
A Hybrid Software Change Impact Analysis for

Large-scale Enterprise Systems

A HYBRID SOFTWARE CHANGE IMPACT ANALYSIS FOR

LARGE-SCALE ENTERPRISE SYSTEMS

BY

WEN CHEN, B.Sc, M.Sc.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy of Computer Science

© Copyright by Wen Chen, September 2015

All Rights Reserved

Doctor of Philosophy of Computer Science (2015) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: A Hybrid Software Change Impact Analysis for Large-

scale Enterprise Systems

AUTHOR: Wen Chen

M.Sc., (Computer Science)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Alan Wassyng and Dr. Tom Maibaum

NUMBER OF PAGES: xiv, 200

ii

To my daughter Weining Chen

Abstract

This work is concerned with analysing the potential impact of direct changes to large-

scale enterprise systems, and, in particular, how to minimise testing efforts on such

changes. A typical enterprise system may consist of hundreds of thousands of classes

and millions of methods. Thus, it is extremely costly and difficult to apply conven-

tional testing techniques to such a system. Retesting everything after a change is

very expensive, and in practice generally not necessary. Selective testing can be more

effective. However, it requires a deep understanding of the target system and a lack

of that understanding can lead to insufficient test coverage. Change Impact Analysis

can be used to estimate the impacts of the changes to be applied, providing devel-

opers/testers with confidence in selecting necessary tests and identifying untested

entities. Conventional change impact analysis approaches include static analysis, dy-

namic analysis or a hybrid of the two analyses. They have proved to be useful on

small or medium size programs, providing users an inside view of the system within an

acceptable running time. However, when it comes to large-scale enterprise systems,

the sizes of the programs are orders of magnitude larger. Conventional approaches

often run into resource problems such as insufficient memory and/or unacceptable

running time (up to weeks). More critically, a large number of false-negatives and

false-positives can be generated from those approaches.

iv

In this work, a conservative static analysis with the capability of dealing with

inheritance was conducted on an enterprise system and associated changes to obtain

all the potential impacts. Later an aspect-based dynamic analysis was used to instru-

ment the system and collect a set of dynamic impacts at run-time. We are careful not

to discard impacts unless we can show that they are definitely not impacted by the

change. Reachability analysis examines the program to see “Whether a given path in

a program representation corresponds to a possible execution path”. In other words,

we employ reachability analysis to eliminate infeasible paths (i.e., miss-matched calls

and returns) that are identified in the control-flow of the program. Furthermore, in

the phase of alias analysis, we aim at identifying paths that are feasible but cannot

be affected by the direct changes to the system, by searching a set of possible pairs

of accesses that may be aliased at each program point of interest.

Our contributions are, we designed a hybrid approach that combines static anal-

ysis and dynamic analysis with reachability analysis and alias/pointer analysis, it

can be used to (1) solve the scalability problem on large-scale systems, (2) reduce

false-positives and not introduce false-negatives, (3) extract both direct and indi-

rect changes, and (4) identify impacts even before making the changes. Using our

approach, organizations can focus on a much smaller, relevant subset of the overall

test suite instead of blindly doing their entire suite of tests. Also it enables testers

to augment the test suite with tests applying to uncovered impacts. We include an

empirical study that illustrates the savings that can be attained.

v

Acknowledgements

Foremost, I would like to express my sincere gratitude to my co-supervisors Dr. Alan

Wassyng and Dr. Tom Maibaum for the continuous support of my Ph.D study and

research, for their patience, motivation, enthusiasm, and immense knowledge. Their

guidance helped me in all the time of research and writing of this thesis. I could not

have imagined having better supervisors for my Ph.D study.

The author is also thankful to Ron Mison, Sundaram Viswanathan, and Vinayak

Viswanathan of Legacy Systems International, for introducing the problem, and also

for working together to ensure the research produces practical methods and tools.

My sincere thanks also goes to Chris George, Dr. Wolfram Kahl, Dr. Mark Lawford,

Dr. Ryszard Janicki, for their technical advice either in the beginning or throughout

the study. I also thank my colleagues Asif Iqbal, Akbar Abdrakhmanov, Jay Parlar,

for their great support in working together.

Last but not least, I would like to thank my family: my parents, wife and daughter,

for supporting me spiritually throughout my life.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Enterprise Systems . 2

1.1.2 Software Changes . 5

1.1.3 Impact Analysis . 7

1.2 Research Motivation . 12

1.3 Structure of the Thesis . 15

2 Related Work 16

3 Static and Dynamic Analysis 27

3.1 Static Analysis . 28

3.1.1 Building Graphs . 29

3.1.2 The Dynamic Binding Problem 35

3.1.3 Access Dependency Graph . 42

vii

3.2 Dynamic Analysis . 45

3.2.1 Coverage Execution . 47

3.2.2 Program Execution Traces . 52

3.2.3 Aspect-Based Instrumentation 60

3.3 Combining Static and Dynamic . 72

4 Change Analysis 77

4.1 System Architecture . 78

4.2 Analyzing Patches . 81

4.3 Database Changes . 84

4.4 Library Changes . 89

4.5 Library-Database Linkages . 92

4.5.1 Method Filtering . 94

4.5.2 Full String Analysis . 95

5 Reachability Analysis 97

5.1 Reverse Search . 99

5.2 CFL-Reachability Problem . 102

5.3 Interprocedural Analysis . 109

5.4 Tabulation Algorithm . 114

5.5 Implementation via WALA . 115

5.6 Mapping Control-flow to Dependency 119

6 Alias Analysis 122

6.1 Aliased Variables . 123

6.2 Flow-Sensitivity . 128

viii

6.3 Context-Sensitivity . 130

6.4 Adaptation to Object-Oriented Language 133

6.5 Implementation via WALA . 137

7 A Complete Hybrid Approach 140

7.1 The Approach at a Glance . 140

7.2 Benefits of the Approach . 146

8 Empirical Study 151

8.1 Variables and Measures . 152

8.2 Experiment Setup . 153

8.3 Experiment Design . 157

8.3.1 Experiment 1 . 158

8.3.2 Experiment 2 . 163

8.4 Threats to Validity . 165

8.5 Results and Analysis . 167

8.5.1 Result of Experiment 1 . 167

8.5.2 Result of Experiment 2 . 169

9 Conclusion and Future Work 177

9.1 Achievement . 177

9.2 Future Work . 179

Bibliography 200

ix

List of Tables

1.1 Reasons for Adopting Enterprise Systems 3

3.1 Top 10 classes/interfaces with highest number of transitive subclass-

es/interfaces . 40

3.2 Field Execution Example . 49

3.3 Test Execution Example . 50

3.4 Impact Set Computation . 54

3.5 Subject Programs . 57

4.6 Patch Files and Impacts . 82

6.7 Base Facts for Assignments . 131

6.8 Revised Base Facts for Assignments 132

6.9 Base Facts in Alias Analysis for Java 134

8.10 Environment Setup . 154

8.11 Oracle E-Business Suite Releases and Facts 154

8.12 Patches for Oracle E-Business Suite 156

8.13 Static Impacts of Patch # 11734698 168

8.14 Execution Time in Experiment 1 . 168

8.15 Static Impacts of the Patches . 170

x

8.16 Instrumentation Result on Patch # 5565583 and Patch #14321241.

(We will walk through the result analysis for Patch # 5565583 only,

since they essentially follow the same process, and Patch # 10107418

has no impact on the system.) . 172

8.17 Final Impacts of Patch # 5565583 and Patch #14321241. (We walked

through the result analysis for Patch # 5565583 only, since they essen-

tially follow the same process, and Patch # 10107418 has no impact

on the system.) . 174

8.18 Execution Time in Experiment 2 for Patch # 5565583 175

xi

List of Figures

1.1 Program Release Process . 8

1.2 False-positives And False-negatives 9

3.1 Call Graph . 30

3.2 (a) Class Inheritance (b) Interface Implementation. 35

3.3 Dynamic Binding Example 1 . 36

3.4 Dynamic Binding Example 2 . 37

3.5 Conservative Analysis Example 1 . 38

3.6 Conservative Analysis Example 2 . 39

3.7 Access Dependency Analysis Example 1 41

3.8 Access Dependency Analysis Example 2 41

3.9 Field Data Execution Overall . 48

3.10 Call Graph Example . 52

3.11 (a) Multiple Executions Example (b) Multiple Executions Example

with Return Information . 53

3.12 (a) Execution Trace processed by Execute-after I(b) Execution Trace

processed by Execute-after II . 56

3.13 (a) Scenario I (b) Scenario II . 58

3.14 UML for the FigureEditor Example [Pro14] 63

xii

4.15 Oracle E-Business Suite System Architecture (Release 12.1)[Cor10] . 80

4.16 System Architecture . 81

4.17 File conversions . 83

4.18 General SQL Parser [Sof15] . 85

4.19 Statement Checker . 88

4.20 Detecting Modifications . 91

5.21 A Reverse Search Example . 100

5.22 A Graph with Labeled Symbols [Rep98] 104

5.23 Program smallest and its graphs. Dashed nodes and arrows correspond

to extra nodes and edges while expanding from G to G∗. 106

5.24 Context-free Grammar. A path is a realizable path iff the path’s word

is in the language L(realizable). 107

5.25 Program smallest (recursive version) and its graphs. Dashed nodes and

arrows correspond to extra nodes and edges while expanding from G

to G∗. 108

5.26 A Simple Control-flow Graph Example 110

5.27 A Representation Relation Example [Rep98] 113

5.28 Tabulation Overview in WALA [DS10] 117

5.29 A “Caller-Callee” Pair in WALA [DS10] 118

6.30 Aliased Variables in the Memory . 126

6.31 Eliminate Dependencies via Alias Analysis 128

6.32 Flow-Insensitive and Flow-Sensitive Analysis 129

6.33 Assignments and Associated Point-To Graph with Labels 133

6.34 Java Points-To Graph Example . 135

xiii

7.35 System Flow of the Complete Approach 145

7.36 Impact Analysis in Regression Test Selection 149

8.37 Steps in Building the Access Dependency Graph 159

8.38 Process of Analyzing Patches . 161

8.39 Find Modifications in the Library . 162

8.40 (a) Control-Flow Graph Sample (b) Supergraph Sample 173

xiv

Chapter 1

Introduction

1.1 Problem Statement

This thesis explores change impact analysis for large-scale enterprise systems. Large-

scale enterprise systems are commercial software packages that provide organiza-

tions with the ability to integrate varieties of applications cross-functionally, replace

hard-to-maintain interfaces, and eliminate redundant data entries to accommodate

business growth. However, the use of enterprise systems may lead to high costs of

software maintenance and testing since changes are made often to the software. One

type of software changes, patches , have to be applied often as they are required to

upgrade the system, fix defects, and introduce new features. Hence, impact analysis

is needed to comprehend the changes, and identify potential impacts so that testers

can conduct target testing with appropriate test coverage.

1

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

1.1.1 Enterprise Systems

Enterprise systems are commercial software packages that enable the integration

of transaction-oriented data and business processes throughout an organization (and

perhaps eventually throughout the entire interorganizational supply chain)[MT00].

Enterprise systems include Enterprise Resource Planning (ERP) software and such

related packages as advanced planning and scheduling, sales force automation, cus-

tomer relationship management, financial planning and reporting, and product con-

figuration. Organizations that adopt enterprise systems have a wide range of options

for implementation and ongoing operations, from do it yourself, through selective

external assistance, to total outsourcing. Enterprise systems are gaining popularity

in organizations all over the world. By 1998 approximately 40% of companies with

annual revenues of more than $1 billion had implemented an ERP system [CSB98].

One of the largest enterprise vendors SAP, had 2012 revenue of 16.22 billion Eu-

ros [AG12]. Among SAP product lines, SAP Business One operation, financials and

human resources has over 40,000 customers. Enterprise systems are clearly a staple

of the modern IT marketplace. Given the richness of enterprise systems in terms

of functionality and potential benefits, it should not be surprising that companies

are adopting these systems for many different reasons. The reasons can be technical

and/or business related as shown in Table 1.1 [MT00]:

2

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Technical

Reasons

• Integrate applications cross-functionally

• Replace hard-to-maintain interfaces

• Reduce software maintenance burden through outsourcing

• Eliminate redundant data entry, concomitant, errors and difficulty analyzing data

• Consolidate multiple different systems of the same type

Business

Reasons

• Accommodate business growth

• Acquire multilanguage and multicurrency IT support

• Improve informal and/or inefficient business process

• Provide integrated IT support

• Standardize procedures across different locations

• Present a single face to the customer

Table 1.1: Reasons for Adopting Enterprise Systems

Enterprise systems represent a nearly complete re-architecting of an organization’s

portfolio of transactions-processing application systems to achieve integration of busi-

ness processes, systems, and information – along with corresponding changes in the

supporting computing platform (hardware, software, databases, telecommunications).

They are typically large, complicated, and may also be inadequately documented and

date back a number of decades.

Some crucial characteristics of enterprise systems are:

1. Scale.

Enterprise systems are large. For instance, Oracle Corporation’s E-Business

Suite consists of a collection of ERP, CRM, SCM computer applications either

developed or acquired by Oracle. Significant technologies were incorporated

into the application including the Oracle database technologies, (engines for

RDBMS, PL/SQL, Java, .Net, HTML and XML), and the “technology stack”

3

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

(Oracle Forms Server, Oracle Reports Server, Apache Web Server, Oracle Dis-

cover, Jinitiator and Sun’s Java)[Ora10]. The total number of classes in release

11.5 is over 230 thousand, and the total number of methods is over 4.6 million.

This does not include a users’ customized code that is built on top of E-Business

Suite.

2. Complex.

Enterprise systems embody an incredibly rich functionality and so it is not

trivial to fully understand how the components within the system communicate.

We again take Oracle E-Business Suite version 11.5 as an example, and there

are over 18 million dependencies between entities in this suite. While in the

SAP ERP, there are over 240 individual modules [SAP14].

3. Critical.

Enterprise systems play a critical role in organizations. They reflect the actual

business processes, information flows, reporting, data analytics etc., in an orga-

nization, and it is thus critical that the functionality is implemented correctly,

and maintained in a safe and efficient way.

4. Costly.

It is estimated that “For a Fortune 500 company, software, hardware, and con-

sulting costs can easily exceed $100 million (around $50 million to $500 million)

yearly. Large companies can also spend $50 million to $100 million on upgrades

yearly. Full implementation of all modules can take years.” which also adds

to the end price. Mid-sized companies (fewer than 1,000 employees) are more

likely to spend around $10 million to $20 million at most, and small companies

4

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

are not likely to have the need for a fully integrated SAP ERP system unless

they have the likelihood of becoming mid-sized and then the same data applies

as would a mid-sized company. [MW08]

As a consequence of these characteristics, these systems can also often be classified as

legacy systems that are poorly understood and difficult to maintain. To make matters

worse, they are often mission critical, being found in critical roles as strategic systems

in large companies. So they are typically seen as both critical and fragile. The Free

On-Line Dictionary of Computing (FOLDOC) defines a legacy system [How98] as, “A

computer system or application program which continues to be used because of the

prohibitive cost of replacing or redesigning it and often despite its poor competitive-

ness and compatibility with modern equivalents. The implication is that the system

is large, monolithic and difficult to modify.”

1.1.2 Software Changes

Software change is a fundamental ingredient of software maintenance, and most of

the time is inevitable. A software change can be produced by any operation (add,

modify, delete etc.,) on a set of software entities (functions, fields, database objects,

modules etc.,) in a program.

Typical required changes are:

• Hardware/software upgrades. In response to increasing system performance

requirements, organizations need to upgrade the hardware and/or software en-

vironment. Typically a hardware change does not change software functional

behaviours, however a minor change in the software environment can lead to

unintended and unwanted behaviour.

5

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• User requirement changes. It is widely known that user requirements change

often during the software development life cycle. This is especially true during

the maintenance phase. Each time when a change is requested and then made

at the users’ end, corresponding code change(s) have to be made in the software

to reflect the changed requirement.

• System upgrading. Patches are supplied by enterprise system vendors to under-

lying middleware, and for a number of reasons such as bug fixing, and error

correction they may need to be applied. For a Fortune 500 company, the up-

grading cost can easily exceed 50 million US dollars [MW08].

• Customization. Organizations that implement and benefit from enterprise sys-

tems may need to adjust how they use the system. For instance, an upgrading

of the system may cause old APIs to be unavailable to customized code, hence

changes need also be made to the customized code.

The 2011 IT Key Metrics Data from Gartner [gar11] report that some 16% of

application support activity was devoted to technical upgrades, rising to 24% in the

banking and financial services sector. A perpetual problem for the organization is

how to manage such changes with minimum risk and cost.

However, changes can be unintended, which may lead to a decrease in software

reliability, and may even cause software defects and failures. Risk of unintended

change is typically addressed by regression testing. As already noted, one problem

is that regression testing is expensive and time-consuming for large systems with

interactive interfaces. Organizations can spend millions of dollars per annum on it.

The actual effect of a middleware patch or an application software change may in fact

be minimal, so a small fraction of the regression tests may be sufficient; but, with an

6

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

enterprise system, it is very risky to make a judgement about what should be tested

and what can be assumed to be unaffected by the change.

Moreover, there is some chance the changes are not fully covered by the test suite.

So, the addition, modification, and deletion of code entities in the program may

impose new application logic that needs to be covered by testing. However, before

applying the actual change, it is very risky to pick up entities to be tested by one’s

domain knowledge only. For the sake of safety and effectiveness, we need a way to

identify all the impacts after or even before making a change. What business rule

might be affected by a patch to the enterprise system, or by a planned change to the

customization code, or what data is stored in the database? If organizations know

the possible impact of a change they can select only the relevant tests, confident that

the others do not need to be run in the old test suite; in addition to that, knowing

what was not but should be covered can be used to augment the original test suite.

1.1.3 Impact Analysis

Change impact analysis is the key in analyzing software changes or potential

changes and in identifying the software objects the changes might affect [Boh96].

Organizations need a change impact analysis tool to identify the impact of a change

after or even before making a change. If such impacts can be obtained even before

applying the changes, it enables the organization to make test plans or run tests in

advance, saving the lag between system deployment and release.

7

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Develop P

Test P

Release P

Atomic changes
C Modify P, get P'

Test P':
● new features

● bug fixing
● regression testing

Release P'

...

Version 1

Version 2

...

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 1.1: Program Release Process

By using the identified impacts, organizations can

1. know what to test instead of testing blindly.

Suppose we have a program P to be tested, and the process for developing,

testing and releasing the program is depicted in Figure 1.1. We note that if we

know the changes we want to make to P to create a new version, P ′, an impact

analysis could be conducted between Step 3 and Step 4, so that the effects of

these changes may be understood after the release of the old version and before

making any modifications to the actual code. This is an important component

of risk management, since small changes in C may have subtle undesired effects

in other seemingly unrelated parts of the program.

Through the use of impact analysis we could obtain a set of impacts I that

depicts what other parts of the program can be affected, and verify whether

8

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

the changes introduce new bugs. This enables organizations to revalidate the

functionalities inherited from the old release. To do this, organizations select

a subset Tsub (relevant tests) of the original test suite T such that successful

execution of the modified code P ′ against Tsub implies that all the functionality

carried over from the original code to P ′ is still intact by comparing the test

results to the previously recorded baseline of testing P against Tsub. Without

effective impact analysis, regression testing can be very dangerous and risky.

2. augment the test suite to cover software entities that are affected but not cov-

ered in the original test suite.

A I

C

P

a

A I

C

P

a

A I

C

P

1

A I

C

P

a

A I

C

P

a

A I

C

P

2

A I

C

P

a

A I

C

P

a

A I

C

P

3

I

A

C

A I

C

P

a

A I

C

P

a

A I

C

P

4
Originally
covered

Augmenting

False-positives

False-negatives

cov(T)

Figure 1.2: False-positives And False-negatives

9

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

The impact set I we can develop should (but may not) contain all affected en-

tities, not only the ones covered by the original test suite T , but also entities

that may not have been covered by T . To better illustrate how impact analysis

can help with completing the test coverage, we introduce a metric for evaluat-

ing impact analysis tools. In Figure 1.2(1), a program P is under analysis with

atomic changes C, estimated set of impacts I and real set of impacts A. We can

evaluate the analysis by a pair of trade-offs: False-positive and False-negative

[MBdFG10]. If the analysis results contain a specific entity that was not truly

affected, this error in the analysis is called a false-positive. Conversely, when

the analysis results do not contain a truly affected entity, an error occurs that

is called a false-negative. From the same source we also restate two metrics

from the information retrieval domain: Precision and Recall, which are respec-

tively associated with false-positives and false-negatives. Precision is the ratio

between correctly estimated entities and the total estimated entities:

Precision =
|A ∩ I|
|I|

(1.1)

On the other hand, recall is the ratio between correctly estimated entities and

the total number of truly affected entities:

Recall =
|A ∩ I|
|A|

(1.2)

In Figure 1.2(2) and Figure 1.2(3), the areas in shadow are false-positives and

false-negatives, respectively. And in Figure 1.2(4), the area in light shadow is

part of the program that has test coverage in the original test suite T . Note that

10

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

one may not have made tests that fully cover all the actual impacts A, since

conventional regression testing has a high risk of missing entities that need to

be tested. Hence we can employ impact analysis to augment T to T
′

to cover

the heavily shadowed area. Assuming cov(T) is the set of entities covered by T ,

we can express this augmenting area A′ and uncovered impacts uncov(T) after

the analysis by:

A′ = A− (A− cov(T)− I)− (A ∩ cov(T)) (1.3)

and

uncov(T) = A− cov(T)− I1 (1.4)

Then cov(T) could be augmented to cov(T)′ as

cov(T)′ = cov(T) ∪ A′ (1.5)

However, organizations tend to conduct full regression testing or select tests in a

conservative way, using testers’ domain knowledge, rather than utilizing any impact

analysis tool. The reasons may vary, but major ones are likely to be:

• current impact analysis techniques are not reliable, in terms of completeness

and precision.

It does not appear to the author that there exists any impact analysis that is

1Depending on how good the recall is, after analysis there still might be a portion of the actual
impacts not covered. In Figure 1.2(4), this corresponds to the little white triangle area on the
top-left.

11

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

precise and safe (details will be discussed in Chapter 2), i.e., with few false-

positives but having all the potential impacts taken into account. For enter-

prise systems, organizations consider false-negatives way more risky than false-

positives, while most of the current tools seek a balance between false-positives

and false-negatives with no priorities.

• the size of the system puts it beyond any existing tool’s ability to adequately

comprehend dependencies between entities in the system.

Enterprise systems are orders of magnitude larger than the size of programs

other existing tools that the author is aware of can deal with. Hence most of

the existing tools typically run out of memory and/or the execution time is too

long to be useful.

1.2 Research Motivation

The characteristics of complexity and scalability of large-scale enterprise systems, put

it beyond a tester’s ability to adequately comprehend the impact of changes that are

made to the system, and this often results in high costs related to testing, as well as

the risk of missing dependencies that later result in software defects in the system.

The majority of testing performed on these systems is dependent on testers’ domain

knowledge, which makes the testing results very risky to rely on as such knowledge has

its limits, especially in the context of complexity. The author’s research motivation

and objectives are:

1. Deal with the scale. Scalability remains one of the biggest issues in enterprise

systems. Existing impact analysis tools can work perfectly for small programs

12

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

but fail on large ones, since researchers do not pay enough attention to the chal-

lenges imposed by the size of enterprise systems. This is also one of the reasons

that organizations prefer to rerun all the tests to validate the system after a

change since existing tools simply do not work on these very large systems.

2. Determine both direct changes and indirect changes. Most of the time, it is

not straightforward to determine precisely what entities in the system are to

be changed directly. For example, if the system is implemented in Java, the

changed entities can be compiled into bytecode that then needs to be decom-

piled in order to determine exactly which entities have been changed. In the case

of making changes to the database, changes may be encapsulated in database

scripts. This is important since not only code changes can impact the system,

but data changes also may affect system behaviours. We want to identify both

direct changes and indirect changes, and indirect changes are not straightfor-

ward either. For instance, an efficient string analysis had to be used to collect

indirect changes resulting from a direct change made to a database table in a

program written in Java.

3. Preserve both safety and precision2. Since enterprise systems play a critical

role in organizations, any mis-identified impacts may cause financial losses, and

so we want our approach to impact analysis to be both safe and precise. By

safe we mean that the approach is conservative and will find all the actual

impacts. This translates into not allowing any false-negatives! In terms of

false-negatives and corresponding recall3, the recall must be equal to 1. In

2With regard to the definition of precision in equation 1.1.
3With regard to the definition of recall in equation 1.2.

13

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

the meantime, the approach should be precise by removing false-positives, such

that the impact set more accurately reflects the actual impacts that need to

be tested. In other words, we want to eliminate over-estimation as much as

we can. Ideally, precision should also be close to 1, but precision has much

lower priority than recall, and one does not have unlimited time to instrument

the program but is only able to instrument a subset of the entire program. To

achieve this, either static or dynamic analysis by itself may not be sufficient.

We need a refined approach that takes advantages of conventional approaches

but also has the ability to eliminate disadvantages. This may require combining

static analysis (which can be made safe but with poor precision) and dynamic

analysis to remove false-positives, thereby introducing a new technique that can

subtract over-estimated entities as much as possible in a safe way.

4. Identify impacts even before making a change. Applying a single change/patch

takes time, since one has to install also the preliminaries of the change. More

importantly, without a full understanding of the potential impacts, it is very

risky to apply the changes. Restoring an entire enterprise system to a previous

working state is extremely costly and sometimes even impossible. Any faults,

failures or bugs have to be fixed after the modification. Therefore, we want

an impact analysis that can provide impacts before making any change. Even

though one may still need to conduct testing after the deployment, this ability

could largely reduce the risks of unintended changes. To achieve this, the anal-

ysis may need to establish the linkage between the changes and code entities in

the old version.

14

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

1.3 Structure of the Thesis

Chapter 1 described the problem domain and motivation for the work. Chapter 2

discusses related work from different aspects: general impact analysis, static/dynamic

approaches, instrumentation etc. Static and dynamic impact analysis are discussed in

Chapter 3: definitions, pros and cons, two example approaches, and a combination of

static and dynamic analysis is introduced in the last section. Chapter 4 discusses how

to extract both direct changes and indirect changes from the set of atomic changes,

with respect to both the application library and the database. To further elaborate

the approach, reachability analysis and alias analysis are introduced in Chapter 5

and Chapter 6, respectively. Then a complete approach is proposed in Chapter 7,

in which varieties of analysis that constitute the approach are combined into the

hybrid approach. Chapter 8 is the empirical study of the hybrid approach, in which

evaluation criteria, implementation details, experiment design, empirical results etc.

are presented. Chapter 9 sums up the thesis and discusses future work.

15

Chapter 2

Related Work

Research on software change impact analysis can be traced back to the 1970s. Rea-

sons for doing change impact analysis are well known and understood: “As software

components and middleware occupy more and more of the software engineering land-

scape, interoperability relationships point to increasingly relevant software change

impacts [Boh96]”. Moreover, due to the increasing use of techniques such as inheri-

tance and dynamic dispatching/binding, which come from widely used object-oriented

languages, small changes can have major and non-local effects [RT01]. To make mat-

ters worse, those major and non-local effects might not be easily identified, especially

when the size of the software puts it beyond any maintainer’s ability to adequately

comprehend.

There is considerable research related to this field, but it seems that there are lim-

ited known ways of performing change impact analysis. Bohner and Arnold [Boh96]

identify three types of impact analysis (IA): traceability, dependency and experimen-

tal. In traceability IA, links between requirements, specifications, design elements,

and tests are captured, and these relationships can be analyzed to determine the scope

16

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of an initiating change. In dependency IA, linkages between parts, variables, logic,

modules etc., are assessed to determine the consequences of an initiating change. De-

pendency IA occurs at a more detailed level than traceability IA. Within software

design, static and dynamic algorithms can be run on code to perform dependency IA.

Static methods focus on the program structure, while dynamic algorithms gather in-

formation about program behaviour at run-time. Experiential IA, is when the impact

of changes is determined using expert design knowledge. Review meeting protocols,

informal team discussions, and individual engineering judgement can all be used to

determine the consequences of a modification.

This thesis falls into the second category: dependency IA. Our target system,

the enterprise systems, often date back many years, hence requirements and other

specifications are either incomplete or even incorrect. Traceability IA would not be

a good option for us. Also, since we are aiming at saving human effort and financial

costs via testing guided by IA, experimental IA is not of interest to us at this time

as it requires a tremendous amount of activities such as team discussions.

Dependency impact analysis can be either static, or dynamic, or a hybrid of the

two. We discuss some of the work from those techniques in the discussion that follows.

Static impact analysis [Boh96, LMS97, PA06, TM94, RST+04] identifies the impact

set — the subset of elements in the program that may be affected by the changes made

to the system, by analyzing relevant source code. For instance, Chianti [RST+04] is a

static change impact analysis tool for Java that is implemented in the context of the

Eclipse environment, and it (Chianti) analyzes two versions of an application and

decomposes their differences into a set of atomic changes, i.e., it tells which tests in

the test suite can be affected. The change impact is then reported in terms of affected

17

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

tests. It consists of four steps as follows:

• Step 1. A source code edit is analyzed to obtain a set of interdependent atomic

changes A, whose granularity is (roughly) at the method level. These atomic

changes include all possible effects of the edit on dynamic dispatch.

• Step 2. A call graph is constructed for each test in the original test suite T .

• Step 3. For a given set T of unit or regression tests, the analysis determines a

subset Tsub of T that is potentially affected by the changes in A, by correlating

the changes in A against the call graphs for the tests in T in the original version

of the program.

• Step 4. Finally, for a given test ti in T , the analysis can determine a subset A′

of A that contains all the changes that may have affected the behaviour of ti.

This is accomplished by constructing a call graph for ti in the edited version of

the program, and correlating that call graph with the changes in A.

Note that this tool requires source code of the program being analyzed while many

organizations only have a running (compiled) version of the program. Also it relies

on the user’s test cases, which means that, if the test suite created by the user is not

well defined (bad test coverage), impacts of the change might not be fully identified.

It constructs call graphs for each test in the user’s regression test suite, and then

determines a subset of that suite.

Apiwattanapong et al. [Api05] pointed out that static impact analysis algorithms

often come up with too large impact sets due to their over conservative assumption

and might turn out to be effectively useless. For example, regression testing techniques

that use impact analysis to identify which parts of the program to retest after a change

18

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

may have to retest most of the program. They also point out a two-fold problem with

sound static impact analysis. First, it considers all possible behaviours of the software,

whereas, in practice, only a subset of such behaviours may be exercised by the users.

Second, and more importantly, it also considers some impossible behaviours, due to

the imprecision of the analysis. Therefore, recently, researchers have investigated

and defined impact analysis techniques that rely on dynamic, rather than static,

information about program behaviour [LR03a, LR03b, OAH03, BDSP04].

The dynamic information consists of execution data for a specific set of program

executions, such as executions in the field, executions based on an operational profile,

or executions of test suites. Apiwattanapong et al. [Api05] defines the dynamic impact

set to be the subset of program entities that are affected by the changes during

at least one of the considered program executions. CoverageImpact [OAH03] and

PathImpact [LR03a, LR03b] are two well known dynamic impact analysis techniques

that use dynamic impact sets. PathImpact works at the method level and uses

compressed execution traces to compute impact sets. CoverageImpact also works

at the method level but it uses coverage, rather than trace information to compute

impact sets. Though the dynamic approach can make the analysis more efficient, it

does not guarantee that all actual system behaviours can be captured. Thus it might

result in a good number of false-negatives, and this will usually cause bugs that then

need to be fixed [MBdFG10]. Consequently, false-negatives may cause tremendous

financial losses for the organization.

A crucial task in dynamic approaches is to instrument the program such that

dynamic information can be collected to compute the impacts. The instrumentation

19

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of applications to generate run-time information and statistics is an important en-

abling technology for the development of tools that support the fast and accurate

simulation of computer architectures [PSM95]. There are two types of collection

schemes: hardware-assisted and software-only. Most of the existing research focuses

on software-only instrumentation and collection, since it is more portable and rela-

tively inexpensive. We can divide software-only instrumentation into two approaches:

(1) those that simulate, emulate, or translate the application code; and (2) those that

instrument the application code. SPIM [PH08], Shade [CK95] and more recently Pin

[LCM+05], Soot [LBL+10] fall into the first type in which the original code was sim-

ulated or transformed to some intermediate representation to be processed. On

the other hand, tools like ATUM [ASH86] and more recently BCEL [Sos04], AspectJ

[Asp14] and InsECTJ [SO05] fall into the other type, where the application code is

executed and runtime information is collected.

Instrumentation tools that simulate, emulate or translate the application code

require extra computing time to accomplish the simulation, emulation or translation.

For instance Soot provides four intermediate representations for code: Baf, Jimple,

Shimple and Grimp [EN08]. The representations provide different levels of abstraction

of the represented code and are targeted at different uses e.g., Baf is a bytecode

representation resembling the Java bytecode and Jimple is a stackless, typed 3-address

code suitable for most analyses. Jimple representations can be created directly in Soot

or based on Java source code (up to and including Java 1.4) and Java bytecode/Java

class files (up to and including Java 5). The translation from bytecode to Jimple is

performed using a naive translation from bytecode to untyped Jimple, by introducing

new local variables for implicit stack locations and using subroutine elimination to

20

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

remove jsr instructions. Types are inferred for the local variables in the untyped

Jimple and added. The Jimple code is cleaned of redundant code like unused variables

or assignments. This tool works perfectly for small or medium programs, but when

it comes to systems of the size of enterprise system, it runs out of memory since an

intermediate representation is required for each class. Instrumentation tools in the

first category are not the first choice in solving our problem.

Among the instrumentation tools, aspect-oriented programming and AspectJ (one

of its implementations to Java) are gaining more popularity. AspectJ [KHH+01] is

a simple and practical aspect-oriented extension to Java. With just a few new con-

structs, AspectJ provides support for the modular implementation of a range of cross-

cutting concerns. Join points are principled points in the execution of the program;

pointcuts are collections of join points; advice is a special method-like construct that

can be attached to pointcuts; and aspects are modular units of crosscutting imple-

mentation, comprised of pointcuts, advice, and ordinary Java member declarations.

AspectJ code is compiled into standard Java bytecode. Simple extensions to existing

Java development environments make it possible to browse the crosscutting struc-

ture of aspects in the same kind of way as one browses the inheritance structure of

classes. There are many examples [SB06b] [CC07] [BHRG09] showing that AspectJ

is powerful in instrumenting the code, and that programs written using it are easy to

understand.

Research conducted by Dean and Spencer [JR00] presents a program understand-

ing technique that combines static and dynamic analyses to extract components and

connectors. The technique was implemented in a tool called Interaction Scenario

21

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Visualizer (ISVis). Component identification is supported by traditional static anal-

ysis, which is similar to our approach. However, connectors consist of component

interaction patterns as recognized from actual execution traces, a form of dynamic

analysis. Dynamic analysis of interactions between components might work perfectly

in architectural localization, but as we have pointed out, such analysis is inherently

not complete.

Recently, a hybrid of static and dynamic analysis was investigated. Mirna et al.

[MBdFG10] proposed a hybrid technique for object-oriented software change impact

analysis. The technique consists of three steps: static analysis to identify structural

dependencies between code entities, dynamic analysis to identify dependencies based

on a succession relation derived from execution traces, and a ranking of results from

both analyses that takes into account the relevance of dynamic dependencies. The

evaluation of this work showed the hybrid approach produced fewer false-negatives

and false positives than a precise and efficient dynamic tool CollectEA [Api05]. At

the same time, it produced more false positives but fewer false-negatives than a static

tool Impala [HGF+08].

Tom Reps et al. [Rep98] showed how a number of program analysis problems can

be solved by transforming them to a graph-reachability problem. The purpose of

program analysis is to ascertain information about a program without actually run-

ning the program. In Reps’s work, program-analysis problems can be transformed to

context-free-language reachability problems (“CFL-reachability problems”). In graph

theory, reachability refers to the ability to get from one vertex to another within

a graph. We say a vertex s can reach a vertex t (or that t is reachable from s) if

there exists a sequence of adjacent vertices (i.e. a path) which starts with s and

22

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

ends with t. Algorithms for determining reachability fall into two classes: Those that

require preprocessing and those that do not [Ger06]:

• If you have only one (or a few) queries to make, it may be more efficient to forgo

the use of more complex data structures and compute the reachability of the

desired pair directly. This can be accomplished in linear time using algorithms

such as breadth-first search or iterative deepening depth-first search.

• If you will be making many queries, then a more sophisticated method may

be used; the exact choice of method depends on the nature of the graph being

analyzed. In exchange for preprocessing time and some extra storage space, we

can create a data structure which can then answer reachability queries on any

pair of vertices in as low as O(1) time. Algorithms such as the Floyd-Warshall

Algorithm, Thorup’s Algorithm, Kameda’s Algorithm are in this category.

A CFL-reachability problem [Rep98] is not an ordinary reachability problem (e.g.

transitive closure), but one in which a path is considered to connect two nodes only

if the concatenation of the labels on the edges of the path is a word in a particular

context-free language: Let L be a context-free language over alphabet S, and let G

be a graph whose edges are labeled with members of S. Each path in G defines a

word over S, namely, the word obtained by concatenating, in order, the labels of

the edges on the path. A path in G is an L-path if its word is a member of L. By

using CFL-reachability analysis, it can answer our question “Does a given path in a

program representation (e.g. graphs) correspond to a possible execution path?”. The

answer to this question can help us reduce false-positives from the impact set.

Many compiler analyses and optimizations require information about the be-

haviour of pointers in order to be effective. A pointer analysis is a technique for

23

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

computing information that attempts to statically determine the possible runtime

values of a pointer [Hin01]. Aliasing occurs when two distinct names (data access

paths) denote the same run-time location. It is introduced by reference parameters

and pointers. This analysis has been studied extensively over the last decade. A

pointer alias analysis attempts to determine when two pointer expressions refer to

the same storage location. A points-to analysis [EGH94, And94], or similarly, an anal-

ysis based on a “compact representation” [CBC93, BCCH95, HBCC99], attempts to

determine what storage locations a pointer can point to. This information can then

be used to determine the aliases in the program. Alias information is central to

determining what memory locations are modified or referenced.

Lhoták introduced a flexible framework SPARK for experimenting with points-to

analyses for Java [Lho02]. SPARK is intended to be a universal framework within which

different points-to analyses can be easily implemented and compared in a common

context. And two client analyses that use the points-to information are described

in [Lho02], call graph construction and side-effect analysis. Pointer analysis also has

a trade-off between the efficiency of the analysis and the precision of the computed

solution. Hence, according to where the analysis is used, there are different dimensions

that affect the cost/precision trade-offs:

• Flow-sensitivity. Flow-sensitive pointer analysis uses the control-flow informa-

tion of a procedure during the analysis to compute a solution for each program

point. Conversely, flow-insensitive analysis computes one solution either for the

whole program [And94, Ste96] or for each method [HBCC99, LH99].

• Context-sensitivity. Is calling context considered when analyzing a function or

can values flow from one call through the function and return to another caller?

24

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• Aggregate modelling. Are elements of aggregates distinguished or collapsed into

one object?

• Whole program. Does an analysis require the whole program or can a sound

solution be obtained by analyzing only components of a program?

• Alias representation. Is an explicit alias representation [LR04, O’C01] or a

points-to/compact representation used?

The aim of aliasing/pointer analysis is to determine for each program point L an

upper approximation of the exact set of possible pairs of accesses that may be aliased

when L is reached [Deu94]. It does not appear to the author that there exists any work

that uses aliasing analysis to assist impact analysis, but we may utilize it to identify

aliased objects to the direct and indirect changes and try to reduce false-positives

from the impact set.

To sum up, there is great potential for combining static and dynamic approaches in

analyzing change impacts on software programs. Static analysis operates by building

a model of the state of the program, then determining how the program reacts to

this state [Ern03]. It considers all possible software behaviours which may result in

imprecision, but it provides a conservative way to assess the impacts that leads to

soundness and safety. Also, as software impact analysis often works for Regression

Testing and Test Selection, it can be used to jointly determine whether changes made

on the system have been fully covered by a user’s test suite. It is important that

no necessary impacts are omitted. Starting with an abstract model of the state of

the program (e.g., Dependency Graph, Control Flow Graph), dynamic analysis can

be used to make the analysis more precise. Dynamic analysis is precise because no

approximation or abstraction needs to be done: the analysis can examine the actual

25

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

run-time behaviour of the program [Ern03], or more exactly, some paths through the

program. There is little or no uncertainty in what control paths were taken, what

values were computed, how much memory was consumed, how long the program took

to execute, or other quantities of interest. Dynamic analysis can be as fast as program

execution. Thus, if static and dynamic analysis can be combined in an effective way,

both safety and precision may be accomplished.

Additionally, to achieve better precision, extra analysis can be undertaken in

the impact analysis. It appears to the author both reachability analysis and alias-

ing/ pointer analysis can be employed to help reduce the false-positives. As far as

the author can ascertain, there does not exist any other work that has added reach-

ability or aliasing analysis to impact analysis. Reachability analysis searches the

graph representation and determines if a path is feasible. Due to the over-estimation

in static analysis, there is a chance that infeasible paths can be left in the results.

Aliasing analysis has been extensively researched in the last decade; it examines pairs

of aliased references or pointers. Hence, using this analysis we may further reduce

false-positives by identifying entities aliased to the change.

26

Chapter 3

Static and Dynamic Analysis1

Conventional impact analysis approaches include ones based on static analysis and

others based on dynamic analysis. There has been extensive research work on con-

ventional impact analysis approaches, but they do not deal adequately with the scale

of enterprise systems or provide a good solution in terms of both safety and precision.

In this chapter, we will discuss how exactly static or dynamic analysis is used in IA,

what representations are abstracted to support the analyses, how dependency data is

built, how to cope with problems caused by object-oriented features, how to instru-

ment the system, what information is to be collected, and what the pros and cons

of the various approaches are. Also, we discuss how to combine static and dynamic

analysis to achieve a better solution with respect to the target enterprise systems.

1This chapter is partially based on previous work by the author and colleagues: Wen Chen,
Asif Iqbal, Akbar Abdrakhmanov, Jay Parlar, Chris George, Mark Lawford, Tom Maibaum, and
Alan Wassyng. “Large-Scale Enterprise Systems: Changes and Impacts.” In Enterprise Information
Systems, pp. 274-290. Springer Berlin Heidelberg, 2013. CIA+13

27

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

3.1 Static Analysis2

Static analysis [Ern03] examines program code and reasons over all possible be-

haviours that might arise at run-time. Typically, static analysis is conservative and

sound. Soundness guarantees that analysis results are an accurate description of the

program’s behaviour, no matter on what inputs or in what environment the program

is run. Conservatism means reporting weaker properties than may actually be true;

the weak properties are guaranteed to be true, preserving soundness, but may not

be strong enough to be useful. For instance, given a function f , the statement “f

returns a non-negative value” is weaker (but easier to establish) than the statement

“f returns the absolute value of its argument.” A conservative analysis might report

the former, or the even weaker property that f returns a number. In our case, con-

servative and sound means that no impacts are missed. However, it also results in

impacts being reported that are not actually impacts at all.

Static analysis operates by building a model of the state of the program, then

determining how the program reacts to this state. Because there are many possible

executions, the analysis must keep track of multiple different possible states. It is

usually not reasonable to consider every possible run-time state of the program; for

example, there may be arbitrarily many different user inputs or states of the runtime

heap. Therefore, static analyses usually use an abstracted model of program state

that loses some information, but which is more compact and easier to manipulate than

a higher-fidelity model would be. In order to maintain soundness, the analysis must

produce a result that would be true no matter the value of the abstracted-away state

components. As a result, the analysis output may be less precise (more approximate,

2This section is joint work with Asif Iqbal [Iqb11].

28

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

more conservative).

Static analysis in IA [Boh96, LMS97, PA06, TM94, RST+04] identifies the im-

pact set - a subset of elements in the program that may be affected by the changes

made to the system. To obtain this subset, a representation of the program has to be

abstracted. Among the abstract representations, graphs have been used extensively

to model many problems. We need a graph consisting of nodes and edges that in-

corporates the dependency relationship between the entities (methods, fields). The

graph structure and dependency relation it represents can be used as a knowledge

base during the impact analysis.

3.1.1 Building Graphs

Graphs have been used extensively to model many problems that arise in the fields

of computer science and software engineering. Especially in software engineering,

call graphs, control-flow graphs, data-flow graphs, component graphs etc., provide an

effective analytical approach to understand and characterize software architecture,

static and dynamic structure and meaning of programs. A diagrammatic view (by

graphs) of the structure of the code is almost always an excellent way to present issues

related to software engineering analysis. That is why graphs are a preferred tool used

by software engineers and researchers to understand, re-engineer and analyze codes.

A number of graph analysis techniques are available for software engineering ap-

plications. Control-flow analysis, data-flow analysis, call graph analysis, and analysis

using component graphs are some of them. In control-flow analysis, a control-flow

graph is used to analyze and understand how the control of the program is transferred

from one point to another. Similarly data-flow analysis uses data-flow graphs to show

29

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and analyze data dependencies among the instructions of the program. Component

graphs identify the components of a program, and showing the “uses’ relation among

those components is very useful in software architecture identification and recovery.

Call graph analysis uses call graphs to detect calling dependency relations among

entities of the environment. A call graph example and definition is given below:

A call graph is a directed graph G = (N,E) with a set of nodes N and a set of edges

E ⊆ N ×N . A node u ∈ N represents a program procedure and an edge (u, v) ∈ E

indicates that procedure u calls procedure v. Consider the call graph in Figure 3.1. It

has a set of nodes N = {a, b, c, d, e} and a set of edges {(a, b), (a, c), (b, d), (c, d), (c, e)}.

Figure 3.1: Call Graph

There are a few factors that can affect building the call graphs, especially in

an object-oriented language context like Java. According to the Java Virtual Ma-

chine Specification [LY99], a method can be called in 4 ways: invokeinterface,

invokespecial, invokestatic, and invokevirtual. invokeinterface is used to

invoke a method declared within a Java interface. invokespecial is used in certain

special cases to invoke a method. Specifically, it is used to invoke:

30

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• the instance initialization method, < init >

• a private method of the calling class itself

• a method in a superclass of the calling class.

invokestatic is used to invoke static methods. invokevirtual dispatches a Java

method. It is used in Java to invoke all methods except interface methods (which use

invokeinterface), static methods (which use invokestatic), and the few special

cases handled by invokespecial. The actual method that is run depends on the

runtime type of the object invokevirtual is used with.

To handle these four kinds of method call we have to include in the call graph

edges that represent calls to methods, whenever we encounter any of these four kinds

of invocations in the bytecode. The simple notion of call graph described works well

in traditional non-object oriented languages like C. However, in an object oriented

language like Java, where methods (procedures) are encapsulated inside classes and

those classes can have fields in addition to methods, the notion of a call graph is far

more complicated. Also, features like inheritance, dynamic binding etc, can introduce

implicit dependencies on methods or fields which are not explicitly present in the

source code or even in the compiled bytecode. For example, consider class B which

extends class A and overrides A’s method m(). Now there is an explicit call from

class C’s method c() to class A’s method m(), and due to dynamic binding this call

might actually result in a call to class B’s method instead of class A’s method m().

Soot[LBL+10] is quite widely used in Java optimization frameworks for optimizing

bytecode and carrying out several kinds of control-flow analysis, data-flow analysis,

extracting call-graphs, etc. We attempted to generate call graphs with it but experi-

enced a number of performance related issues as described a little later in this section.

31

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Vijay et. al discussed 3 kinds of analyses to generate call graphs which have been

incorporated in Soot: Class Hierarchy Analysis (CHA), Rapid Type Analysis (RTA),

Variable-type Analysis and Declaration-type Analysis.

Class hierarchy analysis is a standard method for conservatively estimating the

run-time types of receivers3 [BS96]. Given a receiver o with a declared type d,

hierarchy types(d) for Java are defined as follows:

• If receiver o has a declared class type C, the possible run-time types of o,

hierarchy types(C), includes C plus all subclasses of C.

• If receiver o has a declared interface type I, the possible run-time types of

o, hierarchy types(I), includes: (1) the set of all classes that implement I

or implement a subinterface of I, which they call implements(I), plus (2) all

subclasses of implements(I).

It is worth noting that this analysis takes into account only the subclasses and subin-

terfaces, but not the superclasses. This analysis results in the call graph with the

maximum number of edges.

Rapid type analysis [SHR+00, BS96] is a very simple way of improving the estimate

of the types of receivers. The observation is that a receiver can only have a type of an

object that has been instantiated via a new operation. Thus, one can collect the set of

object types instantiated in the program P , call this instantiated types(P). Given a

receiver o with declared type C with respect to program P , they use rapid types(C,P) =

hierarchy types(C)∩instantiated types(P) as a better estimate of the runtime types

for o. This particular version of rapid type analysis is called pessimistic rapid type

analysis [SHR+00] since it starts with the complete conservative call graph built by

3A receiver is the object on which the method is invoked.

32

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

CHA and looks for all instantiations in methods in that call graph. The original ap-

proach suggested by Bacon and Sweeney [BS96] is optimistic rapid type analysis. In

the optimistic approach the call graph is iteratively created, and only instantiations

in methods already in the call graph are considered as a possible set for computing

instantiated types(P).

According to [SHR+00], Rapid type analysis can be considered to be a coarse grain

mechanism for approximating which types reach a receiver of a method invocation.

In effect, rapid type analysis says that a type A reaches a receiver o if there is an

instantiation of an object of type A (i.e. an expression newA()) anywhere in the

program, and A is a plausible type for o using class hierarchy analysis.

For a better approach, they point out that for a type A to reach a receiver o there

must be some execution path through the program which starts with a call of a con-

structor of the form v = newA() followed by some chain of assignments of the form

x1 = v;x2 = x1; . . . ;xn = xn−1; o = xn. The individual assignments may be regular

assignment statements, or the implicit assignments performed at method invocations

and method returns. They propose two flow-insensitive approximations of this reach-

ing types property. Both analyses proceed by: (1) building a type propagation graph

where nodes represent variables, and each edge a → b represents an assignment of

the form b = a, (2) initializing reaching type information generated by assignments of

the form b = newA() (i.e. the node associated with b is initialized with the type A)

and, (3) propagating type information along directed edges corresponding to chains

of assignments. These two are Variable-type Analysis and Declaration-type Analysis.

The details of these techniques have been discussed in [SHR+00].

With Soot, call graphs can be generated using these different techniques, the

33

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

computational complexity being the least in the case of class hierarchy analysis and

the most in the case of variable type analysis. We tried the class hierarchy analysis

to extract the call graph from a single sample class file on our local machines and

it took almost 50 seconds to generate the call graph, the maximum heap size being

specified as 800 MB. Without specifying the heap size, it ran out of memory. Then

we went on and tried to generate the call graph for our sample small size projects in

whole program mode and even with 2 GB of maximum heap size specified, it ran out

of memory. Considering this performance, the call graph generation process of Soot

did not seem feasible in the case of large-scale enterprise systems at all.

The amount of time needed by Soot is due to the fact that when it begins an anal-

ysis from a particular class, it loads that class into memory and then subsequently

loads all the classes that are directly or transitively referenced by that class, in ad-

dition to carrying out all the computations. And thus, when executed, it also needs

all those classes to be present in its classpath. As a result, despite being an excellent

tool and incorporating excellent techniques like class hierarchy analysis, rapid type

analysis, variable type analysis etc., Soot was empirically unable to run successfully

in our specific problem domain.

Fortunately, by exploring other existing tools, we came across the Dependency

Finder toolset [Tes10a] which is actually a suite of tools for analyzing Java bytecode.

Among its tool suite, two were of special interest to us – Dependency Extractor

and ClassReader. Dependency Extractor generates XML containing information

specifically pertaining to dependencies, but lacks some useful information like in-

heritance, invocation type (interfaceinvoke, virtualinvoke, specialinvoke,

staticinvoke), field access type (getfield, putfield, getstatic, putstatic)

34

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

etc. So we decided to use ClassReader which generates an equivalent one-to-one

representation of the bytecode containing all the information we need.

3.1.2 The Dynamic Binding Problem

The dynamic binding problem (also known as the dynamic dispatch or virtual

method problem), is the process of mapping a message to a specific sequence of

code (method) at runtime. This is done to support the cases where the appropriate

method cannot be determined at compile-time (i.e. statically) [wik11]. Dynamic

dispatch is needed when multiple classes contain different implementations of the same

method. This can happen because of class inheritance and interface implementation.

Figure 3.2 shows the two scenarios.

A

C

B

 Legend

 Inheritance

(a)

<<interface>>
A

CB

Legend

 Implementation

(b)

Figure 3.2: (a) Class Inheritance (b) Interface Implementation.

35

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Method invocations (e.g. invokeinterface, invokespecial, invokestatic, and invoke-

virtual in the Java context) are candidates for dynamic binding, meaning that compile

time calling of a method might cause calling of another method at runtime, due to

class inheritance, interface implementation and method overriding. Consider the sit-

uation in Figure 3.3 where classes B and C override class A’s method m(). Although

statically all three calls are to A.m(), dynamically they redirect to A.m(), B.m() and

C.m(), respectively.

A

C

B

...
A a = new A();
a.m(); //call to A.m()
a = new B();
a.m(); //call to B.m()
a = new C();
a.m(); //call to C.m()
...

Figure 3.3: Dynamic Binding Example 1

As a second example, consider Figure 3.4 where classes B and C do not override

class A’s m() method. Here, the compile time call to C.m() redirects to A.m() at

runtime.

36

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

A

C

B

...
C c = new C();
c.m(); //call to A.m()
...

A

C

B

Figure 3.4: Dynamic Binding Example 2

One way to handle dynamic binding statically is to include all classes from the

inheritance hierarchy, as in Class Hierarchy Analysis (CHA) [BS96]. The draw-

back of this approach is the huge number of redundant call edges that might result:

it creates an edge from each caller of a method m to every possible instance of m.

Consider Figure 3.5 where the edges to C.foo() are redundant because only A.foo()

and B.foo() have real bodies defined.

37

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Class A{

public void foo(){

...

}

}

Class B extends A{

public void foo(){

...

}

}

Class C extends B{

//does not override foo()

}

Class D1{

public void test(){

A a = new A();

a.foo();

}

}

Class D2{

public void test(){

A a = new B();

a.foo();

}

}

(a) Sample code segment (b) Graph generated

Figure 3.5: Conservative Analysis Example 1

Similarly, in Figure 3.6 the edge to B.foo() is redundant because A is actually

the closest transitive superclass of C that has a body of method foo() defined.

38

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Class A{

public void foo(){

...

}

}

Class B extends A{

//does not override foo()

}

Class C extends B{

//does not override foo()

}

Class D{

public void test(){

C c = new C();

c.foo();

}

}

(a) Sample code segment (b) Graph generated

Figure 3.6: Conservative Analysis Example 2

Table 3.1 shows the results of this approach on a Java library. In this library there

was an interface with more than 50,000 transitive subclasses. If there were, say, 100

callers of a method of this interface, 5 million edges would be generated. In practice

we found that only a few dozen of the transitive subclasses would define a particular

method, and a more precise analysis could eliminate perhaps 99% of these edges.

39

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Class or Interface Name Transitive Subclasses

oracle.jbo.XMLInterface 53,934

oracle.jbo.server.TransactionListener 40,786

oracle.jbo.Properties 36,487

oracle.jbo.VariableManagerOwner 36,458

oracle.jbo.ComponentObject 36,449

oracle.jbo.common.NamedObjectImpl 36,370

oracle.jbo.server.NamedObjectImpl 36,105

oracle.jbo.server.ComponentObjectImpl 36,104

oracle.jbo.server.TransactionPostListener 33,181

oracle.apps.fnd.framework.OAFwkConstants 30,979

Table 3.1: Top 10 classes/interfaces with highest number of transitive subclasses/in-
terfaces

Some techniques like Rapid Type Analysis (RTA) and Variable Type Analysis

[BS96] do exist to tackle this problem and we tried these approaches using the tool

Soot [LBL+10], but had to abandon it due to excessive memory consumption and

memory overflow problems. These approaches turned out to be unsuitable for our

huge domain. This is one of the reasons we resorted to a new technique which we

called access dependency analysis.

Consider Figure 3.7. The graph shown is the dependency graph resulting from the

access dependency analysis of the code shown in Figure 3.5a. Note that since C.foo()

has no real body of its own, it is not in the graph. We only consider the overridden

versions of methods during the addition of extra edges for handling dynamic binding,

which reduces the number of edges. Also instead of adding call edges from D1.test()

40

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and D2.test() to B.foo(), we add an edge from A.foo() to B.foo(). What this edge

implies is that a compile time call to A.foo() might result in a runtime call to B.foo().

This kind of edge reduces the number of edges even further because each additional

caller only increases the number by one (like the edge from D2.test() to A.foo()).

Figure 3.7: Access Dependency Analysis Example 1

As for the second example, consider Figure 3.8 where the graph shown is the

dependency graph resulting from the access dependency analysis of the code shown

in Figure 3.6a. Here, since A is the closest transitive superclass of C for the function

foo(), a compile time call to C.foo() redirects to A.foo(), and we do not include

B.foo() in the graph. The result is, once again, a reduced number of edges.

Figure 3.8: Access Dependency Analysis Example 2

We see that we get an efficient dependency graph because (i) links for each over-

ridden method are only included for the actual overrides and (ii) the size of the graph

grows linearly with the number of callers.

41

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

As mentioned earlier, a class with over 50,000 transitive subclasses was found to

have only a few dozen of them overriding a particular method. Using our access

dependency analysis, we only get a few hundred edges (rather than almost 5 million

edges generated by a more conservative analysis). Since the number of edges are

reduced, we also get rid of the memory overflow problem we faced in applying other

existing approaches.

3.1.3 Access Dependency Graph

Considering everything we have discussed so far, we formally describe our concepts

of the access dependency graph in this section. Below are the criteria we take

into account while building our dependency graph using access dependency analysis:

1. For any two classes A and B (where A and B could possibly be the same class,

or B may be an interface), if A’s method a() calls B’s method b() using any of

invokeinterface, invokestatic, invokespecial and invokevirtual, then

we add the following edge to the dependency graph:

A : a()→ B : b()

2. For any two classes A and B (where A and B could possibly be the same class,

or B may be an interface), if A’s method a() calls B’s method b() using either

of invokeinterface or invokevirtual, and B has transitive subclasses or imple-

mentations B1, B2 . . . Bn explicitly implementing or overriding b() as its own

version, then we add the following edges to the dependency graph in addition

to the edge described in criterion 1:

42

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

B : b()→ B1 : b()

B : b()→ B2 : b()

...

B : b()→ Bn : b()

In addition, if B is a class that inherited method b() from some other class but

does not override b() itself, then we add the following edge to the dependency

graph:

B : b()→ S : b()

where S is the closest transitive superclass of B up the inheritance hierarchy.

3. For any two classes A and B (where A and B could possibly be the same class),

if A’s method a() accesses B’s field b using any of putfield, getfield, putstatic

and getstatic, then we add the following edge to the dependency graph:

A : a()→ B : b

In addition, if b is a static field, we also add the following edge to the dependency

graph:

A : a()→ B :< clinit > ()

where < clinit > is the bytecode method representing the static initializers of

the class.

43

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Notice that every sensible path that could have been traversed by the conservative

analysis is also traversable by the access dependency analysis, but possibly with

several orders of magnitude fewer number of edges. By sensible, we mean a path

that is worth traversing (for example, if a class does not override a certain method,

it is not sensible to traverse a path to that method of that class). This means that

the transitive closure of the sensible accessor-accessee relation pairs are the same for

the conservative analysis and the access dependency analysis. So we have the same

sensible reachability in the access dependency analysis as we would have had in the

more conservative analysis.

44

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

3.2 Dynamic Analysis

Dynamic analysis operates by executing a program and observing the executions.

The dynamic information consists of execution data for a specific set of program exe-

cutions, such as executions in the field, executions based on an operational profile, or

executions of test cases. Apiwattanapong et al., [Api05] defines the dynamic impact

set to be the subset of program entities that are affected by the changes during at

least one of the considered program executions. Testing and profiling are standard

dynamic analyses. Dynamic analysis is precise because no approximation or abstrac-

tion need be done: the analysis can examine the actual, exact run-time behaviour of

the program. There is little or no uncertainty in what control-flow paths were taken,

what values were computed, how much memory was consumed, how long the program

took to execute, or other quantities of interest. Dynamic analysis can be as fast as

program execution. Some static analyses execute quite quickly, but in general, ob-

taining accurate results entails a great deal of computation and long waits, especially

when analyzing large programs.

Furthermore, certain problems, such as pointer or alias analysis, remain beyond

the state of the art; even exponential-time algorithms do not always produce suffi-

ciently precise results. By contrast, determining at run time whether two pointers

are aliased requires a single machine cycle to compare the two pointers (somewhat

more, if relations among multiple pointers are desired) [Ern03].

Dynamic analysis, or the analysis of data gathered from a running program, has

the potential to provide an accurate picture of a software system because it exposes

the system’s actual behaviour [CZvD+09]. This picture can range from class-level

details up to high-level architectural views [RD99] [SAG+06] [WMFB+98]. Among

45

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

the benefits over static analysis are the availability of runtime information and, in the

context of object-oriented software, the exposure of object identities and the actual

resolution of late binding. A drawback is that dynamic analysis can only provide a

partial picture of the system, i.e., the results obtained are valid only for the scenarios

that were exercised during the analysis.

Dynamic analysis is typically comprised of the analysis of a system’s execution

through interpretation (e.g., using the Virtual Machine in Java) or instrumentation,

after which the resulting data are used for such purposes as reverse engineering and

debugging. Program comprehension constitutes one such purpose and, over the years,

numerous dynamic analysis approaches have been proposed in this context, with a

broad spectrum of different techniques and tools as a result. Dynamic analyses are

widely used in program analysis and program comprehension, which can be traced

back to as early as 1972. It can be used in program visualization, feature location,

frequency spectrum analysis, trace analysis, and in this work we are interested in

applying dynamic analysis in the field of impact analysis [Api05] [LR03a] [LR03b]

[BDSP04] [HS07].

Dynamic analysis consists of two major steps:

• instrumentation. One can simulate, emulate, translate the program code, or

execute the program code directly.

• dynamic information collection. Corresponding to the way of instrumenting

the code, dynamic information to be collected can be executed event traces,

executed tests in the test suite, executions in the field, executions based on an

operations profile. Then the collected dynamic information is used to compute

the impact set.

46

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Let P be the program that we want to preform impact analysis on, M the set of

all functions within the program, C the set of changes that are made. We want to

compute I - a subset of total number of functions M that may be affected by C.

A technique is needed to constrain both the instrumentation required to collect the

data and the data collected for each execution.

One can add instrumentation at different levels and to different extents based on

the context in which P is used. The way of conducting instrumentation affects both

the “cost-effective” and “safety-precision” trade-offs. In the following subsections,

we discuss the feasibility of applying different types of instrumentation to enterprise

systems.

3.2.1 Coverage Execution

The reason we instrument the code is to gather information about the coverage of

either basic blocks4 or methods[OAH03]. The instrumentation can be accomplished

by collecting field data, in-house/synthetic data or executing a test suite. As-

sume one collects a set of execution data E for each use of the program, then the

data for each execution contain the coverage information related to that execution

(the set of entities traversed in the execution as expressed by e). At the conclusion

of an execution, for each entity change c in C, we expect to identify a dynamic slice

based on the execution data that traverse c. Then the impact set I is the union of

the slices computed for each c in C.

In Figure 3.9, assume we can collect coverage information from deployed in-

stances of the software for use in creating user profiles, determining classes of users

4A basic block is a sequence of statements in which control enters at the first statement and exits
at the last statement without halting or branching, except at the end.

47

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of the software, and assessing the costs and identifying the issues associated with col-

lecting field data (Gamma approach [AH02] [AB93]). To use field data, a technique

must constrain both the instrumentation required to collect the data and the data

collected for each execution.

Program P

Field
Execution

Data

UserUserUser
User User
User

User

User

UserUserUser

User

UserUser

User

Impact Analysis

Figure 3.9: Field Data Execution Overall

The field execution data in Figure 3.9 is the executed coverage data E at the

method level. An illustrative table of this information is drawn in Table 3.2.

48

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

M1 M2 M3 M4 M5 M6 ...

User A1 X X

User A2 X X X X

User B1 X X

User B2 X

User C1 X X

User...

Table 3.2: Field Execution Example

Table 3.2 keeps records of users’ multiple executions of program methods in M

over time. If a method was traversed in one execution, a “cross” is marked in the

coverage matrix. The steps to compute the impact set are:

• Step 1. Identify user executions through methods in the set of changes C, and

fill the coverage matrix with methods covered by such executions. A set of

covered methods CM is obtained.

• Step 2. Static forward slice from C to obtain the slice of the program SL that

is associated with C.

• Step 3. Intersect the covered methods CM and the forward slice SL to obtain

the impact set I.

In Step 2, forward slicing determines, for a point p in program P and a set of variables

V , those statements in P that may be affected by the values of variables in V at p

[Tip95].

49

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

On the other hand, if a test suite is accessible, we could augment the coverage

matrix as in Table 3.3.

M1 M2 M3 M4 M5 M6 ...

Test case #1 X X

Test case #2 X X X X

Test case #3 X X

Test case #4 X

Test case #5 X X

Test case ...

Table 3.3: Test Execution Example

The test coverage approach does not require a record of users’ executions of the

program, but each test case in the test suite has to be executed to collect the coverage

information. Other than that, the two approaches are exactly the same.

Coverage-based instrumentation that collects dynamic data from either field exe-

cution or test case execution, is not suitable because:

• Field execution requires the recording of users’ executions through methods in

the set of changes C. Since methods can be newly added to the set of changes

to introduce new functionalities, after changes have been applied to the system,

there may be no way to collect the information concerning executions of the new

methods. In addition, the coverage information in the collection will be inaccu-

rate. Even for modified methods, it is still uncertain that users’ executions can

cover all the changes. Thus, the uncertainty of covering all the changes may

greatly increase the risk of missed impacts. The success of collecting coverage

50

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

information from executing real test cases is very much dependent on the com-

prehensiveness of the test suite. Many software failures have been caused by

low probability-high impact conditions within the code, and the test suite may

not inclusively capture all these conditions, not to mention that usually the test

suite reflects only a limited part of the enterprise systems in an organization.

• Due to the size of enterprise systems, it is extremely unrealistic to collect users’

executions in a continuous way. Orso et al., [OAH03], with the aid of 12 users,

spent 12 weeks to collect 1,100 executions on a program JABA that consisted of

550 classes and 2,800 methods. For enterprise systems, the number of classes

can easily exceed 100,000, which is nearly 200 times the size reported in the work

on JABA. To collect user information on such systems is very time consuming

and may take even longer than rerunning the entire regression test suite. Thus,

we need an automated way of instrumenting enterprise systems. Executing

test cases to collect coverage information is not realistic, since rerunning all the

tests is exactly what organizations are already doing with system upgrades/cus-

tomized changes. Even though change impact analysis may provide additional

useful information that may be viewed as a risk management strategy, it is likely

that companies will not choose to undertake additional impact analysis after

re-running all their regression tests. One of our main goals in applying impact

analysis on enterprise systems is to save on having to re-run every test in the

regression suite. Instead, companies will be able to re-run only those tests that

are affected by the changes that are made to the system.

51

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

3.2.2 Program Execution Traces

Rather than coverage information, one can instrument the program to collect execu-

tion traces [LR03a]. Assume we have a call graph of the program in Figure 3.10.

Associated execution traces are shown in Figure 3.11a, in which upper case letters

denote method names, “r” denotes a return, “x” denotes a system exit, in the order

in which they occur during execution. In this example there are three consecutive

execution traces, and each one is marked by an underline.

M

A

B

C

G

D

E

F

Figure 3.10: Call Graph Example

52

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

M B r A C D r E r r r r x M B G r r r x M B C F r r r r x

(a)

M B r A C D r E r r r r x M B G r r r x M B C F r r r r x

(b)

Figure 3.11: (a) Multiple Executions Example (b) Multiple Executions Example with
Return Information

Law and Rothermel [LR03b] introduced the PathImpact approach that can be

summarized as follows: if we propose to change procedure p, we concern ourselves

only with impacts that may propagate down any (and only) dynamic paths that have

been observed to pass through p. Therefore, any procedure that is called after p,

and any procedure which is on the call stack after p returns, is included in the set

of potentially impacted procedures. So in our case, suppose there is a change made

to method X, we can estimate the dynamic impact of the change relative to these

three executions by searching forward in the traces to find methods that are called

directly or indirectly by E and methods that are called after X returns. By searching

backward in the traces we can discover the methods X returns to.

53

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Figure 3.11b is an excellent depiction of this approach showing how the “return”

information is added to Figure 3.11a. Consider a change made to method E, then for

each trace, we “walk” forward to find methods that can be directly or indirectly called

by E and methods called on the stack after E returns - none; we “walk” backward

to find methods E can return to - {A,C,E,M} for the first trace and none for the

other traces. The union of impacts identified for each trace constitutes the impact

sets {A,C,E,M} for the executions we have collected.

Note that in the backward walking, methods that have immediate returns are not

considered to be candidate impacted methods. For instance, in the first trace, method

B and D have immediate returns after being called, so a change to E will not affect

either B or D at all, since E can never return to them. When method E returns,

B or D has already returned. We summarize the impacted methods associated with

each changed method, in Table 3.4.

Methods Total Impacts

M {A,B,C,D,E, F,G,M}

A {A,C,D,E,M}

B {A,B,C,D,E, F,G,M}

C {A,B,C,D,E, F,M}

D {A,C,D,E,M}

E {A,C,E,M}

F {B,C, F,M}

G {B,M,G}

Table 3.4: Impact Set Computation

54

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

An obvious difficulty with this approach involves tracking executed paths, since

traces of this sort may be long. A compression algorithm can be used to reduce the

size of the trace that is collected. For instance, the SEQUITUR algorithm [NMW97] is

used to examine a trace and remove redundancies in the observed sequence of events

by creating a grammar that can exactly regenerate the original trace. SEQUITUR is an

online algorithm - this means it can process traces as they are generated, rather than

requiring the entire trace to be available. Larus reports this compression algorithm

can reduce a 2 GB trace to approximately 100 MB [Lar99].

Even with the aid of a compression algorithm, PathImpact is still very expensive

- in terms of execution overhead or the amount of dynamic information collected - in

both time and space. It requires a time that depends on the size of the trace analyzed

to compress traces at both method entry and return, and the space cost is propor-

tional to the size of the traces (which can be very large) [Api05]. Apiwattanapong

et al., proposes a more efficient and practical approach to collect Execute-after

information. They identified the essential information needed to perform dynamic

impact analysis is the execute-after (EA) information: for a program p and a set of

executions E, the only information required is whether, for each pair of entities e1

and e2 in P , e2 was executed after e1 in any of the executions in E. Or more formally:

Given a program P , a set of executions E, and two methods X and Y in P ,

(X, Y) ∈ EA for E if and only if, in at least one execution in E,

1. Y calls X (directly or transitively), 2. Y returns to X (directly or transitively),

or 3. Y returns to a method Z (directly or transitively), and method Z later calls X

(directly or transitively).

55

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Execution traces contain mostly redundant information (see Table 3.4). By con-

sidering only method-entry and method-returned-to events, the first event trace in

Figure 3.11a can be rewritten as Figure 3.12a. By further inspection, only the first

and last events for each method are needed, such that a further reduced trace is

obtained as in Figure 3.12b.

execute-after

Me Be Br Ae Ce De Dr Ee Er Cr Ar Mr x

M B r A C D r E r r r r x

Me Be Br Ae Ce De Dr Ee Er Cr Ar Mr x

Me Be Mi Ae Ce De Ci Ee Ai Mi x

(a)

Me Be Mi Ae Ce De Ci Ee Ai Mi x

Me Be Mi Ae Ce De Ci Ee Ai Mi x

Preserve only first and last for each method

Me Be Ae Ce De Ci Ee Ai Mi x

(b)

Figure 3.12: (a) Execution Trace processed by Execute-after I(b) Execution Trace
processed by Execute-after II

56

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

An empirical study [Api05] showed CollectEA is as precise as PathImpact and

only slightly more expensive than CoverageImpact. The study used two programs

SIENA and JABA as a case study. The results reported were that the analysis took

approximately 2 minutes for SIENA and approximately 8 minutes for JABA.

Program Version Classes Methods LOC Test Cases

SIENA 8 24 219 3,674 564

JABA 11 355 2,695 33,183 215

Table 3.5: Subject Programs

Comparing the precision5 between CollectEA, CoverageImpact and PathImpact

showed that CollectEA can be as precise as PathImpact, which is approximately 22%

for both SIENA and JABA.

It has been empirically demonstrated that path-based impact analyses can achieve

higher precision, albeit with slightly more overhead, than coverage-based approaches.

However, to the best knowledge of the author, these approaches still have limitations

and disadvantages that make them unrealistic for enterprise systems:

• The precision metric used in evaluating CollectEA is calculated by dividing the

computed impact set by the set of total methods. Depending on the portion of

the actual impact the approach can cover, the metric can be misleading. For

instance, assume we want to compare the precision of the impact sets computed

by two impact analysis tools, Tool1 and Tool2. Consider the two scenarios shown

in Figure 3.13,

5The precision used in this empirical study is calculated by I/M , where I is the number of
estimated impacts, M is the number of all entities in the program.

57

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

A I

C

P

a
A I

C

P

a
A I1

C

P

I2

(a)

A I

C

P

a
A I

C

P

a
A I1

C

P

I2

(b)

Figure 3.13: (a) Scenario I (b) Scenario II

In both scenarios, sets C, A, P , I1, I2 are: the set of original changes; the set of actual

impacts; the total number of functions in the program; computed impacts by Tool1;

computed impacts by Tool2, respectively. Rectangles and ellipses were drawn for better

differentiation.

In scenario I, we observe that Tool2 is more precise than Tool1 since Tool2 com-

putes a smaller impact set I2 and Tool2 is more accurate in terms of coverage

of the actual impacts. In scenario II, I2 is also smaller than I1, but just saying

Tool2 is more precise than Tool1 is misleading, since in practice, the use of Tool1

will reduce the risk of false-negatives. For enterprise system users, Tool1 is

more likely to be selected to reduce risks rather than Tool2, though the pre-

cision metric used in this path-based approach calculates a “better” precision

for Tool2. In other words, a better approach should consider both the precision

58

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and the recall, not only because it is dangerous to miss false-negatives, but also

because the analysis result can be totally misleading if only the precision is

considered.

• It is very expensive to conduct path-based analysis in terms of both time and

space. Even with a compression algorithm like SEQUITUR to reduce duplicated

traces or execute-after inspection to collect only “return into” information, these

analyses do not seem to reduce a significant number of the event traces. In Ta-

ble 3.5 we assume the required running time of the analysis is proportional to

the number of methods, and the running time for an enterprise system consist-

ing of 4 million methods may reach over 600 hours (25 days). Additionally, time

complexity of the analysis on an enterprise system cannot be linear, due to the

increase of complexity while adding more methods. The author tried the Col-

lectEA approach on an enterprise system that contains 4.6 million methods and

10 million LOC. The analysis kept running for a couple of days and eventually

ran out of memory on a computer with 8 GB memory. We later realized that

the scale of our target system is way beyond this tool’s capability to analyze,

even with much more memory. One of the reasons is that this approach still

computes too many event traces. By comparing the last trace in Figure 3.12b

and the very first trace in Figure 3.11a, we see that only 3 out of 13 events in

the trace were removed.

• More importantly, in collecting executed event traces, there are types of traces/-

paths that existing impact analysis approaches do not classify and remove ap-

propriately. Data-flow based testing , which annotates control-flow graphs with

the mode of use of particular variables, has been widely explored in Regression

59

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Test Selection (RTS). By analysis of the definition and use of data in execution

paths, we can select tests that exercise particular kinds of usage. A variable

can be defined, killed (deallocated) and used. Thus some data-flow strategies

are: all paths, all du-paths6, all uses, all predicate use/some computation, all

computation use/some predicate, all definition, all predicate and computation

uses with a descending order of strength [PA98]. Among those testing criteria,

surprisingly little work has been done on applying it to assist change impact

analysis. If one can classify paths by whether they can be affected by a potential

change, then presumably a large portion of the traversed paths can be removed

from the impact set.

3.2.3 Aspect-Based Instrumentation

Aspect-oriented programming (AOP) [KLM+97] has been proposed as a tech-

nique for improving separation of concerns in software. AOP builds on previous

technologies, including procedural programming and object-oriented programming,

which have already made significant improvements in software modularity.

Kiczales et al., [KHH+01] pointed out the central idea in AOP is that while the

hierarchical modularity mechanisms of object-oriented languages are extremely useful,

they are inherently unable to modularize all concerns of interest in complex systems.

Instead, it is believed that in the implementation of any complex system, there will

be concerns that one would like to modularize, but for which the implementation

will instead be spread out. This happens because the natural modularity of these

concerns crosscuts the natural modularity of the rest of the implementation.

6A definition path (du-path), with respect to a variable v is a path whose first node is a defining
node for v, and its last node is a usage node for v.

60

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

AOP does for concerns that are naturally crosscutting what OOP does for con-

cerns that are naturally hierarchical. It provides language mechanisms that explicitly

capture crosscutting structures. This makes it possible to program crosscutting con-

cerns in a modular way, and thereby achieve the usual benefits of modularity: simpler

code, that is easier to develop and maintain, and that has greater potential for reuse.

Crosscutting concerns such as error checking and handling, synchronization, context-

sensitive behaviour, performance optimizations, monitoring and logging, debugging

support, and multi-object protocols can be modularized in a clean way [Asp14].

The motivation for AspectJ [Pro14] (and likewise for aspect-oriented program-

ming) is the realization that there are issues or concerns that are not well captured

by traditional programming methodologies. Consider the problem of enforcing a se-

curity policy in some application. By its nature, security cuts across many of the

natural units of modularity of the application. Moreover, the security policy must

be uniformly applied to any additions as the application evolves. Also, the security

policy that is being applied might itself evolve. Capturing concerns like a security

policy in a disciplined way is difficult and error-prone in a traditional programming

language.

Concerns like security cut across the natural units of modularity. For object-

oriented programming languages, the natural unit of modularity is the class. But in

object-oriented programming languages, crosscutting concerns are not easily turned

into classes precisely because they cut across classes, and so these are not reusable,

they cannot be refined or inherited, they are spread throughout the program in an

undisciplined way, in short, they are difficult to work with.

61

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

AspectJ, originally developed at Xerox Parc, is an implementation of the aspect-

oriented programming paradigm for the Java language. It adds to Java one new

concept, a join point and a few new constructs: pointcuts, advice, inter-type dec-

larations and aspects. Pointcuts and advice dynamically affect program flow, while

inter-type declarations statically affect a program’s class hierarchy, and aspects en-

capsulate these new constructs. A join point is a well-defined point in the program

flow. A pointcut picks out certain join points and values at those points. A piece of

advice is code that is executed when a join point is reached. These are the dynamic

parts of AspectJ. AspectJ also has different kinds of inter-type declarations that al-

low the programmer to modify a program’s static structure, namely, the members of

its classes and the relationship between classes. AspectJ’s aspects are the units of

modularity for crosscutting concerns. They behave somewhat like Java classes, but

may also include pointcuts, advice and inter-type declarations.

Over the past few years, economic pressure has forced enterprises to outsource

many IT services and purchase them from external service provides, and build cus-

tomized code on top of the purchased software to constitute enterprise systems. The

techniques we discussed in § 3.2.1 and § 3.2.2 are very costly in instrumenting the

system to assist change impact analysis. An alternative approach aims to instrument

the enterprise system components and platforms directly by aspect-oriented instru-

mentation. This aspect-oriented instrumentation helps to solve the shortcomings

of existing instrumentation approaches by providing transparency for the application

developer and furthermore offering the opportunity to monitor management data at

any level of detail [DG03]. Instrumentation can be added on top of existing appli-

cations as some extra “drivers” to normal software in an ad-hoc manner, which has

62

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

to be developed in parallel to the development of the normal software. However this

approach only provides generic information about the system, such as outputs for a

given set of inputs. If fine-grained monitoring is the goal - such as details of how

components interact (control-flow) within the system, we need some transparency of

those components and this is where aspect-oriented programming can help.

What follows is an introduction to the key features in AOP and AspectJ, and a

discussion of how to conduct aspect-oriented instrumentation in an enterprise system,

in particular with AspectJ.

The features in AspectJ [Pro14] are presented using a simple figure editor system

(Figure 3.14). A Figure consists of a number of FigureElements, which can be either

Points or Lines. The Figure class provides factory services. There is also a Display.

Display

Figure
<< factory >>

+makePoint()
+makeLine()

FigureElement

+setXY()
+draw()

Point

-x: int
-y: int

Line

-p1: Point
-p2: Point

1 *

Figure 3.14: UML for the FigureEditor Example [Pro14]

63

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Pointcuts

In AspectJ, pointcuts pick out certain join points in the program flow such as in the

code segment below:

pointcut move(): call(void FigureElement.setXY(int, int)) ||

call(void Point.setX(int)) ||

call(void Point.setY(int)) ||

call(void Line.setP1(Point)) ||

call(void Line.setP2(Point));

the pointcut move() picks out each join point that is a call to one of the five void

methods. Note that a pointcut can identify join points from many different types – in

other words, they can crosscut types, by building the pointcut out of other pointcuts

with and, or, and not. Then the programmer can simply use move() to capture this

complicated pointcut.

Advice

After pointcuts pick out join points, we use advice to implement crosscutting be-

haviour. Advice brings together a pointcut (to pick out join points) and a body of

code (to run at each of those join points). AspectJ has several kinds of advice: before,

after, after returning, after throwing, around etc. This piece of advice:

before(): move() {

System.out.println("about to move");

}

64

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

runs as a join point is reached, right before the program proceeds with the join point

(actual method running). Pointcuts not only pick out join points, they can also expose

part of the execution context at their join points. Values exposed by a pointcut can

be used in the body of advice declarations, such as this piece of advice:

after(FigureElement fe, int x, int y) returning:

call(void FigureElement.setXY(int, int))

&& target(fe)

&& args(x, y) {

System.out.println(fe + " moved to (" + x + ", " + y + ")");

}

exposes three values from calls to setXY: the target FigureElement – which it pub-

lishes as fe, so it becomes the first argument to the after advice – and the two int

arguments – which it publishes as x and y, so they become the second and third

argument to the after advice. So the advice prints the figure element that was moved

and its new x and y coordinates after each setXY method call.

Inter-type declarations

Inter-type declarations in AspectJ are declarations that cut across classes and their

hierarchies. They may declare members that cut across multiple classes, or change

the inheritance relationship between classes. Unlike advice, which operates primarily

dynamically, inter-type declarations operates statically, at compile-time.

Consider the problem of expressing a capability shared by some existing classes

that are already part of a class hierarchy, i.e. they already extend a class. In Java, one

creates an interface that captures this new capability, and then adds to each affected

65

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

class a method that implements this interface. AspectJ can express the concern in

one place, by using inter-type declarations. The aspect declares the methods and

fields that are necessary to implement the new capability, and associates the methods

and fields with the existing classes.

Aspects

The definition of Aspects is very similar to classes; they wrap up pointcuts, advice, and

inter-type declarations in a modular unit of crosscutting implementation. It can have

methods, fields, and initializers in addition to the crosscutting members. Because

only aspects may include these crosscutting members, the declaration of these effects

is localized.

aspect Count

{

private int count = 0;

pointcut CountSetXY() : call (FigureElement.setXY(int, int));

before() : CountSetX()

{

count++; }

}

}

The aspect Count introduces count as a new member of FigureElement and defines

a pointcut for the setXY method of FigureElement. The before advice increments

the newly introduced count variable every time the setXY method is invoked.

66

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Aspect-oriented Instrumentation Approach

In order to collect either field/test coverages or path executions in existing dynamic

impact analysis, one has to instrument the program with a good understanding of the

business requirements of the program, how the functionalities of the program were

implemented, the execution order of different functions, input data and expected

output data for the functions to be instrumented, etc. This requires comprehensive

domain knowledge and may lead to enormous costs since many code pieces may have

to be instrumented to complete one single trace in an enterprise system. In addition,

we mentioned in § 3.2.1 and § 3.2.2 that both these ways of dynamic impact analysis

exhibit a number of limitations and are inappropriate for our target system, not

to mention that the instrumentation itself is beyond a testers’ ability to implement

without automated tools.

Unlike many other tools, AspectJ works at the bytecode level (source code is not

required), hence it allows instrumentation on a third-party system, which is exactly

what we want for enterprise systems since most of the organizations that use/aug-

ment enterprise systems only have an executable version from a vendor. Moreover,

it does not require any modification of the existing code. The instrumentation code

is encapsulated as an aspect which may be done by a different developer/tester who

is familiar with the instrumentation environment, but not necessarily with the ap-

plication logic. The application code is simply recompiled using a special compiler,

the aspect weaver, that connects the aspect code with the application code. Thus,

instrumentation can also easily be integrated into an existing application.

The idea is to define a pointcut on every method execution, as well as some advice

to run before the code is executed when the pointcuts appear. Below is an aspect we

67

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

are using to trace system executions:

Trace.java

1 package aspects;

2 import java.util.logging.Level;

3 import java.util.logging.Logger;

4 import org.aspectj.lang.Signature;

5

6 aspect Trace{

7 pointcut traceMethods() :

8 (execution(* *(..))&& !cflow(within(Trace)));

9 before(): traceMethods(){

10 Signature sig = thisJoinPoint.getSignature();

11 String line =""+

12 thisJoinPointStaticPart.getSourceLocation().getLine();

13 String sourceName = thisJoinPointStaticPart.

14 getSourceLocation().getWithinType().getCanonicalName();

15 Logger.getLogger("Tracing").log(

16 Level.INFO,

17 "Call from "

18 + sourceName+" line " + line

19 +" to " +sig.getDeclaringTypeName() + "." +

20 sig.getName()

21);

22 }

23

68

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

In Trace.java, we define a pointcut traceMethods() (Line 7) to pick out execu-

tions of every method in every class, as long as the control flow is not in the current

class (Trace), such that we can identify all the other methods being called in each

particular execution. Then we define an advice to be executed right before executing

the method (Line 9). In the advice we log information of caller and callee when the

pointcut was reached, including names and line numbers of the calling sites. AspectJ

provides a special reference variable, thisJoinPoint (Line 10), that contains reflec-

tive information about the current join point for the advice to use. thisJoinPoint has

a rich reflective hierarchy of signatures, and can be used to access both static and

dynamic information about join points, such as the arguments of the join point. If

only the static information is required, a special variable thisJoinPointStaticPart

can be accessed instead to read the static part of the join point. However, run-time

creation of the join point object is missed by using thisJoinPointStaticPart. Finally,

the pointcut along with the advice are wrapped into the aspect Trace (Line 6).

To use this aspect, we need to compile it using AspectJ’s compiler ajc:

ajc -outxml -outjar aspects.jar Trace.java

ajc is AspectJ’s compiler and bytecode weaver for the Java language. The ajc com-

mand compiles and weaves AspectJ code together with Java source or .class files,

producing .class files compliant with any Java VM (1.1 or later). It combines com-

pilation and bytecode weaving and supports incremental builds; you can also weave

bytecode at run-time using Load-Time Weaving7.

Now we can use this compiled Jar file aspects.jar to run the instrumentation

process:

7Please check the AspectJ’s development guide at
https://www.eclipse.org/aspectj/doc/next/devguide/ltw.html

69

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

java -javaagent:<path to aspectjweaver.jar> -cp

<path to aspects.jar>:<path to target jar/folder>

<name of main class to run>

Example output of running this Jar on a class MGPApp.class from Oracle E-Business

Suite is listed below:
Output.sample

[oracle@orasrv4 NetBeansProjects]$ java -javaagent:/ebs/orahome/

aspectj1.7/lib/aspectjweaver.jar -cp /ebs/orahome/aspects.jar:/ebs/

oracle/prodcomn/java/ MGPApp

Dec 7, 2013 10:30:58 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

INFO: Call from oracle.lite.sync.ConsNls line 37

to oracle.lite.sync.ConsNls.initialize

Dec 7, 2013 10:30:59 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

INFO: Call from MGPApp line 106 to MGPApp.main

Dec 7, 2013 10:31:00 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

INFO: Call from oracle.lite.web.util.JupMGPDebug line 134

to oracle.lite.web.util.JupMGPDebug.init

Dec 7, 2013 10:31:00 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

INFO: Call from oracle.lite.web.util.JupMGPDebug line 27

to oracle.lite.web.util.JupMGPDebug.load

Dec 7, 2013 10:31:00 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

INFO: Call from oracle.lite.common.Profile line 153

to oracle.lite.common.Profile.getBinDirectory

Dec 7, 2013 10:31:00 AM aspects.Trace ajc$before$aspects_Trace1b314f86e

....

By extracting from the output we can identify the dynamic event trace:

oracle.lite.sync.ConsNls.initialize

70

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

to MGPApp.main

to oracle.lite.web.util.JupMGPDebug.init

to oracle.lite.web.util.JupMGPDebug.load

to oracle.lite.common.Profile.getBinDirectory

to ...

In this section we presented an alternative aspect-oriented instrumentation ap-

proach using AspectJ, that allows us to conduct a fully dynamic instrumentation on

the bytecode level of programs. Aspect-oriented instrumentations “weave” together

the program code/bytecode and the aspects, and encapsulates advice (insertion code)

to monitor and collect dynamic information, without modifying the program. Devel-

opers/testers can focus on the instrumentation and data collection, saving the effort

required to understand the application logic. Additionally, memory usage and running

time are quite reasonable: it requires memory of the order of hundreds of kilobytes

per class, and running time of seconds per class. We include more detail of applying

this approach to an enterprise system in Chapter 8, Empirical Study.

71

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

3.3 Combining Static and Dynamic Analysis8

We introduced both static and dynamic impact analysis in § 3.1 and § 3.2, with

respect to enterprise systems. Static analysis computes a conservative set of impacts

by analyzing the program, pre-runtime. It abstracts from the program a static rep-

resentation, the representation can include various types of graphs: Call Graph,

Control-Flow Graph, Dependency Graph, or even Trees, etc. Since it includes every

possible program behaviour of the types targeted, it often results in over-estimation

– many of the computed impacts are not real impacts.

Specifically, the portion of the real impacts that a static analysis may cover de-

pends on many factors, such as how well the abstraction was implemented in the

analysis. As we know, call graphs represent a program by abstracting a set of meth-

ods and a set of calling relations between them. With a call graph we can capture

all the explicit method invocations even though many of them are not feasible. By

feasible we mean the path of execution is feasible, with matched calls and returns or

with the right dependencies. In terms of dependency, call graphs only capture calling

dependencies, but data dependencies can also affect program behaviour. This leads

us to focus on building dependency graphs to capture dependencies between all the

entities (methods and fields).

Many current enterprise systems were written in an object-oriented language to

encapsulate fields and methods, provide information hiding, increase program un-

derstanding, etc. However, in analyzing the impacts of a change, object-oriented

8This section is mostly based on the author’s publication: Wen Chen, Alan Wassyng, and Tom
Maibaum.“Combining Static and Dynamic Impact Analysis for Large-scale Enterprise Systems.”
The 15th International Conference on Product-Focused Software Process Improvement. Helsinki,
Finland. 2014. [CWM14a]

72

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

features like inheritance and dynamic binding introduce significant complexity. As

we mentioned in § 3.1.2, many of the over-estimated impacts are caused by dynamic

binding, since until run-time we cannot determine the type of a method. For the sake

of safety, one has to include all the possible superclasses in determining the depen-

dencies. Hence we introduced a new dependency graph Access Dependency Graph to

deal with dynamic binding and it effectively reduces the number of dependencies we

used to include.

Recently, dynamic analysis has been used more extensively than static analysis,

since dynamic analysis is more efficient, in terms of running time and precision in find-

ing impacts, locating defects, etc. Dynamic analysis requires run-time executions of

the program to collect information such as field data, coverage, event traces etc. Then

software developers/testers can compute dynamic impacts of a change by identifying

affected entities in the program. Even though the dynamic approach is more efficient,

because one cannot instrument the program to cover all feasible executions, it often

leads to under-estimation. The way we instrument the code, and the kind of dynamic

information we collect can greatly affect the feasibility, precision and completeness of

the analysis.

As we mentioned in § 3.2.1, coverage-based dynamic approaches require users’

field data or actual test cases, which are costly and difficult to obtain. Even with this

coverage information, impacts computed on them are obviously only a small portion

of the actual impacts. Changes such as the addition of new functions can never be

tested or manually executed before being applied, hence there is no chance to collect

coverage information on them. For test cases, it is contradictory to collect dynamic

information by performing a full regression test execution, since one of our objectives

73

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

is to better focus testing in the face of changes – identifying affected tests in the

original test suite without running the whole suite. In § 3.2.2, path-based dynamic

approaches were introduced, in which event traces are collected. This sort of approach

seems more practical and effective, however current path-based approaches have a

number of limitations that lead to long running time and low precision: one has to

have particular domain knowledge such as a full understanding of the application

logic to conduct the instrumentation. Certain functions require certain inputs and

order of execution to make the executions meaningful, which increases the difficulty

and complexity of analyzing the impacts. Long execution time is mainly caused by

duplicate traces, and even though compression algorithms or finer resolution analysis

(e.g. execute-after) are employed, it still requires a large amount of time almost equal

to that of running the entire regression suite.

Considering the pros and cons of static and dynamic analysis, and limitations

of current approaches, there exists real potential to combine the two approaches,

resulting in a hybrid approach that is safe and precise, and requires less execution

time. Since our target systems are typically mission or company critical, the first and

most important consideration is safety. By safety, we mean the computed impact set

should be complete; in other words, it contains all the actual impacts with some over-

estimated ones (false-positives). Therefore, in our approach, an access dependency

graph G is built to capture all the potential impacts S and serves as the input source

for dynamic analysis. Note that, unlike the Vanilla static analysis, our approach is

more precise since we are able to eliminate many false-positives caused by dynamic

binding.

74

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Algorithm 1 Combination algorithm for static and dynamic analysis

function COMBINE(P , C)

G(V,E)←− buildGraph(P);

for c ∈ C do

Callers←− ReverseSearch(G, c);

for i←− 0 to Callers.length− 1 do

if Callers[i] /∈ S then

S ←− S + Callers[i];

end if

end for

end for

for s ∈ S and s is executable do

Events←− instrument(s);

Callers←− Events.getMethods();

for j ←− 0 to Callers.length− 1 do

if Callers[i] /∈ D then

D ←− D + Callers[i];

end if

end for

end for

PO ←− S −D;

return S,D, PO

end function

75

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

In Algorithm 19, G(V,E) is the access dependency graph we built in the static

analysis stage, V and E is the set of vertices and associated edges within the graph.

For each change extracted from the atomic changes set C, we perform a reverse search

to identify all the possible callers of this method. A reverse search finds entities that

can reach a particular method. Note that the changes taken into account in this

algorithm are only direct changes – we need a Change Analysis to obtain both direct

changes and indirect changes. Details of reverse searching and change analysis can

be found in Chapter 4. Before adding the identified callers to the static impact set

S, a duplication check is needed to avoid duplicates, as many methods may share

the same callers. After that the static impact set serves as the input for dynamic

analysis.

To start our dynamic analysis, we perform aspect-oriented instrumentation on

each method in the static impact set S. Aspect-oriented instrumentation (§ 3.2.3)

does not require any domain knowledge, nor any test data. In the aspect we create,

we define a pointcut for each method execution, as well as advice in collecting event

traces from the method. Since our static analysis covers all relevant feasible program

behaviours, the dynamic impact set D will not exceed the range of S. In this way,

we compute a set of dynamic impacts D which is actually a subset of S, as well as

a set of potential over-estimated impacts (PO = S −D), that is, impacts that were

not traversed by instrumentation. In Chapter 5 and Chapter 6, we examine how to

further eliminate false-positives, in order to achieve better precision.

9The ReverseSearch() algorithm finds direct and indirect callers of c. The design of this algo-
rithm can be found in Algorithm 2.

76

Chapter 4

Change Analysis1

As software evolves, there are incremental changes to an existing, perhaps large, set

of code and documentation [MW00]. The changes can arise from multiple sources,

such as user requirements, system upgrades, customizations, etc. Users often have to

apply vendor patches to potentially fix issues or ensure continuing vendor support.

In impact analysis, no matter what techniques or criteria are used, the set of atomic

changes together with the program itself are the only two inputs. Changes can have

indirect affects on other entities in the program. For instance, a change made to a

database table may affect library functions that use it. Later this library function

may behave differently since it is accessing a changed table. This type of change must

also be taken into account while doing impact analysis. Hence, we need to extend the

atomic change set by including indirect changes.

User requirement changes or customization changes are hard to obtain to use as a

1This chapter is mostly based on one of the author’s technical reports at McMaster Centre for
Software Certification (McSCert): Wen Chen, Asif Iqbal, Akbar Abdrakhmanov, Chris George,
Mark Lawford, Tom Maibaum and Alan Wassyng. “Report 7: Middleware Change Impact Analysis
for Large-scale Enterprise Systems” September, 2011. CIA+11

77

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

case study. They are typically confidential and probably only touch a small portion

of the system. Hence, our focus in this thesis is on Software Patches, which are

easier to obtain and may have a large number of impacts on the system.

A patch can consist of multiple files, and depending on its type, a patch may

update the application library or database (or both) of a system. Patches often

contain a large number of different types of files, such as program code, SQL scripts,

configuration files and documentation. It is necessary to distinguish between files

that will change the program or database, and files that will not, and for the first

category, be able to parse them to see which methods, tables, procedures etc., may

be changed. Vendor documentation of the patch is typically inadequately detailed for

this task. It is also better to rely on the source files themselves than on the accuracy

and completeness of the documentation.

4.1 System Architecture

To better identify the indirect changes, one has to understand the architecture of an

enterprise system and hence how the direct changes can affect other entities within

the architecture. Figure 4.15 is the system architecture of Oracle E-Business Suite

Release 12.1 [Cor10], which is one of the most popular existing enterprise systems.

In the figure we can see the enterprise system is made up of the database tier, which

supports and manages the Oracle database; the application tier, which supports and

manages the various Oracle E-Business Suite components, and is sometimes known as

the middle tier ; and the desktop tier, which provides the user interface via an add-on

component to a standard web browser.

A machine may be referred to as a node, particularly in the context of a group

78

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of computers that work closely together in a cluster. Each tier may consist of one

or more nodes, and each node can potentially accommodate more than one tier. For

example, the database can reside on the same node as one or more application tier

components. Note, however, that a node is also a software concept, referring to a

logical grouping of servers.

Centralizing the Oracle E-Business Suite software on the application tier elimi-

nates the need to install and maintain application software on each desktop client

PC, and also enables Oracle E-Business Suite to scale well with an increasing load.

Extending this concept further, one of the key benefits of using the Shared Applica-

tion Tier File System model (originally Shared APPL TOP) is the need to maintain

only a single copy of the relevant Oracle E-Business Suite code, instead of a copy for

every application tier machine. On the database tier, there is increasing use of Ora-

cle Real Application Clusters (Oracle RAC), where multiple nodes support a single

database instance to give greater availability and scalability. The connection between

the application tier and the desktop tier can operate successfully over a Wide Area

Network (WAN). This is because the desktop and application tiers exchange a mini-

mum amount of information, for example, only field values that have changed. In a

global operation with users at diverse locations, requiring less network traffic reduces

telecommunications costs and improves response times.

79

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Figure 4.15: Oracle E-Business Suite System Architecture (Release 12.1)[Cor10]

To the author’s best knowledge, most current enterprise systems incorporate

components with this type of architecture. After implementing the system with an

organization’s business requirements, customized code can be built on top of it to

provide customized service. For example, an organization may need to have trans-

action data pre-processed before sending it to Forms Services and process multiple

transactions currently in the application tier. An architecture that contains both an

enterprise system and customer applications is described in Figure 4.16.

80

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Customer's ApplicationCustomer's Application

Application LibraryApplication Library

DatabaseDatabase

Figure 4.16: System Architecture

4.2 Analyzing Patches

In every patch, there should be log files or patch analysis tools that describe all

potential changes made to the current version of the system at the file level. For

example, in the patches for Oracle E-Business Suite, there are 35 types of files. Each

type might impact database objects, library functions, or both. Some file extensions

and their impacts are listed in Table 4.6. The second column of this table indicates

what impacts the type of file in the first column can cause.

81

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Object Type Impacts

SQL Database

PLS Database

CLASS Library

CMD N/A

CTL Database

DRV Database, Library

FMB Database

JSP Library

PKB Database

PKH N/A

PL Database

PLL Database

PLS N/A

PROPERTIES N/A

RDF Library

... ...

Table 4.6: Patch Files and Impacts

Note, some types of file extensions require a conversion from a compiled file to a

readable file, such as FMB, PLL and RDF. A sample decompile command for a FMB

file is as follows:

sh frmcmp.sh BATCH=YES Module Type=FORM Logon=NO Forms Doc=YES

Output_File= OUTDIR Module= INDIR

82

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

In this conversion, Oracle Reports decompiles FMB files to text files, such that state-

ments that can affect the database can be extracted. We show the conversions in the

figure below.

RDF

Oracle Reports

FMB

PLL

JSP

FMT

TXT

Oracle Forms

Figure 4.17: File conversions

RDF [Abd10] are Oracle Report binaries. Each report in Oracle is registered as

a concurrent program executable. A single executable RDF file contains the data

source, layout, business logic, and the language-specific prompts. These files poten-

tially change applications. We used Oracle Report to convert RDFs to JSP scripts.

FMB [Abd10] are binary source code files created by the Oracle Forms tool at

design time. Oracle Forms is a tool that enables rapid development of enterprise

applications. In E-Business Suite, it is used to build screens that allow data to be

entered and retrieved from the database as required. When the form is compiled

by the Oracle Forms tool, an executable with the extension FMX is created [PA09].

83

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

FMB binaries may attach PL/SQL libraries or make calls to the database stored

procedures. And therefore they potentially change applications. We used Oracle

Forms to convert FMBs to TXT files which describe what forms are defined within

them, and also for extracting PL/SQL scripts from them.

PLL [Abd10] are PL/SQL libraries that can be attached to a form. Think of

a PL/SQL library as reusable code that can be shared among multiple forms. The

code within the libraries can reference and programmatically modify the property of

components within the forms to which they are attached. Code in the library can also

make calls to the database stored procedures [PA09]. These files potentially change

the database and applications. We used Oracle Forms to convert them to FMT files,

which maintain all PL/SQL scripts compiled in PLLs.

File granularity is not sufficient to fully understand the actual effects introduced

by a specific change. Tests of a software system are usually at a function, or even at a

statement level. Our approach aims at extracting detailed information from changed

files to obtain four types of changes that we then discuss in turn:

• Type 1. Direct changes to database objects (§ 4.3)

• Type 2. Direct changes to library functions (§ 4.4)

• Type 3. Indirect changes from database objects to database objects (§ 4.3)

• Type 4. Indirect changes from database objects to library functions (§ 4.5)

4.3 Database Changes

We need to identify which changes are capable of affecting database objects. Major

changes to Oracle databases (for example), come from SQL and PL/SQL scripts.

84

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

SQL scripts are script files which contain DDL (Data Definition Language) and DML

(Data Manipulation Language) statements. PL/SQL files define database functions

and procedures. In our approach, we only consider SQL statements that can cause

changes: CREATE, DELETE, UPDATE, DROP on tables, procedures, functions etc,

while omitting others like SELECT. [CIA+11]

To do this, we employed a third-party SQL parsing tool named General SQL

Parser (developed at Gudu Software [Sof15]) to capture the names of those ob-

jects. The tool reads SQL text, and tokenizes it with the lexical analyzer Lex [LS06]

into a list of tokens. The list of source tokens is then used as input to the Yacc

parser [Han00]: see Figure 4.18. Yacc reads source tokens, and based on the syntax

of different database’s SQL dialects, the tool creates a query parse tree if no syntax

errors are detected. The raw query parse tree is then translated into a formal parse

tree, where the top level node of the formal parse tree is a SQL statement such as: TS-

electSqlStatement, TInsertSqlStatement, TDeleteSqlStatement, TUpdateSqlStatement,

TCreateTableSqlStatement, etc., which in turn includes other parse tree sub-nodes.

Lex Yacc
SQL Parse Tree

Figure 4.18: General SQL Parser [Sof15]

Furthermore, we had to extend this tool to deal with SQL statements that them-

selves contained SQL definitions. Other patch files also use SQL for making their

changes. In some the SQL is contained in other text, in others it is compiled and has

85

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

to be decompiled to extract the SQL statements. A suite of tools was developed to

handle all the relevant files found in Oracle patches.

We give an example of an SQL script (payauret.sql) below.

payauret.sql

1 SET VERIFY OFF;

2 WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

3 WHENEVER OSERROR EXIT FAILURE ROLLBACK;

4 REM /* $Header: payauret.sql 120.5.12000000.4

5 2011/01/31 20:39:27 skshin noship $ */

6 REM dbdrv: none

7 ...

8 REM Script Name : payauret.sql

9 REM Script Type : Standard

10 REM Description : Script to populate the following

11 entities for Australia

12 ...

13 DECLARE

14 ...

15 FUNCTION create_retro_definitions

16 (p_short_name in

17 pay_retro_definitions.short_name

18 TYPE

19 ,p_definition_name in

20 pay_retro_definitions.definition_name

21 TYPE)

86

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

22 RETURN NUMBER IS

23 l_retro_definition_id

24 pay_retro_definitions.retro_definition_id

25 TYPE;

26 ...

27 BEGIN

28 ...

29 IF l_retro_definition_id IS NULL THEN

30 OPEN csr_get_defn_id;

31 FETCH csr_get_defn_id INTO

32 l_retro_definition_id;

33 CLOSE csr_get_defn_id;

34 INSERT INTO pay_retro_definitions

35 (retro_definition_id, short_name,

36 definition_name, legislation_code)

37 VALUES

38 (l_retro_definition_id

39 ,p_short_name

40 ,p_definition_name

41 ,g_legislation_code);

42 END IF;

43 END create_retro_definitions;

44 FUNCTION create_retro_components

45 ...

87

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

46 END;

47 /

48 COMMIT;

49 EXIT;

The tool goes through each line of payauret.sql, tokenizes it and passes it to

Yacc. While processing and tokenizing statements, it takes each complete segment

of statements as one single statement. In other words, the definition of function

create retro definitions (line 14 - line 42) will be seen as one single statement. Thus,

the parse tree of this script file cannot detect any statements in the body of function

create retro definitions. In reality there can be multiple changes made in the body

of a function or any other objects (procedures, packages etc). Hence, a sophisticated

and revised add-on was developed to recursively read SQL scripts, see Figure 4.19.

Lex Yacc
SQL Parse Tree

Figure 4.19: Statement Checker

A new module was added to the third-party SQL parsing tool: Statement Checker.

88

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Statement checker examines the statements returned by Yacc. It then recursively

checks for definitions of functions/procedures/packages/etc. (i.e. objects having bod-

ies), until no more statements are found. After analysis, table pay retro definitions

(line 33) was also identified as a change in this script, among 15 changes in total.

We also need to extract indirect changes from database objects to database objects

such as tables, triggers, procedures, etc. Thus, the dependencies between them are

required. Fortunately, most databases (e.g. Oracle, DB2, MySQL) already detect

and store such dependencies. Otherwise it would be fairly straightforward to write

some SQL procedures to calculate them. Thus we can just follow the dependencies

and compute the indirect changes caused by a direct change.

4.4 Library Changes

Patches to Java libraries often come in the form of class files, and techniques are

necessary for detecting changes at the method and field levels between the original

software and the patch. [CIA+11]

Some tools and techniques do exist to detect differences between two versions of a

program. The Aristotle research group from Georgia Tech. in [AOH04] showed an

approach for comparing object-oriented programs. Their approach was not applicable

to our domain because it compares both versions of the whole program, rather than

making individual class to class comparisons. Moreover, their application domain

was several orders of magnitude smaller than ours. Meanwhile, there exist some

open source tools like JDiff [Doa07], Jar Comparer Tool [jar], JarJarDiff and

ClassClassDiff [Tes10b] that only give API differences between two class or two

jar files. To achieve the level of detail we require, namely which methods and fields

89

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

are changed, we decided to write our own modification detecting tool for class and

jar files.

What we do is to compare the two versions of a Java class file and report the

differences. The class file format is described in detail in [LY99]. Since the class files

are in binary format, we first use a tool to convert them to an easy-to-parse XML

format. This XML format is a one-to-one representation of the binary bytecode for-

mat, thus comparing two versions of the XML is effectively equivalent to comparing

the class files themselves. The XML format contains XML representations of ev-

erything present in the Java class file (methods, fields, superclass, interfaces, access

flags, etc.). We compare the two versions of an XML file, node by node, to detect

differences in methods, fields, access flags, superclass, interfaces, etc., and list them in

another XML file for use in the impact analysis phase. Below are the steps depicting

the entire process of detecting modifications.

1. Have the original and modified version of a class file in transformed XML format

ready. Also have an XML document D ready for recording the differences.

2. Compare the superclasses of both versions and record any differences in D.

3. Compare the interfaces and record any differences in D.

4. Compare the access flags of the two classes and record any differences in D.

5. Compare the methods and record any added, changed or deleted methods in D.

For changed methods, record the details of changes (return type, access flags or

instructions) in D.

6. Compare the fields and record any added, deleted or changed fields in D. For

changed fields, record the details of changes (type, access flags) in D.

90

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

As an example, Figures 4.20a and 4.20b show an original and modified code

sample, respectively. Note that the only difference is the inclusion of the call to

method bar() inside method foo(). The XML segment in Figure 4.20c contains this

modification information.

class Test{

int i;

public void foo()f

i++;

}

public void bar(){

System.out.println();

}

}

(a) Original Code

class Test{

int i;

public void foo()f

i++;

bar();

}

public void bar(){

System.out.println();

}

}

(b) Modified Code

<changed signature="foo()">

<methodinfo>

<instructions/>

<dependencies>

<addedcall>Test:bar()</addedcall>

</dependencies>

</methodinfo>

</changed>

(c) Difference Holding XML segment

Figure 4.20: Detecting Modifications

91

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

4.5 Library-Database Linkages2

Program code interacts with the database via SQL commands generated as strings,

and passed to the database through the SQL-API. Such strings are often dynamically

created, so we used a string analysis tool, the Java String Analyzer [CMS03]

(JSA), which is capable of statically analyzing a section of code and determining

all the strings which might possibly occur at a given string expression, including

dynamically constructed strings. Currently the JSA can only work with Java code,

but it is architected in such a way that a single layer of it can be replaced to add

support for a different language, leaving the majority of the JSA unchanged.

Ideally, all of the Java classes in a program would be passed simultaneously to

the JSA, all usage of the SQL would be checked, and a report would be provided

showing which strings, and therefore which database object names, are possible for

each SQL string. Unfortunately, the process used by the JSA is extremely resource

intensive. Using just a small number of classes (∼50) will often cause memory usage

to explode. On a 32GB RAM machine, all available memory was quickly exhausted

in many tests.

A way to segment the classes into small sets which the JSA can handle is thus

required. The technique used for this was to identify all of the unique “call-chains”

which exist in the program, for which the bottom-level of a chain is any method

which makes use of SQL, and the top-level of the chain is any one of the “methods of

interest”3. These chains can be constructed via analysis of the program dependency

graph.

2This section is based on joint work with Jay Parlar. [WC11]
3Methods of interest are usually top-level methods, those that do not have any callers or simply

the APIs used by a customer’s application.

92

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Using this technique on a large Java program, “call-chain explosion” was quickly

encountered, due to cycles in the dependency graph. Initially we used a modified

depth-first search to go through the graph. Traditional depth-first search algorithms

are only concerned with finding if one node can be reached from another. Generating

a listing for each path is not their goal. We needed a modified version because all

possible call-chains through the graph were required. This modified version ended up

falling victim to cycles, resulting in an infinite number of chains.

To solve this, Tarjan’s Algorithm [Tar72] was employed to identify all the strongly

connected components (i.e. cycles). These components were then compacted into a

single node, preserving all of the incoming and outgoing edges of all nodes in the

strongly connected component. The modified depth-first search is then run, recording

all the possible SQL-related call-chains through the graph.

Remember that the JSA receives a set of classes as its input. The dependency

graph works on a method and field level, so each node in a given call-chain represents

a particular method or field. Thus for each path generated, the Java class for each

node must be found, and the union of those classes is stored. This results in a set

of sets-of-classes. For each call-chain that contained one of the compacted nodes,

all members of the strongly connected component are lumped into the call-chain,

and their classes are identified, the same as every other node in the call-chain. At

the end of this, we have a set of sets-of-classes, where each of those sets-of-classes

can individually be passed to the JSA, run in a reasonable amount of time, and the

possible database object names in each can be identified.

We have developed a tool called jsa that essentially provides a wrapper for the

Java String Analyzer library. Given a list L, where each member of L is a set of classes

93

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

to analyze, jsa performs string analysis on each of those sets (i.e., on each member

of L), identifying the SQL-related methods, and determining what SQL strings are

possible within those methods. Those strings are then compared against a list of

database object names, and we report whenever one of the database object names is

found within the possible SQL strings. The database object names will usually be a

list of modified database objects from an Oracle patch.

Very generally, jsa performs string analysis on Java classes. We actually make use

of this for two separate purposes:

• Method Filtering

• Full String Analysis

4.5.1 Method Filtering

One aspect of this tool that must be kept in mind is its computational complexity.

The Java String Analyzer performs some heavy-weight tasks, and as a result often

takes a long time to complete. In our initial tests, the size of L was just too large (we

made up L by classes that can be found in Oracle E-Business Suite, that is ∼230,000),

and it looked like a best-case scenario was a run-time of 30 days for jsa to complete

analysis. We needed a way to reduce the size of L to something more manageable.

It is not just the size of L that causes the long runtime. It is also the size of each

set s in L. Each set s is analyzed by jsa individually, and the number of Java classes

present in a given s has a dramatic effect on the analysis time for that particular set.

We eventually came upon a method of potentially reducing the size of L by using jsa

for pre-analysis to filter methods.

94

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Instead of using jsa to analyze sets of classes, we instead identify all the individual

Java methods containing SQL calls, and run jsa over the classes containing those

methods, one class at a time. This typically results in must faster string analysis, as

each iteration analyzes only one class each time, rather than a set of classes. The

version of Oracle EBS we used to test our tool contains approximately 13,000 methods

which call SQL-related functions, so this becomes ∼13,000 separate analyses with jsa.

Given an input file listing these 13,000 methods, jsa will iterate over it and find all

the methods for which the possible SQL-strings can be determined strictly by looking

at the class (as opposed to looking at a full call-chain containing many classes). The

identifications of these methods are then stored to an output file. This output file is

then used to reduce the size of the dependency graph.

Why does this work? The entire purpose of the analysis is to determine all the

call-chains through the dependency tree that start at a top-caller and terminates at

a method containing a SQL-related call. These call-chains are then passed to jsa

to determine which SQL-strings are possible. If we can identify the methods whose

possible SQL-strings are unaffected by the call-chains it belongs to, then we can

eliminate those methods from the call-chain analysis. This should result in a much

smaller L, and thus a much faster execution of jsa when it is run in its normal “Full

String Analysis” mode.

4.5.2 Full String Analysis

The main mode of jsa is to perform string analysis over sets of classes. Each set of

classes represents a call-chain through the Java application code, or more precisely,

represents all the classes used in a given call-chain. For each set of classes s, it

95

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

locates all the SQL-related method calls (execute, prepareStatement, etc.), and tries

to determine all the possible strings that can be passed to each method call. Each

set of classes is tied to the top-caller that resulted in the set of classes s. For each s,

after determining all the possible strings, the strings are compared to a list of names

of database objects, and matches are reported.

The end-to-end result of this is that when given a list of database objects that

were changed in a given patch, we can identify all of the top-callers in the application

code that result in accesses to some of the database objects. This lets an end-user

know which tests they should run after a patch, based on top-callers contained in

tests. It should be noted that there will be situations in which the possible strings

for a given s cannot be determined. There are a variety of reasons for this, but the

consequence is that any top-caller which has strings that cannot be identified should

be tested. Since we cannot confirm that the top-caller will not access one of the

modified database objects, tests will have to be run.

A sample usage for the full string analysis is as below:

java jsa/jsa [-j jar] [-d classpath_dir] [-i ignore_file]

[-t dbobjects] input_classes output_directory

96

Chapter 5

Reachability Analysis1

Static analysis computes a conservative set of impacts, and dynamic analysis focuses

on executing the program to obtain a more precise set of impacts. Considering the

characteristics of enterprise systems, we showed how to combine these two techniques

in Chapter 3. In spite of the success in this combined approach, the case studies

(discussed in Chapter 8) suggested that there still might be a good number of false-

positives present in the estimated impact set. That analysis found out only a tiny

portion of the system (0.26% of all top functions/APIs) were affected at run-time.

Even though those top functions were executed over 150 thousand times, one could

not conclude that the rest of the static impacts were safe to discard. Consequently,

testers may still need to rerun many of the regression tests.

Therefore we need further analysis to remove more false-positives. While seeking

further analysis to remove false-positives, we realized that Reachability Analysis can

be used to determine whether, within a graph representation G, a node s can reach

1This chapter is mostly based on the author’s work: Wen Chen, Alan Wassyng, and Tom
Maibaum. “Impact Analysis via Reachability and Alias Analysis.” The 7th International Conference
on the Practice of Enterprise Modelling. Manchester, United Kingdom. 2014 [CWM14b]

97

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

another particular node t, i.e., whether the path s t is feasible, and so this seemed a

promising tool in our search for reducing false-positives in the impact set. Reachability

analysis has been extensively researched, but to the best of the author’s knowledge

it has not been applied to change impact analysis.

Reachability analysis has two major categories: ordinary reachability problems

that do not require preprocessing (e.g. depth-first searching, transitive closure, cycles

detection) and those that do require preprocessing (e.g. Floyd-Warshall algorithm,

Thorup’s algorithm, Context-free language reachability). For the former, no usage of

complex data structures is needed to compute the reachability of the desired pair of

nodes, and the computation can usually be accomplished in linear time. While for the

latter, a more sophisticated analysis and data structures are needed since presumably

the graph is more complicated and/or a more comprehensive reachability determi-

nation is required for the desired pairs of nodes. Such analysis includes reachability

under certain conditions: weighted edges, planar graphs, maximum/minimum flows.

In this chapter, we investigate:

• a reverse search algorithm to search around the access dependency graph that

was built in the static analysis (§ 3.1), to obtain a set of affected entities for

each individual change (both direct and indirect). This task falls into the first

category of reachability analysis, the one that does not require complex data

structures and/or extra graph information to perform the computation.

• a specialized reachability analysis that can be used to remove false-positives

from the computed impact set. In particular, we will explore CFL-reachability

analysis – how it can be applied to our problem, how it is actually implemented

by a third-party tool, and how it can be of use in our impact analysis approach.

98

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

5.1 Reverse Search

Computation in the standard reachability problem does not require preprocessing of

the graph. We address Depth-first Search (DFS) as an example here, and discuss

how it can be used in impact analysis, and in particular, how we use DFS to search

the access dependency graph we built (§ 3.1) in the static analysis to obtain a set of

affected entities.

Based on the dependency graph of the whole enterprise system and all identi-

fied changes, we construct a reverse call graph for each changed library function or

database object to obtain a set of “functions of interest”. A category of the po-

tentially affected functions are chosen in advance as “functions of interest”, typically

two types of functions are of our interest: those that appear in test suites, as they

are the key to identifying which tests need to be run to check the affected functions;

and those that appear on top of other library functions (APIs) in the absence of

a customer’s applications or test suites. Without a customer’s applications or test

suites, the topmost level of functions that our analysis can reach are the APIs of

the enterprise system. Note that the direction of searching the dependency graph is

backward. It traces from each changed function/object back to all potentially affected

functions/objects in the graph. This backward search is based on an observation: an

entity can only be affected if any other entity it can reach (calling relationship or

variable accessing) is changed.

99

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

F

C

BD

AG H

I
forward

backward

E

Figure 5.21: A Reverse Search Example

In Figure 5.21, we give an illustration of how the search works: there are 9 func-

tions from A to I in the graph with many other nodes not showing because the figure

would become unnecessarily cluttered. Function A (black) is a changed function de-

tected by patch analysis (Chapter 4); functions B, C, D, E, F (grey) are functions

affected by A found by a reverse search of the dependency graph; functions H, I, G

(blank) are functions not affected. Lines with arrows represent forward dependencies

between functions, and dashed lines represent reverse dependencies. Through this

reverse search we found there are two backward paths, starting from function A:

• Path 1 : A→ B → D → F

• Path 2 : A→ C → E → F

By reverse search of the dependency graph, we obtain a set of static impacts S,

100

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and in this case we have

S = {A,B,C,D,E, F} (5.1)

The changed function A was extracted by Change Analysis (Chapter 4), and, actually

it can be any one of the four types (see § 4.2). Subsequent to determining S by reverse

search, S is further refined by dynamic analysis to determine the actual run-time

event traces that start from each node in S. Thus the reverse search algorithm is

used in between change analysis and dynamic analysis. The reverse search algorithm

is described using pseudocode below.

Reverse Search (Algorithm 2) takes three inputs: depFunc, depObj, and C.

depFunc are the dependencies between functions that were extracted from the ac-

cess dependency graph; while depObj are the dependencies between database objects

that were extracted from a table that maintains dependencies among database ob-

jects in the database; C is the set of atomic (direct) changes and associates indirect

changes that were obtained from change analysis. The algorithm first merges (Line

4) depFunc and depObj by string analysis (§ 4.5), which examines the application

functions and establishes linkages to database objects they can possibly access. Hence

a complete dependency set dependency is obtained. Then for each individual change

c ∈ C, we apply a modified version of depth-first search to collect a set of entities

tmpCallers it can reach, and for those entities of tmpCallers that are not already

visited by other changes, we add them to the impact set impactedCallers. Ordinary

depth-first search is only concerned with finding if one node can be reached from

another, thus we modified it to collect nodes that were visited along the path. Note

that some implementation details are omitted in this segment of pseudocode. We

present a more detailed and complete approach in Chapter 7.

101

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Algorithm 2 Reverse Search Algorithm

function ReverseSearch(depFunc, depObj, C)

impactedCallers;

tmpCallers;

dependency ←Merge(depFunc, depObj);

for c ∈ C do

if c ∈ dependency then

tmpCallers← DFS(c);

for tmp ∈ tmpCallers do

if tmp /∈ impactedCallers then

impactedCallers← impactedCallers + tmp;

end if

end for

end if

end for

return impactedCallers;

end function

5.2 CFL-Reachability Problem

Ordinary (flat) graph reachability analysis does not take into account some of the

detailed behaviour we could obtain from a call graph or dependency graph, if we

had the foresight to decipher and collect information that is contained in the graph,

i.e.,, standard graph reachability analysis only knows whether a node is reachable

from another, theoretically. However, often in practice many of the paths can be

102

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

infeasible, due to mis-matched calls and returns that were not identified in either the

static or dynamic analysis. The static/dynamic approach that we have adopted works

at the granularity of functions, and control flows or data flows were not considered.

Thus a finer reachability analysis can be used to determine which of the paths are

infeasible and hence should be cut off. Among the more specialized reachability

analyses, preprocessing of the graph is required – using a more complex data structure,

collecting extra information such as weights or flows associated with the edges. Also,

the determination of whether a node can reach another node is not a straightforward

process since it is dependent on other conditions, and the traditional shortest-path

search algorithm is not sufficient to do that.

Reps [Rep98] argued that one can express a program-analysis problem as a graph-

reachability problem with a number of benefits, such as more efficient algorithms can

be used, offering of insight into the “O(n3)” problem in program analysis etc. Later

a Context-Free-Language Reachability Problem was introduced:

Definition: Let L be a context-free language over alphabet
∑

, and let G be a

graph whose edges are labeled with members of
∑

. Each path in G defines a word

over
∑

, namely, the word obtained by concatenating, in order, the labels of the edges

on the path. A path in G is an L-path if its word is a member of L. Four varieties of

CFL-reachability problems are defined as follows:

1. the all-pairs L-path problem is to determine all pairs of nodes n1 and n2 such

that there exists an L-path in G from n1 to n2;

2. the single-source L-path problem is to determine all nodes n2 such that there

exists an L-path in G from a given source node n1 to n2;

3. the single-target L-path problem is to determine all nodes n1 such that there

103

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

exists an L-path in G from n1 to a given target node n2;

4. the single-source/single-target L-path problem is to determine whether there

exists an L-path in G from a given source node n1 to to a given target node n2.

Consider the graph shown below, and let L be the language that consists of strings

of matched parentheses and square brackets, with zero or more e′s interspersed:

s

[(e [e]]

t]

)e

e

L: matched matched matched
 | (matched)
 | [matched]
 | e
 | ɛ

Figure 5.22: A Graph with Labeled Symbols [Rep98]

In this example (Figure 5.22), there is exactly one L-path from s to t and the path

generates the word “[(e [])eee [e]]”. Note that a context-free grammar is defined by

the graph.

Then an ordinary graph reachability problem can be transformed to the CFL-

reachability problem by labelling each edge with the symbol e and letting L be the

regular language e∗.

104

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

The reason that we introduce CFL-reachability analysis here is that it can help

us answer the seemingly undecidable question: “whether or not a given path in

a program representation corresponds to a possible execution path”, as we

want to identify infeasible paths in the impact set such that they can be removed to

achieve higher precision.

We can transform this problem to a CFL recognition problem: “Given a string ω

and a context-free language L, is ω ∈ L?” Then the next obvious question is, what is

a feasible execution path? In other words, we need to define a context-free language

L to represent feasible paths. It appears to the author that the only paths that can

possibly be feasible execution paths are those in which “returns” are matched with

corresponding “calls”. These paths are called realizable paths.

Reps defined a Supergraph G∗ to deal with realizable paths. A supergraph

consists of a collection of control-flow graphs – one for each procedure – one of which

represents the program’s main procedure. Each flowgraph has a unique start node

and a unique exit node. The other nodes of the flowgraph represent statements and

predicates of the program in the usual way, except that each procedure call in the

program is represented in G∗ by two nodes, a call node and a return-site node. In

addition to the ordinary intraprocedural edges that connect the nodes of the individual

control-flow graphs, for each procedure call – represented, say, by call node c and

return-site node r – G∗ contains three edges: an intraprocedural call-to-return-site

edge from c to r; an interprocedural call-to-start edge from c to the start node of the

called procedure; an interprocedural exit-to-return-site edge from the exit node of the

called procedure to r.

Suppose we have a simple program to find the smallest prime factor of a positive

105

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

integer number.

Smallest(int p, int q){

precondition p>1\

int q=2;

while(p mod q>0 && q<sqrt p)

q=q+1;

if(p mod q=0)

then

print(q, is factor)

else

print(p, is prime);

}

(a) Program Smallest

Int q=2

while()

q:=q+1

if()

print(p)

print(p)

if()

q:=q+1

while()

int q=2

Enter

Exit

Enter

Exit

Call smallest()

Return from
 smallest()

call-to-start

print(q)
print(q)

exit-to-return-site

(b) Control-flow Graph and Supergraph

Figure 5.23: Program smallest and its graphs. Dashed nodes and arrows correspond
to extra nodes and edges while expanding from G to G∗.

In Figure 5.23b, the graph on the left is the regular control-flow graph of program

smallest, and the one on the right is the extended supergraph. In the supergraph,

the three dashed lines are newly added to the original control-flow graph: call-to-

return-site, call-to-start, and exit-to-return-site, with corresponding two new nodes:

call smallest and return from smallest. The benefit of breaking a procedure call into

two nodes (call node, return-site node) is that we can trace the flow of executions and

examine if there occurs a miss-matched call, by labelling the edges with particular

106

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

symbols.

In detail, we let each call node in G∗ be given a unique index from 1 to CallSites,

where CallSites is the total number of call sites in the program. For each call site

ci , we label the call-to-start edge and the exit-to-return-site edge with the symbols

“(i” and “)i”, respectively. We also label all other edges of G∗ with the symbol e. A

path in G∗ is a matched path iff the path’s word is in the language L(matched) of

balanced-parenthesis strings (interspersed with strings of zero or more e′s) generated

by the following context-free grammar:

Figure 5.24: Context-free Grammar. A path is a realizable path iff the path’s word
is in the language L(realizable).

The language L(realizable) is a language of partially balanced parentheses: Ev-

ery right parenthesis “)i” is balanced by a preceding left parenthesis “(i”, but the

converse need not hold.

To illustrate how we can use context-free language in recognizing paths that are

feasible, we rewrite a recursive version of the program smallest in Figure 5.25b.

107

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Smallest(int p, int q){

precondition p>1 && q=2\

if (p mod q > 0 && q < sqrt p)

then

q := q+1;

smallest(p, q);

else if (p mod q == 0)

then

print(q, is factor)

else

print(p, is prime);

}

(a) Program Smallest Recursive

if()

q:=q+1

else if()

print(q)

print(p)
print(p)

print(q)

else if()

q:=q+1

if()

Enter

Exit

Enter

Exit

Call smallest()

Return from
 smallest()

Call smallest()

Return from
 smallest()

(1

(2

)
2

)
1

(b) Control-flow Graph and Supergraph

Figure 5.25: Program smallest (recursive version) and its graphs. Dashed nodes and
arrows correspond to extra nodes and edges while expanding from G to G∗.

Instead of a while loop, a recursive call to the program itself is made when checking

the if condition {(p mod q) > 0 && q < (sqrt p)}. To preserve the same computation,

one extra precondition is required: q should be initialized with integer value 2 and

each recursive call increments q until the closest integer to the smallest prime factor

(if any) is found. An associated regular control-flow graph and supergraph are also

present in Figure 5.25b. In this supergraph, both dashed lines and dashed nodes are

newly added. The interprocedure calls are the dashed lines marked with symbols “(i”

or “)i”, where i = 1 or i = 2. Hence from the supergraph, we can identify paths for

108

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

example:

• “Call S → Enter → if()→ elseif()→ print(q)→ Exit→ Return from S”,

which has word “(1eeee)1” is a feasible path since the call-to-start edge “(1” is

matched by a correct exit-to-return-site edge “)1”;

• however, for path “Call S → Enter → if()→ elseif()→ print(q)→ Exit→

Return from S(inside)” that has word “(1eeee)2”, in which the program exits

to the inside “Return from S”, the path is infeasible – “(1” is matched by “)2”.

5.3 Interprocedural Analysis

Flow analysis of a program is usually done either by control-flow or on top of that

with analysis of flows of data: data-flow analysis. A control-flow graph [Cho11]

is a representation of a program that makes certain analyses (including data-flow

analyses) easier, in which each node represents a statement, and edges represent the

control flow. The statements within a program can be grouped into basic blocks,

such that within the blocks, instructions will not branch out. A simple example is

shown in Figure 5.26.

109

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Entry

y := a*b

y > a

a : a+1

x := a+b

x := a+b
x := a+b;
y := a*b;
While (y > a) {
 a := a+1;
 x := a+b
}

Exit

Figure 5.26: A Simple Control-flow Graph Example

In a control-flow graph, all nodes that do not have a normal predecessor should be

pointed to by the entry node, and all nodes with a successor should point to the exit

node directly or indirectly. Data-flow analysis takes into account the data that flows

in the program, based on the control-flow graph. It is a framework for proving facts

about programs being analyzed, and reasoning and examining interactions between

the facts. Facts in data-flow analysis are the determination of whether or not an

expression e is available at program point p. An expression is regarded as available

if

• e is computed on every path to p, and

• the value of e has not changed since the last time e was computed on the paths

to p.

110

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

For instance, in Figure 5.26, we want to compute facts like “a + b is available”,

“a ∗ b is available” and then these facts can be used to optimize the code. A typical

optimization is if an expression is available, then we do not need to recompute it at

some program point. Data-flow analysis can be used to solve a number of classical

problems: “gen/kill”, reaching definitions, available expressions, live variables etc.

Additionally, using these facts we show how to use them to compute realizable paths

in § 5.4 and in alias analysis in Chapter 6.

So far we have briefly looked at intraprocedural analysis – how to analyze a

single procedure via control-flow and data-flow analysis. However, for concerns such

as calling relationships among procedures, the location where each procedure is called

from, dataflow facts transferring from one call site to other call sites, determination

of valid/invalid paths, require a more precise analysis. We need an interprocedural

analysis to look into procedures and examine how dataflow facts are kept among state-

ments, combining the intraprocedural information to achieve a more precise program

analysis.

Formally, an interprocedural data-flow analysis is concerned with determining an

appropriate dataflow value to associate with each point p in a program to summarize

(safely) some aspect of the execution state that holds when control reaches p. To

define an instance of a dataflow problem, one needs:

• The supergraph(see § 5.2) for the program.

• A domain V of dataflow values. Each point in the program is to be associated

with some member of V .

• A meet operator u, used for combining information obtained along different

paths.

111

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• An assignment of dataflow functions (of type V → V) to the edges of the

supergraph.

Reps argued that [Rep98] a large class of interprocedural dataflow-analysis prob-

lems can be handled by transforming them into realizable-path reachability problems

as we mentioned in § 5.2. The ultimate goal of this is to shift from the “meet-over-

all-paths” solution to the more precise “meet-over-all-realizable-paths” solution. A

“meet-over-all-paths” (MOP) solution is:

MOPn = u
q∈Paths(start,n)

pfq(⊥) (5.2)

where Paths(start, n) denotes the set of paths in the control-flow graph from the

start node to node n. MOPn represents a summary of the possible execution states

that can arise at n; ⊥∈ V is a special value that represents the execution state at

the beginning of the program; pfq(⊥) represents the contribution of path q to the

summarized state at n.

While a “meet-over-all-realizable-paths” (MRP) solution is:

MRPn = u
q∈RPaths(startmain,n)

pfq(⊥) (5.3)

where RPath(startmain, n) denotes the set of realizable paths (L(realizable), see

§ 5.2) from the main procedure’s start node to node n. By restricting attention

to just the realizable paths from startmain, we thereby exclude some of the infeasible

execution paths. In general, therefore, MRPn characterizes the execution state at n

more precisely than does MOPn.

In order to calculate the contribution of each path, the path function is required.

112

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

The path function is a distributive function f of type 2D → 2D, where D is a finite set

of the universe of dataflow facts. Then an “exploded” supergraph G# is built to deal

with the facts and distributive functions. In G#, each node 〈n, d〉 represents dataflow

fact d ∈ D at supergraph node n, and each edge represents a dependence between

individual dataflow facts at different supergraph nodes. Function f in 2D → 2D can

be represented using a graph with 2D + 2 nodes, named f ′s representation relation.

An example of this representation relation graph is given below.

Λ a b

Λ a b

inputs

outputs

empty set dataflow facts

Node m

Node n

function
f

Figure 5.27: A Representation Relation Example [Rep98]

A function’s representation relation captures the function’s semantics in the sense

that it can be used the evaluate the function. In Figure 5.27, the universe of dataflow

facts D consists of a and b, D = {a, b}; assume S is the inputs, for d ∈ D, edge

Λ→ d means d ∈ f(S) and in particular d ∈ f(∅); edge d1 → d2 means d2 /∈ f(∅) and

d2 ∈ f(S) whenever d1 ∈ f(S); Λ→ Λ exists in every graph to allow composition of

functions. Thus in this case, we have three edges Λ → Λ, Λ → a and Λ → b. Then

113

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

we can compose different functions (each one is associated with a single edge) in the

form: f1 ◦ f2 ◦ f3 ◦ · · · .

Formally, an exploded supergraph G# is: Each node n in supergraph G∗ is “ex-

ploded” into D + 1 nodes in G#, and each edge m→ n in G∗ is “exploded” into the

representation relation of the function associated with m→ n. In particular:

1. For every node n in G∗, there is a node 〈n,Λ〉 in G#.

2. For every node n in G∗, and every dataflow fact d ∈ D, there is a node 〈n, d〉

in G#. Given function f associated with edge m→ n of G∗:

3. There is an edge in G# from node 〈m,Λ〉 to node 〈n, d〉 for every d ∈ f(∅).

4. There is an edge in G# from node 〈m, d1〉 to node 〈n, d2〉 for every d1, d2 such

that d2 ∈ f(d1) and d2 /∈ f(∅).

5. There is an edge in G# from node 〈m,Λ〉 to node 〈n,Λ〉.

5.4 Tabulation Algorithm

CFL-reachability problems can be solved via dynamic-programming algorithms. An

algorithm of time cubic in the nodes was proposed by Melski [MR97]. It first nor-

malizes a grammar with new nonterminals wherever necessary, and additional edges

are added to the graph according to a particular pattern. However CFL-reachability

problems can sometimes do asymptotically better than cubic time by taking advan-

tage of the structure of the graph that arises in the analysis. It has been proven that

the Tabulation Algorithm [RHS95] can solve the problem in time O(ED3), where E

114

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

is the number of edges in the program’s supergraph, and D is the size of the universe

of dataflow facts.

The Tabulation Algorithm is a dynamic programming algorithm that tabulates

certain kinds of same-level realizable paths. It uses a set named PathEdge to record

the existence of path edges, which represent a subset of the same-level realizable

paths (e.g. 〈Sp, d1〉 → 〈n, d2〉) in the exploded supergraph G# (see § 5.3). A set

named SummaryEdge is used to record the existence of summary edges, which

represents same-level realizable paths that run from nodes of the form 〈n, d1〉, where

n is one of the calling sites in the program, to 〈returnSite(n), d2〉. The algorithm is

a worklist algorithm that accumulates the path edges and summary edges.

A full version of the algorithm and illustrations can be found in [RHS95]. It uses

the functions described below:

• returnSite: maps a call node to its corresponding return-site node;

• procOf : maps a node to the name of its enclosing procedure;

• calledProc: maps a call node to the name of the called procedure;

• callers : maps a procedure name to the set of call nodes that represent calls to

that procedure.

5.5 Implementation via WALA

The Tabulation algorithm was implemented via an open source tool WALA from

IBM [Cen13], which provides static analysis capabilities for Java bytecode and related

languages and for JavaScript. The system is licensed under the Eclipse Public License,

115

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

which has been approved by the OSI (Open Source Initiative) as a fully certified open

source license. The initial WALA infrastructure was independently developed as part

of the DOMO research project at the IBM T.J. Watson Research Center.

Some of the features of WALA are:

• Java type system and class hierarchy analysis.

• Source language framework supporting Java and JavaScript.

• Interprocedural dataflow analysis (RHS solver).

• Context-sensitive tabulation-based slicer.

• Pointer analysis and call graph construction.

WALA has been extensively used in commercial products: Rational Software

Analyzer NPEs [LYC+08], Rational AppScan [TPF+09] WebSphere as well as in

academic products: String analysis [GPT+09], Tabulation solver [RHS95], and locat-

ing and fixing software bugs [ZBZ11].

Of particular interest to us is the Tabulation solution. Tabulation algorithms were

incorporated in WALA, and follow a class hierarchy shown in Figure 5.28.

116

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

TabulationDomain
Provide numbering of

domain facts

IFlowFunctionMap
Edge flow functions for

 supergraph

ISupergraph
Supergraph over which
analysis is computed

Seeds
Initial path edges for

analysis

TabulationSolver

TabulationResult

Figure 5.28: Tabulation Overview in WALA [DS10]

• TabulationDomain maintains a mapping from facts to integers and controls

worklist priorities.

• IFlowFunctionMap maintains flow functions on supergraph edges. In partic-

ular it maintains functions for each type of edge (normal, call→ return, call→

entry, exit→ return), and also missing code.

• Seeds initializes path edges for analysis.

• ISupergraph build supergraphs over the program to be analyzed.

117

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

As an example, ICFGSupergraph builds a control-flow supergraph to capture

pairs of “caller-callee” relationships shown in Figure 5.29.

Caller

Callee
Call

Return

Exit

Exception
Handler

Entry

Exit

normal
call-to-returnexception

call-to-return

exception
return-to-exit

exception
return-to-exit

normal
call-to-entry

exception
call-to-return

normal
return-to-exit

Figure 5.29: A “Caller-Callee” Pair in WALA [DS10]

Edges in this supergraph are labelled by various types. We note that “Exception

call-to-return” and “Exception return-to-exit” edges are enhancements introduced in

WALA to deal with exceptions, which are not covered in the original Tabulation

algorithm. WALA also supports Partially Balanced problems i.e., reachability

analysis can also be run on supergraphs built from flows that start/end in a non-

entrypoint. For instance, in the presence of slicing, one may slice the program into

“fairly” independent slices to speed up the analysis or improve efficiency etc. The

slice may be started from a non-entrypoint statement that produces an“unbalanced”

return (a return without calls). WALA can make “fake entries” for those unbalanced

returns with a class named PartiallyUnbalancedTabulationSolver.

118

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

In the end, TabulationSolver collects all the information about the supergraph,

initial path edges, dataflow facts etc., and computes a set of realizable paths and a

set of unrealizable paths in TabulationResult. Note that the results computed by the

Tabulation algorithm are based on a control-flow graph (and later “exploded” into

a supergraph), however, our impact analysis works on an access dependency graph.

Thus in the next section we discuss how to convert the tabulation results into the

information we want.

5.6 Mapping Control-flow to Dependency

The CFL-reachability analysis determines a set of realizable(feasible) paths – and

conversely, it is not difficult to obtain a set of unrealizable (infeasible) paths – by

constructing a supergraph based on a control-flow graph of the program, in which

paths are labeled with either one of parentheses, e, or ε to determine whether a path

is feasible in terms of matched parentheses. Additionally, to achieve a better time

complexity and precision, the supergraph is “exploded” to include dataflow facts,

such that nodes with dataflow facts are combined to determine the reachability. For

instance, a node n with dataflow fact g is considered as reachable from the entry of

the program if and only if there is a realizable path 〈startmain,Λ〉 → 〈n, g〉, where

〈startmain,Λ〉 denotes the program’s entry node with empty input Λ.

We observe that by using the Tabulation algorithm (the algorithm to solve the

CFL-reachability problem), the computed results are effectively at a granularity of

statements, since the algorithm is based on the control-flow of the program. However,

as far as our approaches to change impact analysis are concerned, (i.e., static, dy-

namic, change analysis etc.,) our analyses have all been at the granularity of methods.

119

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

That is, an access dependency graph was built to capture dependencies among meth-

ods (and fields), with the capability of handling dynamic binding in object-orient

languages; dynamic analysis in particular aspect-oriented instrumentation was run

on those dependencies to capture run-time event traces of methods identified in the

static analysis; change analysis collected both direct and indirect changed methods

(and database objects), and then the set of changes were used as the seeds in reverse

searching the dependencies to select functions of interest. Therefore, to make bet-

ter use of the reachability analysis, a mapping from the control-flow information to

dependency information is required. In other words, we need to convert the set of

realizable (feasible) paths into a set of pairs of reachable method nodes.

More formally, we covert the set of realizable paths RP to a set of unrealiz-

able paths URP : {URP1, URP2, URP3, ...}, each unrealizable path URPi consists

of nodes n ∈ N# with dataflow facts d ∈ D and associated edges e ∈ E# in be-

tween: 〈start,Λ〉 → 〈m,Λ〉, 〈m,Λ〉 → 〈n, d1〉, 〈n, d2〉 → 〈o, d3〉, ..., 〈p, di〉 → 〈exit, dj〉,

where {start,m, n, o, p, ..., exit} are nodes in the “exploded” supergraph G# and

{Λ, d1, d2, d3, ..., di, dj} are associated dataflow facts in each node. Then we exam-

ine each unrealizable path URPi to identify the enclosing method fn of each node

n ∈ N# along the path and build an unrealizable path of methods URPM instead.

Finally, a set of unrealizable paths of methods URPM , such that for each URPMi:

{fentry, f1, f2, ..., fexit} with associated dependencies {fentry → f1 → f2 → ...→ fexit}

is extracted and compared with the static dependencies, so that infeasible paths in

the original dependencies can be removed.

This leads to a mapping algorithm that is given in Algorithm 3, where depFunc

is the static dependencies extracted from the access dependency graph, in the same

120

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

way as it was in Algorithm 2.

Algorithm 3 Mapping Algorithm
1: algorithm Mapping(URP , depFunc)

2: declare UnrealizablePath, Dependencies

3: begin

4: UnrealisablePath←− URP

5: Dependencies←− depFunc

6: for urp ∈ UnrealisablePath do

7: for node ∈ urp do

8: node←− methodOf(node)

9: end for

10: end for

11: for (caller, callee) ∈ Dependencies do

12: if isNotReachable(caller,callee) is true then

13: Dependencies←− Dependencies− {(caller, callee)}

14: end if

15: end for

16: end

17:

18: procedure isNotReachable(caller, callee)

19: begin

20: for urp ∈ UnrealisablePath do

21: if (caller ∈ urp)&&(callee ∈ urp)&&(callee is after caller) then

22: return true

23: break

24: end if

25: return false

26: end for

27: end

121

Chapter 6

Alias Analysis1

Alias analysis, pointer analysis, points-to analysis, pointer alias analysis etc., are

often used interchangeably to denote an analysis that attempts to analyze pointers

and aliases, such as run-time values of a pointer, aliased pairs of names that point

to the same run-time location due to the use of pointers or references. In this thesis,

we will be using the term Alias Analysis whenever possible to avoid unnecessary

misunderstandings.

Alias analysis has been studied extensively over the past decade. Ways of doing

alias analysis include but are not limited to using the control-flow information of

a procedure at each program point (flow-sensitive); or computing one solution to

the whole program (flow-insensitive); or calling context considerations, e.g.,, whether

values can flow out of the calling context and return to other callers (context-sensitive

and context-insensitive); or using some explicit alias/pointer representations, in which

sets of alias relationships are encoded. [Lho02]

1This chapter is mostly based on the author’s work: Wen Chen, Alan Wassyng, and Tom
Maibaum. “Impact Analysis via Reachability and Alias Analysis.”. The 7th International Con-
ference on the Practice of Enterprise Modelling. Manchester, United Kingdom. 2014 [CWM14b]

122

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Direct use of the results from alias analysis can allow optimizations to be per-

formed that would otherwise not be possible. Alias analysis is also useful as a pre-

processing step for other static analyses, with the payback being that it permits more

precise information to be obtained. In many dataflow problems, the dataflow function

at a particular point depends on the set of memory locations that a pointer variable

may point to; when a better estimate can be provided for this set, a more precise

dataflow function can be employed. [Rep98]

This chapter is based on an observation that pairs of aliased variables are es-

sentially pointing to the same memory location, so that changes made to a variable

can also change other variables aliased to it. In change impact analysis, we may

use this information to reduce the number of false-positives, since functions (if they

themselves are not directly changed) would not be affected if no aliased variables are

found to be affected by a change.

The following text uses a practical example to discuss the possible types of vari-

ables that can be aliased, as well as typical techniques in alias analysis, including

which of them can be extended to cover object-oriented features. Finally, we describe

an implementation, that takes into account our target system.

6.1 Aliased Variables

Alias analysis computes an approximation of the possible objects that each aliased

variable may point to during any execution of a program. Runtime objects are rep-

resented with a finite set of abstract locations. Abstract locations are necessary

because non-terminating programs may allocate an unbounded number of objects

(impossible to represent directly), and distinguishing such programs from those that

123

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

do terminate is undecidable. The granularity with which an alias analysis models

dynamic objects using abstract locations is termed its heap abstraction. [Sri07]

Typically results of alias analysis are sets of aliased variables, that is, aliased(x),

where y ∈ aliased(x) ⇐⇒ y is aliased to x. If l /∈ aliased(x) for abstract location l

and variable x in the program P , then x can never be aliased to variables represented

by l in some execution of P .

To better illustrate how aliasing can occur, we present a program aliasingTest

written in Java below. This program tests three types of variables that can be aliased:

class variable (static field), instance variable and local variable.

aliasingTest.java

1 package aliasingTest;

2 public class aliasingTest {

3 static int[] staticArray;

4 int[] instanceArray;

5 public aliasingTest(){

6 instanceArray = new int[6];}

7 public static void main(String args[]){

8 //initializations of arrays

9 staticArray = new int[5];

10 int[] localArray = new int[3];

11 aliasingTest at = new aliasingTest();

12 localArray[0] = 1;

13 staticArray[0] = 1;

14 at.instanceArray[0]= 1;

15 //aliasing to arrays

124

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

16 int[] aliasOflocalArray = localArray;

17 int[] aliasOfstaticArray = staticArray;

18 int[] aliasOfinstanceArray = at.instanceArray;

19 //run functions that can be invoked within main()

20 alterArrayLocal(aliasOflocalArray);

21 alterArrayStatic(aliasOfstaticArray);

22 at.alterArrayInstance(aliasOfinstanceArray);

23 alterEmpty();

24 }

25 static void alterArrayLocal(int[] array){

26 array[0] = 11;}

27 static void alterArrayStatic(int[] array){

28 array[0] = 11;}

29 void alterArrayInstance(int[] array){

30 array[0]=11;}

31 static void alterEmpty(){

32 System.out.println("No job is doing here.");

33 }

All three types of variables (integer arrays in this example) are first initialized

(Line[9]-Line[14]) such that their fist element is set to integer 1 . Then aliased vari-

ables to each of the three are created (Line[16]-Line[18]). Instead of manipulating the

original variables, we run functions on the aliased ones (Line[20]-Line[23]). The rest of

this code contains definitions of functions that are called from within the main. Note

that each one of alterArrayLocal, alterArrayStatic, alterArrayInstance changes

125

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

the first element in the appropriate array from integer 1 to 11, while alterEmpty

does nothing other than print out a single string.

After the invocations of all the first three functions (either static or non-static),

the original variables are actually changed (the first element is 11 not 1), even though

the functions were only manipulating the aliased copies. This happens because the

aliased variables point to the same memory location as do the original variables

(Figure 6.30).

var aliased var

memory

Figure 6.30: Aliased Variables in the Memory

Our observation is that, if along a path in the access dependency graph of a

program, one can obtain the aliasing information for each method, dependencies

among methods can be identified more precisely. In particular, we follow these steps

to achieve more precise dependencies:

1. A flow-insensitive and context-insensitive alias analysis computes a single and

valid solution to the whole program (details in § 6.2 and § 6.3).

2. We examine the pairs of aliased variables (static field, instance field, and local

126

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

variable) throughout the program and obtain a mapping from each method to

all aliased variables it can access.

3. We examine paths in the access dependency graph, to determine whether there

exists any variable pair (var, aliased(var)), in which var is accessed by a

method and any one in aliased(var) is accessed prior to this method and along

the path.

4. If and only if there exists such pair(s) of aliased variables, we consider the path

to be a useful path that should be taken into account in the impact analysis.

The reason is, when a change to the current examining method is present, for

the sake of safety we assume all variables this method is accessing are changed.

Hence methods invoked prior to it can only be affected if accessible variables

are aliased in between.

Therefore, in program aliasingTest, a dependency edge between function main

and function alterEmpty should be removed, since there is not an aliased variable

within alterEmpty that was used in main. In this way we are able to remove (Fig-

ure 6.31) false-positives from the access dependency graph (§ 3.1).

127

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

main

alterArrayLocal alterArrayStatic alterEmptyalterArrayInstance

Figure 6.31: Eliminate Dependencies via Alias Analysis

6.2 Flow-Sensitivity

We mentioned earlier that the alias analysis we chose to conduct is flow-insensitive

alias analysis. A flow-insensitive alias analysis is one that ignores the actual structure

of the program’s control-flow graph, and assumes statements can be executed in

any order and any number of times. It computes a single solution for the entire

program, rather than computing a solution for each program point (flow-sensitive)

by the control-flow information. [And94]

The difference between the two can be described by comparing the conclusions

(described in comments) reached in the segment of code in C shown below:

128

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

int main(void)

{

int x, y, *p;

p = &x;

/*p --> {x,y}*/

foo(p);

p = &y;

/*p --> {x,y}*/

}

(a) Flow-Insensitive

int main(void)

{

int x, y, *p;

p = &x;

/*p --> {x}*/

foo(p);

p = &y;

/*p --> {y}*/

}

(b) Flow-Sensitive

Figure 6.32: Flow-Insensitive and Flow-Sensitive Analysis

A flow-insensitive analysis concludes that “p” may point to both the addresses

of “x” and “y”, while a flow-sensitive analysis computes alias information at each

program point. This reflects a trade-off between accuracy and efficiency: a flow-

sensitive analysis is more precise, but uses more space and is slower.

Most alias analyses are flow-insensitive due to a scalability concern. Even though

there are potential benefits of flow sensitivity, such as computing results per program

point, a higher precision due to the sensitivity of paths, we are focusing on flow-

insensitive at this time since enterprise systems are typically very large. We leave the

application of flow-sensitive alias analysis to future research.

129

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

6.3 Context-Sensitivity

Alias analysis can vary in how precisely it models the semantics of method calls and

returns [Sri07]. A context-insensitive analysis does not precisely model the target

address of return statements, instead treating calls as goto instructions. A return

from a call to some method f is conservatively treated as if it could branch to the

point after any call to f , not just the actual caller.

A context-sensitive analysis does not have this imprecision as it treats a program

as if all method calls were inlined, thereby gaining precision by computing results

separately for each invocation of a method call. Context-sensitive alias analysis is

critical to the usefulness of recent tools like the static race detector of Naik et al.

[NAW06] and the type-state verifier of Fink et al. [FYD+08]. Unfortunately, existing

context-sensitive alias analyses do not scale well: although the aforementioned tools

are effective on medium-sized programs, alias analysis remains a scalability bottleneck

for handling larger programs. The exhaustive inlining approach to context sensitivity

can cause a worst-case exponential blowup in the size of the program – as there are a

worst-case exponential number of paths in a program’s call graph. It has been shown

in practice that exhaustive inlining may create up to 1023 copies of a method for large

Java programs [WL04], and no existing context-sensitive approaches can achieve a

better worst-case time complexity than the exhaustive inlining technique.

Hence, we decided to focus on context-insensitive alias analysis at this time. Reps

[Rep98] has introduced a context-insensitive approach based on CFL-reachability

analysis: a reformulated Anderson’s flow-insensitive points-to(alias) analysis([SH97],

[And94]) can be expressed as a CFL-reachability problem(see § 5.2) to handle assign-

ment statements in one of the following forms:

130

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

p=&q; p=q; p=*q; *p=q;

The algorithm [SH97] builds up a graph that represents aliasing relationships

among the program’s variables. The graph consists of nodes: variables in the program;

and edges: an edge from node p to node q means “p might point to q”. Additionally,

for different kinds of assignments, the algorithm follows some rules(e.g. Horn-clause

rules) to add additional supportive edges in completing the graph. The base facts for

each of the four statement kinds are in Table 6.7.

Statement Fact generated

p = &q assignAddr(p,q)

p = q assign(p,q)

p = ∗q assignStart(p,q)

∗p = q starAssign(p,q)

Table 6.7: Base Facts for Assignments

The process of reformulating this problem as a CFL-reachability problem consists

of three steps:

1. To show that alias analysis can be expressed as a Datalog program. This in-

cludes generating base facts for each assignment statement in the program,

and those additional edges to the graph in Horwitz’s algorithm [SH97] can be

expressed as Horn clauses.

2. To show that alias analysis can be expressed as a chain program. This includes

introducing a new relation in the points-to graph – “pointsTo”, which is the

reversal of the “pointsTo” relation. In other words, both directions in the graph

are maintained.

131

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

3. To extract a context-free grammar based on the base facts and chain rules such

that reachability analysis can be conducted on the alias graph to determine if

one node can alias another.

The revised set of base facts for each type of assignments is shown in Table 6.8.

Statement Fact generated

p = &q assignAddr(p,q), assignAddr(q, p)

p = q assign(p,q), assign(q, p)

p = ∗q assignStart(p,q), assignStar(q, p)

∗p = q starAssign(p,q), starAssign(q, p)

Table 6.8: Revised Base Facts for Assignments

A complete context-free grammar is extracted below.

pointsTo→ assignAddr

pointsTo→ assign pointsTo

pointsTo→ assignStar pointsTo pointsTo

pointsTo→ pointsTo starAssign pointsTo

pointsTo→ assignAddr

pointsTo→ pointsTo assign

pointsTo→ pointsTo pointsTo assignStar

pointsTo→ pointsTo starAssign pointsTo

Aliasing information can now be determined by solving L(points-to)-reachability

problems in the graph (Figure 6.33) which was labeled with symbols in Table 6.8. For

instance, we can identify that variable f is aliased to both variable b and variable c.

132

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

a = &b;
d = $c;
d = a;
e = &a;
*e = d;
f = *e;

a

d

b

c

e f

assignStar

assignAddr

assignAddr

ass
ign
Ad
dr

starAssign

as
si
gn

Figure 6.33: Assignments and Associated Point-To Graph with Labels

6.4 Adaptation to Object-Oriented Language

The CFL-reachability-based alias analysis in § 6.3 is designed and suitable for the C

language. However, nowadays more and more software, especially enterprise systems,

is written or at least partially written in object-oriented programming languages that

encourage pervasive use of heap-allocated data.

To reason about pointer behaviour in large-scale enterprise systems we need to

find a “sweet spot” between precision and scalability (both time and space concerns).

The approach in § 6.3 is based on Anderson’s algorithm [And94] which does not

inspect pointers’ behaviours from the perspective of object-oriented programming,

i.e.,, Anderson’s algorithm does not handle object-oriented features.

For example, Andersen’s analysis implicitly assumes that all code in the program is

executable. However, a Java program may contain a large portion of unused libraries.

Including everything in the analysis leads to high costs and low precision. Also it does

133

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

not deal with virtual calls. The actual type of a target method in a virtual call can

be different from where the the call was invoked. Hence semantics of virtual calls

have to be modelled precisely from accurate analysis of the program. Additionally,

assignments in imperative languages are very different from field accesses in Java

(read/write to instance field/class field), and object creation (via new statement)

etc., which should be modelled in an appropriate way.

Sridharan [Sri07] introduced both a context-insensitive and a context-sensitive

alias analysis that are based on the CFL-reachability problem. Those approaches

are designed for object-oriented languages, in particular, Java. Thus semantics of

assignments, field access, method calls are all modelled to build a points-to graph

representation (see Table 6.9).

Statement Graph Edge(s)

x = new T () os
new−−→ x

x = y y
assignglobal−−−−−−−→ x if x or y is a global; y

assign−−−→ x otherwise

x = y.f y
getfield[f]−−−−−−→ x

x.f = y y
putfield[f]−−−−−−→ x

x = m(a1, a2, ..., ak) ai
param[s]−−−−−→ fm,i for i ∈ [1..k]; retm

return[s]−−−−−→ x

Table 6.9: Base Facts in Alias Analysis for Java

Edges in the graph represent four canonical assignment forms: allocation state-

ment (new), copy statement (assign or assignglobal), heap read (getfield[f])2, and

heap write (putfield[f]). Note that there is one extra entry in the table that rep-

resents method calls – for each method m, the graph has nodes fm,i for m′s formal

2f is the name of the field.

134

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

parameters and a special retm node for m′s return statements. At call site s of m,

param[s] edges are added from each actual parameter to the corresponding formal

parameter and a return[s] edge from the retm node to the appropriate caller’s vari-

able. Then, for a sequence of simple assignments, an alias graph(see Figure 6.34) can

be built according to these base facts.

1 x = new Obj();
2 z = new Obj();
3 w = x;
4 y = x;
5 y.f = z;
6 v = w.f;

x

v

w y

f

new(1)

assign(4)

as
si
gn
(3
)

o
1

o
2

ge
tfi
el
d[
f](
6)

putfield[f](5)

new(2)

oo
1

o
o
2

Figure 6.34: Java Points-To Graph Example

In Figure 6.34, o1 and o2 are the two objects newly created (Line 1 to Line 2). Line

numbers are used to identify corresponding edges in the graph, and dashed edges are

used to represent the “flowsTo− path”. An object can flow from an allocation site

to a variable only through a new edge followed by a sequence of assign statements.

Hence in this case, object o1 can flow to variable w by following a flowTo− path of

“o1 → x→ w”. In other words, o1 ∈ aliased(w) where aliased(w) maintains a set of

variables that are aliased to w.

135

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

In the same way that a context-free grammar was extracted in § 6.3, a complete

context-free grammar can be extracted for solving the Java alias problem as shown

below.

flowsTo→ new

flowsTo→ new

flowsTo→ flowsTo ciAssign

flowsTo→ ciAssign flowsTo

flowsTo→ flowsTo putfield[f] alias getfield[f]

flowsTo→ getfield[f] alias putfield[f] flowsTo

alias→ flowsTo flowsTo

ciAssign→ assign | assignglobal | param[i] | return[i]

ciAssign→ assign | assignglobal | param[i] | return[i]

pointsTo→ flowsTo

In this context-free grammar for Java, “flowsTo” production reverses the “flowsTo”

production (same as “pointsTo” to “pointsTo” in § 6.3 for language C) to define the

alias language. Now suppose we have two flowsTo paths: o → x and o → y that

lead to o ∈ aliased(x) and o ∈ aliased(y). If we want to determine whether x can

flow to y, then the reverse of path o→ x has to be introduced to concatenate o→ x

and o → y. If, by concatenation there exists such a path in which x flowsTo y, we

conclude that x and y are aliased.

Again, aliasing information can now be determined by solving L (points-to)-

reachability problems in the graph (Figure 6.34), which was labeled with symbols

in Table 6.9, with the assistance of this context-free grammar.

136

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

6.5 Implementation via WALA

WALA (see § 5.5) also implements alias analysis for Java, and we can make use

of this in our change impact analysis. WALA provides a framework for 1) flow-

insensitive Andersen-style [And94] pointer analysis, and 2) demand-driven(context

sensitive) pointer analysis. [SB06a]

We begin first with the flow-insensitive Anderson-style alias analysis. As we argued

in § 6.2 and § 6.3, our target systems are typically very large, and often contain

hundreds of thousands of classes. Thus scalability remains one of the biggest concerns

in our change impact analysis. This framework provides options to select exist

context sensitivity policies, or even define your own policy. This differs from other

alias analysis in two ways [IBM13]: Heap Model and Context Selector.

A HeapModel defines the rules to collect abstract pointers and heap locations. An

abstract pointer (represented by PointerKey class) represents a runtime object such

as local variables, static/instance fields from a particular allocation site, or other

variants. Essentially it is the name for an equivalence class of pointers from the

concrete program, that are collected into a single representative in the abstraction.

Since non-terminating programs may allocate an unbounded number of objects, this

abstraction is an important contributor to the scalability of the technique. A heap

location (represented by InstanceKey class) represents all objects of a particular

type, or all objects from a particular allocation site, or all objects from a particular

allocation site in a particular context, or other variants – the granularity with which an

alias analysis models dynamic objects using abstract pointers. A HeapModel provides

call-backs for the pointer analysis to create PointerKeys and InstanceKeys during

analysis. One can customize the policy by providing one’s own HeapModel.

137

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

The context of method calls can also be changed. The ContextSelector object

controls the policy by which the call graph builds contexts. The simplest context

is Everywhere.EVERYWHERE, which represents a single, global context for a method.

Other context-policies can represent call-string contexts, contexts naming the receiver

object to implement object-sensitivity [LH06], or other variants. One can also cus-

tomize a context-sensitivity policy by providing a custom ContextSelector object.

WALA also has some built-in polices in alias analysis with an increasing order of

precision and costs both in time and space:

• ZeroCFA: a simple, cheap, context-insensitive pointer analysis using a global

context for each method, which introduces a single InstanceKey for every con-

crete type – all objects of a particular type are represented by a single abstract

object.

• ZeroOneCFA: a policy that provides an approximation of “standard” Andersen

pointer analysis, using allocation sites to name abstract objects. By default, the

HeapModel introduces a single InstanceKey for every allocation site. This is

the policy that we employed in the change impact analysis. The reason that we

chose this policy is, our target system is typically very large, object-sensitivity

is too expensive to be added, while treating each method as it is in a global

context leads to imprecision.

• ZeroOneContainerCFA: a relative expensive policy that extends the ZeroOneCFA

policy with unlimited object-sensitivity for collection objects. For any allocation

sites in collection objects, the allocation site is named by a tuple of allocation

sites extending to the outermost enclosing collection allocation.

138

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

The aliasing result obtained from WALA is a mapping m : var → aliased(var)

from variables to corresponding sets of aliased variables, i.e.,, for each variable vari

in program P , we obtain a set of aliased variables aliased(vari). In an alias analysis

of policy ZeroOneCFA, each instanceKey is associated with an individual allocation

site that contains allocations of multiple variables. After constructing a call graph of

P , the alias analysis determines: 1) what allocation sites can be reached from vari,

and 2) what variables in the allocation sites identified above are aliased to vari. Then

we can follow the steps described in § 6.1 to further remove paths that are feasible

(reachability analysis § 5.6) but not affected by changes.

139

Chapter 7

A Complete Hybrid Approach

In this thesis we have described techniques that were developed to perform impact

analysis as applied to enterprise systems. In this chapter, we summarize these

techniques,1 that, used together, provide a complete solution (§ 7.1) to achieving a

safe and sufficiently precise impact analysis on large-scale enterprise systems. The

result of the analysis is a set of affected functions and fields (impact set) in the system

associated with a given set of atomic changes.

Additionally, we discuss how our impact analysis can be used in Regression Test

Selection (RTS) and Focussed Testing (§ 7.2), and how to augment a users’ test suite

to include tests that are critical but not covered by the original test suite.

7.1 The Approach at a Glance

The approach consists of multiple steps:

1The order in which we introduced those techniques is not necessarily the same as the order
constituting the overall solution in this chapter.

140

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

1. System analysis (briefly described in § 4.1). System analysis analyzes the struc-

ture of an enterprise system P . A typical enterprise system consists of three

layers: customer’s application, application library and database.

2. Static analysis (§ 3.1). Static analysis builds an Access Dependency Graph G to

abstract a static graphic representation of the system. Both calling dependen-

cies and field dependencies are taken into account, and it is also able to handle

object-oriented features like inheritance and dynamic binding. The static anal-

ysis is as conservative as a vanilla approach, but preserves higher precision. The

graph G is stored in a database table (depenFunc) consisting of two columns:

Caller and Callee.

3. Reverse search (§ 5.1). A reverse search algorithm was designed to search the

dependency graph G in reverse order, such that “functions of interest” can be

found. Note that this DFS-based reverse search may be run throughout the

entire process, whenever it is necessary.

4. Change analysis (Chapter 4). Change analysis simply identifies the atomic

changes that were made to the system, which then motivates the change impact

analysis that is the subject of this thesis. Types of changes that need to be

extracted from a given set of atomic changes AC are: i) direct changes to

database objects; ii) direct changes to library functions; iii) indirect changes

from database objects to database objects; iv) indirect changes from database

objects to library functions. This is accomplished by a number of techniques

such as PL/SQL script extraction and decompilation, building a SQL parser,

differencing Java source codes, and string analysis. The set of atomic changes

141

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

AC is then extended to C.

5. Compute the static impact set (§ 3.3). A static impact set S is computed by

reverse searching the dependency graph G. Starting from each individual change

c ∈ C, we identify entities within G that could reach it. Hence at the end of

this step, S contains all the static impacts, with presumably a good number

of false-positives. This static impact set is essential, since it preserves safety

and completeness, and serves as the input set for further analyses that focus on

removing false-positives to achieve better precision.

6. Dynamic analysis (§ 3.2, § 3.3). An aspect-based dynamic instrumentation

and data collection is conducted to collect event traces for functions f ∈ S

identified in the static impact set. “Aspects” are created to insert “advice” at

each “join point” of interest in the system. A “pointcut” picks out multiple

“join points” and returns traversing information defined in the “advice”. The

traversing information obtained in this process is: names of invoked functions,

where they come from, and where they will go .

7. Compute the dynamic impact set (§ 3.3). A dynamic impact set D is computed

to gather the traversing information for each f . Essentially D is a subset of

S, that is, functions and associated dependencies proved to exist in an actual

execution. In the meantime, a set of potential over-estimated impacts PO can

be obtained by subtraction: PO = S −D.

8. CFL-reachability analysis (§ 5.2–§ 5.6). A context-free reachability analysis is

conducted on the set of potential over-estimated impacts PO to remove false-

positives. The analysis first builds a control-flow graph and on top of that a

142

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

supergraph (adding interprocedural flows) of the system, and labels each edge

in the graph with parenthetic symbols, e and ε. Then a context-free grammar is

extracted to find feasible paths with matched calls and returns, and conversely

infeasible paths with mis-matched calls and returns. To improve the precision

and time complexity, a more sophisticated refinement is incorporated. This

“explodes” the supergraph to include data-flow facts at each statement. Finally,

by combining the data-flow facts and control-flow information, we determine

if one node can reach another. Note that we have thus developed a way to

transform control-flow reachability to dependency reachability, in order to

match the granularity of our previous analyses. In the end, we obtain a set of

unreachable nodes for each f in PO, and hence reduce PO to PO
′
.

9. Alias analysis (Chapter 6). A flow-insensitive and context-insensitive alias anal-

ysis is conducted to find aliased variables in the system. Even after removing

infeasible paths by reachability analysis, there still might be paths that are fea-

sible, but that cannot be affected by the changes. This is mainly determined

by careful examination of aliased variables, since functions that are not able

to access aliased variables of a changed function cannot be affected if they,

themselves, are not directly changed. Thus we conduct a Java-adapted alias

analysis based on CFL-reachability problems. In the same way that we extract

a context-free grammar to filter out infeasible paths, an alias grammar is ex-

tracted to handle object-oriented features and decide the reachability of nodes

in an alias graph. In this way, aliasing relationships among variables in the

system can be determined. Note that we map aliasing information of variables

to those of functions by figuring out the “enclosing” function for each aliased

143

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

variable, i.e., we obtain a set of aliasing dependencies A among functions. In

the end, the already-reduced potential over-estimated impacts PO
′

is further

reduced to PO
′′
.

10. Gathering results. A final impact set I on a set of atomic changes AC to the

system is calculated by:

I = D ∪ PO
′′

(7.4)

A graphical view of the process of this complete solution is drawn in Figure 7.35.

144

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

E
nt
er
pr
is
e

S
ys
te
m

A
to
m
ic

C
ha
ng
es

(A
C
)

C
ha
ng
e

A
na
ly
si
s

C
ha
ng
es

(C
)

S
ta
tic

A
na
ly
si
s

A
cc
es
s

D
ep
en
de
nc
y

G
ra
ph

D
yn
am
ic

A
na
ly
si
s

D
yn
am
ic

Im
pa
ct
s

(D
)

R
ev
er
se

S
ea
rc
h

S
ta
tic

Im
pa
ct
s

(S
)

P
ot
en
tia
l

F
al
se
-

P
os
iti
ve
s

(P
O
)

R
ea
ch
ab
ili
ty

A
na
ly
si
s

A
lia
s

A
na
ly
si
s

su
bt
ra
ct

Im
pa
ct

S
et (I
)

un
io
n

in
pu
t

ou
tp
ut

F
ig

u
re

7.
35

:
S
y
st

em
F

lo
w

of
th

e
C

om
p
le

te
A

p
p
ro

ac
h

145

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

7.2 Benefits of the Approach

Regression testing is the process of validating modified software to provide confidence

that the changed parts of the software behave as intended and that the unchanged

parts of the software have not been adversely effected by the modifications. One

of the conventional approaches in regression testing is to rerun every test in the

suite – this is typically very expensive, especially when the number of tests is large

and even for a single test, the execution time can be excessive. Hence, a number

of Regression Test Selection techniques have been proposed to reduce the cost both

for procedural languages [Bal98, CRa94, LW91, RH97, FF97, LW92] and for object-

oriented languages [HLK+97, KGH+94a, KGH+94b, RHD00, AK97].

A safe regression test selection technique is one that, under certain assump-

tions, selects every test case from the original test suite that can expose faults in

the modified program [RH96]. Several safe regression test selection techniques (e.g.,

[Bal98, CRa94, RH97, FF97, RHD00]) exist. These techniques use some representa-

tion of the original and modified versions of the software to select a subset of the test

suite to use in regression testing. Empirical evaluation of these techniques indicates

that the algorithms can be very effective in reducing the size of the test suite while

still maintaining safety [BRR01, GHK+01, KPR00, RH98, RHD00, FF97].

In case of object oriented languages, a number of regression test selection tech-

niques have been developed [RHD00, AK97, HJL+01]. Rothermel, Harrold and Ded-

hia’s algorithm [RHD00] was developed for only a subset of C++, and has not been

applied to software written in Java. White and Abdullah’s approach [AK97] also

does not handle certain object-oriented features, such as exception handling. Their

146

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

approach assumes that information about the classes that have undergone specifi-

cation or code changes is available. Using this information, and the relationships

between the changed classes and other classes, their approach identifies all other

classes that may be affected by the changes, and it is these classes that need to be

retested. White and Abdullah’s approach selects test cases at the class level and,

therefore, can select more test cases than necessary.

Harrold et al. [HJL+01] presents the first safe regression test selection technique

for Java that efficiently handles the features of the Java language. The technique is

an adaptation of Rothermel and Harrold’s graph-traversal algorithm [RH97, RHD00],

which uses a control-flow-based representation of the original and modified versions

of the software to select the test cases to be rerun. They use the notion of coverage

matrix and dangerous entity. Assuming P and P ′ to be the actual and modified

version of a program, respectively, the coverage matrix records which entities of P

are executed by each test case in a test suite T . A dangerous entity is a program

entity e such that for each input i causing P to cover e, P (i) and P ′(i) may behave

differently due to differences between P and P ′. Rothermel and Harrold describe a

regression test selection technique that uses a control flow graph (CFG) to represent

each procedure in P and P ′ and uses edges in the CFGs as potential dangerous entities

[RH97]. Dangerous entities are selected by traversing in parallel the CFGs for P and

the CFGs for P ′, and whenever the targets of like-labeled CFG edges in P and P ′

differ, the edge in P ′ is added to the set of dangerous entities. After dangerous edges

have been identified, the system uses the dangerous entities and the coverage matrix

to select the test cases in T to add to T ′.

Orso et al., [OSH04] presented a new regression test selection algorithm for Java

147

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

programs that handles the object-oriented features of the language. The algorithm

consists of two phases: partitioning and selection. The partitioning phase builds a

high-level graph representation of programs P and P ′ and performs a quick analysis

of the graphs. The goal of the analysis is to identify, based on information on changed

classes and interfaces, the parts of P and P ′ to be further analyzed. The selection

phase of the algorithm builds a more detailed graph representation of the identified

parts of P and P ′, analyzes the graphs to identify differences between the programs,

and selects for rerun, test cases in T that traverse the changes. Their base idea is

effectively the same as in [HJL+01], but due to the two phases, they claim and show

with some empirical studies that this technique scales up to larger software systems.

However, the largest domain they applied their technique to has approximately 2,400

classes which is still way below the number of classes in our domain – almost 230,000.

And also, due to the same reasons mentioned in the previous paragraph, [OSH04] is

not quite suitable for our problem domain.

Both approaches compute redundant information and/or require extra memory.

Harrold’s [HJL+01] approach requires a changed version P
′

of the original program

P , which implies the changes have to be actually made. Throughout the entire

hybrid approach presented in § 7.1, we do not need to apply any changes – it enables

the users’ ability to estimate impacts before taking any actions, and this is crucial,

since rolling back the system to a previous state can be expensive and sometimes

even impossible. The purpose of traversing two control-flow graphs simultaneously or

identifying changes between P and P
′
via partitioning [OSH04] is to identify impacts,

in the sense that changed system behaviours can be captured. However, this impact

information is captured more precisely in our approach. Through reachability analysis

148

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and alias analysis, our approach is able to filter out false-positives, such as infeasible

paths and paths that cannot be affected by the directly changed entities. Our

approach also builds a control-flow graph of the program, but additionally, data-flow

facts and aliased variables are added in the analysis such that it preserves a more

precise set of “dangerous entities” as compared with Harrold’s approach.

Figure 7.36 shows an overview of the process involved in applying our impact

analysis for regression test selection. Impact analysis on the three-layer enterprise

system (see § 4.1) computes a set of impacted entities I via the approach presented in

§ 7.1. For each i ∈ I, we examine if i is covered by any test in the original test suite

T . We add i to the reduced “Focused Test Suite” if and only if it is covered. Note

that we are assuming here that users maintain a test coverage matrix that documents

relationships among tests and entities those tests can cover.

149

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Customer's ApplicationCustomer's Application

Application LibraryApplication Library

DatabaseDatabase

Test
Suite
Test
Suite

Focused
Test
Suite

Focused
Test
Suite

Figure 7.36: Impact Analysis in Regression Test Selection

Notice that the impact set I we obtained from impact analysis contains not only

the entities that are covered in the users’ original test suite, but also the ones that are

not covered. Obviously, our impact analysis is seeking a safe and precise estimated

set of impacts, and it does not take into account the users’ test suites. Hence newly

discovered entities can be additionally added to augment the original test suite.

150

Chapter 8

Empirical Study

The foregoing techniques in this thesis constitute a hybrid impact analysis approach

(see § 7.1) for large-scale enterprise systems. Our research motivations and objectives

mentioned in § 1.2 describe the change impact method and tool we aimed to develop.

In particular, it must be:

• scalable, in that it is able to deal with the size of typical enterprise systems,

that can stretch to hundreds of thousands of classes;

• able to extract both direct and indirect changes made by vendors of the sys-

tem, or by software developers who develop customized software that use the

enterprise system for basic functionality;

• safe, since these systems are usually mission critical for an organization, so

mis-identified impacts can lead to huge financial loses.

• precise, since in practice, over-estimated impacts are not only costly, but also

may make the analysis misleading by confusing users who need to decide what

actions to take to cope with the impacted functions;

151

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• timely, in that it is crucial to have a full understanding – in terms of impacts

– of the intended changes before applying any of them, as it can be even more

expensive to roll back the system to a previous state if something goes wrong.

Unintended changes can be filtered out in advance to avoid altering the system

to an incorrect state.

Our goal, then, is to empirically investigate whether our objectives can be met

in practice by this proposed hybrid approach. The following sections present the

experiment setup and design (including variables and measures), threats to validity,

and final results.

8.1 Variables and Measures

There is only one independent variable in this empirical study: the hybrid impact

analysis tool. Dependent variables include precision and time overhead.

In spite of the accuracy of the precision (see Equation 1.1) defined by Maia

[MBdFG10], it is not useful to conduct an impact analysis if one has already de-

termined the actual impacts. In a related work [HGF+08], they define the set of

actual impacts as “number of modifications that really occurred”, and it was derived

by extracting logs from CVS (a versioning system). It was described as: “For each

change set C, extract from CVS what was really modified, M , due to each change

in C. Assume a change c in C. We extract every change that occurred after c and

because of c; and include the corresponding class name on M .” However, this way of

obtaining the set of actual impacts depends on a number of assumptions:

152

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

1. it assumes the developers are perfectly accurate in determining all the modifi-

cations after an original change;

2. it assumes all changes are correctly identified in the CVS, so that later modi-

fications can be associated reliably with the original change;

3. it ignores things that are affected but not directly changed. Suppose we have

a function f , f can be affected by changes made on its callees that return to

it. However, the function itself has never been textually changed, thus changes

of function f probably can not be identified by simply extracting changes from

the CVS logs.

Hence, for the moment, our measure of precision remains the conventional one:

Precision =
|I|
|M |

(8.5)

where I is the estimated impacted functions and fields, and M is the total number

of functions and fields in the program [OAL+04]. We will discuss in detail on the

reasons that we use this metric in § 8.4.

To evaluate the execution cost of the hybrid approach, we measure the time over-

head of each major step in the approach (§ 7.1).

8.2 Experiment Setup

The experiment was set up on in the environment shown below in Table 8.10.

153

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Hardware Operating System

Quad core, 3.2 GHz, 32G RAM
Red Hat Enterprise Linux Server

release 5.10 (Tikanga) 64 bit

Table 8.10: Environment Setup

As the objects of analysis we used two releases of Oracle E-Business Suite (Ta-

ble 8.11), and for the source of atomic changes we used multiple patches (Table 8.12)

that were obtained either from Oracle E-Business Suite Patch Wizard or manually

download from Oracle Metalink.

Release Facts

Application Database Classes
Entities

(functions and fields)

LOC

(approx.)

11.5.10.2 (11i) 10.2.0.2.0 (10g) 195,999 3,157,947 8.7 Million

12.0.0 (R12) 11.2.0.1.0 (11g) 226,288 4,604,415 10 Million

Table 8.11: Oracle E-Business Suite Releases and Facts

In Table 8.11, the two releases, 11i and R12 for short, use Oracle databases 10g

and 11g, respectively. To have an intuitive idea of the size of enterprise systems we

are experimenting on in this study, we calculated the total number of classes and

entities in the system. Note that the number of entities includes both functions and

fields within classes. For the moment we assume that we are able to look into each

class and count the number of fields , details will be introduced later.

In Table 8.12, we list patches corresponding to the two versions of Oracle E-

Business Suite that we want to analyze. Patches can range from a couple of KBs to

154

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

hundreds of MBs, depending on the purposes of applying them. The smallest patch

in this study is a patch (# 10107418) that was developed to fix some CPU bugs – pre-

sumably this would not affect the functionality of a system’s behaviour, but certainly

we cannot reach a conclusion before conducting an impact analysis. Another patch

(# 11734698) was applied on the product “Human Resources” provided by Oracle

E-Business Suite. In particular, it delivers a consolidated set of files for Australian

legislation, and it has to be applied because it is required by the business process:

hrglobal.

155

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Patches Release
Facts

Size Description

5565583

11.5.10.2

212MB Fusion Intelligence for E-Business Suite Fam-

ily Pack 11I.BIS PF.H. MetaLink note,

406004.1 is a complete source of information

about this family pack. It includes both the

technical and functional details you need in

order to apply the patch.

10107418 10KB This patch has fix for bug 9086631 and bug

9190120 (CPU bugs). It contains an unified

driver file to be applied with AutoPatch.

14321241 99MB ORACLE Applications With 11i.ATG PF.H

RUP6: CPU ConsolidatedPatch For OCT

2012. It contains an unified driver file to be

applied with AutoPatch.

11734698 12.0.0 79MB AUSTRALIA CUMULATIVE RELEASE

R12.AU.14 This patch delivers a consoli-

dated set of files for Australian legislation,

and is required for the hrglobal process to

run successfully.

Table 8.12: Patches for Oracle E-Business Suite

156

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

To successfully apply patch # 11734698, the latest legislation data has to be up-

date (Hrglobal installation). It also requires additional code levels to have been suc-

cessfully applied to the system before it can be applied. These code levels at the time

that this patch was built, are: R12.AD.A.delta.6, R12.ATG PF.A, R12.ATG PF.A.delta.6,

R12.HR PF.A.delta.8. Additionally, a large number of pre-install and post-install

tasks have to be completed to make sure of the successful deployment of the patch.

For instance, the following Oracle reports need to be modified to display Foreign

Employment in this patch: (A) Self Printed Process - Postscript (B) Validation Re-

port - Text layout. The process of patching itself can be tedious, costly, and more

importantly – dangerous, if one does not have a full understanding of which parts of

the system will be “touched” by it. Without proper and careful impact analysis in

an automated way, it is way beyond any tester’s ability to proceed with it safely.

8.3 Experiment Design

We conducted two experiments:

• Experiment 1 – Overview. We need to evaluate the scalability of our ap-

proach while maintaining safety. Hence in this first experiment, we conducted

only static analysis, corresponding to Step (1) to Step (5), and Step (10) in

the complete hybrid approach (see § 7.1). Our initial static analysis is safe,

recognizing all dependencies among functions and fields in the system, but re-

dundant dependencies caused by dynamic binding are pruned out. Thus, this

first experiment simply demonstrates scalability of the time consuming static

analysis.

157

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• Experiment 2 – Overview. Building on the static analysis, we presented dy-

namic techniques to make the analysis more precise by cutting off false-positives.

Hence in this experiment, we examined if these techniques can realize savings

in practice. The experiment covers all the steps in the complete approach in

§ 7.1.

Note that our other research motivations such as extracting both direct and indi-

rect changes, and identifying impacts before applying changes, are also demonstrated

through these experiments.

8.3.1 Experiment 1

We followed Step (1) and Step (2) on Oracle E-Business Suite release 12.0.0 and

extracted an access dependency graph. The rules of constructing this graph were

defined in § 3.1.3. Major steps [Iqb11] in building the access dependency graph are

(see Figure 8.37):

• Using the classpath information the File Manager detects which directories (con-

taining class, jar, zip files) need to be processed and also unjars and unzips jar

and zip files, respectively, to class files.

• The XML Generator use the ClassReader tool of Dependency Finder [Tes10a]

toolset to generate one-to-one equivalent XML files of the class files.

• The Entity Handler uses the XML files to build the entity list, i.e., the list with

all the methods and fields, as well as the inheritance information that exists

among classes and interfaces.

158

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

• The Dependency Handler uses the same XML files to build the access depen-

dency graph. This is a complex step because it has to handle some of the side

issues like dynamic binding.

• Due to the size of the system, it can be very costly to maintain full strings of each

entity. Hence the entity list, access dependency graph and inheritance informa-

tion are first processed by numbering and then being inserted into database

tables. The numbering is essentially a mapping from entities to integers, for the

convenience of manipulation and storage.

Class Path
(Class, jar,

zip)

File
 Manager

Class
Files

XML
Generator

(ClassReader)

XML
Files

Entity
Handler

Dependency
Handler

Entity

Access
Dependency

Graph

DatabaseNumbering

Figure 8.37: Steps in Building the Access Dependency Graph

In Step (4) the change analysis, we looked into patch # 11734698 and extracted

potential changes to both application library and database. This is accomplished by

first classifying all types of files in the patch, and then decompiling particular types

into readable texts. Details of these conversions were presented in Figure 4.17. For

159

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

each type that may have impact on the system, we developed individual preprocessors

written in Python to do the conversion. Patch files that can affect database objects

are: SQL, PLS, CTL, DRV, FMB, LCT, PKB, PL, PLL, XDF, XML. For each one

of those 11 types, we developed either independent analyzers or tools that use Oracle

tools or third-party tools, in particular, Oracle Forms, Reports and General SQL

Parser. After converting all necessary types of files in the patch, a program named

scriptAnalyzer was called to process other types of files and collect information about

affected database objects. For instance, PLL scripts are first converted to FMT files

by Oracle Forms and then scriptAnalyzer takes the FMT files and calls a python

written parser fmt parser to extract database relevant manipulations.

In total there are four types of changes that need to be identified from analyzing

the patch (details in Chapter 4): (i) changes on the database (ii) changes on the

library (iii) changes between database objects and (iv) changes between the library

and the database (Java string analysis).

Process of the patch analysis is as below in Figure 8.38. This patch analysis can

detect changes of type (i) and part of type (ii). Changes made to library functions

can be from RTF, JSP or CLASS files (see Table 4.6). By converting RTF to JSP

and a JSP parser we could extract changes within the files. However, for CLASS files

that are intended to replace corresponding classes in the system, we need to compare

the old version (from the system) and the new version (from the patch) to obtain

a set of changed fields and functions (§ 4.4). In practice, this is accomplished by

XML Generator and a comparator to difference the two XMLs. The general process

is described in Figure 8.39.

160

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

To achieve safety and completeness, we also include indirect changes (type (iv))

that can occur between library functions and database. This is accomplished by

running the Java string analyzer tool jsa described in § 4.5. Jsa “wrappers” around

the conventional Java String Analyzer and tries to first locate all SQL-related calls in

the system and then identify the possible strings (corresponding to database objects)

that can be passed to those method calls. Once a database object o is identified to be

used by a method f in the library, we add an edge f → o in the access dependency

graph.

Oracle Forms

Oracle Reports

Patches scriptAnalyzer

Database
Changes
Type (i)

Application
Changes
Type(ii)

fmt_parser fmb_parser perl_parser

lct_parser xdf_parser …

General
SQL Parser

Figure 8.38: Process of Analyzing Patches

161

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Class Files
(original)

Class Files
(modified)

XML Generator
(ClassReader)

XML Files
(original)

XML Files
(modified)

Difference Generator
(Comparator)

Difference
XML Files

Figure 8.39: Find Modifications in the Library

Later, all the extracted changes are used as inputs to the reverse search algorithm

(§ 5.1) in Step (3). Note that before running the search, changes with associated de-

pendencies are inserted in the access dependency graph. The reverse search algorithm

searches the access dependency graph and produces a set of static impacts for each

input change. Functions or fields that have any dependency on the input change are

considered potentially impacted. In addition to the set of all static impacts, we also

produced a set of “functions of interest”. In the absence of a user’s application, we are

interested in the top callers (APIs) – functions that provide access to the enterprise

system.

To conclude, in this first experiment, we compute a full dependency graph, extract

direct and indirect changes, obtain a set of static impacts with “functions of interest”,

and calculate the running time for each major step.

162

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

8.3.2 Experiment 2

In the second experiment, we investigated whether the complete hybrid approach

(§ 7.1) met our goal of study, especially for studying how precise our approach can

be. The experiment was conducted on Oracle E-Business Suite release 11.5.10.2 and

three corresponding patches: patch # 5565583, patch # 10107418, and patch #

14321241. Step (1) to Step (5) in the hybrid approach are exactly the same as in

Experiment 1. Hence we skip them and start describing how the second experiment

went with respect to the other steps.

From Step (6) to Step (9), we conducted, in order, the dynamic analysis, CFL-

reachability analysis and alias analysis. In the dynamic analysis, we built an aspect-

oriented instrumentor to instrument the system of release 11i, and the instrumen-

tation was executed only on methods that were identified as belonging to the static

impact set. The whole point of dynamic analysis in our approach is to investigate

which paths in the static impact set are valid in runtime, so instrumenting the entire

system is not necessary and would be very expensive.

The aspect-oriented instrumentor was built using AspectJ (§ 3.2.3), which uses

pointcuts to pick out certain joint points in the program flow. After that, advices were

used to capture dynamic information before, after or at each pointcut. We developed

a Java program called Trace to pick out executions of every method in the program,

as long as the control flow is not in the current class, such that all the other methods

being called at this particular execution can be captured. We ran this instrumentor

on every method in the static impact set and maintained a list of outputs. Each

output consists of the event trace for each method being executed. Then we extract

dependencies (dynamic impacts) out of the traces and “mark” them as verified in

163

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

runtime.

Then CFL-reachability analysis was implemented via WALA(§ 5.2) to cut off

false-positives. We ran the Tabulation algorithm implemented in WALA on the set

of “potential false-positives”. The set of “potential false-positives” was obtained by

subtracting the dynamic impact set D from the static impact set S. In the exper-

iment, we marked dynamically confirmed dependencies in the graph using a flag to

distinguish them from the unconfirmed dependencies. For the unflagged entities and

dependencies, we ran the Tabulation algorithm on them and collected a set of infea-

sible paths. As we have mentioned, the information regarding infeasible paths is at

a granularity of statements, however, our dependency graph is for functions. This

discrepancy in the experiment means we have on the one hand infeasible paths of un-

known statements, and on the the other hand dependencies among known functions.

Hence our mapping program called Map (see Algorithm 3) was used to map those

statements and paths to functions and associated dependencies.

The alias analysis (Chapter 6) in Step (9) takes the processed “potential false-

positives” from Step (8) as input and calculates aliasing information, such that

methods that have no chance to access those aliased and changed variables in the

system are not considered as affected. Another input is the set of changes after patch

analysis. In this experiment, we needed to extract a set of changed variables –

obtained by (i) looking into each bottom-level function in the set of “potential false-

positives” (these bottom-levels functions are the ones that served as the start points

in the reverse reach) (ii) extract a set of variables that those bottom-level functions

can access, including class fields, instance fields, and local variables. After that, a

WALA implemented alias analysis, in particular, of policy ZeroOneCFA (see § 6.5)

164

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

was run on those variables that bottom-level functions could access to obtain a set of

aliased variables1. Finally, we examines which of the other functions in the “potential

false-positives” could access those aliased variables. Note that a mapping was also

required in the alias analysis, since it also operated on the control-flow, and we simply

reused the Map program.

The results gathered in this experiment are essentially the remaining and the

“marked” dependencies (see Equation 7.4). With those impacts we then calculated

the precision of the approach. For the convenience of evaluating individual techniques,

the impact set after each technique was also recorded. Additionally, the running time

of each major step was recorded.

8.4 Threats to Validity

Like most other empirical studies, our study also has limitations that we should be

aware of while interpreting the results.

As mentioned, we did not have access to a user application that used E-Business

Suite, so we also did not have a test suite for such an application. Usually, such

information is classified because of security and other concerns. Even though we had

tried to access a test suite for an application built on Oracle E-Business Suite from

one large organization, the tests we obtained were basically a spreadsheet, in which

simple instructions for executing the tests were listed. However, to execute these

tests, one has to have a full copy of the entire system – both customized applications

and the implemented enterprise system, as well as necessary test data that have

1For the sake of safety, we assume here, if a function is changed, then potentially all of its
accessible variables can be changed.

165

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

to be inputed to the tests. Without this information, the empirical study would

not be able to compute impacts in terms of the customer’s applications. Hence our

empirical study currently focused on identifying impacts within Oracle E-Business

Suite, though it is not hard to extend our study to cover customized code since the

underlying techniques remain the same. One exception of extending our empirical

study is, if the customized code is written in a language other than Java, such as

Cobol or C. In such a case further analysis of converting Cobol’s or C’s dependencies

to our access dependencies would be required.

Also, while interpreting the results, the the formula used to calculate precision

can vary. As we mentioned, the validity of computing the size of actual impacts by

extracting from program logs the direct modifications is questionable, and in practice

not available most of the time. Thus Maia’s definition [MBdFG10] is accurate but

not really. We intend to use Orso’s definition [OAL+04], which is straightforward but

inaccurate, and sometimes even misleading (see Equation 8.5 and Figure 3.13) when

the approach is not safe. However, since our approach to impact analysis computes

a complete static dependency, Orso’s definition is not risky for our empirical study.

It is difficult to conduct comparative analyses between our approach and other

existing impact analysis approaches. As we mentioned in Chapter 2, the size of

our target system is apparently beyond the capability of other existing tools. In

particular: constructing a full static dependency graph on a small sample program

may lead to memory leak when using Soot; the CollectEA approach in collecting

dynamic information on our target system hung for days and eventually ran out of

memory on a computer of 8 GB RAM(see § 3.2.2). The scalability issue is one of

the motivations that drove this research.

166

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

8.5 Results and Analysis

8.5.1 Result of Experiment 1

Building the access dependency graph for Oracle E-Business Suite R12 took over 7

hours, which is large but quite manageable, especially as this process is independent

of any patch or proposed change, and thus can be prepared in advance. This graph

forms a substantial corporate asset for other kinds of analysis, and can be easily

and quickly updated as the system changes, provided we do the proper analysis of

the changes. The dependency graph has over 4.6 million nodes and over 10 million

edges. About 1% of those dependencies are dependencies among database objects,

and 1.53% of the entities are database objects.

Reverse searching this dependency graph takes only a few seconds for each starting

point method or field.

The patch # 11734698 contained 1,326 files with 35 different file types. Among

those 35 file types, 11 types can affect both the library and the database. We ran

our tools on each file with one of these 11 types and identified 1,040 directly changed

database objects (e.g., 142 from PLL files and 86 from FMB files), and just 3 directly

changed Java methods.

The program-database dependency approach described in § 4.5 found that 19,224

out of the 4.6 million methods (0.42%) had SQL-API calls, and that 2,939 of these

methods (just over 15%) had a possible dependency on one of the 1,040 affected

database objects.

We adopted as our definition of “functions of interest” those which were not

themselves called by anything else, “top callers” (APIs) (totally 1.6 million, 34.6%

167

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of the entire system), and there were 33,896 of these that were impacted, a fraction

over 2% of all top callers. The most important results are listed in Table 8.13.

Patch
Direct

Changes

Affected Functions

(% of total functions)

Affected Top Functions

(% of total top functions)

11734698 1,043
71,506

(1.56%)

33,896

(2%)

Table 8.13: Static Impacts of Patch # 11734698

The patch, as might be expected, only affects a tiny part of the library (1.56%),

and around half of the impacts are on the system APIs (47.4%). This is in practice

reasonable, since patches are intended to modify how users’ code can interact with

the system.

Build

Dependency Graph

Extract

Changes

Reverse

Search

Compute

Impacts
Total

7 Hours 2 Hours 2.7 Hours 1 Hour ∼12 Hours

Table 8.14: Execution Time in Experiment 1

Table 8.14 summarizes the execution time of experiment 1. In total, a complete

static impact analysis in this experiment takes approximately 12 hours, that is, an

overnight job. Note that building the dependency graph occupies the largest amount

of the analysis time in this experiment. Within the 7 hours that it takes to build the

dependency graph, XML generation for all the class files (including JARs and ZIPs)

takes approximately 40 minutes. The computation in memory, namely generation of

the entity list, inheritance information and dependency relation takes just a bit over

168

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

1.5 hours. However, the most time-consuming task is to insert all that information

into the database, which takes approximately 4.5 hours. Therefore, improving the

performance of database insertion in the future, could reduce the total execution

time significantly.

8.5.2 Result of Experiment 2

The second experiment was targeted at Oracle E-Business Suite release 11.5.10.2 and

its corresponding three patches (see Table 8.12). The process of conducting the static

analysis is the same as in experiment 1. In addition to that three other analyses were

conducted to reduce false-positives.

The system contains 195,999 classes, and by examining each converted XMLs

from class files we found 3,157,947 entities (both functions and fields). The process

of building the access dependency graph added over 18.4 million dependencies and

took over 9.5 hours to complete.

By patch analysis, we found 16,787 direct database changes, and 25,613 direct

library changes for patch #5565583; 610 direct database changes, and 3,374 library

changes for patch #14321241; no direct database changes, and no library changes for

patch #10107418. Apparently patch #5565583 is the largest patch among the three

and hence it is intended to change quite a number of functions in the system. While

patch #10107418 is a pretty small one and only intended to fix some CPU issues,

just as we expected, it does not contain any functional changes.

The computed static impacts for each patch are listed in Table 8.15.

169

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Patch
Direct

Changes

Affected Functions

(% of total functions)

Affected Top Functions

(% of total top functions)

5565583 42,400
699,534

(22.2%)

160,800

(9.6%)

14321241 3,984
230,209

(7.3%)

69,971

(4.2%)

10107418 0 0 0

Table 8.15: Static Impacts of the Patches

As we can observe from Table 8.15, the static impacts can reach up to 22.2% of

functions in the system, even with regard to “top functions”, we had almost one out

of ten top callers identified as impacted. It is a quite large portion of the system,

and if testers were given this set of impacts, a good amount of testing work still

has to be conducted. This is mainly caused by two factors: (1) the patch itself is

large. As we can see from experiment 1, the patch we were analyzing only contained

∼1000 changes, which is just 2.4% of the changes patch #5565583 can produce.(2)

the connectivity among components in different releases can vary. Since the release

(11i) we used in this experiment was released earlier than the one (R12) in experiment

1, presumably vendors can modify how components communicate with each other to

improve usability, hence the release (R12) may have lower coupling than 11i, which

may lead to a looser system - less entities can be affected by the same change set.

(3) more importantly, this set of static impacts may contain a large amount of false-

positives. In other words, we may have included many over-estimated impacts that

come from infeasible executions, invalid calling paths, etc.

170

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

We ran AspectJ to instrument the identified static impacts, for each “affected

function”. In the experiment this was accomplished by examining the production

directory, and executing predefined “aspects” for each class when a main function

was found. We did not make synthetic methods to execute each affected function

since in practice functions can only be invoked from a valid program entrance. The

predefined “aspect” can be found in Trace.java in § 3.2.3. The instrumentation was

extremely time consuming, since our target system is very large. Initially this process

took over one week, and the program hung several times during this period.

On the one hand, many executions were simply long – may take up to hours for a

single run. On the other hand, many of them prompted the user for an UI and asked

for inputs (to make selections) to continue. We split the instrumentation into sub-

tasks, each one of them focused on instrumenting just one component in the system,

and for the latter problem, we conservatively collected all the calling relations no

matter what the user inputs were. By this means, we tried to maximize the usage

of CPU and memory, and at the end, the instrumentation was reduced to around 48

hours.

As we argued in § 8.4, user applications or actual test suites on Oracle E-Business

Suite can be utilized in instrumenting the system and hence generate more precise

and meaningful results. Our approach of instrumentation is safe, since the instru-

mentation works on the impact set of the conservative static analysis. We are careful

not to discard impacts unless we can show they are definitely not impacted.

171

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Patch
Total

Function

Total

Top Function

Static

Impacts

Dynamic

Impacts

Potential

False-Positives

5565583
3,157,947 1,673,132

699,534 4,806 694,728

14321241 230,209 1,232 228,977

Table 8.16: Instrumentation Result on Patch # 5565583 and Patch #14321241. (We
will walk through the result analysis for Patch # 5565583 only, since they essentially
follow the same process, and Patch # 10107418 has no impact on the system.)

After the instrumentation, we collected the relevant information (Table 8.16) from

our dynamic analyses: among the total static dependencies, only 8,357 were covered

in the executions, that is, 0.45‰; and 4,806 functions, that is, 0.26% of all top callers

(out of 1,673,132) were covered. From these results, it seems the instrumentation only

touched a tiny portion of the system. However, the fact is, for that tiny portion of the

system, these methods were executed in total 159,367 times. By actually running the

system, we observed that although only a small portion of the system was impacted

at run time, this does not mean other impacts in the static impact set are not valid.

Therefore, dynamic analysis only computed a small set of dynamic impacts (4,806

functions), even though the functions were executed hundreds of hundreds of times.

These 4,806 functions were kept in the final impact set, as they were “confirmed” at

run time.

Reachability analysis and alias analysis worked on the set of “potential false-

positives”, focusing on the subtraction of dynamic impacts from static impacts. In

the case of patch # 5565583, we had a set of 694,728 functions to work on.

Both CFL-reachability analysis and alias analysis were implemented via Wala. A

simple control-flow graph constructed in the reachability analysis is in Figure 8.40a.

172

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

A regular control-flow graph was “exploded” to a supergraph to contain data-flow

facts and hence to identify feasible paths. A sample supergraph (Figure 8.40b) with

only feasible paths is also presented.

BB0 (en)

BB1
2 conditional branch(le) v1,v3:#0

BB2
4 v4 = getstatic < Application, Ltest/Test, g, <Primordial,I> >
5 v5 = binaryop(sub) v1 , v4
8 invokestatic < Application, Ltest/Test, process(I)V > v5 @11 exception:v6

BB4
12 return

BB3
9 v7 = getstatic < Application, Ljava/lang/System, out, <Application,Ljava/io/PrintStream> >
11 invokevirtual < Application, Ljava/io/PrintStream, println(I)V > v7,v5 @18 exception:v8

BB5 (ex)

(a)

BB0 { 0 }
null

BB1 { 0 }
null

BB14 { 0 42 58 59 66 67 70 71 148 149 201 204 205 206 }
null

BB10 { 0 42 58 59 66 67 70 71 148 149 201 204 205 206 }
7:=getstatic out

BB2 { 0 }
null

BB3 { 0 }
conditional branch(le) 1,3

BB4 { 0 }
null

BB13 { 0 42 58 59 66 67 70 71 148 149 201 204 205 206 }
return

BB5 { 0 }
4:=getstatic g

BB6 { 0 }
5 = binaryop(sub) 1 , 4

BB7 { 0 }
null

BB8 { 0 }
null

BB9 { 0 }
call Test.process exc:6 5

BB11 { 0 42 58 59 66 67 70 71 148 149 201 204 205 206 }
null

BB12 { 0 42 58 59 66 67 70 71 148 149 201 204 205 206 }
call PrintStream.println exc:8 7 5

(b)

Figure 8.40: (a) Control-Flow Graph Sample (b) Supergraph Sample

We ran Wala on the enclosing classes of each function in those “potential false-

positives” (694,728 for # 5565583), using the PartiallyUnbalancedTabulationSolver,

173

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and then mapped identified feasible statements to functions in the system. Then

those functions with the direct changes (42,400 for patch #5565583) were given to

Wala’s alias analysis framework, and we used makeVanillaZeroOneCFABuilder to

find aliased variables for each changed function.

In the end, we found that many of the functions within the “potential false-

positives” were not included in the feasible path (611,253) or able to access any

aliased variables (863,374) of changed functions. We therefore removed 6,865,697

(37.3 %) dependencies from the original dependency graph. Our final results are

shown in Table 8.17.

Patch
Static

Impacts

Dynamic

Impacts

Removed By

Reachability

Removed By

Aliasing

Final

Impacts

5565583 699,534 4,806 61,125 86,374 552,035

14321241 230,209 1,232 19,773 13,665 196,771

Table 8.17: Final Impacts of Patch # 5565583 and Patch #14321241. (We walked
through the result analysis for Patch # 5565583 only, since they essentially follow the
same process, and Patch # 10107418 has no impact on the system.)

As we can see from Table 8.17, we have achieved a precision of 3.8% at the end

of static analysis and improved it to 2.98% at the end of the complete approach.

The dynamic analysis identified that only 4,806 functions were executed, which left

a large portion (99%) of the static impacts as potential false-positives. Hence with

reachability analysis and alias analysis the number of false-positives removed does

not seem to be a large reduction, that is, 21.8%. However, we need to note that the

reduction achieved is done at no risk to the safety of our overall approach. At the

current stage, our instrumentation lacks users’ data and code, so the impacts can

174

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

only point to functions within Oracle E-Business Suite. This explains why, that even

with hundreds of hundreds of real executions, the dynamic impacts are associated

with just a tiny part of the system.

The running time of each major step in this experiment is listed in Table 8.18.

Static Analysis

Build

Dependency Graph

Extract

Changes

Reverse

Search

Compute

Static Impacts
Sub Total

9.5 Hours 2 Hours 3.8 Hours 1 Hour 16.3 Hours

Dynamic Analysis

Instrument Compute Dynamic Impacts Sub Total

48 Hours 2 Hours 50 Hours

Reachability & Alias Analysis

Build CFG &

Supergraph

Compute

Aliasing
Mapping

Compute

Impacts
Sub Total

10 Hours 7 Hours 3 Hours 2 Hours 22 Hours

Total Analysis Time 88.3 Hours

Table 8.18: Execution Time in Experiment 2 for Patch # 5565583

The entire process requires significant time to complete. Considering the size

of the system and patch, it is still more manageable than rerunning everything in

a regression suite. More crucially, it provides testers confidence as to which parts

in the system are affected, in a safe way. The most time-consuming task is the

175

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

instrumentation, which occupies around 56.8% of the total execution time. Just as

for the static dependency graph, the instrumentation forms a substantial corporate

asset for future analysis, and can be easily and quickly updated as needed. Also, for

the control-flow graph and supergraph, it is not necessary to rerun the entire process

every time when there is a new change. One can easily extend the existing graphs by

running the same analysis on a much smaller set of newly added program entities.

176

Chapter 9

Conclusion and Future Work

9.1 Achievement

In this thesis, we investigated how to conduct a hybrid impact analysis on large-scale

enterprise systems. Our achievements are:

1. We have developed an improved dependency model named access dependency

graphs1 to deal with object-oriented languages like Java that support inher-

itance and dynamic binding, and have shown it to be equivalent (in terms

of finding static dependencies) to other techniques that typically create much

larger dependency graphs.

2. We have developed a multi-tasking aspect-oriented instrumentor to adequately

instrument large-scale systems and collect traces at bytecode level. The in-

strumentor does not require testers to fully understand the application logic or

prepare any test data. This is extremely useful when the size of the program

1This is joint work with Asif Iqbal [Iqb11].

177

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

is large. Existing tools are too expensive and require extra information such as

test coverage, and operational profiles, which are usually hard to access. The

instrumentor is multi-tasking – instrumentation work is divided into multi tasks

to maximize the computing power.

3. We have developed a series of script parsers to parse compiled or plain patch

files, to extract both direct and indirect changes. Additionally, a string analysis2

beyond those of the Java String Analyzer was developed in order to extract

complete indirect changes between the library and the database.

4. Furthermore, we have incorporated CFL-reachability analysis and alias analysis

to identify impacts. As far as we can ascertain, these two techniques have not

been used in this way to cut down on the false-positives in preceding analyses.

It has been demonstrated that CFL-reachability with a parenthesis context-

free grammar can be used to filter out infeasible paths (mis-matched calls and

returns) that may become false-positives in the impact set. An alias analysis

was used to identify functions that are able to access the aliased and changed

variables. We consider those that are not able to access any of the aliased

and changed variables to be false-positives if they, themselves, are not directly

changed.

5. We have empirically demonstrated the practical applicability of the improved

approach on a very large enterprise system, involving hundreds of thousands of

classes. Such systems may be perhaps two orders of magnitude larger than the

systems analyzed by other approaches, so our technique seems to be uniquely

powerful.

2This is joint work with Jay Parlar [CIA+12].

178

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Our hybrid approach is safe, precise, scalable and efficient. We abstracted a full

dependency graph, with significant reduction of redundancies cause by inheritance

and dynamic binding, which distinguishes us from other vanilla static analysis. Va-

rieties of techniques were incorporated to achieve the precision. Dynamic analysis

was used to “confirm” what should be kept in the final impact set, since run time

execution reflects actual system behaviour. The precision was further improved by

applying CFL-reachability analysis and alias analysis to the control-flow of the sys-

tem. These two techniques were aimed at removing false-positives from the remaining

“suspect” impacts after the instrumentation. Finally, our hybrid approach is scalable

and efficient. This was demonstrated by our empirical study which enabled us to

handle systems of two orders of magnitude larger than other approaches.

The final impact set obtained from our approach can be used in regression test se-

lection, focused testing, and planning enhancements to applications, etc. Nowadays,

organizations spend a large portion of their financial budget in purchasing, imple-

menting and maintaining enterprise systems, since they could provide a number of

benefits as we discussed in the Introduction (see Chapter 1, Table 1.1). With our

approach, both confidence and cost-savings can be achieved throughout the entire

testing process.

9.2 Future Work

As we can observe from the empirical study, the instrumentation took approximately

two days to finish even after dividing the task into smaller ones. This amount of run

time is reasonable with respect to the size of the system. However, from a software

tester’s point of view, it may still be useful to reduce the run time by improving the

179

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

efficiency of the technique. Results of the case study indicate that dynamic analysis

only found a small portion of the static impacts are real impacts. It might be the case

that runtime use of a large software system may only utilize a small part of the soft-

ware. However, we may also not have filtered out enough false-positives. To achieve

a better running time, a static slice may be utilized to slice the system statically first,

and then instrumentation can be done on slices of interest. Customized changes or

patches from vendors presumably only touch a small portion of the system, hence if

a safe slice can be obtained to fully cover the changes, the dynamic instrumentation

can be performed “on-the-fly”.

Initially, considering the running time and effort expended on the reachability

and alias analysis, we were a little disappointed in the percentage of false-positives

removed by this technique. However, after examining the results more carefully, we

realized that: (1) the actual number of false-positives removed was significant; and

(2) as we discussed earlier, because there is no user’s application in our case study,

the impact analysis is restricted to functions within the system, and in particular,

many of the identified impacted functions are system APIs. To further build on this

empirical study, we should investigate whether we are able to remove more false-

positives with given customized code and data. Also, the alias analysis we used is

flow-insensitive and context-insensitive. It assumes statements in the program can

be executed in any order and any number of times. In practice this is not a precise

approach. In addition, this can be exacerbated by context-insensitivity: method calls

were treated conservatively, without computing the precise target addresses of the

return statements. Hence, in the future, it is worth investigating whether a more

180

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

precise approach can be derived for large-scale enterprise systems, by including flow-

sensitive and context-sensitive methods.

Organizations tend to identify their test suites by the business process that is being

tested, and to think of their system as consisting of (or supporting) business processes

rather than code classes. HP Quality Centre, for example, organizes tests by business

process. Through analysis of test cases we may be able to relate the affected functions

of interest to the business processes that might be affected, and hence present results

in a way that is more meaningful to testing teams. In the medium term, there are a

number of other related applications that could be achieved with the techniques we

have developed. First, we need to extend the work beyond the current Java tools,

to systems written in other languages such as COBOL. The modular design of our

system, especially an analysis based on XML, means that the primary task would be

to develop language-dependent front ends for each such extension. In fact, non-object

oriented languages would not be susceptible to some of the complications introduced

by inheritance, for example.

We started out intending to analyze vendor-supplied patches. However, we could

have started out with any method, field or database object that the user might intend

to change. We could then identify which existing tests might execute or depend on

that selected item. This can help users improve test cases. Such work might be a

prelude, and complementary, to dynamic analysis to examine test coverage. Indeed,

our analysis makes such dynamic analysis feasible. The dependency graph identifies

the possible methods that might be called from a given method. If you are testing

that method, and want to have some idea of the coverage of your tests, the relevant

baseline is the subgraph of the dependency graph with the method being tested at

181

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

its apex, not the whole of the library, which is otherwise all you have. Any particular

organization probably only uses a tiny fraction of the whole library, and the subgraph

of the dependency graph containing that organization’s methods of interest is the only

part they need to be concerned with.

Finally, impact analysis can be used in planning enhancements to applications.

Once methods or database objects that are intended to be changed are identified,

typically in the detailed design stage, the same impact analysis as we use on changes

caused by patches can be done to indicate where the potential effects are. This raises

a number of possibilities. The testing necessary to cover all possible impacts can

be planned. Or, perhaps, the design may be revisited to try to reduce the possible

impact.

182

Bibliography

[AB93] Robert S Arnold and Shawn A Bohner. Impact analysis-towards a

framework for comparison. In Software Maintenance, 1993. CSM-93,

Proceedings., Conference on, pages 292–301. IEEE, 1993.

[Abd10] Akbar Abdrakhmanov. Analyzing file extensions from the patches.

2010.

[AG12] SAP AG. Annual report 2012, financial highlights, 2012.

[AH02] Taweesup Apiwattanapong and Mary Jean Harrold. Selective path pro-

filing. In ACM SIGSOFT Software Engineering Notes, volume 28, pages

35–42. ACM, 2002.

[AK97] K. Abdullah and K.White. A firewall approach for the regression testing

of object-oriented software. In Proceedings of the 10th Annual Software

Quality Week, May 1997.

[And94] Lars Ole Andersen. Program analysis and specialization for the C pro-

gramming language. PhD thesis, University of Cophenhagen, 1994.

[AOH04] Taweesup Apiwatanapong, Alessandro Orso, and Mary Jean Harrold.

A differencing algorithm for object-oriented programs. In Proceedings

183

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

of the 19th IEEE international conference on Automated software engi-

neering, pages 2–13, 2004.

[Api05] Taweesup Apiwatanapong. Efficient and precise dynamic impact anal-

ysis using execute-after sequences. In Proceedings of the 27th interna-

tional conference on Software engineering, 2005.

[ASH86] Anant Agarwal, Richard L Sites, and Mark Horowitz. ATUM: A new

technique for capturing address traces using microcode, volume 14. IEEE

Computer Society Press, 1986.

[Asp14] AspectJ. Aspectj main page, 2014.

[Bal98] Thomas Ball. On the limit of control flow analysis for regression test

selection. In Proceedings of the 1998 ACM SIGSOFT international

symposium on Software testing and analysis, volume 23 issue 2, March

1998.

[BCCH95] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-

insensitive interprocedural alias analysis in the presence of pointers.

In Languages and Compilers for Parallel Computing, pages 234–250.

Springer, 1995.

[BDSP04] B. Breech, A. Danalis, Stacey Shindo, and Lori Pollock. Online impact

analysis via dynamic compilation technology. In 20th IEEE Interna-

tional Conference on Software Maintenance, 2004.

[BHRG09] Howard Barringer, Klaus Havelund, David Rydeheard, and Alex Groce.

184

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Rule systems for runtime verification: A short tutorial. In Runtime

Verification, pages 1–24. Springer, 2009.

[Boh96] Shawn A. Bohner. Software change impact analysis. 1996.

[BRR01] John Bible, Gregg Rothermel, and David S. Rosenblum. A compara-

tive study of coarse- and fine-grained safe regression test-selection tech-

niques. volume 2 Issue 2, pages 149–183, April 2001.

[BS96] D.F. Bacon and P.F. Sweeney. Fast static analysis of fast static anal-

ysis of C++ virtual function calls. In Proceedings of the Conference

on Object-Oriented Programming Systems, Proceedings of the Confer-

ence on Object-Oriented Programming Systems, Languages, and Appli-

cations,, volume 31 Issue 10 of ACM SIGPLAN Notices, pages 324–341.

ACM Press, New York, October 1996.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced aliases and

side effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 232–245. ACM,

1993.

[CC07] Kung Chen and Ju-Bing Chen. Aspect-based instrumentation for locat-

ing memory leaks in java programs. In Computer Software and Appli-

cations Conference, 2007. COMPSAC 2007. 31st Annual International,

volume 2, pages 23–28. IEEE, 2007.

185

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[Cen13] IBM T.J. Watson Research Center. T. j. watson libraries for analysis

main page, Jul 2013.

[Cho11] Stephen Chong. Dataflow analysis, 2011.

[CIA+11] Wen Chen, Asif Iqbal, Akbar Abdrakhmanov, Chris George, Mark

Lawford, Tom Maibaum, and Alan Wassyng. Report 7: Middleware

Change Impact Analysis for Large-scale Enterprise Systems. Techni-

cal Report 7, McMaster Centre for Software Certification (McSCert),

September 2011.

[CIA+12] Wen Chen, Asif Iqbal, Akbar Abdrakhmanov, Jay Parlar, Chris George,

Mark Lawford, T. S. E. Maibaum, and Alan Wassyng. Change impact

analysis for large-scale enterprise systems. In ICEIS (2), pages 359–368,

2012.

[CIA+13] Wen Chen, Asif Iqbal, Akbar Abdrakhmanov, Jay Parlar, Chris George,

Mark Lawford, Tom Maibaum, and Alan Wassyng. Large-scale enter-

prise systems: Changes and impacts. In Enterprise Information Sys-

tems, pages 274–290. Springer, 2013.

[CK95] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator

for execution profiling. Springer, 1995.

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.

Precise analysis of string expressions. In Proc. 10th International

Static Analysis Symposium (SAS), volume 2694 of LNCS, pages 1–18.

Springer-Verlag, June 2003. Available from http://www.brics.dk/JSA/.

186

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[Cor10] Oracle Corporation. Oracle e-business suite concepts release 12.1 part

number e12841-04, 2010.

[CRa94] Yih-Farn Chen, D.S. Rosenblam, and Kiem-Phong Vo and. Testtube:

a system for selective regression testing. In Proceedings of the 16th

International Conference on Software Engineering, pages 211–220, May

1994.

[CSB98] Bruce Caldwell, Tom Stein, and ERP Beyond. New it agenda. Infor-

mation Week, 711:30–34, 1998.

[CWM14a] Wen Chen, Alan Wassyng, and Tom Maibaum. Combining static and

dynamic impact analysis for large-scale enterprise systems. In The

15th International Conference on Product-Focused Software Process Im-

provement, Helsinki, Finland, 2014.

[CWM14b] Wen Chen, Alan Wassyng, and Tom Maibaum. Impact analysis via

reachability and alias analysis. In The 7th International Conference

on the Practice of Enterprise Modelling, Manchester, United Kingdom,

2014.

[CZvD+09] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen,

and Rainer Koschke. A systematic survey of program comprehension

through dynamic analysis. Software Engineering, IEEE Transactions

on, 35(5):684–702, 2009.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond

187

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

k-limiting. In ACM Sigplan Notices, volume 29, pages 230–241. ACM,

1994.

[DG03] Markus Debusmann and Kurt Geihs. Efficient and transparent in-

strumentation of application components using an aspect-oriented ap-

proach. In Self-Managing Distributed Systems, pages 209–220. Springer,

2003.

[Doa07] Matthew B. Doar. JDiff - An HTML Report of API Differences, 2007.

Electronically available at http://javadiff.sourceforge.net/.

[DS10] Julian Dolby and Manu Sridharan. Static and dynamic program anal-

ysis using wala, 2010.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. Context-

sensitive interprocedural points-to analysis in the presence of function

pointers. In ACM SIGPLAN Notices, volume 29, pages 242–256. ACM,

1994.

[EN08] Arni Einarsson and Janus Dam Nielsen. A survivor’s guide to java

program analysis with soot. BRICS, Department of Computer Science,

University of Aarhus, Denmark, 2008.

[Ern03] Michael D. Ernst. Static and dynamic analysis: Synergy and duality.

In WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24–27,

Portland, OR, May 9, 2003.

[FF97] F.I.Vokolos and P.G. Frankl. Pythia: a regression test selection tool

based on textual differencing. In 3rd internatinal conference on on

188

http://javadiff.sourceforge.net/

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

Reliability, quality and safety of software-intensive systems, pages 3–21,

1997.

[FYD+08] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Em-

manuel Geay. Effective typestate verification in the presence of alias-

ing. ACM Transactions on Software Engineering and Methodology

(TOSEM), 17(2):9, 2008.

[gar11] IT Key Metrics Data 2012. Gartner, Inc, December 2011.

[Ger06] Judith L Gersting. Mathematical structures for computer science.

Macmillan, 2006.

[GHK+01] Todd L. Glaves, Mary Jean Harrold, Jung-Min Kim, Adam Porter,

and Gregg Rothermel. An empirical study of regression test selection

techniques. volume 2 Issue 10, pages 184–208, April 2001.

[GPT+09] Emmanuel Geay, Marco Pistoia, Takaaki Tateishi, Barbara G Ryder,

and Julian Dolby. Modular string-sensitive permission analysis with

demand-driven precision. In Software Engineering, 2009. ICSE 2009.

IEEE 31st International Conference on, pages 177–187. IEEE, 2009.

[Han00] George Hansper. Yacc - a parser generator, 2000.

[HBCC99] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. Inter-

procedural pointer alias analysis. ACM Transactions on Programming

Languages and Systems (TOPLAS), 21(4):848–894, 1999.

[HGF+08] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Damasio. On

the precision and accuracy of impact analysis techniques. In Computer

189

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

and Information Science, 2008. ICIS 08. Seventh IEEE/ACIS Interna-

tional Conference on, pages 513 –518, may 2008.

[Hin01] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Pro-

gram analysis for software tools and engineering, pages 54–61. ACM,

2001.

[HJL+01] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang,

Alessandro Orso, Maikel Pennings, Saurabh Sinha, S. Alexander Spoon,

and Ashish Gujarathi. Regression test selection for Java software. In

Proceedings of the 16th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, volume 36 Issue 11,

November 2001.

[HLK+97] Pei Hsia, Xiaolin Li, David Chenho Kung, Chih-Tung Hsuand Liang

li, Yasufumi Toyoshima, and Cris Chen. A technique for the selective

revalidation of oo software. volume 9 Issue 4, pages 217–233, July-

August 1997.

[How98] D. Howe. Legacy system from foldoc, 1998.

[HS07] Lulu Huang and Yeong-Tae Song. Precise dynamic impact analysis

with dependency analysis for object-oriented programs. In Software

Engineering Research, Management Applications, 2007. SERA 2007.

5th ACIS International Conference on, pages 374 –384, aug. 2007.

[IBM13] IBM. Userguide:pointeranalysis, 2013.

190

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[Iqb11] Asif Iqbal. Identifying modifications and generating dependency graphs

for impact analysis in a legacy environment. 2011.

[jar] Jar Compare Tool. Electronically available at http://www.extradata.

com/products/jarc/.

[JR00] Dean Jerding and Spencer Rugaber. Using visualization for architec-

tural localization and extraction. Science of Computer Programming,

36(2-3):267 – 284, 2000.

[KGH+94a] David Chenho Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, and

Cris Chen. Firewall regression testing and software maintenance of

object-oriented systems. 1994.

[KGH+94b] David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi

Toyoshima, and Cris Chen. Change impact identification in object ori-

ented software maintenance. In Proceedings of the International Con-

ference on Software Maintenance, pages 202–211, September 1994.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William G Griswold. An overview of aspectj. In ECOOP

2001—Object-Oriented Programming, pages 327–354. Springer, 2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. Springer, 1997.

[KPR00] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical

study of regression test application frequency. In Proceedings of the

191

http://www.extradata.com/products/jarc/
http://www.extradata.com/products/jarc/

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

22nd international conference on Software engineering, pages 126–135,

June 2000.

[Lar99] James R Larus. Whole program paths. In ACM SIGPLAN Notices,

volume 34, pages 259–269. ACM, 1999.

[LBL+10] Patrick Lam, Eric Bodden, Ondrej Lhotak, Jennifer Lhotak, Feng Qian,

and Laurie Hendren. Soot: a Java Optimization Framework. Sable

Research Group, McGill University, Montreal, Canada, March 2010.

Electronically available at http://www.sable.mcgill.ca/soot/.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: Building customized program analysis tools with dy-

namic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation,

PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[LH99] Donglin Liang and Mary Jean Harrold. Efficient points-to analysis for

whole-program analysis. ACM SIGSOFT Software Engineering Notes,

24(6):199–215, 1999.

[LH06] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to anal-

ysis: is it worth it? In Compiler Construction, pages 47–64. Springer,

2006.

[Lho02] Ondrej Lhoták. Spark: A flexible points-to analysis framework for java.

2002.

192

http://www.sable.mcgill.ca/soot/

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[LMS97] J.P. Loyall, S.A. Mathisen, and C.P. Satterthwaite. Impact analysis

and change management for avionics software. In Proceedings of the

IEEE National Aerospace and Electronics Conference, volume 2, pages

740–747, 1997.

[LR03a] James Law and Gregg Rothermel. Incremental dynamic impact analysis

for evolving software systems. In Proceedings of the 14th International

Symposium on Software Reliability Engineering, 2003.

[LR03b] James Law and Gregg Rothermel. Whole program path-based dynamic

impact analysis. In Proceedings of the 25th International Conference on

Software Engineering, 2003.

[LR04] William Landi and Barbara G Ryder. A safe approximate algorithm for

interprocedural pointer aliasing. ACM SIGPLAN Notices, 39(4):473–

489, 2004.

[LS06] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator, 2006.

[LW91] H.K.N. Leung and L. White. A cost model to compare regression test

strategies. In Proceedings of the Conference on Software Maintenance,

pages 201–208, October 1991.

[LW92] H.K.N. Leung and L. J. White. A firewall concept for both control-flow

and data-flow in regression integration testing. In Proceedings of the

Conference on Software Maintenance, pages 262–271, November 1992.

193

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specifica-

tion: The class File Format. Sun Microsystems, 1999. Electron-

ically available at http://java.sun.com/docs/books/jvms/second_

edition/html/ClassFile.doc.html.

[LYC+08] Alexey Loginov, Eran Yahav, Satish Chandra, Stephen Fink, Noam

Rinetzky, and Mangala Nanda. Verifying dereference safety via

expanding-scope analysis. In Proceedings of the 2008 international sym-

posium on Software testing and analysis, pages 213–224. ACM, 2008.

[MBdFG10] Mirna Carelli Oliveira Maia, Roberto Almeida Bittencourt, Jorge Ce-

sar Abrantes de Figueiredo, and Dalton Dario Serey Guerrero. The hy-

brid technique for object-oriented software change impact analysis. Soft-

ware Maintenance and Reengineering, European Conference on, 0:252–

255, 2010.

[MR97] David Melski and Thomas Reps. Interconvertbility of set constraints

and context-free language reachability, volume 32. ACM, 1997.

[MT00] M Lynne Markus and Cornelis Tanis. The enterprise systems

experience–from adoption to success. Framing the domains of IT re-

search: Glimpsing the future through the past, 173:207–173, 2000.

[MW00] Audris Mockus and David M. Weiss. Predicting risk of software changes.

Bell Labs Technical Journal, 5(2):169–180, 2000.

[MW08] Ellen F Monk and Bret J Wagner. Concepts in enterprise resource

planning. CengageBrain. com, 2008.

194

http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[NAW06] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detec-

tion for Java, volume 41. ACM, 2006.

[NMW97] Craig G Nevill-Manning and Ian H Witten. Linear-time, incremental

hierarchy inference for compression. In Data Compression Conference,

1997. DCC’97. Proceedings, pages 3–11. IEEE, 1997.

[OAH03] Alessandro Orso, Taweesup Apiwatanapong, and Mary Jean Harrold.

Leveraging field data for impact analysis and regression testing. In Pro-

ceedings of the 9th European software engineering conference held jointly

with 11th ACM SIGSOFT international symposium on Foundations of

software engineering, volume 28 Issue 5, September 2003.

[OAL+04] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg

Rothermel, and Mary Jean Harrold. An empirical comparison of dy-

namic impact analysis algorithms. In Proceedings of the 26th Interna-

tional Conference on Software Engineering, ICSE ’04, pages 491–500,

Washington, DC, USA, 2004. IEEE Computer Society.

[O’C01] Robert O’Callahan. Generalized aliasing as a basis for program analysis

tools. PhD thesis, Carnegie Mellon University, 2001.

[Ora10] Oracle. Oracle e-business suite integrated soa gateway implementation

guide release 12.1, June 2010.

[OSH04] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regres-

sion testing to large software systems. In Proceedings of the 12th ACM

195

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

SIGSOFT twelfth international symposium on Foundations of software

engineering, volume 29 Issue 6, November 2004.

[PA98] Shari Lawrence Pfleeger and Joanne M Atlee. Software engineering:

theory and practice. Pearson Education India, 1998.

[PA06] S.L. Pfleeger and J.M. Atlee. Software Engineering: Theory and Prac-

tice. Prentice Hall, Englewood Cliffs, NJ, 2006.

[PA09] Anil Passi and Vladimir Ajvaz. Oracle E-Business Suite Development

& Extensibility Handbook. McGraw-Hill, Inc., 2009.

[PH08] David A Patterson and John L Hennessy. Computer organization and

design: the hardware/software interface. Morgan Kaufmann, 2008.

[Pro14] Eclipse AspectJ Project. Introduction to aspectj, Feb 2014.

[PSM95] Jim Pierce, Michael D Smith, and Trevor Mudge. Instrumentation tools.

In Fast Simulation of Computer Architectures, pages 47–86. Springer,

1995.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views

of object-oriented applications from static and dynamic information.

In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE Interna-

tional Conference on, pages 13–22. IEEE, 1999.

[Rep98] Thomas Reps. Program analysis via graph reachability. Information

and Software Technology, 40(11–12):701 – 726, 1998.

196

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[RH96] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test

selection techniques. volume 22 Issue 8, pages 529–551, August 1996.

[RH97] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression

test selection technique. volume 6 issue 2, pages 173–210, April 1997.

[RH98] Gregg Rothermel and Mary Jean Harrold. Empirical studies of a safe

regression test selection technique. volume 24 Issue 6, pages 401–419,

June 1998.

[RHD00] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression

test selection for C++ software. volume 10 Issue 2, pages 77–109, June

2000.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In Proceedings of the 22Nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’95, pages 49–61, New York, NY, USA, 1995. ACM.

[RST+04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia

Chesley. Chianti: a tool for change impact analysis of java programs.

SIGPLAN Not., 39:432–448, October 2004.

[RT01] Barbara G. Ryder and Frank Tip. Change impact analysis for object-

oriented programs. In Proceedings of the 2001 ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engi-

neering, PASTE ’01, pages 46–53, New York, NY, USA, 2001. ACM.

197

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[SAG+06] Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and

Hong Yan. Discovering architectures from running systems. Software

Engineering, IEEE Transactions on, 32(7):454–466, 2006.

[SAP14] SAP. Sap modules. sap.wikia.com/wiki/SAP_modules, 2014.

[SB06a] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-

sensitive points-to analysis for java. SIGPLAN Not., 41(6):387–400,

June 2006.

[SB06b] Volker Stolz and Eric Bodden. Temporal assertions using aspectj. Elec-

tronic Notes in Theoretical Computer Science, 144(4):109–124, 2006.

[SH97] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive

points-to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 1–14. ACM,

1997.

[SHR+00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja

Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practi-

cal virtual method call resolution for Java. In Proceedings of the 15th

ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, volume 35 Isuue 10, October 2000.

[SO05] Arjan Seesing and Alessandro Orso. Insectj: A generic instrumentation

framework for collecting dynamic information within eclipse. In Proceed-

ings of the 2005 OOPSLA Workshop on Eclipse Technology eXchange,

eclipse ’05, pages 45–49, New York, NY, USA, 2005. ACM.

198

sap.wikia.com/wiki/SAP_modules

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[Sof15] Gudu Software. General sql parser: Parsing, formatting, modification

and analysis., 2015. http://www.sqlparser.com.

[Sos04] Dennis Sosnoski. Java programming dynamics, part 7: Bytecode engi-

neering with bcel, Apr 2004.

[Sri07] Manu Sridharan. Refinement-Based Program Analysis Tools. PhD the-

sis, EECS Department, University of California, Berkeley, Oct 2007.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 32–41. ACM, 1996.

[Tar72] Robert Tarjan. Depth-First Search and Linear Graph Algorithms.

SIAM Journal on Computing, 1(2):146–160, 1972.

[Tes10a] Jean Tessier. Dependency Finder. 2010. Electronically available at

http://depfind.sourceforge.net/.

[Tes10b] Jean Tessier. The Dependency Finder User Manual, November

2010. Electronically available at http://depfind.sourceforge.net/

Manual.html.

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of program-

ming languages, 3(3):121–189, 1995.

[TM94] Richard J. Turver and Malcom Munro. An early impact analysis tech-

nique for software maintenance, January 1994.

199

http://www.sqlparser.com
http://depfind.sourceforge.net/
http://depfind.sourceforge.net/Manual.html
http://depfind.sourceforge.net/Manual.html

Ph.D. Thesis - Wen Chen McMaster - Computing and Software

[TPF+09] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri

Weisman. Taj: effective taint analysis of web applications. ACM Sigplan

Notices, 44(6):87–97, 2009.

[WC11] Jay Parlar Wen Chen. Impact analysis of oracle e-business suite - user

guide. Technical report, McMaster Centre for Software Certification

(McSCert), McMaster University, November 2011.

[wik11] Dynamic dispatch – Wikipedia, the free encyclopedia. 2011. Elec-

tronically available at http://en.wikipedia.org/wiki/Dynamic_

dispatch.

[WL04] John Whaley and Monica S Lam. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. In ACM SIG-

PLAN Notices, volume 39, pages 131–144. ACM, 2004.

[WMFB+98] Robert J Walker, Gail C Murphy, Bjorn Freeman-Benson, Darin Wright,

Darin Swanson, and Jeremy Isaak. Visualizing dynamic software system

information through high-level models. In ACM SIGPLAN Notices,

volume 33, pages 271–283. ACM, 1998.

[ZBZ11] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically locating web

application bugs caused by asynchronous calls. In Proceedings of the

20th international conference on World wide web, pages 805–814. ACM,

2011.

200

http://en.wikipedia.org/wiki/Dynamic_dispatch
http://en.wikipedia.org/wiki/Dynamic_dispatch

	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Enterprise Systems
	Software Changes
	Impact Analysis

	Research Motivation
	Structure of the Thesis

	Related Work
	Static and Dynamic Analysis
	Static Analysis
	Building Graphs
	The Dynamic Binding Problem
	Access Dependency Graph

	Dynamic Analysis
	Coverage Execution
	Program Execution Traces
	Aspect-Based Instrumentation

	Combining Static and Dynamic

	Change Analysis
	System Architecture
	Analyzsing Patches
	Database Changes
	Library Changes
	Library-Database Linkages
	Method Filtering
	Full String Analysis

	Reachability Analysis
	Reverse Search
	CFL-Reachability Problem
	Interprocedural Analysis
	Tabulation Algorithm
	Implementation via WALA
	Mapping Control-flow to Dependency

	Alias Analysis
	Aliased Variables
	Flow-Sensitivity
	Context-Sensitivity
	Adaptation to Object-Oriented Language
	Implementation via WALA

	A Complete Hybrid Approach
	The Approach at a Glance
	Benefits of the Approach

	Empirical Study
	Variables and Measures
	Experiment Setup
	Experiment Design
	Experiment 1
	Experiment 2

	Threats to Validity
	Results and Analysis
	Result of Experiment 1
	Result of Experiment 2

	Conclusion and Future Work
	Achievement
	Future Work

	Bibliography

