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in their applications in functional analysis.‘ This thesis contains
some extensions of these theorems in locally convex spaces, We begin-
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--and their graphs, ‘ ‘ '
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INTRODUCTICN

. The closed graph and open mapping theorems are two of the
deeper results in the theory of locally convex spaces, They are very
rich in their applications in functional analysis. This thesis contains
some extcnsions of these theorems in locally convex spaces,

The first chapter of this work is composed of those definitions
and results from the theory of locally convex spaces which are neceded
in future chapters, Thevﬁroofs of-many of the results are omitted for
the reason that they are easily available in books suqhags‘ﬂusain (153,
Robertson and Robertson [35] and Kéthe t23].

Our invéstigation of the closed.graph and open mapping theorems
begins in Chapter II.‘ Ve begiﬂ with a study of a-spaces and 8’—Space§
which were introduced by Levin [26]. In [26], Levin merely quotes,
without proofs, some results he obtainedAin,thosé spaces, We offer
proofs and relate these spéces with B-complete spaces due to Ptak [3%]

and Collins (2], Ve are also able to give some char;cterizations of
these spaces,

The study of a-spaces and ¥ -spaces leads us naturally to‘a'.
class of locally con?ex spaces which we call, b-spaces, On these,

we prove closed graph and open mapping theorems,

In his papers [11], [12] and [14] and in his book [15j,

Husain studied loéally convex.spaces which he called B(%¥) and

Br(f})—Spaces (see Chapter I, Definition 6,1), These are spaces which’

satisfy weakened forms of B-completeness and Br~completeness conditions
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of Ptak [31], For the particular case when £L==.J y the class
of separated barrelled spaces, a Br(U )-space is characterized by
the fact that every continuous, onc-to-one, linecar mapping from it onto
a separated barrelled space, is open, On these‘spaces, Husain was K
able to prove a very general closed graph theorem (Chaptér I, Theorem 6,2),
By appealing to‘methods in the duality théory of 1ocally‘convex spaces,
we are able to give a shorter proof (Chapter III, Theorem 2,1),
Husain's proof, as well as ours, relies heavily on a condition of
almost openness. of the linear mapping, Husain in [15] had queried as
to whether this condition of almost oﬁenness could be relaxed, Sulley
in [40] showed that this cannot be done, in general, Ve are, howéve;,
able to réplace almost openness by some other conditions, For onto
mappings, we show that for some classes of Br(mi)LSpaces and Br(J .9 )=
spaces, where M is the class of metrisable locally convex spaces and

i
A .d is the class oé separable barrelled spaces, the almost openness.
condition could be dropped (Chapter III, Theorems 3.1 and 3.2), We
are also able to characterize certain classes of B(4 ,7 )-spaces,’

The closed graph theﬁrem, proved for a-spaces in Chapter I
(Theorem l.i), enables us to obtain a characterization of semi-reflexive
spaces_(Chapter IIi, Lemmalh;l). This characterization © enables

us '.‘to obtain closed graphvand open mapping theorems for Br(S')-
spaces, wherc :3' is the class of locally convex Fréchet spaces,

In Chapter IV, countability conditions in locally convex R
spaces are investigated, - We show that there are locally convex spaces,
more general than metrisable spaces whose s}rong duals possess a countable

fundamental family of bounded scts, We investigate these spaces and

prove, among other results, closed graph and open mapping theorems,



relaxing tﬁc necessary completeness requirement by filter conditions,
introduced in [36]. We also investigate conditions that might relax
these filter conditions, .

A linecar mépping is called bounded if it preserves bounded
sets, In Chapter V, closed graph and open mapping theorcms, ﬁrovod
earlier are uscd to relate boundedness of iinear mappings and their
graphs,

Tho numbering of tﬁcorcms; propositions and lemmos is startied

afresh at the beginning of each chapter;‘a reference not-preceded by

a chapter number applies to the chapter in which it occurs,



CHAPTEx I

PRELIMINARIES

), Terwminology and notation

'

The graph of a mapping t of a set E into another set F
is the subset of E x F consisting of all elements of the form
(x,t(x)), with x ¢ E, If E and F are topological spaces, with.
F separated, and if t is continuous, then its graph G is closed,

For if (x, y) £ G there are disjoint neighbourhoods U of t(x) and.

~ V of y, and (t-l(U>, V) is a neighbourhood of (x, y) not meeting

G, The converse is not true as can be seen easily from the following

example:

]
H

Define t: R——R by t(x) = % for x#0 and t(0) = 0, Then

G is closed but t is not countinuous,

We also note that if t is a one~to-one and open mapping of a

separated topological space E onto another topological space F then

the graphs of ¢ tmd!i:"l are homeomorphic and so, if the graph

of t is closed, the graph of _t-1 is also closed,

Let E and F be two separated topological vector spaces and

-

- . ,
consider the following statements:

.
2

(1) A continuous linear mapping t of E onto F is open,
(2) A lincar mapping & of F into E, with closed graph,

is continuous,
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It is well known that the statements (1) and (2) are not true
for every pair of topological vector spaces E and F, If they are
true for some tobological vector spaces E and F, with or without
any additional conditions on the mapbings, (1) and (2) are called the
open mapping and closed graph theorems, respectively.

| It will be the purpose of later chapters to investigate some
extensions of the above theorems to certain classes of topological
vector spaces, WQ.shall confine ourselves for tge most part to locally
convex topological vector spaces, We shall write: ‘convex space',
to mean: '"locally convex topological vector space over the real or
complex field", All spaces considered are assumed to be separated,
unless otherwise stated, Mosily we shall use the nptatioﬁs and
and definitions of [15]. -Some of the definitions and notations used
here and in later chapter5 aro a§ follows,

Eu denotes a convex space endoyed with a locally-convex
topology u., The space E' = E& dendtes the dual of 'Eu i,e, the sét
of all continuous linear‘functionals on E; E* denotes the algebraic
dual of E i,e, the set of all linear functionals on E, If E and
E' are in duality i.e, each is a vector subspace of the élgebraic
dual of the other, we shall call (E, E') a dual pair, For any vector -
space E w{th algebraic dual -E*, (E, Z*) is a dual?pair. |
If (E, E') is a dual pair, then we have the }ollowiﬂg

topologies: ' ) : L

¢(E, E') denotes the weak topology on E  determined by E',
@(E', E) denotes the weak topology on E' determined by E,
T(E, E') denotes the Mackey topology on E  determined by E',

T(E', E}) denotes the Mackey topology on E' determined by B,



B(E, E') denotes the strong topology on E determined by JOLN

p(E', E) denotes the strong topology on B' determined by E,

In view of the fact that (E, E*) forms a dual pair, we also

have the following topologies:

¢ (E*, E) dcnotes the weak topology on  E* determined by E,

T (B, E*) denotes the Mackey topology on E determined by - E*,

i.,e, the finest locally convex topologyon E

E¢ denotes E | endowed with G (E, E'),
E¢ denotes E  endowed with T(E, E'),
E‘3 denotes E  ‘endowed with B(E, E'),
E&°' denotes E'  endowed with ¢(e*, E),

Edt denotes E! endowed with T(E', E),

» ) P]
E&B denotes E! endowed with B(E', E),

If there is no confusion, E may denote a convex space and E' its dual.
‘Let. (E, E') be a dual pair, If A is a subset of E, the
| subsets of E' consisting of those x' for which

sup { | <x x">f: xca} <1

’
¢

is called the polar of A (in E') and denoted by A°,

If E ‘is a convex space, we shall call a subset A' of E!
almost closed if A'A U® is G (E', E) closed for every neighbourhood
U of the origin in E, |

It often happens that, for a linear.mapping t of E onto F,

although we cannot assert that ¢(U) is a neighbourhood of the origin,



ve can easily prove that t(U) (i.e. the closure of t(U) in F) is,
This is the case when F is barrelled for t(U) is a barrel; for each
absolutely convex neighvourhood U of the origin in E.' It is convenient

to make the following definitions,

DEFINITION 1.1: A linear mapping t of a convex space E

into another convex space F is almost open if- t{U) is a neighbourhood
of the origin in F, for any neighbourhood U of the origin in E,

Similarly, we have: '

DEFINITION 1,2: . A linear mapping t of a convex space E-

into another convex space F is almost continuous if tfl(V) is-a
neighbourhood of the origin in E, for every néighbourhood V of the
origin in F, |

When t is one-to-one and onto, clearlyi t is almost continuous

if and only if t-l iP almbst open,

2, The transpose of a linear mavping

Suppose that (E, E') and (F, F') are two dual pairs and
that—t_ is a linear mapping of E into F, Then < t{x), y' > is
a bilinear functional in the'tw0 variables x and Yy'. Denote by
t'(y') the linear functional on E which results from this bilinear
functional By fixing y! € F',' so that t' is defined by the identity:
<x, £y > =< t), ¥ |
vﬁlid‘for all x ¢ E and all vy' € F', Then for each y' ¢ F',
t'(y') ¢ E* and t' is a lincar mapping of F' into E*, Ve call

't' the transpose of the linear mapping t,



We shall call the lincar wapping weakly continuous if it is
continuous under the topélogicé ¢ (E, E') and o (F, Ff).
The following result is basic, o

JESRE

PROPOSITION 2,1: Let (E, B') and (F, F') be dual pairs

and let t be a linear mapping of E into F with transpose t',

Then t'(F')& E' if and only if t is weakly continuous,

PROOF: . First suppose that t is’ continuous; then for each
fixed y' e F', < t(x), y' > is a continuous linear functional on E,
Hence t'(y') ¢ E',

Next suppose that t'(F')E E' .and let

V= {y: swi<y, y >131d
1<i<n

ve a - G(F,F') basic neighbourhood of the origin in F, Then if

el

U= {x: sup | < x, t'(yi) > < l} '
,1<in .

U is a G(E, E') basic neighbourhood of the origin in E with t(U) € V,

Hence t is weakly continuous, ' _ . Q.E.D,

If t is a weakly continuous linear mapping of E into F,
then t' maps F' into E' and its transpose t'' maps E'' into
F'*, By Proposition 2,1, t'' maps E'' dnto F'' if and only if

t' is continuous when F' and E' have the topologies. O (F', F'Y)

and 6 (E', E''), The simplest cace arises when E'' = E and F'' = F} .
then t'' clearly coincides with t, and so we have by Proposition 2,1,
COROLLARY:  If t is weakly continuous, so is its transpose t',

PROPOSITION 2,2 If t is a continuous lincar mapping of a

convex space E into a convex space F, then t is also weakly

continuous,



PROOF: For cach fixed y' ¢ F', < t(x), y* > is a continuous
linear functional‘on E and so t'(y‘).c E', Hence t'(F')& E' and
the result follows from Proposition 2,1,

The converse of this result is not true in general (take, for
example, the identity mapping of E under one topology iﬁto E under
a strictly finer topology of the same dual éair). However, we shall
see (Proposition 2,9) that for a suitable tOpology'on E weak continuity

implies continuity in the initial topologies,

PROPOSTITION 2,33 Let (E, E') be a dual pair, The polars in

E' of subsets A and B of E have the following properties:

(1) a°

is absolutely convex and O (E', E) closed;
(ii) if A€ 3B then B°C A%
(iii) if A #0, then (MA)° = T%T A°;

(iv) (U A% = n a°, |
o a '
[+4 [+4

PROOT: All are immediate from the definition of polar sets

‘except the 6 (B', E)-closedness of A°, Now

A°=N {x': t<x,x'>l$1}
A .

Xe

which is an jintersection of inverse images of closed sets by ¢ (s, E)= _

continuous functionsj hence A% is O (B', E)-closed,

.
Another useful result is the following,

‘

PROPOSITION 2, 4s If E is a convex space with dual E!

and A is a subset of E, then the bipolar A°° of A in E is the

6 (E, E')-closed absolutely convex envelope of A.

PROO}': See [35] (Chapter IT, § &, Thcorem &, Corollary 1),

Q.E.D,
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PROPOSITION 2,5: Let (E, E') and (F, F') be dual pairs and
let t Dbe a weakly continuous lincar mapping of E into F, Qith '
transpose t', If A€ E and B¢ F', then:

@) a)° = 7o)

(i1) t2E%) = (&' (B))°,

PROOF: A proof of (i) may be found in [35] (Chapter II, Lemma 6)

and (ii) follows on interchanging roles of t and t-l.

PROPOSITION 2.6: Let E and F be convex spaces and t a

weakly continuous linear mapping of E into F, Then t is weakly
open from E onto t(E) if and only if t'(F') is weakly closed in
B,

PROOF': A proof may be found in [6] (Chapter 8, §6,.

Proposition 3), d )

COROLLARY: - If E and F are convex Spaces‘and {t is a

weakly continuous linear. mapping of E into F, then
(i) 't is a weak homeomorvhism into if and only if t'(F') = B
(i.e. t' is onto),

(ii) t(E) = F (i.e. t is onto) if and only if t' is a

- weak homeomorphism into, !

PROPOSITION 2,7: Let E be a vector space., Then under the

topology @ (E*,’E), E* is complete,

PROOF: A proof may be found in [35] (Chapter III, § 6,

Proposition 13),
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The following result is of fundamental importance in the theory

of convex spaces,

THEOR®M 2,1: If Eu is a convex space and U is a neighbour=

hood of the origin then U° is @ (E*, E)-compact,

PROOY': Give E* the topology G (E*, E), Since U is an

" absorbent set in E, U® is bounded in E' ([35], Chapter III, § 1,

Lemma 2) and therefore precompact ([35], Chapter III, § 7, Proposition 6),

Also E* is complete (Proposition 2.7) and U°® is closed (Proposition 2.3 (i))

and so U° is complete. Hence U° is compact., But U°€ E' and the
topologies @ (E', E) and 6 (E*, E) coincide on E', and so U° is

6 (E', E)-compact,

PROPOSITION 2,8: Let E be a separable convex space, Then

every equicontinuous subset of E' is weakly metrisable.

] 3

PROOF:  See [23] (§ 21, 3 (4)),

In Proposition 2,2, we proved that a continuous linear mapping

is also weakly continuous, The restricted converse, promised there is:

PROPOSITION 2,9: If E and F are convex spaces, and if E

has topology T(E, E'), then every weakly continuous linear mapping

of E into F is also continuous,

23993: Let V be a closed absolutely convex neighbourhood of
the origin iz F. Then by Theorem 2,1, V° is “'(E‘,-F)~compact.
Since the transpose t' of t is weakly continuous (Proposition 2,1)
£ (V%) is & (E', E)-compact, Since £'(vV°) is also absolutely

convex, its polar in E is a neighbourhood of the origin in T(E, E'),

Q.E.D,

«)
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But by Proposition 2.4 (i), (£'(v°))° = ¢~3(¥°°) = t73(V), since V

is closed and absolutely convex (Proposition 2.4), Thus t is

_continuous, o ‘ Q.E.D,

We shall call & convex space E  a Mackey space if u = T(E, E'),

It is clear from the proof of Proposition 2,9 that:

PROPOSITION 2,102 If E and F are convex spaces and t

a weakly continuous linear mapping of E into F then t is continuous
with respect to the Mackey topologies on E and F i,e, with respect
to C(E,/E') and T(F, F'):

It is also worth noting that:

PROPOSITION 2,11% If E and I arc convex spaces and t a

weakly continuous linear mapping of E into F, then t is continuous '
with respect to the strong topologies on E and F i,e, with respect '

to PB(E, E') and B(F,, F'),

PROOF: | To show;that t is strongly continuous, it suffices
to show that if B is a weakly bounded set in F', there exists a
bounded set A in E' such that t-l(Bojzzikojngow since
t's: F'—> &' is weakly continuous, t'(B) 'is weakly bounded in E', ,:;

It suffices to take t'(B) = A, Then we have: t-l(Bo) = A® (Proposition

2.5, (ii)), - o R ' Q.E.D,

% Completeness, B-completeness and B ~comvnleteness
X £

Ve begin this section with a very'ﬁseful”charadteriéation of

—

completeness in convex spaces,
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TIFOREM 3,1 Let E Dbe a convex space and E' its dual,
— W :

Then the following statements are equivalent:

(a) E, is complete;

(b) Every almost closed hyperplane of E' is G (E', E)=
cloced; ;

(¢) Lot W be a base of neighbouchoods of the origin for w. Then
every linear functional on Ef‘ that is G(E',E)~continuous on
each W, W elY, is G(8',E)-continuous on E',

PROOF: A proof of this theorem may be found in [15] (Chapter 5,

§ 3, Theorem 2),
From this thecorem we dedﬁce at once:

PROPOSITION %,1: If E, is a complete convex space, then E

is complete under any finer topology of the same dual pair,

More generally, we have the following completeness criterion for
] Y .

a convex space Eu in terms of a coarser topology v on BE,

PROPOSITION 3, 2: Let u and v Dbe two locally convex

topologies on a vector space E such that us v, If B, has a
neighbourhood base of the origin consisting of sets complete in v, ~

then Eu is complete,
PROOF: See [38] (Chapter 1, 1.6),

Theorem 3,1 tells us that a hyperplane in the dual of a complete
convex space is weakly closed if it has weakly closed intersections with
the polars of neighbourhoods of the origiﬁ. A theorem of Banach shows that,
for a Banach space, this property holds not only for hyperplanes, but
for all vector subspaces of its.dual. Convex spaces.with this property

are called B-complete spaces,
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It is also possible to characterizc Becomplicie spaces in
terus of mappings and range spaces. We begin with the following

definition,

SRINITICN 3.1 (a) A convex space E is said to bte

B-complete if a linear continuous almost open mapping of E onto any

convex space 1s onen,

(b) A convex space E is said to be Br-complete if a line

continuous almost open and one-to-one mapping of E onto any convex

space is open,

It follows immediately that:

PROPOSTITICH %,%: Every B-complete space is urncomplete.
e - - -~ 7 . .
PROCCSITION 3, 4 Every Fréchet space (in particular, a

Banach space) is B-conplete.
»

PROOT: See [15) (Chapter 3, § 2, Theorem 2).

e

THEOREM 3.2: ‘Let E be a convex space and E' its cual.
The following statements are equivalent:

(a) E is B-complete (Br~complete).

(b) Every almost closed (and dense) subspace of

G (&', E)-closéd.

5

oy
o
W

PROOY: See [15) (Chapter 4, § 1, Theorem 1
Theorem 5).
Since in any topological vector space a hyperplane is either

closed or dense, Thwcorem 3.1 gives us:

AT AN S . e . )
PROPOSTTION %, 5: Bvery B -complete @pace is complete,
T :

2 2 v
CLa
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We collect now, some properties of B-complete and Br-complete
. -nn which we shall have occasion to use in later chapters, The

coeds of these may be found in [15] and [38], -

PROPOSITION %.6: Let E be a B-complete (Br-complete)

X

space and M, a closed subspace, Then M is B-complete (Br-complete).
PROOF:  Sce [38] (Chapter IV, 8,2),

PROPOSITION 3,7: Let E and F be convex spaces, Let t

be a linear, continuous and almost open mapping of E onto F, If E
is B-complete, then F 1is also B-complete,

PRCOF: See [15] (Chapter 4, § 1, Proposition 5),
As a particular case of Proposition 3,7, we have:

COROLILARY: et E be a B-complete space and M a closed

subspace of E, Then ,E/M is B-complete,

L, Tinear mapvoings with closed mraphs

When B and F  are convex spaces and t is a linear mappin
of E into F, the graph of t is a vector subspace of L x F, Ve

shall use the following condition for the graph to be closed:

PROPOSITION 4,1: Let E and F be convex spaces and let t

be a linear mapping of E into F, with transpose t' (mapping F*
into E*), The graph of t 1is closed if and only if grTLEY) s

dense in F‘o‘.
PROOF': The set t'_l(E') is dense in F'T  if and only if

(t'—l(E'))o = {()} . Now if U is a base of absolutely convex neighbour-

hoods of the origin in E, then
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= U °
UelU
and so
gl = U e e =y N’
Ue Y UeY
Hence

e tEn®= N N = N T,
UeU U € U

But y is in the last set if and only if, for each U e WU and each
neighbourhood V in F, y + V. meets t(U) i.,e. (0, y) ¢ E, where
S - s P 3 =Lpiyy0 o }

G is the graph of t, Hence if G is closed, (t' (E'))” = {0J.
. D DN { } . o

Conversely if (t' "(E'))” = to!l, and if (x, y) € G, then

(0, y-t(x)) e G, andso y - t(x)=0; thus (x, y) ¢ G and G

is closed, Q.E.D,
COROLLARY: If the graph of t is closed, then £740)  is
closed,

———— i

PROOY: For putting N' = t'“l(lz:'), %= {0} by tue _
proposition, and £710) = t7ta°) = (' (0))°, which is ¢ (B, E')-

closed, being the polar of a subset of E', Thus t-l(O) is closed, Q.E.D,

PROPOSTTION &4,2: et E and F be convex spaces and t a

linear mapping of & into F and such that t~l(0) is a closed subspace
of E, Let s: E/t_l(O)-—*~>F,where 6(x)= t(x) for all x ¢ F, Then:
(a) s is almost open if and only if t is almost open,
(b) s is almost continuous if t is almost
continuous,
(e) The graph of s is closed if and only if the graph of

t 1is closed,
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PROOF: See [15] (Chapter 3, § 2, Proposition 3),

5,  The closed sraph and onen mapying theorems for Br-complete snaces

Before we prove our main theorem we need:

LEMMA 5.1 Let E and F be convex spaces, If t is an
almost continuous linear mapping of E into F, with transpose t'
(mapping F' into E*), and if M' is an almost closed vector subspace
of E', then £ 1) is almost closed.

PRCOF: Let N' = t'“l(M'); we have to show‘that N VO
is ¢ (F', F)-closed for each neighbourhood V of the origin in ?,
et W = t-l(V). Then W is a neighbourhood of the origin in E since
t is almost continuousy therefore, since M' is almost closed,

0 . hon) . 2}
M'A WY is 6 (B*, BE)-compact and so G (E*, E)-closed, Hence

. %
t'-l(M'n W) is & (F', F)-closed, Now
el a W) = et A W) = WA £ W0)

N' A (gwW))° N'a (Va £(E)C,

fl
H
!

Hence
NMA Ve =N A VA (v e(E) = v A WO A VO
an intersection of 6 (F', F)-closed sets, Q.E,D,
The following closed graph theorem is due to Ptk (31],

THEOREL

.12 Let Eu be a convex space and Fv a Br»complete

space, Let t be a lincar mapping of Eu into Fv with closed graph.

If t is alwost continuous, thea t is continuous,
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PROOF: We prove first that t is weakly coninuous, by
showing that t'“l(E') = F', so thnat t'(pf) = E', By Lemma 5.1,
with M' = E', g ED s almost closed, By Proposition b1,
£'"(£')  is demse in F;G' since the graph of t is closed. Since
Fv is a Br—complcte space, t'~1(E') = F', and so t is weakly
continuous, Now if V is a closed absolutély convex neighbournood of
the origin in Fv’ V is also weakly closed; thercfore t~1(V) is
weakly closed and so closed., But V) s a neighbourhood of the

A . . . -1 .
origin in Eu since t is almost continuousj thus t (V) is a

neighbourhood, and t is continuous,

COROLLARY: Let E be a barrelled space and F a B -
complete space, Let t be a linear mapping of E into F with closed

graph, Then t is continuous,
_PROOF: Sinoe £ is barrelled, t is almost continuous,

In view of Proposition 4,2 and the fact that factors modulo
closed subspaces of B-complete spaces are B-complete (Corollary to

Proposition 3,7), we have the following open mapping theorem,

THEOREM 5,2: Let E be a B-complete space and F a convex
space, Let 1t Dbe a linear mapping of E onto F with closed graph.
If t is almost open, t 1is open,

CORQLLARY: Let B bg a B-complete space and F a barrelled
space, Let t be a linear mapping of E onto F with closed graph,

Then t is open,

6, Convex soaces with the B($®) and the Br({g)mnroncrty

In his papers [11], [12] and [14#], and in his book [15], Husain

Q.E.D,

©
2

3
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studied convex spaces which he called spaces with the B(% ) and the
Br(%')—property. These are spaces vhich satisfy weakened forms of the

B-completeness and Br~completeness conditions of Ptak [31],

DEFINITION 6.1: (a) Let Y% denote a fixed class of convex

spaces, A convex space E is said to have the B({;)—pfoperty or, in
short, to be a B(% )-space if, for each convex space F ¢ ' , &
linear continuous and almost open mapping of E onto F is open,

(b) A convex space E is said to be a Br(f;)-space if, for
each convex space F ¢ & , a linear continuous one-to-one and almost
open mapping of E onto F is open,

It is c¢lear that:

PROPOSTITION 6,71 Every B(¥ )-space is a Br(%b)-space.

PROFPOSTITION 6,2: Let {;l and %;2 be two classes of convex
b

spaces, If ‘frl ) ‘8.-2, then every B(f)l)-—space (Br(\("’l)-Space)
is a B(%92)~Space (Br(fga)»space).
The following permanence property for B(gr)~5paces may be

found in [13] (§ 3%, Theorem 1),

PROPOSITION 6,3: Let E be a B(¥ )-space and t a linear

continuous and almost open mapping of E onto a convex space F, Then
F is also a B(¥r)-space,

COROLLARY: Let E be a B(*)-space and M a closed subSpéce
Qf E, Then E/M is also a ‘B(%;)—Space.

In the particular case when % = 7 , the class of all barrelled

. . . 4
spaces, we have some internal characterizations of B(') and

Br(QQ)-spaces. For these, it will be convenient to have the following

definition,
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DEFINITION 6,2: Let E' be the dual of a convex space E&-

A subspace Q of E'" is said tu be boundedly complete if the
following conditions are sihultaneously satisfied:
(a)  For cach u-neighboﬁrhood U of the origin in E,
Qn U° is closed in E'T,

(b) Every bounded subset of @ is equicontinuous,

It follows immediately that:

PROPOSITION 6, k: Every boundedly complete subspace Q of

E'T  of a convex space E is weakly quasi-complete,

We have the following characterization,

THEOREM 6,1: A necessary and sufficient condition for a convex
space E to be a B(¥ )-space (Br(g )-space) is that each (dense)

boundedly complete subspace of E'T  is closed,

>
PROOF: See [15] (Chapter 7, § 3, Thcorems 2 and 3).

Proposition 6,4 and the above Theorem now give us:

PRCPOSITION 6,5: A sufficient condition for a convex space'

E to be a B(J )J=space is that each quasi-complete subspace of B

is closed,
For . Br(7 )-spaces we have the following exciting theorem:

THEOREM 6, 2: (Husain [15]) Let Eu be a barrelled space and

. . » ™ .
Fv a Br(.l)"Sp%ceo Let t be a linear mapping of B into

Fv with closed graph., If t is almost open, then t is continuous,

PROOF: Let {V} denote & fundamental system of closed,

absolutely convex ncighbourhoods of the origin in Fv' For each V
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» "—:1""" .}
in Lvl , let Vo= t(t7T(V)), Then it is easy to verify that {v
forms a filterbase for closed, absoluteély convex neighbourhoods of the
origin in ¥ under a locally convex topology w, VYWe show that Fw
* * {*} 1‘
is scparated, Let y e V, for each V in 1VJ, Then ye 3 V.,

Hence there exists x, € t"l( %

V) so that t(xl) ey + % V ., But

1

t"l( % V) C t“l( 3 V) + U, where U is an arbitrary neighbourlocd of

the origin in Eu' Hence x -1( % V) + U, That mezns there cxists
. N
v » ; : ; =V
) and hence t(xz) > t(xl) +35 V.

1 [
-1(

ol o

x2 ¢ U so that xl - x2 e t

But this shows that t(x2) e y+ V, Inother words, G A (Ux (y+ V)) £,
where G is the graph of t, Since G is closed by hypothesis, -
(0, y) ¢ G and hence y = O,

* *
FPurther, for each V , V2V so vo> w, We wish to show that

the identity mapping i : F,— Fw is almost open, For this it is

* -—
sufficient to show that if y ¢ V then y ¢ V, where V is the closure

of V with respect to the topology w, For each W in {vi .

(y + 22. W N e (N £ g

Hence there exists X, € £™1(V) so that t(xl) ey + % W, But

t-l( % V) being a barrel in Eu’ is a neighbourhood of the origin

(because E  is a barrelled space), Hence X, € t-l(V) + t-l( % W),
P -1 . . o -1, 1

Therefore there exists X, € t (V) such that X) = X5 € t ( 3 W)

*

W ., But then t(x.) cy+=W+2U
. 2 2 VTS

o

and hence t(xl).- t(xa) €

* *
(because % Y is balanced and t(xl) ey + % W), Hence t(xz) ey + W,
* * . *
because W € W and W is convex, and therefore V A (y + W) # 4 for

*®
each V, This proves that y is a limit point of V under w, or in
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other words, y ¢ V, Thus i: P;-—+ Fw it continuous and almost

open,
*
Now consider the mapping t: Ed"_—+ Fw’ For each V in

——

(v | ¢ = et ) 2 R, since tTRY)  ds a

barrel and thercfore a neighbourhood of the origin in Eu' t: Ei——f+ Fw
is continuous, Further, since t: Eﬂ—_——*y; is almost open by
hypothesis and 1i: E;—~—->F& is almost open, it follows that

t: EJ——~+ Fw is also almost open,

Now t: Eu---——-b-Fw being a continuous and almost open mapping
of a barrelled space Eu into a convex space Fw implies Fw is a
barrelled space, Since F_ is a Br(3 )-space, the identity mapping
i: F;;———>FQ, being continuous and almost opén, is open, Hence

v = w, Since t: Eu————e-Fw has been proved continuous, it follows

that ¢t Ed—-* Fv is» continuous,

In the case when Fv is barrelled, the almost openness condition
imposed on t may be relaxed, because, it turns out that a barrelled
Qr(s )~space is B -complete ([15], Chapter 7, § 5, Theorem 5), More

generally, we have the following:

Let ¥ be a fixed class of convex spaces which satisfies the
following condition: ILet E and F be two convex spaces and let t
be a linear continuous and almost open mapping of E onto F, If E

is in % , then F is also in ¥ ,

For such a class % of convex spaces, we have:

THEOREM 6, 3: Every convex space in Y% which is a B(¥ )-space

(Br(f;)-space) is B-complete (Br-complete).

Q.

t1

«}
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COROLLARY: Every barrelled space which is a B(7 )-space

(B (4 )wspace) is B-complete (B ~complete).

7. Countably guasi-barrelled and ccuntably barrelled spaces

Countably quasi-barrelled and countably barrelled spaces are
due to Husain [16]., Here we collect some properties of these spaces

for later use, We begin with:

DISFINITION 7,1 Let .E be a convex space and L' its dual,

E is a countably quasi=barrelled space if each P(E', E)-bounded subset
of E' which is a countable union of equicontinuous subsets of E' is
itself equicontinuous, ﬂ

(DF)-spaces and quasi~barrelled spaces are countably quasi-

barrelled,

DEFINITION 7,2: Iet E be a convex space and E' its dual,

E 1is a countably barrelled space if each G (X', E)-bounded subset of
E' which is a countable union of equicontinuous subsets of E' is

itself equicontinuous,
Barrelled spaces are countably barrelled,
It is clear from the above definitions that:

PROPOSITICN 7,1: Every countably barrelled space is countably

quasi-barrelled,

The following proposition gives a condition under which the

converse of Proposition 7,1 is true,



PROPOSITION 7, 2: A sequentially-complete convex space is

countably barrelled if and only if it is countably quasi~barrelled,

PROOI: Since E is sequentially complecte, weakly bounded

subsets of L' are strongly bounded. Our proof now follows that of

Proposition 4 ([16], § &),
A particular case of Proposition?7,2 is the following:

COROLLARY: A complete convex space is countably barrelled if

and only if it is countably quasi-barrelled,

PROPOSITION 7,%: Let E be a countably barrelled space and
E', its dual. Then every O (E, E')-bounded subset of E is B(E, E')=
bounded, which is equivalent to every 6 (E', E)-bounded subset of E'

is B(E', B)-bounded,

PROOF: Let A and B be weakly bounded subsets of E and

E' respectively, and suppose sup | <x,y > | = o, Then there
xch,yeB :

exists a sequence {y }, vy ¢ B, such that sup | <x,y > | > n?
' xeA

for each n, Now since {y } is ¢ (E', E)~bounded, it is equicontinuous
n

(because E is countably barrelled) and hence strongly bounded, But

sup | < Xy > ] = ®, which is a contradiction, Thus,

xeh,n

sup | <x,y >} <® and therefore A and B are strongly bounded
xch,yeB

N

subsets of ® and -  E', respectively,
Another useful result is the following,

PROPOSITION 7. 4: Let B be a countably barrelled space and

E', it dual, Then E'"® is sequentially complete,



PROOT: See [16] (§ 6, Theorem 5).
Countably barrelled spaces (countably quasi-barrelled spaces)

are preserved by continuous almost open linear mappings. We have:

PROPOSITION 7,5 Let E be a countably barrelled (or countably

quasi-barrelled) space and F any convex space, Let t be a linear,
continuous and almost open mapping of E onto F, Then F is also

countably barrelled (or countably quasi-barrelled).
PROOT: See [16] ( § 8, Proposition 8),

COROLLARY: Factors modulo closcd subspaces of countably
barrelled (quasi-barrelled) spaces are countably barrelled (quasi-

barrelled).

8, On Semi-reflexive spaces -
3

Let E be a convex space and let PB(E', E) be the strong
topology on E', This is the topology of uniform convergence on the
bounded subsets of E, Qe shall call the dual of E' under this
topology the bidual of E, Ve shall then call E~ semi-reflexive if the

bidual of E is L itself,

By appealing to the Mackey-Arens Theorem ([15], Chapter 2, § 9,
Theorem 6), we have the following characterizations of semi-reflexive

spaces,

THEOREM 8,1: For any convex space &, the following assertions

are eguivalent:
(a) E is semi-reflexive,

(b) Every B(E', E)=continuous linear form on E' is
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continuous for G (E', 2),

(¢) EB'®"  is barrelled i,e, on EY, T(E', ®) = p(E', B),

(d)  Every bounded subset of E is relatively ¢ (E, E')-compact,

(e) B is quasi-complete under < (E, E'),

PROOY: See [38] (Chapter IV, 5.5).

Another characterization and one which we shall often refer to

in a later chapter, is the following:

THEOREM 8,2: Let Eu be a convex space, If E&B is
separable, then Eu is semi-relexive if and only if Ee¢ 1is sequentially

complete,

PRCCF: The necessity is obvious, For sufficiency, let B

be a bounded, weakly closed set in E, Then B i1s an equicontinuous

B! e - . ‘
subset of E'" , hence’it is ¢ (E'", E')-metrisable (because P

is separable) and the @ (E'', E')~closure of B is a compact metrisable

space (Proposition 2.8), If {Xd} is a Cauchynet in B for ¢ (Z, E'),

then there exists a z ¢ E&B! such that =z is the limit of the Cauchy
nat { xa}. By metrisability, =z is the limit of a Cauchy sequence (in
the O (B'', E')-topology which is the same as the ¢ (E, E')-tovology on
B) in B qnd,by sequential comoleteness, z ¢ B, Thus B  is weakly

compact and hence E is semireflexive (Theorem 8,1 (4)),

Qc Eo Do



CHAPTER II

o~SPACES, ¥ ~-SPACES AND 6-SPACIS

), «a~snages

Sequentially closed sets are not in general clpsed.‘ However, in
the case of first countable spaces, sequentially closed sets are closed,
In particuiar, netrisable spaces have this property, In this section
we shall concern ourselves with a class of convex spaces whose weakl
duals are such that every sequentially closed subspace is closed, On

these spaces, we prove closed graph and open mappiné theoreus,

DEFINITION 1,1: A convex space is called an a-space if in
3

its weak dual, every sequentially closed subspace is closed,

The requirement of being an a~space depends only on the dual
system and so, if Eu is an a~space, then Ev is an a-space for any
locally convex topology v such that G(E,E')c v ¢ T:(E,E').'

Examples of a-spaces are in abundance, The dunl E& of ametrisable
CONVCR Space Eu is a o=space in all Jecally convex tovologies v such
that  ©(E',E)eve T(R', E), If B is a quasi-M-barrelled space
([251, § 3) and E&B possess a countable fundamental family of bounded
sets, then E& is an a-space for any locally convex topology v such that

(E', B) ¢ v ¢ T(B', E), becouse Eg is metrisable, Ew = R(ﬂ ),

the space of all finite sequences, with the finest locally convex

27
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topology w, 1is an a~space. For E; = RN, the countable prodﬁct of

the reals and RN with G'(E;, Ew) is: metrisable ([15], Chapter 6 § 1),
If ¥ is a convex space with a countable fundamental family of convex
compact sets, then E is an a-space, A semi-reflexive (DF)-space

([23], Chapter 6, § 29) 1is an a-space,

Supposie that Eu is a reflexive Banach space which is not
scpraable, Tet v be the topology of uniform convergence on separuable
bounded subsets of the stronpg dual E&B, Then Ev is a semi-reflexive

(DF)=space ([23], Chapter 6, § 29) and thercfore an a-space.

Let B and ¥ be convex spaces and t a linecar mapping of
E into VF, Lot t' be the transpose of the lincar mapping. t'*l(E')
is the vector subspace of F' formed by those y' in F' for vhich
the linear functional: x-—> < t(x), y' > 3is continuous on E,

Let E'% be the point‘sot E' cndowed with the topology o (E', E),

Ve have the following property of t'-l(E').

PROPOSITION 1,1:. If E is a convex space such that E'C

is sequentially complete, then t'_l(E') is sequentially closed in F'7,

PROOF: Since t': F'-—+LE* is continuous with respect to
¢(F', F) and © (BE*, E), g EY s sequentially closed, Q.E.D,

COROLLARY 1: If E is a countably barrelled space, then t'—l(E'),'

is sequentially closed.

PROOF': Since E 1is countably barrelled space, BE'T is

sequentially complete (Chapter I, Proposition 7,4) and so sequentially

closed in O (E*,B),
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s

COROILLARY 2: If E is a barrelled space, then t'-l(

E') is
sequentially closed,

PROOF: Since barrelled spaces are countably barrelled (Chapter I,

§ 7), our proof follows as before. , : Q.E.D,
THEOREM 1,1: Let E be a Mackey space such that E'T is

sequentially complete. Let F be an a-space, If t is a linear

mapping of E into F, whose graph is closed in E x F, then t is

continuous,

PROOF: Since the graph of t 1is closed, £171(8')  is dense
in F'  (Chapter I, Proposition 4,1), Further, since E'T is
sequentially complete, t'-l(

E') 1is scquentially closed, by Proposition 1,1,
F is an a-space and therefore t'"l(E') = F', t is therefore weakly
continuous but since ? is a Mackey space, it is continuous (Chapter I,

prOpOSition 2.9). ) Q.EODO

REMARK 1,1: If in the above theorem, t is almost continous,
the requirement that F be a Mackey space is not necessary, for then

weak continuity implies continuity.

- COROLLARY 1: A linear mapping of a countably barrelled Mackey
space E into an a-space F, whose graph is closed in E x F is

continuous,

COROLLARY 2: A linear mapping of a barrelled space E into an

a-gspace I, whose graph is closed in E x F, is continuous,

PROPOSITION 1,2 If there is a continuous open linear mapping

t of an a~space. E onto a convex space F, then F is also an

a~-space,



PROOF: Since t 1is onto, the transpose

tt:

Fo“:______.) bl
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a

is one-to-one and therefore a homeomorphism into (Chapter I, Pfoposition 2.6;

Corollary (ii)), Let § be a sequentially closed subspace in F'T,

Then t'(Q) is sequentially closed in ¢'(F*). Since t is open,

t'(F') is closed in E'Y (Chapter I, Proposition 2,6) and so t'(Q)

is sequentially closed in E'® , Since E is an a-space, t'(Q) is

closed in E'"T  and so Q 1is closed in F'7

a-space,

Thus F

is an

COROLLARY: The factors modulo closed subspaces of a=-Spaces

are alsy a-spaces,

Ve thus have the following open mapping thcorem:

THSOREM 1,2: Let E be an a-space, ILet F be a Mackey space

such that F'®  is scquentially complete, If t

‘ » -
of E onto F, whose graph is closed in E x F,

PRCOT: Since the graph of t is closed,

is a linecar mapping

t is open,

£1(0)

is a closecd

subspace of F (Chapter I, Co?oliary to Proposition 4,1) and so

E/t—l(O) under the quotieﬂt topology is separated., Then we can write

t = sok, where k is the canonical mapping of E onto X

™

/t71(0) and

s 16 a one~to-one mapping of E/tnl(O) onto F, Since the graph of

s 1is closeéd (Chapter I, Proposition 4,2 (c)), the graph of s is

Q.E.D.

also closed, st maps F onto E/tul(O), which, by the above corollary,.

. ' : -1 . .
is an a-space, Thercfore by theorem 1.1, s is continuous, Thus

and so also t, are open,

REMARK 1,2: If in the zbove theorem, t

~is almost open, the

requirement that F be a Mackey space is not necessary, for then, S

almost continuous and our result follows by Remark 1,1,

S,
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COROLIARY: A linear mapping of an wa~space LI onto a barrelled

space F, whose graph is closed in B x F, is open,

REMARK 1, %: Let E and F be couvex spaces and t a lincar
mapping of E into F, If t is almost continuous, then t'-l(l')
is almost closed in F'Y  (Chapter I, Lemma 5.1). Also if the graph
of t is closed in B x F, t'"(5') is demse in ¥'C  (Chapter I,
Proposition 4,1), Therefore the corollaries to Theorems 1,1 and 1,2 are
also true for spaces more general than a-spacesy namely the class of
~convex spaces whose weak duals arc such that every almost closed, scquentially

closecd, dense subspace is closed and hence coincides with the weak dual,

PROPOSITION 1,3%: A closed subspace M of an a-space E 1is an
a-space,
PROOF: Let Q@ DbYe a weakly sequentially closed subspace of the

dual M' = E'/i® of M,

If‘¢ denotes the canonical mavping of E'——-ﬁ‘E'/MO continuous

_ with respect to 6 (E', B) and ¢ (8'/1°, M), then ¢-1(Q) is a
weakly sequentially closed subspace of the dual E' of E, Since E is
an a~space, ¢ -l(Q) is 6 (E', E)~closed, Hence Q is G‘(E'/Mo, M)-

closed and so M is an a-space, ‘ Q.E.D,

Let E'' Dbe the bidual of X, With respect to the dual pair
E' and E'', let 6 (E', E'') and T(E', E'') be the weak and

Mackey toponlogies on E', respectively,

EXAMPLE 1,1: If E is a non-reflexive Banach space such that
Ea‘(E g is sequentially complete (such for example is ‘el’ with

L O (EY, BYY)
the usual norm topology), then E' ! is not an a~-space and so
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'E(E', EH)

E! is not an a-space, But since E?

[ ] hE N |
T(E o5 ) is & Banach

space, BE' is B-complete under T (E',E''), Thus B-complete spaces

are not in general a-spaces,

EXANPLE 1,2: If E =L (), the space of all real sequences
®
x_ (n>1) such that > x| <o, where u is the metric topology
n - n } .
n=1 . _
induced fromn RN (the countable product of reals), Eu is not complete .

) : N
([15], Chapter 7, §6 , Example 3) and so not B-complete, But E& = R( ),

the space of all finite sequences, where T (E', E) is the norm topology

defined by the norm: I xll = sup lxnf . Furthermore, it is known that
T ’

B! =E and O(E, E') =u= T(BE, B') and so E, 1is an a-space,

Thus "a-spaces are not in general B-counlete,

The next two propositions give us the particular cases when a B-complete

space is a a=apace and,when an a-space is B-complete,

PROPOSTTICN 1,k A separable B-complete space Eu is an a-~space,
PROOI: Suppose Q is a scquentially closed subspace in E&°—,

Let” U be any neighbourhood of the origin in Eu’ Since Eu is scparable,
U°  is weakly metrisable (Chapter I, Proposition 2,8), Thus QAN U° s

weakly closed in U®, Since U® is ¢ (E', E)-compact, 90 U° is

also closed in E&o' . But since L is B-complete, Q is ¢ (E', E)-
~closed, _ ' q.E,D,
DEFINITION 1,1: A convex space FE  is said to be sequentially

barrelled if every sequence in B' which is G (E',E)-convergent to zero is
equicontinuous,

Since the translation of an equicontinuous set is equicontinuous,
E is sequentially barrelled if and only if every sequence in E' which

is  U(E',E)-convergent is equicontinuous.



Sequentially barrelled spac s are due to J, H, Webb [42], They
are more general than barrelled spaces ([42], § 5). Mackey spaces with
sequentially complete weak duals are sequentially barrelled ([42], § 4,

Proposition 4,2),
The following proposition is due to Webb [42] ( § 4, Corollary b4,14),

PROPOSITION 1,5: An a-space Eu which is sequentially barrelled

is B-complete,

PROOT: Suppose @ is a subspace in E&°' such that Q A U°
is € (E', B)-closed for eachkncighbourhood U of the origin in Eu.
Let {:xn} be a sequence of poings of Q such that x—>x veakly,
Since Eu is sequentially barrelled, there exists a neighbourhood U
of the origin in Eu such that {xn} ¢ u°, By hypothesis, QN u° s

closed in E&“' and therefore x ¢ Q i.,e, Q is sequentially closed,

E  1is an a-space and so Q is 6 (E', E)-closed, Q.E.D,
COROLLARY 1: An a-space which is countably barrelled is

B-complete,
PRCOF: Since countably barrelled spaces are sequentially

barrelled our proof follows as before, \ Q.E3D.

Let"Eu be a convex space, Ve shall denote by P*(E, E'), the
topology on E of uniform convergence on B(E(, E)-bounded sets of E',

Whenever E,

or is complete, E&t' is sequentially barrelled ([43],

Theorem 3,1), This enables us to establish that sequentially barrelled

spaces are more general than countably barrelled spaces,

EXAMPIE 1,3 Let Eu = co, with the usual norm topology.

Since E  is quasi-barrelled, u = p*(E, E'), Further, since E,
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is complete, E&t is sequentially barrelled ([43], Theorem 3,1),
However, since Eg¢ is not sequentially complete, E&‘ is not countably

barrelled (Chapter I, Proposition 7,4),
COROLLARY 2: An a-space which is barrelled, is B-complete,

PROOF:  Since barrelled spaces are countably barrelled (Chapter I,

§ 7) our proof follows as before, Q.E.D,

The factors modulo closed subspaces of seqﬁentially barrelled spaces
are also sequentially barrelled spaces, This follows from the following

proposition,

PROPOSITION 1,6: If there is a continuous, almost open linear

mapping t of a sequentially barrelled space Eu- onto a convex space

F, then F is scquentially barrelled,

PROOF: Since *t 1is continuous, the transpose t' maps F!
into E' and is continuous with respect to G (F', F) and a (E', E),
Let {xn} be a sequence of points of F' such that X+ X weakly,
Then {t'(xn)} is convergent in E&r . Since E  is sequentially
barrelled, {t'(xn)} C U° for some neighbourhood U of the origin in

E ., Thus
u

{x}ct )

= (FamN° .

Since t is almost open, {_xn} is equicontinuous and therefore F

is sequentially barrelled, Q.E.D,

EFINITION 1,2: Let J?-g denote the class of all sequentially

barrelled &pacog, A convex space DB is said to be a B(Jieg )=spnce



if, for cach convex space F in 51-5 , @& linear, continuous and
almost open mapping of E onto F 1is open,

In view of Propusition 1.6, a sequentially barrelled B(J?'g )=
space is Becompleto(Chapter I, Theorem 6.%), Thus it follows from

Propocition 1,4 that:

PROPOSTTION 1,7: A separable, sequentially barrelled

B(X?.J )~spuce is an a-space,
To obtain a characterivation of a-spnces, we consider now the
“o pronlrie ted se o e o 5 Darr r(g )
more restricted clasa of 211 barrclled spaces, Darrelled B(J )=

spaces are Becomplete (Chapter I, Corollary to Theorem 6,3%), Since

barrelled spacces are Mackey spaces having sequentially complete weak duals,

we have the following:

THEOREM 1,3%: Let E be a separable barrelled space, Then
AL ALY , ,
I is an a-space if and only if for each Mackey space F with a
sequentially complete weak dual, a linecar mapping of E onto F, whose

graph is closed in E x F, is open,

PROOF: This follows frem Theorem 1.2 and the remarks above,

2 ¥ ~Spaces

In this section, we shall concern oursclves with a class of
convex spaces whose weak duals are such that every subspace that contains
tHe limit points of its bounded subsets is closed, These were first
introduced by V, L, Levin [26]. More recently, A, Persson [30] and

A, McTIntosh [28] have also dealt with such spaces,



LFINITION 2,1: A convex space is called a ¥ =space if in

its weak dual every subspace containing the limit points of its bounded
subsets iIs closed or equivalently if in its weak dual every subspace

which intersects every closed bounded set in a closed set is closed,

It follows immediately that a-spaces and B-complete spaces

are & -spaces,

¥ -spaces are more general than o~spaces, This follows from

Example 1,1, However we have:

PROPOSITION 2,1: A ¥ -space Eu which is B(E, E')=

separable, is an w-space,

PROOF: Let B be an absolutely convex 0"(E&, E)-bounded
subset of E'. Since E&'C EY and E is PB(E, E')-separable, the
- restriction of G'(Eé, E) to B is metrisable. Hence CT(E&, E)
is metrisable on every absolutely convex 613&, B)-bounded subset of

E', Thus every sequentially closed subspace of B&O-

intersects every
closed bounded set in a closed set; Eu is a ¥ -space and so every

‘sequentially closed Spaée of E&G- is closed,

DEFINITION 2,2: A subspace in the weak dual of a convex space

is called boundedly closed if it intersects every closed bounded set in

a closed seot,

A more satisfactory result relating ¥ ~spaces and a-spaces isi

THEOREM 2,1 A convex space E  is an a-space if and only
irf (a) E dis a ¥ -space
(b) every scquentially closed subspace of I ¥ can be

slrictly separated from any outside point by means of a

boundedly closed hyperplane,
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PROOF: The necessity f condition (a) is obvious, Assume
now that condition (b) is not satisfied, Then there exists in E'T
a sequentially closcd subspace Q and f £ Q, such that @ cannot be
strictly separated from f by means of a boundedly closed hyperplane,
Since E is a ¥ -space, this implies that & cannot be strictly
separated from f by means of é weakly closed hyperplane, By the Hahn-

Banach theorem, this implies that & is not weakly closed., Thus E

is not an «a~space,

Conversely, assume now that we have (a) and (b) and let Q be
an arbitrary sequentially closed subspace of E'G-. Consider an érbitrary
f ¢ E' such that f £ Q. Then by (b), there exists a boundedly closed
hyperplane H in E' which strictly separates Q from f. By (a),
H is weakly closed., Thus Q can be strictly separated from‘any £ Q
by means of a weakly closed hyperplane, whence Q itself is weakly closed,

Thus E is an a=-space, Q.E.D,

¥ -spaces are also more general than B-complete spaces. This.

is indicated in the following examples,

EXAMPLE 2,1: Let E be a metrisable convex space which is
N .
not barrelled (such for example is R( ), the space of all finite
sequences, (xn), with the norm topology defined by I x Il = sup x| ).

\ . 4T .
Then E'T is an a-space and so a ¥ -space, but since E' is not

conplete, it fails to be B-complete,

EXAMPLE 2,21 Let E be any infinite dimensional metrisable
convex space, Then 3% is an a-space and therefore a & -space,
But since E'"  is never complete ([38] Chapter IV, § 6), it is not

B-complete,



Example 1,2 is yet another example of a & -space which is not

B~complete, However, it is clear that:

PROPOSITION 2,2: A ¥ -space which is barrelled is

B-complete,

On ¥ -spaces, the closed graph and open mapping theorems

generalise, We now prove these theorens.,

THEQREM 2,2: Let E be a barrelled space and F a ¥ -space, ¥
If t is a linear mapping of E into F, whose graph is closed in

ExF, then t 4is continuous,

PROOF:  Let D[t'] = t' ™ (E'), D[t'] A B is a bounded subset
in 'Y  for every bounded subset B in F'7, Now, since t't F'-— E*
is continuous with respect to GO (F', F) and o (E*, E), t"(D[t']JA B)
is a bounded subset in E'T for each closed bounded subset B in

F'“‘. E is barrelled and so
tr(pt'IN B)C 1°
for some neighbourhood U of the origin in E, Now since u° is

compact in E'%® (Chapter I, Theorem 2,1), % is weakly closed in

i*  and so t'nl(Uo) is closed in F'%,

13

But D(t'JN B € t'“l(UO)
 and so Dt'IAB € ¢ % € pLel, | -
Hence Dt'JNAB € plt*]ABEDL'INTD

and therefore D[t'JNA B is closed in F'®, Since the graph of t

is closed in E x F, t'ul(E') is dense in F'% (Chapter I,Proposition 4,1).

F'O"

Since F is a ¥ -spacc, t'—l(E') is closed in and thercfore



t'—l(E') = F', Thus t dis weakly continuous, But E is a barrelled
space and therefore a Mackey space and so t is continuous (Chapter I,

Propostion 2,9), Q.E.D,

Since factors modulo closed subspaces of & -spaces are also

¥ ~spaces ([30], Lemma 1), we have the following open mapping theorem,

THEOREM 2,73: Let E bea ¥ -space and F a barrelled space,
If t is a linear mapping of I onto F, whose graph is closed in E x F,

then t is open,
PROOF: This is similar to that of Theorem 1,2,

It appears worthwhile, at this stage, to investigate, brieflly,
closed graph and open mapping theorems for more general linear mappings.

Vie could, for instance consider dense linear mappings.

Tet B and F be two convex spaces. Let t be a linear
' .
mapping defined on a subspace D[t] of E with range R[t] = t(D[t])
in F, We call t dense if D{t] is dense in E, As before, D[t']

denotes the set of all y' e F' such that t'(y') ¢ B', R[t'] = t'(D[t']).

The set of all pairs (x, t(x)) ¢ Ex F, where x ¢ D[t], is
called the graph G(t) of t, Let G(t) be the closure of G(t) in

E x.F, t 1is said to be closeable if and only if (0, y) ¢ G(£) implies

¥y = 0 or equivalently if G(¥) is the graph of a linear mapping,

PROPOSITION 2,%: Let E and TF Dbe convex spaces, Let t

be a dense linear mapping of E into F, Then t is closeable in

~Ex F if and only if D[{t'] 1is dense in F' ,

PROOF': A proof may be found in [24] ( § 5, (3)).
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Theorem 2,2 aad Proposition 2,3 give us:

THEOREM 2,4: Let E be a barrelled space and F a
¥ -space, Let t be a dense linear rapping of E into F, closeable

in Ex F, Then t is continuous,

Ve now note the following definitions and results due to

Kothe [24],

Let DEE}C-EM have the induced topology., Let W :'{U} be
the filter of all neighbourhoods of the origin-in D[t] for the induced’
topology., The images t(U) for all U's gencrates a filter t(U) in

F. The set of all adherent points of t(%) in F, is a closed subspace

given by: S[t] = /xa t(U), where t(U) is the closure of t(U) in
Ue

F .
v

Let U = {%} be the neighbourhood filter of the origin in
Fv‘ The inverse images t—l(V7 C D{t] for all V's generates a

filter t~1(1y> in D[?], The set of adherent points of t-l(my) in

D{t] is a closed subspace in D{t] given by: K[t] = N t-l(V)
. Ve

whsre t 1(V) is the closure of £ 2(V) in D[t],

Let N[t] be the kernel of t,- If t is continuous, it is
clear that ‘N{t] = K[t]. Let N[t] bé the closure of N(t] in D[tJ,
t is said to be weakly singular if K[t] = N[t], Since X[t} = £ (s ])
((24], § 2, (5)), all closeable linear mappings are weakly singular, .
t is called an extension of t if D[t]C D[t]C E, R(¥JC F and
t=t on D[t], A linear mapning is called a maximal mappingl) if

. v L4
every extension t of t, with t' = t', coincides with ¢,

1) K8the in [24] calls such mappings maximal transformations.
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PROFPOSITION 2,4: Let B and F be convex spaces, Let t

be a dense, maximal mapping of B into F. Then the o (E', E)~-

closure of RI[t'] is o (B', D{t])-closed.

PROOF:  See [261 (§ 7, ( 8).

We are now vin a poéition to prove an open mapping theorem for
dense weakly sinsular maximal mappings.

THEOREM 2.5: Let. E bea ¥ Q-space__ and F a barrelled
space. Let t be a dense, weakly singular maximal mapping of E onto
F. Then t 1is open.

PROOF We must show that R[t'] is 07(E', D[t ])-closed

a4, §9). Rt'IJN B is a bounded subset in E'9  for every bounded
subsét B in E'G‘. Since t maps E onto F,. t'_l: R(t']—F!
is continuous with respect to G (B', D[t]) and a(F', F) ([24], §6, (8)).

wm

- —
Thus t' (R[t']JN B). is a bounied subsct in F'%  for each closed

)

bounded subset B in E'?. Since F is barrelled,
-1 - c '
tVTRIEINB) C v s
for soiie neighbourhood V of the origin in F.
Thus,
RIL'JNE ¢ t'(v° N DLt

= (t7hn® (a1, § 5, ().

Now, (t—l(V))o is G (L', B)-closed. ‘iherefore

P e

R[t'IN B C £ (v°n plt'].)
C t'(d[t*] )

= k8D
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Hence R[t'JA B C R[t'JAB € R[t'JA B and therefore R[t'JN B
is @ (B', E)~closed, Since E is a ¥ -space, R[t'] is & (E', E)=
closed, Further, since t is maximal, R[t'] is also ¢ (E', D[t])-

closed by Peopesitien 2.4,

COROLLARY: Let E be an a-space and F a barrelled space,

Let t be as in the theorem., Then t is open.

PRCOF': .Since a-spaces are J -spaces, this is an immediate

conscquence of the theoremn,

3, b-spaces

A convex space is said to be quasi-complete if every closed

bounded set is complete,

DEFINITION %, ): A convex space is called a  &-space if in

its weak dual every quasi-complate subspace is closed,

It follows immediately from the definition that a-spaces,

B-complete spaces and Y -spaces are b~Spaces,

Example 1,1 shows that 6-spaces are more general than a-spaces,

However, we have:

PROPOSITION %,1: A d-space E with sequentially complete

weak dual and separable in B(E, B'), is an a-space,

PROQOI: We must show that every sequehtially closed subspace

Q of E'T is closed, Since E, is separable, it follows from the

8

proof of Pproposition 2,1 that @ intersects every closed bounded set in

E'ST  in a closed metrisable set, Now since E'® is sequentially

Q.E.D.

Q.E.D,
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complete, it follows that @ is quasi-complete. E is a d-space and

'so Q is closed in E'T, Q.E.D,

Examples 1,2, 2.1 and 2,2 all show that b&-spaces are not in
general complete and so may fail to be B-complete, However, it is clear

that 6-spaces that are also barrelled are B-complete,

PROPOSITION 3,2: A p-space E' which is barrelled in its

Mackey topology is a ¥ -space,

PROOF: Let Q be a boundedly closed subspace in E' ¢
(see Definition 2.2). Since Eg is barrelled, E'T  is quasi-complete
and so Q is quasi-complete, Now since E is a 6-space, this implies

that Q is weakly closed, Thus E isa ¥ ~-space, ‘ Q.E,D,

A further result that relates ¥ -spaces and &-spaces 1is

provided in:

THIEOREM 3,13 A convex space E is a ¥ -space if and
only if (a) E is a §-space .
(b) every toundedly closed subspace of E'® can be strictly

separated from any outside point by means of a guasi-
pa P

complete hyperplane,
PROOF: This is similar to that of Theorem 2.,1.
We have the following closed graph theorem on &6-spaces,

THEQOREM 3,2: Let Eu be a barrelled space and Fv a
d-space, Let t be a linear mapping of E into F, whose graph is
closed in Eu b'Y Fv, If t 4is almost open from Eu inte ¥ , t is

continuous,



L

PROOF': Let D[t'] = t'_l(Ed). Following the proof of
Theorem 2,2.we observe that D[t'JA B is & (F', F)-closed for each

closed bounded subset B in F&q' and
DIt'IN 3B ¢ ¢ HU®)

(£(0))° for some neighbourhood U of the

(]

origin in E_,
u .

. . . TR0 L o
Since t is almost open from E  into TFp , (¢(U))” is 6 (7', F)=
compact and so D[t'] A B is compact in FJ“'. Thus D[t'] is
quasi~complete in F&“- . Since the gravh of t is closed in Eu X Fv
and Fv is a b-space, t'ﬁl(E&) = F;. t 1is therefore weakly continuous

but since Eu is a barrelled space and so a Mackey space, t is

continuous,

REMARK 3,1: » The above theorem is also true if .FV is such
that in its weak dual, every almost closed, dense quasi-complete subspace
) y q I

is closed,

REMARK 3,23 If, in the above theorem, F 1is barrelled in
its Mackey topology, the almost openness condition imposed on t may be
relaxed, for then, F_ is a ¥ -space (Proposition 3,2) and our result

follows from Theoren 2.2,

PROPOSITICN %,3%: Let E be a b-space and M a closed

subspace of E, Then E/M is a b-space,

PROOF: Tt is well known that (E/M)' = ¥, with E/M
having the quotient tovology., Let Q, endowed with the weak torology
6’(Mo, E/M), be a quasi-complete subspacc of %°,  Since 6 (E', E)

. . . o] le] .
coincides with @ (M, E/M) on M, Q can be regarded as a quasi-

Q.E.D.



complete subspace of E'Y, Since E is a b-space, Q 1is closed

in B'Y  and so ,G'(Mo, E/M)~closed in Mo. Thus E/M is a 6-space, Q.E,D,
We therefore have the following open mapping theorem,

Theorem 3,3 Let Eu be a b-space and Fv a barrelled space,
Let t be a linear mapping of Eu onto Fv, whose graph is closed in
Eu X Fv' If t is almost continuous from E¢ onto Fv3 t is open,

Every 6-space is a B(J )~space,where J is the class of all

barrelled spaces (Chapter I, Proposition 6,5), Conversely we have:

PROPOSTTION 3, L: A B(J )-space E which is also a Mackey

space is a b-space,

PROCF:v We must show that every quasi-complete subspace Q
of E'S is closed. Since Q contains the limit points of all its

bounded subsets, QN U

is 6 (E', E)~closed, for each neighbourhood
> v

U of thé origin in E, Now, every bounded subset of Q is contained

in a complete convex bounded set (its closed convex envelope), Since

E is a Mackey space, it follows that every bounded subset of Q is
equicontinuous, Thus @ is boundedly complete (Chapter I, Definition 6.2),

E is a B(J )-space and so Q 1is closed, (Chapter I, Theorem 6,1). Q.E. D

T

In [40], Sulley observed that there is a Banach space £, and

a 6 (E', E)--dense subspace M of its dual E&, with the property that

EGTE, 1) is not a‘ ¥ ~space, This implies that E't(E, ) is also

. o gy . . <
not a ¥ -space, However, since T(®, M) is coarser than U, E’t(E, )
is a B(d )»space and therefore by Proposition 3;4, a b-space, Thus

b-spaces are more general than ¥ ~uoace,
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Proposition 3,4 also enables us to give the following partial

converse of Theorem 3.3.

THEOREM 3.4 Let E Dbe a Mackey space, Then E is a b-space
if every linear mapping of E onto a barrelled space, with closed graph,

is open,

PROOF: If t is a continuous linear mapping of E onto a
barrelled space T, the graph of t is closed in Ex F, Thus t is
open by assumption, This shows that E is a B(d )-space, Since E is

a Mackey space, it follows from Progosition 3,4 ¢hat E is also a 6-space, Q.E.

Another characterization of 6-spaces is provided by:

THEOREM 3,5: A convex space E 1is a d=space if and only if
(a) E is a B(% )-space

(b) every quasi-complete subspace of E'® can be strictly
separated from any outside point by means of a boundedly

complete hyperplane,

PROOF': This is similar to that of Theorem 21 ,




CHAPTER ITI
B (¥ )-SPACES
B, L2 )-SPACES

The present chapter is devoted to some closed graph theorems on
Br(ﬁ—)—Spaces. For the most part, we éhall consider the cases when ‘&
is m the class of all convex metrisable spaces;
the class of all normed spaces;
the class of all barrelled spaccs;

the class of all separable barrelled spaces .

>
R o R

- 7
and the class of all convex Frechet spaces,

1, Some general provexrties

While most of the results in this section are preparatory, some

are of interest in themselves, e begin with:

PROPOSTITION 1,1: If there exists a continuous, almost open

linear mapping of a metrisable convex space onto a convex space F,

then F is metrisable,

PRCOF ¢ Let t be a continuous, almost open linecar mapping
of a metrisable convex space L cnto F, Let »{Un} be a countable
base of absolutéiy'convex neighbourhoods of the origin in E and let
{\l} be a base of closed, absolutely convex neighbourhoods of the
origin in F, Since t is continuous, for each V ¢ { v } , there

exists U, ¢ {II } such that U, & tul(V). Further, since t is
i n i

b7



almost oypen, for each Ui € {I&\}- there exisis a Wi € {‘V } such

that wiC TRUiS . Now, since V is closed we have:
W, C tZUiT c v = v,

Thus F has a countable base of ncighbourhools of the origin, Since
F is assumed separated, it is metrisable ([35], Chapter I, § 4, Theorem 4). Q.E,

We now have:

PROPOSTITION 1,2: Every metrisable convex space which is a

B(M )-space (Br(Wv)—space) is B-complete (Br—complete).

PROOF: This follows from Proposition.1,l above and Theorem 6.3

(Chapter I),

It follows therefore that in the class of convex spaces, metrisable
B(M )-spaces (Br(%@)~Spaces) are B(Jd )-spaces (Br(3:)~8paces). Conversely

we have: )

PROPOSITION 1,3: Every sequentially barrelled B(d )-space

(Br(s')—space) is a B(M )-space (Br(wz)—space).

PROOF: Let E be a sequentially barrelled B(J&)—space and
F  a convex metrisable space, If t is a continuous, almost open
linear mapping of E onto F, F is sequentially barrelled (Chapter II,
Proposition'1.6). Thus every 6 (F', F)-bounded subset of F' is
p(F', F)-béunded ([h2], Proposition 4,1), Since metrisable convex spaces
are guasi-barrelled, F is barrelled, But then E being a B(g’)-space,

it follows that t is open, and therefore & is a B(M)-space,

The statement about Br(qﬁ9~5paces follows in a similar way, ‘Q.E.D,

«
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COROLLARY: Every countibly barrelled B(J )-space (Br(g-)~8pa09)

is a B("M)-space (Br(mm)—space).

PROOF: This follows from the fact that countably barrelled

spaces are scquentially barrelled, , Q.E.D.

Normed spaces are metrisable and therefore B(")-spaces
(Br(Wi)—spaces) are B(M )-spaces (Br(QL)—Spaces) (Chapter I, Proposition 6.2).
A condition under which B(M.)-spaces (Br(7l)—spaces)are B(M )-spaces

(Br(W1)~Spaces) relies upon the following lemma,

LEMMA 1,12 Let E be a (DF)~-space and F a metrisable convex
space, If there exists a continuous, almost open linear mapping t+ of

E into F, then F isnormable,

PROOF: Let {Vi} be a seQuence of basic neighbourhoods of
the origin in F, Since t is continuous, for any Vi’ there exists
a neighbourhood Ui of the origin in E such that t(Ui) & Vi, We
therefore have a sequence {1%.} of neighbourhoods of the origin in
E, Since E is a (DF)-space, there exists a convex neighbourhocd U of the
origin which is absorbed Hy all Ui ({9], Page 167) i,e, for each i
there is a non=-zero )\i ¢ L for which }\iUiQ U. Thus, we have
t(u) ¢ Ki’t(Ui) Q,KiVi for all i and so t(U) is bounded. Further,

since t is almost open, t(U) is a bounded neighbourhood of the origin

in F, Boundedness of t(U) implies that F is normable ([35], Chapter III,

§ 1, Theorem 1) Q.E.D,
REMARK 1,1: In the particular case when E is a normed

space, F could be any convex space, If U is the unit ball in E;

L(U) is a bounded neighbourhood of the origin in F and .therefore F

is nermable,
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Ve now have:

PROPOSITION 1,4t A (DF)-space which is also a B(7 )-space

(Br(7b)-space) is a B(M )-space (Br(Wt)-space).

PROOT": Let E be a (DF)~space which is also a B(TV)-space,
and F, a metrisable convex space, If t is a continuous, almost open
linear mapping of E onto F, then by Lemma 1,), F is normable,

But then, F being a B(TV)-space, it follows that t is open, Thus E
is a B(M)-space,

The statement about Br(mb)~5paces follows in a similar way,

REMARK 1,2: A similar argument as in the above proposition,

can be used to show that the class of 5(8 )-spaces (Br(&3)—spaces), where

B is the class of all Banach spaces, which are also (DF)-spaces, coincides

with the class of B(& )-spaces (Br(s')"SpaceS), where & is the class

’ b
of Frechet spaces,

2, B {d )-sprces and Br(7l)—snaces and the closed gravh theorem
I

A Br(:f)—Space is characterized by the fact that every continuous,
one~to-one, linear mapping from it onto any separated barrelled space,
is open, On these spaces, T, Husain was able to prove a very general
closed graph theorem (Chapter I, Theorem 6,2), His proof depends upon
a connection between the graph of a mapping being closed and a certain
topology bLeing SGparatéd, By appealing to methods in the duality theory

of convex spaces, we are able to give a shorter proof,

THEORTM 2,38 Let E be a barrelled space and . F a Br(g )=space,

[utiabelvvuehrr et SUC

Let t be a linear mapping of E into F, wvhose graph is closed in

Ex F, If t is almost open, then t is continuous,




PROOF:  Let D[t'] = t'"(E'), Since t':t Fl—E* is

continuous with resnect to o (F', F) and 6 (E*, E) and since F

is barrelled, for every bounded subset B of T there exists

]
a neigbbourhood U of the origin in E such that t'(D[t'] N B) C U°,

Thercfore, Dt'In B C £ wo)

4]

(t(u))°
GW)° .,

fl

But t is almost open and so every bounded subset of D[t'] is
equicontinuous, Since t 1s almost continuous, D[t']'ﬂ ve is closed
in F'Y  for every neighbourhood V of the origin in F (Chapter I,
Lemma 5,1), TFurther, since the graph of t is closed, D[t'] is
dense in F'® , Thus D[t'] is a dense, boundedly complete subspace

of F'“, Since F is a Br(g )-space, D[t'] = F' (Chapter I, Theorem 6.4), ¥

Thus t is weakly continuous, But E is a barrelled space and

therefore a Mackey space and so t is continuous, Q.E.D,

If t is a linear mapping of E onto F, t(U) is a barrel

in Fv’ for cach absolutely crnvex neighbourhocod U of the origin in

Eu' Thus t(U) is a B(F, F') neighbourhood of the origin in F,

THREOREM 2.,2: Let Eu be a barrelled space, Let Fv be a

convex space such that in its weak dual, every dense, almost closed
subspace whose bounded subsets are equicontinuous with respect to p(r, F*),

is clnsed, Then a linear mapping t of E onto F, whose graph is

closed in Eu x Fv’ is continuous,

PROOF: Using the same notation as in the proof of Theorem 2,1,

we observe that:
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———e

Dlt'] N B ¢ (£@WN)° € (((U))® where t(U) is the o (F, F')-

closure of +(U) in F and (t(U))° is the polar of t(U) in Fé.
Thus every bounded subset of D[t'] is equicontinuous with respect to .
B(F, F') and therofore D[t'] is closed in F&o-. The theorem now

follows as in Theorem 2.1, " Q.E,D,
We also have:

THEOREM 2,3: Let Eu be a barrelled space and Fv a
convex space which is a Br(g )-space in its strong topology. Then a
linear mapping t of E onto F, whose graph is closed in Eu b4 Fv’

is continuous,

PROOF: Since the graph of t is closed in Eu x Fv and

p(F, F') is finer than v, the graph of t remains closed in Eu x F..

P

Further, since t is a linear mapning of E onto F, t is almost

oven from Eu onto RB. By Theorem 2.1, it follows that t: Ed————+Fb

is continuous and therefore t: EL %F; is also continuous, Q.E.D.

Since B(d )-spaces are BP(Q’)—Spaces our theorem is also true

when F_, is a B(9J )-space,

B

CORCLLARY: Let Eu be a barrelled space and FV a convex
space which is a B(J )-space in its strong topology. Then a linear
mapoing t of E onto F, whose graph is closed in Eu X Fv’ is

continuous,

The above corollary rives the following characterization ¢f

spacea which are Br(ﬂ J=spaces in their strong topologies,

SRR Rl SRS

THRORRM 2, 4: A convex space Eu is a B(J )-space in its

strong topology if and only if for ecach barrelled space Fv’ a linear



53

napping t of E., onto Fv’ whnse graph is closed in E, x F_,

p

is open,

PROOF': Assume that E; is a B(Jd )-space, Since the quotient

p
of a B(d )-space by a closed subspace is also a B(Jd )-space (Chapter I,
Corollary to Proposition 6,3), t is open, by the above Corollary, On

the other hand, if t is a continuous mapping of E, onto a barrelled

p
space Fv’ the graph of t is closed in EB X Fv and therefore ¢t i
is open, by assumption, This shows that EB is a B(J )-space, Q.E.D,
REMARK 2,1: We note here that whenever E, isa B(J )~space,

E is also a B(J )-space,

Husain in [15] queried as to whether almost openness of t
could be dropped in Theorem 2,1. Sulley in [40] showed that this cannot
be done in general, In that which follows, we shall give another

¥
condition on t such that the closed graph theorem is true,

We begin with:

DEFINITION 2,1 Let £ and F be two convex spaces t a

linear mapping of E into F, Ve say that t satisfies condition (*)
if for some basic neighbourhood V* of the origin in F;t-l(V*) is a

bounded subset of E,

For example, if Eu is a normed space, the identity mapping
i: B —E, satisfies condition (*), because the unit ball in E,
is ¢ -bounded,

We shall denote by 9, , the neighbourhood base of the origin

in Eu and by 19 , the neighbourhood base of the origin in Fv'
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THEOREM 2,5: Let Eu be a barrelled spnce and F; a
Br(qb)-Space. Let t be a linear mapping of Eu onto Fv’ whose

graph is closed in Eu X FV. If t satisfies condition (*), then t

is continuous,

PROOF: {K t-l(V*)} \>g forms a family of absolutely convex
absorbent sets and so is a base of neighbourhoods of the origin in a
topology u' on E making Eu' a convex space. Sinée t-l(V*) is bounded

and balanced, for each Ue€lb , there exists a u > O such that

) e p U

R

i.e. %t“l(v*) C vy

ie. AtRTM) € U for x:% .

Also since B is barrelled, for each A t-l(V*), A > 0, there exists

l(V*).' Since A t_l(V‘) is a bounded

a Ue MW such that U ¢ At~
subset of Eu; B is normable ([35], Chapter III, § 1, Theorem 1),
where the sets A t_l(V*), A > 0, form a neighbourhoocd base at the

origin. ‘ v
) u u

Let  t F(V) be the u-closure of t ¥(V) in E and t(t F(V))
' u

be the v-closure of (£ (V) in F, Consider now the family of sets
v
u

——o————

n __1 ~
of the form V = t(t™7(V)), where Ve U . {V’} forms a base of
neighbourhoods in a separated topology w on F such that t: Ed___—+F;

is continuous (see the proof of Thcorem 6.2, Chapter I), Ve show now

that the mapping ¢t: Ea————+Fb is almost open,
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u \d

—————

For each U ¢ O, and some A > 0, we have tt™H ) € t(u),

Since AV* is a neighbourhood of the origin in Fv’ there exists a

VeV such that V ¢ AV*,
u u

Thus t(t-l(V)) C t(Kt-l(V*)) . Further since vo w we

\2
U W

have t(t™5(V)) <€ t(U) . This shows that t: Eg—+F  is almost

open, Since Eu is normed, continuity of t from Eu onto Fw now
- implies that Fw is also a normed space (Remark 1.1). Fv is a Br(n—)~
space; also the identity mapping i: F;——-*Fw is continuous and almost

open (see the proof of Theorem 6,2, Chapter I), By the definition of

Br(7l)-spaces, v = w, Now, since t: &

»F  is continuous, it
u w

follows that t: EJ——~**FV is also continuous,

COROLLARY: Let E  De a barrelled space and F_ a Br(”z)-
——— \ A
space, Let t Dbe a linear mapping of Eu onto Fv’ whose graph is

closed in E x F . If t satisfies condition (*), then t is

continuous,

PROOF: Since Br(ﬂz)-spaces are Br(71)-spaces, our result
" follows as before,

We also have:

THECRYM 2,6 Let Eu be a barrelled space and Fv’ a
BP(J )-space. Let t Dbe a linear mapping of Eu onto Fv‘ whose
graph is closed in E x F ., If t satisfies condition (*), then t

is continuous,

PROOT': Using the same notations as in the proof of Theorem 2.5,

we observe that:
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t: Eﬁ—~¥~+Fw is continvHus and almost open, Since Eu
is barrelled, it follows that Fw is also barrelled, Now since

F, is a Br<:i )-space and the id'entity mapping i: F——+F_ is
continuous and almost open, i 1is open and so v = w, Our theorem

now follows as before.

REMARK 2,2: In the above theorem, we require that t be

o~
onto in order that the sets V ©be absorbent,

Closed subspaces of Br(ﬂ )-spaces are not in general Br(g )
([u0], § 2, Corollary 1), If we restrict to the class of Br(J )-spaces
whose closed subspaces are also B£(3 ), the requirement that t be

onto could be relaxed, because then, t(E) is a Br(3 )-space and since

" the gravh of t is closed in E x t(E), it is sufficient to prove the

theorem when t(E) is dense in F. In that case,
v v

s __) ~ ~
V=vn+tE € t(t 1(V)) € V and so each V is absorbent,

It is evidently of interest to know the relations between

almost openness of t and condition (" imposed on t,

The following example shows that in general, almost openness

does not imply condition (*),

EXAMPLE 2,1: Let Eu be an infinite dimensiénal Banach
space, Consider E under the finest convex topology T (E, E*), Then
E'E(E, p+y 18 barrelled ([35], Chapter VI, Supplement (1)), The
identity mapping i: E ifﬁj~§;7———* Eu is almost open, because Eu is
a Banach space but it fails to satisfy condition (*) because othervise
ELC(I; £*) would be normable and this is impossible ([35], Chapter Iv;

Supplement (2) and (3)),



The next example shows that in general, condition (*) does

not ihply almost openness, This relies upon:

LEMMA 2,1: Let E and F Dbe convex spaces, If t is an

almost open linear mapping of E into F, t(E) is dense in F,

PROOF:  Let U be a neighbourhood of the origin in E,

~ Since t is almost open t(U) is a neighbourhood of the origin in

F. But since t(U) € t(E), t(E) 4is also a neighbourhood of the
origin in F, Thus t(E) is an absorbent subspace and therefore

t(E) = F,
Lemma 2,1 gives us the folIowing exanple,

LXAMPLE 2,28 Let E be a normed space and S, a non-dense
subspace of E, If now we considered the natural injection i: S—=E,

i satisfies condition (*) but by Lemma 2,1, it is not almost open,
)

3, B (M)-spaces and B (8 ,J )-svaces and the closed cravh theorem
pe XL

The almost openness condition imposed on t, in Theorem 2,1,
may be dropped in the case when F  is a ¥ -space (see Chapter II,
Theorem 2,2), It will be of interest to know for what other classes of
spaces, this could be done, In this section, we consider onto mqppings
and show that for some classes of Br(ﬂl)nspacéé and Br(J .3 )-spaces,

the almost openness condition could be dropped,
As usual, all spaces considered are separated,

A subfamily E; of all bounded sets of a convex space is said

to be a fundamental family of bounded sets, if for each bounded set B
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in the space, there existls a set A in &3 such that B & A,

THEQCREM *

1: Let Eu bve a Mackey space with the properties

’ . g
that EB 15 a separable space and E& possesses a countable

fundamental family of bounded sets., Let FV be a Mackey space which
is also a countably barrelled Br(mz)—spacé. If t 4is an almost

continuous linear mapping of Eu onto Fv’ whose graph is closed in

Eu x Fv' then t is continuous,

PRCOF: Since t 1is an almost continuous, linear maupping of
Eu onto Fv’ whose graph is closed in Eu X Fv’ it is possible to

construct a separated locally convex topology w on F such that:
(1) t: E£~———+FQ is continuous;

(i1) 4 F-———T  is continuous and almost open.

(sce the proof of Theovem 6,2, Chapter I), Since t dis a continuous

mapving of Eu onto Fw’ tre FQ“i———%E£°~ is a homeomorphism into

(Chapter I, Corollary (ii) to Proposition 2,6), Since E&f' vossesses

a countable fundamental family of bounded sets, F&°’ also possesscs

a countable fundamental family of bounded sets, Thus F is metrisable

in its strong topology B(F, F&). By (ii) .i: F——F_ is continuous

and almost open, Since Fv is a Mackey space, this further implies

that i: F =
v

)Pnt(F, FQ) is continuous (Chapter I, Proposition 2,10)

and since w € T(F, F&), it is also almost open, F; is countably

barrelled and so ‘F'C(F F1) is also countably barrelled (Chapter I,
9
W

Proposition 7.5),

Now, continuity of t: E$f~—w+F; implies continuity of

t: E—F .. .,y (Chapter I, Proposition 2,11), Thus, t is a
b LS(I‘, F‘n’)
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continuous mapping of a separable space E, onto F and so

B 3(F, F&)

I"‘B(F, F&) is also separable,
We have therefore, that F is countably barrelled and
’ T(F, F\-':)

FB(F F1) is separable, Since the weak duals of countably barrelled
Y v

spaces are sequentially complete, (Chapter I, Proposition 7.4), this

gives us that T (F, Fu) = p(F, F&) (Chapter I, Theorem 8,2 and

Theorem 8,1(c)) and so is metrisable, Since i: F—~—+F‘t(F )
9 w

F "l
©(F, }.“:]) v

is continuous and almost open and F_ is a Br(WL)-space, i is open and

so v = T(F, I'),
W
Since Eu is a Mackey space, continuity of ¢: Eﬂ__——’Fw
u v

implies inui by HEY 5 : E——
also implies continuity of t d———~+F T(F, F&) and so t F

is continuous, Q.E.D,

COROLLARY 1: * Let Eu be a separable barrel}ed space with
the property that Eéo. vossesses a countable fundamental family of
bounded sets, Let Fv .be as in the theorem, If t is a linear
mapving of Eu onto Fv’ whose graph is closed in Eu x.Fv, then t

is continuous,

PROO¥: Since E_ is barrelled, B(E, E') = u and t: E——F,
is almost continuous, Thus our result follows as before, Q.E.D,
COROLLARY 2: Let Eu be a separable Frechet space, Let Fv

and t be as in. Corollary 1, Then t dis continuous,

PROOT": This follows from the fact that Eu is barrelled and
Eéa' possesses a countable fundamental family of bounded sets, ([38],

Chapter IV, 6,4), Q.E.D,
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COROLLARY 3: Let Eu be as in Corollary 1., Let Fv be
a Mackey space which is also a countably barrelled Br(U )=space, If

t is a lincar mapping of E onto F , whose graph is closed in
u v ' ‘

Eu x Fv’ then t is continuous,

PRCQF: Since countably barrelled Br(i})-Spaces are
Br(”b)-Spaces (Corollary to Proposition 1,3), t is continuous, as

befofe. v Q.EQDQ

COROLLARY L Let Eu be as in Corollary 1., Let Fv be a
quasi-complete Mackey space which is also a (DF)-space and a Br(qz)-
space, If t 1is a lincar mapping of Eu onto Fv’ whose grapﬁ is

closed in Eu p'd Fv’ then t is continuous,

PROOT: Since quasi~complete (DF)-spaces are countably
barrelled (Chapter I, Proposition 7,2) and (DF)-spaces which are also
»
Br(7b)—spaces are Br(m@)~spaces (Proposition 1,4), t 4is continuous as

before, Q.E.D,

THECREM 3,2: Let Eu be a separable barrelled space and
F_ a Mackey space which is also a countably barrelled Br(zg.ﬂ )=space,
If t 1is a linear mapping of Eu onto Fv’ whose graph is closed in

Eu X'Fv’ then t is continuous,

PRCOF': Using the same notations, as in the proof of Theorem 3.1,
. ::-'l ok = a 3 s 2
we observe that since T (F, fw) B(F, Tw), F'ﬁ(F, F&) is eparable

and barrelled, The identity mapping i: réf“‘“4f‘t(F’ F&) is

continuous and almost open and since Fv is a Br(.ﬁ.a J-space, i is

open. Our theorem follows aé before, Q.E.D,

Since B(4.d )-spaces are BI‘(/S ), we have:
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COROLLARY 1: Let Eu ‘e a separable barrelled space and
Fv a Mackey space which is also a countably barrelled B( 4,4 )-space,
If t is a linear mapping of Eu onto Fv’ whose gravh is closed in
Eu x Fv’ then t is continuous,
Since 4 &  is a subclass of J ’ Br(g )-spaces are

Br(48 & )-spaces and this gives us:

COROILLARY 2:  Let Eu be a separable barrelled space and
F_ a Mackey space which is also a countably barrelled Br(_ﬂ )-space,
If t is a linear mapping of Eu onto Fv’ whose graph is closed

in E‘J1 x Fv’ then t is continuous,
Corollary 1 also gives us a characterization of B(S.¢ )-spaces,

THEOREM 3,3: Let Fv be a countably barrelled lackey space,
Then Fv is a B(4.d )-apace if and only if, for each separable barrelled
space Eu’ a linear mapping t of FV onto Eu’ whose graph is closed

in Eu b4 FV, is open,

PROOF: Assume F_ is a B( 8.1 )-space., Since the quotient
of a countably bafrellod B(3 .9 J-spuce by a closed subspace is also
countably barrelled and a B( A .9 )-space (Chapfer I, Corollary to

Proposition 7.5 and Corollary to Proposition 6.3), t is open by

-—-Corollary 1 of Theorom 3.2. On the other hand, if t is a continuous

linear mapping of FV onto any separable barrelled space Eu’ the graph
of t is closed in Fv x Eu and therefore t is open, by assumption.

This shows that Fv is a B(/S,U )—-space.‘ A R.E.D,
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Lk, B(J )-spaces and almost open linaar mapnings with cloced graphs

In sections 2 and 3 of this chapter,’we considered the situation
in which a lincar mapping is continuous, whenever its graph is closed,
In this secticn, we consider the situation for which an almost open
linear mapping is both continucus and open, whencver it graph is closed,
It turns out that certain classes of B(F )-spaces play an important

role,

¢

We consider, almost entirely, 3(3‘)~spaccs. But the arguments
are also valid for Br(g')—Spaccs, provided the mappings considered are

one-to-one,
As usual, all spaces considered are secparated,

THEOREM 4,7 Tet © be a countably barrclled Mackey space
> .
vhich is also a B(F )-space., Let F be a metrisable u-space, Then
a linear, almost open mapping t of E onto F, whose graph is

closed in E x F , is continucus and open,

PROOF: Since E is a countably barrelled MHackey space and

F is an a~space, t: E-——T is continuous (Chapter II, Theorem 1,1,

e

Corollary 1), DNow, since t is also almost open F is countabl
’ PUlly

barrelled (Chapter I, Proposition 7.5) and this together with the fact

that F is an a-space implies F 1is DB-complete (Chapter'II,Proposition 1.5,

2

Corollary 1) and so complete, But since F is metrisable, it is a

Frochet space, E is a B(F )-spuace and thercfore t: E—+F is open. Q.E,D,

REMARK & !_l_: It is worth noting that a metrisable a=-spacce is
. ' . L(N) .
not in general, complete, For if F =R , the space of all finite

A

sequences, where w is the norm topology defined by: [|x |l = sle xnl ’
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then Fw is a metrisable a-space which is not complete ([15], Chapter 7,

§ 6, Example ),

We denote by z3¢ , the class of all B-complete spaces, Since
& is a subclass of J3., B( B¢ )-upaces are B(F )-spaces (Chapter I,

Proposition 6.2).

Metrisability in Theorem 4,1 may be relaxed if we restrict E

to the class of B(33c>—8paces. We have:

THEORTH 4,23 Let E Dbe a countably barrelled Mackey space
which is also a B( B¢ )=snace, Let F be an a-space, Then a linear,
almost open mapping t of E onto F , whose graph is closcd in

E x F, is continuous and open,

PROCK: Since a countably barrelled a-space is B-complete,
our result follows as before, Q.E.D,

»

Our next theorem relies upon the following lemma,

LEMMA 4,72 Let Eu be a convex space, If E&B is an
a=-space, then Eu is semi~reflexive if and only if Eg is sequentially

complete,

PROOF: The "only if" part of the lemma is obvious, For the
"if" part, consider the identity mapping i': E&E———~—>E&B. Since B(E*, E)
is finer than T (B', B), the graph of i' is closed in E&t X E&B.
Since E&? is an a-space and E_ is sequentially complete, it fol%ow§
that i' is continuous (Chapter iI, Theorenm 1,1), Thus we have that

B(E', E) 1is coarser than T (', E) and so B(E', E) = T(E', E).

This proves that  E =~ is semi-reflexive (Chapter I, Theorem 8,1 (c)), - Q.E.D,


http:a.-spu.ce
http:follOi�d.nr
http:r.>:.)a.cc

64

Since F is a subclass of ¢ , B(J )-spaces are B(F )~
spaces (Chapter I, Proposition 6,2), For this restricted class of

B(F )-spaces, we have the following situation,

THEOREM M,Q: . Let Eu be a countably barrelled Mackey space
which is also a B{(Jd )-space, Let F, be a Mackey space which is an

a-space in its P(F, F')-topology. Then a linear, almost open mapping

t of Eu onto F;, whose graph is closed in -Eu X Fv’ is continuous 5
and open,
PRCOT: As in the proof of Theorem 4,1, t is ccntinuous and

Fv is countably barrelled. Countakly barrelledness of Fv implies
that F&U~ is sequentially complete (Chapter I, Proposition 7,4).
Thus on F, v = T(F, F') = p(F, F') (Chapter I, Theorem 8,1 (c)).

Therefore Fv is a barrclled space and since Eu is a B(J )-space,

»F_ is opex. : Q.E,D,

Let 33

F  is a subclass of ) o B(?BO)—Spaces are B(¥)-spaces,

o denote the class of all bornological spaces, Since

Our next theorem is on B(530)~spaces and this stems from the
fact that separable strong duals of convex metrisable spaces are bornological
- ([38}, Chapter IV, 6,6, Corollary 2),

v

PIEOREM b, e Let Eu be a countably barrelled Mackey spuace

“which is «lso a 8(530)«spacc, Let ¥ be a Mackey space, separable
in its B(F, F')-topology and with E&T metrisable. Then a linear,

almost open mapping of Lu onto Fv, whose graph is closed in Eu X FV,

is continuous and open,



PROQOI: Since F;t is metrisable, Fv is an a-space, As
in the vroof of Theorom 4,1, t is continuous and FV is countubly
barrelled, Countably barrelledness of Fv implies that F'% is
sequentially complete, This together with the fact that FB is
separable implies that F&r is semi-reflexive (Chapter I, Theorem 8,2).
Thus on ¥, v = T(F, F') = 3(F, F') and so F_ is separable., Now
since F;r is metrisable, FB = F_is bornological ({38], Chapter IV,

6.6, Corollary 2), Eu is a B(b3o)~space and therefore t: Eﬁ———-+F;,

is opcen,

The hypothesis that, "F, is separable', may be replaced by the

B

hypothesis that, "F, is an wa-space'". We have:

B
THEOREM 4, 5: Let Eu be a countably barrelled lackey spzace,

which is also a B(330)»sPace. Let F& be a Mackey space, which is‘

an a-space in its 3(F, F!')-topology and with F&t metrisable, Then

a linear, almost open mapping of Eu onto Fv’ vhose graph is closed

in Eu x Fv’ is continuous and open,

5, B(J )-spaces and dense, weaklv sinsgular, maximal mapvinss

In this section, we show that B(J )-spaces can be characterized
in terms of dense, weakly singular, maximal mappings., These mappings are
more general than dense, closcable mappings (see. [24], § 2 (3) ana (5),

§ 5(3) and § 7 (3) and (4)),
THEOREM 5,1: A convex space B is a B(Y )-space if and
only if each dense, weakly singular maximal mapping t of E onto a’

barrelled space, is open, whenever it is almost continuous,

Q.E.D

Pel
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PROQF: Assume that B is a B(d )-space, Using the same
notatiens as in the proof of Theorem 2,5 (Chapter II) we observe that
for each neighbourhood U of the origin in E, R{t'JN U° is closed
in E'" | since U° is a @ (E', E)-bounded set, Therefore R[t']
is almost closed in E'® , Also, for each bounded subset B in E'T .

R(L'IA B € (£71(v)°
= (£7H)°,
Siuce t is almost continuous, cvery bounded subsct of R[{t'] is
cquicontinuous., Thus R[t'] is boundedly complete and since E is
a B(J )-space, R[t'] is 6 (E'; E)-closed (Chapter I, Theorem 6,4),
But since t is maximal, R{t'] is also & (E', D[t])~closed by

Proposition 2,3 (Chapter II), and so t is open (t24], § 9).

On the other hand,-if t is a continucus, lincar mapping of
>
E onto F, t could be regarded as a dense, weakly singular maximal

mapping of E onto F, t is open, by assumption, This shows that

E is a B(J )-space.



CHAPTZR IV

COUNTABILITY CONDITTONS

In this chapter, each section contains its own introductory
remarks, Countability conditions on bounded sets form the unifying

feature of the subject matter,

1, Countability conrnditions an? the closed graph theorem

In this section, we show that there are convex spaces more
general than metrisable spaces which have the property that their strong
duals possess a countgble fundamental family of bounded sets, We investigate
these spaces and prove,vamong other results, ciosod granh and open
mapping theorems, relaxing the necessary completeness requirement by
filter conditioﬁS'introduced in [36]. |

We begin with the following simple observation,

PROPOSTION 3,1: If E is a metrisable convex space, then

E'B possesses a countable fundamental family of bounded sets,

PRCOI: Let {Un} be a countable base of neighbourhoods of
C s o . o . X . co s
the origin in E, Since each Un is equicontinucus, it is strongly
bounded ([35], Chapter IV, § 3, Corollary to Lemma 2), Also, since
E is quasi-barrelled, every strongly bounded set in E' 1is equi-
¥ 0 - -
continuons, Thus {Bn} = {Un} constitutes a countable fundamental

':' O

family of bounded sets in . Q.E,D,

67
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The following example shows that the class of conver
spaces whose strong duals possess a countable fundemental family

of bounded sets is larger than the class of metlrisable convex spaces,

EXAMPLE 1,1: Let Eu be a non-reflexive Banach space (such

for example 1S '£ with the usual norm topology). Then there exists

l!
in Eu an absolutely convex bounded set which is not relatively weakly
compact (Chapter I, Theorem 8,1 (d)). Thus E&r is not quasi-barrelled
and therefore not metrisable, DBut E&r L. Eu is a Banach space and

therefore possesses a countable fundamental family of bounded sects,

Supvose E 1is a convex space and L' its dual, Then in E',
every absolutely convex G (E', E)-compact set is T(E, E')-equicontinuous
J Y ) < s 1
and therefore strongly bounded, If, conversely, we have thzt every
absolutely convex strongly bounded set is relatively @ (E', E)-compact,
E is quasi-barrelled in its Mackey tonology. In [25], V. Krishnamurthy
»

calls such sprces, guasi-M-barrelled spaces.

DEFINITION 1,1: A convex space E  is called quasi-M-barrelled

if in its dual E', every absolutely convex strongly bounded set is
relatively weakly compact or equivalently, if the strong bidual induces
the Mackey topology on E or if and only if every barrel in E which

absorbs all bounded sets is a neighboufhood of the origin for the Mackey

topology.

Bornological spaces are guasi-M-barrelled, In fact, every

guasi-barrelled space is quasi-l-barrelled, Convex spaces whose strong

duals are semi-reflexive are further exaumples of quasi-M-barrelled spaces,

The requirement of being guasi-M-barrelled depends only on the

dual system and so weakening the topology of a quasi-M-barreliled space
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without affecting the dual, would still have it quasi-M-barrelled, In
particular therefore, the weak topology of an infinite dimensional
Banach space is an example of a quasi--M-tarrelled space which is not
quasi-barrelled,

In Example 1,1, we observed that although the strong dual of

E&t possesses a countable fundamental family of bounded sets, B!

is not metrisable because it is not quasi-barrelled, However, we have:

PROPOSITION 1,2: Let Eu be a quasi-M-barrelled space,

Then E&B possesses a countable fundamental family of bounded sets if
and only if Eg  is metrisable,

PROCF: Since E&B has a countable fundamental famil& of
BB

bounded sets, E& is metrisable., But Eu'ﬁ’B induces the Mackey

topology on E, since Eu is quasi-M-barrelled, Thus Eg , being a

k)
subspace of a metrisable space, is metrisable,

The converse follows from Proposition 1.1,

* CORCLLARY 1: Let Eu be a quasi-barrelled space,‘ Then E&Q
possesses a countable fundamental family of bounded sets if and only if
E  is metrisable.

u

PRCCF: This follows, since quasi-~barrelled spaces are gquasi-

RAY]

M-barrelled spaces and u = T(E, 8'),

Suppose that E is the strict inductive limit of the convex

-

spaces En and that, for each n, En is a closed vector subspace of

En+1’ Then F is not metrisable ([35], Chapter VII, § 1, Proposition 5),

The condition that each Ek is closed in En+l is satisfied

when the En are complete,
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From Proposition 1.2, we can alsoc conclude thats

COROLLARY 2: The strong dual of a strict inductive limit
of complete barrelled spaces does not possess a countable fundamental

family of bounded sets,

PRCOF: Since the strict inductive limit of barrelled spaces
is barrelled ([35], Chapter V, § 2, Propositon 6) and so quasi-M-barrclled,
the existence of a countable fundamental family of bounded sets in its
strong dual would imply metrisability, by Proposition 1.2, This is

impossible from the above remarks, Q.E.D,

Another result in the direction of Proposition 1.2 is the

following,

PROPOSITION 1,3 Iet EL be a convex space with the property

_ . _ - 3
that E, 1is separabl® and E&q' is sequentially complete, Then E&L

B

possesses a countable fundamental family of bounded sets if and only if

E+ is metrisable,

PRCOF: The sufficiency follows from Proposition 1,1. On the
other hand, since E'T s sequentially complete and ER is geparable,
E&t is semi-reflexive (Chapter I, Theorem 8,2) and so B(E, B') = T(E, ')

(Chapter I, Theorem 8,1 (c)), Also, since B&a. is sequentially complete,
every G(E', E)-bounded set in E! is B{(E', E)~bounded, Since E&B

' . o
possesses a countable fundamental family of bounded sets, E& also

possesses a countable fundamental family of bounded sets, Thus B(E, E')

T
1
FAN

= T(E, B') is metrisable on
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COROLLARY: Let Eu be a countably barrelled space with the

property that E, is separable. Then pE&B possesses a countable

P

fundamental family of bounded sets if and only if E ¢ is metrisable,

PRCOYF: This follows from the fact that the weak duals of
countably barrelled spaces are sequentially complete (Chapter I,

Proposition 7.4), ' ‘ - Q.,E.D,

We denote by B*(E, E'), the topology on E of uniform convergence
on the P(B', B)=bounded scts of R', Then T(B, B') & p*(E, B') & p(E, E'),

It is clear that §*(, E') = p(E, ') if and only if weakly
and strongly bounded sets of B! are identical,

In Fxamiple 1,1, we have a convex space in which T(E, E') is
strictly coarser than p*(E, E'), However, T(E, B') = p*(E, ') when-

ever L is quasi-M-barnelled.

DEFINTITTON 1,2: (8ee [36]) TLet t be a lincar mapping

of a convex space E into a convex space F, It is said that the
inverse filter condition holds if for a convergent filter base % on
‘E such that t(%W) is Cauchy, it follows that t(®) is convergent

to a point in t(E),

With the inverse filter condition, we havevthe follbwing closed
grapﬁ theorem;

THHOREM 2,73 Let Eu be a barrelled space and Fv
a convex space, metrisable in its p*(F, F')-topology. Let t

be a linear mapping of Eu into.Fv, whose graph is closed in Eu X Fv°
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Then t is continuous, provided the inverse filter condition holds.

ROOF: Since the graph G of t is closed in Eu x Fv’

it is also closed in Eu x FB*’ because B*(F, F') is finer than v,
! . - - A
Let us now regard t as a linear mapping of Eu into FB*’ where
A . . ™ o - 4 - A ‘
FB* is the compnletion of Pﬁ*' We show that G is closed in Eu X FS*'
- —- A :

Let (x, y) ¢ G, where G is the closure of G in B X FS*' Then

(x +U) x (y+ W) meets G, for U and W, neighbourhoods of the
A

origin in E and F,,, respectively., That means, A ,,

u b ' U,V

Let % Dbe the filter generated by the sets AU By where U and VW run
'Y L]

= (U T (g £ 2.

over the fundamental systems of neighbourhoods of the origin in Eu and

>

respectively., Then %K ——sx in E ; also t(¥)——y in
u

A
3 and therefore t(¥ )y in FV

B#,

, since PB*(F, F') is finer than

>

v, Therefore, t(% ), is v~-Cauchy and so by the inverse filter condition,
t(¥ ) converges, with respect to v, to a point in t(E), This shows that
ye t(E) €F and so (x, y) ¢ GNn(ExTF), But G is closed in E X Fﬂ‘

and so (x, y) ¢ G, Thus G is closed in B, x Fp*‘

A
Now, FB* is a Fréchet space and since the graph of t is
A A
closed in Eu x FB* , t: Ed—__—+FB* is continuous (Chapter I, Proposition 3.4
and Theorem 5.,1)., It follows that t: E—F_ ., is continuous and

u p*

since B*(F, F') is finer than v, t: E-

>F} is also continuous,

COROLLARY: Let Eﬁ be a barrelled space and Fv a convex

B

spacer with the property that Fé possesses a countable fundamental family
of bounded sets, Let t be a linear mapping of Eu into Fv, hose

graph is closed in Eu X Fv. Then t is continuous, provided the inverse

filter condition holds,
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PROCTF: Since F&B possesses a countable fundamental family

i ot

of bounded sets, FB* is metrisable, Thus, our result follows as before,

In the next theorem below, we give the corresponding open mapping

theorem, Tor this we need:

DEFINITION 1,%: (W, Robertson, [36]) Let E and F be

two convex spaces and t, a linear mapping of E into F, It is said
that the filter condition holds with respect to t if for each Cauchy

filter W in E, t(7¢)-~—4t(xo) implies % — X .

LEMMA 1.1 Let 'Eu and P; be two convex spaces and t
N A ’ -
a linear continuous mapping of Eu -into Fv‘ Let t denote the
A A -1 A__l
Egs into F . Then t (0) = t77(0)

if the filter condition holds, with respect to 'Eu and Fv.

continuous extension of t which maps

-1 ALl A
PROOF: Clearly, t (0)C t ~(0) because t(x) = t{x) for
»

- Al A A A
x ¢ T, To show that ¢t l(O) o I 1(0), let X ¢ Eﬁ* such that t(X) = o,
Let % be a Cauchy filter on E which is a base of a convergent

B*

filter W' .which cOnvefées to 'Q. By the continuity of ?, T —tH - o.
Consider the sets t(%) and ?(?4’) on t(FE)., For each KXK' e W',

there exists a subset K of X' such that K is in ¥ and t{K) =

?(K) c k) nuE, lence t(%) 4is finer than the trace of t(K")

on t(E), Hence t(% )~ 0,

Now since U is a B*~Cauchy filter, it is also a u~Cauchy filter

since B*(E, LY) +is finer than u, Since t(¥)=—0 in Fv’ by the

filter condition, it follows that W converges, with respect to u, to

A s . A
a point in B, lence X ¢ E and this implies t{(X) = 0, In other words

N - )
R ¢t 0). | Q.E.D
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We are now ready to prove:

THEOREM 1,23 Let Eu be a convex space, metrisable in its
p*(E, E')-topology, and FV a barrclled space, Let t be a continuous
linear mapping of Ih onto Fv, Then t is open if the filter condition

holds,
A
PROOF: Replacing Eﬁ* and Fv' by their completions Eﬁ' and
A

A}

. : . A
v respectively, we observe that the continuous extension t maps a

‘ A AN
Frechet space Eﬁ* onto a barrelled space t(Ep*) and is therefore
open (Chapter I, Proposition 3.4 and Corollary to Theorem 5.2), Let
A
W be a closed neighbourhood of the origin in Eﬁ*' Then %(¥) " is a
. R . A A AN .
neighbourhood of the origin in t(I) and therefore t(W)N F is a
. A AN
neighbourhood of the origin in FV. We show that t(W) N F ct(), Let
A A
¥

AN . AA .
y ¢ 1) A F, Then there exists x ¢ W such that t{X) =y, ard x¢ E

v . A A
such that t(x) = y,‘ because t s onto, Therefore t(x) ~ t(x) =

A —A A A
t(X - x) = 0. By Lemma 1.}, it follows that X =x ¢ E, Thus x ¢ ¥AE =

(because V¥ is closed in EB*) shows that

A A
y =t e T = t(w),
CORCLLARY s Let Eu be a convex space with the property that

B .
E&‘ possesses a countable fundamental family of bounded sets, and Fv
a barrelled space, Let t be a continuous linear mapping of Eu. onto

Fv' Then t 1is open if the filter condition holds,

It is of interest to know under what conditions EB; might be

complete, A sufficient condition is given in:
P 8

W




PROPOSITION 1.h4: Let Eu be a convex space, Then E

B‘
is complete if the polars in E of the B(E', E)-bounded sets in B!

are T (E, E')-complete.

PRCOF: Since p*(E, E') has a neighbourhcod base of the origin

consisting of sets complete in T (E, E') and p*(B, E') is finer than

T(E, E'), EB* is complete (Chapter I, Proposition 3,2).
COROLLARY: Let Eu be a convex space, Then EB' is complete

if Eg is complete,

In fact, a result due to J, H, Webb ([43], Corollary 4.2) gives

us.:

PROPOSITICON 1,5: Let Eu be a convex space with E

ﬁ*

sebarable and E&B complete, Then E is complete if and only if the

B*

polars in E of the,B(E', E)-bounded sets in E' are T (E, E')-complete,

COROTLLARY: Let Eu be as in the proposition, Then EB' is

complete if and only if. E¢ 1is compleﬁe.

is metrisable, we have the following

In the case when EB*
characterization for completeness of EB*'

PROPOSITICN 1,6: Let E  Dbe a convex space, metrisable in
its p*(E, E')-topology. Then EB* is complete if and only if EB‘
is a-Br(WL)—space.

PROOF: ° Suppose that EB' is complete, Since EB* is
metrisable, by hypothesis, E is a Fréchet space and therefore a

B*

B (M )~space,
r

On the other hand, Brcnz)~spaces which are also metrisable are
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Brmcomplete (Chapter III, Proposition 1,2) and therefore complete

(Chapter I, Proposition 3,5).

COROLLARY 1: Let Eu be a convex space with the property

B
that E&’ possesses a countable fundamental family of bounded sets,

Then EB* is complete if and only if EB" is a Br(WL)—space.
PROOF: This follows since EB* is metrisable,

COROLLARY 2:. Let Eu be as in the proposition, Then E

o
is complete if and only if Eb‘ is a sequentially barrelled, Br(g )=
space,

PRCOF: This follows from the fact that sequentially barrelled,
EP(U )-spaces are Br(7n)-spaces (Chapter III, Proposition 1.,3).

REMARK 1,1: Ve note that in the zbove proposition, EB'

is a Frechet space if and only if E is a Br(W1)~Space.

{j*
Completeness of EB* allows us to relax the filter conditions

in Theorenms 1.1 and 1,2, This follows from the following general theorem,
THEOREM 1., 3%: Let Eu be a barrelled space and Fv a convex

space which is a § -space in its B*(F, F')-topology. If t isa

linear manping of E_  into F , whose graph is closed in E_ x F_,
u v u v’

then t is continuous,

PRCOF': Since the graph of t is closed in Eu P FV, it is
\
also closed in Eu x FB*’ because B*(F, F') is finer than v, By
. Theorem 2,2 (Chapter II), t: Ed————+FB* is continuous and therefore

t: E£—-»+Fv is also continuous,



77

In the corollaries below, let Eu be a barrelled space and

F , a convex space, Let t be a linear mapping of E_  into F ,
v . * u v

whose graph is closed in Eu x Fv‘

COROT.LARY 1 If F is a B -complete space, then

B*

t: Eﬁ———-éF;, is continuous,

PROO: This follows, since B -complete spaces are ¥ ~spaces

(Chapter 111, § 2),

COROQLLARY 2: If FB* is a metrisable B (M )-space, then
t: B > is continuous,
u v
CORQLLARY 3%: If FB* is a B ("M )-space and F&B possesses

a countable fundamental family of bounded sets, then t: EJ———~+FV is

continuous,

COROLLARY 4  If Fp is sequentially complete and F",ﬁ

possesses a countable fundamental family of bounded sets, then

t: EG————*FV is continuous.

THEOREM 1,4 Let Eu be a convex space which is an ¥ -space
in its p*(B, E')-topology and Fv a varrelled space., If t is a

continuous linear mapnring of Eu onto Fv’ then t 1is open,
PROOF: By Tacowem 2,3 (Chapter II), t: Eé;————+F} is open,
Since p*(E, E') is finer than u, t: E—*F, is also open.
/‘

-

In the corollaries below, let Lu be a convex space and Fv’
a barrelled space, Let t be a continucus linear mapping of Eu onto

F .
v

COROTLARY 1: If Eﬁ* is a B -complete space, then

t: I emee——)T? is open,
u v
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COROITARY 2: If E is a metrisable B (M)-space, then

pr
te Ed———-+l’ is open,
CCROLLARY 3: If Eﬁ‘ is a B (M )-space and E&B possesses

a countable fundamental family of bounded sets, then t: Eﬁ-——-+F; is

open,

COROLLARY 4 ITf E¢ is sequentially complete and E&B
possesses a countable fundamental family of bounded sets, then

t: D=~ F iz open,
u v

2, Countadbility conditions and semi-reflexive spaces

In this section, we show that whenever a convex space Eu is
semi-reflexive in ito (%, ¥')=topology, Eu is also memi-reflexive,
This enables us to oblain conditions under which Eu might be semi-reflexive,
We find that whenever EB* is semi-reflexive, ES* is metrisable if
and only if E&B possesses a fundamental famiiy of bounded sets,

Since each basic p*-neighbourhcod of the origin in E is the
polar of a strongly bounded set in E&, it absorbs bounded sets in

Eu ({38], Chapter IV, §,3, Temma 2), Thus u-bounded sets are {f—béunded.

Since B*(E, E') is finer than u, this means that u-bounded and p*-

bounded sets are identical, This observation gives us: :
PRCPOSITICN 2.1 If EB* is semi-reflexive, Eu is also

semi-reflexive,

PRCOI: By the above observation, every u-bounded set is p*-
bounded, Now, since E is semi~-reflexive, we further have that every

p*



— , ‘ 79

b

)-compact. Thus E, is also semi-

u-bounded set is relatively G (E. Et,)-compact (Chapter I, Theorem 8.1 (d)),

and therefore relatively G (B, B!

reflexive., o ‘ Q.E.D
However, if E, is semi-refiexive, Eﬁ* could fail to be semi-

reflexive. This follows from:
EXAMPLE 2.1: Let Eu be a non-reflexive Banach space which

is weakly sequentially complete (such for example is -81, with the
usual norm topology).

Since E&a- is quasi-complete, E&T is semi-reflexive (Chapter I,
Theorem 8.1 (e)). Now, if E&B‘ (= EﬁB) is also semi~-reflexive, )&B
is a reflexive Banach space and thérefore an d-space (Chapter I, § i):
Since E ¢ 1is sequentially complete, it follows from Lemma 4.1 (Chapter III)
that E 1is reflexive!

We now proceed to consider conditions under which Eu might be
3

semi-reflexive. This relies upon: -

LEMMA 2.1: If Eu is a B-complete svace, then Eu is semi-reflexive
if and only if every ciosed subspace vhich is an a-spuce iz semi-reflexive,
PROOF': The necessity is obvious, since if Eu is semi-reflexive,
every closed subspace is also semi-reflexive ([ 23] , § 23, 3 (5)).
For sufficiency, we may suppose that Eu is endowed with the
Mackey topélogy. Suppose Eu is not semi-reflexive. Then there exists
a bounded, closed subset B of Eu which is not weakly compact; in
fact due to completeness of Eu‘ B 1is not weakly countably compact
({231, § 2k, 2 (1)), Let {)%1} be a sequence in B which has no
weak cluster point in B and let Y Dbe the closed linear span of ‘{xn} .

Then Y is separable, and since Eu is B-complete, Y is an a-space

(Chapter II, Proposition 1l.4) and -{Xﬂ} -is a bounded sequence in Y which

has no weak cluster point in Y. Hence Y is not semi-reflexive.
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THISOREM 2,7 Let Eu be a convex space which is a B-complete

space in its B*(E, E')-topology. Then Eu is semi~-rcflexive if every

closed a-space in R is semi-reflexive,

p*

PRCOF: If every closed o=-space in & is semi-reflexive,

p*

then by Lemma 2.1, E., is semi-reflexive, This implies that Eu is
F)

semi-reflexive, by Proposition 2,1, . ' Q.E.D,

In the following corollaries, let Eu be a convex space,

CCROLLARY 1: If Eﬁ* is a metrisable B(ML)-space, then E,
is semi-reflexive if every closed a~space in EB* is semi-reflexive, ’
COROLLARY 2: Ir B&B possesses a countable fundamental '

family of bounded sets and B is a B()-space, then Eu is semi~reflexive

if every closed u-spnce in E is semi-reflexive,

B*

COROLLARY 3: , ILet E&B be as in Corollary 2, If Eﬁ* is complete,

then Eu is semi-reflexive if every closed w@-space in E is semi-reflexive,

B*

"
COROLLARY b+ Let L! P

be as in Corollary 2, If Eg is

sequentially complete, then Eu is semi-reflexive if every closed wa=-space

Py

in E is semi-reflexive,

{j*
In the class of convex spaces which are B*-semi-reflexive, we have

‘the following characterization of metrisability,

THFOREM 2,23 Ir EB* -is semi-reflexive then EB' is metrisable

possesses a countable fundamental family of bounded

w

if and only if E&
sets,
; 3 .
PROOF: It E&[ posscsses a countable fundamental family of

bounded scts, Ep* is clearly metrisable,



B

Conversely, if b is metrisable, Gé* posscsses a countable

B*

fundamental family of bounded sets, Since Eﬁ* is semi-rcflexive, on

Eé,, 7:(Eé,, E) = B(Eé*, BE) (Chapter I, Theorem 8,1 (c¢)) and therefore
a . '

ué* possesses a countable fundamental family of bounded sets, HNow,

: o -, , ’
since E& [ Eé*, L& possesses a countable fundamental family of
bounded sets, But Eu is semi-reflexive (because Eb* is semi-reflexive)

and therefore E&B possesses a countable fundamental family of bounded

sets,

3, Countability conditions and the omnen mavping theorem

The present section is concerned with open manping theorems on
some classes of B(F )-spaces, We show that convex spaces which are

metrisable in their P*-topology play an important role,
>

As before, we deal only with B(g')—spaces, but the arguments
are also valid for Br(ﬁ')—spaces, provided the mappings considered are

.

one-to-one,
A1l spaces censidered are separated,

THZOREM 3,1t Let B be a countably quasi-barrelled B(J)-
space, Let Fv be a sequentially complete Mackey space, metrisable and
separable in its p*(F, F')-topology. Then a continuous, almost open

linear mapping t of E_ onto F_ is open,
u v

@

PRCOF: Since B, is countably quasi-barrelled and t is a

.
U

continuous, almost open mapping, F

v countably quasi~barrelled

(Chapter I, Proposition 7.5); Fv being segquentially complete, it

follows that Fv is countably barrelled (Chapter I, Proposition 7.2).
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is now scquentially cemplete (Chapter I, Proposition 7.4)
and F‘5 is separable (because on a sequentially complete space
p*(F, F') = p(F, F')), F&t is semi-reflexive (Chapter I, Theorem &.2),

Thus on F; v = TB(F, F*') = 3(F, F") and so F, is a Fréchet space,

Our result now follows from the definition of B(F )-spaces,

REMARK 3,1 A sequentially complete Mackey space, metrisable
and separable in its P*-topology is not in general metrisadble, This
follows from:

-

EXAMPTE 3,13 Let Ew = co, the space of all seguences

. T .
convergent to zero, with the usual norm topology. Then E; is complete

. . T'p
([22], Chapter 5, Problem 19 ¢) and since E& Y (= Ew) possesses a

X
countable fundamental family of bounded sets, E&ﬁ is metrisable, Alsoco,

*

. p* X Co. s .
since E& (= E&B) = -e 1 with the usual norm topology, E&” is
v !

. . . - © . .
separable, However, since Ew is not reflexive, L& is not metrisabdble,

CORCLLARY 1: Let Eﬁ be as in theorem, Let Fv be a
- : i \‘
sequentially complete Mackey space with the property that F;L pPoOsSsESSEs

a countable fundamental family of bounded sets and Fﬁ* is separable,

Then a continuocus, almost open linear mapping of Eu onto Fv’ is open,

'COROLLAéYzz Let E = be a countably barrelled B(T )-space,
Let Fv be as in the thoqrem. Then a continuous, almost'open linear
mapping of Eu onto FV, is open,

PRCOF: Since a countably barrelled space is countably quasi-
barrelled (Chapter I, Proposition 7,1), the corollary follows,

REMARK 2,2: Countably quasi-barrelled spaces are more general

than countably barrelled space ([18], Example (ii)),
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THEOREM 7,28 Let Eu be a countably barrclled VMackey space
which is also a B(J )-spice, Let Fv be a Mackey space which is also
a metrisable, a-sprce in ite 3*(F, F')=-topology. Then a linear, almost

open mapping  of Eu onto Ev, whose grapnh is closed in Eu P Fv’ is

continuous and open,

PROCF: Since the graph of t is closed in Eu x Fv’ it is

also closed in Eu x F because p*(F, F') is finer than v, Since

p*r
Eu is countably barrelled and FB* is an a-space, t: EJ———-*Fb, is
continuous (Chapter II, Theorem 1,1, Corollary 1), Thus t: E&~—~—*Fv
is continuous, Further, since ¢t:. Etf——-LF} is almost open, .Fv is
countably barrelled (Chapter I, Proposition 7.5). Since F;GP is now
sequentially complete and FB is an a=-space (because on a countadbly
barrelled space p*(F, F') = B(F, F') - see chapter I, Provosition 7.3).
e is semi-reflexive (Chapter ITI, Lemma 4,1)., Thus, on F,

v= %(F, F') = p(F, F') and so F, is a metrisable, barrelled, a-space.
Since a barrelled, a-space is B-complete (Chapter II, Proposition 1.5,

Corollary 3), Fv is a Fréchet space, Eu is a B(?‘)-space and so t

is open,

REMARK 3,3 Since a separable Banach space is an a-space

~(Chapter II, Proposition 1,4), £ with the usual norm topology is

1!

4.

an a-space, Example 3,1, therefore, also shows that a Mackey space
F_ which is also a metrisable, a-space in its p*(¥, F')-topology, is

not in general, metrisable,

CCROLLARY 1: Let Eu be as in the theorem, Let Fv be a

Mackey space with the property that ,F;B possesses a countable fundamental

family of bounded scts and F is an a-space, Then a linecar, almost

p*
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open mapping of Eu onto Fv, vhose graph is closed in Eu x Fv’

is continuous and open,

Quasi-barrelled spaces are countably quasi-barrelled (Chapter I,
§ 7). For quasi-barrelled B(F )-spaces, the requircment, in Theorem 3.1,

that Pv be seprrable in its  P*(F, F')=topology, may be relaxed, Ve

have:

THHORM %, %8 Let Eu be a quasi-barrelled B(F )-spuce, Let

i . . A’ s
¥ be a convex space which is a Fréchet space in its p*(F, F')~topology,

Then o continuous, almost open linear mapping t  of Eu onto Fv’ is

open,

PROOI: Since Eu is quasi-barrelled and t 1is a continuous,
almost open mapping, Fv is guasi~barrelled, Thus on F, v = p*(F, F')
- I o
and therefore F_ ig a Fréchet space, E = is a B(F )-space and so

t: E-——TF is open,
u v

For B(M )-spaces, completeness of Fﬁ* may be relaxed, Ve

have:

THEOREM 3, 04: Let B be a quasi-barrelled B(™V)~space, Let
Fv be a convex space, metrisable in its B*(F, F')-topology. Then a

continuous, almost open line~r mapping of Eu into Fv’ is open,

PROOT: As in the proof of Theowenm 3.3, F; is metrisable,
Therefore, t(E), the range of t, with the induced topology, is also

metrisable, Since F = is a B(M)-space and t: Ed———ﬁ>t(E) is also

continuous and almost open, t is open,
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CHAPTER V

BOUNDTD LIUVAR MAPPINGS

A linear mapping is called bounded if it preserves bounded sets,
In section 1 of this chapter, we investigate the situation in which one
could derive that a lincar mapping is bounded from the fact that the
graph of the mapping is closed., Here, we rely heavily on closed graph
theorems proved in earlier chapters, In section 2, we investigate the
situation in which one could derive that the graph of a linear mapping is
closed from the fact that the mapping is boundcd..

Bounded linear wmappings with closed graphs are not necessarily
continuous, In section 3, we investigate brieflly some cases it which

bounded linear mappings with closed graphs are continuous,

1 Bounded linear mapouings and the closed granh theorem
A DU i i

The following examnle shows that linear mappings with closed

graphs are not necessarily bounded,

BXAMPLE 1.3 Let E  be a quasi-barrelled space which is

(N

not barrelled (such for example is R ), the space of all finite

sequences, (xn), with the norm topology defined by: Il x || = 5Up px 1|

n
(N)

R with this topology is bornological but not barrelled), Since

T (B', E) 1is coarser than B(E', E), the graph of the identity mapping
T IC'B : -\|B
u

. v « A
i E&-————* is closed in E& x B . But i is not bounded,

for otherwise, Eu would be barrelled,

85
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DEFINITION 2,13 We say that a convex space Eu satisfies
the Banach-Steinhaus condition, if every © (I, E')~bounded subset of
E is- B(E, E')-bounded,

In Example 1.1, E&t does not satisfy the Banach-Steinhaus
Q, .
condition, We note also that E&* is Br-complete.

We have the following case which ensures that t is bounded, .

CTHEOREM 1.1: Let Eu be a convex space and FV a Br-complete

Y

space, Let t Dbe a linear mapping of 'Eu into FV, whose graph is
closed in Eu X Fv' If Eu satisfies the Banach~Steinhaus condition,

then t is bounded,

PRCOF: Let V be a neighbourhood of the origin in F;.
Then t-l(V) is a barrel in Eu and thercfore a neighbourhood of the

PR . 3 - . .
origin in Eﬁ’ Thus  t: ng———~*Fv is almost continuous, Further,

since the graph of t is closed in Eu X Fv’ it is also closed in

B, x Fv and therefore . t: Ef——“—*f; is continuous (Chapter I, Theorem 5.1).

B s

Since Eu satisfies the Banach-Steinhaus condition, every u-bounded set

is p-bounded and therefore t: E=——3TF  is bounded. Q.E.D,
REMARK 1,1: If in the above theorem, Eu is barrelled,

t: Eﬁ———¥¥Fv will be continuous by a closed graph theorem (Chapter I,

Theorem $,1, Corollary ), However, t as in the theorem, may fail to

be continuous, This follows from:

EXAMPLE 1,2: Suppose Ev is a non-reflexive Banach space,
3

T .o . s .
Then E& satisfies the Banach-Steinhaus condition, Consider now,

! ) . . T B - . T '
the identity mapping i: E&—*“-*~’L&p . 1 is a mapping of E& onto

B ‘ © B
a B-complete space, )&*. The graph of 1 is closed in E& x E&*, but
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i is not continuous, for otherwi e, Ew would be reflexive,

REMARK 1,3: °  In the above example, E&t is sequentially
barrelled ([43], Theorem 3.1), Such spaces satisfy.the Banach-Steinhaus

condition ([43], § 1),

In the following corollaries, let Eu be a convex space and
Fv a Br-complete space, Let t be a linear mapping of Eu into Fv’
whose graph is closed in Eu X FV.

COROLIARY 1 If Eu is sequentially barrelled, then t 1is

bounded,

CCROLLARY 2: If Eu is countably barrelled, then t is

bounded,

COROLLARY %: If EB* is complete, then t is bounded,

%

PRCOT: This follows from the fact that if E is complete

p*
E ~satisfies the Banach-Steinhaus condition([43], Corollary 3.2),
COROLLARY L4 If Ex is sequentially complete, then t is

bounded,

PRCOF: If Er is sequentially complete, Eu satisfies the

Banach—Ste;nhaus condition and our result follows as bhefore,

A fundamental sequence of weakly compact sets in a convex space
is also a fundamental sequence of bounded sets ([8), § 3, Theorem 2),
Therefore a convex space with a fundamental cequence of weakly compact

sets im (wen1v) sequentially complete, because each Cauchy sequence is

bouaded &und therefore contained in a complete set, This gives us:

COROTTARY 61 If Eu possesses a fundamental sequence of weakly

compact sets, then t  is bounded,
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LFINITION 1,2: A convex space is said to have the convex

compactness property if, whenever A is compact, the closed, absolutely

convex envelope of A is also compact,
Any quasi-complete space has this property.

It turns out that a convex space which has the convex compactness
property satisfies the Banach-Steinhaus condition ([37], Lemma 4), This
gives us:

COROLLARY 6: Ir Eu has the convex compactness property,

then t is bounded.
Let Fv be @ convex space, Since v=bounded and B*(F,‘F')-
bounded sets are identical, we have the following variation of - Theorem 1.1.
THEOREM 1,23 Le?. Eu be a convex 8pacé and Fv another
convex space which is\a Br—complete space in its B*(F, F')-topology.
Let" t be a linear mapping of Eu into FV, whose graph is closed

in Eu b Fv. If Eu satisfies the Banach-Steinhaus condition, then
t 1is bounded.
A very useful variation of corollary 4 to Theorem 1,1 is

the following:

THEOREM 1.3%: Let Eu be a convex space which is sequentially
complete in its Mackey topology and Fv a ¥-space, If t is a

linear mapping of Eu into Fv, whose graph is closed in Eu x F ,
v

then t is bounded,

PROOF: Since E¢ 1is sequentially complete, EB* is also
sequentially complete ([23], §18, 4, (1) b)), If B is a u-closed
absolutely convex u-bounded set, then B is also B*-closed (since

pXE,E') is finer than u) and p*bounded, Now, let (EB,UB) be
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the Banach space associated with B, where ug is the norm‘topology
on EB' As Ug is finer than the B*(E, BE')-induced tdpology on EB’
the graph of the restriction tB of t to EB is closed in

(EB’ uB) X Fv.r Therefore t is continuous by a closed graph theorem

B
(Chapter II, Theorem 2,2), Thus t(B) is bounded in F . : Q.E.D,

Since a-spaces are ¥ -spaces, we have:

COROLIARY 13 Let Fv be an a-space, Let Eu and t be as

in the theorem, Then t is bounded,

REMARK 1,4 If in Theowrem 1,3, E, 1is barrelled, then
t: EJ———*-FV will be centinuous (Chapter II, Theorem 2,2), However;
the mapping t: Eﬁ—-—+Fv, as in the theorem is not necessarily

continucus, This follows from:

EXAMPLL 1,3%: ° Let E = ¢,» the space of all sequences convergent
to zero, with the usual norm topology. As in Exanple 3.1 (Chapter IV),
T
E& is conplete and E&B is an a-space and therefore a ¥ -space,

The graph of the identity mapping i: E'———

- 715
w v

is closed in
e '8 . . .
Ew x Ew y but 1 is not continuous because otherwise, Ew would

be reflexive,

A convex space Eu vhich possesses a fundamental sequence of
weakly compact sets is semi-reflexive because the sequence of sets is
also a fundamental sequence of bounded sets ([8], § 3, Theorem 2), Thus
on E!, T(E', B) = p(E'; E) (Chapter I, Theorem 8,1 (¢)), Since
IO , - ‘ .

}h is metrisable, Lu is also metrisable and therefore Eu is

an a-space, This enables us to state:




COROLLARY 2: Let Eu and Fv be convex spaces, each of
which possesses a fundamental sequence of weakly compact sets, If
t 1is a linear mapping of Eu into F;, vhose graph is closed in

E xF , then t is bounded,
u v

PRCOF: Since Eu is sequentially complete and Fv is an

a-space, our result follows from Corollary 1,

Let Eu be a convex space and Fv a Br—complcte space, Let

t be a linear mapping of Eu into FV, whose graph is closed in

Eu X Fv' Y'e now show, by giving an example, that boundedness of ¢t
does not in general imply that Eu satisfies the Banach-Steinhaus

condition,

’
EXAMPLE 1, 4L: Let Q be a subspace of a Freéchet space F,
which is not barrelled., Then the idenlity mapping i: Q=-———sF is
continuous and therefdre bounded but Q does not satisfy the Banach-

Steinhaus condition, for otherwise Q would be barrelled,

In the next theorem below, we cite a case when boundedness of
t implies that Eu satisfies the Banach-Steinhaus condition, First

we need a lemma,

LEMMA 1,1: Let t be a linear mapping of a quasi-barrelled

space E into a convex space F, If t is bounded, then t is almost

continuous,
PROOF': Let V be an absclutely convex neighbourhood of the

origin in F, Then tml(V) is & barrel in B, We show that t—l(V)
absorbs bounded sets of B, lLet B be a bounded set in E, Then t(B)

is bounded, by hypothesis. Therefore there exists an o > O such that
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t(B) € AV for IAl >a., This implies that B € A +71(V) € A t~1(v),
Since E is quasi-barrelled, t-l(V) is a neighbourhood of the origin

in k. In other words, t is almost continuous.

THEOREHM 1,4 Let Eu be a convex space which is a quasi-
barrelled, Br(ﬁ J~space in its PB*(E, E')-topology and Fv a barrelled
Brucomplete space, lLet t be a one-to-one, linear mapping of Eﬁ onto -
Fv‘ whose graph is closed in Eu x F . Then t° is bounded if and

A4

only if Eu satisfies the Banach-Steinhaus condition,

PROOF: It Eu satiéfies the Banach-Steinhaus condition,

our result follows from Theorem 1.1,
On the other hand, if t: Eﬁ————’F; is bounded, t: Eé;-——+Fv

is also bounded, Now, since EB* is quasi-barrelled, it follows that
t: Eé;————+F; is almost continuous (Lemma 1.1), Further, since the
%

graph of  t is closed in Eu x F , it is also closed in E

v e X F .

B v

Since Ly, is a B (J )-space, t: Byr— ¥, is open ([15], Chapter 7,
§ 5, Theorem 7). Now,'-Fv is Br-complete and since t_l: E;“"‘*EB*

is continuous and almost open, Eﬁ* is also Br-complete ([351, Chapter VI,

B*

that Eu satisfies the Banach-Steinhaus condition ([43], Corollary 3,2). Q.E.D

§ 2, Proposition 9) and therefore complete, Completeness of & implies

REMARK 1,65: Ir Eu is quasi~barrelled, then T (E, E') = B*(E, E'),
However, if B is quasi-barrelled, Eg may fail to be quasi~barrelled

p*
(see Example 1,1, (Chapter IV)),
It is also worth noting, in connection with Theorem 1.4, that,
whenever Eﬁ* is a Br(g J-space, Ex is also a Br(g J-space, This

follows directly from the definition of 3r(3 )-spaces,




2, Boundedness and the graph of linear mappings

The following exaiple shows that bounded linear mappings do

not necessarily have closed graphs,

EXAMPLE 2,1: let E = ,51} with the usual norm topology.
Since E  is not reflexive, T(B', E) is strictly coarser than

v o D ! N
E' & s o '1' oY 3' -~
B( N E) and therefore :) E, let t ¢ E'L ~ Y; let

. B
Rv be the reals, with the usual topology,  v. Then: t: E&£~———§Rv
is continuous and therefore bounded, Since Bu is a Banach space,
T(E', ® - (o 7 3 . . T
L', E)-bounded sets are also B(E', E)-bounded and so: t: Eu—————>Rv
- - - t ' a. (3 .
is also bounded, However, since E& (= E¢) is sequentially complete
. . T
and Rv is an a-space, the graph of t cannot be closed in Eu X Rv’
because otherwise t would be continuous (Chapter II, Theorem 1,1),
. > p* By
REMARK 2,1 In the above example, E! (= E! ) is a
T

) . r . - bl
bornological spacey; however, E& is not, for if so, t: L&~————+Rv

would be continuous,

We now investigate the situation in which one could derive
that the graph of a linear mapping is closed from the fact that the

mapping is bounded,

THEOREM 2, 1.: Let Eu be a convex space which is a bornological,
Br(g )-space in its p*(E, E')-topology and F, a barrelled space. If
t 1is a one-to-onhe, bounded linear mapping of Eu onto Ev‘ then the

graph of t 1is closed in Eu X Fv‘

PROOI: Since wu~bounded sets are P*-bounded, t: ES;——-*FV
is also bounded, Ep* is bornological and therefore t: Eﬁr——_—+Fv
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is continuous, Now, since Ep* is a Br(g )=space and Fv a barrelled
space, t: EE;————*FV is open, PB*(B, B') is finer than u and

therefore t: Eﬁ~——~>FV is also open, Thus the graph of t is closed

in E x F .,
u v
In the case when Eg* is a bornological a=space, the hypothesis
that Fv be barrelled, may be weakencd, Ve have:
THEOREM 2,23 Let Eu be a convex spécc which is a boraological

Q.E.D

a-space in its P*(E, B')-topology and Fv’ a convex space with sequentially

complete weak dual, If t is a one-ﬁo—one, bounded linear mapping of

E  onto F , then the graph of t is closed in B x F ,
u v u v

PROCT: Since t: E———>Fg is open (Chapter II, Theorem 1,2),

B*

t: Ed*——-*Fz is also open. Therefore, the graph of t is closed in
E, x Fr . Since the,closed convex scts in T(E,E') and v are the
same, the graph of t is also closed in‘ Eu x Fv'

Our investigatiqns in §1 and §2 'give us the following

characterization,

THECREM 2,

: Let Eu be a convex space which is a complete,
bornological Br(a Y-space in its P*(E, E')-topology, Let ‘FQ bevé
barrelled, Br~complete space, Let t be a one-to-one,.linear mapping
of Euv‘onto Fv. Then t is bounded if and only if the graph of ¢t

is closed in E x F
“u v

PROOE": Suppose the graph of t is closed in Eu x Fv. Since
Eﬁ* is complete, Eu satisfies the Banach-Steinhaus condition ([43],

Corollary 3,2) and our result follows from Theorem 1,1,

QchD



On the other hand, if t: Ea~———+F§ is bounded, the graph

of t is closoed in Eu X Fv by Theorem 2.1,

2o Bounded linear mappines with closed sravhs ‘ .

Several examples can easily be constructed to show that bounded
linear mappings with closed graphs are not in general, continuous, Example 1,3
. . . T P
in § 1 is one such example, In that cxample, i': L&——————&mw is
bounded (because E, 1is a Banach space) and its graph is closzsd in
"C
\

E, X E&B. But 1i' fails to be continuous,

However, we have:

THEQREM -

RA Let Eu be a convex space with sequentially
complete weak dual and metrisable in its B*(%, BE')~topology. Lot Fv
be a B(M )-space whioh is separable and barrelled, If t is a bounded,

linear mapping of Eu onto Fv’ whose graph is closed in Eu b4 Fv’ then

t: B >F is continuous,
u v? .

PROOY: Since t: Eq:*‘“*“*F; is a continuous linear mapping
t

of a metrisable space onto a barrelled space, Fv is metrisable (Chapter III,
Proposition 1,1), 3But F_ is a separable B(Tl)-space, Therefore F,
is a separable B-complete space (Chapter IIT, Proposition 1.2) and hence

an a-space (Chapter II, Proposition 1.4), Since E&a- is sequentially

complete and the graph of t is closed in Eu X FV, t: _Ed—-*—*+FV is <
now continuous (Chapter II, Theorem 1,1), Q.E,D,
REMARK %,1: In the above theorem, we can also take a sequentially

complete, separable barrelled space for Fv‘ In that case, our theorem

‘ o,
follows from the fact that separable Fréchet spaces are a-spaces,




We also have:

EEEpREM b,20 ‘ Let Eu be a convex space which is a separable,
bornological spuce in its p*(B, E')=topology. Let FV be a convex
space with sequentiaily complete weak dual and which is a Br(g )-space
in its Mackey topology. If t is a bounded, almost continuous linear
mapping of Eu onto Fv’ whose graph is closed in Eu X Fv’ then

t: Ed~—->Fv is continuous,

PROOF: Since t is bounded and E is bornological,

B*
t: Eg;—-—-+Fp* is continuous., Further, since EB* is separable,
FB,k (= Fﬁ’ since F&c~ is sequentially complete) is also separable,

Thus F&t. is semi-reflexive (Chapter I, Theorem 8.2) and therefore
Fr is barrelled (Chapter I, Theorem 8,1 (c)), Since Fz  is a Br(g )=
space by hypothesis, it follows that Fz is B -complete (Chapter I,

Theorem 6,3, Corolla;}), Now, since t: E--—>Fv is alﬁost continuous

and its graph is closed in Eu X Fv’ ts: E-——-*Fv is continuous,
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