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Abstract

Starting with the Mean Field Method (MFM) and Boundary Element Method

(BEM), we investigate a mathematical model based on these two methods for

studying particle-coarsening process in alloys. With MFM, second-phase particles

are considered to be merged into bulk matrix, which greatly simplifies computation.

However, the Mean-Field model itself is limited to a system with extremely small

volume fractions of second phase. By combining BEM with MFM, this

mathematical model shows the influence of second phase in particle-coarsening

process. Our primary work demonstrates the robustness and capability of this

model. This model is however limited to particle coarsening that is far away from

grain boundaries.

In this dissertation, we successfully extend the model to particle coarsening near

grain boundaries. A major improvement made to the previous mathematical model is

based on solute atoms conservation and diffusion theory. The capability and validity

of the novel model is demonstrated by a binary alloy system. The simulation results

are shown to quantitatively reproduce the essential features of particle coarsening

near grain boundaries in certain alloys: a) precipitation Free Zones (PFZs) form near

grain boundaries, b) the width of PFZs is proportional to square root of time, c)

particles at the edge of PFZs are larger than those inside the grain.
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This novel model is shown to be well suited in describing particle coarsening near

grain boundaries. On the other hand, it proves the credibility of the theories built in

our mathematical model, i.e., the formation of PFZs near grain boundaries is caused

by diffusion of solute atoms.
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Chapter 1

Introduction

The performance of most alloys is largely dependent on their microstructures.

There have been lots of researches regarding the growing and coarsening of grains in

polycrystalline materials, which are of great significance in studying the properties

of these materials. As a common sense, precipitates free zones (PFZs) exist in

several alloys, whereas the formation mechanism of PFZs is still under intensive

discussion. Due to the high temperature required in the coarsening process of

grains, the boundaries of grains evolve in an unbalanced fashion, which makes it

difficult to directly observe how microstructures change. From this point of view,

modelling is a useful as well as practical approach. In this dissertation, a model

combining Mean Field Method (MFM) and Boundary Element Method (BEM) is

used to study particle coarsening and PFZs.
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1.1 Particle coarsening

1.1.1 Effects of particle coarsening

Particle coarsening has significant influence on mechanical properties and

deformation characteristics of crystalline materials especially for magnesium alloys,

aluminum alloys and nickel alloys.

It is crucial to inhibit particle coarsening in magnesium casting alloys. Particle

coarsening can be induced leading to shrinkage and hot defects in alloys. It is

worthwhile to point out here that adverse effects are especially obvious for

magnesium alloys. Inhibition of particle coarsening is a technology through

controlling the morphology and distribution of the second phase to produce high

quality magnesium alloys [1, 2]. Since magnesium alloys have a wide range of

crystallization temperature, low thermal conductivity and large volume shrinkage

ratio, they are of great tendency of particle coarsening. At the same time,

magnesium alloys have close-packed hexagonal structure, which means there are

only four independent slip systems. This is another reason why particle size is of

great influence on the mechanical properties. It turns out that inhibition of particle

coarsening could effectively control the shrinkage and the enlargement of the second

phase, and thus improve the mechanical properties and air impermeability of

casting alloys. In the mean time, it controls the increase of diffusion distance of

solid solution (such as Mg17Al12), and thus improves the efficiency of heat

treatment and corrosion resistance of casting alloys [3, 4].

Aluminum alloys have been generally applied in transportation, chemical

industry [5], mechanical industry [6], electrical industry, construction [7] and so on,
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in the sense that higher requirements of their performance and microstructure are

put forward. Most of aluminum alloys are produced through melting and casting,

namely going through the crystallization process from liquid to solid [8, 9]. As a

consequence, metal products form microstructures with all kinds of particle size and

distribution, which greatly affects the processing performance and mechanical

properties of these products. And it is the key point to produce fine and uniform

precipitates. Obviously, inhibition of particle coarsening can improve the strength of

aluminum alloys [10].

Nickel based superalloy single crystals have been playing key roles in high

temperature gas turbine applications over the past decades. The morphology of γ′

precipitate in these alloys has shown considerable influence on high temperature

creep properties [11, 12]. Low coarsening rate of the initial γ′ is preferred, since fine

γ′ dispersion is more ready than aged precipitates in creep conditions [13, 14, 15].

Some researchers proposed that γ′ precipitate coarsens in a diffusion controlled

mechanism [16, 17]. However, due to the lack of experimental data, arguments still

exist.

1.1.2 Why particle coarsening happens?

Particles or precipitates of second phase are usually considered as spheres in many

theories of particle coarsening [18, 19, 20], which is a reasonable assumption from both

theoretical and practical perspectives. Theoretically, interfacial energy in a sphere is

lower than in any other shape with same volume, which helps the system maintain an

equilibrium state [21]. Practically, a large number of researchers have detected that

precipitates are spheres. Fährmann et al. [22] and Kim et al. [23] observed round

3
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precipitates in their microstructural examinations in Ni-Al-Mo alloys and Al based

alloys, which means some precipitates exist in the shape of spheres. Furthermore,

precipitates of second phase in Al-Li alloys are also shown to be spheres. Sanders

and Starke stated that the misfit of second phase and matrix is as low as 0.18% due

to sphere shape of second phase [24].

In order to give a brief illustration of particle coarsening, this section discusses a

binary system with α matrix and β second phase. We assume that β precipitates are

particles due to the reasons listed in the above paragraph. If and only if the chemical

potential of each species is equal in α matrix and β second phase and the pressure

imposed on the particles of radius R is greater than that on surrounded α matrix, the

extra pressure that is equal to chemical potentials is calculated by Gibbs-Thomson

Eq. 1.1 [25, 26].

∆µβ
i =

2σνi
R

(1.1)

where σ is interfacial energy and νi is the molar volume of species i in second phase β.

As demonstrated in Gibbs-Thomson effect, chemical potential difference of a particle

is dependent on its curvature since it is related to radius R. In addition, more details

of the driving force of particle coarsening are illustrated in Figure 1.1 [27].

As shown in Figure 1.1, the biggest curve represents α matrix, and meanwhile

two relatively small curves describes β phase. To be more specific, the lower curve is

for the equilibrium state and the higher one is for a certain non-equilibrium state.

Correspondingly, ce is the equilibrium composition of α matrix and cβ is the

composition of β phase. It is worth noting that only after a long time, the system

could reach equilibrium state that the lower small curve represents. And under the

4
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Figure 1.1: Gibbs free energy vs. composition for a binary system in equilibrium

equilibrium state, chemical potential difference ∆µβ
i = 0 is achieved, which means

particle radius R goes to infinity. In other words, there is not any sphere particles of

β phase within a reasonable timeframe. In this case, interface between α matrix and

β phase will be flat. Since this equilibrium state is hardly reached, more research

interest focuses on non-equilibrium state where β phase are distributed in the

matrix as sphere particles.

Due to Gibbs-Thomson effect, the Gibbs free energy of a sphere particle is higher

than that in equilibrium state. Correspondingly, the concentration of matrix near

this particle cR is higher. Apparently, if a larger particle exhibits, cR decreases as the

radius of particle R increases. This relationship could be pinpointed by Eq. 1.2 [27].

cR = ce(1 +
Γ

R
) (1.2)
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where Γ is known as the capillary length, which is a constant dependent on materials

and temperature. Eq. 1.2 could be better illustrated in Figure 1.2 [28].
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Figure 1.2: The concentration vs. radial distance in the matrix

cm(t) = ce(1 +
Γ

Rcritical(t)
) (1.3)

where cm(t) is average matrix concentration for any specified domain and Rcritical(t)

is a critical particle size.

As shown in Figure 1.2, concentration of matrix around particles smaller than

Rcritical(t) is large because of a small value of radius. Conversely, concentration of

matrix around particles larger than Rcritical(t) is small because of a large value of

radius. Particles with radius Rcritical(t) do not change their size at this moment. At
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the same time, solute atom fluxes surrounded different particles go in different trends

due to concentration gradient. To be more specific, for matrix near small particles,

there is an atom flux from small particles to matrix. In the meantime, for matrix near

large particles, there is an atom flux to large particles. This phenomenon is shown

in Figure 1.3, where the dotted circle means a specified domain in the matrix for a

binary system exhibiting α matrix and β phase. The radius of this domain is known

as cutoff distance. Notably, the center particle has interactions with another particle

only if their distance is shorter than cutoff distance with the restriction of diffusion

distance. In other words, the center particle has interactions with particles inside the

sphere domain. If a particle in the domain is smaller than the center one, there will

be atom flux from this particle to center particle, and vice versa. As a consequence,

small particles shrink or even disappear while large particles grow. This process is

called Ostwald ripening or particle coarsening [29, 30].

"#$%&&!'()$*+,-!

.$%/!01#2!

3*4$(,1-)!

"#$%"#

β − phase

α −matrix

1#2

Figure 1.3: A microstructural illustration for a system exhibits α matrix and β phase
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1.1.3 Theories of particle coarsening

In the turn of last century, Ostwald [29] first discovered the phenomena of particle

coarsening. Since the early work of Ostwald, it is now well known that the driving

force for particle coarsening process is the chemical potential that is dependent on

particle curvature. Originally, attempts to explain the ripening process were only in

qualitative sense. Greenwood [31] discussed theoretical aspects of particle coarsening

quantitatively. However, the disadvantage in their theories is that the solution to main

diffusion equation is unrealistic, which leads to a disagreement against experimental

results.

Later, Lifshitz and Slyozov [32] and Wagner [33] successfully developed a theory

which is known as LSW theory for quantitative predictions of particle coarsening.

They assumed that particles of second phase are not only spheres but also fixed in

matrix, which means centers of particles never change during coarsening process. At

the same time, they ignored nucleation and particle coalescence. Based on the mass

conservation and Fick’s second law, through asymptotic analysis, they suggested

that the average particle radius R̄, matrix concentration cm and the average particle

number per unit volume N are all time t dependent over a long term. For a system

exhibiting two phases, particle coarsening process obeys temporal power laws as

shown in Eq. 1.4, Eq. 1.5 and Eq. 1.6. Much more details about derivation are given

in Voorhees’ work [30, 34]. Furthermore, Lifshitz and Slyozov [32] and Wagner [33]

also predicted that particle size distribution is independent of initial conditions and

self-similarly asymptotic.

R̄ ∝ t
1
3 (1.4)

8
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cm ∝ t−
1
3 (1.5)

N ∝ t−1 (1.6)

It is until LSW theory was developed that people had more interests on particle

coarsening and started doing more studies on this process. Many experimental results

of particle size distributions for a non-zero volume fraction system are border than

that predicted in LSW theory. Since the predictions in LSW theory is based on the

assumption that particles are source points, it implies that LSW theory is valid for a

system of essentially zero volume fraction of second phase.

It is worth noting that the volume fraction of second phase is more than ten

percent in many commercial alloys. As a consequence, volume fraction effect is of

great importance. Various modifications of LSW theories of non-zero volume

fraction cases have also appeared in the literatures. Ardell [35], Tsumuraya and

Miyata [36] and Asimov [37] used diffusion geometry to elucidate the various factors

which control particle coarsening kinetics including volume fraction, but failed to

address the statistics of diffusional particle interactions properly. Brailsford and

Wynblstt [38] originally suggested to use chemical rate theory and they successfully

overcame the statistical averaging problem. Marqusee and Ross [20] approached the

same problem using statistical method. Glicksman and Voorhees [39, 40] applied

computer simulation to solve the diffusion control problem between multiple

particles. Tokuyama and Kawasaki [41] viewed particle coarsening as a statistical

mechanical model. These theories [38, 20, 39, 40, 41] lead to different results from

9
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the quantitative point of view, even though they all take into account the volume

fraction of second phase.

1.1.4 Factors that influence particle coarsening

Speaking of factors affect particle coarsening rate and kinetics, it has generated a

great deal of experimental interest since the revelation of Ostwald ripening.

Grewal et al. [42] studied the factors that influence the rate of particle coarsening

in Ti-Mn alloy and Ti-V alloy, respectively. They claimed that, for the Ti-Mn system,

matrix and grain boundaries play important roles at low temperature (973K), and

it is only controlled by bulk diffusion when the temperature increases to 1108K. For

Ti-V system, the rate-controlling factor for particle coarsening is grain boundary at

973K, then it tends to be controlled by matrix diffusion and grain boundary diffusion

at 1073K. However, since they simply focused on the influences of matrix and grain

boundaries, they failed to take into account the fact that diffusional interactions

between second-phase-particles should not be ignored.

Gleiter et al. [43] and Bibbons et al. [44] have studied particle coarsening in nickel

base alloys, respectively. Although there was no revelation of volume fraction effects in

their experimental results, several studies [45, 46, 47, 48] have successfully completed.

According to LSW theory [32, 33], the average particle size r̄ is proportional to time

t, which is shown in Eq. 1.7.

r̄3 − r̄30 = kt (1.7)

where r̄0 is initial particle size, k is particle coarsening rate constant. As shown in

Table 1.1, different k values corresponding to alloys with different volume fractions

10
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Table 1.1: Particle-coarsening rate for various systems [45, 46, 47, 48]

Alloys Temperature (K) Volume Fraction k(m3 sec−1)
Ni-6.35Al 898 0.145 2.12×10−30

Ni-6.71Al 898 0.198 2.00×10−30

Ni-6.35Al 988 0.091 7.25×10−29

Ni-6.71Al 988 0.148 6.77×10−29

Ni-7Al 1073 0.090 1.10×10−27

Ni-8Al 1073 0.270 1.06×10−27

Ni-9Al 1073 0.440 1.20×10−27

Ni-9.9Al 1073 0.600 1.30×10−27

Ni-14.3Cr-4.4Al 1198 0.090 1.01×10−25

Ni-13.5Cr-5.8Al 1198 0.420 1.70×10−25

Ni-9.3Co-11.79Al 973 0.160 1.41×10−29

Ni-9.5Co-12.60Al 973 0.240 1.79×10−29

Ni-22.1Co-10.77Al 973 0.160 1.09×10−29

Ni-21.7Co-13.40Al 973 0.310 1.11×10−29

at the same temperatures prove that volume fraction is an important factor that

influences particle coarsening rate.

In terms of particle motion, both LSW theory and its modifications assume that

precipitates of second phase are fixed without movement in most alloys, which is an

indication of being ignorant of particle motion. It is worthwhile to point out that

experimental results show great difference in particle motion rate between solid

precipitate-solid matrix systems and solid precipitate-liquid matrix systems.

Courtney [49, 50] has studied the influence of particle motion in systems where solid

particles are distributed in liquid matrix. More particle contact, due to Brownian

motion, Stokes motion and convection currents, results into significant effect on

11
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particle coarsening rate. Correspondingly, Johnson et al. [51] calculated the velocity

of particles in a solid matrix system. It turns out that particle motion is too slow to

affect coarsening kinetics. From this perspective, it is reasonable for LSW theory

and its modifications to assume little effect of particle motion in solid particle-solid

matrix systems throughout particle coarsening process.

Jayanth and Nash [52] have reviewed several factors affecting particle-coarsening

kinetics such as volume fraction of second phase, diffusion control of grain boundaries,

diffusional interactions between precipitates, external stresses and irradiation. It

is worth noting that factors including external stresses and irradiation could not

be applied to most systems because these are external factors that only work for

exceptional cases.

In general, there are four major factors which influence particle coarsening as

follows: volume fraction of second phase, matrix diffusion, grain boundary diffusion,

and diffusional interactions between particles.

1.2 Precipitation free zones

1.2.1 Influences of precipitation free zones on mechanical

behaviours

Almost all age-hardening alloys exist regions or zones adjacent to grain boundaries

which are depleted of precipitates. These regions are called Precipitate Free Zones

(PFZs). As a common sense, PFZs exist in Al-based alloys, Mg-based alloys, Ti-based

alloys, Fe-based alloys and Ni-based alloys. Figure 1.4 illustrates PFZs along grain

boundaries. It clearly shows that there is no precipitate in the bright area along grain

12
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boundary (i.e., the grey line). Big precipitates at grain boundary and relatively small

precipitates inside the grain could be seen as well. Since the performance of most

polycrystalline materials is largely dependent on the microstructures, there have been

lots of researches regarding PFZs in these alloys. However, the formation and growth

mechanism of PFZs is still under intensive discussion.

Figure 1.4: PFZs in Al-2.2 at. pct-4.7 at. pct Mg alloy [53]

In regards to the influence of PFZs on materials, researchers hold different

viewpoints. Many studies have showed that the formation and growth of PFZs

along the grain boundary significantly reduce mechanical performance of

materials [54]. For instance, the preferential deformation of PFZs would result in

micro cracks in PFZs [55]. Starink [56] pointed out that the overall impact of PFZs

is that they reduced reinforcement of precipitate phase in the matrix.

There also has been a widespread discussion regarding how PFZ influences stress

13
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corrosion cracking (SCC) in aluminum alloys. A remarkable review was done by

Starke et al [57]. To the best of knowledge, most of previous studies concentrated on

attempting to correlate the PFZ width with SCC susceptibility. However, it appears

more reasonable, as suggested by Doig and Edington [58], to correlate the SCC

susceptibility with solute distribution in the PFZs. According to Ward and

Lorimer [59], it is clearly demonstrated that, in Cu modified Al-Zn-Mg alloys, no Cu

depletion is found in the PFZ, and SCC resistance is improved at the same time.

Similar results have also been obtained, including [53] where copper is seen to

distribute fairly uniformly across the PFZs in aluminum alloy AA7075. From this

point of view, the microanalysis technique provides a better understanding of local

solute distribution in the PFZs that affects the behavior of SCC in alloys.

For the welding alloys, the more heat is input by welding, the wider PFZ

appears [60]. The existence of PFZs makes partial melted region easy to crack in

the process of tension and impact in the intergranular fracture fashion.

PFZs also lower the yield strength of Ni-based alloys. As the width of PFZs

increases, the reduction of yield strength becomes larger [61]. This is because when

the width of PFZs exceeds a limit, there are plenty of cross-slips and double

cross-slips in the PFZs. This leads to the creation of dislocation sources that emit

dislocations. These dislocations pile up leading to the reduction of yield strength of

alloys. Therefore, wide PFZs are undesirable because they adversely affect the

mechanical behaviours, fracture resistance and stress corrosion cracking resistance of

several alloys.

14
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1.2.2 Formation of precipitation free zones

Generally speaking, there are two different kinds of theories explaining the

formation mechanism of PFZs. One is referred to as the vacancy density theory,

which is, for instance, supported by Jha et al [62] who claimed that PFZ is derived

from vacancy consumption. The vacancy density in the solution of alloy is pretty

high due to high temperature of heat treatment. However, the aging temperature is

much lower. Many vacancies are generated when the alloy is fast quenched from

high temperature. At the same time, grain boundaries would absorb vacancies due

to the reason that the grain boundaries are the main trap of excess vacancies, and

diffusion coefficient of vacancy is very high. As a consequence, the vacancy density

along grain boundary is as low as that in the aging treatment, whereas the vacancy

density inside grain is still as high as that in the solution heat treatment. Thus,

there is a gradient of vacancy density perpendicular to grain boundary in the zone

near the grain boundary. And as a common sense, it is hard for solute atoms to

diffuse under the circumstance of low vacancy density. In this case, PFZs appear

when the vacancy density along the grain boundary is lower than the threshold

density required for the nucleation of second phase.

The other theory is the solute depletion theory, wherein Yao et al [63] proposed

that desolvation of particles is faster at grain boundary than inside grains since grain

boundaries consume solute atoms near the grain boundaries and enable PFZs to

appear. To be more specific, concentration of solute atoms at grain boundaries is

lower than that near grain boundaries. Thus the concentration gradient leads to

flux of solute atoms towards grain boundaries. PFZs form gradually as all solute

atoms of precipitates near grain boundaries flow to grain boundaries. In addition,
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some researchers [64, 65] also argued that the formation of PFZs is caused by solute

depletion, which has also been proved by microstructural features such as expansion

of PFZ width with increased aging time and so on.

Jata et al [60] studied the formation mechanism of PFZs through observation and

microstructure examination of PFZs in the fusion zone on the surface of welding high-

strength aluminum alloy. Their experimental results show that formation of PFZs is

mainly caused by migration of solute phase along grain boundary. And the driving

force is the coherent strain energy, strain energy difference caused by weld shrinkage

and interface energy difference of grain boundary caused by the curvature.

There are some other researchers [66, 67, 68] stating that PFZ is formed by solute

depletion mechanism at the early stage of aging treatment; after that, the formation of

PFZ is governed by vacancy depletion mechanism. Based on these works [64, 65, 68],

the solute depletion theory is preferred to explain the early stage of PFZs’ formation.

1.2.3 Growth of precipitation free zones

No matter they are stable or metastable precipitates, their growth needs a large

amount of solute atoms. Solute atoms play important roles in the nucleation of

particles. Microstructural examinations show that the formation and growth of PFZs

significantly depends on solute atoms. A lot of different explanations have been

proposed about the change of PFZ width in aging treatment. In order to study the

distribution of the solute atoms near the PFZs, researchers mainly adopted several

microscopic analysis methods (such as X-ray analysis and three-dimensional atom

probe (3DAP)) [55, 53, 69, 70]. X-ray analysis showed that concentration of solute

atoms in the PFZs is smaller than that inside grains [69, 70]. 3DAP results showed
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that concentration of solute atoms in matrix remain the same with that in quenching

state [53].

Ogura et al stated that PFZs would be wider with the increase of aging time

under the same aging temperature [55]. However, Raghavan [53] argued that the

width of the PFZs would not become wider as the aging time increases. His

experimental measurements show that the width of PFZs is far more sensitive to the

aging temperature than to the aging time, i.e., the higher the aging temperature is,

the greater the width of PFZs will be. During conventional aging of alloys,

decomposition of the solid solution involves one or more metastable phases because

of the differences between solid solubilites of these phases. The formation of PFZs is

expected to be seen in such cases. On the other hand, PFZs should not form or

grow to any significant extent when decomposition directly results into the stable

precipitate.

Classical diffusion theory as shown in Eq. 1.8 is often applied to explain the growth

of PFZs [71, 72, 73] based on solute depletion theory.

D = D0exp(− Q

RT
) (1.8)

where D is diffusion coefficient, D0 is maximum diffusion coefficient, Q is activation

energy, R is gas constant and T is temperature. The diffusion of solute atoms leads

to the formation of PFZs. As time t goes on, the width of PFZs x will be in a fashion

as shown in Eq. 1.9.

x = 2
√
Dt (1.9)
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Some researchers even measure the PFZ width to calculate the diffusion coefficient

using Eq. 1.9 [74], since they considered the diffusion distance is almost the same as

PFZ width.

Ringer et al [68] obtained samples with different width of PFZs by different

quenching methods and different aging treatments. Through observation by

transmission electron microscopy, they found that the width of PFZs becomes

narrower with the increase of quenching speed. They also found that the width of

PFZs gradually becomes larger with the nucleation and growth of precipitates at

grain boundary in the aging treatment.

Furthermore, the width of the PFZs is dependent on orientation difference of

two adjacent grains and the types of grain boundaries. Experimental results showed

that precipitates near the large angle grain boundaries are significantly greater than

those near small-angle grain boundaries, which indicates two different structures of

precipitates at grain boundaries. Precipitates on the small-angle grain boundaries are

coherent with the matrix. As a result, matrix prevents these precipitates from growing

rapidly. At the large angle grain boundaries, it mainly forms stable precipitates with

big misfits with matrix, which means these precipitates are able to grow quickly, and

thus absorb more solute atoms. In some alloys [75], diffusion rate of solute atoms

at the large-angle grain boundaries is greater than that at the small-angle grain

boundaries, which leads to wider PFZs at large-angle grain boundaries. In some

superalloys, additional elements are introduced in order to reduce the capacity of

grain boundaries to absorb solute atoms [76]. PFZs fail to form close to these types

of grain boundaries.
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1.3 Mean Field Method

Nowadays, considering the increasing needs of applications in the area of

information sciences, scores of researchers are paying more attention to the study of

large-scale and highly-coupled probabilistic systems as representative models in

statistical physics. In these fields, Markov Chain Monte Carlo (MCMC)

methods [77] and MFM [78] are playing particularly significant roles since they are

two of the most widely-used approaches.

MCMC methods have largely sparked innovative applications throughout

information sciences, due to its appealing generality and simplicity of

implementation methods [79]. Since the roots lie in the simulation of gases and

condensed matter, MCMC methods work in a sampling-based fashion [80, 81]. On

the other hand, MFM, in most cases, can also solve the problems that are addressed

by MCMC methods. As deterministic methods, however, MFM uses a different set

of conceptual and mathematical tools, such as Taylor expansions and convex

relaxations, to approximate and bound quantities of interest [82]. Therefore, it is

seen that MFM is basically built up based upon the optimization theory and

perturbation theory, while MCMC methods are generally supported by the theory

of Markov chains and stochastic matrices.

Here it is nontrivial to point out that a major concern of modern probabilistic

modeling is the huge computational complexity resulted from complicated

calculations with multivariate probability distributions, especially when the number

of random variables becomes pretty large. A case in point is that MCMC methods

might reach their limits in probabilistic data models, which leads to failure of

tackling such kinds of problems [83]. In contrast, MFM is able to cope with such
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models with practical simplification and approximation, so that the final solution

can be accordingly derived. Under this circumstance, an effective field is used to act

on each individual random variable, which successfully replaces the mutual influence

among multiple random variables. It can be further formulated, in its simplest

version, in a form of approximation of the true distribution by a factorizable one.

As a consequence, a closed set of nonlinear equations is derived by variational

optimization of these products, which can usually be solved in polynomial time, i.e.,

a period of time that grows polynomially in the number of variables [84].

A useful application of MFM is a general framework in the area of statistical

physics and information sciences [85], which associates joint probability

distributions with graphs. To be more explicit, local clusters of nodes on a given

graph can be taken together to define families of joint probability distributions,

which in turn generate probabilistic graphical models being graphs-directed or

undirected-annotated with these functions. Generally speaking, graphical models

consist of two parts. One is classical models of statistical physics instances of

graphical models involving undirected graphs, the other is applied probabilistic

models without obvious connections to physics [86]. In practice, there have been a

range of examples including phylogenetic trees in genetics [87], diagnostic systems in

medicine [88], unsupervised learning models in machine learning [89], and

error-control codes in information theory [90]. Thanks to the availability of such a

general framework, it is possible to come up with more intuitive ideas that can be

effectively carried out in various fields.

Another application of MFM is to predict phase transitions in physics [91], which

is defined as discontinuities in aggregate properties of a system under the scaling
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of one or more parameters associated with the system. As a matter of fact, the

values of microscopic variables often attract most interest, followed by the macroscopic

properties of the system.

In this dissertation, we focus on the application of MFM in phase transformation.

Dimensionless variables will be employed for the derivation of particle-coarsening rate.

The dimensionless radius term ρi for any given particle i is defined as Eq. 1.10.

ρi =
Ri

Γ
(1.10)

where Ri is dimensional radius and Γ is capillary length. A dimensionless

concentration term around any given particle Θi is defined as Eq. 1.11.

Θi(t) =
ci(t) − ce

ce
(1.11)

where t is dimensional time, ci(t) is dimensional concentration around any given

particle i and ce is equilibrium concentration. Combining the linearized

Gibbs-Thomson Eq. 1.2, Eq. 1.10 and Eq. 1.11 yields Eq. 1.12.

Θi =
1

ρi
(1.12)

And a dimensionless average concentration term for any specified domain Θm is

defined as Eq. 1.13.

Θm(t) =
cm(t) − ce

ce
(1.13)

where cm(t) is dimensional average concentration for any specified domain. A

dimensionless time term τ is defined as Eq. 1.14.
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(a) (b)

Figure 1.5: Mean-field assumption. (a) illustrates a real situation that particles are
randomly distributed, (b) describes an ideal model by mean-field assumption.

τ =
Dce
Γ2

t (1.14)

where D is the diffusion coefficient.

As what has been addressed in Section 1.1, MFM has been employed in LSW

theory. When dealing with a large number of coarsening particles, MFM helps to

simplify the problem formulation based on one single equation rather than sloving

multiple relevant equations. Thus, with the mean-field assumption, the center particle

of any specified domain is treated as if it were independent of any other particle. Like

what has been shown in Figure 1.5, the real case in Figure 1.5 (a) is transformed

into Figure 1.5 (b) with the mean-field assumption. All other particles in shaded

domain are considered as source points and merged into this specified area with an

average concentration Θm. Assume the radius of this center particle is large enough

to cover the whole background, which means Ri goes to infinity, then the boundary

concentration of this center particle is the average concentration of its background as
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shown in Eq. 1.15 [92].

Θi(Ri → ∞) = Θm(τ) (1.15)

MFM tremendously simplifies the diffusion problem in particle coarsening process

based on two assumptions: a) equilibrium volume fraction of second phase is low

enough to be negligible, and b) the average distance between any two particles is

large enough so that particles can be treated independently. Under this circumstance,

all other particles are treated together and solute flux toward any center particle are

derived based on the term Θm, which could be kept tracking of. Notably, in the LSW

theory, the effect of nucleation and particle coalescence is neglected, which means

that the flux of the whole system is set to zero [32, 33]. Hereafter, the diffusion field

in the matrix is governed by Eq. 1.16.

▽2Θi(τ) = 0 (1.16)

along with the boundary conditions Eq. 1.12 and Eq. 1.15 leads to the growth rate

of any particle in Eq. 1.17.

dρi
dτ

=
1

ρi
(Θm(τ) − 1

ρi
) (1.17)

It is worthwhile to point out here that Eq. 1.17 captures the essential features of

particle coarsening process. From Eq. 1.17, there is a critical size ρc for particles,

ρc(τ) =
1

Θm(τ)
(1.18)

And particles of critical size should neither shrink nor grow since
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dρi(ρi = ρc)

dτ
= 0 (1.19)

Intuitively, particles with a radius that is larger than ρc should grow and vice

versa, since

dρi(ρi > ρc)

dτ
> 0 (1.20)

dρi(ρi < ρc)

dτ
< 0 (1.21)

From what has been derivated, we can see that large particles tend to grow and

small particles should shrink or even dissolve, which agrees well with what has been

discussed in Section 1.1.

1.4 Boundary Element Method

BEM is a useful approach of obtaining solutions to integral equations. It is used

to derive boundary integral equations, in particular when integral equations on the

boundary of the physical domain are transformed from elliptic boundary value

problems on spatial domains. In recent decades, BEM has been developed to be a

useful tool of numerics. Some notable well-developed techniques include BEM for

modeling viscous flow and free surface flows [93], simulation of cavitatin, BEM for

geometrically nonlinear analysis of plates and shells [94], modeling of plates and

shells by meshless local BEM, fast hierarchical BEM for large scale 3D elastic

problems, time domain BEM techniques [95], Greens function evaluation for three
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dimensional exponentially graded elasticity and BEM for the fracture analysis of the

general piezoelectric solids [96].

Furthermore, because BEM has become applicable to a considerable number of

engineering problems in a wide range of fields [97, 98], BEM keeps attracting

increasing attention. A case in point is the problem of heat transfer [99], which is

effectively addressed by BEM. In practical scenarios such as linear and non-linear

steady-state heat conduction, lots of problems like thermal radiation can be

formulated in a simple and elegant fashion thanks to BEM as well. On the other

hand, some heat transfer problems lead to an integral equation with domain

integrals, which cut down the efficiency of the method and further make it far more

difficult to prepare data for coding on computers. As a remarkable milestone,

related methods were developed to transform integrals into boundary ones with the

help of BEM [100]. Most effectively, the reciprocity theorem is widely used, which

has been proved to be capable of achieving good performance in efficiency as well as

accuracy in many numerical experiments. Generally speaking, there exist two

different ways of accomplishing the transformation including dual reciprocity

method [101, 102, 103] and multiple reciprocity method [104, 105].

This section addresses a classical multiparticle diffusion problem using boundary

element formulation. In the sense that an equivalent boundary integral equation is

derived from the proper fundamental solution to the diffusion equation, such kinds

of formulation can be viewed as a direct extension of potential theory. In literature,

Morse et al. [106] and Carslaw et al. [107] adopted free-space Greens function to

obtain analytical solutions to several simple problems. Chang et al. [108] and

Shaw [109] applied this fundamental solution in the context of direct BEM for the
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first time, even though the analytical aspects of the method instead of the numerical

parts were emphasized. The formulation was then extended by Wrobel et al. [110],

which included space and time interpolation functions in higher order, and

thereafter successfully analyzed practical engineering problems.

One of the shortcomings of LSW theory is that it is based on the assumption

of zero volume fraction, which inevitably ignores the diffusional interaction between

particles. With the center particle being no longer independent, it is essential to

determine the diffusional distance of a particle of a given size, which is statistically

averaged with its surroundings. Because BEM takes part of the neglected correlations

between random variables into consideration, it is a useful approach to deal with such

cases. Its formulation can be viewed as a direct extension based on potential theory

in that the proper fundamental solution to the diffusion equation is used to derive an

equivalent boundary integral equation.

Therefore, the diffusion problem here is formulated in an integral form, which

spontaneously covers the boundary conditions. According to Poissions equation and

Dirac delta function, the surface of every single particle is integrated to a certain

integration point from each field point, and further ends up with homogeneous

Fredholm integral equation of the second kind with Gibbs-Thomson boundary

conditon. The solution gives out a single layer density yielding a constant

concentration on the surface of each particle. In terms of BEM, the integral

equation can be then simplified to a set of linear equations, and all of the coefficients

of the spherical harmonics can be settled once a term is determined [111]. Here it

gives Eq. 1.22 based on Θm which is the specified concentration term.
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1

ρi
= Θm(τ) − ρi

dρi
dτ

−
N∑
j ̸=i

ρ2j
dρj
dτ

| r⃗i − r⃗j |
(1.22)

where | r⃗i − r⃗j | is the distance from center of particle i to center of particle j.

The growth rate of any particle could be derived as shown in Eq. 1.23 by simply

transforming Eq. 1.22.

dρi
dτ

=
1

ρi
[Θm(τ) − 1

ρi
] − 1

ρi

N∑
j ̸=i

ρ2j
dρj
dτ

| r⃗i − r⃗j |
(1.23)

Here we could compare Eq. 1.17 and Eq. 1.23 which are both growth rate of any

particle. Eq. 1.23 is derived using BEM while Eq. 1.17 is generated from MFM.

Apparently, there is an additional part in Eq. 1.23 than in Eq. 1.17. In particular,

this part represents the solute flux Bj from any particle j to the matrix as shown in

Eq. 1.24.

Bj = ρ2j
dρj
dτ

(1.24)

This part reveals how the center particle i is influenced by other particles that

are located in a sphere with a radius determined by the cutoff distance, i.e., the

statistical average diffusional distance. For instance, the growth of the center particle

i is accelerated by a positive flux from matrix to particle i in that particle i is able to

take solute atoms. And the growth of the center particle i is prevented by a positive

flux from matrix to particle j in that particle j is able to take solute atoms. It is also

worth noting that the center particle i gets greater influence from particle j if they

are closer to each other in distance. Apparently it captures the fundamental features

of multiple particle coarsening.
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1.5 Objectives and outlines

On this line, this work investigates a more rigorous description of the diffusion

process valid for particle coarsening and PFZ growth. In order to derive an

expression for the growth rate of particles, MFM and BEM are taken into account,

which solve the diffusion equation in three dimensions. Further, such an expression

in turn predicts a kinetic expression for the PFZ growth rate.

The structure of this thesis is as follows. A brief summary of the relevant concepts

and research in particle coarsening and PFZs is presented in Chapter 1. It also gives

the background of particle coarsening problem solved by MFM and BEM. Chapter 2

summarizes the method in a way that is useful for studying particle coarsening and

PFZs. It describes the mathematics that goes into the computer implementation of

particle coarsening process as well. Chapter 3 shows simulation results for verifying

the proposed model. It also contains a discussion of the implication of the results.

Chapter 4 gives the conclusions and Chapter 5 shows future directions of research.
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Chapter 2

Mathematical methods and

simulations

2.1 Particle coarsening far away from grain

boundaries

When it refers to particle coarsening inside the grains and far away from grain

boundaries, the total solute flux in the system equals to zero. It is no longer necessary

to consider the effect of grain boundaries. In other words, the total solute flux in

the system is equal to zero. We also assume that there is no nucleation or particle

coalescence during particle coarsening process. Based on solute atoms conservation,

the total number of solute atoms in the matrix together with the total number of

solute atoms in the particles should be equal to the total number of solute atoms in

the original system at any time as shown as Eq. 2.1.
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c0 = cm(t) +
4π

3ν

∫ ∞

0
R3n(R, t)dR (2.1)

where c0 is the initial concentration in the matrix, cm(t) is the concentration in the

matrix at time t, ν is molar volume, n(R, t) is the number of particles of size R per

unit volume at time t. It is worthwhile to scale radius R, concentration c and time t

to dimensionless radius ρ, concentration Θ and time τ using Eq. 1.10, Eq. 1.13 and

Eq. 1.14. Then Eq. 2.1 could be rewritten as Eq. 2.2.

Θm(τ) = Θ0 −
4πΓ3

3νce

∫ ∞

0
ρ3f(ρ, τ)dρ (2.2)

where f(ρ, τ) is scaled dimensionless size distribution. Since capillary length Γ,

molar volume ν and equilibrium concentration ce are all constants, Eq. 2.2 could be

rearranged as Eq. 2.4 using Eq. 2.3.

α =
4πΓ3

3νce
(2.3)

where α is a constant, which could be calculated for a given system.

Θm(τ) = Θ0 − α
N∑
i=1

ρ3i (2.4)

Thus, particle growth rate shown in Eq. 1.23 could be rewritten as Eq. 2.5.

dρi
dτ

=
1

ρi
(Θ0 − α

N∑
i=1

ρ3i −
1

ρi
) − 1

ρi

N∑
j ̸=i

ρ2j
dρj
dτ

| r⃗i − r⃗j |
(2.5)

Up until now, the growth rate of any given particle i at any given time τ could be

calculated by taking advantage of iteration as long as α is known. It is worthwhile
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to point out here that the initial state is known for a given system, thus α could be

calculated. From this perspective, we can keep track of particle coarsening process

far away from grain boundaries with the help of MFM and BEM.

We employ 2,000 particles that are randomly distributed in a cubic system without

overlapping. The particle size complies with a normal distribution N (1.0, 0.25), and

the particle radius ρ is randomly chosen between 0.0001 and 2.0. The initial matrix

concentration cm and equilibrium concentration ce are set to 0.1 and 0.05, respectively.

The side length of this cubic system shown in Figure 2.1 (a) is calculated based on

the volume fraction of components. In addition, periodical boundary conditions are

applied in three dimensions.

The cutoff distance is derived according to solute depletion theory. As a

consequence, each particle could have interactions only with particles that are

within its cutoff distance. It should be noted, since the cutoff distance is likely to

get larger due to diffusion, its value needs to be carefully chosen such that it keeps

smaller than half of the system side length all the time. The initial cutoff distance

set to 5 times the average particle radius.

The time step dτ is set to 0.01 times the cube of average particle radius on the

basis of two conditions: a) the average value of particle radius is expected to be

proportional to time according to LSW theory, and b) no more than one particle

disappears after each time step.

The growth rate of each particle is therefore calculated using Eq. 1.23. The particle

volume is updated and recorded after each time step. Particles with a radius smaller

than 0.001 times the average radius being removed from the system. This procedure

is repeated until 100 particles are left. The system is simulated with volume fraction
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(a) (b) (c)

Figure 2.1: System size. (a) is a cubic system for 2,000 particles, (b) is a rectangular
system for 10,000 particles, (c) is a rectangular system for 40,000 particles. All volume
fractions are set to be 0.1 for these systems.

being 0.1.

2.2 Particle coarsening near grain boundaries

If particle coarsening happens near grain boundaries, it is necessary to consider

the influence of grain boundaries. Based on the solute depletion theory, solute flux

could be absorbed by grain boundaries. In other words, there is no solute atoms

conservation. Since solute atoms near grain boundaries could be absorbed by grain

boundaries more readily than those far away from grain boundaries due to time

dependent diffusion, matrix concentration Θm is not homogeneous any more. At the

same time, matrix concentration Θm is not only a function of time, but also a function

of position, which could be represented by Θm(x, τ), where x is the distance along

side of system perpendicular to grain-boundary area. Thus, the particle growth rate

in Eq. 1.23 could be rewritten as Eq. 2.6.

dρi
dτ

=
1

ρi
(Θm(x, τ) − 1

ρi
) − 1

ρi

N∑
j ̸=i

ρ2j
dρj
dτ

| r⃗i − r⃗j |
(2.6)
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Concentration profile is shown in Figure 2.2. In this case, the system represents

one grain between two paralleled grain boundaries with a large number of particles

in it. As it was illustrated in Figure 2.2 at any given time τ , matrix concentration

is position dependent. Grain boundary acts like a sink and there is a flow of solute

atoms toward the grain boundaries. Solving Fick’s second law under steady state

concentration ∇2Θm(x) = 0 with the boundary condition of zero concentration of

solute atoms at the grain boundary results in a linear dependance of concentration

from inside the grain toward the grain boundary. This linear relationship ends up

at position x1 where grain boundaries do not leave any influence on particles farther

away than this distance. Thus, particles in the middle area could be treated without

the consideration of grain boundaries as in Section 3.1, and matrix concentration

maintains constant in the corresponding region. Additionally, Figure 2.2 shows the

change of matrix concentration from time τ1 to time τ2. As time goes on, the slope

appears to be more gentle, since the flux that goes to grain boundaries becomes

smaller.

In order to calculate the particle growth rate near grain boundaries, we need to

solve Eq. 2.6 based on the new definition of concentration term Θm(x, τ). Therefore,

it is necessary to illustrate the concentration profile in a rigorous way. Obviously,

the concentration profile could be clearly defined as long as the constant value of Θm

and the turning point position x are known. Θm could be calculated using Eq. 2.4

since it is position independent. If dx/dτ is known, then x could be calculated as well

by taking advantage of iteration. It turns out that dx/dτ could be derived based on

solute atoms conservation as shown in Eq. 2.7 and Fick’s first law.
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Figure 2.2: Concentration profile between two paralleled grain boundaries

N = cV (2.7)

where c is concentration, N is the total number of solute atoms in the system and

V is total volume of the system. And N could be rewritten in Eq. 2.8 since solute

atoms exist either in matrix phase or in particles.

N = cmVm + cpVp (2.8)

where cm is matrix concentration, Vm is the total volume of matrix, cp is particle

concentration and Vp is the total volume of all particles. Thus Vp is the summation

of each particle as shown in Eq. 2.9.
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Vp =
4

3
π
∑
i

R3
i (2.9)

where Ri is the particle radius of any given particle. For Vm, we could refer to

concentration profile in Figure 2.2. Apparently, covered area represents the total

volume of matrix. Thus, Vm could be written in a way as shown in Eq. 2.10.

Vm = A(L− 2x) +
1

2
Ax +

1

2
Ax (2.10)

where A is the area of grain boundary, L is the side length of the system which is

perpendicular to grain boundary area and x is the position of turning point in the

concentration profile. Hence, the total number of solute atoms could be rearranged

as shown in Eq. 2.11.

N = cmA(L− x) + cp(
4

3
π
∑
i

R3
i ) (2.11)

Since both x and Ri are functions of time, the rate of change of N could be written

in Eq. 2.12.

dN

dt
=

d

dt
[cmA(L− x)] + cp4π

∑
i

R2
i

dRi

dt
(2.12)

On the other hand, the rate of change of total solute atoms must be equal to

number of solute atoms in or out of the system per unit time across the grain boundary

area. In this sense, the rate of change of N could be written in Eq. 2.13.

dN

dt
= 2AJ (2.13)
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where J is the flux towards grain boundary. It is worthwhile to point out there will

be double flux because there are two paralleled grain boundaries in the system. Then

we will have an equation as shown in Eq. 2.14.

2AJ =
d

dt
[cmA(L− x)] + cp4π

∑
i

R2
i

dRi

dt
(2.14)

We assume that atom fraction in particles is 1, thus the concentration of particles

cp could be rewritten in Eq. 2.15.

cp =
1

ν
(2.15)

where ν is atomic volume.By dividing Eq. 2.14 with V = AL on both sides, we could

get Eq. 2.16.

2
J

L
=

d

dt
[
cm(L− x)

L
] +

4π

V ν

∑
i

R2
i

dRi

dt
(2.16)

Then Fick’s First Law could be scaled from Eq. 2.17 to Eq. 2.18 using Eq. 1.13.

J = −D▽ c (2.17)

J = −Dce ▽ Θ (2.18)

From Eq. 1.13, we can also get differential form of concentration term as shown in

Eq. 2.19. At the same time, the first part of Eq. 2.16 could be rewritten in Eq. 2.20

and Eq. 2.21.

dcm
dt

= ce
dΘm

dt
(2.19)
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d

dt
[cm(1 − x

L
)] = (1 − x

L
)
dcm
dt

− cm
L

dx

dt
(2.20)

d

dt
[cm(1 − x

L
)] = (1 − x

L
)
dcm
dt

− [(cm − ce) + ce]

ce

ce
L

dx

dt
(2.21)

Combine Eq. 2.18, Eq. 2.19 with Eq. 2.21, and we will have Eq. 2.22.

−2
Dce
L

▽ Θ = ce
dΘm

dt
(1 − x

L
) − ceΘm

L

dx

dt
− ce

L

dx

dt
+

4π

V ν

∑
i

R2
i

dRi

dt
(2.22)

Eq. 2.22 could be rearranged in a more clear way as shown in Eq. 2.23.

−2
Dce
L

▽ Θ = ce(1 − x

L
)
dΘm

dt
− (Θm + 1)

ce
L

dx

dt
+

4π

V ν

∑
i

R2
i

dRi

dt
(2.23)

Notably, the relationship between concentration and position is like Eq. 2.24 based

on concentration profile in Figure 2.2.

▽Θ =
Θ

x
(2.24)

Furthermore, it is of great benefit to scale length x and time t in Eq. 2.23 with

the help of Eq. 1.10 and Eq. 1.14. In order to make it easy to be observed in the

concentration profile, x is still used in the following equations but it is a dimensionless

length term in the rest of this chapter.
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−2
Dce
LΓ2

Θm

x
= ce

dΘm

dτ

Dce
Γ2

(1− x

L
)− Dc2e

L
(Θm + 1)

Γ

Γ3

dx

dτ
+

4π

V ν

DceΓ
3

Γ2

∑
i

ρ2i
dρi
dτ

(2.25)

We could get Eq. 2.26 by arranging Eq. 2.25.

dx

dτ
=

(1 − x
L

)dΘm

dτ
+ 2Θm

cexL
+ 4πΓ3

V νce

∑
i
ρ2i

dρi
dτ

Θm+1
L

(2.26)

Since capillary length Γ, molar volume ν, total volume of the system V and

equilibrium concentration ce are all constants for a given system, Eq. 2.26 could be

rearranged as Eq. 2.28 using Eq. 2.27.

β =
4πΓ3

V νce
(2.27)

where β is a constant, which could be calculated for a given system.

dx

dτ
=

(1 − x
L

)dΘm

dτ
+ 2Θm

cexL
+ β

∑
i
ρ2i

dρi
dτ

Θm+1
L

(2.28)

So far, dx/dτ could be gained, and at the same time, Θm(x, τ) is known. Therefore,

for any given particle i near grain boundaries at any given time τ , its growth rate

could be calculated by Eq. 2.6.

We would like to simulate particle coarsening inside a grain between two

paralleled grain boundaries. And we employ 10,000 particles that are randomly

distributed in a rectangular system without overlapping each other at the beginning

of the simulations. It is seen that the number of particles is five times more than

that in the previous simulations. In order to get a valid comparison with previous
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simulations, we consider that the system is five times bigger than the previous cubic

system. As shown in Figure 2.1 (b), its shape could be considered as five cubic

system distributed along the longest side of the rectangular system.

We also employ 40,000 particles in another rectangular system. The volume of

this system is four times larger than the system consisting of 10,000 particles. Its

shape is shown in Figure 2.1 (c) could be considered as four permeable rectangular

system distributed perpendicular to grain boundaries.

Periodical boundary conditions are applied as well but only in two dimensions. To

be more explicit, the system box is repeated periodically in y and z directions since

two paralleled grain boundaries are perpendicular to x direction.

The growth rate of each particle is calculated using Eq. 2.6 and Eq. 2.28. The

particle volume is updated and recorded after each time step. Similarly, the system

is simulated with different volume fractions being 0.05, 0.1 and 0.2, respectively.
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Chapter 3

Results and discussion

3.1 Particle coarsening far away from grain

boundaries

3.1.1 Results of particle coarsening far away from grain

boundaries

In this section, results of the particle coarsening process are presented. Figure 3.1

shows the case where 2,000 particles coarsen inside a grain. Grain boundaries do

not show up since this zone is far away from grain boundaries. Figure 3.1 (a) is

the initial state of the system. Different colors of particles represent the height of

particles in three dimensions. 2,000 particles are distributed in this zone without

overlapping. And no distinctive difference of particle size could be told. Figure 3.1

(b) does not have so much difference from Figure 3.1 (a) since it is still at the beginning

of coarsening process. Figure 3.1 (b), Figure 3.1 (c) and Figure 3.1 (d) show a trend
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(a) (b)

(c) (d)

Figure 3.1: Particle coarsening far away from grain boundaries. 2,000 particles are
initially randomly distributed in the system. (a), (b), (c), (d) illustrate the situations
that are after time step 1, 801, 1201 and 2001.
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that larger particles grow while smaller particles shrink. It is worthwhile to point out

that particles do not overlap with each other during this process. In Figure 3.1 (d),

it is obvious that some particles even disappear compared with Figure 3.1 (a).

Figure 3.1 captures the features of particle coarsening process. Like what happens

in Ostwald ripening process, there is a flux from the small particles toward the large

particles as a result of Gibbs-Thomson effect. Therefore, relatively larger particles

grow and small particles in grains shrink and even disappear eventually. In addition,

no overlapping could be found in the system, which accords with the experimental

observations [112, 113]. From this point of view, the simulation results are consistent

with particle coarsening process in practice. Therefore, the mathematical model based

on MFM and BEM works for simulation of particle coarsening in grains of certain

alloys.

Figure 3.1 reinterprets Figure 3.2 from the horizontal view. Figure 3.2 (a) shows

the initial state where particle size follows the normal distribution. All the particles

are inside the system. The trend of particle coarsening could be seen more clearly from

Figure 3.2 (b) to Figure 3.2 (c). In Figure 3.2 (d), we can see that certain particles

reach and even pass the boundaries of the system due to particle growing. The result

does make sense since Mean-Field model only focuses on a zone inside one grain as a

system. There is no real boundaries of this system. Meanwhile, introducing periodical

boundary conditions in three dimensions indicates no boundaries of the system.

The other effect of periodic boundary condition is that a distinctive depletion is

not observed in any part of the system and PFZs could not form even at the edge of

system in all the images of Figure 3.2, which agrees with the features of experimental

results [112, 114]. According to solute depletion theory [43], certain area or structure
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(a) (b)

(c) (d)

Figure 3.2: Horizontal view of particle coarsening far away from grain boundaries.
2,000 particles are initially distributed in the system without overlapping. (a), (b),
(c), (d) illustrate the situations that are after time step 1, 801, 1201 and 2001.

consumes solute atoms of both matrix and particles, which leads to the formation

of PFZs. Since this simulation focuses on a zone inside one grain composing of two

phases, there is no other structures except for matrix and particles. Thus, solute

atoms could not be absorbed, and PFZs will not form. These results assure us about

the appropriate prediction of the model of the coarsening phenomenon in absence of

a defect in the system.
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3.1.2 Factors that influence the growth rate of particles far

away from grain boundaries

As it was pointed out in Chapter 2, this model mainly embodies the influence of

three factors on the growth rate of particles: a) volume fraction of second phase, b)

matrix diffusion, and c) diffusional interactions between particles.

Firstly, the initialization of simulation reflects the influence of volume fraction of

second phase. Based on MFM, the growth rate of particles that are far away from

grain boundaries could be mathematically represented by Eq. 1.17. For a certain

particle i with radius ρi, there are two terms based on volume fraction of second

phase determining its growth rate dρi
dτ

, which are the particles radius ρi and matrix

concentration Θm(τ). In terms of the influence of particle radius ρi on its growth

rate, there is a critical size ρc = 1/Θm(τ). The growth rate of a particle with radius

ρi larger than ρc is positive while that smaller than ρc is negative. Therefore, particle-

coarsening theory could be rephrased in a way that, particles with their size smaller

than the critical size will shrink, while particles with their size larger than the critical

size will grow. It is worth noting that ρc changes with time since matrix concentration

Θm(τ) is time dependent. Regarding another term matrix concentration Θm(τ), it

depends on initial matrix concentration Θ0 during the whole simulation process, while

Θ0 is determined by volume fraction of second phase.

Secondly, the influence of matrix diffusion could be represented by matrix

concentration Θm(τ) in both Eq. 1.17 and Eq. 1.23. Matrix concentration plays a

significant role in particle-coarsening process. The concentration gradient between

the bulk matrix and the matrix around certain particles leads to flux of solute

atoms. In addition, the directions and scales of flux to a particle determine whether

44



M.A.Sc. Thesis - Na Yang McMaster - Materials Science and Engineering

this particle will grow or shrink , as well as the changing rate of its radius.

Last but not the least, diffusional interactions between particles also play an

important role on the growth rate of particles. Its physical meaning is based on

atom flux as well. According to BEM, compared with Eq. 1.17, there is an extra

term in Eq. 1.23, which denotes as 1
ρi

∑N
j ̸=i

ρ2j
dρj
dτ

|r⃗i−r⃗j | . This part reflects the influence of

particle interactions. Additionally, there is a time dependent cutoff distance.

Particles inside a virtual zone with the radius of cutoff distance will have influence

on the center particle. In this sense, in Eq. 1.23, center particle i has interactions

only with another particle j if their distance | r⃗i − r⃗j | is shorter than the cutoff

distance. Solute atoms from some particles inside the zone flow to the center

particle, while solute atoms from the center particle flow to some other particles

inside the zone. If the summation of solute atoms gained by center particle is

positive during particle interactions, this center particle tends to grow, and vice

versa. Since 1
ρi

∑N
j ̸=i

ρ2j
dρj
dτ

|r⃗i−r⃗j | is subtracted in Eq. 1.23, growth rate of the center

particle will decrease if there is a positive flux of solute atoms ρ2j
dρj
dτ

from the center

particle.

3.2 Particle coarsening near grain boundaries

3.2.1 Results of particle coarsening near grain boundaries

Figure 3.3 shows coarsening phenomenon of 10,000 particles inside a grain located

between two paralleled grain boundaries. In order to observe the process of particle

coarsening, the horizontal view of the system is presented. There are two paralleled

grain boundaries on the y− z plane perpendicular to the x directions. Their location
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is calculated based on system size and initialization of shape located at x = 0 and

x = 218.78, respectively. Different colors of particles represent the height of particle in

three dimensions, which is also beneficial to differentiate particles in two dimensions

since particles are overlapped with each other from horizontal view.

Figure 3.3 (a) shows the initial state of the system where 10,000 particles are

distributed without overlapping each other. The particle size also follows the normal

distribution. From Figure 3.3 (b) to Figure 3.3 (c), the fact that particle coarsening

occurs is observable. These images show a trend that small particles shrink and even

disappear while large particles grow. At the same time, PFZs form near two grain

boundaries. There is hardly any particles left in these two zones at the vicinity of

the grain boundaries. PFZs become wider as time goes on, which agrees with the

experimental results [55, 115]. From this perspective, the mathematical model based

on solute atoms conservation and diffusion theory achieves a good performance in

simulating particle coarsening.

Figure 3.4 is the concentration profile of matrix along x direction that matches the

system in Figure 3.3. The matrix concentration is homogeneous initially at time step

1 except for the areas near the grain boundaries. Instead, the concentration at grain

boundaries is 0, which follows the mathematical model. It is an ideal assumption

that solute atoms will be absorbed once they flow into grain boundaries. At the same

time, it is also a reasonable assumption that the capacity of grain boundaries is big

enough to absorb all the solute atoms since this simulation only focuses on the early

stage of particle coarsening. The slopes at time step 8001 and time step 9001 in

the concentration profile in Figure 3.3 (b) become obvious, which means that solute

atoms start flowing into grain boundaries. As a result, matrix concentration near
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(a)

(b)

(c)

Figure 3.3: Horizontal view of particle coarsening near grain boundaries. 10,000
particles are initially distributed in the system without overlapping. Grain boundaries
are perpendicular to x-axis, and located at x = 0 and x = 218. (a), (b), (c) illustrate
the situations that are after time step 1, 8001 and 9001.
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Figure 3.4: Concentration profile of 10,000-partice system at different time steps

grain boundaries decreases.

It should be noted that concentration in the matrix away from grain boundaries

is position independent. This is why the horizontal line in the concentration profile

of every image is straight. It is an ideal and reasonable assumption as well since

the bulk matrix could be treated without the influence of grain boundaries due to

being far away from grain boundaries. The concentration of bulk matrix is only time

dependent. The concentration decreases gradually from time step 1 to time step 9001

since the average size of the particles increases. In other words the average curvature

of the particles decreases which means the Gibbs-Thomson effect is less effective.

Therefore, the equilibrium matrix concentration shifts to the less amount of solute

atoms in the matrix.
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3.2.2 Factors that influence the growth rate of particles near

grain boundaries

Based on the mathematical model, four factors influence the growth rate of

particles near grain boundaries: a) Volume fraction of second phase, b) diffusional

interactions between particles, c) matrix diffusion and d) grain boundary diffusion.

The initialization of the system in the simulation reflects the influence of volume

fraction of second phase, diffusional interactions between particles and matrix

diffusion. To be more specific, they are three terms in Eq. 1.23, which are initial

matrix concentration Θ0, distance between two particles | r⃗i − r⃗j | and matrix

concentration Θm(τ). All of these three factors have the same influence as discussed

in Section 3.1.

The size of the domain which is under influence of grain boundary is time

dependant. The progress rate of this domain, where flow of solute atoms toward

grain boundary starts, dx
dτ

, is the key implementation of this mathematical model. It

is given in Eq. 2.28, which mainly shows the influence of matrix diffusion and grain

boundary diffusion on the growth rate of particles.

The calculation of dx
dτ

is part of the calculation of matrix concentration Θm(τ)

during the simulation process. Notably, there are four terms in Eq. 2.28, where x is

the x location of turning point in the concentration profile at the previous time step,

dΘm

dτ
is the change of concentration of bulk matrix from previous time step to current

time step , Θm(τ) is concentration of bulk matrix of previous time step , and
∑
i
ρ2i

dρi
dτ

is total flux of solute atoms towards grain boundary of previous time step.

All of these four terms should be considered together since they represent the

overall influence of grain boundaries. The grain boundary acts like a sink. As a
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result, all the solute atoms that flow toward grain boundaries will be absorbed

directly. Based on solute atoms conservation, the number of solute atoms that flow

to grain boundaries could be calculated. It is also the number of solute atoms that

the system loses. At the same time, there is particle coarsening in the bulk matrix

without the influence of grain boundaries. The method for calculation of Θm(τ) at

each time step is the same as the method explained in section 3.1. In this sense, we

build a concentration profile for the whole system for each time step. If necessary,

the concentration profile for a particular snapshot could be captured as well.

Additionally, we could get particle size distribution and growth rate of each particle

for this particular moment. From this point of view, the mathematical model for

particle coarsening is effective and accurate.

3.2.3 Boardening rate of precipitation free zones

As what has been shown in Figure 3.3, PFZs form along grain boundaries during

the process of particle coarsening. There are interactions between grain boundaries

and solute atoms which influence solute atoms near grain boundaries more

effectively compared with the ones inside the grain. As a result, solute atoms of

particles near grain boundaries are absorbed by grain boundaries leading to the

dissolution of particles near grain boundaries. As time goes by, a zone that is free of

particles forms at the vicinity of grain boundaries. As shown in Figure 3.3, this zone

becomes wider as time goes on.

Figure 3.5 shows the boardening rate of PFZs. It should be noted that the square

of the scaled width of PFZs (W 2
p ) with respect to scaled transformation time (τ) is

illustrated in Figure 3.5. The solid line is the original line of 9,878 data points from
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Figure 3.5: Boardening rate of PFZs

simulation results, while the dashed line is the fit line as shown in Eq. 3.1. The trend

line fits very well, which means the square of width of PFZs has linear relationship

with time. In other words, the width of PFZs is proportional to square root of time.

W 2
p = 31.01τ (3.1)

The diffusion distance is proportional to square root of time as shown in Eq. 1.9.

The striking similarities between these two relationships could help us explain the

formation of PFZs. It reveals that the way in which solute atoms flow to grain

boundaries follows diffusion theory. In other words, diffusion of solute atoms near

grain boundaries causes the formation of PFZs.

The influence of volume fractions of second phase on PFZ broadening phenomenon

is shown in Figure 3.6. In these simulations the volume fraction of the second phase
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Figure 3.6: Boardening rate of PFZs for different volume fractions

are 0.05, 0.1 and 0.2 where results in the τ vs W 2
p lines with the slope of 21.23, 31.01

and 35.03, respectively.

Therefore an obvious increase in the slopes is observed by increasing the volume

fractions of second phase. This changing trend does make sense since concentration

gradients of solute atoms are greater as the volume fractions of particles increase. It

also can be another reason that this transformation is governed by diffusion

phenomenon.

In addition, the mathematical model based on BEM shows the influence of volume

factions of second phase, which fails to be shown in MFM [32, 33]. This is because

MFM ignores solute atoms in the particles as well as the volume fractions of particles.

As a consequence, even though MFM is effective in merging the bulk matrix, BEM

is more accurate than MFM in simulating particle coarsening in alloys.
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3.2.4 Particle size distribution near grain boundaries

Figure 3.7 shows the coarsening of 40,000 particles inside a grain between two

paralleled grain boundaries from the horizontal view. For improving the simulation

statistically, the length of the system is saved the same as the simulation box in

Figure 3.3 while the cross section area is increased by a factor of 4. Therefore, the

average number of particles in the unit of volume is the same. However, we can

average the particle size over a larger number of particles. Figure 3.7 (a) shows the

initial state of the whole system. Figure 3.7 (b) shows the late stage of particle

coarsening process. We can see that particle size becomes larger whereas PFZs form

along two paralleled grain boundaries.

Figure 3.8 is the statistical analysis of average particle size results from discretizing

the domain into bin along x direction. In Figure 3.8 (a), we can see the homogenous

particle size distribution at the initial stage of simulation. The average particle size

in each bin at time step 5001 is a little larger than that at time step 1, which reflects

that particles grow gradually. Later, for time step 20001, 22001, 24001 and 26001,

the average particle size becomes much larger as time goes by. Notably, there are two

small bulges near two paralleled grain boundaries of each time step, which represents

the larger average particle size in these two zones compared with that in the middle

of this grain.

Figure 3.8 (b) looks into the details of the area at top left in Figure 3.8 (a)

which is highlighted by the rectangular. The peak of each time step is located along

PFZs, which means particles near PFZs are larger than those inside the grain. Due

to concentration gradient, particles near grain boundaries tend to dissolve leading

to the formation of PFZs. As a result, most of solute atoms from particles diffuse

53



M.A.Sc. Thesis - Na Yang McMaster - Materials Science and Engineering

(a)

(b)

Figure 3.7: Horizontal view of particle coarsening between two paralleled grain
boundaries inside a grain. 40,000 particles are initially distributed in the system
without overlapping. Grain boundaries are perpendicular to x-axis, and located at
x = 0 and x = 218. (a) and (b) illustrate the situations that are after time step 1
and 30801.
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to grain boundaries, while a small percentage of solute atoms attach to particles at

the edge of PFZs. This is because there is also a concentration gradient between

these particles at the edge of PFZs and matrix in PFZs. Since particles along PFZs

have more resources of solute atoms than those inside the grain far away from grain

boundaries, the absolute value of growth rate of these particles is higher. In other

words, it is faster for large particles to grow and small particles to dissolve along

PFZs. And this is why the average particle size is larger along PFZs.

In addition, this feature has been observed in experimental examinations [53] as

well. Thus, simulation results agree well with experimental results. Again, it proves

that the mathematical model based on MFM, BEM, solute atoms conservation and

diffusion theory has practical meaning in the field of particle coarsening.
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Figure 3.8: Average particle size during particle coarsening process. (a) shows the
average particle size along x axis. (b) looks into the details of the area at top left in
(a).

56



Chapter 4

Conclusions

In this dissertation, we simulated particle-coarsening process based on Mean Field

Method and Boundary Element Method. At the same time, we demonstrated the

capability and robustness of the mathematical model. Simulation results showed that

Boundary Element Method is more reliable than Mean Field Method when applied

in particle coarsening. Boundary Element Method is however limited to describing

particle coarsening that is far away from grain boundaries.

Our primary work is that we successfully extended Boundary Element Method

to particle coarsening near grain boundaries. Based on solute atoms conservation

and diffusion theory, a major improvement was made to the previous mathematical

model. And we demonstrated the capability and validity of the novel model using

a binary alloy system. The simulation results are shown to quantitatively reproduce

the essential features of particle coarsening as follows.

Firstly, precipitates free zones form near grain boundaries. We employed 10,000

and 40,000 particles at volume fraction 0.1 in two separate systems. And we employed

10,000 particles at volume fraction 0.05 and 0.2, respectively. Precipitates free zones
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form clearly near grain boundaries in all the systems. The model was shown to be

well suited in describing particle coarsening near grain boundaries in alloys. Since we

built the mathematical model according to diffusion theory, it proves the credibility

of the theory, which is, the formation of precipitates free zones near grain boundaries

is caused by diffusion of solute atoms.

Secondly, the width of precipitates free zones is proportional to square root of time.

As we know, diffusion distance is proportional to square root of time. The striking

similarities between these two relationships reveal the accuracy of our simulations.

Last but not the least, particles at the edge of precipitates free zones are larger

than those inside the grain. This feature agrees well with experimental examinations.

On the other hand, this feature could be explained by diffusion of solute atoms.

Therefore, it also proves that the formation of precipitates free zones is caused by

diffusion of solute atoms.
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Chapter 5

Future work

Lots of work could be done in the future to improve the mathmatical model in

order to make it universally applicable. The most beneficial work in the model that

could be developed in the future is summarized as follows.

By recalling Figure 2.2, we can see that the focus of this dissertation is mainly on

the calculation of dx
dτ

. In this way, a new concentration profile is built for each time

step. It is worthwhile to point out here that it is an assumption that the capacity of

grain boundaries to absorb solute atoms is unlimited. It is a reasonable assumption at

the early stage of particle coarsening where we studied. However, the concentration

of solute atoms cannot be always zero as more solute atoms are absorbed.

In this sense, a time dependent function of concentration at grain boundaries could

be proposed. Thus, the whole concentration profile might be changed as well. A new

concentration profile could be built for each time step. And at the same time, it is

not only time dependent, but also depends on the area of grain boundaries, the type

of grain boundaries, etc.
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