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Abstract 
 

The standard genetic code (SGC) is the cipher used by nearly all organisms to transcribe 

information stored in DNA and translate it into its amino acid counterparts. Since the early 

1960s, researchers have observed that the SGC is structured so that similar codons encode amino 

acids with similar physiochemical properties. This structure has been hypothesized to buffer the 

SGC against transcription or translational error because single nucleotide mutations usually 

either are silent or impart minimal effect on the containing protein.  We herein briefly review 

different theories for the origin of that structure. We also briefly review different computational 

experiments designed to quantify buffering capacity for the SGC. 

We report on computational Monte Carlo simulations that we performed using a computer 

program that we developed, AGCT. In the simulations, the SGC was ranked against other, 

hypothetical genetic codes (HGC) for its ability to minimize physiochemical distances between 

amino acids encoded by codons separated by single nucleotide mutations.  We analyzed 

unappreciated structural aspects and neglected properties in the SGC. We found that error 

measure type affected SGC ranking. We also found that altering stop codon positions had no 

effect on SGC ranking, but including stop codons in error calculations improved SGC ranking. 

We analyzed 49 properties individually and identified conserved properties. Among these, we 

found that long-range non-bonded energy is more conserved than is  polar requirement, which 

previously was considered to be the most conserved property in the SGC. We also analyzed 

properties in combinations. We hypothesized that the SGC is organized as a compromise among 

multiple properties. 

Finally, we used AGCT to test whether different theories on the origin of the SGC could 

explain more convincingly the buffering capacity in the SGC. We found that, without accounting 
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for transition/transversion biases, the SGC ranking was modest enough under constraints 

imposed by the coevolution and four column theories that it could be explained due to 

constraints associated with either theory (or both theories); however, when 

transition/transversion biases were included, only the four column theory returned a SGC 

ranking modest enough that it could be explained due to constraints associated with that theory.  
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Preface 

The following body of work is intended to be dispatched as two documents for publication. 

Chapters 1 and 2 will be combined to form a research paper, and Chapter 3 is intended to provide 

the basis for a brief communication. Chapter 1 contains a brief review on ideas about the origin 

of the genetic code, with a focus on computational analyses. Chapter 2 complements Chapter 1 

by presenting commentary and results from analyses on aspects of the genetic code and 

computational analysis that were unappreciated or neglected in previous studies. Chapter 3 

involves testing how well two theories on the origin of the genetic code explain buffering against 

transcription and translation errors. 

Chapter 1 

1.1. Background 

The origin and evolution of the genetic code remains among the most elusive and 

contentious mysteries in biology. The genetic code is the rule-set according to which information 

in DNA (DeoxyriboNuleic Acid) is transcribed to RNA (RiboNucleic Acid), which then is 

translated into amino acid chains (i.e.., polypeptides). In organisms, information is stored in 

DNA. When organisms, or their constituent cells, utilize stored information, it is transcribed 

from DNA into complementary messenger ribonucleic acid (mRNA) strands. In ribosomes, 

mRNA recruits transfer ribonucleic acid (tRNA) molecules, each attached to a specific amino 

acid. Amino acids are linked together with phosphodiester bonds, forming polypeptides (e.g., 

proteins), which are the functional units in cells.  

 Nucleotides are arranged into triplets called codons. Each codon is associated with an 

amino acid (Figure 1), but multiple codons may encode the same amino acid. This redundancy is 

attributable partially to biochemistry (Crick, 1966). The first position in the tRNA anticodon (a 
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triplet that is the reverse complement for its paired mRNA codon) is spatially unconstrained 

sufficiently to engage in nonstandard base pairing. For instance, the general anticodon GNN can 

represent the general codons NNC and NNU (wherein N represents any nucleotide). Because 

these general codons bind (or charge) the same tRNA molecule, they encode the same amino 

acid. This explanation for redundancy, involving flexibility in the third position, is known as the 

wobble hypothesis. 

 The wobble hypothesis can explain only some redundancy in the genetic code. For 

instance, the wobble hypothesis cannot explain why UUN encodes two amino acids while UCN 

encodes only one. Moreover, the wobble hypothesis cannot explain why a particular amino acid 

is assigned to its respective codon. 

Complicating the elusive and contentious mystery is the near universality associated with 

the genetic code. The standard genetic code (SGC; referred to herein as represented – in 

canonical form – in Figure 1) is shared by almost all organisms. Exceptions exist – mitochondria 

in some organisms (Barrel et al., 1979) and cells in some organisms (Knight et al., 2001) use 

different codes (Figure 2). How the SGC originated and evolved and why it appears to have 

been altered occasionally remain unsolved. 

Another fact beseeching explanation is the observation that similar codons encode similar 

amino acids (Epstein, 1966). By examining all possible mutations at all positions in all codons, 

one finds that 24% are synonymous, 39% are nonsynonymous but result in similar amino acids 

(i.e., amino acids with similar properties; e.g., hydrophobicity or polarity), 8% are 

nonsynonymous and result in a range in property changes, 22% are nonsynonymous and result in 

dissimilar amino acids and 7% result in stop (or termination) codons. Most point mutations thus 

result in negligible effects on protein function. 
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1.1.1. Frozen Accident Theory (Crick 1968) 

Several ideas have been proposed to explain the origin of the genetic code. Among the first 

major ideas was the frozen accident theory (Crick, 1968). Crick (1968) proposed that a 

primordial genetic code (PGC) preceded the SGC. The PGC was characterized by some aspects 

that resembled the SGC. For example, the PGC likely involved triplets. The continuity principle 

suggests that, if organisms originally used a code with smaller or larger codon sizes, then change 

to a triplet-based system would have caused all previously existing proteins to have incurred 

missense or nonsense mutations. This almost certainly would have been lethal, suggesting that 

such a transition is unlikely to have occurred. 

The PGC probably differed from the SGC in other aspects. For example, the PGC might 

have involved only two nucleotides rather than four and, therefore, encoded fewer codons (Crick, 

1968). A reduced codon number and constraints imposed by the wobble hypothesis entail that 

the PGC would have been unable to have encoded enough proteins to generate functional 

proteomes. Another aspect, one fundamental to genetic code evolution, is lacking specificity. 

The PGC likely lacked tRNA molecules that delivered specifically one amino acid for one 

codon. These primordial tRNAs would have mapped to multiple codons, forming codon blocks, 

and these codon blocks would have been larger than codon blocks in the SGC. Each codon 

would have encoded entire amino acid families. Through mutation and natural selection, tRNA 

molecules gradually would have become more refined. 

Effective function by a protein is related to its folded shape, which is determined by 

properties associated with its constituent amino acids. If a specific codon were to have encoded a 

variety of amino acids, then some would have resulted in shapes that would have been more 

effective than would have others; consequently, organisms with mutant tRNAs that consistently 
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recruited more-effective amino acids would have been characterized by fitness advantages 

relative to their competitors, on a per protein basis. Effects become more complicated in 

multiprotein systems, wherein changes might have led to some proteins having functioned more 

effectively and others less; whether such changes would have been selected positively would 

have determined whether mutant tRNAs ultimately became fixed. 

Such a scenario could explain the observation that similar codons encode for similar amino 

acids. Crick (1968) suggested that the PGC involved a reduced amino acid set and new amino 

acids were introduced gradually; proteomes must have been small for this to have occurred 

because replacing amino acids in large proteomes would have imparted devastatingly negative 

effects on fitness. Crick also suggested that amino acid residues would have been replaced with 

similar amino acids to minimize disruption. Because new amino acids would have been assigned 

to codons within larger PGC codon blocks, they would have been surrounded by existing amino 

acids with similar physicochemical properties. Each new amino acid likely would have been 

recruited by modifying an existing tRNA. Because tRNAs would have been modified only 

slightly, cognate amino acids likely would have been related closely to their precursors. 

After proteomes had become more complex, the prevailing genetic code would have 

become "frozen" (Crick 1968). Additional changes to that prevailing genetic code would have 

been extremely deleterious, most often lethal, so the genetic code no longer would have been 

able to change, establishing the SGC. 

The frozen accident theory provides an explanation for similar codons encoding similar 

amino acids in the SGC. It also provides an explanation for the SGC appearing to be universal. 

Since its publication (Crick 1968) and several nonstandard genetic codes having been discovered 

(Barrel et al., 1979; Maeshiro & Kimura, 1998; Knight et al., 2001) the frozen state description 
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attributed to the SGC has been debunked. The frozen accident theory nevertheless remains 

influential, and some of its details – such as a PGC evolving into the SGC – are recognizable in 

the adaptive hypothesis (Sonneborn, 1965) as well as the coevolution (Wong, 1975) theory 

(described subsequently). 

1.1.2. Stereochemical Theory (Woese et al. 1966) 

When the frozen accident theory was proposed, the major alternative explanation for the 

origin of the genetic code was the stereochemical theory. The stereochemical theory suggests 

that each amino acid is associated with a specific codon purely due to stereochemical 

compatibility. The earliest version was formulated by Woese et al. (1966), who observed that 

some amino acid properties associate with specific nucleotides at specific positions: nonpolar or 

polar amino acids are associated respectively with codons with a purine or pyrimidine at the 

second position. 

Attempts to explain such associations constitute a long and varied history (Gamow, 1954; 

Pelc, 1965; Woese et al., 1966; Pelc & Welton, 1966; Melcher, 1974;  Balasubramanian et al., 

1980; Hendry et al., 1981; Shimizu, 1982). Explanations often involved identifying some 

physical complementarities between amino acids and anticodons. These attempts have failed to 

attain prominence in the genetic code literature. 

Modern variants on the stereochemical theory have been influenced by the observation that 

some amino acids bind to RNA (Yarus, 1988, 1991, 1993, 1998, 2000; Yarus & Christian, 1989; 

Majerfeld & Yarus, 1994, 1998; Majerfeld et al., 2005). The initial breakthrough involved 

documenting that L-arginine can bind to specific RNA sites (Yarus, 1998). Several binding sites 

or potential binding sites were discovered subsequently for other amino acids, including L-valine 

(Majerfield & Yarus, 1994), isoleucine (Majerfield & Yarrus, 1998), tyrosine (Mannironi et al., 
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2000), tryptophan (Majerfeld & Yarus, 2005), histidine (Majerfeld et al., 2005) and glutamine 

(unpublished work referenced by Yarus et al., 2009). Documenting RNA binding sites for the 

remaining 13 amino acids likely will be achieved in the future. This prediction is supported by 

tests that show a statistically significant increase in frequencies for codon sequences in binding 

regions for amino acids (Yarus, 2000), suggesting that codon sequences are important for amino 

acid binding. 

The foregoing observations on RNA-amino acid binding led to the directed template 

hypothesis. The directed template hypothesis suggests that RNA and amino acids are associated 

with one another through direct chemical interactions. The directed template hypothesis can take 

two forms: weak and strong. The weak form suggests that the directed template hypothesis 

explains only the early PGC, whereas the strong form suggests that the directed template 

hypothesis explains the SGC. The weak form is complementary with other ideas, specifically the 

frozen accident theory (Crick 1968), adaptive hypothesis (Sonneborn, 1965) and coevolution 

theory (Wong, 1975), which propose a PGC wherein codon-amino acid associations existed 

before the PGC evolved into the SGC. 

The weak directed template hypothesis might explain the fact that similar codons encode 

similar amino acids. If a specific codon were associated with a specific amino acid due to a 

stereochemical complementarity or chemical attraction, then a similar-but-different codon would 

be expected to be associated with a similar-but-different amino acid. Such associations could 

have resulted in the patterns observed in the SGC. While results consistent with the directed 

template hypothesis are promising, they provide insufficient evidence for supporting the strong 

directed template hypothesis. Consequently, while the stereochemical theory entails interesting 
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implications for the PGC, it has insufficient support to constitute a compelling explanation for 

the origin and evolution of the SGC. 

1.1.3. Adaptive Hypothesis (Sonneborn, 1965) 

Another explanation for the origin and evolution of the SGC is the adaptive hypothesis 

(Sonneborn, 1965). The adaptive hypothesis suggests that the SGC has been shaped by natural 

selection to minimize effects from transcription (i.e., mutation) or translation errors. Through 

degeneracy and codon arrangement, assignments in the SGC ensure that such errors will return 

either the same or similar amino acids. This ensures that effects on resulting proteins are 

minimized. 

The adaptive hypothesis was first suggested by Sonneborn (1965), who analyzed 

degeneracy in the SGC. Although the SGC had been deciphered incompletely at the time, 

Sonneborn identified redundancy in it. He noted that 88% among redundant codons are 

connected to one another through only 1 nucleotide change. He also noted that some amino acids 

cannot be connected through any one change. He suggested that this pattern may have been 

generated by natural selection operating to protect against mutation effects, as such a process 

would have entailed that mutations resulted typically in either synonymous amino acids or amino 

acids with similar properties. 

Goldberg and Wittes (1966) similarly suggested that the SGC is arranged to minimize 

deleterious effects from mutation through degeneracy and codon block arrangement. The authors 

observed that the SGC is buffered more effectively against effects from transition than from 

transversion mutations and suggested that amino acids requiring more protection (e.g., from 

thermal degradation) would be expected to contain codons with greater GC content, as they are 

more stable. 
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Woese (1965) suggested that the SGC minimizes effects from translation errors (i.e., 

recruiting incorrect tRNAs). Woese noted that degeneracy is greatest at third positions and errors 

associated with first positions often lead to substitutions with similar amino acids. Transversion 

mutations at second positions lead to the most-dramatic translational consequences. Woese 

remarked that degeneracy levels correspond quantitatively to error rates at each position 

(10:1:100 for first, second and third positions, respectively; Grunberg-Manago, unpublished 

results). 

Woese et al. (1966) implemented a more-qualitative approach to test a claim by Epstein 

(1966) that some amino acids are more likely to be substituted by other, specific amino acids. By 

observing distances traveled by amino acids on chromatography paper in a nonpolar pyradine 

solvent, Woese et al. were able to assign a polarity value to each amino acid. They discovered 

that nonpolar amino acids are characterized by greater codon sequence similarity with other, 

nonpolar amino acids (and similar patterns characterize polar amino acids). This suggests that the 

SGC is characterized by an overall ‘smoothness’ with respect to polarity. 

These finding suggest the structure of the SGC may have resulted from non-mutually 

excluding process(es): physical, chemical and evolutionary. Additional research, now possible at 

a deeper level than with the foregoing, initial observations, is required to better understand SGC 

structure. 

1.2. Computational Studies on the Genetic Code 

 One way to evaluate the extent to which the SGC is buffered against transcription or 

translation error is to compare it against other, hypothetical genetic codes (HGCs). HGCs can be 

produced by shuffling amino acids identities among codon blocks. This process is accomplished 

efficiently by computers. 
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1.2.1. Alff-Steinberg 1969 

The earliest such analysis was conducted by Alff-Steinberger (1969). Alff-Steinberger 

maintained the codon-block structure for the 20 amino acids and three stop codons and compared 

the SGC to each among 200 HGCs by calculating an error transmission index for each codon 

position. The error transmission index was the summed absolute pairwise difference over all 

possible codon mutations for an amino acid property (e.g., GGG-GGA, GGG-GGC, GGG-GGU, 

… for corresponding amino acid molecular weights). Smaler values indicate genetic codes that 

are buffered more effectively against errors, whereas higher values indicate genetic codes that 

are buffered less effectively. Alff-Steinberger examined independently six amino acid properties 

(molecular weight, polar requirement, number of dissociating groups, PK', isoelectric point and 

α-helix forming ability) and found that the SGC returned a smaller error transmission index than 

did the HGCs. Without exception, changes at third positions returned smaller error transmission 

indices than did changes at first positions, which returned smaller error transmission indices than 

did changes at second positions. This result accorded with observations that third positions are 

buffered more effectively against translation errors than are first positions and both are buffered 

more effectively than are second positions (Woese, 1965). It also supported the notion that the 

SGC might have evolved in response to relative error frequencies at each position 

(third>first>second). 

1.2.2. Haig & Hurst 1991 

Haig & Hurst (1991) used a method similar to that used by Alff-Steinberger (1969). They 

generated 10000 HGCs through amino acid identity rearrangement (Figure 3). Like Alff-

Steinberger, Haig and Hurst analyzed each codon position independently and similarly found 

that errors at third positions were more conservative than were errors at first positions, which 
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were more conservative than were errors at second positions. Unlike Alff-Steinberger, Haig and 

Hurst used as their error measure mean squared distance. Haig and Hurst examined four 

properties: polar requirement, isoelectric point, molecular volume and hydropathy. They found 

that polar requirement and hydropathy were conserved strongly (polar requirement was 

conserved more strongly), whereas isoelectric point and molecular volume were unconserved. 

Only one among the 10000 HGCs returned a lower polar requirement score than did the SGC. 

1.2.3. Goldman 1993 

Goldman (1993) criticized that result by observing that one million represented a tiny 

fraction among the 2.4x10
18

 possible HGCs. This observation complemented observations made 

previously by Wong (1980) and, to a lesser extent, Di Giulo (1989), who had argued that the 

SGC was far from the most-effective error-minimizing code. Goldman investigated robustness in 

the SGC by comparing it to HGCs identified through an efficient, heuristic, error-minimizing, 

optimization search process. Goldman found that optimized HGCs almost always returned lower 

mean square errors than did the SGC. Goldman concluded that the SGC was far from optimal 

and could be improved easily in error-minimization terms. These results later were corroborated 

by Di Giulo et al. (1994) and Judson & Haydon (1999). 

Goldman (1993) also conducted a variation on HGC generation by varying codon block 

structure. Rather than rearranging identities within 20 predetermined codon blocks, Goldman 

started with 61 blocks (i.e., keeping the three stop codon positions invariant) and allowed each 

amino acid identity to occupy any available block(s) subject to the constraint that each amino 

acid identity ultimately had to attain the same codon number as it did in the SGC. Goldman 

found that no HGC was superior to the SGC under these conditions, ultimately suggesting that 

codon block structure is an important factor to consider in error measure analyses. 
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1.2.4. Freeland & Hurst 1998a 

Freeland & Hurst (1998a) later would complement the analysis by Haig & Hurst (1991) by 

accounting for transition and transversion mutation biases (Kumar, 1996) and by accounting for 

different errors rates in the three codon positions. Despite the potential for twice as many 

transversions (i.e., purine to two pyrimidines or pyrimidines to two purines) as transitions (purine 

to purine or pyrimidine to pyrimidine), most genomes are characterized by having undergone 

more transitions. Similarly, errors in the third position of a codon are more likely than are errors 

in the first position which, in turn, are more likely than are errors in the second position (Woese, 

1965). Freeland and Hurst accounted for these biases by weighting more frequent errors greater 

than less frequent errors . Freeland and Hurst showed in a famously titled paper that only 1 in a 

million HGCs returned a lower mean square error for polar requirement than did the SGC. 

1.2.5 Freeland and Hurst 1998b 

In a complementary study to the polar requirement analysis by Freeland & Hurst (1998a), 

Freeland & Hurst (1998b) tested whether the SGC remained optimized relative to HGCs 

generated when amino acid shuffling was restricted to members in biosynthetic pathways. The 

authors ran simulations wherein transitions and transversions were weighted equally and 

transitions were weighted greater than were transversions. When transitions and transversions 

were weighted equally, the restricted amino acid set imparted a small but noticeable effect on 

SGC ranking, approximately doubling it (284 vs. 114 per 1000000). Despite the increase, the 

SGC ranking remained too low to be considered as a product from chance processes. When 

accounting for transition and transversion biases, no significant difference in SGC ranking was 

achieved. Both simulation results suggest that coevolution (i.e., between biosynthetic pathways 
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and amino acid incorporation into the SGC) is insufficient to explain the observed error buffering 

in the SGC. 

1.2.6 Ardell 1998 

 Ardell (1998) used a protein substitution matrix rather than error measure calculations to 

analyze polar requirement. A protein substitution matrix quantifies how frequently one protein is 

substituted for another. This can be used as an approximation for amino acid similarity because 

more-similar amino acids will be substituted interchangeably at a higher rate relative to less-

similar amino acids, as substitutions among more-similar amino acids impart smaller impacts on 

protein function. Ardell primarily was concerned with testing whether the factors that effected 

buffered codes could have operated on specific positions within codons. Ardell found that 

position-invariant factors, like base-content and mutation, could explain code optimization and 

thus error-minimization might have been involved only early in SGC evolution. 

1.2.7. Judson & Haydon 1999 

Judson & Haydon (1999) evaluated how effective the SGC was relative to HGCs produced 

in simulated evolutionary processes. They created a computer program involving a genetic 

algorithm that generated HGCs, allowed them to mutate and ‘breed’ (i.e., create offspring codes 

with properties from both parental codes) and selected the HGC with lowest error measure score 

in each population to continue a lineage. Error measure scores were calculated as absolute and 

squared differences for eight physicochemical properties and six derived variables for eight 

structural properties. Over several generations, the most-refined HGC was compared with the 

SGC. Judson and Haydon found that HGCs produced in this manner consistently outperformed 

the SGC at all three codon positions. The authors used their genetic algorithm to select for HGCs 

with similar structure to that in the SGC. Structure was assessed on the basis of connectedness: a 
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HGC was found to be similar to the SGC if both would yield similar synonymous, nearly 

synonymous (i.e., leading to similar amino acids) and non synonymous mutation numbers. Under 

these conditions, most-refined HGCs were much more similar to the SGC. Judson and Haydon 

suggested that the SGC ultimately resulted from selection operating on a primordial code with 

flexibility and potential for adaptation. 

1.2.8 Freeland et al. 2000 

Freeland et al. (2000) disagreed with the suggestion that identifying more-effectively 

buffered HGCs is tantamount to rejecting the hypothesis that the SGC resulted from an 

evolutionary process in which natural selection operated to minimize error. They considered two 

situations: one where the SGC was allowed potentially to compete against the 2.4x10
18

 possible 

HGCs and one where competition was restricted to a smaller (~10
9
 possible) HGC subset 

delimited by biosynthetic associations. They also used data from protein substitution matrices to 

quantify similarities among amino acids (and compared these to analyses involving polar 

requirement to relate their results to previously published results). They found that the SGC was 

between 76% and 97% optimized relative to the unrestricted set and between 96% to 100% 

optimized relative to the restricted set. Freeland et al. conceded that imagining a real-world 

scenario wherein optimal alternative genetic codes could have evolved and competed, ultimately 

producing the SGC was challenging because, as increasingly optimized codes occur infrequently, 

competition among such codes is unlikely to have occurred. As error-minimization became more 

enhanced, evolutionary rates would have decreased, and codes would have become frozen before 

a global error minimum could have been achieved. 

1.2.9 Ardell & Sella 2001 
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Ardell & Sella (2001) investigated why the SGC is restricted to 20 amino acids. Ardell and 

Sella conducted computer simulations that began with an ambiguous code, which gradually 

evolved into a more-specified code through successive alterations. Fitness for codes was 

determined by examining the ability to translate a message. Each message involved sites, and 

each amino acid was assigned a fitness value for each site. Amino acids, here, referred to 20 

hypothetical amino acids created for the simulation. Each amino acid was assigned a value 

ranging from 1 to 20, which served as a proxy for its physiochemical properties.  Owing to their 

different values, some amino acids were suited better at a particular site than were others. The 

more dissimilar an amino acid value was from the optimal amino acid value at a particular site, 

the greater was the fitness cost for the dissimilar amino acid occurring at that site. The actual 

fitness cost was determined by the user as well as the probability for mutation (i.e., to a new 

identity). Each mutated code fitness would be compared to the nonmutated code by its ability to 

faithfully translate a message.  New mutated codes were allowed to compete with predecessor 

codes, and most-fit codes outcompeted less-fit codes. The simulations mimicked a natural 

selection scenario for how the SGC might have evolved. They found that codes always became 

nonambiguous and almost all codes became redundant, as observed with the SGC. The final 

encoded amino acid number resulted from a balance between mutation rates and toleration for 

missense mutations. A higher mutation rate encouraged more redundancy whereas a higher 

missense toleration produced greater diversity. The codon number for the SGC may have 

resulted from that interplay. The authors moreover found that the amino acids incorporated into 

evolving codes were characterized by moderate physiochemical characteristics. These amino 

acids may have been more fit because they could function in a wide variety of roles. 

1.2.10 Gilis et al. 2001 
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Gilis et al. (2001) investigated the effects that amino acid frequencies impart to error 

buffering in the SGC. Amino acids occur heterogeneously among proteins; mutations involving 

more-frequent amino acids impart a greater effect on fitness because they occur more frequently. 

Amino acid distances were determined two ways: PAM matrices and a cost matrix. The cost 

matrix estimated the free energy change in a protein after substituting one amino acid for 

another. The estimation was obtained by measuring torsion potentials with non-localized long 

range hydrophobic interaction data. The authors found that the SGC was even more optimized 

than previously thought. Among 10
9
 HGCs, the SGC ranked second. 

1.2.11  Goodarzi et al. 2004 

Goodarzi et al. (2004) considered possible effects from stop codons. Mutations to stop 

codons, nonsense mutations, truncate proteins, which almost always nullify function. Goodarzi et 

al. examined error buffering in the SGC while accounting for effects from stop codons and using 

a fitness measure derived from amino acid substitution matrices. The authors ran a variety of 

simulations in which different penalties for mutating to a stop codon were assigned. Rather than 

calculating distances, nonsense mutations instantly incurred penalties. Goodarzi et al. also 

incorporated amino acid frequencies into their calculations. Mutations resulting from more-

frequent amino acids were weighted higher than were mutations from less frequent amino acids.  

They discovered that the SGC returned the lowest error measure score for every 10
9
 HGCs 

examined. As with other investigations, stop codon positions notably remained frozen in place. 

1.2.12 Vetsigian et al. 2006 

An explanation related closely to the hypothesis that the SGC resulted from an 

evolutionary process in which natural selection operated to minimize error was presented by 

Vetsigian et al. (2006), who suggested that optimization occurred through horizontal gene 
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transfer in pre-LUCA (Last Universal Common Ancestor) communities (Woese et al., 1990). 

These communities would have contained multiple unicellular individuals with distinct genetic 

codes. These individuals frequently would have experienced horizontal gene transfer. The 

authors suggested that, for individuals to have utilized effectively donor-protein innovation, 

recipient genetic codes would have to have resembled closely donor genetic codes. The closer 

the resemblance, the more-effective would have been the innovation. Consequently, whenever 

organisms received material, natural selection would have operated, favouring organisms with 

recipient genomes that were similar to donor genomes. Gradually, this would have drawn 

together all codes into a single, universal code. Vetsigian et al. tested this scenario through 

computer simulation. By using a process similar to that used by Ardell and Sella (2001), 

Vetsigian et al. allowed code populations to evolve over time. Like Ardell & Sella, Vetsigian et 

al. measured the fitness for a code by constructing a hypothetical message where codons were 

assigned to certain site type. Each site type had an optimal amino acid, with other amino acid 

resulting in a reduction in fitness proportional to the actual amino acid and the ideal amino acid. 

Unlike Ardell & Sella (2001), the amino acids used were real amino acids whose similarity was 

determined through Hamming Distances (amino acid differences between two proteins). As 

simulations progressed, mean distance between neighboring amino acids as well overall 

similarity among codes in the population were evaluated without and with horizontal gene 

transfer. The authors found that horizontal gene transfer resulted in genetic codes becoming more 

similar over time, in contrast to outcomes in populations evolving without horizontal gene 

transfer. Although populations under both scenarios tended toward reduced mean distances 

between neighboring amino acid properties, the process was more effective in populations 
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evolving with horizontal gene transfer. This suggests a plausible alternative to an already 

universal code become refined through natural selection. 

1.2.13 Novozhilov et al. 2007 

Novozhilov et al. (2007) also investigated how well buffered against error the SGC is 

when compared to possible HGCs within a restricted space among all possible HGCs (containing 

genetic codes with corresponding block structure and degeneracy to the SGC).  Novozhilov and 

colleagues used a cost function that measured the frequency of that amino acid being considered, 

the cost of substituting two amino acids and the position of the codon being altered. As did 

Goldman (1993), they found that the SGC was far from optimal. They generated pseudorandom 

codes and conducted simple, pairwise exchanges between amino acid identities in two- and four-

codon blocks, ultimately to generate fitness increases. On average, the SGC was buffered more 

effectively than were the HGCs and required less time to reach fitness maxima. However, when 

starting with HGCs already characterized by error measure levels that were similar to the SGC, 

refined HGCs with greater resistance to transcription and translation errors could be evolved 

easily. These results suggest that the SGCs experienced partial optimization before becoming 

frozen. 

1.2.14 Tlusty 2010 

Tlusty (2010) also attempted to investigate why the SGC assigns similar amino acids to 

similar codons and why it contains 20 amino acids. Tlusty considered three separate factors 

involved in the origin and evolution of the SGC: error-tolerance, diversity and costs associated 

with biochemical machinery. Error tolerance was measured by looking at the sum over all 

possible substitutions, accounting for substitution frequency and  distances between amino acids. 

Distance was measured on the properties polar requirement and molecular volume. Tlusty 
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suggested that, when the SGC was shaped by natural selection, fitness was maximized over these 

three factors. One illuminating contribution by Tlusty involved using the map coloring problem. 

The map coloring problem refers to the coloring-number required to identify areas in a map so 

that no two adjacent areas have the same color; with respect to genetic codes, the coloring 

problem can be utilized to determine how many amino acids can be encoded while maintaining a 

‘smooth’ (i.e., low error measure variation) topology. The maximum coloring number was found 

to be 25 if all 64 codons are free to vary and 20 if restrictions imposed by the wobble hypothesis 

are included. This finding may explain why the SGC contains only 20 amino acids. 

1.3.1 Implications for Ideas on Genetic Code Origins 

The foregoing review shows that, depending on how one measures and interprets 

robustness, computational analyses might be interpreted as indicating that the SGC resulted from 

either an astounding optimization process in which the SGC was buffered against transition or 

translation errors or modest improvements on arbitrary genetic codes that may have been by-

products from other factors. Given the vast codon space available and the fact that error-

minimization becomes increasingly difficult to improve as HGCs become more and more 

buffered, a compromise perspective probably is most likely, and the SGC is considered most 

appropriate as partially optimized, consistent with the adaptive hypothesis (Novozhilov et al., 

2007). The SGC might be improved easily in error minimization terms, but the main implication 

from error measure analyses is that it is buffered more than would be expected by chance, and 

this pattern warrants explanation. 

1.3.2 Unfreezing the Genetic Code 

The adaptive (i.e., error-minimization) hypothesis has been criticized. Crick (1968) 

suggested that, once a genetic code had been established, any additional changes would have 



30 
 

been lethal. Although variant genetic codes might have been more-buffered against transition 

and translation error, such genetic codes would have been at a severe disadvantage. Variant 

codes would have encoded different amino acid compositions for existing, functional proteins. 

These variant proteins almost certainly would have functioned less effectively. Variant genetic 

codes consequently would have been eliminated quickly by natural selection. 

In response to this suggestion, several researchers have proposed alternative mechanisms 

for how the SGC originated and evolved. One mechanism (Osawa & Jukes, 1989) involves the 

notion that codons changed their amino acid identity assignments, a process called codon 

swapping. Essentially, mutational biases would have caused some codons to fall into disuse. 

These codons could have mutated neutrally to encode new amino acids. Szathmary (1991) 

showed that this was a feasible mechanism for code evolution. Another mechanisms involves the 

notion that, in the earliest genetic code, codon assignments may have involved fewer amino acids 

(Trifonov 2000, 2004; Higgs and Pudritz 2007, 2009; Higgs, 2009); one particular version 

suggests that four amino acid assignments constituted the initial configuration (Higgs 2009), 

which could be represented in a one-to-one manner as four columns (Figure 1). The four 

columns ultimately would have become subdivided into the codon blocks in the SGC, containing 

the remaining 16 amino acids and stop codons. New amino acids were incorporated only if the 

newly encoded assignments minimally disrupted existing proteins and pathways and ultimately 

conferred a fitness benefit (in direct competition with each other or to the individuals containing 

them). In this way, the code could have evolved ‘bottom-up.’ 

1.3.3. Coevolution Theory 

Another criticism that could be levelled against the adaptive hypothesis involves other, 

more-parsimonious explanations for SGC structure. The most-popular explanation was 
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formulated originally by Wong (1975) and is known as coevolution theory. Coevolution theory 

suggests that the PGC comprised fewer amino acids with greater codon redundancy. These 

precursor amino acids were modified over time to create the remaining amino acids. For 

example, aspartic acid currently is modified to produce asparagine in one step, through ATP-

powered amination and simultaneous glutamine-to-glutamate transformation (Milman & 

Cooney, 1979). Several other amino acids are produced through similar biosynthetic pathways 

(Taylor & Coates, 1989). Amino acids related in this manner are said to hold product-precursor 

relationships. If coevolution theory is correct, then one would expect product amino acids to be 

encoded by codons formerly assigned to precursor amino acids; consequently, product-precursor 

amino acids would be located close to one another in the SGC. Such product-precursor amino 

acids, in fact, often are in close proximity. Wong calculated the probability for the observed 

relationships as statistically significant. 

No definitive way to group amino acids into biosynthetic families exists (Amirnovin, 

1997). Wong (1975) identified several product-precursor pairs (Table 1), and these can be 

organized into biosynthetic families. Di Giulio & Medugno (2000) subsequently identified five 

biosynthetic families (Table 2), with a slightly different composition than the patterns that Wong 

originally identified. One would expect that product-precursor amino acids would have similar 

properties, and so the SGC would comprise codon blocks containing similar neighboring codons. 

Wong (1975) suggested that multiple codes wherein product amino acids were assigned to 

different codon sets derived from precusor amino acids might have existed. These codes could 

have competed against one another, and the code that best protected against transition or 

translation error (and, consequently, which bore the greatest fitness) would have become fixed. 
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Wong (1981) proposed a scenario wherein amino acids became incorporated in three 

phases. Phase I amino acids were available via prebiotic synthesis and could have been 

incorporated into cells immediately. Phase II and III amino acids were constructed through 

inventive biosynthesis and post-translational modification, respectively. Phase II and III amino 

acids would have been unavailable for incorporation into the PGC immediately, and, so, they 

would have had to have been added to the PGC later. Wong notes that error-minimization might 

have been involved in SGC formation but claims that it played a minor role, subsidiary to the 

processes involved in coevolution theory. 

1.3.4. Biosynthetic Pathways 

While coevolution theory remains a compelling explanation for SGC structure, its 

statistical basis was criticized by Amirnovin (1997). Amirnovin suggested that most amino acids 

are related biosynthetically to one another, and, so, Wong (1981) finding statistical significance 

for biosynthetically related amino acids inhabiting adjacent positions in the SGC codon table is 

unsurprising. Amirnovin suggests, then, that claiming that SGC structure supports coevolution 

theory is premature. He decided to demonstrate this computationally by generating HGCs and 

exploring how closely related they were. He found that similarity was highly dependent on 

which amino acid pairs were considered to be related biosynthetically. Depending on the amino 

acids considered, the probability for meeting or exceeding the relatedness level observed with the 

SGC ranges from p=0.001 to p=0.34. 

These results were contested by Di Giulio and Medugno (2000), who found fault with the 

methodology. They argued that quantifying the relationship between two amino acids using one-

parameter significance was flawed. Such a method inadequately captures genetic code structure. 

Di Giulio and Medugno argued that a hypergeometric distribution should be used instead. They 
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also took exception to the way that Amirnovin calculated the probability for two biosynthetically 

related amino acids to be adjacent to one another in codon space. This value, the codon 

correlation score (CCS), was quantified by counting how many ways one amino acid could 

mutate into another amino acid through point mutation. Arminovin generated a HGC set and 

used it to determine the probability for achieving a certain relatedness score. Di Giulio and 

Medugno suggested that a more-appropriate measure would involve calculating the "probability 

of observing a certain CCS value on the condition that the CCS value is produced only by those 

[codes] that have a number of amino acid pairs at least equal to that of the pairs that are 

effectively specified in the genetic code and whose significance has to be established." The 

authors corrected for this by deciding "to exclude the random codes that have the same rare CCS 

value but which are actively produced only by a number of amino acid pairs lower than the 

number of pairs effectively specified in the genetic code and whose significance has to be 

established". After addressing these issues, they calculated the probability for meeting or 

exceeding the relatedness level observed in the SGC as p=10
-6

. 

This rebuttal generated a surrebuttal by Ronneberg et al. (2000), who argued that previous 

methods for calculating similarity also were flawed. Ronneberg et al. argued specifically that 

previous authors had used incorrect product-precursor relationships and failed to account for 

restrictions imposed by processes associated with the wobble hypothesis. After addressing these 

issues, the authors calculated that probability that the observed biosynethetic relationships in the 

SGC were achieved due to chance was p=0.62. 

One possibility, originally alluded to by Wong (1975), is that coevolution and error-

minimization occurred together, and, moreover, the initial PGC may have been determined at 

least partially by stereochemical affinity. Wong (2005) estimated that the relative contribution by 
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biosynthetic pathways, error-minimization and strereochemical affinity in SGC evolution 

respectively was 40000000:400:1. Di Giuilo (2005) suggested that precursor codons conceded 

codons to product amino acids such that product amino acids arranged themselves in columns. 

Another possibility is that codons were repositioned after their initial assignment by codon 

swapping to result in a more-buffered code. 

The idea that coevolution and error-minimization may have played important roles in SGC 

evolution has been supported by statistical analyses. Szathmary & Zintzaras (1992) compared 

similarities for tRNA molecules between biochemically related amino acids and 

physicochemically similar amino acids. They suggested that, if tRNAs were more similar when 

correlated biochemically, then coevolution predominated; whereas if tRNAs were more similar 

when correlated phyiscochemically, then error-minimization predominated. They found  a 

greater correlation among tRNA molecules was achieved on the basis of physicochemical 

similarity. The authors concluded that, while both processes played important roles in SGC 

evolution, error-minimization played a larger role in organizing the SGC. In addition to initial 

codon assignments – potentially guided by coevolution – codon reassignments contributed to 

SGC structure. 

Chapter 2 

2.1. AGCT 

The tool that we developed and used to perform genetic code error measure analyses is a 

computer program called AGCT, written using the technical computing environment 

Mathematica (Wolfram Research, Inc. 2010; v. 9.0.1.0) as a software platform. AGCT conducts 

analyses in a manner similar to the approach adopted by Alff-Steinberger (1969), Haig & Hurst 
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(1991), Freeland & Hurst (1998a, 1998b), Freeland et al. (2000), Gilis et al. (2001) and Goodarzi 

et al. (2004). 

 AGCT generates hypothetical genetic codes (HGCs) by shuffling amino acid identities 

among codon blocks and calculates change associated with every possible point mutation at 

every possible codon position as a distance. Each codon potentially is subject to nine point 

mutations, although users may opt to exclude those that lead to stop codons. Distances are 

evaluated for each codon, and the average value over all codons is determined to create a single 

value for an entire code. Codes that return lower values are buffered against transcription and 

translation errors. To discover where the standard genetic code (SGC) resides among the HGCs, 

AGCT sorts all distance values and identifies where in their distribution the distance for the SGC 

resides. 

2.1.1. Distance Metric Calculations 

Each amino acid is characterized by quantifiable properties, such as hydrophobicity and 

polarity. The property value distance between two amino acids associated with codons in the 

SGC and the property value distance for the two amino acids associated with the same codons in 

a HGC can be compared. A larger difference indicates that the amino acids associated with the 

codons in the HGC are more dissimilar. One cannot merely compare genetic codes by taking 

differences between all possible values, however. The natural symmetry over all pairwise 

comparisons would lead to a null total for every genetic code. AGCT provides users two options 

to circumvent this symmetry: calculating absolute (e.g., Alff-Steinberger, 1969) or squared (e.g., 

Haig & Hurst, 1991) distances, respectively AD or SD. 

2.1.2. Stop Codons 
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AGCT notably is the second computational tool that allows stop codons to be included in 

error measure calculations (i.e., in addition to the one used in Goodarzi et al., 2004). When stop 

codons are included in calculations, AGCT treats each as it does amino acids. By default, the 

value assigned to each stop codon for each property is 0. This value is arbitrary but could, and 

typically does, impart relatively great effects depending on the property under consideration (i.e., 

how values among amino acids are distributed) and HGC structure (e.g., whether substantially 

more stop codons are assigned to triplets relative to the SGC). A natural complement to a 0 value 

would be to determine minimum and maximum possible errors (i.e., among all possible pairwise 

amino acid comparisons) for any property under analysis and assign those values to all 

calculations involving stop codons for that property, to return minimum and maximum distances. 

Analyses then could be performed using those minimum and maximum distances, which would 

provide a bracketing interval for stop codon effects in error measure calculations. 

AGCT is the first computational tool that allows stop codons to be included in codon-

identity shuffling. Similar to the two amino acid identities that occupy noncontiguous codon 

blocks in the SGC but are considered as singulars during shuffling (e.g., serine and arginine), the 

two vertically contiguous stop codon block positions (i.e., UAA and UAG) are considered as a 

singular entity. 

2.1.3. Properties 

AGCT was developed with the principle aim to expand on analyses already conducted. 

Previous investigations were limited in two main ways: they utilized only a limited variety of 

amino acid properties and they considered each property only in isolation. For instance, Alff-

Steinberger (1969) analyzed the SGC with respect to 6 properties independently (i.e., molecular 

weight, polar requirement, number of dissociating groups, pK', isoelectric point and a-helix 
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forming ability). Subsequent investigations (Haig & Hurst, 1991; Goldman, 1993; Ardell, 1998; 

Freeland & Hurst, 1998a, Freeland et al., 2000; Goodarzi et al., 2004; Higgs, 2009; summarized 

in Table 3) either focused on these properties with a few additions or solely focused on the polar 

requirement, which is related to hydrophobicity (Woese et al., 1966). 

AGCT is the first computational tool that allows comparisons over multiple properties 

simultaneously. One criticism that could be levelled against adopting this approach is that the 

scale for variation in each property essentially determines the average distance magnitude for 

that property relative to other properties. Comparisons could return results biased by properties 

with relatively large values or variances. One way to address this criticism is to transform 

distance values for different properties so that they can be compared on the same scale. AGCT 

utilizes standard scores (i.e., mean-zero and standard deviation unity) for such comparisons, a 

transformation that has been used previously to unify multiple properties in a different analytical 

context (Higgs, 2009). When this option is enabled, ACGT reports the standard score for the 

SGC or any HGC relative to the entire standard score distribution rather than the mean AD or SD 

score for each property. The standard score ranking for a genetic code indicates how effectively 

that genetic code minimizes errors for a particular property relative to the entire distribution. A 

genetic code that is buffered effectively for a particular property should return an extreme 

negative value, whereas one that is buffered less effectively should return a value closer to zero 

or even extending into positive values. Standard scores over all properties are added together to 

obtain a unified score for a genetic code. Genetic codes that are buffered effectively over 

multiple properties should return extreme negative unified scores, whereas those ineffectively 

buffered should return large positive unified scores. Genetic codes that are buffered effectively 

for some properties while ineffectively for others should return unified scores closer to zero. 
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Another criticism that could be levelled against adopting the approach encoded in AGCT 

and error measure approaches generally involves HGC space. Many HGCs can be generated by 

shuffling codon block identities: 2.43*10
18

 and 2.59*10
22

, when excluding and including stop 

codons, respectively. These numbers dwarf the HGC set sizes that typically are used in studies. 

A particular HGC set therefore fails to represent the entire theoretically possible distribution. 

This problem has been considered previously. Freeland and Hurst (1998a) compared results 

obtained from 10000 and 1000000 HGC sets. They found that results were stable between the 

two conditions, suggesting that 10000 HGC sets are sufficient to create a representative sample. 

To confirm this finding, we ran 10 replicates with 10000 HGC sets to analyze the property 

hydrophobicity. This property was chosen because it is conserved modestly, which allowed the 

SGC to vary in ranking among replicates. As each HGC in each replicate was generated 

independently using pseudorandom processes, if each 10000 HGC set was nonrepresentative for 

the entire possible distribution, then the standard deviation for the HGC set would be large; 

conversely, if each set was representative for the entire possible distribution, then the standard 

deviation for the HGC set would be small. 

The SGC ranking was very stable among replicates (Figure 4), with a mean ranking ≈3361 

and a standard deviation ≈31. Theoretically, given a corresponding infinite normal distribution, 

97% observations reside between values 3299 and 3423. This range represents only 1.24% 

(124/10000) among the possible values. Consequently, when the SGC ranking varies among 

replicates, changes are minor and quantitative rather than qualitative in nature. On the basis of 

this result involving a modestly conserved property, we consequently and cautiously are 

confident that implementing 10000 replicates provides reasonable representation for entire 
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parameter spaces while allowing efficient exploration over the 54 variables (derived from 

Grohima et al., 1999 & Higgs, 2009) analyzed herein. 

2.2. Analyses  

2. 2.1. Distance Metric Calculations 

In addition to investigating previously unexamined amino acid properties, we also sought 

to investigate how different distance metrics affect SGC ranking in error measure analyses. Both 

distance metrics, AD (Alff-Steinberger, 1969) and SD (Haig & Hurst, 1991), have been used 

previously to quantify error, but SD has been used more frequently. Both metrics are valid a 

priori, as they address the previously mentioned symmetry issue. We ran 10 replicates twice, 

each replicate containing 10000 HGCs. We thereby formed two sets, one for analysis with AD 

and one for analysis with SD. Both sets involved 6 properties (hydrophobicity, polar 

requirement, isoelectric point, bulkiness, surface area accessible to water when unfolded and 

fraction of accessible area lost when a protein folds) transformed into a single, unified score. 

We found that, contrary to expectation, distance metric affected greatly results obtained 

(Figure 7). The AD and SD metrics produced two distinct populations. The SGC ranked lower 

in the AD population than it did in the SD population. The SD metric involves squared 

differences. Larger differences will impart greater effects on error measure calculations, which 

might affect SGC ranking. This effect is dependent on HGC code structure. The SGC is arranged 

with similar amino acids in columns. This means that most transcription or translation errors 

(i.e., those associated with first or third codon positions) would produce either the same or 

similar amino acids; some errors (i.e., those affecting second positions) would produce different, 

dissimilar amino acids. A HGC that was characterized by greater differences between vertically 

neighboring amino acids would return greater error measures than would the SGC, which 
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consequently would ranking low. The SGC, however, is characterized by a few instances where 

vertically neighboring amino acids are extremely different for some properties. Squaring the 

associated distances might return an error measure sufficiently large to rank the SGC relatively 

high among HGCs. 

2.2.2. Stop Codons 

One computational aspect unique to AGCT is its ability to allow users to consider 

completely effects imparted by stop codons. Previous investigations on the SGC either ignored 

stop codons entirely or assigned an error function quantifying mutation to stop codons while 

keeping stop codon blocks and positions fixed (Goodarzi et al., 2004). We analyzed stop codons 

with two two-state options: fixing or varying assignment positions and excluding or including 

mutations involving stop codons in error measure calculations. We performed three analyses, 

each involving 10 replicates containing 10000 HGCs, with SD as the error measure. We 

investigated polar requirement, as this property has been analyzed thoroughly by previous 

researchers (e.g., Alff-Steinberg, 1969; Haig & Hurst, 1991; Szathmary & Zinteras, 1992; 

Goldman, 1993; Ardell, 1998; Freeland & Hurst, 1998a, 1998b; Judson & Haydon, 1999; Higgs, 

2009; Tlusty, 2010 ): 

I. stop codon positions fixed, included in calculations; 

II. stop codon positions variable, excluded in calculations; 

III. stop codon positions variable, included in calculations 

(the fourth possibility – stop codons fixed , excluded in calculations – has been explored 

exhaustively in previous error-buffering investigations). 

Using Welch's t-test, we found significant differences in ranking between conditions I 

(μ=2.10, SD=1.04) and II(μ=3.55, SD=1.93)  (t30=2.93, p=0.006), and no significant differences 
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between conditions I (μ=2.10, SD=1.04)  and III (μ=1.70, MD=0.80)  (t35=1.34, p=0.19). These 

findings, together, may be interpreted as indicating that the difference between conditions I and 

II can be attributed predominantly to including or excluding stop codon in error measure 

calculations rather than fixing or varying codon positions. This interpretation is supported by our 

finding significant differences in ranking between conditions II (μ=3.55, SD=1.93) and III 

(μ=1.70, MD=0.80). When stop codons were excluded from calculations, the SGC ranked higher 

(i.e. was less conserved relative to HGCs) than it did when stop codons were included (t25=3.95, 

p=0.0005). We hypothesized that the SGC fares better at error-minimization when stop codons 

are included because most HGCs contain more stop codons than does the SGC, leading to more, 

potentially disfavorable distances in error measure calculations. 

We tested this hypothesis. We ran another analysis, involving 1000 HGCs, with SD as the 

distance metric, in which AGCT tracked stop codon mutations for each HGC. We again 

investigated polar requirement. We predicted that error measure scores would increase with 

increases in stop codon mutation number. We found no relationship between SGC ranking and 

stop codon mutation number when stop codons were excluded from error measure calculations, 

as expected (Figure 8). When stop codons were included in error measure calculations, however, 

we observed a significant, positive relationship (Figure 9). This suggests that the SGC ranks low 

in error measure analyses partly because stop codon blocks in the SGC are small and partly 

because polar requirement values among amino acids are distributed so that the 0 value assigned 

to changes involving stop codons imparted large effects. 

An informative follow-up study would involve weighting mutations to stop codons 

according to codon assignment frequency. This approach has been conducted partially by 

Goodarzi et al. (2004) albeit with invariant stop codons. If stop codons were surrounded by 
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comparatively rare amino acids, then the associated nonsense mutations would be even less 

likely to occur. Adding this factor may allow researchers to quantify and analyze stop codon 

position effects in addition to stop codon frequency effects. 

2.2.3 Properties 

2.2.3.1. Individual Properties 

 Previous computational error measure analyses were focused on a narrow range of 

properties. We therefore considered an expanded list for analysis. We added to four commonly 

studied properties (hydrophobicity, polar requirement, absolute entropy and melting point) 45 

properties described by Grohima et al. (1999; listed in Table 4) as important for stabilizing 

folded proteins. 

These 49 properties are nonorthogonal and several properties intuitively are expected to be 

correlated. For example, hydrophobicity would affect strongly buriedness (the more hydrophobic 

an amino acid, the stronger its tendency to retreat to the interior in a folded protein to minimize 

its contact with surrounding water molecules; Tanford, 1962)). The properties can be grouped 

into four major categories: hydrophobicity, enthalpy, Gibbs free energy, and miscellaneous. 

Properties related to hydrophobicity and enthalpy generally are conserved in error measure 

analyses, whereas those related to Gibbs free energy generally are unconserved. That the SGC 

effectively minimizes errors associated with polar requirement has been established convincingly 

(Haig & Hurst, 1991), so this property serves as a useful reference. 

To explore properties individually, we used SD as the distance metric and excluded stop 

codons in calculations. We report four main observations. First, strongly conserved properties 

included (in rank order with descriptors provided by Grohima et al. (1999) unless otherwise 

specified): El (long-range non-bonded energy), Hgm (combined surrounding hydrophobicity), -
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TΔSc (unfolding enthalpy change of hydration), polar requirement, Nl (long range contacts), Hc 

(unfolding enthalpy), Rf (chromatographic index; Woese, 1966),  ΔASA (solvent accessible 

surface area for unfolding), Cph (unfolding hydration heat capacity chance), Ns (average number 

of surrounding amino acid residues when inside a folded protein), Ra (solvent accessible 

reduction ratio), Br  (buriedness),  Hp (surrounding hydrophobicity), Et (total nonbonded energy) 

and F (root mean square fluctuation displacement). 

Second, the SGC effectively minimizes errors for properties mediating long-range 

interactions (El, Nl), whereas it ineffectively minimizes errors for properties mediating short-

range interactions (Esm, Nm). 

Third, more properties are conserved than expected by chance. If the SGC structure failed 

to minimize errors associated with transcription or translation, then one would expect that 

approximately half the HGCs would score better and half would score worse, barring effects 

from sampling bias. We discovered a strong skew among properties, toward effective buffering. 

This pattern can be explained by the aforementioned nonorthogonal relationships among 

properties. Several are affected by polarity, for instance; if polarity is conserved, then all affected 

properties also are conserved. This, however, cannot explain the observation that properties in 

different categories are conserved, which is consistent with the idea that SGC structure buffers 

against transcription and translation errors. 

Fourth, long range non-bonded energy (E1) was the most conserved property in our 

analysis. This is noteworthy because polar requirement often has been reported as the most 

conserved property (Alff-Steinberger; Haig & Hurst, 1991). We therefore decided to explore this 

property more thoroughly. We compared the SGC to 100000 HGCs and included stop codons in 
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calculations. We found that the SGC achieved rank 2 (Figure 5). For reference, Haig & Hurst 

(1991) found the SGC achieved rank 1 among 10000 HGCs for polar requirement. 

We consider three ways to interpret this result. The first, and most dramatic, is that the 

SGC became organized to minimize errors associated with long range non-bonded energy rather 

than some other property (e.g., polar requirement). The extent to which polar requirement errors 

are minimized, indeed, may result from the nonorthogonal relationship between these two 

properties. This explanation is unlikely to achieve consensus, as polar requirement is more 

important in protein folding. A second explanation is that the SGC became organized to 

minimize errors associated with polar requirement and the extraordinary buffering in long-range 

non-bonded energy is a byproduct from that constraint. Establishing relative error effects on 

protein products as well as quantifying their interrelationship would help determine which 

property should be considered as primary in SGC buffering. A third explanation is that the SGC 

became organized to minimize errors associated with both properties, as both may be crucial for 

proper folding in the protein product. This would suggest that the SGC is more buffered than 

previously suspected. 

2.2.3.2. Multiple Properties 

The foregoing analysis suggests that, although individual properties like polar requirement 

are important for protein folding, they independently fail to capture entirely the error buffering 

capacity for the SGC. Two approaches may be adopted to attain a more-complete perspective: 

analyzing either parameters that account for many properties together or multiple properties 

simultaneously. 

The first approach has been attempted by implementing point accepted mutation (PAM) 

matrices (e.g., Ardell, 1998; Freeland et al., 2000; Ardell & Sella, 2001; Gilis et al., 2001; 
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Goodarzi et al., 2004; Novozhilov et al., 2007). A PAM matrix is constructed with data obtained 

from homologous proteins and quantifies how often one amino acid has been observed to have 

substituted for another. As changes between similar amino acids are more likely to be considered 

neutral (and, therefore, less likely to be selected against), a higher pairwise substitution rate 

should indicate that two amino acids are more similar to each other than are two amino acids 

associated with a lower substitution rate. A notable exception might occur when change between 

dissimilar amino acids would confer a selective advantage. Such instances are expected to occur 

rarely (Kimura 1968) and, then, within specific families for homologous proteins, at specific 

positions; consequently, this phenomenon will be blunted when sampled over many sites and 

substitution rates should reflect accurately similarity between proteins. 

Although PAM matrices thus would seem to present an ideal way to analyze a single 

parameter representing multiple properties, PAM matrices are plagued in studies on the SGC by 

a critical flaw: values contained in PAM matrices reflect the SGC structure, itself (Freeland et 

al., 2000; Higgs, 2009). Adjacent amino acid identities differ by single nucleotides, whereas 

remote amino acids differ by more than a point mutation or misread nucleotide. Amino acids that 

differ by a nucleotide, between which neutral mutations may occur, should be characterized by 

greater substitution rates; conversely, amino acids assigned to codons that differ by more than 

one nucleotide, between which mutations are less likely to occur, should be characterized by 

smaller substitution rates. PAM matrices and SGC structure thus are nonindependent. 

A second approach to performing more-holistic error measure analyses would be to 

consider multiple properties simultaneously. This approach has multiple disadvantages. 

Researchers must select which properties to include, whether to weight them and, if so, then by 

how much. As mentioned previously, many properties are interrelated, so including them 
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effectively weights some more than others. For instance, if, along with polar requirement, five 

properties were to be included in an analysis, with two correlated strongly with polar 

requirement and the other three orthogonal to polarity and one another, then polar requirement 

effectively would have been considered thrice. One also may err by failing to include all the 

properties needed to capture the essence for error buffering. All these disadvantages are 

compounded by the fact that protein folding is understood incompletely, which may prevent 

proper property selection. 

Some properties (such as polar requirement) are more important to protein structure and 

function than are others (such as isoelectric point). One might consider assigning greater weight 

to more important over less important properties. Deciding on values for weightings is arbitrary 

and challenging, and, without adequate information, weighing properties may return inaccurate 

results, as erroneous as failing to have weighted properties at all (or even more). 

These factors ensure that, until greater understanding about protein folding has been 

achieved, error measure analyses involving multiple properties should be conducted cautiously. 

The approach nevertheless still has merit. Although one might be unable to account effectively 

for every property, this limitation would be true with any approach. Moreover, given that many 

properties are interrelated, any unaccounted for property may be represented indirectly by other, 

included properties. We opted to use multiple properties over a PAM matrix for two reasons: to 

avoid the aforementioned circularity and to generate results that complement those obtained with 

analyses using PAM matrices (Ardell, 1998; Freeland et al., 2000; Ardell & Sella, 2001; Gilis et 

al., 2001; Goodarzi et al., 2004; Novozhilov et al., 2007). 

We suspected that the SGC might be more than the sum-of-its-parts in error buffering 

terms. We note that previous error measure analyses have revealed that some traits are conserved 
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effectively and others less effectively (e.g., polar requirement is conserved effectively; Alff-

Steinberger, 1969; Haig & Hurst, 1991; Freeland & Hurst, 1998a, 1998b). This might indicate 

the SGC is organized to minimize errors for those particular, conserved traits; alternatively, the 

SGC might be organized to elicit a negative interaction over multiple properties (i.e., one that 

reduces total error). If the SGC were organized to minimize effects from relatively few, specific, 

conserved properties, then a unified score including many other properties would rank 

somewhere between the rankings for the most conserved properties and the rankings for the least 

conserved properties; alternatively, if the SGC were organized to elicit a negative interaction 

over multiple properties, then a unified score would rank lower than expected on the basis of 

compromise – in the most extreme circumstance, less than or equal to the ranking for the most 

conserved property (with equivalence at rank 1). In this instance, if a HGC were found to rank 

lower for a given property (e.g., its SD score were 1 unit less than the SGC), then we would 

expect that this would be counteracted by an increased ranking in the SD score for at least one 

other property (e.g., its summed SD scores over the remaining properties would exceed 1 unit). 

Using standard (rather than raw) scores might constrain the effect that negative interactions 

would impart and, so, their identification. 

We generated data to distinguish between these alternatives, with AGCT. We compared 

the SGC to 100000 HGCs, used SD as the distance metric, and included stop codons in 

calculations. We examined six properties: hydrophobicity, polar requirement, isoelectric point, 

bulkiness, surface area access and fraction of accessible area lost when a protein folds. These six 

properties had been used previously to measure the cost for shuffling amino acid identifies 

(Higgs, 2009). We used AGCT to analyze each property independently, obtain an SD score for 
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each, then covert this to a standard score. A unified score was created for each genetic code by 

summing all six standard scores. Rankings were determined on this basis of unified scores. 

We found that, whereas the SGC performed well when compared to its HGC counterparts, 

the resulting unified score was no more remarkable in error minimization terms than was the 

summed standard score (Figure 6). The code ranked 105 among 100000 codes. Among the six 

variables, two standard scores (polar requirement and fraction of accessible area lost when a 

protein folds) ranked consistently lower than the unified score while the rest ranked consistently 

higher. The SGC ranking seems to result from two strongly conserved attributes compensating 

for four less-conserved attributes rather than the six properties interacting to yield a globally 

lowest ranking. This property combination in the SGC is neither less nor more effective at 

minimizing errors than is the property combination among the HGCs.  Consequently, this 

analysis provides no evidence to suggest that the code is organized according to a negative 

interaction. We note, however, that negative interactions might exist. Implementing 0 for stop 

codon property values and standardization (i.e., using standard scores and defining unified scores 

as sums over standard scores) may mask and temper negative interactions. Negative interactions 

additionally may become conspicuous in error measure analyses only after properties have been 

weighted according to their relative importance in protein folding. Our negative results indicate 

that further research considering these issues should be conducted. 

Chapter 3 

3.1 Testing Theories of the Genetic Code  

In addition to expanding on previous research, we explored two theories that attempt to 

account for SGC structure. We compared the coevolution (Wong, 1975) and four column (Higgs, 
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2009) theories by evaluating buffering in the standard genetic code (SGC) relative to 

hypothetical genetic codes (HGCs) when accounting for constraints imposed by the two theories. 

Both theories suggest that a primordial genetic code (PGC) preceded the SGC and the 

ability for the SGC to buffer effects from transition or translation error can be explained at least 

partially by mechanisms other than natural selection. The hypothesized PGC probably contained 

fewer amino acids, and additional amino acids were incorporated into the code over time (Crick, 

1968; Wong, 1975; Higgs, 2009). Both theories suggest that constraints became imposed when 

codon positions corresponding to new entries were assigned: the coevolution theory suggests that 

new amino acids were constrained to associate with codons formerly associated with 

biosynthetic antecedents (Wong, 1975), whereas the four column theory suggest that new amino 

acids were constrained to associate with codons previously assigned to most-similar amino acids 

(Higgs, 2009). Both theories suggest that these constraints explain some or all buffering abilities 

in the SGC. 

One way to test for buffering in the SGC is to restrict shuffling among codon block 

identities to positions that are hypothesized to have shared a parent codon block in the PGC. For 

example, in evaluating the coevolution theory, amino acid identity shuffling should be restricted 

to codon blocks involved in biosynthetic groups (see Freeland & Hurst, 1998b; Gilis et al., 2001; 

Goodarzi et al., 2004); in evaluating the four column theory, amino acid identity shuffling should 

be restricted to codon blocks within columns (i.e., within triplets containing identical second 

position nucleotides). If the SGC were to rank modestly  in HGC distributions generated under 

these constraints, then confidence in the theories would increase (i.e., as the observed error 

minimization could have been achieved under these constraints); if, however, the SGC were to 

rank low, then confidence in the theories would decrease. 
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We ran three analyses, involving 10000 HGCs and SD as the distance metric. We analyzed 

polar requirement for its prominence in the literature, which would allow comparisons between 

results obtained in the current simulations with those performed by other researchers in the past 

(e.g., Alff-Steinberg, 1969; Haig & Hurst, 1991; Szathmary & Zinteras, 1992; Goldman, 1993; 

Ardell, 1998; Freeland & Hurst, 1998a, 1998b; Judson & Haydon, 1999; Higgs, 2009; Tlusy, 

2010; Table 3). Stop codon identity positions were variable and stop codons were included in 

error calculations. The first analysis allowed amino acid identities to be reassigned to any codon 

block. The remaining two analyses corresponded to constraints imposed respectively by the 

coevolution and four column theories. In the coevolution theory analysis, amino acid identities 

could assume only positions assigned to biosynthetically related codons. In the four column 

theory analysis, amino acid identities could assume positions only within the column to which 

they are assigned in the SGC (Figure 1). 

Although constraints imposed by both theories partially nullified error minimization in the 

SGC, the four column theory was more effective (Figure 10). Among the 10000 HGCs, the SGC 

ranked 6 without restricting HGCs, 315 when restricting amino acid identity reassignments to 

within biosynthetic families, and 1877 when restricting amino acid identity reassignments to 

within columns. These results can be contrasted with those obtained by Freeland & Hurst 

(1998b), which demonstrated that, when measuring polar requirement and differentially 

weighting errors caused by transitions and transversions, the SGC still achieved a low ranking 

relative to HGCs whose amino acid shuffling was restricted to biosynthetic pathways. 

We performed another analysis, in which we weighted transitional errors more than 

translational errors. Whereas Freeland & Hurst (1998b) performed analyses with different 

weightings (i.e., transitions weighted anywhere from 1 to 20 times as much as transversions), we 
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weighted transitional errors only twice as much as transversional errors. This weighting was 

chosen as a conservative control, because the weighting was lower than the previously identified 

optimal weighting (i.e., transition:transversion = 3) that favoured the SGC most remarkably 

(Freeland & Hurst, 1998b). Because the transition bias that was present during the origin of the 

PGC is unknown, a range of biases should be implemented in simulation. Choosing a weighting 

that is neither the most nor least favourable provided the most-objective test for the two theories. 

A complementary, alternative approach would involve running simulations with least and 

greatest realistic weightings and interpreting the results as an effect interval. 

Our second analysis revealed, once again, that the four column theory was most effective 

at error minimization (Figure 11). The SGC ranked 1 in the unrestricted distribution, 4 when 

codon shuffling was restricted within biosynthetic families, and 722 when codon shuffling was 

restricted within columns. In all three analyses, the SGC ranked lower when transition bias was 

included.  We note that, whereas the four column theory remains sufficient to explain error 

minimization within the SGC (μ=7.21, SD=0.66, Z=1.47, p=0.071), SGC ranking among the 

biosynthetically related HGC distribution is significant (μ=11.18, S.D.=2.01, Z=2.46, p=0.0069), 

so constraints imposed by the coevolution theory cannot explain error minimization in the SGC. 

While these results increase confidence in the four column theory and fail to support 

coevolution theory, we cannot discount coevolution theory entirely. The results obtained for 

coevolution theory may have been limited by the method for generating HGCs. Describing 

completely the restrictions imposed by the coevolution theory would require more than simply 

restricting amino acid identity shuffling within biosynthetic families. We conceptually followed 

Di Giulio & Medugno (2000), who grouped amino acids into families based on their direct or 

indirect origin in the Krebs Cycle (e.g., alanine, valine and leucine are members in the pyruvate 
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family because they are either direct products in that step in the cycle or derived from amino 

acids that are direct products). However, this  incompletely accounts for relationships within 

families. For instance, although the asparagine biosynthetic family contains six members (Figure 

1a in Taylor & Coates, 1989; Table 1 in Di Giulio & Medugno, 2000), these six amino acids 

cannot be assigned to any position relative to one another. Additionally, threonine should inhabit 

codons adjacent to isoleucine because isoleucine is derived from threonine; this constraint is 

unaccounted for in AGCT. Incorporating additional restrictions such as these might raise the 

SGC ranking even more. Whereas results obtained with AGCT are valuable insofar as they 

demonstrate that co-evolution theory can explain error minimization in the SGC, additional 

refinement might help provide more-complete tests related to that theory. 
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Figure 1 

 

 

The standard genetic code in canonical presentation. 
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Figure 2 

 

Changes to standard genetic code (adapted from Figure 3 in Knight et 

al., 2001). Blue shading represents codon blocks that change in 

mitochondrial lineages; green shading represents codon blocks that 

change in mitochondrial and nuclear lineages. Individual letters within 

codon blocks are standard one-letter amino acid abbreviations (i.e., 

T=threeonine, M=methionine, S=serine, Y= tyrosine, L= leucine,  

Q=glutamine, A=alanine, W=tyrptophan, C=cysteine, G= glycine, 

N=asparagine, X=unknown, ?=unassigned). Blue letters indicate 

changes that have occurred in mitochondrial lineages, whereas black 

letters indicate changes that have occurred in nuclear lineages. Question 

marks represent stop codons. 
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Figure 3 

 

The standard genetic code may be transformed into a hypothetical genetic code by shuffling 

amino acid identities (indicated by colour and letter). 
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Figure 4 

 

A box plot representing the ranking for the standard genetic code amid 10000 hypothetical 

genetic codes (mean ≈ 3361, horizontal line; standard deviation ≈ 31, shaded rectangle ) using 

mean squared distances to calculate effects from potential transcription and translation errors on 

hydrophobicity. 
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Figure 5 

 

 

Ranking for the standard genetic code relative to 100000 hypothetical genetic codes for mean 

square error in long-range non-bonded energy. The standard genetic code ranked 2, meaning that 

only one hypothetical genetic code was more buffered. 
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Figure 6 

 

Ranking for the standard genetic code relative to 100000 hypothetical codes for mean square 

error over six properties: hydrophobicity, polar requirement, isoelectric point, bulkiness, surface 

area access and fraction of accessible area lost when a protein folds and polar requirement. The 

standard genetic code ranked 105. 
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Figure 7 

 

 
 

Ranking for the standard genetic code relative to 10000 hypothetical genetic codes using unified 

scores (i.e., standard scores summed) over six properties: hydrophobicity, polar requirement, 

isoelectric point, bulkiness, surface area access, fraction of accessible area lost when a protein 

folds and polar requirement. Results for two different distance metrics are shown. 
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Figure 8 

 

 
Plot showing mean square distance polar requirement scores (ordinate) and stop codon  mutation  

numbers (c) for 1000 hypothetical genetic codes, with best-fit regression line equation. Stop 

codons were excluded from error measure calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Figure 9 

 

 
 

 Plot showing mean square distance polar requirement scores (ordinate) and stop codon  mutation 

numbers (abscissa) for 1000 hypothetical genetic codes, with best-fit regression line equation. 

Stop codons were included in error measure calculations. 
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Figure 10 

 

 
 

 

Ranking for the standard genetic code relative to three 100000 hypothetical genetic code 

populations for mean square distance in polar requirement. Unrestricted codon shuffling allowed 

amino acid identities to be shuffled among any codon position, whereas the other conditions 

involved shuffling restricted on the basis of coevolution theory and the four column theory.   
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Figure 11 

 

 
Ranking for the standard genetic code relative to three 100000 hypothetical genetic code 

populations for mean square distance in polar requirement. Unrestricted codon shuffling allowed 

amino acid identities to be shuffled among any codon position, whereas the other conditions 

involved shuffling restricted on the basis of coevolution theory and the four column theory. 

Errors attributed to transitions were weighted twice as much as were errors attributed to 

transversions. 
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Table 1 

 

Serine 
Family Phosphoenolpyruvate Family Pyruvate Family  

Aspartate 
Family 

Gultamate 
Family 

Serine Phenyl-Alanine Alanine Aspartate Glutamic Acide 

Tryptophan Tyrosine Valine Asparagine Glutamine 

Cysteine   Leucine Threeonine Arginine 

Glycine     Isoleucine Proline 

      Methionine Histidine 

      Lysine   

 

Biosynthetic families published by Wong (1975). 
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Table 2 

 

Phosphoenolpyruvate Family Pyruvate Family  
Aspartate 
Family 

Gultamate 
Family 

Misc. 
Family 

Phenyl-Alanine Alanine Aspartate Glutamic Acide Histidine 

Tyrosine Valine Asparagine Glutamine   

  Leucine Threeonine Arginine   

    Iso-Leucine Proline   

    Methionine     

    Lysine     

 

Biosynthetic families published by Di Giulio & Medugno (2000). 
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Table 3 

 

Paper

A B C D E F G H I J K L M N O P Q

Alff-Steinberger, 1969 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

Haig & Hurst, 1991 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

Szathmary & Zinteras, 1992 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Goldman, 1993 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Freeland & Hurst, 1998a 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Freeland & Hurst, 1998b 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ardell, 1998 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Judson & Haydon, 1999 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

Gilis et al. , 2001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Higgs, 2009 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0

Tlusy, 2010 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Property

 
 

A Molecular Weight 

B Polar Requirement 

C Number of Dissociating Groups 

D PKi 

E Isoelectric Point 

F Alpha-Helix Forming Ability 

G Molecular Volume 

H Hydropathy 

I Bulkiness 

J Composition 

K Refractivity 

L Hydrophobicity Scale 

M Surface Area Accessible to Water when Unfolded 

N Surface Area Lost When Protein Folds 

O Polarity 

P Torsion Potential 

Q Long-Range Non-Localized Hydrophobic Interactions 

 

Amino acid properties examined in previously published papers. A '1' indicates the property was 

analyzed, whereas a '0' indicates that a property was unanalyzed. 
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Table 4 

 

Compressibility K
0
 

thermodynamic transfer hydrophobicity Ht 

surrounding hydrophobicity Hp 

Polarity P 

isoelectric point PHi 

equilibrium constant with reference to the ionization property of cooh group PK′ 

molecular weight Mw 

Bulkiness Bl 

chromatographic index Rf 

refractive index Μ 

normalized concensus hydrophobicity Hnc 

short and medium range non-bonded energy Esm 

long-range non bonded energy (london forces + electrostatic) El 

total non-bonded energy Et 

alpha helix tendency Pα 

b structure tendency Pβ 

turn tendency Pt 

coil tendency Pc 

helical contact area Ca 

rms fluctuational displacement F 

Buriedness Br 

solvent accessible reduction ratio Ra 

average number of surrounding residues Ns 

power to be at the n terminal αn 

power to be at the c terminal αc 

power to be at the middle of an alpha helix αm 

partial-specific volum V
0
 

average medium contacts Nm 

long range contacts (inter molecular stabalization) Nl 

combined surrounding hydrophobicity Hgm 

solvent accessible surface area for denatured ASAD 

solvent accessible surface area for native ASAN 

solvent accessible surface area for unfolding ΔASA 

gibbs free energy change of hydration for unfolding ΔGh 

gibbs free energy change for denatured GhD 

gibs free energy change for native GhN 

unfolding enthalpy change of hydration ΔHh 
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untfolding enthalpy change of hydration −TΔSh 

unfolding hydration heat capacity change ΔCph 

unfolding gibbs free energy ΔGc 

unfolding enthalpy ΔHc 

unfolding enthalpy change of hydration −TΔSc 

gibbs free energy change ΔG 

unfolding enthalpy ΔH 

unfolding enthalpy changes of the chain −TΔS 

 

The 45 properties published by Grohima et al. 1999 and their respective symbols, analysed 

herein. 
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Table 5 

 

 

 

The 49 properties examined through AGCT and the associated ranking for the standard genetic 

code.  

 

 

 
 


