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ABSTRACT 
 

Most conventional seismic design intends for key structural members to yield in 

order to limit seismic forces, leading to structural damage after a major 

earthquake. To minimize this structural damage, self-centering systems are being 

developed. But how to estimate the peak seismic displacement of a self-centering 

system remains a problem for practical design. This thesis addresses this need 

by presenting a parametric study on the seismic displacement demands of single-

degree-of-freedom (SDOF) systems with flag-shaped hysteresis considering 

13,440,000 nonlinear time history analyses. Ground motion records that 

represent seismic hazards in active seismic regions with stiff soil and rock site 

conditions are used. The influences of the four independent parameters that 

define a flag-shaped hysteresis are presented in terms of median displacement 

ratios, facilitating the design-level estimation of nonlinear displacement demands 

on self-centering systems from the spectra displacements of elastic systems. The 

influence of initial period on self-centering systems is similar to its influence on 

traditional systems with elastoplastic hysteresis, but a much lower linear limit can 

be adopted for self-centering systems while achieving acceptable peak 

displacements. Supplemental energy dissipation suppresses the peak 

displacement but additional energy dissipation becomes less effective as more is 

added. The effect of nonlinear stiffness is small as long as it is positive and close 

to zero, but a negative nonlinear stiffness can lead to unstable response. Self-

centering systems located on rock sites usually have smaller displacement 

demands than those on stiff soil sites. When the damping ratio is increased or 

decreased, the displacement ratios do not necessarily decrease or increase 

consistently. A tangent stiffness proportional damping model is considered, 

leading to a significant increase in displacement demands but similar overall 

trends. Based on the observations, regression analysis is used to develop a 

simplified equation that approximates the median inelastic displacement ratios of 

self-centering systems for design. 
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CHAPTER 1:  

INTRODUCTION 

 

1.1 Overview of Self-centering Systems 

Most modern seismic design is based on intentionally designing an inelastic 

deformation mechanism that involves yielding at certain locations. Members at 

those locations are designed to exhibit a stable hysteretic response that limits 

seismic forces and dissipates energy, while other parts of the structure are 

designed to remain elastic. This process is termed capacity design (Park and 

Paulay 1975). The objective is that structural collapse is prevented and people 

can be evacuated safely after a major earthquake event. This design philosophy 

has proved to meet these objectives in recent earthquake events (Kam et al. 

2010, Clifton et al. 2011). Nevertheless, even though most structures did not 

collapse during the earthquakes, large inelastic deformations occurred that are 

associated with structural damage and residual displacements. The structural 

damage needs repair afterwards and the residual displacements also have a 

strong influence on the possibility and cost of repair (Iwata et al. 2005, 

McCormick et al. 2008).  

 

To avoid these structural damage and residual deformations, the concept of self-

centering systems is drawing increasing attention (Kurama 2000, Wiebe and 

Christopoulos 2014). A self-centering system also has a nonlinear mechanism 
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that limits seismic forces for capacity design, but after a major earthquake, a self-

centering structure returns to an essentially undeformed position without any 

residual displacements. 

 

One type of self-centering system is a controlled rocking wall, which is shown 

schematically in Fig. 1.1. For this discussion, it is assumed that the wall-

foundation interface has no flexibility and the energy dissipation devices are rigid-

perfectly plastic. When there is no lateral force, the wall stands on the foundation 

with the reaction forces uniformly distributed along the surface as shown in 

Fig.1.1(a). As lateral load is applied and increased, the reaction force distribution 

changes until a critical point is reached when the reaction force at one corner 

becomes zero (Fig.1.1(b)). As the lateral load keeps increasing, the energy 

dissipation devices are activated to take load and the forces in the devices 

increase until yield (Fig.1.1(c)). If the energy dissipation devices are perfectly 

rigid before yielding, the gap will remain closed until the energy dissipation 

devices yield (point c in the force-displacement relationship). After the energy 

dissipation devices yield, the gap-opening mechanism initiates and the system 

enters its nonlinear stiffness range, where the stiffness is provided by the post-

tensioning elongation (Fig.1.1(d)). When the lateral load is removed and the wall 

is loaded in the opposite direction, the energy dissipation devices yield in 

compression, the gap closes and a similar response is seen on the other 

direction (Fig.1.1(e)). When the lateral load is removed, the post- tensioning and 

the wall’s self-weight return the wall  to  its  original position without any structural 
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Figure 1.1 Push-pull response of a self-centering system: (a) at rest; 
(b) activation of energy dissipation devices; (c) yielding of damping device; 

(d) gap opening mechanism initiation; (e) reverse direction nonlinear mechanism; 
(f) returning to original position when load removed 
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Figure 1.2 Different types of self-centering systems: (a) reinforced concrete 
rocking joint; (b) unbonded post-tensioning precast concrete rocking frame; 

(c) unbonded post-tensioned precast concrete rocking wall;  (d) post-tensioned 
steel moment frame; (e) controlled rocking steel braced frame; (f) steel braced 

frame with self-centering energy dissipative braces 
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damage or residual displacement.  

 

A similar self-centering mechanism can be applied to reinforced concrete frame 

rocking joints (e.g. Priestley and Tao 1993) (Fig.1.2(a)), unbonded post-tensioned 

precast concrete rocking frames (e.g. Roh and Reinhorn 2010) (Fig.1.2(b)) and 

walls (e.g. Kurama 2000) (Fig.1.2(c)), steel moment frame connections (e.g. 

Christopoulos et al. 2002) (Fig.1.2(d)), controlled rocking steel braced frames (e.g. 

Ma et al. 2011, Wiebe 2013) (Fig.1.2(e)) and self-centering energy dissipative 

braces (Erochko et al. 2013) (Fig.1.2(f)).  

 

             

Figure 1.3 Flag-shaped Hysteresis 
 

While the aforementioned self-centering systems have different mechanisms, 

their force-displacement relationships can all be idealized as a flag-shaped 

hysteresis (Fig. 1.3). The designer must select the target hysteretic properties 
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(initial stiffness 0k , linear limit yf , energy dissipation parameter  , nonlinear 

stiffness 0k ) in order to design the self-centering mechanism.  

 

 

For example, a proposed design procedure for self-centering steel braced frames 

(Fig.1.2(e)) is shown in Fig. 1.4 (Wiebe and Christopoulos 2014). This design 

process assumes that the peak displacement of a self-centering structure can be 

 

Figure 1.4 Design procedure for a controlled rocking steel braced frame (after 

Wiebe and Christopoulos 2014) 
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estimated from a self-centering single-degree-of-freedom (SDOF) system. Based 

on this assumption, the energy dissipation and post-tensioning are designed to 

achieve target hysteretic parameters ( 0k , yf ,  and 0k  in Fig.1.3), that will meet 

the selected base rotation (i.e. displacement) limits. Thus, there is a need to 

determine how these hysteretic parameters affect the displacement demands of 

self-centering SDOF systems. Similarly, in conventional force-based design, the 

displacement must be checked against codified limits. This also requires an 

ability to predict the displacement response of self-centering systems. So it is 

important to study seismic responses of SDOF systems with flag-shaped 

hysteresis.  

 

1.2 Seismic Displacements of Self-Centering SDOF Systems 

1.2.1 Summary of Previous Studies 

Christopoulos et. al. (2002) studied the displacement demands of self-centering 

SDOF systems in terms of ductility demands. A strength ratio was used in that 

study with different combinations of 0.02,0.10,0.20,0.35   and 0,0.3,0.6,1.0  . 

The strength ratio,  , was defined as the ratio of the design base shear and the 

seismic weight and the value of 5% 100%   was considered. For the ground 

motions considered, the range of strength ratios in this study corresponds to a 

force reduction factor R  (see Section 2.1.3) in the range of 4.5-8.5. Considering 

an initial stiffness proportional damping model (see Section 2.2.1), it was 

concluded that self-centering systems can achieve similar or reduced ductility 
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demands compared to traditional systems with elastoplastic hysteresis. It was 

also concluded that less absorbed energy for self-centering systems than for 

traditional elastoplastic systems is not a problem because the importance of this 

response index is minimal as cumulative damage is limited to replaceable energy 

dissipation devices. The ground motion records used in this study were from 

relatively stiff soil sites.  

 

Seo and Sause (2005) also studied self-centering SDOF systems in terms of 

displacement ductility. They considered a force reduction factor R  of 2 6  and a 

similar range of   and   as Christopoulos et al. (2002). They compared the 

response of self-centering SDOF systems to that of traditional SDOF systems 

represented by elastoplastic and stiffness degrading hystereses. It was found that 

self-centering systems have much higher ductility demands compared to 

elastoplastic and stiffness degrading systems when using the same force 

reduction factor R  and nonlinear stiffness ratio  , particularly when   is small, 

but can achieve similar ductility demands by combining different   and  . Both 

an initial frequency proportional damping model and a secant frequency 

proportional damping were considered in this study, the latter of which means 

that the damping is changed according to the secant frequency of the SDOF 

system as the system enters the nonlinear range. The secant damping model did 

not affect the trends of ductility demands significantly but did increase the ductility 

demands (by as much as 200% ) and affect the effectiveness of hysteretic 



Changxuan Zhang  McMaster University 

M.A.Sc. Thesis  Dept. of Civil Engineering 

 9 

parameters in reducing the ductility demands. The secant frequency proportional 

damping model will be called the secant stiffness proportional damping model in 

the following context as frequency is related to stiffness. The authors also 

considered the effect of site soil conditions and found that ductility demands for 

self-centering systems with low strength ( 6R  ) on rock sites and soft rock sites 

are lower than those on stiff soil sites, especially at short initial periods 

( 0 1.25T s ), where the ductility demands of self-centering SDOF systems on rock 

sites can be as little as 50%  of the ductility demands of self-centering SDOF 

systems on stiff soil sites. Seo (2005) proposed an equation in the following form 

to predict the displacement demand on self-centering SDOF systems: 

0exp( ( , ,T ))

2

0 2( )
0

( )
( , ,T ) 1

f

R

c d

a b
f

T

C R
 



 



 



            (1-1) 

where a , b , c , d  are constants that are read from a table depending on  .  

 

Wiebe and Christopoulos (2014) studied self-centering SDOF systems in terms of 

absolute peak displacement and converted the results into interstory drift using 

an assumed period-height relationship. Using nine different combinations of 

nonlinear stiffness and  , they developed charts for design usage assuming an 

initial stiffness proportional damping model. An initial period range of 0.2 2.0s  

was used, and they concluded that the peak interstory drifts generally increase 

with decreasing initial period and increasing force reduction factor. They also 
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found that the design approach to estimate peak displacements should be based 

on the initial stiffness rather than the secant stiffness because the results were 

much more sensitive to the initial period than to the stiffness in the nonlinear 

range. Additionally, it was found that the energy dissipation parameter is most 

effective to reduce displacements around 10R   and that the nonlinear stiffness 

has little influence on peak displacements.   

 

1.2.2 Limitations of Previous Studies 

In the first two studies above (Christopoulos et al. 2002, Seo and Sause 2005), 

the self-centering systems were defined with linear limits ( yf  in Fig.1.3) that are 

similar to the strength of traditional elastoplastic systems. However, Wiebe and 

Christopoulos (2014) suggested that a larger value of R  (reduced yf  in Fig.1.3) 

can be used for self-centering systems than traditional systems while still limiting 

the drift to the code specified value of 2.5%  (NRCC 2010) during a maximum 

considered earthquake.  

 

Also, none of the previous studies has considered the effect of a negative 

nonlinear stiffness caused by significant P  effect. Research on traditional 

systems has showed that a negative nonlinear stiffness can lead to collapse 

(FEMA P440A). Thus, it is worthwhile to explore the influence of negative 

nonlinear stiffness on self-centering SDOF systems.  
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Additionally, Christopoulos et al. (2002) and Wiebe and Christopoulos (2014) 

used only an initial stiffness proportional damping model in their studies. Seo and 

Sause (2005) considered both an initial stiffness proportional damping model and 

a secant stiffness damping model. However, some recent studies stated that a 

tangent stiffness proportional damping model is a more realistic assumption for 

inelastic systems (Leger and Dussault 1992, Priestley and Grant 2005, Charney 

2008). Therefore, it is necessary to consider a tangent stiffness proportional 

damping model and compare the difference between the initial stiffness 

proportional damping model and the tangent stiffness proportional damping 

model for self-centering SDOF systems.  

 

Last but not least, Christopoulos et al. (2002) and Wiebe and Christopoulos 

(2014) showed the general trend of ductility demands and displacement demands 

respectively, but did not quantify the trend with an equation. The equation 

proposed by Seo (2005) is based on results of 2 8R    with an accuracy of 25%  

for the values included in the regression and may not be valid beyond this range. 

Furthermore, a simpler equation is desired for practical application. 

 

1.3 Research Objectives 

Based on the research limitations noted above, the main purpose of this study is 

to extend the previous studies on self-centering SDOF systems (Christopoulos et 
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al. 2002, Seo and Sause 2005, Wiebe and Christopoulos 2014) to consider and 

quantify the influence of: 

1. large force reduction factors; 

2. negative nonlinear stiffness; 

3. the tangent stiffness proportional damping model; 

4. difference between rock site conditions and stiff soil site conditions. 

Chapter 2 summarizes how the hysteretic parameters are normalized, describes 

the numerical solution technique and gives an example of the analyses. The 

analyses results are presented in Chapter 3 with detailed discussions.  

 

The end objective of this work is to develop an equation that predicts the peak 

displacements of self-centering SDOF systems and that is simple enough for 

routine design. Such an equation is developed in Chapter 4 using nonlinear 

regression analysis, and accuracy of the developed equation is also evaluated 

there.  

 

Chapter 5 summarizes the work and future research needs. 
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CHAPTER 2:  

DEFINITION OF PARAMETERS AND EXAMPLE ANALYSES 

 

2.1 Hysteretic Parameters  

For a self-centering system that can be represented by a flag-shaped hysteresis, 

there are four independent parameters: initial stiffness 0k , linear limit yf , 

nonlinear stiffness 0k , and energy dissipation parameter   as shown in Fig. 2.1. 

The following sections describe how each parameter is normalized in this study. 

The range of normalized parameters considered in this study is summarized in 

Table 2.1.  

 

Figure 2.1 Flag-shaped hysteresis 

 

2.1.1 Initial Period  

To normalize the results, the initial stiffness 0k  is expressed in terms of the initial 
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period: 

0

0

2
m

T
k

  (2-1) 

where m  is defined as unity.  

 

Table 2.1 Parameters Considered 

System Parameter Values Considered 

Initial Period 0T   ( )s  
0.05 1.0  (increments of 0.05 ) 

1.0 3.0  (increments of 0.1 ) 

Tangent Period  tanT   ( )s  5, 10, 20, ,20,10,8,5,3,2,1.5,1     

Force Reduction Factor R  2,4,6,8,10,15,20,30,50,100  

Hysteretic Engergy 
Dissipation Parameter     

0,0.1,0.2,0.4,0.5,0.6,0.8,1.0  

Damping Ratio   
Initial damping model : 

5% , 2% , 10%  
Tangent damping model 

5%  

 

Some studies on SDOF systems considered an initial period in the range of 

0.1 3s (e.g. Miranda 2000, Seo and Sause 2005) as most buildings are in this 

period range, while other studies considered only 0.25 2.0s  (e.g. Christopoulos 

et al. 2002, Priestley and Grant 2005). In this study, 0 0.05 3.0T s   is adopted. 

The step between 0 0.05 1.0T s   is 0.05s , while the step between 0 1.0 3.0T s   

is 0.1s . The shorter period step at short periods is because a 0 0.05 1.0T s   

corresponds to buildings of 1 10  storey high based on the estimation of 

0 0.1T N  (N is the number of stories for a building) and this range is relatively 

common. Also, previous studies on self-centering SDOF systems (e.g. 

Christopoulos et al. 2002, Seo and Sause 2005) showed that at short periods 
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(
0 1.0T s ), the variation of displacement demand changes more rapidly than at 

longer periods.  

 

2.1.2 Tangent Period  

For the nonlinear stiffness term 0k , previous studies (Christopoulos et al. 2002, 

Seo and Sause 2005) used   to relate it to the initial stiffness. However, for self-

centering systems, the nonlinear stiffness is normally determined by the post-

tensioning, almost independent of the initial stiffness (Wiebe and Christopoulos 

2014). When designing a self-centering system, the post-tensioning is normally 

selected relatively early in design, before the initial stiffness is known. Therefore, 

this study does not normalize the nonlinear stiffness by the linear stiffness. 

Instead, the nonlinear stiffness is described by the tangent period, which is 

defined as: 

tan

0

2 sgn( )
m

T
k

 


   (2-2) 

where   is the ratio of nonlinear stiffness to initial stiffness. By this definition the 

tangent period is negative when 0  , and tanT    for systems with zero 

nonlinear stiffness. In addition to being preferable for design, another advantage 

of this definition is that it separates the nonlinear stiffness completely from the 

initial stiffness, decoupling these two parameters from a research perspective.  
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Christopoulos et al. (2002) adopted a nonlinear stiffness ratio of 0.02 0.35   

while Seo and Sause (2005) used 0 0.2  . Considering the range of initial 

period that those studies examined and using Eq.(2-2) to convert   into a 

tangent period, they correspond to a tangent period range of tan 0.4 14T s   and 

tan 0.2T s  , respectively. For self-centering systems, as the nonlinear stiffness 

is provided mostly by post-tensioning, tan 1.0T s  is assumed to be impractical 

because of physical limitations in construction. Therefore tan 1.0T s   is adopted 

for the positive nonlinear stiffness and a few negative tanT  values are added in the 

parametric study to represent cases with a small negative nonlinear stiffness due 

to the P  effect.  

 

2.1.3 Force Reduction Factor 

The linear limit of the flag-shaped hysteresis is defined in the following way. 

Assuming an elastic system with infinite strength and its peak force during an 

earthquake is elasticf , then elasticf

R
 is defined as the linear limit yf  (Fig.2.2), where 

1R   and R  is called the force reduction factor, which represents how much the 

design forces are reduced from an elastic design.  
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Figure 2.2 Definition of force reduction factor 

 

The current National Building Code of Canada allows a force reduction factor of 

1.0 8.0  in seismic design for traditional systems (NRCC 2010). Therefore, when 

selecting R  values for this parametric study, more attention is given to relatively 

small force reduction factors 2 10  as this is the range that conservative 

engineers are likely to consider for design. However, it has been suggested that a 

larger force reduction factor can be used without structural damage in self-

centering systems (Wiebe and Christopoulos 2014). One of the main objectives 

of this study is to explore the effect of large R  values on the displacement 

demands. Thus, a few large values that represent the research ambition to allow 

larger R  are also considered to explore how large R  can be if the peak 

displacement is the only concern. 

 

2.1.4 Hysteretic Energy Dissipation Parameter 

The ratio of the height of the flag to the linear limit represents the relative level of 
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the hysteretic energy dissipation capacity and is termed the hysteretic energy 

dissipation parameter   (Fig.2.1). To maintain the self-centering feature, it must 

be ensured that 100%  . In previous studies, Christopoulos et al. (2002) used 

0%,30%,60%   and 100% , Seo and Sause (2005) used 0%,25%,50%   and 

100% , and Wiebe and Christopoulos (2014) used 0%,50%   and 100% . In this 

study, more values of   are considered to make the regression more 

generalized. 

 

 

2.2 Inherent Damping Model 

2.2.1 Initial Stiffness Proportional Damping Model 

Most previous studies on the displacements of SDOF systems have modelled the 

inherent damping with an initial stiffness proportional damping model, where the 

damping coefficient is defined as:  

02c mk  (2-3) 

where   is the damping ratio. 

 

In practice, a viscous damping ratio of 5%  is usually assumed (Chopra 2012). 

However, uncertainties are associated with the real damping ratio. In addition, 

different damping values are recommended for structures with different materials. 

For example, Newmark & Hall (1982) suggested that a damping ratio of 2%  can 



Changxuan Zhang  McMaster University 

M.A.Sc. Thesis  Dept. of Civil Engineering 

 19 

be applied for steel structures and a damping ratio of 7% 10%   can be 

applied for reinforced concrete structures. As self-centering systems can be 

applied to both concrete and steel structures, it is worthwhile to explore the effect 

of different damping ratios. Therefore, the damping ratio in the initial stiffness 

proportional damping model is changed from 5%  to 2%  and 10% .  

 

2.2.2 Tangent Stiffness Proportional Damping Model 

When the system enters the nonlinear range, the initial stiffness proportional 

damping model keeps the damping term c  constant. Therefore, this damping 

model may create a very large damping force relative to the structural force in the 

nonlinear range, with potentially unconservative results.  

 

To overcome this problem, a tangent stiffness proportional damping model has 

been proposed in multi-degree-of-freedom systems (Leger and Dussault 1992).  

A recent study has explored the difference between an initial stiffness 

proportional damping model and a tangent stiffness proportional damping model 

for SDOF systems with various hysteresis loops, including modified Takeda 

model, bilinear model and flag-shaped model (Priestley and Grant 2005). The 

tangent stiffness proportional damping model resulted in larger displacements 

than the initial proportional damping model and was argued to be more realistic. 

Other research on multi-degree-of-freedom (MDOF) system modelling also 
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recommended the tangent stiffness proportional damping over the initial stiffness 

proportional damping (e.g. Charney 2008).  

  

In this study, a separate set of analyses is carried out with the tangent stiffness 

proportional damping model, which is defined for this work as:  

12

0

i
i

mk
c

 


 


  
1

1

0

0

i

i

k

k








 (2-4) 

where 1ik   is the stiffness of the system at previous time step. This stiffness is 

used instead of the current stiffness to avoid convergence problems caused by 

iterating the stiffness within one time step. For brevity, the first damping model 

(Eq.2-3) will be called initial damping model and the second (Eq.2-4) will be 

called tangent damping model for the rest of the thesis.  

 

 

2.3 Ground Motion Records 

80 unscaled historical ground motion records are used for the main analyses of 

this study. These records are given as set #1A in PEER transportation research 

program, selected for stiff soil sites (Baker et al. 2011). They are intended to 

represent the dominant hazard in active seismic regions with large earthquakes 

( 7M  ) at small distances (10km ). The elastic response spectra are shown in 

Fig.2.3. A sample ground motion that is close to the median response spectrum 

is highlighted here and is used for time history analysis examples in this thesis. 
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Another set of ground motions that is representative of the same hazard level, but 

for rock site conditions (set #2 in Baker et al. 2011), is also used for another set 

of analyses. The ground motion records listed by Baker et al. (2011) were 

downloaded from PEER website (PEER 2011).  

 

 

Figure 2.3 Ground motion records: a) acceleration spectra; b) displacement 
spectra 

 

In this study, the parameters are normalized in such a way that the scaling of 

ground motions does not affect the results. This is because the linear limit of the 

system ( yf  in Fig.2.1(a) ) for each nonlinear time history analysis is defined as 

the peak elastic force demand for that record divided by R . Therefore, the 

ground motion scaling has the same effect on both the demand and the capacity, 

resulting into no change to the normalized results. For example, scaling the 

ground motion by a factor of 2 will increase both the elastic displacement and the 
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nonlinear displacement by a factor of exactly 2. Therefore, when the results are 

normalized by the elastic displacement (see Section 2.5), they will not change 

due to the scaling of ground motions. 

 

 

2.4 Numerical Solution Technique  

All of the results in this thesis are obtained by programs written by the author in 

MATLAB (MathWorks 2014a). The linear and nonlinear time history analyses are 

carried out using Newmark’s method with constant average acceleration 

( 0.5, 0.25   ) and Newton-Raphson iteration (Chopra 2012). The tolerance of 

iterated forces as convergence criteria in the scheme is 0.001 . This tolerance is 

small enough to ensure accurate results: a smaller tolerance ( 610 ) produces 

results that are mostly the same in the first 5  digits except all leading zeros (in 

the order of 0.01mm ). The maximum number of iterations is 1000 times, after 

which the analyses will be stopped. Because the hysteresis is defined by straight 

lines, convergence could normally be achieved within 5 iterations. Non-

convergence was not observed for systems with a  zero or positive nonlinear 

stiffness and 0 0.2T s . Based on checking several analyses that did not converge 

1000 steps, non-convergence always indicated collapse for the reasons that are 

discussed later in Section 3.1.1.  
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For all analyses, a zero ground acceleration point is added at the beginning of 

each record and 5s  of zero ground acceleration is added at the end of each 

original record to allow enough free vibration in case that a peak displacement 

occurs after the recorded time. The time step for elastic and nonlinear time 

history analyses is selected as 0.001t s  , and the ground accelerations are 

divided into a time step of 0.001s  by linear interpolation. Time steps of 0.01s , 

0.005s , 0.001s , 0.0005s  and 0.0001s  were also considered for sensitivity checks. 

It is found that after 0.001s , as the time step becomes shorter, the results change 

by less than 0.1%  for 0 0.2T s , and by even smaller amounts for longer initial 

periods. Based on these analyses, the time step of 0.001t s   is short enough to 

give accurate results. 

 

Some analyses were carried out to check the code against previous studies 

(Christopoulos et al. 2002) and some unpublished mutually independent work 

and reached good agreement. The results are summarized in Appendix A.  

 

 

2.5 Analysis Example 

Using the sample ground motion shown in Fig.2.3, time history analyses for both 

the elastic and a corresponding nonlinear SDOF systems are carried out and 

shown in Fig.2.4(a) and Fig.2.4(b). The elastic system in this example has 

0 0.5T s  and the nonlinear system has 0 0.5T s , 4R  , 0.5   and tanT   . 
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Each system is assigned a unit mass. Fig.2.4(a) shows the time history response 

of the two systems and that the vibration period of the nonlinear system is longer 

than the elastic system even though their initial periods are the same. Fig.2.4(b) 

shows the hystereses of the two systems and proves that the nonlinear model 

works well to capture the flag-shaped hysteresis.   

 

Repeating similar analyses for all 80 ground motions, the nonlinear peak 

displacements for the self-centering system are drawn in Fig.2.5(a). 

 

 

Figure 2.4 Example Analyses: a) time history; b) hysteresis 
 

To normalize the results, the displacement coefficient is defined by Eq.(2-5). 

max,

max,

nonlinear

R

elastic

C





 (2-5) 
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By this definition, the peak nonlinear displacements of the self-centering systems 

are normalized by the peak displacement of an elastic system with the same 

initial period (e.g. Fig.2.4(b)).  

Note that in all of the following figures, 1RC   stands for the equal displacement 

assumption and 1RC   means that the equal displacement assumption is 

unconservative. The results of RC  for this example are shown in Fig.2.5(b). 

 

 

Figure 2.5 Example Analyses: a) individual and median displacement; b) 
individual and median displacement coefficient 

 

As can be seen from Fig.2.3 and Fig.2.5, the response of both linear elastic and 

self-centering systems are highly variable, even for a set of ground motions with 

similar magnitude and distance. However, the variability of the nonlinear 

response is not the same as the variability of the elastic spectra. For instance, 

both the elastic acceleration spectrum and the elastic displacement spectrum of 

the sample ground motion at 0 0.5T s  are slightly larger than the median values. 
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Conversely, the nonlinear displacement in Fig.2.5(a) is slightly smaller than the 

median value, and the displacement ratio in Fig.2.5(b) is much smaller than the 

median. This indicates that the variability in 
RC  is not only because of the 

variability in elastic spectra at the initial period.  

 

In earthquake engineering practice, seismic responses are usually assumed to 

follow a lognormal distribution (Abrahamson and Silva, 1997, Boore et al. 1997, 

Shome and Cornell, 1999, Seo 2005). Therefore, the counted median value is 

preferred to represent the average because it corresponds to a 50%  probability of 

exceedance, whereas the mean value leads to a systematically larger value.  

 

In this study, unless stated otherwise, the results and discussion are expressed in 

terms of median displacement coefficient. The 84th  percentile results are 

discussed in Section 3.3. 
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CHAPTER 3:  

RESULTS OF PARAMETRIC STUDY 

 

Using the ground motion records from Baker (2011), a statistical parametric study 

is conducted, consisting of 13,440,000 nonlinear time history analyses, to 

analyze the influence of different parameters on the displacement demands of 

self-centering systems. Unless otherwise stated, the following results and 

discussions are all in terms of median responses. 

 

3.1 Initial Damping Model  

3.1.1 Baseline Study  

Influence of Initial Period 

To investigate the influence of initial period, the tangent period is fixed as 

tanT   (zero nonlinear stiffness) and the variation of RC  with respect to 0T  is 

shown in Fig.3.1. RC  generally decreases as 0T  increases. For the case of 2R   

or 4R  , RC  becomes close to constant when 0 0.5T s . But for larger R  values 

( 8R  ),  RC  keeps decreasing with increasing 0T . The equal displacement 

assumption ( 1RC   ) generally underestimates the displacement of a self-

centering system, especially when 4R   and 2, 0R   . For short initial periods, 

RC  becomes very large. For example, in the case of 50%   and 0 0.1T s , 
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6.8RC   when 2R  , 30.4RC   when 4R   and 41RC   when 8R  . Although 

the displacement ratio of 41RC   seems very large, it corresponds to a 

displacement of 34mm  for a 3.5m  one-storey structure, which is only 1%  of the 

height and therefore may be acceptable. For the extreme case of 100R   in 

Fig.3.1, it is observed to have similar or smaller displacement demand compared 

with that of 30R  . This will be discussed in more details subsequently.  

 

 

Figure 3.1 Displacement Ratios of Self-Centering SDOF Systems with Respect 

to Initial Period with Initial Damping Model and tanT    

 

Influence of Force Reduction Factor 

The variation of RC  with respect to R  for different combinations of 0T  and tanT  is 

shown in Fig.3.2. The results for 100R   follow the same trend but are not shown 

in order to present the results for 50R   more clearly. It shows that the value of  
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RC  is mostly influenced by the initial period 
0T , but 

RC  generally increases with  

 

increasing R  for systems with different parameters. However, above a critical R  

value, typically in the range of 15  to 20 , RC  stays constant and even decreases 

 

Figure 3.2 Displacement Ratios of Self-Centering SDOF Systems with Respect 
to Force Reduction Factor with Initial Damping Model 
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in some cases. When looking at different rows, it can be seen that the influence 

of R  diminishes as 
0T  becomes longer. For example, in the case of 

0 0.2T s , 

tanT    and 1.0  , 
RC  changes from 2 to 13 when R is increased from 2 to 30. 

However, if 
0 2.0T s  with the same tanT  and  ,  

RC  only increases from 0.96 to 

1.32 when R is increased from 2 to 30.  

 

One surprising observation is that in Fig.3.2 the response of 50R   is sometimes 

smaller than that of 30R  . Also in Fig.3.1, the response of 100R   is smaller 

than that of 30R   and sometimes even smaller than that of 8R  . One possible 

explanation is that when 50R  , the vibration period is usually determined by the 

tangent period of the system rather than initial period, as shown in Fig.3.3(a). 

This results in an apparent period elongation as shown in Fig.3.3(b). However, 

the historical records used for the study were selected from PEER database 

(PEER 2011), which is pre-processed to have a usable bandwidth of 

0.01 10s (Ancheta et al. 2013). In Fig.3.3, the system with 100R   spends most 

of its response history in the nonlinear range, when tan 20T s , which is outside of 

this bandwidth. The overall behavior of the whole system is a combination of the 

response when 0 0.5T s  and when tan 20T s , but the response of the system 

may not be reliable when tan 20T s . Despite this potential concern, results are 

presented for large values of R  because this range is of interest in the 

development of self-centering systems (e.g. Wiebe and Christopoulos 2014). 



Changxuan Zhang  McMaster University 

M.A.Sc. Thesis  Dept. of Civil Engineering 

 31 

Also, this issue is not unique to self-centering systems; traditional yielding 

systems, as well as base isolation systems also experience period elongation.  

 

 

Figure 3.3 Effect of Extremely Large Force Reduction Factor: a) Hysteresis 
Shape; b) Time History Response 

 

Influence of Hysteretic Energy Dissipation 

The energy dissipation parameter   defines the hysteretic energy dissipation 

that is added to the assumed inherent viscous damping. The changes of RC  with 

respect to   are shown in Fig.3.4. By comparing different lines, it is clear that 0T  

has the greatest influence on RC . For example, when 0 0.2T s , tanT    and 

8R  , RC  varies between 13  and 10  for different  , but when  0 1.0T s with the 

same tanT  and R , RC  is only in the range of 1.4 2.0 .  
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Figure 3.4 Displacement Ratios of Self-Centering SDOF system with Respect to 
Hysteretic Energy Dissipation Parameter with Initial Damping Model 

 

Generally, RC  decreases as   is increased. However, the curve becomes less 

steep as   becomes larger. This shows that there are diminishing returns with  : 

adding energy dissipation to a system with 0   has more effect than adding 

further energy dissipation to a system that already has 0  . For example, when 
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0 1.0T s , tanT    and 8R  , increasing   from 0 to 0.5 decreases 
RC  from 2.4 

to 1.8 but further increasing   to 1.0 only decreases 
RC  to 1.6. 

 

Influence of Nonlinear Period 

Fig.3.5 shows the variation of 
RC  with respect to tanT . Generally, when tan 0T  , 

RC  decreases as tanT  decreases. This means that as more post-tensioning 

stiffness is added, the displacement of a self-centering system is suppressed. 

However, tanT  cannot be shorter than 0T , otherwise the gap-opening will not 

initiate and the response will be elastic with a constant period of 0T . And also 

since there are limitations for the post-tensioning due to constructability, tanT  

cannot be very close to 0T .  

 

In Fig.3.5 for tan5s T  , the changes of RC  for most systems are mostly within 

10% . For example, when 0 0.5T s , 8R   and 0.2  , RC  decreases from 2.1  to 

2.0  when tanT  decreases from   to 5s . Exceptions are some cases where 0   

or 100R  . For the cases where 0  , the nonlinear period has a bigger 

influence than for 0  . This is similar to previous findings (Christopoulos et al. 

2002, Seo and Sause 2005). For cases where 100R  , RC  often increases as tanT  

decreases from   to 5s . One possible explanation is that the response of these 

systems is  controlled by  the  nonlinear period (e.g. tanT   ), but  the ground mo- 
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Figure 3.5 Displacement Ratios of Self-Centering SDOF System with Respect to 
Tangent Period with Initial Damping Model 

 

-tions may not be reliable in these situations as discussed previously. So in 

general changes of RC  when tan5s T   are negligible. For smaller values of tanT  

(i.e. tan 5T s ), the displacement ratio reduces more significantly. However, such a 
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large nonlinear stiffness may not be achievable in practice because of the large 

amount of post-tensioning that would be required.  

 

When tanT  becomes negative and shorter, 
RC  starts increasing drastically and 

sometimes becomes a vertical line (
RC  ) in Fig. 3.5. When there is a vertical 

line in Fig.3.5, it is not because the elastic displacement is very small, since this 

effect is already reflected by the larger scale of the axis for short-period 

structures. Rather, a vertical line means that the system may experience large 

nonlinear displacement and become unstable, resulting in structural collapse. At 

short initial periods, collapse only happens when R  is extremely large ( 100R   in 

this case) where 310RC   when 0 0.2T s  in Fig 3.5. The top row of Fig.3.5 shows 

that self-centering systems with small values of R  can still achieve a stable 

response, even if the displacement ratio is larger than it is for structures with 

longer initial periods. But as the initial period becomes longer, collapse could 

happen at smaller R  values (i.e. 8R   for 0 2.0T s ). This observation can be 

explained by referring to Fig.3.6. The physical meaning of this collapse is that the 

system enters the fourth quadrant of its force-displacement relationship graph 

while the displacement still has a tendency of increasing and then the system 

becomes unstable. When negative tanT  become shorter, it means that the 

nonlinear slope is steeper so that the system is more likely to enter the unstable 

fourth quadrant. A larger R  value or a longer initial period means a smaller linear 
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limit, which increases the likelihood that the system will enter the unstable area in 

its nonlinear range. Previous research on traditional systems with an elastoplastic 

hysteresis or a hysteresis that captured strength degradation reached similar 

conclusions (FEMA 440A).  

 

 

Figure 3.6 Collapse Mechanism 
 

3.1.2 2% and 10% initial damping 

This section considers different levels of assumed inherent damping. In these 

analyses, the linear limit of the self-centering system is calculated from the force 

demand on an corresponding elastic SDOF system with the same initial period 

and damping ratio.  

 

When 2%   or 10%  , the general trends of RC  with respect to 0T , R ,   and 

tanT  are similar to those that have already been discussed for 5%  . So here the 
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focus is to emphasize the relative difference in RC  compared to ,5%RC . Fig.3.7 

show the difference between  the results with 2%   ( ,2%RC ) and those with 

5%   ( ,5%RC ), normalized by ,5%RC . Similarly, Fig. 3.8 show the difference 

between the results with 10%   ( ,10%RC ) and those with 5%   ( ,5%RC ), 

normalized by ,5%RC . Values smaller than zero represent a smaller displacement 

coefficient than with 5%  , not necessarily a smaller displacement.  

 

 

Figure 3.7 Relative Difference of Displacement Ratios between 2% and 5% 
Damping Ratio 
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Fig.3.7 shows that a smaller damping ratio usually results in larger 
RC  when the 

hysteretic energy dissipation is small (e.g. 0  , 0.2  ), while it usually leads 

to smaller 
RC  when the hysteretic energy dissipation is relatively large (e.g. 

0.8  , 1.0  ).  

 

 

Similarly, the results observed for the difference between 5%  and 10%  damping 

in Fig.3.8. Reversely, a larger damping ratio usually results in larger RC  when the 

 

Figure 3.8 Relative Difference of Displacement Ratios between 5% and 10 
Damping Ratio 



Changxuan Zhang  McMaster University 

M.A.Sc. Thesis  Dept. of Civil Engineering 

 39 

hysteretic energy dissipation is large (e.g. 0.8  , 1.0  ) while it leads to larger 

displacement ratios when the hysteretic energy dissipation is small (e.g. 0  , 

0.2  ). One additional observation is that the differences in RC  for different   

values are much smaller than that between 2%  and 5%  damping. For example, 

in the case of tanT   , 8R  , the value of 
,10% ,5%

,5%

R R

R

C C

C


 is changed by 0.11 when 

  is changed from 0  to 1 , while the value of 
,2% ,5%

,5%

R R

R

C C

C


 is changed by 0.40 

when     is changed from 0  to 1. Note that the relative difference in RC  between 

2%   and 5%   or 10%   and 5%   are mostly within 25% , except for 

0 0.2T s .  

 

3.1.3 Ground Motions Recorded on Rock Sites 

This section considers another set of ground motions that are representative of 

the same hazard level (i.e. magnitude and distance) but recorded on rock site 

conditions. The interest here is how the displacement demands will change if the 

site condition is changed from a stiff soil site to a rock site. Therefore, Fig.3.9 

shows the ratio of the median displacement coefficient that is calculated from the 

rock site records to the median displacement coefficient that is calculated from 

soil site records (i.e 
,

,soil

R rock

R

C

C
). Compared with the results from soil site records, 

rock site records lead to a systematically lower RC  value, especially at short 
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periods. For example, in the case of 8R  , tan 10T s and 0 0.5T s , ,R RockC  is less 

than 50%  of ,R SoilC . The relative difference between ,R RockC  and ,R SoilC  is almost 

the constant for all values of  .  

 

 

Figure 3.9 Comparison of Displacement Ratios on Rock Sites and Stiff Soil Sites 
 

This observation is generally consistent with the results of a previous study on 

self-centering SDOF systems (Seo and Sause, 2005). That study concluded that 

the ductility demand is 50%  smaller for ground motions recorded on rock sites 

than for ground motions recorded on stiff soils sites when 0 1.25T s  and 30%  

smaller when 0 1.25T s . However, here the observation is different. In Fig 3.9, 
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the displacement demands of self-centering SDOF systems for ground motions 

recorded on rock sites is about 50%  smaller than for ground motions recorded on 

stiff soil sites only for 0 0.5T s . The difference between these two decreases 

linearly with increasing 0T  to about 10%  for 15R   while for 8R   the difference 

decreases first and then stays constant after a critical 0T , which depends on the 

value of R . 

 

These observations on self-centering SDOF systems are different from the 

conclusion of a previous study on traditional SDOF systems with an elastoplastic 

hysteresis, which stated that the difference between displacement demands on 

rock sites and stiff soil sites are within 10%  and can be neglected for design 

purposes (Miranda 2000).  

 

 

3.2 Tangent Damping Model  

3.2.1 Problem with Initial Damping Model 

As noted earlier, the assumption of the initial damping model, where the damping 

coefficient c  is a constant according to Eq.(2-3) needs scrutiny. Fig.3.10 shows 

the time history for self-centering systems of 0 0.5T s , 0.5  , tanT    but 

different R  values. When the systems enters the nonlinear range, keeping c  as a 

constant creates a relatively large damping force, especially when the linear limit 
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is low (large R  value). For example, in the case of 10R  , the peak damping 

force is 58%  of the structural force, and in the case of 20R  , the peak damping 

force is even larger than the structural force. Note that the plateaus in Fig.3.10 

are because of the zero nonlinear stiffness. 

 

 

Figure 3.10 Comparison of Structural Force and Damping Force for 0 0.5T s , 

0.5   and tanT    

 

This phenomenon has also been highlighted in previous studies (Priestley and 

Grant 2005, Charney 2008), which have suggested using a tangent stiffness 

proportional damping model instead. The problem of what level of damping force 

is acceptable is not the focus of this study as more experimental testing is 

required to determine what the real inherent damping is. Rather, this research 

focuses on how the displacement demands of self-centering SDOF systems will 

change, and whether the trends of displacement demands with respect to 
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different hysteretic parameters will change, if the tangent damping model is used 

with the same damping ratio of 5% . 

 

3.2.2 Influence of Different Hysteretic Parameters 

Influence of Initial Period 

Fig.3.11 shows the variation of RC  with respect to initial period, 0T , when using 

the tangent damping model. Similar to the trends with the initial damping model, 

RC  decreases with 0T . However, compared with Fig.3.1, RC  is much larger, 

especially when 0T  is small. For example, in the case of 0.5   and 0 0.1T s , 

16.3RC   when 2R   and 130.4RC   when 4R  , the latter of which corresponds 

to a drift of 3%  for a 3.5m  tall one-storey structure. These values are 140%  and 

330%  larger when compared to 6.8RC   and 30.4RC   in the previous example 

when initial damping model is used. If the linear limit is further reduced to 8R  , 

then 214.3RC   with the tangent damping model, meaning a drift of 5% . This 

exceeds the code-specified drift limit of 2.5%  (NRCC 2010) and suggest that if 

self-centering systems are designed for very stiff buildings, the force reduction 

factor should restricted to small values (e.g. 2R  ).  

 

The only case that the equal displacement assumption is working well within 5%  

is when 2R  , 1.0   and 0 0.7T s . The scale of Fig.3.11 makes it appear that 
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RC  is close to 1  at long periods for 2R  , 0.5  . But numerical results show 

that the equal displacement assumption underestimates  
RC  by more than 10% . 

 

 

Figure 3.11 Displacement Ratios of Self-Centering SDOF System with Respect 

to Initial Period with Tangent Damping Model and tanT    

 

Influence of Force Reduction Factor 

Fig.3.12 shows the variation of RC  with respect to the force reduction factor R  

with the tangent damping model. Compared with the initial damping model, a 

similar trend of RC  changing with R  is observed when R  is small, followed by a 

plateau or decrease above a critical R  value. However, significant differences 

are observed compared with the initial damping model. First of all, the values of 

RC  are much larger, especially at short initial periods. For instance, in the case of 

0 0.5T s , tanT   , 0.5   and 4R  , 2.9RC   with the tangent damping model, 
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which is 61% larger than that of the same case when initial damping is used  

( 1.8RC  ). Also, in the tangent damping model, a shorter tangent period (i.e. a la- 

 

 

Figure 3.12 Displacement Ratios of Self-Centering SDOF System with Respect 

to Force Reduction Factor with Tangent Damping Model 
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-rger nonlinear stiffness) makes the effect of   less important. This can be 

observed in Fig.3.12 as in the third column (
tan 8T s ), the lines with different   

are closer to each other than they are in the first column ( tanT   ). However, in 

the initial damping model shown in Fig.3.2, except for the extreme case of 

tan 3T s , the distances between different curves with different   are almost the 

same in the first three columns ( tanT   , tan 8T s  and tan 20T s ).  

 

The observation in Fig.3.12 that the response with 50R   is sometimes smaller 

than the response with 30R  , and the phenomenon in Fig. 3.11 that the 

response of 100R   is similar or smaller than the response of 30R  , can both be 

explained in the same way as was discussed earlier with the initial damping 

model.    

 

Influence of Hysteretic Energy Dissipation 

Fig.3.13 shows the variation of RC  with respect to  . Compared to the results 

with the initial damping model (Fig.3.4), the decrease in RC  with increasing   is 

sharper for small values of  . For example, in the case of 0 1.0sT  , tanT    and 

8R  , increasing   from 0 to 50% decreases RC  from 6.5 to 3.0 while the 

decrease in RC  is only from 3.0 to 2.2 when   is further increased from 50% to 

100%. 
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Figure 3.13 Displacement Ratios of Self-Centering SDOF Systems with Respect 
to Hysteretic Energy Dissipation Parameter with Tangent Damping Model 

 

Influence of Nonlinear Period 

The trends of RC  versus tanT  with the tangent damping model, shown in Fig.3.14, 

are generally similar to the trends with the initial damping model, although much 

larger displacement ratios are observed.  



Changxuan Zhang  McMaster University 

M.A.Sc. Thesis  Dept. of Civil Engineering 

 48 

 

However, there are some noteworthy differences. First of all, for long tangent 

periods ( tan 5T s ), Fig.3.14 shows a consistent decrease with increasing tanT . 

Even if the slope does not appear to be much steeper than that in Fig.3.5, it is not 

 

Figure 3.14 Displacement Ratios of Self-Centering SDOF Systems with Respect 

to Tangent Period with Tangent Damping Model 
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negligible because of the scale of vertical axis. For example, in the case of 

0 0.5T s , 8R   and 20%  , the decrease in 
RC  when tanT  is changed from   to 

5s  is 16% . In contrast, the decrease is only 6%  when the other parameters are 

the same and initial damping model is used. In other words, the post-tensioning is 

more effective in reducing displacements when the tangent damping model is 

assumed than when the initial damping model is assumed.   

 

 

3.3 84th Percentile Displacement Demands  

Fig. 2.4 shows that there is a high variability of displacement ratios for systems 

with same parameters when subjected to different ground motion records. 

Therefore, it is good to know if the trends of the 84  percentile values with respect 

to different hysteretic parameters are similar to that of the median. Fig.3.15 

shows the relationship between the 84th percentile RC  over 80 ground motions 

and 0T . Compared with Fig.3.1 and Fig.3.11, the general trend is the same that 

the 84th percentile RC  decreases as 0T  increases. The variation of the 84th 

percentile RC  with R  is also similar. For the case of 50%  , 0 1.0T s  with the 

initial damping model, increasing R  from 2 to 8 increases the 84th percentile RC  

from 1.5 to 3.9 but further increasing R  from 8 to 30 only changes the 84th 

percentile RC  from 3.9 to 4.8. For the same case of 50%  , 0 1.0T s  but with 

the tangent damping model, increasing R  from 2 to 8 increases the 84th 
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percentile 
RC  from 1.7 to 8.2 but further increasing R  from 8 to 30 only changes 

the 84th percentile 
RC  from 8.2 to 9.5.  

 

Similar to what was observed for the median results,   has diminishing returns 

to reduce the 84th percentile RC  as well. For the case of 0 1.0T s  and 8R   with 

the initial damping model, increasing   from 0%  to 50%  decreases the 84th 

percentile RC  from 4.7 to 3.9 while increasing   from 50%  to 100%  decreases 

 

Figure 3.15 84th Percentile Displacement Ratios with tanT    
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the 84th percentile 
RC  from 3.9 to 3.6. For the same case of 

0 1.0T s  and 8R   

but with the tangent damping model, when   is increased from 0%  to 50%  and 

then to 100% , the corresponding 84th percentile 
RC  is decreased from 13.9 to 8.2 

and then to 5.2.  

 

 

The variation of the 84th percentile RC  with respect to tanT  is shown in Fig.3.16. As 

was observed for the influence of nonlinear period on the median RC , the 

influence of nonlinear period is more effective for tangent damping model. When 

 

Figure 3.16 84th Displacement Ratios with 0 0.5T s  
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8R   and 20%  , the variation of the 84th percentile 
RC  between 

tan 5T s   

with the initial damping model is between 8.1 and 8.5. However, when 8R   and 

20%  ,  the variation of the 84th percentile RC  between tan 5T s   with the 

tangent damping model is 37.0 and 19.4.   

 

In general, these observations show that the influences of different hysteretic 

parameters on the 84th percentile RC  are similar to their influences on the median 

RC .  
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CHAPTER 4:  

REGRESSION ANALYSIS 

 

4.1 Previous Proposals 

It has been shown throughout Chapter 3 that the equal displacement assumption 

is not good enough to be used for self-centering SDOF systems. Therefore, this 

chapter aims to develop an equation to quantify the influence of the parameters 

of an self-centering SDOF system for design purposes. 

 

The equal energy assumption and the equal displacement assumption are 

sometimes used for traditional elastoplastic systems in different period ranges 

(Filiatrault et al. 2013). The equal energy assumption has the form of 
2 1

2
R

R
C

R


  

and hence is a constant for a give value of R . This is not consistent with the 

observation of Fig. 3.1 and Fig.3.11, which shows that RC  also depends on 0T  

and  . On the other hand, it has been shown throughout Chapter 3 that the 

equal displacement assumption is generally unconservative for self-centering 

SDOF systems.  

 

The only general equation available that has been proposed previously to 

estimate peak displacements of self-centering SDOF systems available was 

developed by Seo (2005) and the equation has been summarized in Chapter 1. It 
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can estimate the displacement demand generally within an accuracy of 20%  for 

the initial damping model, but it is limited to 1.5 8R   .  

  

 

Figure 4.1 Residuals for Seo's Equation for Large R  (based on Seo 2005) 

 

To evaluate this equation for 8R  , the residual is defined as 

, ,

,

R predicted R observed

R observed

C C
Residual

C


        (4-1) 

By this definition, a positive residual means that the equation conservatively 

overestimates the displacement and a negative residual means that it 

unconservatively underestimates the displacement. Fig.4.1 shows that Seo’s 

equation does not capture the results of this study for large R  values. When R  is 

slightly larger than the range what was used to develop Seo’s equation ( 10R  ), 

that equation still works reasonably well, although it underestimates the 

displacement ratio by up to 30% around 0 0.2 0.5T s   and 0.5 . The equation 
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also overestimates the displacement ratio by up to 30%  when 0 1.5T s , 5.0 , 

and tanT   . When R  becomes even larger ( 30R  ) and tanT   , significant 

overestimation is observed, which is more than 50%  at short or long initial 

periods or with no energy dissipation. The equation is more accurate when 

tan 5T s , but it still tends to overestimate the displacements when 0T  is very short 

or when there is little hysteretic energy dissipation.  

 

 

4.2 Form of Regression Equation 

The form of the proposed equation is based on the observation of trends from 

Chapter 3. First of all, the factor that has the biggest influence is 0T . According to 

the observations of Fig. 3.1, Fig.3.11 and Fig.3.14 that the RC  decreases 

exponentially with increasing 0T , the influence of 0T  can be captured by form of 

1

2
tan 3

0

( , ,T )
c

c
f R c

T
  . 

 

Based on Chapter 3, the second most important parameter is R . Fig.3.2 and 

Fig.3.12 showed that RC  increases with R  but that the influence decreases as R  

becomes larger. Therefore, the form of 4

3( )
c

R c  with 4 1c   was selected. 

According to the definition of the force reduction factor, 1R   and 1R   means 

that the system is elastic and therefore 1RC  . Therefore 
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3

1

2
tan

0

( 1) ( ,T ) 1
c

c

c
R f

T
     is chosen for the regression analysis to ensure that 

whenever 1R  , 1RC  . 

 

Thirdly, as for the influence of  , Fig.3.4 and Fig.3.13 show that the influence of 

  is smaller when   is closer to 1.0 . Therefore, the influence of   is taken in 

the form of 3 6

1

2
4 5 tan

0

( 1) [ (1 ) ] (T ) 1
c c

c

c
R c c f

T
       .  

 

Finally, tanT  was shown to be the least important parameter as long as it is 

positive and not very short. If tanT 0  is achieved, the shorter tanT  is (i.e. the stiffer 

the system is in the nonlinear range), the smaller the displacement demand will 

be. Therefore, it is conservative to neglect the beneficial influence of increasing 

the nonlinear stiffness above tanT    in the regression. Doing this is likely to be 

reasonably accurate for practical values of tanT  (about tanT 5s ), as will be verified 

subsequently.  

 

Based on the discussions above, the following equation form is proposed: 

4

1

5

2 3

0

(1 )
(R 1) 1

b
b

R b

b b
C

T

 
              (4-3) 

where 1b , 2b , 3b , 4b  and 5b  are constants to be determined by regression. 
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Other forms of equation are also possible, including different polynomials, 

lognormal functions and exponential functions. However, Eq.(4-3) was judged to 

achieve a good balance between simplicity and accuracy for design purposes.  

 

 

4.3 Calibration of Regression Equation 

Only the results of 00.2 3.0s T s   are considered in the regression. This is 

because 
2

1

0

c

c

T
  as 0 0T  . The increase of RC  as 0 0T   from the analyses is 

not as sharp as this form implies, and therefore the results at 0 0.2T s  dominated 

the regression when they were included. Also, as discussed before, self-

centering systems may not be advisable for structures with very short initial 

periods because RC  tends to be very large. However, the regression that is 

developed for 0 0.2T s  will still be checked for 0 0.2T s . 

 

Only 4 30R   are considered in the regression because the results with larger 

values of R  may not be reliable, as discussed around Fig.3.3. On the other hand, 

a force reduction factor of 2R   is not included because it is considered too small 

to take advantage of the benefits of a rocking or other self-centering system.  

 

The results with 10%   are also not considered in the regression because they 

tended to dominate the regression and because most design proposals for self-
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centering systems recommend providing at least some energy dissipation (ACI 

T1.1-01, Eatherton et al. 2014, SCNZ 2015). 

 

Based on the discussions above, only selected values listed in Table 2.1 (Section 

2.1) are included in the regression and are summarized in Table 4.1.  

Table 4.1 Parameters Considered in Regression Analysis 

Parameter Considered range 

Initial period 0T  00.2 3.0s T s   

Force reduction factor R  4 30R   

Hysteretic energy dissipation 

parameter   
20% 100%   

Tangent period tanT    

 

The function of “ fitnlm” in MATLAB (MathWorks 2014a) is used to minimize the 

difference between 
,

,

R predicted

R observed

C

C
 and 1. ,R predictedC  is the form of function that has 

been come up in Section 4.1. ,R observedC  is the results presented in Chapter 3. This 

function uses an iterative generalized least squares algorithm to fit the nonlinear 

regression model (MATLAB 2014a). The coefficients determined by regression 

are summarized In Table 4.2.  
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Table 4.2 Coefficient from Regression Analyses 

 1b  2b  3b  4b  5b  

Root Mean Squared Error of 

 
, ,

,

R predicted R observed

R observed

C C

C


 

Soil 
Sites 

ic  

2%  0.774 0.071 0.088 1.290 1.641 10%  

5%  0.515 0.184 0.119 1.173 1.478 13%  

10%  0.341 0.297 0.122 1.081 1.344 7.4%  

tc  5%  0.630 0.292 0.477 1.697 1.567 16%  

Rock 
Sites ic  5%  0.469 0.052 0.047 1.251 1.708 8.4%  

 

 

4.4 Evaluation of Regression 

Fig.4.2 shows the residuals for 5%  initial damping and tangent damping 

regression results, calculated according to Eq.4.1. For the regression equation 

developed for the initial damping model, the residuals are generally accurate to 

within 20% , and the equation is most accurate for intermediate R  values 

(8 15R  ). The equation tends to underestimate the displacement ratio when 

0 0.3T s  and to overestimate when 0 2.0T s  and 30R  . The accuracy is similar 

for all values of   that were included in the regression ( 0.2 1.0  ). The 

regression equation developed for the tangent damping model tends to have 

slightly larger errors than the initial damping model, but is still generally accurate 

to within 20%  for 20%  . 

 

Values not considered in the regression (e.g. 0  , 0 0.15T s ) are also shown in 

Fig. 4.2. For 0 0.15T s , the regression equation underestimates the displacement 
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ratio by up to 70%  for the initial damping model, and this underestimation is even 

more for tangent damping model (up to 90% ). If the equation is used for 0   

with the initial damping model, the residuals are only slightly larger than that for 

0.2  . However, the equation greatly overestimates the displacement ratio 

when 0   with the tangent damping model, especially at short periods. This 

overestimation is more significant for large R  values, and it can be as large as 

five times the observed displacement ratio when 30R  .    

 

 

Figure 4.2 Relative Error between Predicted and Observed Displacement 

Demands (with tanT   ) 
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Fig.4.3 shows the validation of the same equation for tan 10T s  instead of tanT   . 

For the initial damping model, the equation is slightly more conservative 

compared to the results for tanT    in Fig.4.2. For the tangent damping model, 

the tendency of overestimation is more significant when compared to that in 

Fig.4.2, especially for 0.2  , but still within 20%  in most cases.  

 

 

Figure 4.3 Relative Error between Predicted and Observed Displacement 
Demands with Tangent Period of 10s  
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CHAPTER 5: 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The first major contribution of this thesis was to present a parametric study on the 

seismic response of self-centering systems expressed in terms of displacement 

coefficient RC , defined as the peak inelastic displacement of a self-centering 

system divided by the peak displacement of a elastic system with same initial 

period. Increasing the initial period generally decreases RC . At short periods, RC  

becomes very large, but the actual displacement may still be within acceptable 

limit (e.g. 2.5%  of the height). Reducing the linear limit can double the peak 

displacement when the force reduction factor is small ( 8R  ), but the peak 

displacements become less sensitive to the linear limit when the force reduction 

factor is already greater than about 10R  . The effect of the linear limit is more 

pronounced at short initial periods. Increasing the hysteretic energy dissipation 

generally reduces the peak displacements by up to 50%  when comparing the 

case of maximum self-centering hysteretic energy dissipation ( 1  ) to that of no 

hysteretic energy dissipation ( 0  ), but increasing   generally has diminishing 

returns. Also, the energy dissipation parameter affects systems with short periods 

( s5.00 T ) more than systems with long periods, and it influences systems with 

intermediate linear limits ( 104  R ) more than systems with lower and higher 
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linear limits. If the nonlinear stiffness is positive but small (
05s T  ), it has little 

influence. However, if it is negative due to P  effects, the response can 

become unstable when the linear limit is low, the initial stiffness is small, or the 

nonlinear stiffness is much less than zero. Increasing hysteretic energy 

dissipation can only suppress nonlinear response before a critical negative 

stiffness that can cause collapse is reached; it generally cannot prevent the 

collapse caused by negative nonlinear stiffness. Based on this observation, it is 

not recommended to design structures to have a negative nonlinear stiffness if 

the linear limit is low or the initial stiffness is small.  

 

When a different damping ratio is used with the initial damping model, the 

influences of different parameters are similar. However, when ground motions 

recorded on rock sites are used, RC  is systematically lower than the results using 

ground motions recorded on stiff soil sites. 

 

In addition to the initial stiffness proportional damping model, a tangent stiffness 

proportional damping model was also considered. The general trends of variation 

of RC  with respect to different parameters were the same regardless of which 

damping model was used, but the tangent damping model led to a much larger 

displacement response compared to the displacement response when the initial 

stiffness proportional damping was used. Also, the effect of supplemental energy 

dissipation was more pronounced.  
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The second major contribution of this thesis was to quantify the effect of these 

parameters with a simplified equation. Neither the equal energy assumption nor 

the equal displacement assumption captures the median response of self-

centering systems with acceptable accuracy. Therefore, an empirical equation 

was developed to estimate the median peak nonlinear displacement of a self-

centering structure from its hysteretic properties as a multiplier of the elastic 

spectral displacement. The equation is simple enough to use for design and is 

also accurate to within 20%  in most cases. Different coefficients were developed 

to account for different damping models in the regression equation.  

 

More experimental data are needed to support recommendations for modelling 

damping in self-centering systems. In the absence of such recommendations, it is 

more conservative and therefore advisable to use the regression equation 

developed for the tangent damping model. 

 

 

5.2 Recommendations for Future Work  

This study is limited to ground motions recorded on rock and relatively stiff soil 

sites. The influence of different soil site conditions needs to be addressed.  
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The ground motion records used in this study are representative of the seismic 

hazard in California, and hence the results needs further scrutiny before using the 

results in other regions, including eastern North America.  

 

Collapse was observed in some cases when the stiffness in the nonlinear range 

was negative while the initial stiffness and linear limit were both relatively low. 

Future research would be required to fully quantify the fragility of self-centering 

systems with a negative nonlinear stiffness, so as to develop detailed 

recommendations about the use of negative nonlinear stiffness in design.  

 

The tangent damping model considered in this study leads to a significant larger 

displacement demands than the initial damping model. Future experimental tests 

are desired to examine which damping model is more realistic.  

 

This study is focused on self-centering SDOF systems as a simplification of real 

multi-degree-of-freedom structures. Further work needed to apply the SDOF 

results of this study to real self-centering systems.  
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APPENDIX A:  

VALIDATION OF NUMERICAL SOLUTION TECHNIQUE 

 

A.1 Validation of Numerical Solution Technique for Initial Damping 

Model 

 

Before going into detailed study, the numerical solution technique needs to be 

checked. A previous published journal paper was used for this check 

(Christopoulos et al. 2002).  

 

Christopoulos et al. (2002) used a set of 20 ground motion records and 

calculated the mean displacement ductility for self-centering SDOF systems with 

the initial stiffness proportional damping model. A figure summarizing the results 

from the journal paper is shown as Fig.A.1.  
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Figure A.1 Mean displacement ductility for flag-shaped hysteretic systems (taken 

from Christopoulos et al. 2002) 

The definitions of   and   are the same as described in Chapter 2.  

The strength ratio is defined as  

0

vC I

RT
                   (Eq. A-1) 

where 0.64vC   is related to code provisions on seismic zone and site conditions; 

 1.0I   is the importance factor; 
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4.5 8.5R   is the force reduction factor; 

0T  is the initial period. 

The displacement ductility is defined as: 

( / )

nonlinear

elastic R






                (Eq. A-1) 

 

Figure A.2 Definition of displacement ductility 
 

Using the numerical solution technique described in Chapter 2 and the same 

ground motion records, the results from the author’s code is summarized in Table 

A.1, Table A.2, Table A.3 and Table A.4. Table A.1 corresponds to the figures in 

the first row of Fig.A.1, Table A.2 corresponds to the figures in the second row of 

Fig.A.2 and so on.  
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Table A.1 Displacement ductility with 0.02   

      

0  

0.05 292.706 155.553 48.263 16.680 10.012 6.289 

0.1 132.537 68.118 25.165 7.959 4.091 2.359 

0.2 43.001 29.398 9.045 4.078 2.024 1.236 

0.3 15.138 12.109 5.721 2.058 1.321 0.806 

0.5 2.700 3.364 2.528 1.152 0.719 0.457 

1.0 0.756 1.108 0.962 0.533 0.358 0.227 

0.3  

0.05 286.239 149.937 45.256 15.555 8.658 5.608 

0.1 127.695 65.219 22.966 7.028 3.617 2.165 

0.2 39.455 25.283 7.857 3.623 1.874 1.175 

0.3 12.976 10.564 4.793 1.872 1.217 0.763 

0.5 2.315 2.895 2.229 1.085 0.716 0.455 

1.0 0.753 1.081 0.956 0.533 0.358 0.227 

0.6  

0.05 280.097 143.953 42.955 14.483 7.996 5.256 

0.1 122.660 62.178 20.664 6.396 3.222 2.065 

0.2 36.714 22.989 7.104 3.212 1.735 1.130 

0.3 11.631 8.742 4.030 1.786 1.182 0.749 

0.5 2.121 2.570 2.106 1.041 0.714 0.453 

1.0 0.751 1.069 0.952 0.533 0.358 0.227 

1.0  

0.05 271.493 137.277 40.064 13.315 7.367 4.761 

0.1 115.713 57.895 18.076 6.066 2.950 1.950 

0.2 35.855 19.592 6.491 2.795 1.607 1.080 

0.3 11.018 7.805 3.542 1.699 1.150 0.745 

0.5 1.963 2.329 1.973 1.012 0.714 0.450 

1.0 0.748 1.058 0.947 0.533 0.358 0.227 
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Table A.2 Displacement ductility with 0.10   

      

0  

0.05 115.436 99.820 41.306 15.489 8.381 5.956 

0.1 51.781 45.611 19.358 7.916 4.190 2.395 

0.2 20.187 16.163 8.466 3.741 2.018 1.235 

0.3 9.095 8.868 5.137 2.005 1.292 0.801 

0.5 2.328 3.045 2.518 1.147 0.719 0.457 

1.0 0.755 1.098 0.962 0.533 0.358 0.227 

        

0.3  

0.05 114.322 97.161 39.565 14.567 7.771 5.274 

0.1 50.114 43.685 17.747 7.146 3.678 2.222 

0.2 18.591 14.559 7.399 3.369 1.838 1.166 

0.3 7.840 7.226 4.400 1.855 1.212 0.761 

0.5 2.104 2.819 2.241 1.085 0.716 0.455 

1.0 0.753 1.077 0.957 0.533 0.358 0.227 

        

0.6  

0.05 113.288 94.801 38.074 13.705 7.258 4.806 

0.1 48.664 41.577 16.608 6.597 3.333 2.093 

0.2 17.154 13.491 6.679 3.038 1.732 1.128 

0.3 7.160 6.326 3.808 1.774 1.174 0.747 

0.5 1.991 2.509 2.101 1.040 0.714 0.453 

1.0 0.751 1.065 0.952 0.533 0.358 0.227 

        

1.0  

0.05 111.713 91.456 35.759 13.026 6.659 4.445 

0.1 47.199 39.223 15.052 6.037 3.006 1.984 

0.2 16.256 12.562 5.933 2.703 1.632 1.084 

0.3 6.521 5.491 3.452 1.692 1.146 0.744 

0.5 1.863 2.235 1.960 1.010 0.714 0.450 

1.0 0.749 1.055 0.948 0.533 0.358 0.227 
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Table A.3 Displacement ductility with 0.20   

      

0  

0.05 71.692 64.846 33.976 14.649 7.787 5.144 

0.1 32.306 30.134 15.368 7.657 4.093 2.409 

0.2 12.814 12.308 7.382 3.357 1.990 1.224 

0.3 6.338 6.793 4.533 1.998 1.271 0.789 

0.5 2.119 2.982 2.448 1.144 0.718 0.456 

1.0 0.755 1.086 0.962 0.533 0.358 0.227 

        

0.3  

0.05 70.410 63.329 32.957 13.795 7.466 4.824 

0.1 31.201 28.883 14.439 6.989 3.575 2.267 

0.2 12.041 11.183 6.481 3.099 1.802 1.164 

0.3 5.669 5.926 4.060 1.846 1.208 0.761 

0.5 2.001 2.639 2.220 1.084 0.716 0.455 

1.0 0.753 1.071 0.957 0.533 0.358 0.227 

        

0.6  

0.05 69.161 62.053 32.013 13.070 7.141 4.529 

0.1 30.337 27.755 13.691 6.446 3.338 2.153 

0.2 11.259 10.432 5.910 2.878 1.719 1.125 

0.3 5.273 5.339 3.715 1.766 1.165 0.745 

0.5 1.894 2.337 2.083 1.043 0.714 0.453 

1.0 0.752 1.062 0.953 0.533 0.358 0.227 

        

1.0  

0.05 67.665 60.391 30.851 12.270 6.760 4.264 

0.1 29.299 26.340 12.870 5.905 3.064 2.036 

0.2 10.387 9.739 5.419 2.625 1.642 1.087 

0.3 4.824 4.793 3.425 1.689 1.142 0.742 

0.5 1.773 2.165 1.944 1.010 0.713 0.451 

1.0 0.749 1.052 0.949 0.533 0.358 0.227 
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Table A.4 Displacement ductility with 0.35   

      

0  

0.05 43.613 41.683 27.549 14.196 7.643 4.716 

0.1 19.941 20.192 13.478 6.995 3.773 2.447 

0.2 8.298 9.076 6.554 3.200 1.912 1.222 

0.3 4.609 5.336 4.249 1.953 1.248 0.783 

0.5 1.866 2.561 2.281 1.131 0.718 0.456 

1.0 0.754 1.076 0.961 0.533 0.358 0.227 

        

0.3  

0.05 42.988 41.034 27.085 13.604 7.309 4.539 

0.1 19.507 19.365 12.885 6.579 3.503 2.298 

0.2 7.927 8.373 6.048 2.947 1.796 1.165 

0.3 4.395 4.855 3.909 1.840 1.201 0.762 

0.5 1.808 2.387 2.125 1.082 0.716 0.455 

1.0 0.753 1.064 0.957 0.533 0.358 0.227 

        

0.6  

0.05 42.424 40.428 26.550 13.078 7.002 4.346 

0.1 19.011 18.697 12.367 6.187 3.291 2.202 

0.2 7.655 7.820 5.638 2.778 1.714 1.121 

0.3 4.194 4.487 3.658 1.759 1.164 0.746 

0.5 1.755 2.249 2.023 1.048 0.715 0.453 

1.0 0.752 1.057 0.954 0.533 0.358 0.227 

        

1.0  

0.05 41.859 39.818 25.723 12.370 6.597 4.206 

0.1 18.512 18.078 11.771 5.731 3.069 2.108 

0.2 7.264 7.291 5.256 2.612 1.636 1.089 

0.3 3.871 4.106 3.384 1.688 1.137 0.739 

0.5 1.684 2.108 1.923 1.014 0.713 0.452 

1.0 0.750 1.048 0.950 0.533 0.358 0.227 
 

Checking the results in the tables with the figure, most data matches the data 

points in Fig.A.1 well. But a few points seem to be problematic, which are red-

bolded. The inconsistency of these few data is noticeable but not very large. 

These unmatched points were checked with Dr. Lydell Wiebe, who has also 
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published research on self-centering SDOF systems (Wiebe and Christopoulos 

2014). His calculations confirmed the results that are calculated in this thesis 

(within 0.2%  accuracy). Based on this, the discrepancies in 8 out of 440 (shown 

in Fig. A.1) values were considered most likely to be due to a production error in 

the published paper, rather than a calculation error. Thus, these results were 

considered to validate the numerical solution program developed by the author.  

 

A.2 Validation of Numerical Solution Technique for Tangent Damping 

Model 

 

The code developed for the tangent damping model by the author is checked with 

the code developed by Dr. Lydell Wiebe, who has unpublished results regarding 

damping. The checks are summarized in Table A.5, Table A.6 and Table A.7 as 

follows. These analyses are based on the El-Centro ground motion record used 

in Chopra (2012). The time step is 0.001s  using Newmark’s scheme with constant 

average acceleration. The damping ratio 5%  , assumed mass is unity (i.e. 

1m  ) and the gravity constant is 29.81 /g m s .  

 

Notations for variables the used in these tables are: 

wiebeD       : displacement calculated from Wiebe’s code; 

zhangD       : displacement calculated from the author’s code; 
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100%
zhang wiebe

wiebe

D D
Error

D


   : relative difference between two the results. 

 

 

Table A.5 Summary of results checking with 
0 0.2T s  and 2R   

Hysteretic 

Parameters 
zhangD  

wiebeD  Error  

tanT (s)   

  

0%  0.008176 0.008185 0.1%  

50%  0.007640 0.007648 0.1%  

100%  0.007840 0.007850 0.1%  

10  

0%  0.008167 0.008176 0.1%  

50%  0.007634 0.007642 0.1%  

100%  0.007832 0.007842 0.1%  

20  

0%  0.008176 0.008185 0.1%  

50%  0.007640 0.007648 0.1%  

100%  0.007840 0.007851 0.1%  
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Table A.6 Summary of results check with 
0 1.0T s  and 2R   

Hysteretic 

Parameters 
zhangD  

wiebeD  Error  

tanT (s)   

  

0%  0.1061 0.1061 0%  

50%  0.0879 0.0880 0.1%  

100%  0.0806 0.0806 0%  

10  

0%  0.1062 0.1062 0%  

50%  0.0876 0.0876 0%  

100%  0.0803 0.0804 0.1%  

20  

0%  0.1059 0.1059 0%  

50%  0.0880 0.0880 0%  

100%  0.0806 0.0806 0%  
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Table A.7 Summary of results check with 
0 2.0T s  and 2R   

Hysteretic 

Parameters 
zhangD  

wiebeD  Error  

tanT (s)   

  

0%  0.2882 0.2879 0.1%  

50%  0.2066 0.2067 0.1%  

100%  0.1770 0.1769 0.1%  

10  

0%  0.2532 0.2533 0.1%  

50%  0.1926 0.1927 0.1%  

100%  0.1774 0.1774 0%  

20  

0%  0.2759 0.2757 0.1%  

50%  0.2085 0.2086 0.1%  

100%  0.1756 0.1756 0%  

 

The author’s code for the tangent damping model can get results within 0.2%  

difference compared to the other. This slight difference may come from different 

programming details, such as the convergence criteria but is negligible. Therefore, 

these results were considered to validate the numerical solution program 

developed by the author. 
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APPENDIX B:  

REGRESSION FOR MEAN VALUE 

 

The mean values of 
RC  have similar trend with respect to different hysteretic 

parameters. Another regression analysis are carried out considering the mean 

RC . Same range of parameters are considered (i.e. 0 0.05 3.0T s  , 4 30R  , 

0.2 1.0   and tanT   ).  Results are summarized in Table B.1.  

 

Table B.1 Coefficients from regression analyses (Mean) 

 1b  2b  3b  4b  5b  

Root Mean Squared Error of 

 
, ,

,

R predicted R observed

R observed

C C

C


 

Soil 
Sites 

ic  

5%  0.369 0.475 0.252 1.119 1.362 9.7%  

2%  0.496 0.324 0.299 1.254 1.490 12%  

10%  0.281 0.539 0.180 1.044 1.276 8.0%  

tc  5%  0.413 0.929 1.246 1.489 1.628 18%  

Rock 
Sites ic  5%  0.364 0.275 0.177 1.121 0.949 12%  

 


