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Abstract

Super-resolution algorithms are designed to enhance the detail level of a particular

image or video sequence. However, it is very difficult to achieve in practice due to the

problem being ill-posed, and often requires regularization based on assumptions about

texture or edges. The process can be aided using high-resolution key-frames such as

those generated from a hybrid camera. A hybrid camera is capable of capturing

footage in multiple spatial and temporal resolutions. The typical output consists of

a high resolution stream captured at low frame rate, and a low resolution stream

captured at a high frame rate. Key-frame based super-resolution algorithms exploit

the spatial and temporal correlation between the high resolution and low resolution

streams to reconstruct a high resolution and high frame rate output stream.

The proposed algorithm outlines a hierarchy to the super-resolution process, com-

bining several different classical and novel methods. A residue formulation decides

which pixels are required to be further reconstructed if a particular hierarchy stage

fails to provide the expected results when compared to the low resolution prior. The

hierarchy includes the optical flow based estimation which warps high frequency in-

formation from adjacent key-frames to the current frame. Specialized candidate pixel

selection reduces the total number of pixels considered in the NLM stage. Occlusion

is handled by a final fallback stage in the hierarchy. Additionally, the running time
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for a CIF sequence of 30 frames has been significantly reduced to within 3 minutes

by identifying which pixels require reconstruction with a particular method.

A custom simulation environment implements the proposed method as well as

many common image processing algorithms. EngineX provides a graphical inter-

face where video sequences and image processing methods can be manipulated and

combined. The framework allows for advanced features such as multithreading, pa-

rameter sweeping, and block level abstraction which aided the development of the

proposed super-resolution algorithm. Both speed and performance were fine tuned

using the simulator which is the key to its improved quality over other traditional

super-resolution schemes.
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Notation

The following tables will outline the notation and parameters used throughout this

thesis. It is highly recommended that the reader print these out and/or keep a copy

side-by-side when reading.

Type Notation Display Notes Example(s)

Scalar Normal Font Prefer uppercase for parameters s, S

Vectors Lowercase Bold Indicate v̂ = 〈v1, v2, · · ·〉 v̂

Matrices Uppercase Bold Special definition M 3 [t] , Mt M

Tensors Boxed Up Subscript is basis dimensions T 3

Indexing Square Brackets Braces for set/list indexing I [v̂], ψ {v̂}
Functions Curved Brackets Function name font is result type f(x), F(x)

Sets Greek Letters Except σ; reserved for Std. Dev Φ, β

Operator Fancy Letters Used for data transformations FANCY
Abstract Overbar Used for placeholder variables k, k̂, K

Basis Over Arrow Used for basis directions ~i, ~j, ~k

Identifier Standard Font with
Under script

Distinguishes identifiers vs actual
values in variable subscripts

Hv vs. Hv

1. Video sequences are represented as sequences of image frames such as It, where t is

the frame index.

2. A single pixel from any image frame is retrieved from a matrix using indexing such

as: It [p̂] where p̂ =
〈
p~x, p~y

〉
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Variables and Parameters

Parameter Description Section Default

R For every R number of LR frames, one HR frame is generated. 1.1 5

F The downsampling factor between HR and LR frames. 1.1 2

P The (P × P ) comparison patch size used in NLM. 3.5.3 5

S The (S × S) patch size considered for the candidate sets in NLM. 3.5.1 7

D Strength modulator for error patches in NLM. 3.5.3 6.0

A Minimum error multiplier in definition for T1. 3.5.4 2.5

Tr Threshold for the spatial deblocking filter. 3.2.2 0.5

T
(k)
f Threshold(s) for passing the kth feedback propagation stage. 3.2 2, 5, 14

Tn Threshold for the NLM quality function 3.5.5 0.8

To Threshold for the optical flow quality function 3.4.3.1 0.04

Kr Richardson-Lucy deconvolution iterations. 3 8

Kb The blending strength in optical flow fusion. 3.4.3 6

K1 Coefficient (first) for the threshold T2 function. 3.5.4 500

K2 Coefficient (second) for the threshold T2 function. 3.5.4 1/900

K3 Coefficient for the NLM quality function Qt 3.5.5 1502

σc Std. Dev of the Gaussian PSF used in the hybrid camera. 1.1 1.6

σd Std. Dev of the Gaussian kernel used as a deblocking filter. 3.2.2 4.0

σf Std. Dev of the Gaussian weighting function used in optical flow. 3.4.3 1.5

σw Std. Dev of the Gaussian weighting function used in optical warp. 3.4.3 8.0

σp Std. Dev of the Gaussian filter used in NLM patch comparisons. 3.5.3 1.2

Wc Window size used in the camera PSF, associated with σc. 1.1 3

Wd Window size used in the deblocking filter, associated with σd. 3.2.2 5

Wf Window size used in optical flow, associated with σf. 3.4.3 7

Ww Window size used in optical warp, associated with σw. 3.4.3 13
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Variable Description Section Equation

Xt Original HR Image at frame index t. 1.1 1.8

Y
(k)
t The kth hierarchical reconstructed output at frame index t. 3.2 3.4

Zf Temporally downsampled HR frame at frame index f . 1.1 1.8

Dt Filtered and downsampled Xt at frame index t. 1.1 1.8

Ut Upsampled Dt using BF at frame index t. 3 3.2

Rt Richardson-Lucy deconvolution for frame index t. 3 3.3

St Heavy downsampled sequence for computing motion vectors. 3.5.2 3.28

Gσ Gaussian kernel of with Std. Dev of σ. Preface 5

M
(k)
t

The kth Reconstruction map: Boolean mask indicating which
pixels are to be processed in each frame index t.

3.2 3.4

Lt Linear estimation at frame index t. 3.3 3.7

→
Ot Optical Estimation Forward. 3.4.3 3.19

←
Ot Optical Estimation Backward. 3.4.3 3.19

Ot Optical Estimation Final Fused. 3.4.3 3.21

Nt NLM reconstructed output at frame index t. 3.5 3.24

Qt NLM reconstruction quality function. 3.5.5 3.39

T1 First threshold to pass in NLM candidate reduction. 3.5.4 3.36

T2 Second threshold to pass in NLM candidate reduction. 3.5.4 3.37

Operators Description Section Equation

D
F

Decimation operator using a factor of F . 1.1 1.8

B
F

Bicubic upsampling operator using a factor of F . 1.1 3.2

F
K

Filtering/convolution operator using kernel K. 1.1 1.8

Ri
K

Richardson-Lucy deconvolution operator using kernel K with
i iterations total.

3 1.8

H(k) The kth hierarchical method operator. 3.5.3 3.35

G Gradient magnitude operator (Sobel). 3.5.3 3.35

L Luminance channel of a YUV transform operator. 3.5.3 3.35

Sr Boolean column ’OR’ operator given HR Rate r. 3.5.3 3.35

Tv Threshold operator given threshold value v. Preface 4

X s
p̂

Patch extract operator of size (s× s) centered on p̂. 3.5.3 3.35

Sets Description Section Equation

βkt (p̂)
Candidate set: initial list of pixels in Zk to be used to recon-
struct Ut [p̂]

3.5.1 3.25

Λt(p̂) Grand candidate set: Union of all candidate sets, ∀k 3.5.1 3.26

Υt(p̂)
Thresholded candidate set: candidate pixels that meet
thresholds T1 and T2.

3.5.1 3.27

ψw(p̂) Returns a (w × w) set of valid pixel indexes centered on p̂. Preface 2

φ
(
Tn

) Returns all the valid pixel indexes possible for a given input
tensor Tn.

Preface 2
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Processing Tools & Definitions

Generic definitions, that will be useful for the development of this algorithm, are

presented here. Additionally, these definitions provide mathematical completeness,

as well as definitions for simpler methods assumed. These can be referenced when

they are encountered in the thesis, and additionally their usage will refer back to this

page.

Set of Pixels Indexes Centered on a Pixel Index

This function returns a set of pixel indexes derived from a (w × w) square patch

centered on p̂, having only natural numbers (non-negative, positive) indexes:

ψw(p̂) =
{
v̂ ∈ N2

∣∣∣ (p̂− dw2 e) ≤ v̂ ≤ (p̂ + bw2 c)
}

(1)

The addition/subtraction of a vector and scalar is performed by promoting the scalar

to be a vector with the same magnitude in all basis directions.
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Set of all possible vector coordinates

This function is used to generate a list of pixel coordinates that can be used to

address/index a source companion matrix. It can be extended to tensors of any

dimension n. The set generated will contain vectors v̂ = 〈v1, v2, . . . , vn〉 that point to

each possible element:

φ( Tn) =
¦
v̂ ∈ Nn

∣∣∣ Tn [v̂] is defined
©

(2)

Patch Extract Operator

This operator acts on its companion matrix I and extracts a patch (w × w) centered

on the input coordinate p̂. The formal definition is as follows:

Xw
p̂

I =



I [ψw (p̂) {1, 1}] I [ψw (p̂) {1, 2}] · · · I [ψw (p̂) {1, w}]

I [ψw (p̂) {2, 1}] I [ψw (p̂) {2, 2}] · · · I [ψw (p̂) {2, w}]
...

...
. . .

...

I [ψw (p̂) {w, 1}] I [ψw (p̂) {w, 2}] · · · I [ψw (p̂) {w,w}]


(3)

Object Thresholding

This is the formal definition for thresholding an object In (vector, image, matrix,

tensor... etc). For every pixel index p̂ = 〈p1, p2, . . . , pn〉, the threshold v is applied:

Tv In [p̂] =


0 if In [p̂]< v

1 if In [p̂]≥ v
(4)
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Symmetric Gaussian

The 2D symmetric Gaussian function will be defined here, and used throughout. The

window size should be set as to encompass most of the kernel. Additional normal-

ization may be required after a window is chosen. The notation here allows negative

pixel indexes in the Gaussian kernel produced, but, the implementation should shift

the center of the kernel by half of the window size, in both directions.

GσI [m̂] =
1

2πσ2
exp

(
−
m2
~x +m2

~y

2σ2

)
(5)

Sobel Gradient

The gradient represents derivatives in the spatial direction using the Sobel operator.

The operator defined here will utilize the magnitude of the ~x and ~y directions, where

⊗ represents convolution:

GI =

Ê��
−1 0 +1
−2 0 +2
−1 0 +1

�
⊗ I

�2
+
��

+1 +2 +1
0 0 0

−1 −2 −1

�
⊗ I

�2
(6)

Luminance Transform

The luminance transform takes the RGB pixels and returns a single channel image.

There are many luminance transforms available, and each one is subjectively correct.

The following transformation is a RGB888 to YUV transformation with full swing [0,

255] is used. The coefficients sum to 0.9999, and are the same ones that the ‘rgb2gray ’

function in Matlab uses.

LI [v̂] = 0.2989 · I [v̂]~R + 0.5870 · I [v̂] ~G + 0.1140 · I [v̂] ~B (7)
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Chapter 1

Introduction and Problem

Hybrid video cameras are unique among video cameras in that they are able to shoot

in two (or more) modes. Each mode represents a unique combination of frame rate and

resolution. For a high frame rate, typically a lower resolution is used and conversely

for a given low frame rate, a high resolution is used. This balance occurs because of

limited processing power on-board the microcontroller in the camera. Improving both

frame rate and resolution requires higher quality cameras whose price exponentially

reflects its performance.

By exploiting a hybrid cameras ability to dynamically switch between the two

modes, two video streams will be constructed. The first is a low resolution (LR)

having high frame rate stream, while the second is a high resolution (HR) having low

frame rate stream. Using the algorithm proposed here, the two video streams can be

combined to attain both a high frame rate and high resolution video. This algorithm

alleviates the need for expensive high-tech video cameras at the cost of processing

time.
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1.1 Mathematical Description of Problem

A typical hybrid camera output can be seen visually in Fig. 1.1 and can be modeled

as a regular high definition video camera (high resolution, high frame rate) that

undergoes two distinct output transformations. The first is a spatial downsampling

operation to achieve low resolution (LR) frames while maintaining high frame rate,

while the second is a temporal downsampling operation used to maintain the high

resolution (HR) frames but with reduced frame rate.

t=0
t=1

t=2
t=3

t=4
t=5

t=6
t=7

t=8
t=9

Original Stream

t=0

t=3

t=6

t=9t=0
t=1

t=2
t=3

t=4
t=5

t=6
t=7

t=8
t=9

LR Stream

HR Stream

Figure 1.1: Left: the output of a regular camera. Right: the output of a hybrid
camera (R=3, F=2)

The two transformations are shown visually in Fig. 1.2. The temporal down-

sampling operator uses the parameter R which represents how often HR frames are

produced. The spatial downsampling operator uses the point spread function (PSF

or transfer function) of the camera (assumed to be known) to first filter the input,

and then reduce the resolution by a factor of F .

For each low resolution frame, the corresponding high resolution version must be

reconstructed using the information from adjacent (nearest) HR key frames. This

2
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Hybrid Camera

Video
Camera

Spatial
Downsample

Temporal
Downsample

LR

HR

Figure 1.2: Hybrid camera model: a regular video camera with two output transfor-
mations.

process can be modeled as the inverse of the following equation:

Dt = DFFGσc
Xt + ε (1.8)

where Xt is the original HR frame (if captured by a high resolution camera) and

Dt is the degraded LR frame created by filtering and downsampling the input Xt

using the operators FGσc
and DF respectively. The parameter F is the resolution

ratio, and Gσc is PSF of the camera: assumed to be a 2D symmetric Gaussian with

standard deviation of σc. The noise term ε is added for modeling purposes and

is ignored. Physically, filtering is achieved using the PSF of the camera, or using

binning methods (averages over (2× 2) or larger blocks) or both.

The combined operators for filtering and downsampling (FGσc
and DF ) have no

unique inverses and thus this problem is ill-posed; it cannot be solved uniquely using

only the information in the LR frames. The matrix Dt is not of the same size as

Xt so the inverse DF -1 is not possible. Additionally, the inverse operation of filtering

FGσc

-1 is the same size as Xt but is not mathematically unique1.

1The inverse operation is also known as deconvolution, or deblurring.
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1.2 Overview of Approaches Taken

With respect to the super-resolution problem being ill-posed, solutions can still be

proposed. Typically, the solutions can be classified in a few distinct ways: interpola-

tion based methods, estimation based, learning based, and reconstruction based. The

proposed algorithm will utilize three of these methods.

1.2.1 Interpolation Based Methods

The first and simplest method is an interpolation based reconstruction which solves

the problem of upsampling (the inverse of the downsampling operation) by simply

interpolating values. The methods in this category include the simple bilinear and

bicubic, and the advanced Lanczos and/or sinc interpolation and do not recover any

high frequency information; typically the detail level of interpolation methods remains

the same: blurry and full of artifacts [1]. However, despite their performance being

the lowest, their speed is undoubtedly the highest which is due to their simplicity.

These methods typically serve as starting points for more advanced methods since

they do not utilize any information from the high resolution frames available.

1.2.2 Estimation Based Methods

Estimation based approaches attempt to solve the ill-posed problems by imposing

some conditions on the solution (and thus achieving a unique solution, also known

as regularization). Estimation methods can also be used in the frequency domain.

These methods perform better than their interpolation cousins, but at the cost of

speed.

4



M.A.Sc. Thesis - Robert Lengyel McMaster - Electrical Engineering

1.2.3 Learning / Example Based Methods

The algorithms in this category attempt to learn by example how to reconstruct each

pixel. By analyzing how LR frames are downsampled from HR frames, the high fre-

quency content difference can be learned over successive frames. These methods are

difficult because they depend on the learning methods used, and tend to be slow; dic-

tionary sizes are really large, and comparing thousands of entries is computationally

expensive.

1.2.4 Reconstruction Based Methods

The algorithms in this category attempt to reconstruct each individual pixel, usually

using some averaging technique utilizing data from HR images. The non-local means

(NLM) algorithm is a very generic (and powerful) averaging technique commonly

used for many applications. The main advantage of this method is the performance

while the disadvantage is its speed.

1.3 Common Problems

Using interpolation methods leads to blurry results as high frequency details are

not reconstructed. Estimation based methods make assumptions about how natural

images are formulated, and do a better job at guessing the high frequency content,

often with great success. Learning based methods attempt to analyze differences

between HR and LR frames, in order to apply that difference to super resolve other

LR frames, however, they are often computationally expensive. Reconstruction based

methods are similar to learning based, but do not have a dictionary constructed.

5
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High frequency information in LR frames is reconstructed using available data in HR

frames. However, while learning based methods suffer from computational complexity,

reconstruction methods are affected by occlusion, a well known phenomenon whereby

HR frames sometimes do not contain any information to reconstruct certain pixels

in LR frames. Occlusion happens when objects are blocked in view by other objects,

obstructing the pixel data due to perspective. Reconstruction based methods also

suffer from motion vector estimation; the motion vectors involved in reconstructing

must be calculated, increasing the computational cost as well.

It is clear that no method provides the complete solution. Thus, the approach

used here utilizes the best of each of these algorithms: the speed of interpolation

methods with the quality of reconstruction methods.

1.4 Scope of Thesis

The goal of the thesis is to present a key-frame based super-resolution algorithm

that solves many of the problems in previous works. Namely, the algorithm must be

computationally feasible; the aim is to push super resolution into real time. Next,

its performance must surpass all algorithms in its class. Problems like occlusion and

noise must be addressed. The maximization of performance and minimization of

running time is a very difficult problem, but nevertheless an attempt will be made

that serves to set a new benchmark for super resolution algorithms. The algorithm

and its results are described in Chap. 3 and Chap. 4. To aid the process, a special

virtual environment simulator was created and is presented in Chap. 5. Finally, the

thesis will conclude with its recommendations and future work in Chap. 6.
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Chapter 2

Super-Resolution Background

Research in super-resolution (SR) still continues despite the field reaching a mature

state. Frameworks include algorithms for single-frame, multi-frame, video, key-frame

and multi-view super-resolution. In single-frame SR, there is only one target image

to reconstruct, and no other image priors are given. This kind of SR is difficult and

requires many assumptions about texture, edge, and even spatial correlations. Multi-

frame super-resolution focuses on the fusion of multiple LR (low resolution) images,

and exploiting temporal correlations in tandem with the correlations from single-

frame SR. Taken a step further, the same temporal correlations can be used to recon-

struct entire video sequences: known as video super-resolution. Typically, individual

LR frames will contribute to all of the reconstruction of each frame in the super-

resolved output. In multi-view super-resolution, temporal, and spatial correlations

will be used from multiple views to super-resolve frames, or entire sequences. While

each of these methods attempts to generate more LR sources of information, key-

frame based methods change the paradigm completely by introducing sparse sources

of high resolution (HR) information, and will become a key part in the formation of

7
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this work.

The basic SR algorithm will always contain some form of interpolation. Some

early methods attempted to improve the interpolation process using sub pixel edge

detection to guide the interpolation process in the high resolution output [2]. Their

success paved the way for works such as [1][3][4] which have improved on that success.

However many of these methods still provide blurry results due to their weakness in

reconstructing texture (smooth) areas, as well as non-linear edges [5]. There is indeed

no shortage of available interpolation methods employing novel strategies.

The influential paper by Freeman et al. [6] successfully demonstrated an example-

based single-frame super-resolution scheme. First, they generated a database training

set that maps numerous LR patches to HR patches from a non-related collection

of HR images. In order to overcome the huge amounts of information required to

store that database, they resorted to storing only the high frequency information

that differentiates a LR patch from a HR one, as well as the source LR patch itself.

To super resolve a test image, they break the image into overlapping patches, and

process them individually one-by-one in raster-scan order. They predict the missing

high frequency information in each patch by finding matches in the training set that

have similar low frequency components. Additionally, the edges of the high frequency

patches must match between adjacent patches (to maintain spatial correlation). By

concatenating the overlapping pixel values (from the patch to the left, and the patch

above) to form a search vector, the search format will match the storage format

of the training set itself. Searching the large training sets for their matches was

overcome finding the nearest neighbor using a greedy downhill search. Their method

shows a moderate improvement between a cubic-spline zoom, and their super resolved
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output. Surprisingly, the training set and the test image do not need to be similar in

context, however there is a limit to this difference, as explicitly stated by the authors

themselves. It is clear that the best training sets should come from the source stream

itself.

Since the advent of digital cameras specifically those that can shoot video in

different resolutions and framerates, work in SR has branched to reconstruction using

limited sources of HR information which pushes the super-resolution limit. Ben-Ezra

and Nayer [7] proposes three designs for a hybrid camera, and went on to implement

a working prototype. They explore the trade-offs between spatial resolution and

temporal resolution, which are enhanced by the use of a hybrid camera. Additionally,

a large part of their work is centered around PSF estimation and deconvolution, which

is an important piece of the puzzle in super-resolution. The output of a hybrid camera

serves to generate HR key-frames in other super-resolution methods.

The work by Brandi et al. [8] uses dictionaries created from HR key-frames to su-

per resolve low resolution non-key-frames. The first step divides each HR key frame

into blocks, then through a threshold parameter, determines if there is relevant high

frequency information present in that block. If there is, its degraded counterpart (fil-

tered, downsampled, and upsampled) is stored, alongside the block, in the dictionary.

Otherwise, if the block did not pass thresholding, the block is assumed to contain

little to no high frequency information. During reconstruction, upsampled LR im-

ages are chunked into blocks, and the closest block in the dictionary found. Since

the block is paired with an associated high frequency component, that information

can be applied back to the upsampled block to super-resolve it. In their later work

Brandi et al. [9], they replace the dictionary/training stage with motion estimation
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to increase the robustness of their method.

Moving away from example based reconstruction, Protter et al. [10] has gener-

alized the non-local means (NLM) algorithm for application in SR. Originally, the

NLM was used for video de-noising due to its averaging property which smooths out

high frequency noise.Their framework considers pixels from all LR and HR sources

available, the NLM gives weights to each pixel candidate considered, and produces a

final pixel reconstruction from the total sum. While the method is computationally

very expensive, it has provided good results.

Inspired by [10], the work done by Najafi and Shirani [11] builds a regularization

function that utilizes the NLM to super resolve an image. Their work includes a

closed form solution that de-blurs upsampled LR frames using the NLM as a error

metric that is minimized. Unlike the popular total variation regularization function

proposed in [12] which imposes a simple condition on the reconstruction, the one

used by [11] minimizes differences between LR and HR key-frames, which is more

dynamic than the former. Their results show the advantage and success of their NLM

based regularization function, even in sequences with occlusion or sparse HR frames.

Additionally, the authors have addressed the computational complexity problem of

NLM based methods, by adopting motion vector searches using the popular diamond

search available in [13].

The work by Zhai and Wu [14] takes a similar reconstruction approach to super-

resolution. By formulating the problem as a 2D piecewise autoregressive process,

and then solving a constrained minimization problem using a Lagrangian multiplier,

Zhai and Wu [14] formulates a closed form solution. The parameters of the algorithm

are determined jointly along with the HR reconstruction in a least square problem.

10
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Results indicate that the method performs well, with reduced computational cost1.

However, the same problem as in Najafi and Shirani [11] occurs, specifically the value

of a particular Lagrangian multiplier that is used for a constrained minimization

problem is not known. In order to choose the best value for the parameter, the

output MSE of the image as a function of the Lagrangian multiplier must be known,

so that the relation can be inversed, and then an optimal value for the multiplier

chosen. However, since the output MSE as a function of the Lagrangian multiplier is

unknown, computationally expensive methods such as the generalized cross-validation

can be used.

Another NLM approach to SR by Glaistter et al. [15] uses HR key-frames and shot

boundary detection. The shot boundary / scene change detection algorithm is fairly

simple, and serves to generate HR frames at a dynamic rate (encoder side). However,

their work deals mainly with compression, and thus they did not fine tune the NLM

based reconstruction used in the decoder; the proposed algorithm is designed for speed

(real-time), which makes it very appealing. They demonstrate the success of the

shot boundary detection in assisting the SR process, while minimizing computational

complexity so such a degree, that it can be computed in real time.

Song et al. [5] outlined a super-resolution method whose output is a fusion of two

different methods. The first is a reconstruction based entirely around bidirectional

overlapped block motion compensation (BOBMC) [16][17] using HR key-frame infor-

mation, and the second is a dictionary based (LR-HR pair) system. Motion vectors

are found between a target upsampled LR frame and each HR key-frame. Threshold-

ing the motion compensated error, on a patch by patch basis, determines if the LR

1Running times for the algorithm are not given explicitly, but the authors indicate relatively low
computational cost.
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patch will be reconstructed using the motion compensated output, or if it will go on

to use the dictionary based system. The super-resolved patch is a sum of different

weighted kernel functions (weight matrices were derived from the MPEG4 OBMC,

and the pixel values from neighboring positions). The dictionary based scheme is

the fallback for failed/poor motion compensation by the BOBMC due to complex

motion, occlusion, errors in motion vectors and limited range. Building a standard

dictionary of all possible LR-HR pairs, and clustering the numerous entries using

k-means clustering, makes finding a similar patch an easier problem. In a synthesis

step, the individual LR patch is super-resolved by combining all the patches in the

cluster it belongs to, with some weights. The selection between which pixels will be

reconstructed with which method, yields higher results than the individual methods

themselves. Despite extensive use of motion estimation and exhaustive dictionary

searches, their algorithm is only moderately complicated and is one of the faster

algorithms available in literature.

The recent work by Cheng et al. [18] also uses key-frames for super-resolution.

Their unique method initially upsamples the LR images and then performs motion

estimation between each LR frame and corresponding adjacent HR key-frames. Using

the vector field generated, the HR key-frames are shifted to the temporal index of

the LR frame that is desired to be reconstructed. The motion compensation stage

produces three outputs per LR frame: a forward, backward and bidirectionally com-

pensated result. Their method proposes to fuse the three results with the upsampled

LR frame, using a volume cube constructed per pixel using these four sources of in-

formation. The volume cube is small in size, and requires weights to function, as

well as the right sources of information selected, as a subset of the four sources. To
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determine the weights, an offline stage optimization by a particle swarm is performed.

Conversely, to determine the right sources of information, a classification scheme is

used that classifies a pixel based on both the ‘temporal variation’ and ‘spatial energy’

values. The pixel is classified as belonging to one of eight motion categories, de-

pending on the aforementioned temporal variation and spatial energy values, which

determine which information sources to fuse. The fusion stage considers the final

reconstruction as a convolution of the small volume cube with the sources of infor-

mation, to produce a single output value. Their work explores the variation of the

HR to LR ratio, and delivers great overall performance.

While motion estimation is a key factor in the performance of super-resolution

algorithms, the work by Lengyel et al. [19] demonstrates the success without explicit

motion vector calculations. Drawing inspiration from [11] their NLM based method

proposed reconstructs pixels individually by considering all pixels in a small region

in each HR key-frame. For each of these ’candidate’ pixels, a decision must be made

regarding its inclusion in the NLM, as well as its weight (if included). Each candidate

pixel must pass two adaptive thresholds, and if successful, it will attain a weight for

its contribution. The adaptive thresholds serve to pick only the best candidate pixels

among many, as well as to filter number of included pixels. Moreover, the pixels that

pass thresholding are given a weight that is based on RBG pixel difference, luminance

difference and gradient differences. Their aim is to be selective as possible with the

reconstruction possible to avoid blurring caused by the nature of the NLM weighted

average. Additionally, they demonstrate the success of their algorithm when applied

to single-view sequences as well as multi-view sequences.

The proposed method in this thesis will continue the work of [19], and build
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on lessons learned in the various methods proposed and subsequently described here.

Specifically, motion estimation, fusion of multiple sources, fallback techniques, residue

computation and thresholding, and domain based processing will all be utilized in the

proposed method.

14



Chapter 3

Super-Resolution

Given a hybrid camera, the parameters R and F , as well as the point spread function

(PSF) must be known. The first parameter R corresponds to the rate at which high

resolution (HR) images are taken. For instance, a rate R of 5 gives one HR key frame

for each 5 low resolution (LR) frames. The second parameter F is the resolution ratio

and is defined as the spatial factor used between the LR and HR frames (typically 2).

The degradation model from Sec. 1.1 will be shown once more for reference.

Dt = DFFGσc
Xt + ε (3.1)

where Xt is the original HR frame (if captured by a high resolution camera) and Dt

is the degraded LR frame created by filtering and downsampling the input Xt using

the operators FGσc
and DF respectively. The parameter F is the resolution ratio, and

Gσc is a 2D symmetric Gaussian kernel with known standard deviation of σc. The

noise term ε is added for modeling purposes and is assumed to be Gaussian zero-mean

white noise and subsequently ignored.

The hybrid camera produces two streams, a LR and a HR stream, marked as Dt
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for LR frames index t, and Zf for HR frame index f . Note, that because of the HR

generation ratio R, the number of frames in Dt is different than in Zf . Furthermore,

the spatial resolution is also different between the aforementioned matrices Dt and

Zf . Before any reconstruction occurs, the LR stream must be upsampled (to match

the spatial resolution of Zf ) using the bicubic operator BF as shown below:

Ut = BFDt
(3.2)

Next, the upsampled image is Ut deconvolved using the effective Richardson-Lucy

(RL) deconvolution method [20] [21] (Sec. 3.6) (expressed as an operator RKr
Gσc

) to

form Rt for each LR frame index t in the sequence.

Rt = RKr
Gσc

Ut
(3.3)

The number of iterations for the RL deconvolution is given through the superscript

parameter Kr whose value is typically 8. Additionally, the deconvolution algorithm

requires the PSF that was initially used to blur the image, which in this case is known

to be a 2D symmetric Gaussian Gσc having known standard deviation σc from the

degradation stage or hybrid camera. The deconvolved image should be stored as it

will be used extensively in the algorithm.

3.1 Hierarchy Reconstruction Model

Next, a reconstruction hierarchy was devised that allows for a combination of tech-

niques, each with a varying degree of complexity, as shown in Table 3.1.

A good way to visualize the hierarchy shown in Table 3.1 is to consider a hy-

pothetical image, whose pixels are reconstructed by those methods. The set of all
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Table 3.1: Proposed reconstruction hierarchy for key-frame based video super-
resolution

Method Description

Linear Estimation Initial reconstruction uses HF information between HR key
frames and simply interpolates their differences across LR
frames. This primer method is computationally cheap.

Optical Flow Based
Estimation

Attempts to ’warp’ HF information from key frames to
neighboring LR frames. The result of this method is sur-
prisingly good, better than linear interpolation, but at
moderate computation cost.

NLM Reconstruction Attempts to fully reconstruct the pixel from HR frame
sources in a neighborhood. This is a heavy computation
but gives good results.

RL Deconvolution Fallback: the absolute worst case scenario where all other
methods failed, this one will give a result still better than
bicubic.

pixels reconstructed with the various methods form supersets of each other as shown

in Fig. 3.1. In each stage, a feedback residue method will determine which pixels are

allowed to go through to the next stage of reconstruction.

The hierarchy method proposed requires that each of the methods involved can

be applied on a per-pixel basis. The run time complexity is reduced when this re-

quirement is met, since the usage of each method will be decided on a per-pixel basis,

through the reconstruction map, and therefore simpler methods can be used to save

time where applicable.

3.2 Reconstruction Map

Before any individual stage can be described, the propagation criteria and method

must be established. Consider a boolean image mask M
(k)
t (named the Reconstruction
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Linear Estimation

NLM Reconstruction

Optical Estimation

Fallback: RL

Figure 3.1: Proposed algorithm showing multiple stages of reconstruction, each one
falling back on next.

Map) for each frame index t that is initially 1 everywhere (indicating all pixels need

to be reconstructed by the next iteration in the hierarchy k), and progressively gets

filled in (with 0’s) after each stage using the propagation criteria to filter out pixels

that passed the criteria and those that did not. In order words, the region of white 1

pixels (those that still need proper reconstruction) gets progressively smaller with each

stage k. The reconstruction map can be written as an error residue metric combined

with an error threshold operator T
T

(k)
f

given the kth threshold T
(k)
f , as shown below

in Eq. 3.4:

M
(k)
t [m̂] = T

T
(k)
f

�
Ut [m̂]− BFDFFGσc

Y
(k−1)
t [m̂]

�
(3.4)

where Ut is the upsampled LR image at frame index t, and Y
(k)
t is the output of the

application of the kth hierarchy algorithm H(k), on only the pixels remaining in the

M
(k)
t [m̂] set. The combination of operators BFDFFGσc

represents the degradation

process and bicubic upsampling, and acts like a low pass filter. As before, F is the

resolution ratio, and Gσc is the known Gaussian PSF kernel of the camera given

σc. The output Y
(k−1)
t is compared to the upsampled LR frames Ut in order to
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create an error residue on a pixel per-pixel basis where m̂ = 〈m~x,m~y〉. The feedback

propagation threshold T
(k)
f is a parameter that will be varied in the algorithm, and its

value plays a significant part in the running time and performance of this proposed

algorithm.

M
(1)
t M

(2)
t · · · M

(k)
t

Y
(1)
t Y

(2)
t · · · Y

(k)
t

H(1) H(2) H(k)

T
T
(1)
f

T
T
(1)
f

T
T
(k−1)
f

Figure 3.2: Reconstruction hierarchy showing residue feedback and thresholding.

The algorithm begins with the initialization of the reconstruction map M
(1)
t having

a value of white or 1 everywhere. Next, the first hierarchical method: linear estimation

H(1) is applied. The output of that process yields the first reconstructed output Y
(1)
t .

Thresholding this against the upsampled Ut using the feedback propagation threshold

T
(k)
f gives the next reconstruction map M

(2)
t . This new reconstruction map is really

just a subset of the original M
(1)
t . Next, the second hierarchical method: optical flow

based estimation H(2) is applied on the remaining pixels that are white in M
(2)
t . The

output of that process yields the second reconstructed output Y
(2)
t . This output is

really just an improved version of Y
(1)
t . Repeating the process a few more times (for

the remaining NLM and fallback hierarchy methods) gives the final output Y
(4)
t (only

4 methods in the hierarchy), and can be visualized generically in Fig. 3.2.
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3.2.1 Residue Basis

The criteria marked in Eq. 3.4 is a way to validate the success or failure of each

individual hierarchical method H(k) applied. To do so, the original source frame Xt is

required, but since that information is unknown, the closest source of information that

resembles Xt is simply Dt which is a distorted version of Xt. In order to compare

the output of the hierarchical method at each stage Y
(k)
t to the distorted Dt, the

hierarchical output must undergo the same distortions to ensure a ’fair’ comparison,

which is reflected in the operators BFDFFGσc
applied to Y

(k)
t .

In order for the error residue in this method to work, it requires two key assump-

tions to be true.

� The error residue must persist spatially, in order for the hierarchical method to

detect it at the same spatial position.

� The error residue must remain detectable with similar magnitude for its rele-

vance to remain the same.

If the first assumption is violated, detectable errors will shift to some other location.

This causes two problems: the first is that now a different pixel will be marked as

needing reconstruction which will force reconstruction with a computationally heavier

method (deeper in the hierarchy) than necessary. The second is that the original

location where the error was is now reconstructed using a lighter method (higher in

the hierarchy) which will cause overall errors in the final reconstruction.

If the second assumption is violated, it is possible for an error to be completely

‘dissolved’ by the fairness equalizing distortions applied. If the reduction in magni-

tude crosses the detectability threshold T
(k)
f , it will not be reconstructed with the
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appropriate method and again cause errors in the final reconstruction. On the other

hand, if the magnitude of the error reside increases, falsely marked pixels (for recon-

struction) cause unnecessary reconstruction of pixels using heavier methods and will

increase running time.

In general, any differences between the original Xt and the reconstructed output

Y
(k)
t must persist (spatially, and in magnitude) after the degradation distortions are

applied. This is important so that the reconstruction map M
(k)
t can detect the errors,

and use a heavier reconstruction option on that pixel, if necessary.

3.2.2 Implementation Details

In practice, the error residue and thresholding method is very susceptible to noise, and

generally it will falsely mark too many pixels in the reconstruction map M
(k)
t as 1 or

’needed to be reconstructed in the next stage’. Additionally, the second key assumption

(outlined in Sec. 3.2.1) is often violated, and errors are missed. Consequently, the

final output will have increased run time complexity and increased reconstruction

errors.

The following proposed solution is one way to address the aforementioned prob-

lems. Equation Eq. 3.4 is modified into the following:

M
(k)
t [m̂] = SRTTrFGσd

T
T

(k)
f

(
RKr

Gσc
Ut [m̂]−RKr

Gσc
BFDFFGσc

Y
(k−1)
t [m̂]

)
(3.5)

There are three main modifications present:

� Addition of Kr iterations of Richardson-Lucy deconvolution via operator RKr
Gσc

.

� Application of wide post filter Gσd and secondary threshold using Tr after initial
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thresholding with T
(k)
f . This is a spatial de-blocking filter.

� Application of the special column ‘OR’ operator SR as the final step. This is a

temporal de-blocking filter.

The first modification enhances the comparison by deblurring the upsampled image

source Ut as well as the reconstructed output Y
(k)
t at any stage k (post degradation).

The new residue will be closer in magnitude to what the residue would be if the orig-

inal source Xt was used, instead of bicubic upsampled Ut originally used in Eq. 3.4.

The deblurring is applied using Kr iterations of the Richardson-Lucy deconvolution

method, through the operator RKr
Gσc

, using the known kernel Gσc having known stan-

dard deviation σc. The Gaussian filter here must be the same as that used in the

original degradation process that created the LR frames from the source HR frames,

to ensure the best performance from the RL deconvolution.

The second modification is simply a region growth operation or equivalently a

spatial de-blocking filter. By filtering a large region through Gσd , regions of the

thresholded result that are white or 1 get larger, and regions that are black or 0

get larger as well. Here, the Gaussian kernel uses a different standard deviation of

σd which recommended to be at least twice larger than σc. The operator removes

stray pixels and creates continuous/whole regions that do not have holes. Expanded

regions marked as white or 1 act as a buffer transition zone for where errors were

detected. Its use avoids ’tearing’ and other artifacts caused by having two different

methods reconstruct adjacent pixels known to have high frequency information. The

second threshold Tr is chosen as 0.5, the halfway point between 0 and 1, so that there

is no preference towards white or black pixels in the final reconstruction map M
(k)
t .

Finally, one last operation must be performed on the thresholded output. The
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column ‘OR’ operator SR is responsible for ensuring that the final reconstruction map

M
(k)
t is the same for all indexes between HR frames exclusively. Mathematically, the

following will hold true after the application of the operator:

M
(k)
t = M(k)

n for
�
R
�
t
R

�
< n < R

 
t
R

£�
(3.6)

The purpose of this exotic operation is to ensure that pixels that are reconstructed

with any method are also reconstructed with the same method in the next frame.

Again, this avoids ‘tearing’ and other artifacts when fusing the final reconstructed

output Y
(k)
t . The implementation of the operator is a simple boolean ‘OR’ operation

between all the reconstruction maps M
(k)
t for the frame indexes n between each pair

of HR key frames. Note, for LR frame indexes t that have HR siblings (ie when

t ≡ 0 mod R), the reconstruction map will be all 0 or black, indicating no further

reconstructions are necessary. However, this is just a technicality for completeness,

as those LR frames would get replaced with their appropriate HR siblings anyways.

The reconstruction map modifications from Eq. 3.5 can be better understood

through visual aid presented in Fig. 3.3. Without making any assertions, it can

be noted that the modified reconstruction map M
(k)
t picks out the HF content that

was not reconstructed in the last iteration. This is an important property for the

hierarchy methods to work properly: each stage must individually give a better than

the previous stage output. For instance, the linear estimation method cannot properly

reconstruct areas that are full of motion (ie HF information), and so the modified

reconstruction map will find those errors and promote the appropriate pixels (mark

as 1 or white) to be reconstructed with the next available method, in this case optical

estimation. Additionally, the pixels that are marked as 0 or black can be reconstructed

with a simpler method, speeding up the running time of the whole algorithm.
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Noisy Recon Map Filtered and Thresholded Column ‘OR’
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Figure 3.3: Visualization of the reconstruction map modifications. Note the column
‘OR’ maps are all identical.
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3.3 Linear Estimation

The linear estimation Lt is the first reconstruction step in the grand hierarchical

reconstruction scheme. Given that the downsampling and filtering operators and

parameters (FGσc
and Dt) that are used in the hybrid camera are known, the high

frequency content in each HR key frame Zk, for some HR key frame index k, can be

estimated as the difference between itself and a low pass filtered (blurred) version of

itself:
�
Zk −FGσc

Zk

�
. To construct the high frequency estimated output for non-

HR index frames t, we interpolate the high frequency content from the nearest two

HR frames across to the target frame. The interpolated high frequency content is

added back to the low quality bicubicly upsampled image Ut at frame index t. The

operation can be summarized into Eq. 3.7 shown below:

Lt = Ut +
(
1− t mod R

R

)(
Zf1 −FGσc

Zf1

)
+

(
t mod R

R

)(
Zf2 −FGσc

Zf2

) (3.7)

Where the upsampled LR frames Ut act a base value for the HF information, linearly

interpolated between the two nearest HR key-frames Zf1 and Zf2 . The frame indexes

are defined as: f1 =
�
t
R

�
and f2 =

 
t
R

£
, keeping in mind that the number of frames

available in Z 3 is reduced by a factor of R with respect to U 3.

3.3.1 Formulation Basis

The initial linear estimation output is derived from the observation that many video

sequences contain areas that are stationary in the course of R frames. Consider the

‘News’ sequence that illustrates clearly portions of video that are exactly the same

over the course of the entire sequence. Modern video compression tools are able to
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exploit this similarity, and therefore, our proposed method must do the same. The

regions that are similar can be super-resolved simply by borrowing pixels from the

nearest HR key frames. In addition, the speed of the algorithm can be increased (as

previously explained in Sec. 3.2), by reconstructing the background/stationary pixels

with the simplest method: linear estimation.

3.3.2 Implementation Details

While the linear estimation definition in Eq. 3.7 works adequately, it suffers from two

main problems.

1. The HF formulation is missing the full degradation that a LF frame experiences:

filtering and downsampling.

2. The HF formulation does not take advantage of the higher baseline set by using

the Richardson-Lucy deconvolved precomputed matrix.

Solely using just filtering is not a true reflection of the low frequency content in this

case; it suggests that the degradation process consists entirely of filtering, which is

not true. It also included a downsampling component. Since, the aim is to add the

HF differences back to upsampled LR frames, the HF formulation must be modified

to reflect the full degradation process: filtering and downsampling. However, the

addition of the downsampling components warrants the use of post upsampling, in

order to preserve spatial resolution.

The final linear estimation formulation is shown below in Eq. 3.8:
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Y
(1)
t , Lt = RKr

Gσc
Ut +

(
1− t mod R

R

) (
Zf1 −R

Kr
Gσc
BFDFFGσc

Zf1

)
+

(
t mod R

R

) (
Zf2 −R

Kr
Gσc
BFDFFGσc

Zf2

)
(3.8)

Even this simple algorithm can yield tremendous results, especially for sequences like

‘News’ and ‘Container’ that is virtually free from large global motion. In other se-

quences like ‘Foreman’, the interpolation of HF information fails because the pixels

that require the HF information have shifted spatially. This leads to the logical real-

ization that it is possible to shift the HF information spatially as well as interpolate its

value temporally. The next hierarchical method H(2) or optical flow based estimation

will follow this observation.
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3.4 Optical Flow Based Estimation

It follows from Sec. 3.3 that it HF interpolation between HR key frames only works if

the pixel remains spatially stationary. This is an assumption that is easily violated for

many pixels in a video sequence; only background pixels satisfy this assumption. The

pixels that failed to be reconstructed in the first hierarchical method linear estimation

H(1) are detected and thresholded through the reconstruction map M
(2)
t . Since the

reconstruction map marks pixels individually, a motion estimation algorithm that

is computable locally is desired. Additionally, the estimation method must operate

on the HF information and not directly on the HR pixels. Before the proposed

estimation method is described, a review of optical flow and warping is presented.

Following the generalization of these methods into functions, the optical flow based

estimation method will be formulated.

3.4.1 Flow Computation

Borrowing on the established works of Lucas and Kanade [22] and referring from Fleet

and Weiss [23], the optical flow in a hypothetical image sequence I 3 can be computed

between two frames indexes t and t+ 1. It is formulated as a least squares solution in

a local region around each individual pixel p̂ = 〈p~x, p~y〉. Under the constant intensity

assumption, a pixel in one frame (when subject to motion) remains at the same

intensity level in the next frame. This assumption is valid locally, and serves as a

starting point for the algorithm. Given an image frame It at index t, the constant

intensity assumption is expressed as:

It [p̂] = It+1 [p̂ + m̂] (3.9)
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where p̂ is the source pixel location, and m̂ = 〈m~x,m~y〉 is the motion associated with

that pixel which translates it from current frame t to the next frame t+ 1. Taking a

first-order Taylor series approximation of I 3 about the point (p~x, p~y, t), and assuming

that the motion vectors are small in magnitude, the following is true:

It+1 [p̂ + m̂] ≈ It [p̂] + 〈m~x,m~y, 1〉 ·
〈
∂ I 3

∂~x
,
∂ I 3

∂~y
,
∂ I 3

∂~t

〉 ∣∣∣∣∣
(p~x,p~y ,t)

≈ It [p̂] + m~x

�
∂It [p̂]

∂~x

�
+ m~y

�
∂It [p̂]

∂~y

�
+

�
∂It [p̂]

∂~t

�
≈ It [p̂] + m̂ · OIt [p̂] +

�
∂It [p̂]

∂~t

� (3.10)

The tth frame image derivatives of in the ~x, ~y, and ~t directions must be evaluated at

the pixel coordinate p̂, and are given by the following shorthand(s):

�
∂It [p̂]

∂~x

�
=

(
∂ I 3

∂~x

) ∣∣∣∣∣
(p~x,p~y ,t)�

∂It [p̂]

∂~y

�
=

(
∂ I 3

∂~y

) ∣∣∣∣∣
(p~x,p~y ,t)�

∂It [p̂]

∂~t

�
=

(
∂ I 3

∂~t

) ∣∣∣∣∣
(p~x,p~y ,t)

(3.11)

Next, substituting the intensity assumption from Eq. 3.9 into Eq. 3.10 yields our

constraint equation:

m̂ · OIt [p̂] +

�
∂It [p̂]

∂~t

�
= 0 (3.12)

The goal of solving for the flow vector m̂ is problematic because there is only one

equation, but two variables m~x and m~y to solve for; the system is under determined.

To solve this dilemma, we build a (w × w) window of pixels centered around the pixel

coordinate p̂ that we are interested in. This relationship can be easily described using
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the set ψw(p̂). The definition is available in Eq. 1 in the preface.

The new pixel additions can be grouped into a vector list: with the kth additional

pixel coordinate represented by q̂(k) =
〈
q
(k)
~x , q

(k)
~y

〉
= ψw (p̂) {k} (order not important).

For each pixel in the window, we generate a new equation, each having the same

desired flow vector components m~x and m~y, as shown below in Eq. 3.13

m~x

�
∂It [q̂(k)]

∂~x

�
+m~y

�
∂It [q̂(k)]

∂~y

�
= −

�
∂It [q̂(k)]

∂~t

�
(3.13)

Combining all w2 equations into a linear system is simple and straightforward:

�
∂It[q̂

(1)]
∂~x

� �
∂It[q̂

(1)]
∂~y

�
�
∂It[q̂

(2)]
∂~x

� �
∂It[q̂

(2)]
∂~y

�
...

...�
∂It[q̂

(w2)]
∂~x

� �
∂It[q̂

(w2)]
∂~y

�


︸ ︷︷ ︸

A

·


m~x

m~y

 = −



�
∂It[q̂

(1)]

∂~t

�
�
∂It[q̂

(2)]
∂~x

�
...�

∂It[q̂
(w2)]

∂~t

�


︸ ︷︷ ︸

b̂

Am̂ = b̂

(3.14)

The resultant linear system is now overdetermined: a problem that can easily solved

using a least squares (LS) solution:

m̂ =
�
ATA

�-1
ATb̂ (3.15)

The final vector m̂ will contain the column motion vector calculated at the pixel p̂.
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Simplifying the final solution can be done by expanding (multiplying) the matrices:

m̂ =


w2∑
k=1

(
∂It[q̂

(k)]
∂~x

)2 w2∑
k=1

(
∂It[q̂

(k)]
∂~x

)(
∂It[q̂

(k)]
∂~x

)
w2∑
k=1

(
∂It[q̂

(k)]
∂~y

)(
∂It[q̂

(k)]
∂~x

) w2∑
k=1

(
∂It[q̂

(k)]
∂~y

)2


-1

·


−

w2∑
k=1

(
∂It[q̂

(k)]
∂~x

)(
∂It[q̂

(k)]

∂~t

)

−
w2∑
k=1

(
∂It[q̂

(k)]
∂~y

)(
∂It[q̂

(k)]

∂~t

)


(3.16)

The well known aperture problem occurs when the (2× 2) matrix in Eq. 3.16 is rank

deficient; the matrix becomes singular and no unique solution can be found. This

often occurs when image gradients are parallel, and often regularization, higher order

motion models or iterative solutions are employed. In this work, the flow field for a

singular matrix is set to be 0 in both spatial directions ~x and ~y.

3.4.1.1 Implementation Details

The optical flow solution shown in Eq. 3.16 is subject to errors because each pixel

considered in the window has an equal weighting. A common approach is to modulate

the pixels with a 2D symmetric Gaussian kernel Gσ so that the least squares solution

matches the center pixel with the highest priority. Additionally, to generalize the

procedure and avoid unnecessary notation, a generic single pixel optical flow function

f̂
w

σ

�
A , B , p̂

�
will be defined to take the following parameters: the reference frame

A, the destination frame B, the standard deviation σ for the Gaussian kernel Gσ
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used in weighting the estimate pixels. Both modifications are shown below:

f̂
w

σ

�
A , B , p̂

�
=

w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~x

)2 w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~x

)(
∂(A.B)[q̂(k)]

∂~y

)
w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~y

)(
∂(A.B)[q̂(k)]

∂~x

) w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~y

)2


-1

·


−

w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~x

)(
∂(A.B)[q̂(k)]

∂~t

)

−
w2∑
k=1

Gσ [p̂−q̂(k)]

(
∂(A.B)[q̂(k)]

∂~y

)(
∂(A.B)[q̂(k)]

∂~t

)

(3.17)

The vector difference p̂− q̂(k) modulates the Gaussian function so that iterated pixels

q̂(k), that are spatially close to p̂, receive higher weights. To preserve the tensor

notation previously used, A .B will represent the joining of the two image frames A

and B to produce a sequence (tensor), maintaining the ability to take derivatives in

the time ~t direction.

Derivatives can be computed using finite central differences for the ~x and ~y direc-

tions. However, in the ~t direction, forward differences is the only logical choice. To

compute backwards optical flow, simply reverse the positions of the input matrices

A and B.

3.4.2 Field Warp

Once an optical flow field has been determined, a warping algorithm must be devised

that applies the motion field to a target image, warping it into a similar image that

the field was calculated from. Naively moving each pixel, from its source location

to the destination location in the destination frame, using the flow field, produces
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‘cracks’. Cracks are defined as pixels in the final warped output that never had any

data written to it because nothing in the original reference image mapped to it (via

the applied flow field). Flow fields do not (except under very special conditions) give

a 1:1 correspondence mapping between a reference frame and source frame. In fact,

flow fields will often map adjacent source pixels to the same position in the destination

frame, and as a result cause ‘cracks’ in the final warped output (due to lack of pixels

elsewhere).

A simple way to combat this problem, is to warp patches from a source frame

to the destination frame. The patches can be blended and applied using a simple

2D symmetric Gaussian kernel. The downside is that computation complexity will

increase significantly depending on the side of the Gaussian kernel used. An optical

warp function can be defined similar to the optical flow equation:

ŵw
σ

�
A , M , p̂

�
=

∑
ĉ∈φ(A)

∑
ĝ∈ψw(ĉ)

∑
ĉ+ĝ+M[ĉ]=p̂

Gσ [ĉ− ĝ] A [ĉ + ĝ]

∑
ĉ∈φ(A)

∑
ĝ∈ψw(ĉ)

∑
ĉ+ĝ+M[ĉ]=p̂

Gσ [ĉ− ĝ]
(3.18)

This formulation takes as parameters the reference image to warp A, the motion

vectors previously calculated M, the pixel coordinate to calculate the optical warp

at: p̂, as well as the blending function parameters: the window size w and standard

deviation σ. It works by doing a sum of all pixels that end up being moved to p̂

(via motion vectors), including those that belong to the blending Gaussian kernel.

Refer to Eq. 1 and Eq. 2 in the preface for the definition of the sets ψw
�
ĉ
�

and φ
�
A
�

respectively.
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3.4.3 Estimation Formulation

Using the two tools previously established, optical flow and optical warp, the optical

flow based estimation method will take HF information in key frames and ‘warp’ it to

non-key-frames. There are two different configurations for this requirement, outlined

below:

1. Calculate optical flow/warp directly between HR key-frame and LR non-key-

frame (HR-KF to LR) shown in Fig. 3.4.

2. Calculate optical flow/warp successively between all LR frames (LR to LR)

shown in Fig. 3.5.

I0 I1 I2 · · · IR

Figure 3.4: Optical flow configuration (HR-KF to LR)

I0 I1 I2 · · · IR

Figure 3.5: Optical flow configuration (LR to LR)

In the first configuration (HR-KF to LR) Fig. 3.4, optical flow/warp is bidirection-

ally computed between all pairs of HR key frames and LR frames. The total number
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of computations is trivial to compute: 2(R− 1). Additionally, the flow calculation

between frames that have large temporal difference must use larger search areas. The

larger search areas compensate for the larger motion vectors expected between LR

and HR frames. The coarse-to-fine approach, often used in optical flow calculations,

handles the problem of large and small motion vectors, with a small overhead. How-

ever, since the goal is to warp HF information to each LR in between HR key-frames,

there is an opportunity to re-use some of the results obtained at each stage, using the

second scheme: LR to LR.

In the second scheme Fig. 3.5, optical flow is bidirectionally computed between

adjacent LR frames only. The total number of computations for optical flow is com-

puted to be 2(R− 1), the same as in the first scenario. However, since the source

frames are always temporally adjacent, a reduction in computation time or an increase

in motion vector accuracy can be realized. The reduction in computation time stems

from the reduced search space for motion vectors, and the increase in motion vector

accuracy derives from the linearizion of motion vectors when considering temporally

adjacent frames. The major disadvantage of the second scheme will be discussed in

the NLM stage, with a corresponding solution.

Using the LR-LR configuration and given a LR frame index to reconstruct, two

formulations for the optical based flow estimate can be formed. The first is formed by

warping high frequency information from the first adjacent HR-KF, while the second

is formed using the second adjacent HR-KF. The final optical flow based estimate

fuses these two partial estimates. The forward partial estimate is shown in Fig. 3.6,

while the backwards partial estimate is a mirror image of that procedure, starting at

a HR key-frame and propagating HF information backwards in time.
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D0 D1 · · ·

U0 U1 · · ·

Flow Flow

R0 R1 · · ·

Warp Warp Etc

+ • + •

− − −

→
O0 →

O1 · · ·

Z0

BF BF BF

RKr
Gσc

RKr
Gσc

RKr
Gσc

Init

Figure 3.6: Optical flow based estimation: forward partial estimation.
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Mathematically, both methods are shown in Eq. 3.19 below:

→
Ot [p̂] =


Z t
R

[p̂] if t ≡ 0 mod R

RKr
Gσc

Ut [p̂] + ŵWw
σw

�
(
→
Ot−1 −RKr

Gσc
Ut−1) , f̂

Wf

σf
(Ut−1 , Ut , p̂) , p̂

�
←
Ot [p̂] =


Z t
R

[p̂] if t ≡ 0 mod R

RKr
Gσc

Ut [p̂] + ŵWw
σw

�
(
→
Ot+1 −RKr

Gσc
Ut+1) , f̂

Wf

σf
(Ut+1 , Ut , p̂) , p̂

�
(3.19)

Forward estimation begins with the initialization of
→
Ot where the index t has a corre-

sponding HR keyframe: Z t
R

where t ≡ 0 mod R. Subtracting the initialized forward

estimate
→
Ot from its corresponding partially deblurred upsampled image Rt yields

the high frequency components of the forward estimate
→
Ot. This is due to the fact

that the deblurred upsampled image Rt is the low frequency content of
→
Ot, thus their

difference yields the remaining high frequency content. Using the optical flow fields

generated from Ut to Ut+1, the high frequency content is warped to the next index

t + 1. Finally, the next frame for the forward estimate is formed when combining

the warped high frequency information with the next partially deblurred upsampled

frame Rt+1. The process is repeated until the next HR key-frame is encountered.

Due to errors in the optical flow/warp calculations, each iteration of the forward

estimation will accumulate these errors, and produce an image that degrades over

iterations. For the forward partial estimation, the first forward iteration will yield

the best results. Each successive warp will be lower in quality, and the last iteration

will yield the worst results. The backwards partial estimation will exhibit the same

properties. In both cases, the number of warps between two adjacent HR frames is

limited to R− 1.
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However, we can exploit the best of both worlds by fusing the two estimates into

the final optical flow based estimate Ot. The fusion blends the HF information present

in both estimates using the following generic blending function:

bk(x) = 1
2

�
1 + erf

�
kx− k

2

��
(3.20)

where the parameter k in the blending function controls the blending strength. In

the limit, as k → ∞, the blending functions becomes a rectangular step function.

This blending function was chosen because through the blending strength parameter

k, curves similar to linear interpolation and cosine interpolation can be achieved.

Additionally, the curve is continuous and well defined around x = 1/2. The blending

function along with the linear and cosine blending functions are shown in Fig. 3.7 for

comparison.
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Figure 3.7: Visualization of the blending function bk(x).
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Finally, the fused optical flow based estimate can be written as a blended ver-

sion of the forward estimate and the backward estimate using the blending function

bKb

�
t mod R

R

�
as shown below in equation Eq. 3.21:

Y
(2)
t , Ot =

(
1− bKb

(
t mod R

R

))
(
→
Ot) +

(
bKb

(
t mod R

R

))
(
←
Ot) (3.21)

where the parameter Kb modulates the strength of the blending. The advantage of

the final fusion in Eq. 3.21 can be seen in Fig. 3.8. The fusion of the forward estimate

and backwards estimate yields a better estimate then using the forward or backwards

estimates individually. The ‘Foreman’ sequence was selected for illustration, with a

R of 10, so that the ‘bathtub’ curve can be seen in the final fused estimate. Since the

HF is borrowed from key-frames, the frames having small temporal differences to the

key-frames are the ones that have the best performance.
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Figure 3.8: Optical flow based estimation - fusion ‘bathtub’ curves (R=10).
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Originally, the intent was to use to interpolate the HF content between the forward

and backward estimates during the optical estimation itself. However, this creates a

recursive problem: the first frame of forward estimation cannot be interpolated until

the last frame of the backwards estimation is known, since they represent the same

time index. The last frame of backwards estimation is dependent on the first frame of

backwards estimation through Eq. 3.19. By symmetry, the first frame of backwards

estimation is related to the last frame of forward estimation, and by extension, the

first frame of forward estimation, completing the circle. This circular dependency

can still be solved using an iterative approach, however, a simpler solution was used.

Interpolating the high frequency content after the individual estimates are formed

(instead of during) leads to the solution in Eq. 3.21. Utilizing the cyclic iterative

approach remains an experiment by itself, and thus will not be covered here.

3.4.3.1 Motion Quality

The optical flow derivation assumption is that the motion vectors that are calculated

are small in magnitude. However, this assumption is easily violated in almost all video

sequences, which causes large errors in the motion vectors calculated using Eq. 3.17.

The following quality function can be defined on a per-pixel basis, as function of

the weighted error residue produced between the right and left sides of Eq. 3.14 when

utilizing the motion vector m̂ calculated. In closed form, this is expressed as:

êwσ
�
A , B , p̂

�
=

w2∑
k=1

Gσ [p̂− q̂(k)]
(
m~x

∂(A.B)[q̂(k)]
∂~x

+m~y
∂(A.B)[q̂(k)]

∂~y
+ ∂(A.B)[q̂(k)]

∂~t

)
(3.22)

The error identifies pixels that had a large mismatches in Eq. 3.14, and modifies the

reconstruction map M
(3)
t [m̂] at a particular pixel [m̂] that the optical flow calculated
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is not reliable. However, since the use of bidirectional flow in the optical estimation,

the reconstruction map must be modified in a special way. Specifically, the forward

flow error and backward flow error must be fused into a final boolean mask as shown

below:

M
(3)
t [m̂]←M

(3)
t [m̂]

∨
TTo

�
êWf
σf

(Ut , Ut+1 , m̂) + êWf
σf

(Ut+1 , Ut , m̂)
�

(3.23)

When the combined flow error (forward/backward) is outside of the threshold range

To, the corresponding pixel m̂ will be marked in the reconstruction map M
(3)
t [m̂]

after residue thresholding. This guarantees that improper flow is corrected in the

NLM stage H(3), through the use of the boolean ‘OR’/disjunction operator
∨

.
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3.5 NLM Reconstruction

The NLM reconstruction method represents the third stage in the hierarchy model:

H(3). This is the heaviest of all the methods considered, and its usage must be limited

to pixels that have failed to be reconstructed using the previous two methods: linear

estimation and optical flow based estimation.

The formulation follows from previous work by Lengyel et al. [19], Najafi and Shi-

rani [11] and Protter et al. [10]: the NLM reconstructed output is a weighted average

of pixel contributions from the upsampled LR frames U 3 and/or HR key-frames Z 3.

However it has been shown by [19] that contributions from upsampled LR images do

not lead to a significant increase in performance for super resolution. The best pixel

contributions for use in NLM come from the HR key-frames themselves, since they

contain the most relevant information that has not been subject to degradation.

Each pixel marked with a 1 in the reconstruction map M
(3)
t [m̂] must be recon-

structed using the modified NLM as shown below in Eq. 3.24.

Y
(3)
t [m̂] , Nt [m̂] =

∑
〈n̂,k〉∈Υt(m̂)

wtk(m̂, n̂)Zk [n̂]∑
〈n̂,k〉∈Υt(m̂)

wtk(m̂, n̂)
(3.24)

where Nt [m̂] is the NLM reconstructed output for a particular pixel coordinate index

m̂ = 〈m~x,m~y〉 for the frame index t. The equation operates by iterating through all

pixel indexes n̂ = 〈n~x, n~y〉 in HR frame-view indexes k that belong to the thresholded

candidate set Υt(m̂) (explained in Sec. 3.5.1), and assigning a normalized weight

(explained in Sec. 3.5.3) to its respective HR frame pixel value given by Zk [n̂]. The

summation of all of these contributions yields the reconstructed NLM output.
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3.5.1 Thresholded Candidate Set

The thresholded candidate set Υt(m̂) is the list of pixel indexes that are used for NLM

reconstruction. The list features pixels from any/all HR key-frames and is built in

three steps: candidate set generation, union of sets, and finally thresholding.

First, individual candidate sets βkt (m̂) are created, one for each HR frame-view

index k using the input pixel index m̂. Individual candidate sets βkt (m̂) are formed

by including all pixel indexes in an area centered on the input pixel coordinate index

m̂, shifted by v̂kt (m̂). Its definition is shown below in Eq. 3.25:

βkt (m̂) =
¬
ψS
�
m̂ + v̂kt (m̂)

�
, k
¶

(3.25)

The shift v̂kt (m̂) represents a motion vector between a LR frame, and a target HR key-

frame Zk given by the frame index k. In other words, it tries to find where the pixel

given by Ut [m̂] is in the HR key-frame Zk. Since the candidate set stage identifies a

(S × S) region in which every pixel is checked for similarity, the motion vector shift

only needs to be accurate enough to contain the best matched HR pixel information,

where S is the candidate search size parameter associated with the algorithm. See

Fig. 3.9 for a visual aid. The motion vector implementation of v̂kt (m̂) is required to

allow medium to large motion vectors to be captured and its definition appears later

in Sec. 3.5.2. Note, all pixel indexes considered here are augmented with a third basis

component, with value HR key-frame k, in order to distinguish them in the next step.

Second, the candidate sets are merged into a grand candidate set Λt(m̂) as per

43



M.A.Sc. Thesis - Robert Lengyel McMaster - Electrical Engineering

m̂

LR

HR HR

m̂ + v̂0
n(m̂) m̂ + v̂1

n(m̂)

β0
n(m̂) β1

n(m̂)

t = 0 t = R

t = n

Figure 3.9: Candidate sets in HR key-frames formed by motion vectors.

Eq. 3.26. The union of sets focuses on the nearest two HR key-frames to the index t.

Λt(m̂) =


dt/Re⋃

k=bt/Rc
βkt (m̂)

 (3.26)

Finally, given all the pixel indexes 〈n̂, k〉 in the grand candidate set, we keep only

those that meet the criteria that the custom error metric ‖Et
k(m̂, n̂)‖22 associated with

it, is less than two custom thresholds T1, and T2. The error metric and thresholding

serves to reduce the total number of pixels processed, as well as, filter irrelevant pixels

in the NLM, keeping only the best matched pixel sources. Their definitions appear

in Sec. 3.5.3 and Sec. 3.5.4. respectively. Mathematically, the selection procedure

generates the final thresholded candidate set Υt(m̂) according to Eq. 3.27 below:

Υt(m̂) =
§
〈n̂, k〉 ∈ Λt(m̂)

∣∣∣∣ ∥∥∥Et
k(m̂, n̂)

∥∥∥2
2
≤min (T1, T2)

ª
(3.27)
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Each pixel index that remains in the set Υt(m̂) will be used for NLM reconstruction in

Eq. 3.24. These pixels have been selected to be the best sources of pixel information

for reconstruction.

3.5.2 Motion Vectors

The motion vector v̂kt (m̂) from Eq. 3.25 is an important part of all SR algorithms.

Lengyel et al. [19] demonstrates that under the right conditions, the motion vector

between a LR frame and HR key-frame can be skipped (or set to 〈0, 0〉), and subse-

quently the final SR reconstruction will still be high quality. However, once the HR

Rate parameter R gets higher, the reconstruction suffers from lack of candidates in

the NLM, and thus the NLM will waste time and fail to reconstruct pixels, trigger-

ing the fallback condition. Therefore, it is imperative that the NLM candidate sets

contain the relevant information for the reconstruction of a particular pixel. This

condition is satisfied when the HR Rate R is low because of the candidate sets are S

wide, but for higher HR Rate R, the solution must utilize a more robust approach:

explicit motion vectors.

As outlined before, the solution here must be able to handle large motion between

LR frames and HR key-frames. Reusing optical flow, a coarse-to-fine structure can be

used, such that the finest level considered is downsampled so that one pixel represents

half the size of the candidate search area size S. This heavy downsampling allows the

optical flow vectors to remain small in magnitude, but represent large changes in the

original upsampled Ut image. Additionally, the heavy downsampling cuts down the

computation complexity.

The closed form motion vector v̂kt (m̂) can be derived by tracking a hypothetical
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t = 0 t = 1 t = 2 t = 3

•
•

•
•

ẑ0
ẑ1

ẑ2
ẑ3

←
ĵ1(p̂)

←
ĵ2(p̂)

←
ĵ3(p̂)

Figure 3.10: Jumping through a sequence using backward motion vector fields.

pixel index ẑ through the downsampled version of Dt starting at some arbitrary index

t, using the jump table provided by optical flow on the heavily downsampled sequence

St, at the same frame index t. See Fig. 3.10 for a visual aid. The formal definition of

St is shown below for reference:

St = DFFGσc
Dt (3.28)

Since v̂kt (m̂) is defined to be the vector difference between the pixel index m̂ for the

frame index t and its corresponding pixel index in the HR key-frame for frame index

k, its effect on the hypothetical pixel index ẑt can be written as the spatial index

difference between ẑt and its corresponding motion vector shifted version in the kth

HR key-frame:

v̂kt (ẑt) = ẑkR − ẑt (3.29)

where R is the HR rate parameter. Relating all of the different pixel indexes ẑ∀

through the sequence is done through the optical flow equation given in Eq. 3.17.

Optical flow can be bidirectionally precomputed between all adjacent frames in the

heavily downsampled sequence S 3, and stored for reuse. A jump function1 can be

1Equivalently the operation is single pixel warping between adjacent frames.
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constructed so that the pixel ẑt can be directly related with its adjacent neighbors

(indexes t− 1 and t+ 1):

←
ĵt(p̂) = F 2 · f̂Wf

σf

�
St , St−1 ,

p̂

F 2

�
+ p̂

→
ĵt(p̂) = F 2 · f̂Wf

σf

�
St , St+1 ,

p̂

F 2

�
+ p̂

ẑt =
←
ĵt+1(ẑt+1)

ẑt =
→
ĵt−1(ẑt−1)

(3.30)

The division and multiplication by F 2 serves to transform the original pixel coordinate

p̂ to and from the downsampled frame St, where F is the resolution difference between

a HR key-frame and a downsampled LR frame, as well as between a LR frame and its

heavily downsampled version St. The implementation must use bicubic filtering to

deal with the fractional nature of resulting pixel, as well as to deal with the problem

encountered with odd sized images.

It follows from Fig. 3.10, Eq. 3.29 and Eq. 3.30 that the following relations are

true for the hypothetical pixel ẑ:

v̂0
1(ẑ1) = ẑ0 − ẑ1 =

←
ĵ1(ẑ1) − ẑ1

v̂0
1(ẑ2) = ẑ0 − ẑ2 =

←
ĵ1
�
←
ĵ2(ẑ2)

�
− ẑ2

v̂0
1(ẑ3) = ẑ0 − ẑ3 =

←
ĵ1
�
←
ĵ2
�
←
ĵ3(ẑ3)

��
− ẑ3

(3.31)

Generalizing these relations yields the closed form equation for the motion vector that

relates pixels indexes p̂ in LR frames to their counterparts in HR key-frames:

v̂kt (p̂) =


←
ĵkR+1

�
←
ĵkR+2

�
· · ·

←
ĵt (p̂) · · ·

��
− p̂ if kR < t

→
ĵkR−1

�
→
ĵkR−2

�
· · ·

→
ĵt (p̂) · · ·

��
− p̂ if kR > t

(3.32)

The vector can be computed by using the jump tables (precomputed bidirectional
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optical flow MV) and iterating from the current frame index t to the nearest adjacent

HR key-frames, making sure to follow the correct motion vector path, and filtering

at each step to account for fractional values.

The computation time per pixel is constant since there will always be at most

R jumps computed, since the sum of index distances from a frame index t to both

nearest HR key-frames is constant. The flow precomputed (jump tables) can also

be reused in the optical flow estimate as a flow prior. This allows large motions to

be captured in the optical flow computation, and then subsequently refined if the

reconstruction map value is 1.

While there are motion vector errors that will get propagated, it is expected that

the NLM candidate search size S will provide compensation. For each reconstruction,

the NLM will search the entire candidate space for matches, thus, as long as the target

area contains the relevant pixel data, the motion vector can incur some propagated

errors without any loss in NLM reconstruction quality.

3.5.2.1 Multi-view Candidate Set Extension

A simple way to extend the proposed algorithm to reconstruct multi-view sequences

is to allow candidate sets from HR key-frames in other views. Lengyel et al. [19]

proposed to use out-of-phase HR key-frame generation to distribute the availability

of HR key-frames temporally and in the view direction. However, without the right

motion vectors that relate LR frames to HR key-frames in other views, performance is

not expected to increase significantly with the addition of extra views. See Table 4.3

in the Chapter 4 for a summary of multi-view results.

Considering candidate sets from HR key-frames is accomplished by promoting the
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original HR key-frame index identifier k in Eq. 3.25 to be a vector that contains two

pieces of information: the HR key-frame index paired with its view index: k̂ = 〈k~t, k~v〉:

βk̂
t (m̂) =

〈
ψS
(
m̂ + v̂k̂

t (m̂)
)
, k̂
〉

The modified candidate set βk̂
t (m̂) now relates the area (S × S) around pixel index

m̂ in the tth LR frame (for the current view that is being reconstructed) with the

area formed by considering motion vectors to the HR key-frame with index k~t and

view k~v identified via k̂.

Similar changes in notation must be made to the thresholded set in Eq. 3.27,

the weighting function in Eq. 3.33, and finally the NLM in Eq. 3.24. The scope of

the proposed method does not currently include multi-view sequences, and so the

candidate set extension is only explored hypothetically. Lengyel et al. [19] uses this

formulation (without motion vectors) and succeeds at utilizing HR key-frames in other

views for better reconstructions over traditional single-view reconstructions.
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3.5.3 Weighting Function

The weight wtk(m̂, n̂) is a measure of how much the HR key-frame pixel Zk [n̂] resem-

bles the pixel that we are trying to reconstruct: ideally Xt [m̂]. However, since that

information is not available because the original HR data is not known, we resort to

comparing using degraded version of both the source pixel Xt [m̂] and the key frame

pixel Zk [n̂]. The generic similarity structure can still be captured if the comparison

is upgraded to use (P × P ) size patches instead of single pixels, even if the data is

partially degraded, where P is a parameter that dictates the size of the patch. The

bicubicly interpolated LR frame Ut represents the degraded version of the original

source pixels Xt, while a degraded version of the HR key-frames FGσc
Zk can be built

by artificially blurring using the known camera degradation.

The comparison is formulated as a function of the difference of two patches: one

centered on the pixel n̂ in the degraded HR key-frame, and the other centered on

the pixel m̂ in the upsampled LR frame. The difference between the two patches is

Et
k(m̂, n̂) and plays a key role in the definition of the weighting function shown in

Eq. 3.33 below:

wtk(m̂, n̂) = exp

�
−‖Et

k(m̂, n̂)‖22
2DP 2

�
(3.33)

The D parameter modulates the strength of the errors so that less or more falloff can

be achieved by the exponential function for larger errors. The differences Et
k(m̂, n̂)

are calculated by considering patch errors in the RGB channel Pt
k(m̂, n̂), the gradient

channel Stk(m̂, n̂), and in the luminance channel Vt
k(m̂, n̂) as shown below in Eq. 3.34:

Et
k(m̂, n̂) = Pt

k(m̂, n̂) ◦ Stk(m̂, n̂) ◦Vt
k(m̂, n̂) ◦Gσc (3.34)
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The differences utilize the gradient and luminance channels in order to give the

weighting function a better value for comparisons. The error patch is built by us-

ing a Hadamard product on patches extracted from each channel as shown below in

Eq. 3.35:

Pt
k(m̂, n̂) =

�
X P

m̂Ut − X P
n̂ FGσc

Zk

�
Stk(m̂, n̂) =

�
X P

m̂GUt −X P
n̂ GFGσc

Zk

�
Vt
k(m̂, n̂) =

�
X P

m̂LUt −X P
n̂ LFGσc

Zk

� (3.35)

where X P

k̂
extracts a patch of size (P × P ) from its adjoining matrix, centered on the

input pixel coordinate index k̂. The operators G and L represent transforms on the

adjoining matrix that return the Sobel gradient (magnitude) channel and luminance

(Y) channel from a RGB to YUV conversion, respectively. Both transformations and

the patch extract operator are available for reference in the preface.

Additionally, the error patch is modulated by a symmetric Gaussian filter Gσp of

size (P × P ) with standard deviation σp which helps give priority to matching pixels

that are geometrically closer to the center pixel index, while simultaneously giving

lower weight value to those further away.

3.5.4 Adaptive Thresholding

The two thresholds T1 and T2 are adaptive thresholds that trim the number candidate

pixels to include in the final NLM. The first threshold T1 is obtained by finding the

minimum patch error ‖Et
k(m̂, n̂)‖22 over all iterated pixel indexes n̂ in all HR frame

indexes considered k and selecting only those candidate pixels that are close in value
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to the minimum, as shown below in Eq. 3.36:

T1 = A min
〈n̂,k〉∈Λt(m̂)

�∥∥∥Et
k(m̂, n̂)

∥∥∥2
2

�
(3.36)

The leading factor A multiplies the minimum error by a constant amount, and enables

the first threshold T1 to capture only pixel candidates with low error. The weighting

function in Eq. 3.33 also achieves the same thing, however, it is not selective enough.

Given that the majority of pixels candidates are bad matches, it is clear that the

cumulative contribution of numerous small weights will lead to blurry results. The

first threshold T1 eliminates the bad candidate pixel matches entirely when a few

good candidate pixels are found.

The second threshold T2 eliminates the case where all candidate pixels are bad.

Using only the first threshold falsely allows candidates to be included in the NLM.

The second threshold T2 is described below in Eq. 3.37:

T2 =
K1

log
�
1 +K2‖Pt

k(m̂, n̂)‖22
� (3.37)

where the RGB patch error Pt
k(m̂, n̂) is taken from Eq. 3.35. Here, the patch size

considered is S, which is the candidate patch size parameter associated with the

algorithm. It is important to note that for a single pixel reconstruction, there is one

value for T1, but two values for T2. There are two because there are two adjacent

HR key-frames for which the RGB patch error is applied. Therefore, thresholding

using T2 must consider which HR key-frame Zk the pixel information is coming from,

according to Eq. 3.27.

The second threshold function T2 can be seen visually in Fig. 3.11 and was built
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Figure 3.11: Second threshold T2 function (K1 = 500, K2 = 1/900).

experimentally using the parameters K1 = 500 and K2 = 1/900. It works by computing

a similarity measure between the area in the reference frame Ut centered on m̂ and

source frame(s) Zk centered on the translated coordinate n̂. The similarity metric

does not consider gradient or luminance channels, nor uses a normalized Gaussian

weight matrix because it tries to match any relevant pixels whether far or close. The

second threshold reflects the expectation of finding similar pixels in the HR key-frames

considered.

For cases with occlusion, large motion vectors, or scene changes, the list of candi-

date pixels will include only bad matches (high errors), and the second threshold T2

attempts to eliminate that through the very special fallback condition that occurs in

Eq. 3.38 below:

T2 <
T1
A

(3.38)

During the fallback condition, the second threshold T2 is lower than the minimum
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candidate pixel patch error possible, making the thresholded candidate set Υt(m̂) size

to 0. As mentioned before, there are two values for the second threshold T2, and

thus the fallback condition only happens when both T2 values are small enough. If

the fallback condition is encountered, the pixel will be reconstructed with the fallback

method explained in Sec. 3.6. To signal this event, the quality map (explained shortly

in Sec. 3.5.5), is marked with a 0 to indicate the lowest quality.

3.5.5 Reconstruction Quality

A byproduct of the NLM reconstruction is the reconstruction quality matrix Qt [m̂] for

each frame index t reconstructed. It is a feedback mechanism to differentiate between

pixels that are properly reconstructed and those that are not. The reconstruction

quality matrix is defined as a function of the average of all patch errors Qt [m̂] for all

pixels included in the thresholded candidate Υt(m̂) set as shown below in Eq. 3.39:

Qt [m̂] = exp

�
−1

K3

� ∑
〈n̂,k〉∈Υt(m̂)

‖Et
k(m̂, n̂)‖22

|Υt(m̂)|

�2
�

(3.39)

After the quality function has been computed, this information must propagate to

the reconstruction map M
(4)
t , after the thresholding has been processed. This guaran-

tees that pixels that were not reconstructed with sufficient quality, are then forwarded

to the final stage of reconstruction: fallback. The purpose of the thresholding stage

is to detect these errors as well, however, due to degradation involved, it is possible

that the error remains undetected. The process of correcting the reconstruction map,

after the initial residue thresholding, guarantees that the errors in the NLM will be
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Figure 3.12: Reconstruction quality function for the NLM (K3 = 1502).

fixed with the fallback, as shown below in Eq. 3.40:

M
(4)
t [m̂]←M

(4)
t [m̂]

∨
TTn (1−Qt [m̂]) (3.40)

where the operator
∨

represents binary ‘OR’ or logical disjunction between its

operands. It updates the current reconstruction map, after residue thresholding,

with the pixels that failed the quality test. The threshold Tn controls how much re-

construction error is tolerated before marking a particular pixel to be reconstructed

using the final reconstruction method: fallback.

3.6 Fallback Reconstruction

Any pixel that fails to be reconstructed by any of the preceding methods (linear

estimation, optical flow based estimation, NLM) will be reconstructed using the
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Richardson-Lucy deconvolution method described in Richardson [20] and Lucy [21].

Pixels that ’fallback’ on this method are loner pixels; these pixels have no similar

counterparts in the adjacent frames. Pixels that change intensity rapidly between

HR frames are also difficult to reconstruct using all of the previous methods.

While these pixels are difficult to reconstruct, they are also rare in number, and

thus a compromise can be reached. They can be simply reconstructed using the

upsampled frames Ut themselves, without incurring too much loss in the quality of

the final reconstruction; it is the best reconstruction method that remains being only

marginally better than the bicubic upsampling.

The widely used closed form version is shown below for reference:

Rt = RKr
Gσc

Ut

Rk+1
Gσ

I = Rk
Gσ

I

�
I

Rk
Gσ

I⊗Gσ

⊗ (
↔

Gσ)

�
(3.41)

where ⊗ represents convolution. Due to the iterative nature of the closed form, the

initial value for R0
Gσ

I can be chosen as simply the input image I to the deconvolution,

in this case, the upsampled LR image Ut. Additionally, the method requires the use

of the original blurring kernel Gσ that was applied to I. The modified kernel
↔

Gσ

is just a flipped in both basis directions and if the kernel is symmetric, then this

operation yields the same kernel output. This use of this operator has been explored

in Sec. 5.2.1, and its iteration parameter optimized for use in this proposed super

resolution algorithm.
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Chapter 4

Results

The standard set of parameters that were used for the simulations/results are shown

in the preface. The comparison of results is often very difficult because of the different

parameters, implementation details, and difficulty to create fair set test setups. Ad-

ditionally, both PSNR and the newer M-SSIM [24] quality metrics will be presented

(where applicable); the subject of what quality metric best represents visible errors

according to the human visual system is entire branch of research by itself, and will

not be discussed here. M-SSIM parameters used for comparisons are the default ones

recommended by the authors. Running times of algorithms are also very dependent

on a number of factors such as memory speed, CPU speed, number of threads etc, and

moreover, many authors do not indicate running times. Despite all of the complica-

tions for fair comparisons, the author will make great effort to be fair and objective,

comparing to different works on an individual basis.

To standardize the proposed method’s results, a standard simulation setup was

created, shown later in Fig. 5.4, which when loaded with the sequences in their order

above, automatically output the reconstruction results to file including running times.
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Table 4.1: Comparison of results to prior work with default parameters.

Lengyel et al. [19] Proposed SR method
Sequence Bicubic

PSNR (dB) MSSIM Time (s) PSNR (dB) MSSIM Time (s)

Akiyo 35.152 43.559 0.990314 412.685 46.439 0.997794 28.579

Container 28.112 36.740 0.980581 433.542 41.165 0.993828 24.243

News 30.259 40.989 0.987936 473.588 43.566 0.994089 38.938

Hall Monit 29.545 38.325 0.989027 475.428 39.723 0.993433 84.412

Foreman 32.395 35.996 0.977319 477.941 37.782 0.979521 115.176

Stefan 27.233 29.788 0.948094 482.012 30.735 0.971763 134.004

Bus 26.787 27.630 0.835200 470.436 28.397 0.903309 167.936

Mobile 23.501 29.222 0.957512 463.526 27.921 0.956789 169.760

Comparing to the prior work by Lengyel et al. [19] in Table 4.1, the following se-

quences were selected for reconstruction, using default parameters, since they contain

a wide variation of content, with the ‘Akiyo’ sequence being the easiest to reconstruct,

and the ‘Mobile’ sequence being the hardest. For reference, the main parameters that

were used for initial degradation were: R = 5 and F = 2. The comparison is for the

reconstruction of an entire sequence of 31 frames (24 LR frames + 7 HR key-frames),

where each sequence is the standard CIF format: (352× 288). The results show sig-

nificant improvement1 over the previous work by Lengyel et al. [19], in both running

time and overall performance. The running time was measured on a 2.8GHz com-

puter, with 6GB of memory, utilizing up to 8 threads where applicable. Utilizing

the hierarchy method for reconstruction, the number of pixels that require full NLM

reconstruction is reduced significantly and is reflected in the running time of the pro-

posed algorithm. Specifically, the sequences experience a speedup factor from 2.7 in

the ‘Mobile’ sequence to 14.7 in the ‘Akiyo’ sequence, when compared to Lengyel

et al. [19]. Refer to Sec. 4.2 for the visual results associated with Table 4.1.

1The reported PSNR values here are not average: they represent the PSNR values of the cumu-
lative average error over an entire sequence.
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Table 4.2: Reconstruction map diversity after each hierarchy stage. (To = 0.125)

Sequence M
(1)
∀ M

(2)
∀ M

(3)
∀ M

(4)
∀

Akiyo 100% 2.60% 1.06 % 0.03%

Container 100% 2.31% 0.30 % 0.14%

News 100% 6.34% 6.75% 0.88%

Hall Monit 100% 7.17% 8.64% 1.80%

Foreman 100% 30.86% 35.83% 1.94%

Stefan 100% 62.27% 57.17% 29.29%

Bus 100% 84.91% 81.80% 44.65%

Mobile 100% 82.95% 62.55% 9.67%

Table 4.2 shows the reconstruction map and the distribution of pixels that are

promoted for reconstruction using a heavier method. The first stage represents the

beginning of the hierarchy and thus its initial value indicates that all pixels still re-

quire reconstruction. After the application of the linear estimation stage, background

and stationary pixels are reconstructed and the number of pixels remaining in the

reconstruction map is significantly reduced for static scenes like ‘Akiyo’. The re-

maining pixels are processed by the optical flow based estimation method. At first

glance it seems as if the optical flow based estimation causes more errors than it

solves because the reconstruction output (post residue) indicates a greater number of

pixels that need to be reconstructed when compared to the previous stage, in select

sequences. However, this is expected because of the first appearance of the recon-

struction map augmentation with the optical flow based estimation quality metric

from Eq. 3.23. Increasing the associated threshold for the quality feedback will re-

duce the impact motion quality metric has on the reconstruction map. Finally, the

last reconstruction map is produced after the NLM stage, and represents the pixels

that have failed reconstruction and require fallback. Refer to Fig. 4.1 and Fig. 4.2 for

a visual aid.
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Figure 4.1: Reconstruction map diversity after each hierarchy stage. Part 1/2
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Figure 4.2: Reconstruction map diversity after each hierarchy stage. Part 2/2
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Table 4.3: Comparison of results for multi-view sequences.

Lengyel et al. [19] Proposed SR method

R = 6 S = 15 R = 6 S = 7Sequence Views

PSNR (dB) M-SSIM Time (s) PSNR (dB) M-SSIM Time (s)

1 39.194 0.977 > 1 hr 41.845 0.989 229.223

2 39.573 0.978 � 1 hr

Ballroom 0 3 39.786 0.979 ≫ 1 hr

2* 39.865 0.979 � 1 hr

3* 39.941 0.980 ≫ 1 hr

1 37.587 0.983 > 1 hr 38.743 0.987 371.324

2 37.664 0.984 � 1 hr

Crowd 1 3 37.691 0.984 ≫ 1 hr

2* 37.813 0.984 � 1 hr

3* 37.829 0.984 ≫ 1 hr

Multi-view sequences can also be reconstructed by considering the expansion of

NLM candidate sets into other HR key-frames in other views, as shown in Sec. 3.5.2.1.

The work by Lengyel et al. [19] used a out-of-phase approach when dealing with HR

key-frame generation for the hybrid cameras across different views. This approach

balances HR key-frame generation temporally and in the view dimension. However,

further work is required to update the current algorithm to consider multi-view se-

quences thus the results for the proposed method for additional views will be empty

because the proposed method does not integrate multi-view sequences natively. A

compromise can be reached if the proposed algorithm is applied to the single-view se-

quence only, but treated as if it performed multi-view super-resolution. This puts the

proposed method at a technical disadvantage, since it will not be utilizing HR key-

frames generated in additional views. Despite this handicap, the proposed method

outperforms the prior work, in both performance and computational complexity as

shown in Table 4.3. This is expected since the prior work in [19] does not reduce num-

ber of pixels reconstructed with NLM, and thus it is applied to every pixel. The image
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Table 4.4: PSNR (dB) Comparison to other works with sparse HR frames (R = 30).

Sequence Bicubic [9] [5] [11] [19] Proposed (A) Proposed (B)

News 30.2 30.4 36.1 37.2 37.2 37.015 37.182

Mobile 23.5 23.4 25.5 26.0 27.3 23.633 27.533

Container 28.1 28.8 33.2 34.2 34.6 34.154 34.335

Hall Monit 29.6 30.5 38.0 38.1 37.3 36.407 36.974

sizes are very large (640× 480), and the comparison considers an entire sequence of

31 frames (26 LR frames + 5 HR key-frames). Sequences with views marked with a

asterisk* represent the disparity compensation that was used in [19], and serves to

assist the NLM to find candidate pixels that are very far way in different views. The

authors also have results for S = 7, but they are lower than for the displayed results

R = 15, and so they were omitted.

The comparison to other works can be found in Table 4.4. It is compared to bicu-

bic, Brandi et al. [9], Song et al. [5], Najafi and Shirani [11], and Lengyel et al. [19]

using the following parameters: R = 30, σc = 1.0, S = 32, P = 9, with the 15th frame

reconstructed only. The initial results (Proposed A) show a slight performance loss,

which is attributed to the reconstruction quality metric for the NLM. Since there are

more pixels considered, the accumulated error as per the quality metric formula, is

a lot higher. Without adequate compensation, the accumulated error will forcefully

trigger the fallback method and discard most of the NLM reconstructed pixels. The

fix is simple, change the coefficient K3 to be ∞, essentially eliminating the quality

metric from producing a fallback condition. Moreover, the last threshold coefficient

T
(3)
f also needs to be set to∞ to force the NLM output to be the final output. Addi-

tionally, it has been found the smaller patch sizes P with sharper kernels do a better

job at patch comparisons in the NLM because they capture high frequency structure
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more accurately. Reverting the patch size from 9 back to the default of 5 improves

the results, as well as speeds up the algorithm. With these three modifications, the

proposed method (B) outperforms the other works [9] [5] [11], and approximately

matches the results from [19]. However, the running time of the algorithm is signif-

icantly reduced in each sequence tested, which is a hidden bonus that is not shown

in the table. The running time is reduced by a factor of approximately 2.5 for the

‘Mobile’ sequence and up to 10 times for the ‘News’ sequence.

The modifications essentially simplifies the algorithm to be the same as in [19],

except for the addition of motion vectors. This small change gives ‘Mobile’ sequence

a slight performance boost since there are pixels that have HR counterparts that are

not captured in a (32× 32) search window around the original pixel location. The

‘Container’ sequence improves because it it has a different set of candidate pixels.

The motion vector compensated candidate search areas cause a small subset of pixels,

around the boat and ship, to not be falsely trimmed due to the second threshold T2.

The second threshold was defined to be a function of the difference between a (S × S)

size area in the LR frame and its each HR key-frame. In [19], the position of this

comparison in the LR and HR key-frames is the same, while in the proposed method it

can vary based on the adjacent jump table based motion vectors. It is recommended

that the enlargement of the candidate sets be avoided since the running time of the

algorithm will increase exponentially. Reducing the candidate search area sizes S,

and focusing on better motion estimation between LR and HR key-frames will lead

to better results. The NLM is a very powerful reconstruction tool if supplied the right

candidate pixel areas, otherwise, it will simply blur results as mentioned by Lengyel

et al. [19]. Overloading the NLM with candidates also causes more blurring since the
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Figure 4.3: Frame-by-frame results for common sequences

NLM is itself a weighted average.

It is also important to note that the optical flow based estimation loses perfor-

mance when the HR key-frames become sparse. Specifically, the forward optical flow

based estimate cannot warp the HF information from a HR key-frame to LR frame

indexes that are temporally far: the iterative warping produces blurry results after

only a few frames. Similarly the backwards estimates are plagued by the same prob-

lem. The 15th reconstructed frame requires 14 jumps to the nearest HR frame, and

so the accumulated warping errors trigger the NLM reconstruction since the optical

flow based estimation will surely fail.

Comparing the proposed method to the PSO-based fusion method by Cheng et al.

[18] is difficult because the authors could not be contacted so that the original data

could be communicated. However, they have shown results for both the ‘Akiyo’ and
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‘Foreman’ sequences using a HR to LR ratio of 0.33 which corresponds to the HR Rate

parameter of 3. Despite the lack of the original data to compare with, Fig. 4.3 can

be used for visual comparison. The proposed method outperforms their work even

when given a handicap; the proposed method for the ‘Akiyo’ and ‘Foreman’ sequences

when R = 5 outperforms [18] when R = 3, which demonstrates its effectiveness. Ad-

ditionally, their method outperforms the original NLM for super-resolution by Protter

et al. [10], and so by extension, the proposed method will also outperform the original

NLM. As explained in Sec. 3.5, the use of LR information in the NLM weighted sum

does not lead to significant increases in performance because the information quality

is degraded; the LR information is blurry and its inclusion in NLM is detrimental.

4.1 Analysis of Results

To demonstrate the effectiveness of the proposed method, the results for the ‘Fore-

man’, ‘Container’, and ‘Mobile’ sequences will be examined and analyzed.

In general, the results show that the hierarchy and residue model proposed (mul-

tiple stages of reconstruction with error feedback) build on the results of the last

stage, and improves performance overall. It is important to note that the optical flow

based estimation output contains pixels from the last stage: linear estimation. The

same statement can be made for any pair of methods in the hierarchy model. The

choice of which pixels are included in the next stage is the result of the reconstruc-

tion map M
(∀)
t , and in general it shows that the reconstruction map correctly chooses

between the different layers in such a way as to maximize the results. For example,

a pixel reconstructed with the linear estimation method, can be of better quality

than if it was forced to be reconstructed using optical flow based estimation, or even
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the heavy NLM, and it is the job of the reconstruction map to isolate these pixels

through the residue feedback, so that performance can be maximized. However, as

explicitly stated in the final paragraph of Sec. 3.2.2, the output of each stage must, on

average, be higher than the last stage, since the proposed algorithm will choose the

heavier reconstruction method when reconstruction fails at a lower stage. In other

words, without knowing if a particular pixel reconstructed with the linear estimation

method is better than if reconstructed with the optical flow based estimation method,

a failed reconstruction at the linear estimation stage will force it to be reconstructed

with the heavier optical flow based estimation, and the final output will now contain

a pixel that is of lower quality than its former reconstruction. Overall, this scenario

does not occur for the majority of pixels, and thus the performance per image frame

is maximized.
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Figure 4.4: ‘Foreman’ results per stage in hierarchy model

In particular, frame number 6 of ‘Foreman’ shown in Fig. 4.4 exhibits the exception

mentioned, since its final fused result is lower than that of the linear estimation
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output, and even optical flow based estimation output; the hierarchy model will

‘trust’ the NLM output over the optical flow based estimation and subsequently the

linear estimation output, on a per-pixel basis. The residue thresholds also support

this effect, as the the tolerable error T
(k)
f increases in each hierarchy stage k. The

errors that are detected at a one particular stage, are absorbed by the next hierarchy

stage due to the increased thresholding. Frame number 6 also has the first occurrence

of occlusion in the sequence (HR frames do not have this information entirely), and

despite the residue feedback, quality measurements and fallback, it did not optimally

compensate for this, causing a slight reduction in performance. This is an indication

that there is still a small margin for improvement in the proposed method. For the

rest of the sequence, the results are as expected, and the final output is better than

the individual methods themselves.
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Figure 4.5: ‘Container’ results per stage in hierarchy model

The ‘Container’ sequence results shown in Fig. 4.5 are particularly interesting. In
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particular there is a decade dB separation between the Richardson-Lucy deconvolved

output, and the main hierarchy outputs. Additionally, the linear estimation output

provides the best performance, which can be explained in the following way. For the

pixels that failed to be reconstructed with the linear estimation method, the opti-

cal flow based estimation method and subsequently the NLM method fail to provide

a better reconstructed output because the affected areas are full of pixels that are

aliased in the original HR source frame as well as the key-frames. The aliased pixels

cause the optical flow fields generated in the heavily downsampled frames to give

inaccurate motion vectors. In other words, the aliased pixels drastically violates the

brightness constancy assumption. The HF information warped in the optical flow

based estimation stage using the inaccurate vectors contaminate the result, and often

propagate the reconstruction to use NLM instead. However, the patch comparisons in

the NLM are not designed to capture high frequency aliased information. The patch

comparisons assume that the pixel region in the LR frame is very similar structurally

to another region in each HR frame. However, these regions will fail to be recon-

structed because their raw pixel values are varying heavily due to aliasing present in

the sequence itself. In short, neither the optical flow based estimation or the NLM

can properly reconstruct these aliased pixels, and the performance will suffer due to

many pixels being reconstructed with the fallback technique. The linear estimation

output is better because it is relatively unaffected by aliasing: the high frequency con-

tent is linearly interpolated across the LR frames from a HR key-frame to the next.

Since the linear estimation is a low pass filter, it dampens the HF aliased information

temporally across the LR frames. Moreover, since the motion vectors in the sequence

are very small in magnitude, the filtering is relevant temporally.
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Figure 4.6: ‘Mobile’ results per stage in hierarchy model

The final sequence analyzed is the ‘Mobile’ shown in Fig. 4.6 which is the hardest

to reconstruct. It features global motion, heavy aliasing, complex motion, occlusion,

high frequency details, and a gradual change in viewing area. It is clear that the linear

estimation fails constantly due to the heavy aliasing, and motion vectors present in

the scene. Optical flow based estimation succeeds in recovering some HF information,

but its effectiveness is limited. Over a few frames, HF information in the forward

estimate is blurred out, and triggers the reconstruction to use the NLM for the entire

column of pixels formed temporally between adjacent HR key-frames. The NLM gives

excellent results at this stage, since most of the missing high frequency information is

readily available in the HR key-frames. However, the NLM is not the final stage, and

so the final residue and thresholding via T
(3)
f tends to discard some of the properly

reconstructed NLM pixels in favor of Richardson-Lucy fallback pixels. Therefore, the

final reconstructed output is slightly less than the NLM output. One way to improve

the results is to raise the threshold T
(3)
f for this particular sequence. However, the
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proposed algorithm should have common parameters for all sequences, and thus it may

compromise the results of other sequences. Moreover, raising the threshold for this

particular sequence uses prior knowledge that the NLM reconstruction is a superior

reconstruction! In general, no changes to the common parameters should be made,

with the exception of the known input parameters such as R or F . However, It is

perfectly reasonable to have different common algorithm parameters as a function of

the known input parameters such as R and F . The other way to improve the results

for ‘Mobile’ is to deal with the high frequency aliasing problem, seen in many other

sequences. However, further research is required to handling aliasing.

4.2 Gallery of Super-Resolved Sequences

This section will be dedicated to visual results. The multi-view ‘Ballroom 0’ and

‘Crowd 1’ sequences were super-resolved using R = 6, and the remaining CIF sized

image sequences were super-resolved using the default parameters for the proposed

algorithm. The frame number was selected as to be temporally equidistant to adjacent

HR key-frames. The reconstructed results are also compared to the bicubic to show

improvement over simple interpolation. Additionally, an error residue between the

original HR frame and the super-resolved image is shown to accentuate differences.
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Chapter 5

Simulations with EngineX

The objective of this work is to present a practical method for key-frame video super-

resolution. However, instead of developing the algorithm as a standalone application

(for processing single inputs), a ’sandbox ’ virtual space for advanced image processing

was built. Utilizing DirectX and Win32, the simulator functions as a black-box I/O

virtual space containing many image processing techniques, combined with a user

interface designed to modularly assemble/experiment with those methods.

Within the simulator, EngineX, the proposed super-resolution algorithm was

built, simulated, optimized, and debugged. Furthermore, all secondary methods in-

cluding bicubic interpolation, convolution filtering, channel transformations, optical

flow/warp and motion vectors were all built manually; no additional libraries were

used that assist with common image processing methods, were used. This serves the

end goal of learning the threading and implementation details of all methods.

76



M.A.Sc. Thesis - Robert Lengyel McMaster - Electrical Engineering

5.1 Capabilities

The simulator features a large set of capabilities to assist with test various scenarios

without recompilation. It features a virtual space for manipulating objects, dynamic

routing for creating simulation configurations, video processing methods for transfor-

mations and experimentation, parameter sweeps for optimization, and multithreading

for speed. Hardware acceleration for video display is provided through DirectX. The

implementation involves creating separate threads for logic, drawing, timing, and in-

put. By separating the various parts of the engine, each element will continue to be

responsive when processing time for any of them increases; latency between core ele-

ments is eliminated through the use of multiple threads each handling one particular

aspect of the engine. The core of the engine is custom built, and includes rendering

functions for very fast blitting operations including alpha blending.

5.1.1 Virtual Space

The simulator displays a virtual 2D grid environment, where objects (video sequences,

and image processing methods) can be freely manipulated. Combined with an exten-

sive zoom and pan capability, the grid space allows for many objects of different sizes

to be placed, moved, and scaled at will. Additionally, the simulator handles multiple

virtual spaces simultaneously, with the ability to switch between them easily. Virtual

spaces can also be nested and connected, with a child virtual space being defined by

a parent one. Passing information between virtual spaces is done through the use of

instances of each space. Each virtual space can be cleared, saved, or loaded which

functions to save important simulation configurations. This powerful abstraction al-

lows different image processing scenarios to be quickly investigated.
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5.1.2 Dynamic Routing

Dynamic routing allows the user to ‘hook-up’ various objects in the simulator in a

similar fashion to electrical circuit building. Each element contains three types of I/O:

input, parameter, and output. The input functions as the minimum required input

for processing. The parameter is an extra input that allows the devices to change

what they do dynamically. The block must be able to function without a value in

the parameter, or a default assumed value. The output sends the computed result

out along the wire to the next block. Fig. 5.1 shows sample blocks that illustrate

parameter overriding and defaulting for adding noise to an input.

The input appears on the left of the block, while the parameter appears on the

bottom and the output appears on the right.

Figure 5.1: Sample simulation in EngineX for adding noise to an input.
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5.1.3 Video & Image Processing

EngineX loads images and videos through a simple interface menu. Each video now

becomes an individual block, which may be operated on in the tool. The following

table shows the complete list of the video and image processing methods implemented

within the simulator. The function of each operation is self explanatory, and will not

be explained individually.

Table 5.1: Complete list of video and image processing functionality within EngineX.

Operation Operation Operation

Load Video RGB Decomp RGB to YUV
Save Video Bit-planes YUV to RGB
Copy Video Comp MSE Do FFT
Delete Video Comp MSSIM Do IFFT
Crop Video Filter Do Haar-DWT

Extract Frame Deblur (RL) Do Haar-IDWT
Splice Sequences Resample Add

Add Text Resize Subtract
Clear Text Add Noise Cross Blend
Save Frame Gradient Optical Flow
Load Frame Greyscale Optical Warp

The visual interface combined with the powerful image processing methods allows

the user to experiment with methods quickly without writing any code, as per tra-

ditional research. Common methods have been implemented to account for the vast

majority of simple image processing methods, such as bicubic resampling, and color

space changes. Additional options are presented to the user to allow customization of

basic parameters like filter strength and window size. The image processing functions

can be applied immediately to a video block, or abstractly as a generic input/output

block which is linked up by the user.
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5.1.4 Parameter Sweeping

The simulator allows for parameters to be dynamically changed during a simulation.

For each value in the sweep, the entire simulation is rerun. If two (or more) parameter

sweeps are utilized, they are both varied independently.

Parameter sweeping is shown visually in Fig. 5.2 which sets up a simulation to

compare two videos, one with noise and the other without. The mean of the noise

applied is varied from 5.0 to 9.0 in increments of 0.1. The MSE as a function of

the noise meen is output to a file ‘Output.csv’ which can be used for further data

processing in other tools. From the analysis of the data, it is possible to select the

value for the parameter that gives the highest value of PSNR.

This “trial-and-error” method yields good results if the simulation is properly

setup. Typically, many of the parameters were optimized using a similar technique.

However, multidimensional optimization is an open problem that does not have a

analytic solution for non-linear systems. To further the problem, the algorithm is de-

pendent on the input and cannot (in general) be shown to be optimal for all parame-

ters. Furthermore, optimization using this method is very time consuming, especially

when the simulation tries to optimize three (3) or more parameters simultaneously.

Therefore, speeding up the entire engine’s simulations was a high priority, and was

accomplished through multithreading.

5.1.5 Multithreading and Beyond

Multithreading occurs naturally throughout the simulator between independent blocks.

The parallel processing helps run multiple simulations simultaneously, as well as helps
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Figure 5.2: A common simulation setup with parameter sweeping and file output.

run individual blocks faster. Support for block independent parallel processing is au-

tomatic and native, while multithreading inside each block must be programmed

manually. Using only a few core functions that have multithreading, such as convo-

lution, and re-sampling, various other image processing algorithms can be built. For

example, the Richardson-Lucy deconvolution makes heavy use of convolution, and

by accelerating the convolution filtering stage via threads, as a general procedure,

the Richardson-Lucy deconvolution will be sped up. The same logic applies to the

other image processing algorithms that utilize standard functions in image processing,

which have been accelerated via threading in EngineX. Future work on the simulator
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will tie into the GPU for the image processing methods. The integration should be in-

visible to the user, and serve to improve the simulation speed. Beyond multithreaded

CPU and GPU lies distributed / grid computing. The simulator is designed to even-

tually interface to other instances of itself, on other computers and across the web.

By integrating basic socket communications and a simulation distribution algorithm,

a potential simulation can utilize the CPU and GPU of multiple computers across

the Internet, in a seamless way. Distributed computing has already played a big role

in running complicated simulations in chemistry, biology, and physics. It is a long

term goal for the EngineX project.

Figure 5.3: Advanced block abstraction through instancing and DLL links.

5.1.6 Advanced Abstraction

The power to build a simulation, execute it, and view its results is the core of EngineX.

However, as algorithms can get complicated, it is often useful to represent algorithms

using simpler blocks. This abstraction is also possible in EngineX by defining a block

to be an instance of another virtual grid space. For instance, if the first virtual grid
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space contains a specialized filter which is built using some arbitrary components,

a second separate virtual grid space can create an instance of the first virtual grid

space, and capture its operation inside of a block. This abstraction can be nested

indefinitely, and is shown visually in Fig. 5.3.

Additionally, the simulator has the ability to load in special DLLs which contain

input/output blocks. The imported DLL turns into a virtual block with its inputs and

outputs defined by the code that built the DLL. When executed, the simulator will

call the DLL and invoke its main method. Interprocess communications using TCP

and UDP sockets is a planned update to the simulator, in addition to communications

with other running processes.

Figure 5.4: The standard setup in EngineX for the proposed algorithm showing bundle
data for parameters, including their defaults.
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5.2 Standard Setup

In the EngineX simulator, a standard setup was created that takes an input video

sequence, performs temporal and spatial degradation on it to get a LR and HR stream.

The proposed super-resolution algorithm is applied and its output is compared to the

input to return a PSNR output. The basic setup contains a single parameter sweep

to iterate through the chosen test image sequences. Common parameters passed to

the proposed SR algorithm are grouped into bundles, each bundle contributing a set

of parameters. The bundles of parameters get their values from preset defaults which

were optimized as best as possible for performance. The entire setup can be seen in

Fig. 5.4.

5.2.1 Optimal Richardson-Lucy Iterations

During the simulation of the proposed SR algorithm, several parameters were used

that were optimized using standalone simulations with EngineX. Among the count-

less simulations performed, the optimization of the Richardson-Lucy iterations Kr

produced an interesting result.

Referring to Fig. 5.5, two different simulations were performed on the ‘News’ se-

quence. Since Gaussian filtering, resampling, and RL deconvolution are all spatial

domain functions, only a single frame is required; the 15th frame was selected for sim-

ulation. In the first simulation, the raw Gaussian filtered input is deconvolved using

the RL deconvolution method, while in the second simulation, downsampling occurs

as to simulate the action of the hybrid camera in generating LR frames. Upsampling

is also used to simulate the initial step of the SR algorithm.

From the results shown in Fig. 5.6, it is clear that the upsampling followed by
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Figure 5.5: Simulation for the optimal number of Richardson-Lucy iterations. Top:
with resampling. Bottom: without resampling.

downsampling causes the Richardson-Lucy deconvolution method to lose effective-

ness after only a handful of iterations. Normally, it is possible to apply hundreds of

iterations of the Richardson-Lucy deconvolution algorithm, without degradation in

the output. However once resampling is applied, the performance of the Richardson-

Lucy deconvolution method is compromised. The ‘sweet-spot’ can be directly ex-

tracted from the data, and is reflected in the default RL iteration parameter for

the algorithm: Kr = 8, given the filtering strength σc chosen. The frequency based

explanation is that the downsampling operator receives low-pass filtered data from

the output of the Gaussian filter block. When the standard deviation approaches 0,
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the downsampling operator decimates the unfiltered input, and the result is a high

frequency image that is full of aliased components. To overcome this, the filtering

strength should be increased. However, when the filtering strength (including window

size) is increased too much, the output will become completely blurred, and its data

essentially unrecoverable. Thus, adequate filtering before decimation is important for

the super-resolution process, and the simulation results support this assertion. The

two intersecting lines in the figure correspond to the chosen optimal RL iterations,

and filtering strength under a Gaussian window of 3 to be used in the hybrid camera.
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Figure 5.6: Results for the simulation to determine optimal RL iterations. Left: with
resampling. Right: without resampling.
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Chapter 6

Conclusion and Future Work

The problem of key-frame based video super-resolution remains a challenge to this

day. The proposed algorithm provides a hierarchy framework for super-resolution by

combining several different methods such as optical flow based estimation, and NLM.

Some of the major challenges faced include occlusion, high frequency aliasing, se-

lecting between different methods using masks, determining optimal parameters, and

utilization of different feedback methods. Motion vectors via optical flow continues

to be a major part of all SR algorithms, and its utilization in the proposed method

has been a crucial component of its success. Moreover, to develop and fine tune the

algorithm, an advanced image processing tool was created to push the boundaries

of current research. By integrating advanced simulation capabilities with abstract

block and image processing methods, the EngineX simulator enables the design and

simulation of high level algorithms with ease.

Overall the proposed hierarchy method provides a sturdy foundation for key-frame

based super-resolution for hybrid cameras. Future work is aimed at further reducing
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the computation time, and identifying the limitations of the proposed method. In-

tegrating additional sources of information such as multi-view sequences and depth

map priors represents other research avenues. Alternatively, expanding the simula-

tors capability for performing image and video processing is also important. Parallel

processing either by multithreading, GPU, or distributed computing is targeted for

further development.
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