ

(4.11)

Since the optical conductivity is related to the dielectric function as ε̃ = ñ2 =

i4π
ω
σ̃+ ε∞ the relevant physical properties of the system under consideration, namely

the dependence of the optical conductivity (or, equivalently, the dielectric constant)

on frequency, are determined from a knowledge of the reflectance coefficient.
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4.3 Extended Drude model

In order to interpret optical data, a model is needed. Typically the model used in

optics as the basic starting point for describing metallic materials is the extended

Drude model. This model uses free electrons interacting with stationary scattering

centres as its starting point, and then seeks to calculate the properties such a system

should have. It is characterized primarily by the carrier concentration n, the scattering

rate 1/τ (given as the inverse of the average time between scattering events τ), and

the charge-to-mass ratio of the carriers.

The Drude model starts from free electrons and adds scattering by assuming that

the scattering event ”resets” the electron’s momentum. The equation for motion for

electrons in the Drude model is

∂~p

∂t
= −e ~E − ~p

τ
(4.12)

which leads to an expression for the current density, ~j = −en~p/m in terms of frequency

j(ω) = σ(ω) ~E(ω)

=
ne2τ

m

1

1− iωτ
~E(ω) (4.13)

=
ω2
pτ

4π

1

1− iωτ
~E(ω)

This gives the complex optical conductivity

σ(ω) =
ω2
p

4π

1
1
τ
− iω (4.14)
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subsuming the material properties into the plasma frequency ωp = 4πne2/m. The

DC conductivity is the zero-frequency limit, σ0 = ne2τ/m.

In analyzing the optical conductivity obtained from experiments, the Drude model

gives an explanation for the existence of the Drude peak, the peak in the optical

conductivity at zero frequency. The width of the Drude peak is characteristic of the

scattering rate, while the height is just the DC conductivity. The total area under

the Drude peak gives the plasma frequency.

The Drude model is exceedingly simple and can be improved in a number of ways.

The extended Drude model allows for the scattering rate to be frequency-dependent

(as well as introducing a frequency-dependent renormalization to preserve causality

that can be interpreted as an effective mass). This incorporates some of the properties

of band theory without the need to introduce complicated models.

Optical conductivity measures transitions between states with (nearly) zero mo-

mentum change from just below the Fermi energy (occupied states) to just above

(empty states), so the conductivity will depend on the density of states at the Fermi

level. The effective mass will depend on the energy because the curvature of the band

determines the effective mass, and the energy of the incoming light determines what

energies within the band transitions can be made at. The scattering rate depends on

the energy as well, because the number of states available at each energy determines

the availability of empty states to scatter into as well as the availability of carriers

for scattering.

To account for these effects, the extended Drude model includes the frequency-

dependent scattering rate 1/τ(ω) in a similar way to the scattering rate in the DC
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resistivity:

ρ(ω) =
1

σ(ω)

ρ1(ω) =
σ1(ω)

σ1(ω)2 + σ2(ω)2
(4.15)

=
ω2
p

4π

(
1

τ(ω)

)

which is proportional to the optical (frequency-dependent) scattering rate by a factor

of ω2
p/4π.

4.4 The electrodynamics of density waves

Density waves are a type of ordered state that occurs when a modulation in the density

of a physical quantity serves as the order parameter, such as in a charge density wave

(CDW) or a spin density wave (SDW), wherein the distribution of charge or net

magnetic moment organizes itself into an ordered pattern. This opens a gap in the

density of states at the Fermi level. The CDW is described by a periodic distortion

of the lattice with a wavelength related to the Fermi wave vector

ρ = ρ0 + ρ1cos(2kF · r + φ) (4.16)

The broken translational symmetry leads to the formation of a gap in the density

of states at the Fermi level, a situation well described by mean-field BCS theory. The

density of states is given by

73



Ph.D. Thesis - Jesse S. Hall McMaster - Physics

N(E) =


0 E < ∆

E√
E2−∆2 E > ∆

(4.17)

where ∆ is the gap.

The electrodynamics of density waves have been established for some time (Lee

et al., 1973; Grüner, 1988; Grüner, 1994; Degiorgi et al., 1996). The key features

come from BCS theory, which provides the description for the formation of a gap in

the density of states at the Fermi level. In the case of superconductivity the gap is

formed by the creation of pairs of bound electrons with opposite crystal momentum

values. The charge density wave is a similar collective behaviour of electron-hole

pairs connected by the wave vector 2kF, so much of the behaviour of superconductors

is reproduced in a CDW system. One key difference is that the phase excitation

spectrum is gapless in a density wave, pinning the CDW to the lattice and preventing

the lossless transport that would otherwise be able to occur.

Typically the optical conductivity behaves in a similar way to the density of

states, and a peak in the density of states causes a peak in the conductivity. In

superconductors this is not the case due to coherence factors. As the ordering involves

states on opposite sides of the Fermi surface, transitions described by a†kak′ and

a†−k′a−k are connecting the same two states. The behaviour of the optical conductivity

is determined by whether these transitions interfere with each other constructively

(case II) as they do for superconductors, or destructively (case I) as they do for

density waves. The spectral weight lost in the gap is transferred either to a peak

in a narrow frequency region immediately above the gap energy (case I) or into the

superconducting condensate as a δ-function at ω = 0.
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4.5 The optical properties of heavy fermion sys-

tems

Strongly correlated systems are those in which the independent electron approxi-

mation breaks down: the assumption that the single-particle states are valid in a

multi-electron system is false, and the behaviour of the system is heavily determined

by the interactions of the electrons with each other. In the case of heavy fermion ma-

terials, this manifests itself as often strikingly normal looking electronic behaviour,

but with a linear specific heat coefficient that is many times the value seen in normal

metals. This is interpreted as a mass enhancement, and the electronic behaviour is

described in terms of heavy quasiparticles that obey single-particle band theory.

The physical origin of the enhanced mass is the hybridization of conduction elec-

trons with a flat (i.e., momentum-independent energy) band of localized f electrons.

This is described (Millis and Lee, 1987) by the Hamiltonian

Ĥ =
∑
k,σ

εkσc
†
kσckσ +

∑
i,m

E0,mf
†
i,mfi,m +

∑
k,i,m,σ

(V eikRic†kσfi,m +H.c.) (4.18)

where the first term represents the conduction electrons, the second term is a flat

f -band, and the third term is the hybridization between the two bands through an

interaction V, in the limit of infinite repulsion between f electrons (i.e. one electron

per site). This is analyzed using a slave-boson formalism and a 1/N expansion in

order to get the conductivity.

The optical behaviour of heavy fermion systems are widely studied and well es-

tablished (Millis and Lee, 1987; Dordevic et al., 2001; Degiorgi et al., 2001). Overall,
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Figure 4.1: Example conductivity of heavy fermion materials. The Drude peak is
enhanced as the temperature is lowered, while a depletion of spectral weight above the
Drude peak is transferred to a broad spectrum of higher frequencies. After (Dordevic
et al., 2001)

they fit well within the framework for understanding the physics of heavy fermion

systems. Figure 4.1 shows the optical conductivity of representative heavy fermion

materials.

At low frequencies, the dynamical conductivity of heavy fermion systems is under-

stood by considering the conduction electrons as experiencing a renormalized scatter-

ing rate and mass due to the hybridization with the strongly-interacting f electrons

(Millis and Lee, 1987). Assuming Mathiessen’s rule holds and scattering mecha-

nisms are additive (i.e. 1/τ =
∑

1/τn), equivalent to assuming that the scattering is

momentum-independent, each scattering mechanism can be investigated separately.

For impurity scattering, the conductivity is given by

σ(ω) =
ne2

m∗
τ ∗

1 + (ωτ ∗)2
(4.19)

where τ ∗ = (m∗/m)τ is the renormalized scattering rate. At low frequencies, a
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Drude-like peak appears in the conductivity whose spectral weight is given by

(ω∗p) =
4πne2

m∗
(4.20)

This gives what is essentially a renormalized Drude model for the optical conductivity

in the coherent scattering state.

An important renormalization is the energy scale εf which is a measure of the

renormalized Fermi energy, and is set by the temperature scale on which coherence

effects become important so that T ∗ ∼ εf/kB. In a heavy fermion material with a

coherence temperature on the order of 100 K, the renormalized Fermi energy for the

coherent carriers is therefore on the order of 10 meV.

At finite temperatures, scattering of electrons off of bosons is important. The

imaginary part of the conduction electron self-energy when the scattering is domi-

nated by bosons is

ImΣ(ω, T ) =
nf
Nεf

m∗

mb

(ω2 + (πT )2) (4.21)

which essentially reproduces the results of Landau-Fermi liquid theory, and leads

to the description of the system as a heavy Fermi liquid. The scattering rate has

the ω2 and T 2 dependence expected for Fermi liquid theory, where the temperature

dependence of π2T 2 is used for the single-particle self-energy measured in ARPES

and the factor 4π2T 2 is the particle-particle scattering rate seen in optics.

At higher frequencies, the effects of coherence are negligible and the conductivity

is flat and nearly frequency independent in this model, while the low frequency part

consists of a Drude peak that becomes narrower as the temperature is lowered below

77



Ph.D. Thesis - Jesse S. Hall McMaster - Physics

T ∗. In reality, what is observed (Dordevic et al., 2001) is that a pseudogap opens as a

suppression in the conductivity around the energy of the hybridization gap ∆H . The

sharpening Drude peak cannot account for all of the spectral weight that is lost in

this region; much of it is transferred to higher frequencies, often with spectral weight

recovery not occurring until ω ∼ 10∆H (Degiorgi, 1999).

78



Chapter 5

Overview of electrodynamics

This paper was written for a focus issue on hidden order in Philosophical Magazine.

In it we summarize the different optical results and draw comparisons between the

various optical techniques. We included much data that had already been published

elsewhere, by ourselves and others, and the results focus on the analysis and interpre-

tation of the data to give a unified understanding of the electrodynamics of URu2Si2.

The hybridization that causes the heavy fermion state to emerge has drawn con-

siderable attention in the literature, as several theories of hidden order suggest that a

”precursor” state characterized by order parameter fluctuations should be detectable

in the region above the transition. This was, for a time, associated with the mea-

surement (Park et al., 2012) by point contact spectroscopy of a gap opening in the

density of states at a temperature well above the hidden order transition. Here we

look at the optical evidence for such a state, and find it lacking. The spectral weight

of the hybridization gap that opens above the hidden order transition is analyzed in

detail and shown to be fundamentally different from that of the hidden order gap.

We looked at all of the evidence from optical probes on the hybridization, analyzed
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their data, and compared them, and concluded that there is no evidence from the

hybridization gap of a precursor state.

There is evidence for the onset of a scattering mechanism that strongly resembles

Fermi liquid behaviour but with anomalous scaling between the frequency and tem-

perature dependent terms. The scattering rates from both optics and transport are

analyzed to demonstrate that this effect precedes the onset of hidden order but hap-

pens well within the Kondo lattice state responsible for the heavy fermion behaviour.

The hidden order state is likewise analyzed by looking at all of the optical data

that has been published on it. The conclusion is that the data from optics is wholly

consistent with a gapping of the Fermi surface that can be described by a Dynes

model for the density of states. Furthermore, all of the optical data is consistent with

a spin density wave gap or a charge density wave gap, although other techniques rule

these out.

For this study, I was responsible for writing the paper. I re-analyzed the data that

we had previously taken on this material, including the transport data and the optical

data. I analyzed the spectral weight of the hidden order and hybridization states using

both our data and that published by other groups. I repeated our analysis and gap

fitting procedures on the data published by others, and compared the scattering rates

obtained by other groups in the hybridization regime. I constructed a spin density

wave model and used it to fit the data and compared the effects of different coherence

factors on the gap fitting procedure.
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We summarize existing optical data of URu2Si2 to clarify the nature of the hidden
order transition in this heavy fermion metal. Hybridization develops between
50 K and 17.5 K, and a coherent Drude peak emerges which mirrors the changes
in the dc resistivity. The Drude weight indicates that there is little change in the
effective mass of these carriers in this temperature range. In addition, there is a
flat background conductivity that develops a partial hybridization gap at 10 meV
as the temperature is lowered, shifting spectral weight to higher frequencies
above 300 meV. Below 30 K the carriers become increasingly coherent and Fermi-
liquid-like as the hidden order transition is approached. The hidden order state
in URu2Si2 is characterized by multiple anisotropic gaps. The gap parameter
�a = 3.2 meV in the ab-plane. In the c-direction, there are two distinct gaps
with magnitudes of �c1 = 2.7 meV and �c2 = 1.8 meV. These observations are
in good agreement with other spectroscopic measurements. Overall, the spectrum
can be fit by a Dynes-type density of states model to extract values of the hidden
order gap. The transfer of spectral weight strongly resembles what one sees in
density wave transitions.

Keywords: heavy-fermion metals; optical properties; URu2Si2; hybridization;
hidden order

1. Introduction

Optical spectroscopy is an ideal tool for studying the low-energy electrodynamics of strongly
correlated metals such as URu2Si2. It is a bulk probe, penetrating hundreds of atomic layers
into the material; it is therefore not sensitive to surface states. Furthermore, it allows the
study of cut and polished surfaces rather than being restricted only to the cleavage plane in
the manner of STM/STS andARPES. Optical measurements can access a very wide range of
energies, from the far-infrared (∼2 meV) to the ultraviolet (∼5 eV). They yield direct high
resolution (<0.10 meV) spectroscopic information about the energy gaps of ordered states
and can be used to extract the spectrum of excitations responsible for the self energy of the
free carriers. Optical sum rules can be used to distinguish states by determining where the
spectral weight is lost in the gapped conductivity and to where it is transferred: in the zero
frequency condensate state for superconductors, just above 2� for density waves, or to high
frequencies for strong correlation gaps. In URu2Si2 the charge carrier dynamics appears to
be strongly affected by the hidden order state, and optical spectroscopy is an important tool

∗Corresponding author. Email: timusk@mcmaster.ca

© 2014 Taylor & Francis
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Figure 1. (colour online) The resistivity of URu2Si2 from [12]. Above TK = 70 K the resistivity
is Kondo-like in that it increases as the temperature is lowered. Below TK the resistivity drops
dramatically as the uranium f electrons begin to hybridize with the s and p electrons. The hidden
order transition takes place at TH O = 17.5 K and the resistivity rises slightly initially but then
drops dramatically as the hidden order gap opens. Finally, at TC ∼ 1.5 K, URu2Si2 becomes a
superconductor. The inset shows the resistivity near the hidden order transition.

for understanding how the charge carrier dynamics evolves from the incoherent state into
the ordered state.

Shortly after the first characterization of URu2Si2 by transport measurements [1–3],
reflectance measurements were performed [4] that revealed the presence of a strong absorp-
tion band centred around 5 meV in the ordered phase below TH O = 17.5 K. Kramers-Kronig
analysis of the reflectance showed that the absorption band was the result of the gradual
opening of a gap in the conductivity below the hidden order temperature. The spectral
weight lost in the gap was transferred to frequencies just above the gap, typical of a density
wave transition. Subsequent optical work has centred around investigations of the effects
of doping on the hidden order [5,6], of the effect of hybridization on the electrodynamics
[7–10] and the anisotropy of the hidden order parameter [11]. The superconducting state
occurs below the temperatures available in typical optical experiments; likewise, the large
moment antiferromagnet state (LM-AFM) induced by hydrostatic pressure has not yet been
investigated optically.

Figure 1 shows the dc resistivity of URu2Si2 [2] as a function of temperature. Four
separate regions can be identified. At high temperatures (above 100 K) is the Kondo region
where the resistivity rises as the temperature is lowered, a behaviour typical of other heavy
fermion systems in which the uranium f electrons are thought to act as localized magnetic
impurities that cause large incoherent scattering. At TK ∼ 70 K the resistivity begins to drop
as the scattering rate begins to decrease rapidly.At the hidden order transition TH O = 17.5 K
there is a small but distinct jump in the resistivity. In the hidden order state the resistivity
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Figure 2. (colour online) The optical conductivity as a function of photon energy in the region
dominated by the hybridization gap. Below 4 meV the conductivity has been fitted to a Drude peak
whose amplitude agrees with the dc resistivity. Below 10 meV the Drude weight dominates. The
spectral weight in the hybridization gap region, 5–40 meV, is lost to higher frequencies. The sharp
peaks at 13.5 and 46.9 meV are optically active phonons.

falls further with decreasing temperature, finally falling to zero as the superconducting state
is reached, at 1.5 K in pure samples.

In the following, we focus on two regions shown in Figure 1: first, between TK and
TH O where the coherent conductivity first appears, labelled the hybridization region; and
second, the region where the hidden order gap appears. We will not discuss the region
above TK where the optical conductivity, shown in Figure 2, resembles many other heavy
electron systems [13–18] in their incoherent high temperature state. Here the conductivity is
frequency and temperature independent and has a magnitude that approaches the Mott-Ioffe-
Regel limit wherein the mean free path of the carriers approaches the interatomic spacing.
Also, we will not address the superconducting state, which is not readily accessible to
infrared reflectance measurements.

2. Hybridization region

Optical studies of the temperature regime between approximately TK and TH O reveal a
great deal about the evolution of the electrodynamics as the heavy fermion state forms. This
is shown in Figure 2, where the optical conductivity is plotted as a function of frequency at
three temperatures. As the temperature is lowered the single flat background that dominates
at 300 K develops a Drude peak at low frequency and a broad gap-like depression centred
at 10 meV. The c-axis conductivity is rather higher than that of the a-axis, in keeping with
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Figure 3. (colour online) Partial spectral weight. The spectral weight below 10 meV is dominated
by the Drude peak, which vanishes above 30 K. The curves merge in the 10 meV region showing
that the Drude weight does not change much in this temperature region. The high frequency range is
dominated by the spectral weight in the incoherent region and the curves join at 450 meV showing
that the pseudogap spectral weight lost in the 10–100 meV region is recovered in the 100–450 meV
region. Finally there is new spectral weight being added above 450 meV. We attribute this to interband
absorption.

transport measurements [11], but is similar in overall features to what is shown in Figure 2. In
the heavy Fermion literature this gap-like depression has been identified as the hybridization
gap that is expected to develop as the localized f electrons hybridize with the mobile s and
p electrons [19]. However, both STM [20,21] and ARPES [22–25] measurements suggest
that just above the HO transition there are light carriers and that hybridization may not
be complete. As Figure 2 shows, the conductivity at 10 meV has dropped to half its high
temperature limiting value and a gap is not completely formed at 25 K. Similar results have
been obtained by other investigators [7,10].

With decreasing temperature the Drude peak narrows and increases in height as the
scattering becomes increasingly coherent and the dc resistivity decreases. If the only change
were the development of heavy mass we would expect to see the Drude peak narrow with the
lost spectral weight shifted into a Holstein sideband [26], but the height of the Drude peak
would remain the same. Clearly, this is not the case in URu2Si2. There is another process at
work; the carrier mobility is increasing, which by itself would raise the height of the Drude
peak but not affect its spectral weight, i.e. the area under the peak. The combination of the
two effects gives a Drude peak that is narrowing and increasing in height but also losing
some spectral weight to hybridization.

This behaviour, namely the suppression of the background conductivity at higher fre-
quencies and the sharpening of the Drude peak, has been observed in other heavy fermion
compounds, such as YbFe4Sb12 and CeRu4Sb12 [15], CeCoIn5 [17], MnSi [16], CaFe4Sb12
and BaFe4Sb12 [18], and UCu5 and UPd2Al3 [6].

Figure 3 shows the partial spectral weight Nef f (�, T ) − Nef f (�, 100 K), where
Nef f (�, T ) = ∫ �

0 σ(ω, T )dω, where we have subtracted the partial spectral weight at
100 K over a wider range of frequencies. We see a large loss of spectral weight between
10 meV and 100 meV, and a recovery in the region from 100 to 450 meV corresponding
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to the formation of the hybridization gap. Very similar data has been presented by Guo
et al. [10]. In the context of conventional electron-boson interaction models [26] this energy
scale would imply coupling to excitations with energies of the order of 300 meV, much
higher than the Kondo scale TK ≈ 6 meV. One should note, however, that measurements
of spectral weight recovery in the high frequency region are difficult in view of the small
changes in the optical conductivity and the possibility of overlapping interband absorption
in this region. For example, instead of the expected flattening of the curves above 400 meV,
we see a crossing to positive values. In agreement with this view the optical reflectance
shows a clear interband feature at 400 meV [11].

It is difficult to estimate the spectral weight of the Drude peak accurately, but in
Figure 3 the narrow maximum near zero frequency is the Drude contribution, about a fifth of
the large negative arising from the hybridization gap. It was suggested in Nagel et al. that the
total spectral weight in the Drude peak is conserved, [9] as suggested by the crossover of the
partial spectral weight curves at 10 meV. One cannot rule out some changes in Drude weight
between TK and TH O , but any change within the limits of the data would be far too small to
explain the large mass seen in the specific heat just above the hidden order transition where
m∗/m = 25 [3]. Fitting a Drude peak to the high frequency tail of the conductivity down to
2.0 meV (the limit of our data) and the measured dc conductivity, we find little evidence for
mass changes above a factor of two. Similar measurements by Levallois et al. [7] show only
a slightly larger change in the Drude weight between 90 and 20 K.Another way of estimating
the mass change in this region is to use the expression m∗/m = (VK /kB TK )2 where VK

is the zero temperature value of the hybridization gap and TK = 70 K, the temperature
where the hybridization starts [15,19]. Since VK is ill defined in our data, we will use the
m∗/m = 2.5 from Ref. [7] to find VK = 10 meV. This value for the hybridization gap
agrees roughly with the flat region of minimum conductivity in Figure 2 between 5 and
15 meV.

Figure 3 shows only the portion of the spectral weight that is changing between 100 K
and the temperature T . There remains a background incoherent conductivity that does not
change in this range of temperature. It is difficult to estimate the spectral weight of this
component but if it extends up to 0.6 eV it could well explain the γ value of the specific
heat. As we will see below, it is this incoherent component that hybridizes at TH O . The
original spectroscopy paper of Bonn et al. cited an effective mass of 40 ∼ me obtained from
the limited spectral region available by fitting a Lorentz oscillator to the high frequency
data and using this to estimate the plasma frequency, which as a result includes both the
Drude component and the incoherent background in the total spectral weight.

Figure 4 shows the optical resistivity ρ(ω) = Re 1/σ(ω) from Nagel et al. [9]. Below
22 K it varies quadratically with frequency (with slight deviations at the lowest frequencies,
presumably the result of impurities in the sample raising the dc resistivity) which indicates
the onset of purely Fermi-liquid-like behaviour. The resistivity of a Fermi liquid, where
electron-electron umklapp scattering is the dominant mechanism, is the sum of two terms,
one quadratic in frequency and the other quadratic in temperature [27]:

ρ(ω, T ) = A′(�ω2 + bπ2(kB T 2)) (1)

where the coefficient b = 4. This is not what is observed in URu2Si2. The observed ratio of
the temperature and frequency coefficient b is 1.0 ± 0.1 [9]. Similar deviations from simple
electron-electron scattering formula have been reported by Sulewski et al. [14] in UPt3.
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Figure 4. (colour online) The left panel shows the low-energy frequency dependent resistivity ρ(ω)
of URu2Si2. The experimental curves (solid lines) are compared to a Fermi liquid fit (dashed lines)
with the coefficient A’and an offset c(T) determined by a least squares fit to the experimental data. The
right panel shows the frequency dependent scattering rate calculated for resonant impurity scattering,
with dashed lines showing the fit to Fermi liquid scattering. After U. Nagel et al., PNAS 109 (2012)
p.19161, and D.L. Maslov and A.V. Chubukov, Phys. Rev. B 86 (2012) 155137.

A search of the literature shows that virtually all correlated electron materials have a b < 4
and that the coefficient b, where it has been measured, varies from material to material
from less than one up to 2.5. One way this can be understood is in terms of a suggestion
of Maslov and Chubukov [28] of scattering from resonant impurities leading to quadratic
frequency and temperature dependence rather than inelastic electron-electron scattering.
The coefficient b then lies along a continuum from 1 to 4, with the value determined by
the relative strength of the elastic and inelastic scattering. An obvious source of the elastic
scattering centres are the un-hybridized uranium f electrons.

The optical resistivity ρ(ω, T ) can be converted to the scattering rate if the plasma
frequency is known. We plot in Figure 5 the renormalized scattering rate 1/τ ∗ based on the
Drude plasma frequency of 418 meV at three temperatures from Nagel et al. [9]. At 50 K
the scattering rate is flat and does not vary with frequency, a signature of incoherent hopping
transport. The dashed line corresponds to the condition ω = 1/τ ∗ for coherent transport.
One can then draw the conclusion that coherent transport of the Drude component of the
carriers starts below 30 K. This estimate of quasiparticle lifetime can be compared with time
resolved ARPES scattering from Dakovski et al. who find a quasiparticle scattering rate of
2.2 meV (τ = 301 fs) in the hidden order state located near the Fermi surface “hotspots”.
We can identify these quasiparticles with our Drude carriers that have even longer lifetimes
at low temperatures. Just above the hidden order transition Dakovski et al. find short-lived
quasiparticles with scattering rates of 15 meV (44 fs) at 19 K. Presumably these correspond
to the carriers contributing to the incoherent background that hybridizes at 17.5 K.

In addition to the onset of coherence seen in the Drude scattering rate, there is further
evidence for changes in the electronic properties at T ≈ 30 K, well above the hidden order
temperature. These features have been attributed to a “pseudogap” in analogy with the
cuprate superconductors, where similar signatures are seen. NMR (T1T )−1 [29] shows a
depression growing in depth below 30 K. No new optical spectral features are seen at this
temperature: the hybridization gap measured in optics develops continuously from 70 K
to 17.5 K, as seen by Nagel et al. [9], and any precursors to the hidden order gap would
be expected to appear only at very low frequency, below 2 meV. According to Levallois
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Figure 5. (colour online) The frequency dependent renormalized scattering rate 1/τ∗ at three
temperatures. As the temperature is raised the Fermi liquid scattering at 20 K is gradually replaced
by an incoherent background. Coherent quasiparticles exist below the dashed line ω = 1/τ∗. This
condition is satisfied for T = 30 K. After U. Nagel et al., PNAS 109 (2012) p.19161.

et al. [7] there is a break in the rate of change of the Drude plasma frequency at 30 K as well as
the scattering rate – both evolve more rapidly below this temperature. But the dc resistivity
does not show any discontinuous kinks between 35 K and 17.5 K, only a gradual flattening
of the curve as TH O is approached from above, followed by an upturn below the transition.
As shown in Figure 6 the rate of change of dc resistivity acquires a negative component
below 30 K but there is no sharp kink. A gap has two opposite effects on the dc resistivity: a
reduction in the number of carriers N at the Fermi surface causes an increase in resistivity,
but a gap also reduces the number of states available for scattering, reducing 1/τ . Just
below the hidden order transition it seems that the decrease in N dominates, causing an
upturn in resistivity. Well below the hidden order transition the resistivity drops exponen-
tially due to the gapping of final states available for scattering. This is similar to what happens
in the high temperature superconductors below the superconducting transition temperature
[30]. By contrast, the opposite is true at the cuprate pseudogap where at T ∗ the resistivity
drops which is evidence that the scattering reduction dominates.

As Figure 4 shows there are no distinct bosonic features in the optical resistivity
spectra of URu2Si2 in the frequency range 2–10 meV, the type of excitations seen in
the 40 meV range in many cuprate superconductors, and are associated with peaks in the
magnetic fluctuation spectrum [31]. Instead, the excitation spectrum is smooth and has the
ω2 dependence of a Fermi liquid.

Time-resolved THz reflectance measurements [8] also offer insight into the electrody-
namics in the coherent regime. Above TK a single and relatively constant fast decay in the
reflectance is observed. As the temperature is lowered below 60 K, this fast decay slows
down. This can be attributed to the opening of a partial hybridization gap. At 25 K the
single-decay model is no longer accurate, and a two-component (fast component and slow
component) decay must be fitted to the data. This is strongly suggestive of the opening
of a partial gap at 25 K. The PCS measurements of Park et al. [32] see a partial gap open
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Figure 6. (colour online) The rate of change of dc resistivity with temperature dρ(T )/dT [12] (solid
line). The dashed line shows the trend above 30 K. There is a component that grows below 30 K. As
shown in Nagel et al. [9], in this region the transport approaches Fermi liquid behaviour. Within 1 K
of the transition this component grows more rapidly. The derivative goes to zero at 17.85 K which we
suggest is the hidden order transition, TH O .

below 27 K, also about 10 meV, but they do not see any sharp features at the hidden order
transition, and it has been suggested [33] that this may be due to the pressure of the metal
tip on the sample. ARPES measurements also see a gap open at the X-point in k-space
below 25 K [24]. This gap has a value of approximately 10 meV and is well explained by
a simple hybridization model, and furthermore, is associated with a different part of the
Fermi surface than the hidden order gap. All of this suggests that this is unrelated to the
hidden order state.

In summary, in the state between 50 K and 17.5 K the optical conductivity is dominated
by two channels. The first is a coherent Drude channel which is responsible for the changes
in the dc resistivity. There is some evidence for an increase in the effective mass of these
carriers in this temperature range but not enough to explain the large specific heat coefficient.
The second channel has a flat, frequency independent conductivity that develops a partial
gap at 10 meV as the temperature is lowered. The spectral weight lost in this gap is recovered
at a much higher frequency of 300 meV. This is in broad agreement with other spectroscopic
measurements.

3. The hidden order state

Unlike transport measurements, the optical data show no discontinuities at the onset of the
hidden order transition. Instead, an absorption feature appears gradually in the reflectance,
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which shifts to a higher frequency as the temperature is lowered and ends up, in the low
temperature limit, at ω ∼ 5 meV when measured with light polarized along the a-axis and
at ω ∼ 4 meV when measured with light polarized along the c-axis [11]. The absorption
becomes stronger as the temperature is decreased below TH O . No other optical response
is associated with the onset of the hidden order state. The optical conductivity shows that
the HO state is accompanied by a gap in the low frequency conductivity; nonetheless,
the Drude peak continues to sharpen, indicating that the greatly increased carrier mobility
more than compensates for the loss of carriers. The spectral weight that is lost in the
gap region is recovered in a peak above the gap energy. In the c-axis conductivity there
is clear evidence for the opening of a second gap with a separate, distinct energy. The
larger gap in the c-axis is also at a different energy as compared with the gap in the
a-axis conductivity. These two observations indicate that the hidden order parameter is
anisotropic.

It was initially assumed that the hidden order state was antiferromagnetic, or possibly
a spin density wave state [2,3,34], and the early optical measurements of the 1980s and
1990s were interpreted in this framework. Gradually, however, it became apparent that the
tiny ordered moment of 0.03 μB per U atom was far too small to account for the specific
heat data: more entropy was being quenched at the transition, on the order of R ln(2), than
could be ascribed to magnetic ordering. More recently it has been argued [35] that the
small moment antiferromagnet (SM-AFM) state is extrinsic, caused by strain regions in the
lattice, and is not a property of the hidden order state. In addition, when hydrostatic pressure
is applied to the crystal, there is a first-order phase transition to the LM-AFM state, further
suggesting that the hidden order is unrelated to antiferromagnetism.

Despite this, the optical signature of the hidden order state observable in the conductivity
shown in Figure 7 from Hall et al. is strongly reminiscent of a spin density wave state [11]
for light polarized parallel to both the a-axis and the c-axis. It was initially noted that the
characteristic structure of a suppression of conductivity below the gap energy with spectral
weight recovery in a symmetric peak at higher frequency bore a striking resemblance to
the spin density wave state in Cr [4,36]. At the time, theoretical descriptions of the SDW
conductivity for materials in which the scattering rate is larger than the gap energy were
not available, but an estimate could be made for the optical energy gap 2� of between
5.5 meV and 8 meV [4]. This was smaller than the specific heat value of 11 meV [3], a first
indication that optical measurements and specific heat would come to disagree. In weak-
coupling BCS theory there is a universal relationship between the energy of the gap and
the transition temperature, given by 2� = 3.53kB Tc. A transition temperature of 17.5 K
implies a gap energy of 2� = 5.3 meV.

Recent measurements of the optical conductivity of URu2Si2 [11] reveal the anisotropy
of the hidden order parameter in both the different magnitudes of the optical gaps when
measured with light polarized along either the a- or the c-axis, but also in the appearance of
a second gap, presumably on a different part of the Fermi surface. The strong suppression of
the conductivity indicates that a substantial portion of the Fermi surface is being gapped. We
know from quantum oscillations [37] that there are four or five Fermi surface sheets in the
hidden order state, so presumably the gaps affect each sheet differently. Optical spectroscopy
is not a momentum resolved probe, as it is limited to constant k-vector transitions and
averages over all of k-space for k ‖ E , so the individual components of the Fermi surface
cannot separated.
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Figure 7. (colour online) Fits of a Dynes model for the density of states to the optical conductivity
for the a-axis (top panel) and c-axis (bottom panel) for selected temperatures in the hidden order state.
The dashed lines at low frequency indicate the fit to a Drude model. Circles are experimental points,
the lines are the fits. After J.S. Hall et al., Phys. Rev. B 86 (2012) p.035132.

It is possible to fit the measured optical conductivity [11] with a simple Dynes [38]
model for an s-wave gap in the density of states:

nD(E) =
∣∣∣∣∣Re

E/� + iγ√
(E/� + iγ )2 − 1

∣∣∣∣∣ (2)

where a factor of γ has been introduced to account for a finite quasiparticle lifetime, but it
can also account for some anisotropy in the gap. When impurity scattering, the frequency-
dependent effective mass, and finite quasiparticle lifetime effects are included, the singu-
larity nD is broadened and the density-wave peak in σ1(ω) takes on the characteristic shape
seen in Cr [36,39] and the Bechgaard salt (TMTSF)2PF6 [40]. The optical conductivity is
given by integrating the joint density of states:

σD(ω) = Re
1

ω

∫ ωc

�

nD(ω′)nD(ω − ω′)dω′ (3)

In a broken symmetry ground state such as superconductivity or a spin density wave, there
are two possible transition processes between any two quasiparticle states. The transition
probabilities are determined by coherence factors, which depend on whether the two tran-
sition processes interfere with one another destructively (case I) or constructively (case II)
[41,42]. The BCS formalism describes both density wave states (case I coherence factor) and
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superconductivity (case II coherence factor) depending on whether the effective interaction
between the quasiparticles changes sign on opposite sides of the Fermi surface (that is,
when going from k to −k). The model above uses a simplified Dynes density of states with
broadening to reproduce the qualitative features of the conductivity and extract a reasonable
estimate of the gap in the hidden order state. It has been noted [10] that URu2Si2 is an almost
archetypical example of a case I coherence factor. Indeed, a theoretical calculation of the
optical response of heavy Fermion spin density wave materials [43] noted that, of all of
the candidates, URu2Si2 was the only material that perfectly matched the calculated optical
conductivity.

In many ways, this makes a great deal of sense. The gapping of incommensurate
magnetic excitations at the hidden order transition has been shown by neutron scattering
[44,45], and these account for much of the entropy lost. Band structure calculations [46,47]
have yielded a picture of the Fermi surface with strong nesting in the pressure-induced anti-
ferromagnetic state, and quantum oscillation measurements [37] demonstrate that there
is no significant Fermi surface restructuring between HO and LM-AFM, which implies
that the Fermi surface calculated for the latter state applies equally well to the former.
Incommensurate nesting will lead to the formation of a spin-density wave gap at εF

and will be accompanied by a sharp absorption feature in the optical data [6,48], while
a commensurate antiferromagnetic order of the localized moments would not be visible in
optical measurements because it would not lead to a gap in the excitation spectrum at εF .

An analysis of the spectral weight Nef f transfer in the hidden order region [10] tells the
story of what happens as the material transitions from the incoherent to the coherent and then
hidden order state. The hybridization transfers spectral weight to higher frequencies, above
300 meV. In contrast, the hidden order transfers spectral weight into the peak immediately
above the gap region. However, the spectral weight above the peak in the HO state is not
equal to the spectral weight in the coherent state at 20 K. This effect is difficult to quantify
precisely, however, as much depends on the choice of plasma frequency for the Drude
weight and how the Drude peak is determined below the measurement region (typically
∼2.5 meV).

The temperature dependence of the gap parameter � as determined by fits to the Dynes
function is shown in Figure 8. The upper panel (a) shows the ab-plane gap and the lower
panel (b) the c-axis (larger) gap. The solid lines are guides to the eye, extrapolated to zero
at the temperature of the HO transition at 17.5 K. The inset shows the expected mean field
theory gap energy 2� = 3.5kB TH O . It is clear that the data do not support the mean field
dependence. It must be noted, however, that the presence of multiple gaps of different
magnitudes can lead to deviations from the mean field temperature dependence of the order
parameter [49]. Such a scenario may account for the temperature dependence of the hidden
order gap in URu2Si2.

The limiting value at low temperature from Hall et al. [11] for the ab-plane gap of
�ab = 3.2 meV is in reasonable agreement with the work of other investigators if one
takes into account possible variations that can be attributed to different criteria for the gap
location. Two gaps are seen for E ||c at 2.7 meV and a lower one at 1.8 meV. Bonn gives
a range from � = 2.8 meV to 4.0 meV [4], while Guo et al. give � = 4 meV [10]. Other
techniques yield gaps that have a larger range of variation, in part due to the fact that their
resolution is lower than what is common in optics. Both STM [21] and ARPES [22,24] also
give gap values of about 4 meV as well as neutron scattering (around 4 meV) [45,50]. Other
tunneling data include those of Escadero et al. [51] who find � = 5.85 meV. Another way
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Figure 8. (colour online) The temperature dependence of the gap � in the hidden order state as a
function of temperature. The upper panel shows E parallel to the ab-plane; the lower panel, E parallel
to the c-axis. The inset is the mean field temperature dependence 2� = 3.5kB TH O , the solid line is
a guide to the eye. After J.S. Hall et al., Phys. Rev. B 86 (2012) p.035132.

to find the gap is to fit a Boltzmann factor to various thermodynamic measurements. We
will assume that the gap fitted there is 2�. Thus the earliest work of Palstra et al. [1], who
fit the specific heat coefficient to an activation energy, reports a gap of 115 K, i.e. in our
notation, � = 5 meV. Mentink et al. [52] fit the dc resistivity in the hidden order state to an
activation model and get an ab-plane gap of 3.1 meV and c-axis gap of 2.2 meV.

In summary, the optical data point to a hidden order state with multiple anisotropic gaps.
The non-mean field temperature dependance is in accord with this. The magnitude of the
gap parameter � agrees with other spectroscopic measurements if one takes into account
the lower resolution ofARPES and STM techniques. Overall, the spectrum can be fit closely
by a Dynes model with finite quasiparticle lifetimes, and is modelled accurately [43] by
a BCS model using type I coherence factors for a spin density wave gap. The transfer of
spectral weight is very similar to what one sees in density wave transitions, although one
has to rule out a simple SDW picture for the lack of a sufficient ordered moment.

4. Summary and conclusion

We will now try to bring together all the optical data keeping in mind the other spectroscopic
results as well. It is natural to discuss the results in terms of the temperature regions defined
in Figure 1 but we have to modify the original picture by including a separate “precursor”
region between 30 K and TH O .

Between 300 K and 30 K URu2Si2 behaves very much like other heavy fermion
materials. Above TK the conductivity is incoherent and increases slightly as the temperature
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is lowered, reaching a broad maximum around 70 K, and then drops smoothly. We have
identified this decreasing conductivity as a combination of f electron hybridization and a
general reduction of scattering due to thermal factors. The overall result is a growing Drude
peak and a hybridization gap at 10 meV. However, there remains a substantial incoherent
background even at 17.5 K and the hybridization gap is not complete: the conductivity at
the minimum at 10 meV has only dropped to half its room temperature value. The scattering
mechanism of the Drude component is Fermi-liquid-like in that the frequency dependence
is ω2, but the scattering is anomalous in that is does not follow the scaling expected for
electron-electron umklapp scattering. A possible mechanism is resonant scattering from the
remaining un-hybridized f electrons. There are no dominant features in the optical spectra
from bosonic interactions as seen in the cuprate [31] and the pnictide [53] superconductors
in the normal state above their superconducting transition temperatures.

Below 30 K, several things happen. There is a break in the rate of change of the
Drude plasma frequency, and the rate of change of the dc resistivity begins to deviate
from linearity. As the temperature is lowered further, time resolved THz spectroscopy,
point contact spectroscopy, and ARPES all show evidence for the opening of partial gaps
in the electron excitation spectrum. None of the measured effects that begin between 30 K
and TH O are discontinuous at the hidden order transition, and ARPES sees a gap open on
a different part of the Fermi surface at TH O . This strongly implies that the changes in the
electronic structure in this temperature range are unrelated to the hidden order state.

Below TH O several things happen. A gap opens up and within a fraction of a degree
Kelvin the resistivity increases due to a loss of states. But as the temperature is lowered
the reduced scattering becomes more important and the resistivity drops exponentially. A
gap in the optical conductivity opens up and the gapped spectral weight is transferred to a
narrow band just above the gap. It should be noted that it is the incoherent non-Drude part
of the conductivity that is gapped, but above 12 meV the conductivity remains at its normal
state value. This is consistent with hybridization stopping at the hidden order transition
while above the frequency of the hidden order gap the carriers remained incoherent. While
these dramatic changes take place in the incoherent channel of conductivity, the Drude peak
narrows but does not show any large discontinuous changes in width at the hidden order
transition.
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Chapter 6

The c axis optical conductivity

The optical conductivity of the hidden order state had been studied in the past (Bonn

et al., 1988; Degiorgi et al., 1995), but the studies had been focused on the ab cleavage

plane. In this study, we examined the reflectance spectrum of the c axis. The crystal

structure is tetragonal, with a c axis resistivity that is lower than the ab plane by

a factor of three or so. Because ARPES and STM studies are limited to cleaved

surfaces, infrared spectroscopy is ideally suited to study electronic excitations in this

orientation.

We discovered a number of important features of the hidden order state in this

study. In particular, the electronic gap is anisotropic, with different values depending

on whether the light is polarized along the c axis or the ab plane. We also reported

the first observation of a second gap, presumably on a different part of the Fermi

surface, which has since been corroborated by ARPES measurements. Neither of these

developments was expected, and this provided additional insight into the electronic

structure changes at the hidden order transition.

In addition, we used a Dynes model density of states to fit the gap and were able to
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study the dependence of the gap on temperature. This resulted in the determination

that the electronic gap does not appear to have a mean-field BCS-like temperature

dependence. This contradicts conclusions drawn from STM experiments that had to

invoke surface effects and modify the transition temperature to fit a BCS gap. This

means that either the order parameter does not follow BCS theory or the energy gap

does not track the order parameter.

The behaviour and size of the gap allowed us to draw some comparisons to other

experiments, in particular to neutron scattering in which we identified the larger FS

gap with the gapping of the incommensurate magnetic excitations. This supports

the idea that the nesting of the Fermi surface is responsible for gapping the charge

excitations as well, despite the absence of spin density wave order.

In this study, I performed the measurements of the absolute reflectance of the c-

axis at McMaster. I participated in the measurements of the temperature dependence

of the reflectance in Tallinn in collaboration with the team there. I did a number of

studies of the surface of the cut crystal and was able to determine the the surface

after cutting needed to be treated with HF in order to give good results. I analyzed

the data and wrote the paper.
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Observation of multiple-gap structure in hidden order state of URu2Si2 from optical conductivity
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We have measured the far-infrared reflectance of the heavy-fermion compound URu2Si2 through the phase
transition at THO = 17.5 K dubbed “hidden order” with light polarized along both the a and c axes of the
tetragonal structure. The optical conductivity allows the formation of the hidden order gap to be investigated in
detail. We find that both the conductivity and the gap structure are anisotropic, and that the c-axis conductivity
shows evidence for a double gap structure, with �1,c = 2.7 meV and �2,c = 1.8 meV, respectively, at 4 K, while
the gap seen in the a-axis conductivity has a value of �a = 3.2 meV at 4 K. The opening of the gaps does not
follow the behavior expected from mean-field theory in the vicinity of the transition.

DOI: 10.1103/PhysRevB.86.035132 PACS number(s): 71.27.+a, 74.25.Gz

I. INTRODUCTION

The heavy-fermion compound URu2Si2 has been ex-
tensively studied due to the great diversity of electronic
behaviors it displays in different temperature regimes. At room
temperature, URu2Si2 behaves as a poor metal due to the
Kondo effect, with a Kondo temperature of approximately1

370 K and a slowly increasing resistivity as the temperature
is lowered, reaching a maximum of ∼320 μ� cm at about
70 K. As the temperature is lowered further, the resistivity
begins to decrease.2–5 This decrease has been attributed to
the formation of a Kondo lattice where the localized uranium
f electrons hybridize with the conduction electrons forming
heavy charge carriers with m∗ ∼ 25me in this material, i.e.,
heavy Fermions.2,3 This view has been challenged recently by
Schmidt et al.6 using STM and confirmed by Nagel et al.7

using infrared spectroscopy, who find that the mass of the
charge carriers remains on the order of the free electron mass
down to the hidden order transition at THO = 17.5 K. At
this temperature, URu2Si2 undergoes a second-order phase
transition, identifiable as a discontinuity in the resistivity2–5

and specific heat,8 for which no order parameter has yet
been conclusively identified. Finally, from this ordered state,
unconventional superconductivity emerges below 1.7 K.3

The specific heat data fit well to an exponential decay
below the ordering temperature as would be expected in a
BCS-like transition, with a corresponding loss of entropy
of approximately 0.2Rln(2). The dc electrical resistivity
data fit well to a Fermi liquid model above the transition,
revealing that electron-electron interactions are the dominant
scattering mechanism in the coherent regime. There is a
pronounced anisotropy between the a and the c directions,
with the c direction having a lower resistivity. Below the
transition, the dc resistivity fits well to an exponential decay
with an additional T 2 term to account for the continued
contribution to the scattering from Fermi liquid physics.
Recent resistivity measurements9,10 on ultraclean samples with
residual resistivity ratios of 270 or better indicate that the
Fermi liquid model fails in the hidden order (HO) state,
and that the resistivity is best described by a generalized T n

power law with n ∼ 1.6 from fitting the data at atmospheric
pressure.

Initially, the transition was assumed to be antiferromagnetic
ordering8,11 or the onset of a density wave state.2 Magnetic
ordering was subsequently ruled out by neutron scattering,12

which detected an ordered moment of 0.03 μB per U atom, too
small to account for the entropy loss inferred from the specific
heat. The alternative of a charge density wave state has received
little support since there is no evidence of lattice distortion.
Because the order parameter remains unknown the transition
has been named hidden order. A number of theoretical models
have been proposed to account for the order parameter, such
as multipolar ordering, density and hybridization waves,13–17

but so far none has been conclusively identified as responsible
for the transition.

Previous reflectance measurements18,19 have shown the
structure and evolution of the frequency-dependent conduc-
tivity, measured in the ab cleavage plane as a function of tem-
perature. Above 75 K, the optical conductivity is completely
frequency independent, characteristic of incoherent hopping
conductivity. Below 75 K, the spectrum is well described
as a metal, with a Drude peak that becomes sharper and
narrower down through the hidden order transition. More
recently, measurements on an a-c face20 above the hidden
order transition have demonstrated the anisotropy in the optical
conductivity expected from transport measurements. Further
measurements on the ab plane7 have recently shown that the
spectral weight associated with the Drude peak is constant
between 75 K and THO, suggesting that the effective mass of
5me remains constant between these temperatures, and that
major changes to the electronic structure do not occur in this
temperature range.

We have conducted optical spectroscopy measurements
on oriented samples of URu2Si2 along both the a and
c axes, using a new technique for obtaining high-quality
low-noise data. We present the first comparison of optical
spectra from both crystal directions on URu2Si2 in the hidden
order state.

II. EXPERIMENTAL METHOD

Single crystals of URu2Si2 were grown at McMaster
University by the Czochralski method. The crystals were
grown in a triarc furnace in argon atmosphere and were then

035132-11098-0121/2012/86(3)/035132(7) ©2012 American Physical Society
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either cleaved perpendicular to the c axis or oriented with a
Laue x-ray diffractometer and cut with a tungsten wire saw
parallel to the c axis. The ac face was then polished smooth
and etched using a wash of hydrofluoric acid to remove any
damaged surface after it was found that the polishing process
removed the phonon features from the reflectance.

The dc resistivity has been measured along the a axis on
crystals from the same growth as those used in the reflectance
measurements, and along both axes elsewhere.4,5,8 The form
of the resistivity is robust between different samples, and the
values of the resistivity are close enough to one another that it
seems more likely that the differences are due to uncertainty
in the positioning of the electrodes and the sample geometry
during the measurements than variations due to sample quality.
When the resistivity at the transition is normalized to agree
between the dc measurements taken at McMaster, on a crystal
grown at the institute Néel, and in Ref. 5, the values along the a

axis agree with one another to better than 10% up to 30 K, and
variation on this level does not introduce significant changes to
the calculated conductivity. Furthermore, reflectance measure-
ments on different samples with different residual resistivity
ratios do not see a shift in the energy of the absorption, so the
form of the reflectance is quite robust against sample quality.
We therefore use the dc conductivity from Zhu et al.5 for the
c axis.

The samples were measured with standard reflectance
techniques, using both an immersion cryostat with a 3He
bolometer and a Sciencetech SPS spectrometer in Tallinn,
Estonia, and an open-flow helium cryostat and Bruker IFS
66 v/s spectrometer at McMaster. A standard gold overcoating
technique21 was used to get absolute spectra accurate to 0.3%
and reproducible between the two measurement systems.

In order to interpret the electronic behavior as the gap forms
across the Fermi surface at the transition, it is necessary to
extract the optical conductivity from the absolute reflectance
using the Kramers-Kronig relations. As a first approximation,
since URu2Si2 behaves electronically as a metal at low
temperatures both above and below the hidden order transition,
the Hagen-Rubens formula for the reflectance in the limit

of low frequencies, R(ω) = 1 −
√

( 2ω
πσdc

), has been used to

extrapolate the reflectance to zero frequency. The measured
dc conductivity was used to compare expected reflectance to
that measured. In this case, the measured absolute reflectance
was adjusted slightly to agree with the transport data, as slight
drifts in the measurement system, particularly the detectors
used, can cause errors on the order of 0.5%.

To eliminate geometrical artifacts at low frequency, the
sample was held stationary during the measurement process
and the temperature was varied. Ratios were then constructed
between the reflectance at different temperatures of interest
and the reference temperature of 20 K in order to study the
temperature dependence the reflectance in the vicinity of the
HO transition. Because thermal expansion is negligible on
the scale of the optical path and the sample is not moved
between measurements, the ratios between the reflected
spectra contain very little noise. The temperature ratios are
shown in Fig. 1. The full temperature dependence of the
reflectance is contained in these ratios, and the low-noise level
and high resolution allows weak features to be analysed in
detail.
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FIG. 1. (Color online) Relative reflectance of the sample for
light polarized along the a (top) and c (bottom) axes. The reflected
spectrum R(T ) is measured at 20 K and then at one of the temperatures
indicated, and the ratio R(T )/R(20 K) is constructed by dividing
the reflectance at the temperature of interest by the reflectance at
the reference temperature. The sample is held stationary during the
measurements so there is little noise.

Geometrical artifacts are introduced to the absolute re-
flectance during the gold overcoating process due to the motion
of the sample, detector drift, and the imperfect reproduction of
the original sample position. The noise in the absolute spectra
is greater than the noise in the temperature ratios by an order of
magnitude. In order to address this, a simple polynomial can
be fit to the absolute reflectance at the reference temperature.
This smoothed estimate of the absolute reflectance at the
reference temperature and the ratios are then combined to
give absolute reflectance at the temperatures of interest. This
removes weak temperature-independent features if they are
within the noise level, but allows the transition and any other
temperature-dependent features to be studied with only the
much smaller noise from the temperature ratios.

III. RESULTS

The full reflectance in the ab plane is shown in Fig. 2.
There are optical phonons at 13.6 and 47.1 meV along the a

axis and 42.8 meV in the c direction. Interband transitions can
be seen as a shoulderlike feature at 380 and 1200 meV. The
feature at 380 meV has a sharper onset at lower temperatures
that broadens out at room temperature. The signature of the
hidden order can be seen as a strong absorption at 5 meV at the
lowest temperature, and it is the only feature within our spectral
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FIG. 2. (Color online) Absolute reflectance measured in the ab

plane from the far infrared to the ultraviolet. The shoulderlike features
at 380 and 1200 meV correspond to interband transitions. The partial
hybridization gap appears in the 25 K spectrum as a drop in the
reflectance between 15 and 30 meV. The hidden order gap opening
causes a strong absorption centered around 5 meV, visible in the 25 K
spectrum.

range that can be associated with the hidden order transition.
The drop in reflectance between room temperature and 25 K
in the region between 12 and 40 meV can be attributed to the
formation of a hybridization pseudogap7,20 below 70 K.

Figure 3 shows the polynomial fit to the absolute reflectance
described above, along with the smoothed absolute reflectance
along both distinct crystal directions. The onset of the hidden
order state is clearly visible in the low-temperature spectrum
as a drop in the reflectance of both crystal axes centered around
5 meV (a axis) and 4 meV (c axis). The minimum is distinct and
shifts to slightly higher energies with decreasing temperature.
The appearance of this minimum evolves gradually with a
sudden onset at the hidden order temperature and its depth
increases monotonically with decreasing temperature in the a

direction; in the c direction, there is additional structure that
makes this impossible to determine. Along the c axis below
12 K, an additional feature appears in the absorption near
the minimum, unlike when the light is polarized along the a

axis whose absorption minimum remains sharp to our lowest
temperature of 4 K. No other sharp features appear below THO

above 2 meV.
Figure 4 shows the optical conductivity at selected temper-

atures. The solid curves above 2 meV show the real part of
the optical conductivity from the Kramers-Kronig analysis as
described above. URu2Si2 behaves electronically as a metal
in the low-temperature regime both above and below THO. To
obtain an estimate of the conductivity below 2 meV shown as
dashed curves, where we have no optical data, we used the
following procedure to fit a Drude peak to the conductivity.
The amplitude of the peak σ (0) was taken from the measured
dc conductivity and the width 1/τ from the tail of the Drude
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FIG. 3. (Color online) (a) Absolute reflectance in the a axis at
25 K, with the polynomial fit (red line) to smooth out geometrical
artifacts introduced during motion of the sample. The same procedure
was used for the c axis (not shown). (b) Refined reflectance along
the a axis, obtained by multiplying the measured reflectance ratios
R(T )/R(25 K) by the fit to the absolute reflectance at 25 K.
(c) Refined reflectance along the c axis. At the lowest temperatures,
additional structure appears within the absorption around the mini-
mum near 5 meV.

peak that extended to the optically measured region above
2 meV.

As expected from transport data, there is a strong anisotropy
between the optical conductivity in the a and the c directions.
Both have qualitatively the same features above the transition:
a sharp Drude peak and strong incoherent background,
with the Drude peak becoming sharper as coherence be-
comes stronger with decreasing temperature. The conductivity
is higher along the c axis, consistent with dc resistivity
measurements.

The gap can be identified as a suppression of the optical
conductivity (Fig. 4) in the frequency range immediately above
the narrow Drude peak, with a shift of spectral weight to the
frequencies in a narrow region above the gap energy, visible as
a sharp peak. The Drude peak narrows sharply and increases
in height as the gap develops, but the spectral weight lost in the
gap region is not fully recovered either in the Drude peak or
above the gap. The very strong suppression of the conductivity
in the gap region suggests that the gap forms across a large
section of the Fermi surface. Qualitatively, the gap structure
appears similar in the two crystal directions, although the peak
above the gap is broader in the c direction and the gap energy is
larger in the a direction. The structure within the absorption in
the reflectance along the c axis is visible within the gap region
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FIG. 4. (Color online) Real part of the optical conductivity of
the a (top) and c (bottom) axes for selected temperatures above and
below the hidden order transition at 17.5 K. The arrow in the lower
panel shows the position of the second gap at lower temperatures.
The dashed lines at low frequency indicate the Drude peak that has
been extrapolated to agree with dc conductivity measurements.

in the optical conductivity as an additional bump appearing
below 12 K, becoming stronger and sharper as the temperature
decreases.

We use an isotropic s-wave gap model from Dynes et al.22

with a square-root-like singularity in the density of states to
attempt to parametrize the gap seen in the conductivity:

nD(ω) =
∣∣∣∣∣Re

ω + iγqp√
(ω + iγqp)2 − (� + iγ�)2

∣∣∣∣∣ , (1)

where � is the gap energy, γqp is a damping term due to
the quasiparticle lifetime, and γ� is the imaginary part of the
complex gap parameter. In order to account for the region in
which the density of states goes to zero, a cutoff frequency ωc

is introduced as the upper bound of the integration over the
available states:

σD(ω) = Re
1

ω

∫ ωc

�

nD(ω′)nD(ω − ω′)dω′. (2)

The comparison of the isotropic gap model fit to the mea-
sured conductivity is shown in Fig. 5 for selected temperatures
for both crystal directions. The behavior of the relevant band
structure above the cutoff is unknown and the form of the cutoff
is somewhat arbitrary and has not been included in the model,
so exact agreement above this frequency is not necessarily to
be expected.

The energy and the gap both have an imaginary part, γqp and
γ�, respectively. In both polarizations and for both gaps in the c

direction, the values of both γ ’s are constant with temperature.
The width of the gap was determined to be the same for all
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FIG. 5. (Color online) Fits of a Dynes s-wave model for the
density of states to the optical conductivity for the a (top) and c

(bottom) axes for selected temperatures in the hidden order state. The
dashed lines at low energy indicate the Drude model extrapolation,
the solid lines are the measured conductivity, and the circles indicate
the conductivity calculated on the basis of the s-wave model. Above
the cutoff energy exact agreement is not expected since the details of
the band structure are not taken into account in the fitting process.

three gaps to within 10%. The quasiparticle lifetime is the
same for the a-axis and larger c-axis gaps, but differs for
the smaller c-axis gap. The values for γqp due to the quasi-
particle lifetime are γa,qp = γc1,qp = 0.1 meV, and γc2,qp =
0.5 meV.

The appearance of multiple gaps as well as the differences
between the gap sizes, observed with different axes of
polarization, indicates that the gaps are not isotropic. The
isotropic gap model still works extremely well, however,
suggesting that the density of states does indeed possess a
square-root singularity despite the anisotropy of the underlying
gap. The structure of the Fermi surface is complicated with
as many as five separate sheets,23 which makes a reasonable
determination of gap structure difficult. Optical measurements
are by their nature averages over all of k space in the direction
given by the light polarization, so variations in the detailed gap
structure will not necessarily produce greatly differing optical
conductivity.

The a-axis gap evolves steadily down into the hidden
order state, with a value at 4 K of �a = 3.2 meV in good
agreement with ARPES24 (which sees a heavy band dispersing
approximately 4 meV below the Fermi level) and tunneling25

(� = 4.1 meV) as well as previous optical data.18 The gap
in the c axis is not easy to compare to other measurements
because the material does not cleave along the ac face, so
surface-sensitive techniques like STM and ARPES cannot be
used directly. Our measurements suggest that the additional
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structure in the c-axis conductivity is due to a second gap
opening within the hidden order state. The larger gap has
a value of �1,c = 2.7 meV, while the smaller gap value is
�2,c = 1.8 meV, both at 4 K. The isotropic gap model can
be fit at all temperatures without changing the quasiparticle
widths or lifetimes or the gap width; only the value of the gap
needs to be changed to fit the data, except at 15 K where the
cutoff frequency has to be decreased slightly.

The gap in the a axis is well described by the single-gap
s-wave model fit, while the c-axis requires a two-gap model to
be consistent with the data. The second gap seen in the c-axis
is too weak to be seen in the 15 K conductivity, but is clearly
present at the 12.5 K and is nearly fully developed before it
is visible, with a value of �2,c = 1.5 meV at T = 12.5 K and
�2,c = 1.8 meV at T = 4 K.

IV. DISCUSSION

Figure 6 shows the evolution of the three gaps with
temperature, as determined by fitting our model. Neither of the
observed gaps whose onset we can detect follow the behavior
expected from a mean-field BCS model in the region near the
transition, but the fit becomes closer at lower temperatures. It
can be noted here that good agreement with BCS theory can be
achieved if the transition is assumed to happen at 16 K rather
than at 17.5 K, a feature also observed by Aynajian et al.,25
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FIG. 6. (Color online) The gap value as a function of temperature
for the a-axis (top) and the larger c-axis gap (bottom). Solid lines are
guides to the eye to show the trend of the gap values. Insets show the
behavior expected from a mean-field BCS model from which the data
deviates at temperatures close to the transition; at lower temperatures
the behavior is closer to mean-field theory. The smaller c-axis gap is
nearly constant to within our sensitivity and is not shown. Error bars
are determined from the largest change of gap value that can be made
to agree with the data if the other parameters in the model are varied.

however, transport measurements rule this out and the bulk
transition certainly happens at 17.5 K.

Neutron scattering work26 shows that a series of incom-
mensurate spin excitations corresponding to the wave vectors
(1 ± 0.4,0,0) become gapped at the transition, and this must
account for a significant amount of the entropy lost at the
transition. The neutron scattering data reveals that charge and
spin degrees of freedom are very strongly coupled, and the
Fermi surface reconstruction at THO has a corresponding effect
on the spin excitation spectrum. The energy of the a-axis gap
seen in optics (3.2 meV at 4 K) is in good agreement with
the gap seen in neutron scattering26 (∼3.5 meV at 1.5 K).
This close correspondence suggests that the spin and charge
degrees of freedom are strongly correlated and the same gap
exists in the charge excitation spectrum as in the spin excitation
spectrum.

The neutron scattering results also show commensurate
excitations corresponding to the antiferromagnetic zone center
that become gapped at the HO transition. This gap has a value
of 2 meV at 1.5 K, very close to the observed value of the
smaller gap in the c-axis optical data (1.8 meV at 4 K). The
oscillator strength in our model associated with the opening of
this gap is much smaller than for the a-axis gap; this is also in
agreement with INS, which sees the commensurate mode as
considerably weaker than the incommensurate modes. This is
further good evidence that the gap seen in the optical data is
related to the gap in the spin excitation spectrum seen in the
neutron scattering.

Band structure calculations27–29 and quantum oscillation
measurements30,31 have recently revealed much more infor-
mation about the Fermi surface reconstruction that occurs
at the HO transition. Rotational symmetry is broken in
the ab plane and the unit cell changes from body-centred
tetragonal to simple tetragonal, with a doubling of the unit
cell along the c-axis30 inferred. Strong nesting between
different parts of the Fermi surface are responsible for the
excitations seen in neutron scattering, which agrees well
with the present results. We note that we do not detect any
additional zone-boundary optical phonons appearing within
the spectrum from the unit cell doubling along the c axis;
the feature within the gap structure in the c axis, which we
identify as a second gap, can be conclusively ruled out as a
phonon.

Recent ARPES24 measurements and STM results6,25 show
the behavior of the band structure at the transition near the
Fermi level. ARPES shows a heavy quasiparticle band that
crosses the Fermi level from above at the hidden order
transition and hybridizes with a light hole band. Measurements
of the differential conductance using STM see a similar
effect; a light band breaks into two heavy bands at the
transition, forming a gap at the Fermi level. The STM data
suggests an effective mass of 5 me in the coherence region (in
agreement with optical results7) increasing to ∼25 me in the
HO state, while ARPES sees an effective mass of 22 me in the
HO state.

The STM6,25 results show a heavy-band splitting at the
transition into two heavy bands with a gap of ∼4 meV at
the Fermi level. However, when the band splits, there are
additional empty states that appear above the Fermi energy
with a gap of approximately 2 meV [see Schmidt et al.6
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Fig. 5(c), and Aynajian et al. Fig. 4(c)]. This band of empty
states is available for transitions from the filled band at the
Fermi level, and the gap between these two bands shows close
agreement with the smaller gap seen in the optical conductivity
measured along the c axis. We therefore suggest that this band
accounts for not only the corresponding optically observed
gap, but the commensurate spin excitation gap as well.

The origin of the larger gap seen in the c axis is less clear:
its value at 4 K (2.7 meV) does not correspond well with any
gap seen in neutron scattering. APRES measurements24 see a
heavy quasiparticle band dispersing 4 meV below EF . STM
measurements, likewise, do not see any gaps corresponding
to 3 meV between filled states and empty states (though
arguably there is a gap between two empty bands of about
this magnitude). Both ARPES and STM, however, are limited
to measuring a cleaved surface, while we observe this effect
only in the c-direction. We suggest that this gap has not been
previously observed using the other available probes. The fact
that it does not correspond to a gap in the spin excitation
spectrum suggests that for the charge carriers involved, spin
and charge degrees of freedom are decoupled.

V. CONCLUSIONS

We have measured the optical conductivity of the heavy-
fermion compound URu2Si2 through the hidden order
transition at 17.5 K down to 4 K. We observe several s-wave

gaps opening in the Fermi surface; one can be seen in the
a-axis conductivity and two others in the c axis. We associate
the gap in the a axis with a value of 3.2 meV at 4 K with
the gaps seen by ARPES, STM, and neutron scattering with
values of ∼4 meV, and the smaller gap in the c axis with a
value of 1.8 meV at 4 K with the gapped commensurate spin
excitations seen in neutron scattering and the band splitting
seen in STM. The larger c-axis gap, with a value of 2.7 meV
at 4 K, cannot be associated with any previously reported
measured gaps in the magnetic excitation spectrum, and
appears to be a purely charge gap. The combination of isotropic
s-wave gaps with a gradually narrowing Drude peak provides
a complete and consistent explanation for the low-frequency
optical conductivity in the hidden order state.
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Chapter 7

The hybridization state and Fermi

liquid scaling

This paper primarily deals with the behaviour of the charge carriers above the hidden

order transition and the hybridization that leads to the heavy fermion state. The

papers on STM and ARPES were quite recent when this was published so much of

the focus was on the same ideas that had been put forward by them.

The main finding of the paper is that the scattering immediately above the tran-

sition temperature is Fermi-liquid-like. Typically, Fermi liquid behaviour is identified

by a ρ ∝ T 2 quadratic dependence of the resistivity on temperature. In URu2Si2 the

temperature range over which the scattering is Fermi liquid in nature is too narrow to

identify the Fermi liquid behaviour this way. In this material, we identified a Fermi

liquid purely optically, by the observation that 1/τ ∝ ω2.

The scaling between the temperature and frequency terms is given by the self-

energy, and is wholly determined by the number of particles participating in the

scattering process. The coefficient that defines this scaling, called b in our paper,
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must be equal to 4 in a Fermi liquid with electron-electron scattering in which Umk-

lapp processes are allowed. We find that this coefficient differs from it’s theoretical

value, indicating that Fermi liquid behaviour here is not caused by electron-electron

scattering. Furthermore, none of the materials for which we could find data had

a scaling factor equal to 4, indicating that this behaviour is generic to correlated

electron systems.

We also studied the hybridization gap and the Drude weight. We found that

the Drude weight is conserved below 12 meV, while the spectral weight above this

frequency is associated with the formation of the hybridization gap and is shifted

up to higher frequencies. The mass associated with the heavy carriers in the Drude

peak is only about 5me, much smaller than the specific heat mass enhancement of

40me but consistent with STM measurements. We were able to track the onset of

the coherence and the development of the hybridization pseudogap in the density of

states and its evolution with temperature.

For this study, I contributed to the optical experiments to determine the absolute

reflectance, which were done concurrently in Paris and at McMaster. I measured

the temperature dependence of the reflectance up to high temperatures across the

full frequency range, from 3 meV up to 5 eV. I and another student, Alison Kinross,

performed the DC resistivity measurements on the samples used in Tallinn and at Mc-

Master. I analyzed the optical data including doing fits to the reflectance, calculating

the conductivity and the scattering rate, and calculating the temperature dependence

of the reflectivity. I assisted in writing and editing the paper itself which was written

by Professor Timusk, including doing the final proof edits prior to publication.
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Fermi showed that, as a result of their quantum nature, electrons
form a gas of particles whose temperature and density follow the
so-called Fermi distribution. As shown by Landau, in a metal the
electrons continue to act like free quantum mechanical particles
with enhanced masses, despite their strong Coulomb interaction
with each other and the positive background ions. This state of
matter, the Landau–Fermi liquid, is recognized experimentally by
an electrical resistivity that is proportional to the square of the
absolute temperature plus a term proportional to the square of
the frequency of the applied field. Calculations show that, if elec-
tron-electron scattering dominates the resistivity in a Landau–
Fermi liquid, the ratio of the two terms, b, has the universal value
of b = 4. We find that in the normal state of the heavy Fermion
metal URu2Si2, instead of the Fermi liquid value of 4, the coeffi-
cient b = 1 ± 0.1. This unexpected result implies that the electrons
in this material are experiencing a unique scattering process. This
scattering is intrinsic and we suggest that the uranium f electrons
do not hybridize to form a coherent Fermi liquid but instead act
like a dense array of elastic impurities, interacting incoherently
with the charge carriers. This behavior is not restricted to URu2Si2.
Fermi liquid-like states with b ≠ 4 have been observed in a number
of disparate systems, but the significance of this result has not
been recognized.

hidden order | resistance | infrared conductivity | resonant scattering

Among the heavy Fermion metals, URu2Si2 is one of the most
interesting: it displays, in succession, no fewer than four

different behaviors. As is shown in Fig. 1, where the electrical
resistivity is plotted as a function of temperature, at 300 K the
material is a very bad metal in which the conduction electrons
are incoherently scattered by localized uranium f electrons. Be-
low TK ∼ 75 K, the resistivity drops and the material resembles
a typical heavy Fermion metal (1–3). At T0 = 17.5 K the “hidden-
order” phase transition gaps a substantial portion of the Fermi
surface but the nature of the order parameter is not known.
A number of exotic models for the ordered state have been
proposed (4–7), but there is no definitive experimental evidence
to support them. Finally, at 1.5 K URu2Si2 becomes an uncon-
ventional superconductor. The electronic structure, as shown by
both angle-resolved photoemission experiments (8) and band-
structure calculations (9) is complicated, with several bands
crossing the Fermi surface. To investigate the nature of the
hidden-order state we focus on the normal state just above the
transition. This approach has been used in the high-temperature
superconductors where the normal state shows evidence of dis-
crete frequency magnetic excitations that appear to play the role
that phonons play in normal superconductors (10). The early
optical experiments of Bonn et al. (11) showed that URu2Si2
at 20 K, above the hidden order transition, has an infrared
spectrum consisting of a narrow Drude peak and a strong in-
coherent background. The large electronic specific heat just

above the transition pointed to the presence of heavy carriers
with a mass m* = 25me (2). However, recent scanning tunneling
microsocopy (STM) experiments contradict this model (12, 13).
Schmidt et al. (12) find a light band crossing the Fermi surface
above 17.5 K turning into a hybridized heavy band only below the
hidden-order transition. This finding contradicts the conven-
tional view that mass builds up gradually below TK, although
there have been recent reports of some hybridization occurring
in the 25–30 K region by Park et al. (14) and Levallois et al. (15),
but the reported effects are weak and perhaps not resolved by all
spectroscopies. We can test the development of mass by carefully
tracking the Drude weight as a function of temperature with
optical spectroscopy. The Drude weight is a quantitative mea-
sure of the effective mass of the carriers. Before turning to an
optical investigation of the normal state of URu2Si2, we will re-
view briefly what is known from optical spectroscopy of other
metallic systems at low temperature.
In pure metals, at high temperature the dominant source of

resistance is the electron–phonon interaction, giving rise to the
familiar linear temperature-dependence of the electrical resistance.
At low temperature the phonon contribution weakens and the
resistance varies as T2, where T is the absolute temperature.
Gurzhi showed that under rather general conditions, the re-
sistivity of a pure metal at low temperature is given by ρ(ω, T) =
A′[Zω2 + 4π2(kBT2)], where ω is the frequency of the field used
to measure the resistivity, and A′ a constant that varies from
material to material (16). This formula is valid for three-di-
mensional systems, as long as Galilean invariance is broken by
the lattice, and the Fermi surface is not convex and simply
connected (16–22), and then in the high-frequency regime when
ω >>1/τsp(ω, T) with 1/τsp(ω, T) being the single-particle scat-
tering rate. In the dc limit, the resistivity behaves as ρ(T) = AT2,
if umklapp scattering is allowed. Notice that although the coef-
ficients A and A′ contain different combinations of umklapp and
normal scattering amplitudes, they are related as A = 4π2A′ if
umklapp scattering dominates over the normal one. We prefer to
introduce a parameter b, which we define as b = A/(A′π2). Then,
if the Gurzhi resistivity formula is valid, b = 4. A source of
confusion in the literature is the formula for the single-particle
scattering rate 1/τsp within Fermi liquid theory 1/τsp(ω, T) =
A′[(Zω2 + π2(kBT)2] that is sometimes used to describe the re-
sistivity. This formula does not apply here and, to be general, we
will use the parameter b as a quantity that is measured by
comparing the frequency and temperature terms in Gurzhi’s
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formula, in the same energy range Zω ∼ kBT. Although the focus
of this report is an accurate determination of b in the normal
state above the hidden-order transition of URu2Si2, it is useful to
look at previous work, where the quantity b can be extracted
from the measured optical resistivity ρ(ω, T) and, in some cases,
the dc resistivity ρ(T). These are challenging experiments be-
cause Fermi liquid scattering, in most metals, is a low-tempera-
ture phenomenon and, therefore, to stay in the energy range
where the temperature dependence of the resistivity is examined,
the optical measurements have to be carried out in the very
far infrared, an experimentally difficult region. Nevertheless, a
search of the literature turns up several examples.
The first report of a discrepancy of the ratio of the amplitudes

of the frequency and temperature terms in a Fermi liquid was
a report by Sulewski et al. (23) on the infrared properties of the
heavy Fermion material UPt3. Instead of the expected value of b =
4, they reported and experimental upper limit of b = 1. Since then
a number of studies have presented both T2 and ω2 dependencies
of the optical scattering on the same material (24–26). A summary
of these is given in Table 1. In some cases, the authors have not
calculated the ratio A/A′, in which case we have made an estimate

from the published curves. We have also tabulated the approxi-
mate maximum temperatures and frequencies where the quadratic
dependence is observed. It is important that these overlap to some
extent. The overall conclusion one can draw from this table is that
in no case has the expected canonical Fermi liquid behavior with
b = 4 been observed experimentally. Additional examples of non-
Fermi liquid behavior are given in a review by Dressel (27).

Results
Fig. 2 shows the optical conductivity between 20 and 75 K, the
region where coherence develops, as shown by the appearance of
a Drude peak below 15 meV, which narrows as the temperature
is lowered. Above 75 K the optical conductivity is frequency- and
temperature-independent. Interestingly, we find that in the
temperature range 75 K to 20 K the area under the Drude peak
is temperature-independent, with a plasma frequency of ∼400
meV. This finding is a signature that m* is constant in this
region of temperatures. A distinct minimum develops between the
Drude peak and the high-frequency saturation value. We suggest
this minimum is a pseudohybridization gap normally associated
with the formation of the Kondo lattice but not fully formed in this
material above 17.5 K. There is a simple relationship between the
Kondo temperature TK, the effective massm* and the gap VK:m*/
me = (VK/kBTK)

2 (17, 28). Estimating TK = 75 K from the tem-
perature where the Drude peak first appears, and taking VK = 15 ±
5 meV, we find m*/me = 5 ± 2, which is lower than what is esti-
mated from specific heat measurements (2) but not in disagree-
ment with recent STM (12) or optical (15) data. We note here that
the hybridization gap acts like the pseudogap in the cuprates; its
frequency does not change with temperature but fills in gradually
as the temperature is raised. In addition, the spectral weight
lost in the gap region is not recovered by the Drude peak or in
the spectral region immediately above the gap. The inset in Fig.
2 shows the accumulated spectral weight at the five temper-
atures. All of the curves cross at 15 meV, showing that the
Drude weight is conserved in the temperature range from 20 to
75 K. On the other hand, spectral weight is lost above this
frequency range as the temperature is lowered. These behaviors
are inconsistent with a simple picture of an effective mass
resulting from an inelastic interaction with a bosonic spectrum.
To examine quasiparticle damping above the hidden-order

transition, we apply an extended Drude model to the conductivity:

σðT;ωÞ = ω2
p

4π
1

1=τ opðωÞ− iωð1+ λðωÞÞ; [1]

where ω2
p = 4πne2=me is the plasma frequency squared, 1=τ opðωÞ=

ω2
p

4πReð1=σðωÞÞ, the optical scattering rate, and 1 + λ(ω) = m*/me is
the mass enhancement. Optical phonons at 13.5 and 46.9 meV
have been subtracted from the measured conductivity. The renor-
malized optical scattering rate, 1/τ* = 1/τop/(m*/me), is shown in
Fig. 3A, where we have used a plasma frequency of ω*p =ωp=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m* =me

p
= 418 meV; evaluated from the Drude weight. As the

temperature exceeds TK, here taken as 75 K, the frequency-
dependence below 14 meV is replaced by uniform temperature-
and frequency-independent scattering. We also note that the
low-frequency scattering above 20 K is incoherent in the sense
that 1/τ* > ω but, significantly, the condition reverses at 20 K,
near the temperature of the hidden order transition.
We next turn to the optical resistivity, defined as ρ(ω) = Re

[1/σ(ω)], where σ(ω) is the complex conductivity. We used the
“refined reflectivity” (Materials and Methods) to calculate this
quantity, as plotted in Fig. 3B at three temperatures, because we
are focusing on temperatures just above the phase transition.
The zero frequency limit of ρ(ω) is the dc resistivity, which as
mentioned above, has been adjusted to agree with the measured
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Fig. 1. The dc resistivity of URu2Si2 as a function of temperature. Unlike
ordinary metals, the resistivity rises as the temperature is lowered below 300
K to reach a maximum at around 75 K, referred to as the Kondo tempera-
ture, TK. Below this temperature the resistivity drops dramatically and the
system acquires a Drude peak at low frequency, a defining property of
a material with metallic conductivity. This change of resistivity slope at TK is
the signature of a heavy Fermion system, where the conduction electrons
hybridize with f electrons to form massive carriers. In URu2Si2, this process in
interrupted at 17.5 K by a phase transition, called the hidden-order transi-
tion, where a portion of the Fermi surface is gapped. Our aim in this work is
to investigate the electrodynamics of this system just above the hidden-or-
der state.

Table 1. Summary of experimental measurements of the ratio
b of temperature and frequency terms for some Fermi liquids

Material Tmax (meV) ωmax (meV) b Source

UPt3 1 1 <1 (23)
CePd3 1.3 (23)
Ce0.95Ca0.05TiO3.04 25 100 1.72 (24)
Cr 28 370 2.5 (25)
Nd0.95TiO4 24 50 1.1 (26)
URu2Si2 2 10 1.0 Present work

Tmax and ωmax indicate the upper limit of the measured quadratic behav-
ior of ρ(T) and ρ(ω), respectively.
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108



resistivity shown as filled circles at zero frequency. Fig. 3B also
shows a parabola fitted to the data where the constants A′(T)
and c(T) are adjustable parameters.
We next evaluate the Fermi liquid parameters A′ and A from

our data, as well as the constant b. We determine A′ directly
from a quadratic fit to the optical data shown in Fig. 3B between
5 and 11 meV. Note that the the scattering rate deviates from the
simple quadratic form below 5 meV and above 12 meV, where it
saturates. The coefficient A′ = 0.034 μΩ·cm·K−2 at 17.5 K and
decreases to 0.030 μΩ·cm·K−2 at 22 K, whereas the cutoff seems
to remain at 12 meV. Even with our enhanced signal-to-noise
ratio, we see little evidence to coupling to sharp resonance
modes in our spectra of the type seen in the cuprates (29). Such
modes, whether they are magnetic or because of phonons, would
show a characteristic rise of scattering rate at the mode fre-
quency. Instead, the self energy of the quasiparticles is domi-
nated by a featureless continuum without an energy scale.
The inset to Fig. 3B shows the intercept c(T) plotted as a

function of T2. The slope gives us the coefficient A = b(π)2 A′ =
0.30 μΩ·cm·K−2 and b = 1.0 ± 0.1, an average over the tempera-
ture region 18.5 K to 22 K. The intercept is negative but in view of
large range of extrapolation, we do not consider this significant.
A positive intercept would suggest a linear T contribution,
whereas a negative one implies a Kondo-like process that rises as
the temperature is lowered. Although the scatter in the points
precludes any definite conclusions, it is clear from the raw data that
an upward trend is present in ρ(ω) below 3 meV and below 25 K.
We next compare these optically determined parameters with

the parameters determined from the dc resistivity. Fig. 4 shows
the temperature derivative of the dc resistivity of URu2Si2. The
line is a straight-line fit to the derivative in the 18–22 K tem-
perature range to dρ/dT = c + 2AT with A = 0.3 ± 0.12
μΩ·cm·K2. The fit shows that the resistivity is dominated by a T2

term and the coefficient A agrees with its value determined from
optics well within experimental error. The near-zero value of
the intercept c shows that there is only a weak linear in T con-
tribution to the scattering, but it should be noted that in view of
the narrow 4 K temperature range used in the fit, by itself Fig. 3
does not prove that we have a Fermi liquid above 18 K. In fact,

higher-resolution dc resistivity data (30) shows that there is no
finite region where ρ(T) is linear in T. If Fermi statistics and
electron-electron scattering dominate the resistivity and 1/τ < ω,
we expect that, in addition to the ω2 dependence of the ac and T2

dependence of the dc resistivity, the coefficient b has to equal 4.
In URu2Si2 all of the conditions are met except the last one. Our
strongest evidence for this are the frequency fits in Fig. 3B and
the main role of the dc resistivity fit is to confirm the value of the
coefficient A. The agreement of the A coefficients obtained by
optics and transport is better than expected because the experi-
ments were done on different samples from the same batch and
absolute dc resistivities generally do not agree to better than
20% among groups. A Fermi liquid–like resistivity above 17.5 K
in URu2Si2 with A = 0.35 has also been reported by Palstra et al.
(3). Another comparison between the temperature- and frequency-
dependence of scattering is the ratio of the Kondo temperature
TK = 75 K and the cutoff frequency ωc = 14 meV of frequency-
dependent scattering. If it is written as bc =ω2

c=π
2T2

K   we find
that bc = 0.48, again substantially smaller than the Fermi liquid
value of b = 4.
We conclude that instead of the expected value of b = 4 for

Fermi liquid scattering (16), our data clearly show that b = 1 ±
0.1 in the temperature region immediately above the hidden order
transition. This discrepancy is well outside our possible error. The
value b = 1 is expected for resonant elastic scattering from im-
purities, when the single-particle scattering rate has an ω2 but no
T2 term (20). The Kubo formula then yields the optical 1/τ with
b = 1. Here, however, the scattering appears to be intrinsic. One
possibility is that in this material, instead of the formation of an
Anderson lattice of coherent states, the uranium f levels act like
independent incoherent scatterers and form the coherent lattice
only below the hidden-order transition. This picture has also
been advanced by Haule and Kotliar (6) and Schmidt et al. (12).
Our data provide independent evidence for this model. The
important question remains: Are there cases of true Fermi liquids
with b = 4? As Table 1 shows, all of the cases where the fre-
quency-dependence has been measured fail to show clear cases
where b = 4. The deviation from the Fermi liquid value of b has
been discussed by Rosch and Howell (18) for some special cases,
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such as quasi-two-dimensional compounds, and a case with b =
5.6 is reported by Dressel (27).
In summary, we have found that in the normal state above the

hidden-order transition in URu2Si2, a relatively light band with
a massm*/me ∼ 5 is weakly coupled to the f electrons with VK ∼ 5
meV, and that this band is responsible for the transport current
as measured by the optical conductivity. We suggest that this
coupling is not strong enough to form an Anderson lattice. In-
stead, the f electrons act like elastic, incoherent scatterers, as
shown by the anomalous b = 1 in the generalized Fermi liquid-
scattering formula instead of the expected b = 4 for coherent
inelastic scattering from bosonic excitations. As suggested by the
STM experiments of Schmidt et al. (12), the Fermi liquid with
the heavy quasiparticles exists only below the hidden-order
transition. Because of the rapidly varying electronic density of
states, we are unable to use our technique to analyze the nature

of the scattering below the hidden-order transition to verify this
scenario, and recent transport experiments suggest a possible
non-Fermi liquid behavior at low temperatures (30). We also
note that this anomalous Fermi liquid behavior is shared by a
number of other strongly correlated materials, where magnetism
appears to play a role. The possibility exists that in these systems
the electron lifetime is not determined by Fermi liquid electron-
electron scattering but by elastic resonant scattering, and leads to
the notion that a quadratic temperature dependence of the re-
sistivity may not be a good signature of a Fermi liquid.

Materials and Methods
The single crystals of URu2Si2 were grown at Grenoble and at McMaster in
triarc furnaces in an argon atmosphere. The crystals were annealed under UHV
at 900 °C for 10 d. The surfaces cleaved along the ab plane were measured by
standard reflectance techniques, at three separate laboratories, using an in
situ gold-overcoating technique (31). The absolute reflectance results of the
three groups agreed to within 0.5%.

A

B

Fig. 3. (A) The frequency dependent scattering rate 1/τ* at three temper-
atures in the normal state above the hidden-order transition at 17.5 K from
the unrefined reflectivity. As the temperature is raised, the Fermi liquid
scattering below 14 meV is replaced by a uniform frequency-independent
incoherent scattering. Coherent quasiparticles exist below the dashed line
ω > 1/τ*. (B) The optical resistivity ρ(ω) vs. photon energy at low frequencies
from the refined reflectivity. The experimental curves (solid lines) are com-
pared with a Fermi liquid fit (dashed lines), with the coefficient A′ and an
offset c(T) determined by a least-squares fit to the experimental data. (Inset)
The temperature dependence of c(T) plotted as a function of T2, for the
three lowest temperatures, 17.5 K, 18 K, and 22 K. The slope of this curve
yields an estimate of A = 0.30μΩ·cm·K−2 from optics.

Fig. 4. The solid line shows the temperature derivative of the experimental
dc resistivity of URu2Si2. The straight line is a fit of dρ(T)/dT = c + 2AT in the
temperature range 18–22 K. Above 22 K the temperature derivative falls,
a signature of the onset of incoherence.
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Fig. 5. The noisy experimental reflectance data, measured at 22 K, is
smoothed by fitting a cubic polynomial to the data. This curve is combined
with other experimental data at higher frequencies and Kramers–Kronig
transformed to yield an approximation to the actual spectrum.
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At long wavelengths, a simple procedure which we call “refined thermal
reflectance” was used to cancel out interference artifacts (32) below 13
meV. The procedure involves the following steps. We have found that the

interference artifacts seen in the absolute experimental spectrum (Fig. 5)
are related to the movement of the sample stage. To overcome this
problem, we measure the reflected spectra over a narrow temperature
range without moving the sample stage, typically from 4 K to 25 K. Using
one of the spectra as a reference, we record the ratios of the spectra at the
various temperatures to the spectrum at the reference temperature. To
obtain a low-noise absolute reflectance, we use the gold-overcoating
technique to get an estimate of the absolute reflectance at the reference
temperature. Because the sample is moved in this process this absolute
spectrum is contaminated by interference artifacts. To eliminate these
artifacts, we fit the absolute reflectance at the reference temperature
with a cubic polynomial, a curve labeled “cubic fit” in Fig. 5. This smoothed
spectrum is then used as a reference spectrum to calculate absolute
spectra at all other temperatures. It is clear that the smoothing procedure
hides any sharp structure in the reference spectrum. However, any new
sharp structure that appears as the temperature is changed will be present
at full resolution. The final refined spectra are shown in Fig. 6. This pro-
cedure is well-suited to the discovery of new spectral features that appear
at phase transitions, for example the prominent minimum at 5 meV, be-
cause of the hidden-order gap. The measured refined reflectance was
converted to an optical conductivity by Kramers–Kronig analysis. At low
frequency, below 4 meV, a Drude response was assumed where we used
the measured dc resistivity to determine the amplitude of the Drude peak
and the absorption at our lowest measured infrared frequency to de-
termine the width. At high frequency, beyond 7 eV, we used the results of
Degiorgi et al. (33).
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22 K is a polynomial fit; all of the others show actual measured data.
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Chapter 8

The antiferromagnetic state

In this paper we present results on crystals of URu2−x(Fe, Os)xSi2. The parent

compound URu2Si2undergoes a first-order phase transition under pressure to an an-

tiferromagnetic state. The relationship between the two states is the topic of intense

discussion and debate, in particular because DMFT calculations for the AFM phase

closely match the Fermi surface seen by ARPES and quantum oscillation measure-

ments show the similarity of the two Fermi surfaces. This suggests that the Fermi

surfaces of the two phases are very similar, despite the different orders underlying

them.

The paper shows that the structure of the electronic gap does not change between

the hidden order state and the antiferromagnetic state. The implication of this is

that the same mechanism is responsible for gapping the Fermi surface in both states.

The structure of the gap strongly resembles that of a spin density wave, and coupled

with neutron scattering measurements and DMFT calculations the implication is that

Fermi surface nesting is responsible for the charge gap. The absence of a spin density

wave in the parent compound becomes all the more puzzling.
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At the same time, the temperature dependence of the gap changes between the

two states, with 2∆ = AkBTo giving different values for the coefficient A between the

two states. There is clearly something to differentiate them, besides the absence of

a magnetic ordered moment in the HO state, but the mechanism gapping the Fermi

surface appears not to be the distinction. The energy gap does track the transition

temperature quite closely.

We also show that there is unequivocally a Fermi liquid precursor to the transition,

and that this is the case for both hidden order and antiferromagnetic transitions. As

the transition temperature increases with increasing substitution, the temperature at

which the optical scattering rate becomes linear moves upwards in temperature. The

Fermi liquid scattering is anomalous, in that the coefficient relating the frequency

and temperature dependences does not have the value expected for electron-electron

scattering. Another mechanism is responsible for the scattering, and is presumably

related to the ordered state due to the observation that the onset of this scattering

occurs at a higher temperature as the transition temperature rises.

This work raises two questions that any explanation of the hidden order must

address. The first is Why does Fermi surface nesting gap the Fermi surface but not

form a spin density wave? The second is Why is the scattering always Fermi-liquid-

like at temperatures above the transition and what is the mechanism responsible for

this scattering?

In this study, I organized the experiments, communicating with other groups

to arrange samples. I planned the experiments in detail. I carried out all of the

measurements except the measurements of the dc resistivity, which were performed

by another student in the group. I analyzed the data, including fitting the gap,
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calculating the conductivity and scattering rates, and fitting the Drude formula. I

also wrote the paper. Additional analysis and editing was done by Professor Timusk.

The other co-authors grew the crystals and supplied characterization data such as

magnetization, transition temperatures, and so on that were used to inform the data

analysis.
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We present data on the optical conductivity of URu2−x(Fe,Os)xSi2. While the parent material
URu2Si2 enters the enigmatic hidden order phase below 17.5 K, an antiferromagnetic phase is
induced by the substitution of Fe or Os onto the Ru sites. We find that both the HO and the AFM
phases exhibit an identical gap structure that is characterized by a loss of conductivity below the
gap energy with spectral weight transferred to a narrow frequency region just above the gap, the
typical optical signature of a density wave. The AFM phase is marked by strong increases in both
transition temperature and the energy of the gap associated with the transition. In the normal
phase just above the transition the optical scattering rate varies as ω2. We find that in both the
HO and the AFM phases, our data are consistent with elastic resonant scattering of a Fermi liquid.
This indicates that the appearance of a coherent state is a necessary condition for either ordered
phase to emerge. Our measurements favor models in which the HO and the AFM phases are driven
by the common physics of a nesting-induced density-wave-gap.

The heavy fermion metal URu2Si2 has a rich phase di-
agram in both temperature and pressure [1–3]. Uniquely
among heavy fermion materials, as the temperature is
lowered, the development of the heavy fermion phase is
interrupted by a second order phase transition at 17.5 K
[4, 5] to an enigmatic “hidden order” (HO) whose physi-
cal origin has been the subject of considerable study. De-
spite intense experimental investigation [6–10] and pro-
posed theoretical models [11–15], the nature of the phase
transition has remained elusive.

When hydrostatic pressure is applied to URu2Si2 the
temperature of the transition rises steadily with pressure
up to 20 K at 1.5 GPa, [16] at which point a first order
phase transition from the HO phase with a small extrinsic
magnetic moment [3, 17] to a large moment long-range
antiferromagnetic (AFM) phase [1, 18, 19] occurs. As the
pressure is further increased the transition temperature
continues to rise up to nearly 30 K [20]. Much attention
has been placed upon the antiferromagnetic phase be-
cause quantum oscillation measurements [10, 21] suggest
that the Fermi surface does not change between the HO
and AFM phases. This allows calculations of the band-
structure [22, 23] and the Fermi surface, which can be
computed for the AFM phase, to be applied to the HO
phase.

Recently [24–26], it has been found that the partial
substitution of Fe onto the Ru sites in URu2Si2 can
also induce antiferromagnetism in the system. Increasing
the concentration of Fe increases the transition temper-
ature and, as with applied hydrostatic pressure, there
is a crossover into antiferromagnetism above a certain
substitution level. The similarity of the phase diagrams
with pressure and Fe substitution suggests that the AFM

phases are equivalent. Substitution with Os also induces
an AFM phase that raises the transition temperature
[26, 27]. In this paper, we present optical conductivity
data on URu2Si2 in the substitution-induced antiferro-
magnetic phase and we report the first observations of
the behavior of the energy gap for charge excitations in
the AFM phase and its evolution with increasing substi-
tution x. We also show spectra of the normal paramag-
netic phase at temperatures above the AFM transition
and contrast them with the spectra above the HO tran-
sition.

The Fe substituted crystals were grown in a tetra-arc
furnace in San Diego and the Os substituted samples in
a tri-arc furnace at McMaster, both using the Czochral-
ski method in an argon atmosphere. Magnetic transi-
tions were characterized using a SQUID magnetometer
and the presence of an ordered antiferromagnetic mo-
ment was confirmed separately using muon spin rotation
[26] and neutron scattering [25]. DC resistivity measure-
ments were performed in an Oxford Maglab system using
a four-probe geometry; the estimated error due to sam-
ple configuration and geometry is 20%, which is consis-
tent with the variation in measurements in the literature
[4, 28]. Optical measurements were performed using an
SPS 200 Martin-Puplett Fourier-transform interferome-
ter for reflectance measurements below 20 meV and a
Bruker IFS 66v/s FTIR spectrometer for measurements
from 15 meV to 4.5 eV. Absolute reflectance was mea-
sured using a standard gold evaporation technique [29],
and the optical conductivity was obtained by performing
a Kramers-Kronig analysis on the absolute reflectance
data.

Figure 1 shows the absolute reflectance of
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FIG. 1. Temperature and substitution dependence of the re-
flectance of samples of URu2−x(Fe,Os)xSi2. The top panels
shows the absolute reflectance for a) Fe, b) Os substitution,
both in the AFM phase as a function of temperature. The
bottom panels show the absolute reflectance as a function of
x for c) Fe and d) Os substitution. The prominent depression
of reflectance that develops in the 5 to 10 meV region in all
the samples is a signature of a gap in the density of phases.
Adding Fe and Os causes the reflectance minimum to move
to higher frequency but the signature of the gap, a single
minimum of reflectance, does not change with substitution.

URu2−x(Fe,Os)xSi2 in the AFM phase (panels a and
b) and at different concentrations x for Fe substitution
(panel c) and for Os (panel d). The parent compound
with x = 0, which is in the HO phase, is shown as well.
In all the curves a single strong minimum develops as
the temperature is lowered below the transition. As x
is increased the reflectance minimum moves to higher
frequencies.

The characteristic absorption that signifies the opening
of the HO gap in the parent compound is still present
in the AFM phase, remarkably unchanged except for a
shift to higher energies. There is no evidence of a second,
different gap due the AFM phase. Previously [30] we have
shown that when two gaps are present in URu2Si2, as in
the case of the c-axis conductivity, it is possible to see
the characteristic change in the absorption due to this
effect if the gap energies differ sufficiently. The absence
of a second gap here strongly argues for a common gap-
forming mechanism in the HO and AFM phases.

Figure 2 shows the AC conductivity of
URu2−x(Fe,Os)xSi2. In the paramagnetic phase,
above the HO and AFM transition temperatures, the
conductivity consists of a Drude peak and an incoher-
ent continuum. As in the unsubstituted sample [30],
the continuum develops a gap-like minimum at the
phase transition. This minimum is unaltered in overall

FIG. 2. Optical conductivity of URu2−x(Fe,Os)xSi2 in the
antiferromagnetic phase. Panels a) to d) show the optical
conductivity changes with temperature for: a) Fe x=0.3, b)
Os x=0.1, c) Os x=0.2, and d) Os x=0.4. Panel e) shows the
dependence of the conductivity on the concentration for Fe
substitution, with the parent material shown for comparison;
panel f) shows the same for Os substitution. The parent com-
pound conductivities have been reduced by a factor of 0.5 to
allow easier comparison. The sharp peak at 13.6 meV is an
optical phonon.

character between the HO and the AFM phases: both
show a characteristic depletion of spectral weight in
the gap region followed by a recovery in the frequency
range immediately above the gap. The Drude peak
that develops in the hybridization regime narrows but
is otherwise unaffected by the emergence of the ordered
phases. The principal effect of Os and Fe substitution is
an increase in the energy of the gap, in tandem with the
increase in transition temperature.

We can characterize the gap in the electronic density
of states at the Fermi level ∆ using the method described
in reference [30] for the parent material, giving a reason-
able estimate for the size of the gap and its temperature
evolution. Results of this analysis are shown in Table 1.
While the absolute value for the energy gap is somewhat
model-dependent, we estimate the relative accuracy of
the gap values between samples to be ±0.2 meV. The ra-
tio 2∆/kBT0, where T0 is the transition temperature to
the ordered phase (HO or AFM), has two values, a lower
value of 4.2 for the parent compound and small Fe sub-
stitution and a somewhat higher value of 5.2 in the more
heavily-substituted AFM phase. The charge gap closely
tracks the transition temperature in both the AFM and
HO phases, regardless of whether Fe or Os is used to
induce antiferromagnetism. In particular, the value of
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Fe ∆ (meV) T0 (K) 2∆/kBT0 phase

x = 0 3.2 17.5 4.2 HO

x = 0.05 3.3 18.2 4.2 HO/AFM

x = 0.1 3.4 18.5 4.3 HO/AFM

x = 0.3 5.1 23 5.2 AFM

Os ∆ (meV) T0 (K) 2∆/kBT0 phase

x = 0 3.2 17.5 4.2 HO

x = 0.1 4.4 19.5 5.2 AFM

x = 0.2 5.1 23 5.2 AFM

x = 0.3 6.6 29 5.3 AFM

TABLE I. Gap values for the various levels of substitution
by Fe and Os. The gap and the critical temperature increase
monotonically in tandem with substitution. T0 was deter-
mined from both resistivity and SQUID magnetization mea-
surements. The phase of the x=0.05 and x=0.1 samples with
Fe substitution may be a mix of HO and AFM (see reference
[25] for a discussion of the phase diagram).

2∆/kBT0 has nearly the same value deep in the AFM
phase for both Fe and Os substitution. This implies that
the AFM phase is the same for all samples and is not
specific to Fe or Os, in agreement with µSR studies of
the two systems [26].

It is worth comparing these results to those obtained by
other techniques in the antiferromagnetic phase. Resis-
tivity measurements on URu2Si2 performed under pres-
sure by Jeffries et al. [31] and specific heat measurements
with Fe substitution by Das et al. [25] suggest that, as
the transition temperature rises, the gap in the electronic
excitations remains constant in the HO phase, then rises
to higher values in the AFM phase. In contrast, as the
table shows, our measurements clearly demonstrate that
the gap tracks the rising transition temperature in both
the HO and AFM phases.

We now turn to the excitations in the paramagnetic
normal state above the ordered HO and AFM phases.
Below 70 K, the conductivity in the 5 meV to 40 meV
region decreases monotonically with decreasing tempera-
ture forming the so-called “hybridization gap” [32]. The
spectral weight lost in the hybridization gap is transferred
to much higher frequencies [33, 34] while in contrast both
HO and AFM phases shift their spectral to a new hump
feature immediately above the gap. Another common
feature of the HO and AFM phases is the “arrested hy-
bridization”. In both phases the hybridization gap stops
changing below the HO/AFM transition temperature.

Figure 3 shows the AC resistivity as a function of ω2

for the substituted compounds at temperatues just above
the phase transition to the ordered state. It is linear
in the low frequency regime ω <∼ 8.5 meV, indicating
quadratic dependence of the scattering rate on frequency.
This is true at temperatures well above the range where
quadratic scattering rates are observed in the parent com-
pound, indicating that URu2−x(Fe,Os)xSi2 is a coherent

FIG. 3. The optical resistivity is linear when plotted against
the square of the frequency. The closer to the transition the
temperature at which ρ(ω) is measured, the higher in fre-
quency the linear fit is valid. In all samples, regardless of the
temperature of the transition or whether it was to an AFM or
HO phase, the scattering is quadratic frequency immediately
above the transition. The same behavior is seen in the parent
compound, shown as an inset, which has linear scattering at
30 K that becomes quadratic closer to T0. As the transition
temperature rises with substitution, the temperature at which
Fermi liquid behavior appears rises as well.

(though anomalous [32, 35], see below) Fermi liquid in
the normal state in a narrow temperature range above
the transition regardless of whether the transition is to
the HO or the AFM phase.

The unsubstituted compound is shown as an inset to
Figure 3. At 30 K the scattering rate varies linearly with
frequency, i.e. it is non Fermi liquid like. At 20 K co-
herence has developed with 1/τ < ω and the scattering
rate varies as ω2. We show that with substitution the
same behavior obtains: the ordered state, regardless of
the order parameter, always emerges from a Fermi liquid
precursor. This fact is not immediately apparent from
transport measurements alone as the Fermi liquid tem-
perature range is too narrow to establish a conventional
T 2 dependence; it is only by looking at the optical scat-
tering rate that it becomes clear that this must be the
case.

For a Fermi liquid, in addition to the ω2 frequency de-
pendence, one also expects a T 2 temperature dependence
of the resistivity. It was shown that the full resistivity is
given by [36, 37]:

ρ(ω, T ) = C(ω2 + bπ2T 2) (1)

where the value of the coefficient C depends on the band
117



4

FIG. 4. The DC resistivity and its first derivative for
URu2−x(Fe,Os)xSi2. The transition at T0 to the ordered state
is marked by a sudden sharp minimum in the resistivity. The
resistivity of the parent compound has the same hallmarks
as that of the substituted material. As the transition is ap-
proached from above the derivative reaches a maximum in-
dicated by arrows in the figure, that always precedes the
transition. The effect of substitution is to move the whole
structure to higher temperatues preserving its overall fea-
tures. The dashed line denotes Fermi liquid behavior where
dρ(T )/dT = 2AT .

structure but b = 4 for umklapp scattering [37] inde-
pendent of the details of a particular material. It was
pointed out recently that for many strongly correlated
systems the b coefficient varied from 1.0 up to 2.5 and
in particular for URu2Si2 it had a value of b = 1.0 in
a narrow range of temperatures above the hidden order
transition [32]. Maslov and Chubukov showed that this
anomalous behavior can be the result of resonant elastic
scattering [37]. In the case at hand the scattering centers
would be the unhybridized f electrons.

Figure 4 shows the DC resistivity and its temperature
derivative for URu2−x(Fe,Os)xSi2. The resistivity bears
many of the hallmarks of the resistivity of the parent
compound [32], with the transition marked by the same
peak like feature that shifts up in temperature with x.
The first derivative of the resistivity is characterized by a
broad asymmetric peak above the transition. The tran-
sition itself is signaled as a sudden sharp drop in the
derivative to negative values. With increasing x this pat-
tern shifts upwards in temperature. It is noteworthy that
the turnover in the derivative has the same character in
samples with a HO transition and those with an AFM
transition. This is analogous to the behavior of the re-
sistivity under pressure [31].

Because the temperature range of Fermi liquid behav-
ior is the narrow region between onset of coherence and

the transition to the ordered state, we cannot use the
usual method of plotting ρ(T ) = AT 2 to determine the
coefficient A and then from it b. Instead we adopt the
following procedure. Assuming that Eq. 1 holds we can
determine C from the slope of the frequency dependence
as shown in Fig. 3. To find A we draw a straight line from
the experimental resistivity derivative line to the origin
as shown in Fig. 4b (dashed line), in effect assuming
that dρ/dT = 2AT where, in our notation, A = Cbπ2.
Using this procedure we find that in the normal state at
19 K b = 1.1 in the parent compound, while for the Fe
x = 0.3 material, just above the AFM transition at 30
K, b = 1.35. So, in both materials, above the transition,
there is a coherent Fermi liquid with anomalous b. At the
same temperature, in the parent material, the frequency
dependence is not Fermi liquid like and the transport is
incoherent, i.e. 1/τ > ω. Thus we conclude that sub-
stitution with Fe and Os moves both the second order
transition temperature and the region where we observe
coherent ω2 Fermi liquid behavior in concert to higher
temperatures.

This observation indicates that regardless of the na-
ture of the transition (AFM or HO) or the temperature
at which it occurs, the dominant scattering mechanism
for the charge carriers is due to scattering of coherent
quasiparticles from resonant impurities. This was previ-
ously shown [32] to be the case for the parent material.
We conclude that the emergence of this anomalous Fermi
liquid scattering is a precondition for the occurrence of
the ordered state. Coherence and a well developed Femi
surface are necessary conditions for a nesting induced
density wave. What we have not observed in the nor-
mal state in URu2Si2 is scattering by discrete bosonic
excitations; such excitations would be characterized by
a distinct onset of scattering rather than the smooth ω2

dependence that we observe. (Such as for example the
41 meV magnetic resonance in the cuprates [38]).

In summary, we have studied two ordered phases of
URu2Si2 spectroscopically: the hidden order phase and
the antiferromagnetic phase. The two phases show few
differences other than an overall smooth increase in the
gap and the transition temperature with substitution of
Fe and Os. In the ordered states the gap and the trans-
fer of spectral weight are characteristic of density waves
and consistent with a partial gapping scenario [5]. The
normal states are also very similar: they are Fermi liq-
uid like with a scaling factor b ≈ 1.0 characteristic of
a Fermi liquid dominated by resonant impurity scatter-
ing. Models that include nesting-induced density waves
are consistent with our observations: efficient nesting is
promoted by coherent well-defined Fermi surfaces.
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Chapter 9

Disscussion and concluding

remarks

The hidden order remains as elusive as ever and just as intensively investigated. The

phenomenology is very well studied, to the point that it is becoming increasingly

challenging to think of new experiments to perform. The rapid proliferation of new

models testifies to the controversy around the order parameter and the nature of the

ordering.

In the years that I have been studying this material, more experiments and theories

have been put forward that have informed one another and that have had bearing on

the current understanding of the hidden order transition. On the theoretical side, the

current controversy primarily surrounds whether the electrons should be considered

localized or fully itinerant; DMFT calculations are usually predicated on the idea that

the electrons are fully hybridized and delocalized. This view is supported primarily

by Mydosh and Oppeneer (Mydosh and Oppeneer, 2014), who point the the absence

of crystal field effects as evidence for delocalization. They have also been able to show
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that the g-factor anisotropy that is often pointed to as evidence for localization can

be reproduced in DMFT calculations.

On the other hand, the argument for localization of the f electrons is that the

g-factor anisotropy is difficult to account for in purely itinerant models. The absence

of any magnetism, likewise, is difficult to account for in itinerant models, which will

tend to form density waves or other long-range orders. The localized models that

have received the most attention recently are those of Dubi and Balatsky (Dubi and

Balatsky, 2011), Chandra, Flint, and Coleman (Chandra et al., 2013), and Haule and

Kotliar (Haule and Kotliar, 2009). None of these has unequivocally established itself

as the prime candidate for hidden order, however, and each has problems: Haule

and Kotliar’s proposal relies on crystal field effects which haven’t been observed, and

Chandra et al. suggest there should be an in-plane magnetic moment that has been

ruled out experimentally.

Experimentally, the situation is no less murky despite the enormous amount of

information. The results of Park et al. (Park et al., 2012) are now widely accepted

as spurious (though not universally), but even without worrying about hidden order

onset above the transition temperature there is plenty to wonder about. The similarity

of the Fermi surface in the HO and AFM states begs the question of what it is

that causes one to have long range magnetic order but suppresses it in the other

state. The question of symmetry breaking in the HO state is still open, with torque

magnetometry, x-ray diffraction, and polar Kerr effect measurements all weighing in

with varying conclusions.

The situation as it relates to optics is rather more clear. The existence of strong

incommensurate fluctuations (Wiebe et al., 2007) which become gapped at the hidden
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order transition are a strong sign of Fermi surface nesting at the incommensurate wave

vector. DMFT calculations (Elgazzar et al., 2009) reach the same conclusion. STM

(Schmidt et al., 2010) and ARPES (Santander-Syro et al., 2009) give good indications

of the behaviour of the electronic structure. Earlier optical studies have established

the basic structure of the hidden order gap (Bonn et al., 1988).

The observation that the heavy mass of the carriers is much smaller than the

specific heat effective mass is only one of several areas in which optics and specific heat

disagree. The specific heat measurements suggest a much larger value for the HO gap

of 12 meV, which cannot be reconciled with optical measurements. The conservation

of the Drude weight also indicates that the effective mass is constant throughout the

hybridization, which suggests that the coherent state is not fully established above

the HO transition. The suggestion that hybridization becomes complete only at the

transition is therefore in agreement with our data, although the gap that emerges

in the HO state is very different in character from the hybridization gap above the

transition.

The hybridization itself is the subject of considerable interest and the search for

precursor states has led to intense investigation. In contrast with the data of Park

et al. and Levallois et al. (Levallois et al., 2011) we do not detect any evidence for

the onset of a precursor state in the hybridization gap regime. This effectively rules

out the idea that changes in the electronic structure related to the development of a

pseudogap are driving the hidden order state. It does not exclude the possibility of

order parameter fluctuations above the transition, but the pseudogap created by the

hybridization and the onset of coherent scattering is not a signature of it.

Analysis of the spectral weight associated with the hybridization gap shows the
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energy range over which spectral weight is lost and the energy at which it is recov-

ered. The distinctive structure, of loss of spectral weight across a broad low-frequency

range above the Drude peak with recovery at much higher frequencies, is very differ-

ent from the gap that occurs in the hidden order state. The different gap structures

point to different gapping mechanisms, suggesting that while the hybridization may

not be complete until the transition occurs there are nevertheless different mecha-

nisms responsible for the formation of the two gaps. This argues against models of

hybridization waves and other hybridization based hidden order parameters.

The anisotropy of the hidden order gap and the presence of a second, smaller gap

in the c axis conductivity shows that different parts of the Fermi surface respond

to the onset of order in different ways. Subsequent ARPES measurements (Boariu

et al., 2013) were able to identify two different sections of the Fermi surface with

different gaps as well, and showed that they were unrelated to the hybridization. The

relationship between the different gaps and their magnitudes neatly tied together

some of the different measurements and different estimates of the gap values.

The temperature evolution of the gaps do not follow mean field theory, indicating

that the gap in the electronic density of states is not related to the order parameter, or

that it closes in a non-BCS-like fashion, or that the order parameter is non-BCS-like.

The exact explanation for this is unclear. As there are different gaps with different

magnitudes that all open at the same temperature, they clearly cannot all preserve

the BCS relation 2∆ = 3.53kBTo and therefore it is not necessarily to be expected

that the gap should close in a single-gap mean field manner, even if the energy gap

does track the order parameter overall.

The fact that we were able to closely fit the optical conductivity using a Dynes
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model for the density of states is strong evidence that mean field theory is at least

approximately appropriate for describing the electronic excitation spectrum. The

models appropriate for a density wave, in particular, in which case I coherence factors

are in evidence, argues that the BCS theory does describe the density of states in the

hidden order state. The optical conductivity therefore appears to depict a density

wave. Its absence from other measurement techniques is baffling given how accurate

the density wave model is for the electronic spectrum.

The similarity of the gap structure, indeed the fact that it is identical, between

the HO and AFM states makes the puzzle all the more confusing. It shows that the

same mechanism gaps the Fermi surface in both the HO and AFM states, yet only

one of these states possesses long range magnetic order. The characteristic hidden

order gap structure is very different from the hybridization gap and persists long after

the hidden order state has been destroyed and replaced by antiferromagnetism. The

continued presence and gapping of the incommensurate magnetic excitation seen in

neutron scattering likewise argues strongly for the close relationship between these

phenomena in the HO and AFM states, suggesting that Fermi surface nesting is at

the origin of the formation of the gap. The question of why this fails to produce a

spin density wave in the HO state despite the clear optical signature of a density wave

is a puzzle awaiting a solution, but one which future models of the HO state must

address.

The hybridization is arrested at the hidden order transition, as the changes in

the electronic structure that are characteristic of the hybridization pseudogap cease

at the onset of the transition. As the transition is pushed to higher temperatures

by substitution and even once the transition becomes antiferromagnetic, this remains
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true; hybridization ceases once hidden order or antiferromagnetism occur.

The Fermi liquid scattering that precedes the transition is only visible in spectro-

scopic measurements, as it occurs over a temperature range that is far too narrow

to be convincing in transport measurements. The identification of a material in

which optics provides the signature of Fermi liquid scattering rather than resistiv-

ity measurements suggests that other systems may require optical investigation in

order to assess their Fermi liquidity. The scaling between the frequency and tem-

perature dependent terms is anomalous, and this appears to be a generic feature of

correlated electron systems. This demonstrates that electron-electron scattering can-

not be responsible for the scattering of the carriers in these systems. Up until this

point, ”Fermi liquid scattering”, ”quadratic temperature dependence”, and ”electron-

electron scattering” have been used interchangeably; we have shown that this is no

longer appropriate. The discovery that other scattering mechanisms can lead to a

quadratic dependence of the scattering rate on both frequency and temperature was

quite unexpected and the full implications of this finding are still being absorbed by

the community.

The fact that Fermi liquid scattering precedes the transition even as the transition

temperature rises, and even as the ordered state itself changes, is likewise wholly un-

expected. The material seems to ”know” that it is about to undergo a phase transition

several degrees above the actual transition temperature. The Fermi liquid scattering

remains anomalous even as the temperature at which Fermi liquid behaviour begins

to occur rises. Furthermore, the Fermi liquid scattering continues even when the

transition has shifted to antiferromagnetism. This suggests one of three possible sce-

narios: either the Fermi liquid background is a necessary precondition for the order to
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occur and pressure/doping raises the temperature of onset, or a common mechanism

is responsible for the scattering and the emergence of the ordered state, or fluctua-

tions of the order parameter above the transition are causing anomalous Fermi liquid

scattering to occur.

It is tempting to consider a scenario in which a common order parameter is re-

sponsible for both the HO and AFM states. Indeed, several of the theories proposed

(Chandra et al., 2015; Haule and Kotliar, 2009) include such a composite, complex

order parameter which neatly ties the two states together. This data can be taken as

support of this idea in broad terms, although it is not conclusive.

This work has contributed to a greater understanding of the mysterious hidden

order state in URu2Si2. We have shown that an understanding of anomalous Fermi

liquid scattering is both a generic problem in condensed matter physics and crucial to

the particular case of hidden order in URu2Si2. We have also shown that the hidden

order state is gapped in the manner characteristic of a spin density wave, and that

the antiferromagnetic state has the same gap structure. The gap tracks the increased

transition temperature but does not change in character.
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