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Abstract 

In dimensional metrology, contact and non-contact measurement methods each 

have their own respective strengths and weaknesses. Touch-trigger probes have low 

uncertainty, and perform well inside deep holes, but have a relatively slow data 

acquisition speed. By contrast, non-contact digitizers collect high density surface point 

clouds in seconds, and are much less likely to suffer from sensor collision with the part, 

but have a higher uncertainty than touch probes. In sheet metal forming, iterative design 

of the stamping die is needed due to the springback of the sheet metal part. Holes or other 

features of first article parts may be significantly out of tolerance, so the tactile 

measurement path created from the Computer Aided Design (CAD) nominal has to be 

adjusted to avoid cosine error. In more serious cases, probe collisions or missed touches 

may occur. When measuring holes in thin sheet metal, determination of the touch probe 

path height is also a challenge if the actual surface location differs from the nominal. 

To solve this problem and seize the complimentary advantages of contact and 

non-contact measurement methods, a multi-sensor blue Light Emitting Diode (LED) 

snapshot sensor and touch-trigger probe inspection system was developed, and affixed to 

a Coordinate Measuring Machine (CMM). The tactile measurement path was adjusted 

according to the approximate positions and sizes of the features obtained from the scanner 
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data. The system includes an in-house designed calibration target for scanner calibration 

and a lightweight 2-axis rotary table for multiple-orientation scanning as well. Software 

in programming language C for interacting with the scanner and the CMM was developed. 

A sample stamped sheet metal automobile part was experimentally measured. This 

system is currently applied to an orthogonal CMM. Suggested future works include 

implementation on non-Cartesian CMMs, such as articulated arm CMMs, or Computer 

Numerical Control (CNC) machine tools. 
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Chapter 1  

Introduction 

1.1 Motivation for This Work 

  Dimensional metrology plays an important role in quality management and 

process control [1]. Productive metrology not only facilities new product design, verifies 

product quality, but also gains necessary process parameters for optimizing the following 

production processes [2]. With new developments in production, the requirements for 

innovative metrology methods and techniques become increasingly diverse.  Contact and 

non-contact measurement methods each have their own respective strengths and 

weaknesses [3],[4]. Touch-trigger probes can achieve low uncertainty [5], and perform 

well for surfaces that are inaccessible to non-contact scanners, such as deep holes. 

However, they have a relatively slow data acquisition speed of approximately 2 points per 

second. Moreover, soft material surfaces may deform when touched, or even be 

permanently damaged. By contrast, non-contact digitizers collect high density surface 

point clouds in seconds, and are much less likely to suffer from sensor collisions with the 
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part. However, they have higher uncertainty than touch probes, and are constrained by 

visibility and specular reflection difficulties.  

Dimensional metrology is in large demand in automotive industry, where car 

panels are produced in sheet metal forming processes with stamping or punch tools. In 

metal forming, the designed shape of the workpiece may not be obtained because of 

springback [6],[7],[8].  Therefore, design iteration is required. During first article tryout 

and inspection, significant adjustment of stamping or punch die is common. These 

adjustments are needed until repeatable and correct surface shape and hole features are 

achieved. Parts manufactured at early production stage may deviate significantly from 

nominal. Consequently, when touch probing the sheet metal part, Dimensional Measuring 

Interface Standard (DMIS) inspection program created using the CAD nominal geometry 

can no longer be used without introducing significant part surface cosine error. In more 

extreme cases, touch probes may miss touches or collide with the part.  

In thin sheet metal measurement, a second problem arises when touch probing 

holes. If the surface location differs from the nominal, the spherical probe cannot 

correctly contact the hole side. A cylindrical probe could be used, but only in the case 

where probe shaft is exactly normal to the sheet. Currently, this problem is solved in a 

time consuming manner by taking sample points on the surrounding sheet surface to 

ascertain the actual surface location. Hole measurement points are then collected by 

adjusting the probe path to be half of the nominal sheet thickness below the surface. 

For inspection of sculptured surfaces or holes and other features on them, 

multiple-orientation scanning is required for full part surface coverage [9]. In this case, 
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sensor or part tilt/rotate axis is needed in addition to the CMM linear X, Y, and Z axes. 

Determination of whether the tilt/rotate axis should be added to the sensor or the part is 

based on the weight of the sensor, the carrying capability of the CMM component, the 

type of machine that the sensor is affixed to, and so forth. Coordinate system registration 

is needed for transforming point clouds obtained from different orientations by the sensor 

into a common coordinate system.  

1.2 Thesis Objectives 

The objective of this thesis is to develop a multi-sensor inspection system 

consisting of a blue LED structured light scanner and a touch-trigger probe mounted on a 

CMM. The system takes advantage of the best characteristics of contact and non-contact 

sensors, and is able to solve the described problems in tactile measurement of thin sheet 

metal part. Additionally, a tilt/rotate 2-axis rotary table needs to be designed and 

constructed for multiple-orientation scanning of the workpiece, which results in a 5-axis 

CMM.  

1.3 Contributions of This Thesis 

The significant contributions provided by this thesis include: 

1. Developed a multi-sensor inspection system for successful tactile measurement 

of thin sheet metal, and other manufactured parts.  

2. The developed inspection system is ready to be migrated to portable CMMs, 

CNC machines, and robots. 
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3. Mechanically aligned the scanner with the CMM using calibration target for 

extrinsic calibration of the scanner. 

4. Developed software for interacting simultaneously with the scanner and the 

CMM, such as outputting point clouds, and feature size and position measured 

by the scanner, recording the CMM coordinates, and so forth.  

5. Designed and constructed a lightweight 2-axis rotary table for multiple-

orientation scanning to cover the whole part. 

6. Developed program for transforming point cloud data obtained from different 

orientations by the scanner into a common coordinate system, namely 

coordinate system registration.  

1.4 Scope of Thesis 

The remainder of the thesis is organized as follows: 

Chapter 2 is literature review, in which dimensional metrology sensors, including 

contact touch probes and non-contact scanners, are demonstrated. Existing problems in 

the sheet metal tactile measurement are then described. The solution using multi-sensor 

inspection system is proposed. Multi-sensor systems that have been developed by other 

researchers for different purposes are reviewed. Following that, extrinsic calibration of 

the scanner, multiple-orientation scanning, and coordinate system registration are 

described. Finally, a method for acquiring the squareness errors of the CMM is 

implemented.  
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Chapter 3 describes the overall architecture of the inspection system. The 

employed hardware and software, their properties, and the connection between them are 

presented. 

In Chapter 4, mechanical minimization of the angular misalignment between the 

scanner and the CMM axes is shown. The processes of touch probing and scanning the 

calibration target are described. 

Chapter 5 presents the detailed workflow of the multi-sensor synergistic 

inspection. The workflow includes creation of the nominal touch probe inspection 

program, scanner measurement of the workpiece, and adjustment of the touch probe 

measurement path. Transformation of the data between different coordinate systems is 

shown. Compensation of the counter card reading for the linear displacement errors and 

squareness errors of the CMM is also described. 

The design process of the lightweight 2-axis rotary table is provided in Chapter 6. 

The dimension design of the table components, Finite Element Analysis (FEA), and 

strength check of the key components are all presented in this chapter.   

Chapter 7 demonstrates multiple-orientation scanning of the part. Digitization, 

coordinate system registration, merging, and processing of the point clouds are described 

here, followed by 3D comparison of the acquired point cloud with CAD model. Finally, 

measurement with analog touch probe for verification is presented, and the collected data 

are compared with the scanner data. 

Chapter 8 confirms the high efficiency and accuracy of the developed multi-

sensor inspection system with experiments on a stamped automotive sheet metal part. 
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Multiple-orientation scanning of the part was also carried out with the designed rotary 

table. Measurement results are presented and analyzed. Measurement uncertainty of the 

multi-sensor system was investigated. 

Chapter 9 concludes this thesis work, and suggests future work. 
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Chapter 2  

Literature Review 

2.1 Dimensional Metrology  

The life cycle of a product involves a series of activities, ranging from product 

planning and development to production and sales (Fig. 2.1). Metrology should be 

implemented in any phase of the life cycle; otherwise the costs for fixing the errors 

increase by a factor of ten for every further phase [2]. The involved measurement 

activities are: (1) New product-oriented measurements for model verification. (2) Test of 

conformity to specifications. (3) Measurements for manufacturing process control. (4) 

Equipment qualification, e.g. machine tool verification. Metrology in the manufacturing 

process is of great importance in the value chain. It not only verifies whether the part 

features conform to the engineering specifications, but also gains process parameter 

values for optimizing the following manufacturing processes. Moreover, manufacturing 

metrology also helps the development of the next product version or design review. 

Measurement methods fall into two categories: contact and non-contact measurements.  
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2.1.1 Touch Probing System 

There are two touch probing systems. One is touch-trigger probing system that 

measures discrete points at the speed of approximately 2 points per second and has to 

retract from the workpiece following detection of contact with the workpiece. The other is 

scanning probing system in which the probing element keeps in contact with the 

workpiece and hundreds of points are digitized per unit time. Consequently, touch-trigger 

probing system is mostly used in the measurement of standard geometric features, while 

scanning probing system is more appropriate for sculptured surfaces and inspection of 

form deviation [10]. Touch probes, even scanning probes, have a relatively slow 

digitizing speed compared with non-contact digitizers and are crash-prone, but have lower 

uncertainty (within micrometers) and can measure surfaces that are inaccessible to non-

contact scanners, such as deep holes. 

 

Fig. 2.1: The role of metrology in a product life cycle [2]. 

2.1.1.1 Touch-Tigger Probing System 
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The position vector of tip ball center, pr , in the probe coordinate system and the 

effective tip ball correction vector b  (Fig. 2.3) need to  be determined for correct 

measurement results. They are influenced by elastic deformations of stylus stem, tip ball, 

and workpiece caused by probing force, as well as the pretravel variation of the probing 

system (pretravel is the stylus displacement upon contact with the workpiece before 

contact detection) [10]. Therefore, probing system qualification needs to be performed to 

obtain effective tip ball diameter that takes these effects into account (Fig. 2.4). A 

spherical artifact is usually used for 3D spherical tip qualification. It is preferred because 

it has normal vectors in any spatial direction, and can be positioned regardless of 

orientation. The effective tip ball diameter can be calculated from the measured spherical 

artifact diameter '
ad   with probe compensation off, and the actual spherical artifact 

diameter ad  provided by the manufacturer: 

To ensure minimal non-repeatability errors, similar conditions have to be maintained 

during qualification and measurement. This will lead to consistency in probing force 

direction and operating mode. 

 '
eff a ad d d   (2.1)
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center in the probing coordinate system p p px y z  can be determined (Fig. 2.3). Most 

common principles of the length measurement transducer are inductive, capacitive, 

resistive, optical, and scale-based systems.  A Zeiss Prismo CMM [12] was used in this 

thesis. It is equipped with an inductive length measuring system (Fig. 2.5). As the 

magnetically soft metal core moves inside of the coil, the inductance L changes with its 

length inside the coil. Linear responses of the transducer are preferred because of their 

constant sensitivity in the measurement range. However, the function  L f s  is 

hyperbolic. To obtain a more linear response, a differential setup with two coils is usually 

used [3]. 

 

Fig. 2.5: Working principle of scanning probing system (inductive transducer) [3]. 

2.1.1.3 Cosine Error 

A commonly seen error in measurement with touch probing systems is cosine 

error. After qualification, the effective tip ball diameter is recorded. During measurement, 

the CMM tracks the center of the tip ball upon contact with the workpiece. If probe 

compensation is on, the effective tip ball diameter is added (e.g. hole) or subtracted (e.g. 
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stud) in the direction in which the probe is moving (Fig. 2.6(a)). Consequently, the cosine 

error occurs when the probe is moving in a non-normal direction to the measured surface 

[13] (Fig. 2.6(b)). This problem happens when the feature of a manufactured workpiece 

deviates from the designed nominal geometry. 

 

Fig. 2.6: Illustration of cosine error: (a) Probe compensation, (b) Cosine error. 

2.1.2 Non-Contact Blue LED Structured Light Scanner 

Optical 3D measurement techniques are widely used in industry especially for 

sculptured surfaces because optical sensors are capable of high density data acquisition, 

high speed digitizing, and have no contact with the workpiece during measurement. 

However, they have higher uncertainty, and geometric constraints such as visibility and 

pixel resolution. Moreover, they suffer from specularity difficulties and ambient light 

influence [14]. Their applications include, but are not limited to, control for intelligent 

robots, obstacle detection for vehicle guidance, dimensional inspection of stamping 

panels, and inline metrology for mass production of car bodies. Digitizing techniques 
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range from time of flight, Moiré, interferometry, photogrammetry, to laser tracking 

system, laser scanning, and structured light [15].  

 

Fig. 2.7: Working principle of LMI® Gocator 3110 blue LED scanner [16]. 

The optical sensor used for this thesis was LMI® Gocator 3110 [17] (Fig. 2.7). It is 

a structured light scanner integrating Structured Light Modulator, a blue LED, and two 

cameras into one single device. The blue light scanning has better performance than white 

light scanning because it has a longer lasting light source, is less affected by temperature 

due to the utilization of LEDs, and can filter out the ambient light even in a well-lit room 

[18]. The structured light method is categorized as active triangulation. Either 

independent triangulation or stereo correlation mode can be selected when operating the 

blue LED sensor. In independent triangulation mode, each camera independently forms 

the triangulation geometry with the surface point and the structured light projector, using 

the intrinsic parameters calibrated when the sensor was manufactured. As shown in Fig. 

2.7, their relationship can be expressed as [19]: 
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With new developments in production, the requirements for innovative metrology 

methods and techniques have become increasingly diverse. As the touch probe and the 

non-contact digitizer each have their own strengths and weaknesses, multi-sensor 

metrology has been developed which combines them, usually on a CMM.  This sensor 

integration has made it possible to measure almost all kinds of features that may not be 

obtained by one sensor or the other alone. The high measuring speed of multi-sensor 

CMMs enables economical on-line inspection [10]. 

Two kinds of information interaction between the outputs from multiple sensors 

can be observed in related research, i.e., complementary interaction and synergistic 

interaction [25]. Complementary information interaction means two or more sensors 

digitize different features of the same object that are independent of each other, but 

complement each other. Synergistic information interaction occurs when the data 

obtained by one sensor (optical sensor) can guide the inspection path of another sensor 

(touch probe). Different multi-sensor measurement systems have been implemented by 

researchers, but their research has a different focus and methods. 

Reverse Engineering is a field that most multi-sensor inspection systems have 

been applied to. In reverse engineering, usually no CAD model is available. The non-

contact digitizer is employed to measure free-from surfaces due to its high density 

digitizing characteristic and high digitizing speed, while the touch probe is utilized to 

measure features that require low uncertainty and ones that cannot be obtained by the 

optical sensors due to visibility constraints, such as deep holes. Research of [26], [27] and 

[28] are examples of this application. Their multi-sensor systems work in a 
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complementary way. Research of Bradley et al. [26] focused on feature extraction and 

fitting.  The laser scanner was used to measure free-form surface patches, and the surface 

patch boundaries were obtained by the touch probe. The patch boundary data was used to 

segment the free-form surface data into patches. B-spline curve and surface representation 

of the object was created by modeling both the data sets. The touch probe was moved 

manually which may cause cosine error. Sladek etc. [27] combined a structured light 

vision system and a touch probe. The main part of the paper was about working process 

of the vision system and segmentation of the points digitized by it. Features that needed to 

be touch probed were determined by the segmentation results, either for lower uncertainty 

result or compensating the measurement capability of the vision system. Details on 

creating the touch probe inspection path and common coordinate system were not 

mentioned. In Xie et al.’s research [28], a one-axis rotary table was used for measuring 

the object from different views. Inspection planning of the touch probe was not 

mentioned either.  

Carbone et al. [29] and Shen et al. [30] also concentrated on reverse engineering, 

but they combined the touch probe and the vision system in both complementary and 

synergistic ways. Carbone et al. first used the scanner data to create a rough CAD model 

that was then used as guidance for touch probing inspection. The touch probe inspection 

path was planned using predefined inspection plan functions available in the CMM 

software. Touch probe measurements were iterated until the deviations between the points 

on the rough CAD model and those obtained by the touch probe are minimum. Finally, a 

CAD model was constructed with the data from both sensors. In Shen’s research, much 
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effort was put into calibration of the vision system, and a number of algorithms were 

developed to fuse and extract data from the visual images. Although planning the 

inspection touch probing points for geometric features based on the complete feature 

information extracted from the data of vision system was mentioned, details were not 

covered in the paper. 

Another field that attracts attention of researchers is inspection planning, in which 

the scanner and the touch probe work in a complementary way. Sensor selection for 

measurement of different features and inspection path planning are the main focuses in 

this field. Studies of Mohib et al. [31] and Zhao et al. [32] belong to this field.  In 

Mohib’s research, a knowledge-based system was employed for sensor selection. Sensor 

type was selected based on three factors: tolerance specifications, whether the feature is 

external or internal, and feature dimensions (shape, size, etc.). Order of inspection tasks 

was determined by considering it as a travel salesperson problem. Each task was treated 

as a city. The links between them were the travel distances between cities, which were the 

time spent in moving from one feature to another during inspection. The goal was to 

minimize the total non-digitising time. Knowledge-based method for sensor selection was 

also utilized in Zhao’s research. Moreover, three issues were fixed for laser scanner 

inspection planning: view angle calculation, scanner elevation determination, and scan 

path generation. 

Nashman et al.’s research [25] is unique compared with the applications 

mentioned above. Their system was synergistic inspection based on the condition that no 

CAD model or planned inspection path was available, and no human operation was 
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involved. The camera captured both the feature (edge etc.) of the object and the touch 

probe stylus. Algorithms were implemented to extract feature information and probe 

stylus from the captured images. The distance between the point to be measured and the 

probe was calculated by sum of absolute differences correlation algorithm and updated in 

every processing cycle. The touch probe inspection path was guided during the whole 

measurement by the camera without using CAD model. The camera used the room light 

as the light source, which may produce inaccurate results. 

The concept of the developed multi-sensor inspection system in this thesis is 

similar to that of Nashman’s research. The motivation of our research is to solve the 

problem mentioned in Section 2.2 more efficiently. The blue LED structured light scanner 

and the touch-trigger probe work in a synergistic way. However, the CAD model of the 

workpiece is available in this thesis, as it is needed for creation of the nominal inspection 

program. The structured light scanner used in this thesis work is more accurate and was 

calibrated with respect to the CMM.  

2.4 Extrinsic Calibration of the Scanner 

There are both intrinsic and extrinsic parameters of a scanner. As the intrinsic 

parameters of the blue LED scanner was calibrated by the manufacturer during 

production, only extrinsic parameters need to be calibrated. To use the scanner data to 

guide the touch probe inspection path, the scanner data and the touch probe data need to 

be transformed into a common coordinate system. In this thesis, the LCS of the scanner 

was transformed to the Machine Coordinate System (MCS) of the CMM. This process is 
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extrinsic calibration of the scanner. A calibration target is usually needed for scanner 

calibration. Zhang et al. in [21] used a red/blue flat checkerboard. Xie et al. in [33] 

designed a planar target with square patterns (Fig. 2.12). In this thesis, an in-house 

designed angled slot target was employed.  

 

Fig. 2.12: Calibration Target [21],[33]: (a) Red/blue flat checkerboard, (b) Planar target 

with square patterns. 

2.5 Multiple-Orientation Scanning and Coordinate System 

Registration 

There are three ways to measure a 3D object from different orientations with the 

scanner: rotating the object, moving and rotating the sensor, and utilizing fixed imaging 

system with multiple cameras [15]. No matter which method is employed, point clouds 

obtained at different positions and orientations need to be transformed into a common 

coordinate system. Therefore, the relative position between the scanner and the object 

needs to be recorded for each position. This process is called coordinate system 

registration. For the method of sensor movement, approaches for determining the relative 

position include but are not limited to: (1) Mounting the sensor on a precise mechanical 
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device, the position of which is provided (Fig. 2.13(a)). (2) Optical tracking of the 

position and orientation of the sensor using reference target on the sensor frame (Fig. 

2.13(b)). (3) Measurement of markers accurately fixed in the object field.  

 

Fig. 2.13: Approaches for determining sensor position [34]: (a) Precise mechanical device, 

(b) Optical tracking of sensor. 

As the blue LED sensor used in this thesis is heavy (1.35 kg) compared with the 

carrying capacity of the gravity counterbalance spring of the CMM, the method of 

rotating the object was used instead of rotating the sensor. In most literature, a one-axis 

accurate mechanical rotary device is used to rotate the object [9],[28],[35]. It has high 

precision, but the cost is high and it is sensitive to room temperature change. Moreover, 

its application is limited to cylindrical objects. In this thesis, a lightweight two-axis rotary 

table was designed for scanning 3D features from different views. Three tooling spheres 

were mounted on the rotary table for coordinate system registration. 

2.6 Rigid Body Errors of CMM 
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For orthogonal CMMs, the MCS is a Cartesian coordinate system. If no structural 

error exists, each carriage of the CMM should only move along its axis and the moving 

direction of the three carriages should be perpendicular to each other. However, no 

machine is perfect, and there is always structural error. In fact, extraneous motion occurs 

when the carriage is trying to move only in one dimension. The motion is described as 

rigid-body kinematics, assuming that the carriage is rigid during motion. Based on that, 

each carriage has three translational motions (scale along its moving axis and straightness 

in the other two axes) and three rotational motions (roll, pitch, and yaw) corresponding to 

its six degrees of freedom (Fig. 2.14). Each of these parameters is a function of axis 

position. In addition, there are three squareness errors between each two axes [10].  

 

Fig. 2.14: Schematic of error parameters for the x axis [10]. 

Squareness error occurs when any two axes of the coordinate system is out of 

square [10]. As shown in Fig. 2.15(a), different measurement results can be obtained 

when measuring the same ball bar length in square and out-of-square coordinate systems. 

The XY squareness error in Fig. 2.15(a) can be expressed as: 
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If the length of the artifact, 1L  , is known, we can obtain  by measuring its length in the 

out-of-square coordinate system, 2L . If the length of the artifact is unknown, the 

squareness error can be determined by measuring the same artifact in two crossed 

positions (Fig. 2.15(b)).  The XY squareness error in Fig. 2.15(b) can be expressed as: 
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Fig. 2.15: Schematic of XY squareness error [10]: (a) Same ball bar length in square and 

out-of-square coordinate systems, (b) Estimate method. 

  



Master Thesis – K. Xue                                              McMaster – Mechanical Engineering 
 
 

 

27 
 

 

Chapter 3  

System Architecture 

The components of this multi-sensor inspection system (Fig. 3.1) are listed as 

follows: 

Hardware: 

 CMM: DEA IOTA-P with retrofitted motors and motion control computer. 

 Touch-trigger probe head and probe: Renishaw® PH6/TP6 [36],[37].  

 Blue LED structured light scanner: LMI® Gocator 3110 [17]. 

 Counter card: PCI-QUAD04 four-channel quadrature encoder input board [38]. 

 Renishaw® AM1 adjustment module [39]. 

 Designed lightweight 2-axis rotary table. 

 In-house designed angled slot calibration target. 

Software: 

 Siemens NX 9.0 [40]. 

 Mitutoyo GEOMeasure 3000 DMIS interpreter software [41]. 

 Geomagic Qualify 12 3D reverse engineering software [42]. 
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 Developed software. 

 

Fig. 3.1: Multi-sensor system configuration: (a) Horizontal, (b) Oriented, (c) Scanner 

calibration target. 

The scanner and the touch-trigger probe are both affixed to the CMM using 

designed brackets (Fig. 3.1(a), Appendix A.1, A.2). Two Renishaw® AM1 adjustment 

modules were used for adjusting roll, pitch, and yaw angles of the scanner and the 

 
(a) 

 

     
            (b)                                                             (c) 
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calibration target that is used for extrinsic calibration of the scanner (Fig. 3.1(c), 

Appendix A.3). Details are covered in Chapter 4. The designed lightweight 2-axis rotary 

table is for use with surfaces with non-vertical normal directions. The design procedure is 

described in Chapter 6. For the DEA IOTA-P CMM used in this thesis, the volumetric 

roll/pitch/yaw errors and the straightness errors were negligible. Using a ball bar (Fig. 

3.2), the static XY squareness error was determined to be 48.073 10  rad with the 

“crossed position” method as mentioned in Section 2.6. The static YZ and ZX squareness 

errors were 53.947 10  and 41.468 10  rad respectively. Both linear displacement errors 

in each axis and squareness errors between axes were compensated by CMM software. 

The probe stylus was equipped with a 2.5 mm diameter spherical ruby tip. It was 

qualified by taking five points (one on the top, four quadrant ones on the equator) on a 

25.0009 mm diameter precision sphere (Fig. 3.3). The parameters of the blue LED 

scanner are shown in Tab. 3.1.  

 

Fig. 3.2: Ball bar artifact. 



Master Thesis – K. Xue                                              McMaster – Mechanical Engineering 
 
 

 

30 
 

 

Fig. 3.3: Renishaw® probe qualification sphere. 

Measurement Range (mm) Near Field of View (mm) Far Field of View (mm) 

100 60 × 105 90 × 160 

Resolution Z (mm) Resolution XY (mm) Scan Rate (Hz) 

0.035 – 0.108 
0.090 × 0.100 – 
0.150 × 0.160 

Up to 5 

Tab. 3.1: Property parameters of the blue LED scanner. 

 

Fig. 3.4: Connection between components of the system. 
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The connection between the components is illustrated in Fig. 3.4. The counter 

card embedded in the PC work station was used to capture the CMM scale readings from 

the CMM linear encoder. Software in programming language C for interacting with both 

the scanner and the counter card was developed based on Gocator SDK [17] of the 

scanner and Universal Library [38] of the counter card. The software communicated with 

the scanner through Ethernet. Siemens NX 9.0 was utilized to create nominal touch probe 

inspection program from the CAD model. Mitutoyo GEOMeasure was employed for 

running the adjusted touch probe DMIS inspection program, sending OTC commands to 

CMM motion controller (OTC 5000C motion control unit), and receiving measurement 

data from the CMM. Scanner point clouds obtained from oriented part inspection 

(Chapter 7) were processed and compared using Geomagic Qualify 12. 
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Chapter 4  

Extrinsic Calibration of the Scanner 

The point cloud and feature fitting result obtained from the scanner are in LCS. As 

the scanner is mounted on an external device, CMM, and moving with it, the extrinsic 

parameters of the scanner have to be calibrated for setting up GCS. Moreover, to use the 

scanner data to guide the touch probe measurement path, the scanner and the touch probe 

data need to be transformed into a common coordinate system. In this thesis, the LCS of 

the scanner was transformed to the MCS of the CMM. To accomplish this, an in-house 

designed angled slot calibration target was utilized (Fig. 4.1). It is a 160 × 90 × 20 mm3 

square piece with two perpendicular 4.6 mm deep slots, each of which has a pair of 

symmetric 30° angled edge planes. The slots are 110 mm and 90 mm long respectively. 

The width of the edge plane is 3.67 mm. The flatness, measured by taking 30 sample 

points across the top of the target, was 24 µm.  

The goal of the calibration process is to obtain the Homogeneous Transformation 

Matrix (HTM), LCS MCSHTM  , expressed as: 
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0 0 0 1
LCS MCS LCS MCS

LCS MCS

R T
HTM  

    (4.1)

As can been seen, there is a rotation matrix and a translation vector in the matrix. During 

calibration, the LCS of the scanner was first rotated to align its axes with those of the 

CMM MCS. Then the LCS was translated to align its origin with that of the CMM MCS.  

 

Fig. 4.1: Calibration target: (a) Drawing, (b) Machined part. 

Angular misalignments between the axes of the scanner LCS and the CMM MCS 

were mechanically minimized first. The calibration target was first aligned with the CMM 

by touching probing its slots and top plane. The scanner was then adjusted to align with 

the target by scanning the target. For adjusting the roll, pitch, and yaw angles of the 

calibration target and the scanner, two Renishaw® AM1 adjustment modules were used 

(Appendix A.3). The angles were adjusted with adjusting capstans and screws of the 

module. To adjust the target, one adjustment module was mounted beneath it (Fig. 4.2(a)). 

To mount the target and the module on the CMM granite table, an aluminum collar was 

designed (Appendix A.4), in which the shank was fixed with two set screws 90° apart 

from each other. Finally, the aluminum collar was fixed on the granite table with a T-nut 

and a hex bolt (Fig. 4.2(b)). Using touch probing, the top plane of the target was adjusted 
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to be horizontal, and the long slot to be aligned with the CMM Y axis. Another AM1 

module was mounted between the scanner and the CMM Z axis (Fig. 4.2(c)). It was 

mounted on the scanner with a designed bracket (Appendix A.2) and into the CMM Z 

axis with a shank and two set screws. The scanner was adjusted to align with the top 

plane of the target, and its Y axis with the long slot. 

 

Fig. 4.2: Calibration target and scanner mounted with Renishaw® AM1 adjustment 

module: (a) Target and adjustment module, (b) Schematic of mounting the target on the 

CMM granite table, (c) Scanner and adjustment module. 

   
                              (a)                                                        (b) 
 

 
(c)
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Residual angular misalignments between the axes were corrected mathematically 

by the obtained rotation matrix LCS MCSR  . The translation vector LCS MCST  was also derived 

with the developed mathematical algorithm to align the origins of LCS and MCS. To 

derive LCS MCSHTM  , the top plane, the −X and +X 30° angled edge planes of the long 

slot, and the +Y and −Y 30° angled edge planes of the short slot were all touch probed 

and scanned to obtain data in the CMM MSC and the scanner LCS respectively. The 

acquired data were used to transform between LCS, MCS, and the constructed calibration 

Target Part Coordinate System (TPCS). Detail of the algorithm is described in reference 

[43]. The translation vector, '
LCS MCST  , derived directly from the algorithm doesn’t 

consider the instantaneous CMM (scanner) position. The final translation vector can be 

expressed as: 

   '
LCS MCS LCS MCS CMMi CMMcT T P P      (4.2)

where P  is a column vector consisting of X, Y, and Z coordinates. CMMiP  is the 

instantaneous compensated scale readings of the CMM, and  CMMcP  is the compensated 

scale readings of the CMM when the calibration target was scanned during calibration.  

For scanning the top plane and the angled edge planes, C program was developed 

with Gocator SDK of the scanner. The scanner was moved to the same spot over the 

target each time, so that the light exposure and the active area for each feature could be 

predefined.  Exposure determines the camera and light on-time. The active area is the 

selected region within the maximum field of view that is used for 3D data acquisition. 

The scanner data of all the planes can be collected by running the program only once.  
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For touch probing, the challenge was to measure the angled edge planes, as there 

is slight dimensional deviation in the machined part from CAD model. Deviation can be 

noticed when using the side planes as the datums (Fig. 4.1), for the probe was sliding on 

the edge planes when touching them. Therefore, the vertical planes of the slots were used 

as the datums instead. To construct the datum reference frame, the top plane, the −X 

vertical plane of the long slot, and the –Y vertical plane of the short slot were all touch 

probed.  Their positions and normal directions were used to set up the reference frame. In 

that frame, the top plane and the four angled edge planes were finally measured. The 

obtained data was transformed back to CMM MCS and utilized to derive LCS MCSHTM  . 
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Chapter 5  

Multi-Sensor Synergistic Inspection 

The multi-sensor blue LED scanner and touch-trigger probe inspection system 

takes advantage of the high digitizing speed of the scanner and the low uncertainty of the 

touch-trigger probe. In this inspection system, after the extrinsic calibration described in 

Chapter 4, features, such as holes and slots, are first measured with the blue LED scanner. 

The approximate geometric and dimensional properties of features obtained from the 

scanner are then used to adjust the nominal tactile DMIS inspection program created from 

CAD geometry. Finally, the features are touch probed with lower uncertainty using the 

adjusted DMIS program. The workflow is illustrated in Fig. 5.1. An automotive sheet 

metal part was measured with this multi-sensor approach.  

5.1 Nominal CAD Touch Probe Inspection Program 

As the relative position between the holes on the fixture table was known, the 

fixture posts and the sheet metal part were constructed in CAD model (Fig. 5.2). As 

mentioned in Chapter 3, the nominal DMIS touch probe inspection program was created 
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from CAD model using Siemens NX 9.0. In this program, the teach point was first touch 

probed, and the coordinate system was translated from the MCS to it. In this way, the Part 

Coordinate System (PCS) is constructed. The teach point is a reference point that can be a 

point on the part or center of a fixture post. The coordinate system transformation was all 

performed in DMIS program. As the position tolerance is not specified in the engineering 

drawing (Fig. 5.2), the fixture posts here are for locating the part, but are not used as 

datum targets. Therefore, they do not need to be measured to construct a datum reference 

frame. A datum reference frame consists of three mutually perpendicular intersecting 

datum planes and constrains the six degrees of freedom of the part. The part has a 

minimum of three contact points with the primary datum feature, two with the secondary 

datum feature, and one with the tertiary datum feature. In fact, sheet metal parts are 

usually thin and consist of free-form surfaces, so holes or slots on them are often designed 

as the secondary or tertiary datum rather than side surfaces. When a position tolerance is 

specified, the datums need to be measured to construct the datum reference frame, and a 

new PCS will be constructed according to it. 

After measuring the teach point and the datum features (if needed), the touch 

probe proceeded to measure the features (holes, slots, etc.) of the part that need inspection. 

5.2 Scanner Inspection 

5.2.1 Scanner Inspection Path and Scanner Parameters 
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Fig. 5.1: Workflow of multi-sensor inspection system. 

 

Fig. 5.2: Sheet metal part and fixture posts. 
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During scanner inspection, the teach point was first scanned by manually moving 

the scanner over it. The position of the teach point was then recorded and transformed 

from the LCS to the GCS of the scanner. It can be expressed as: 

  GCS LCS GCS LCS CMMP R P P     (5.1)

where CMMP  is the compensated scale readings of the CMM, LCS GCS LCS MCSR R  . The 

axes of GCS are parallel to those of MCS. The position of the CMM is taken into account 

in GCS, as the scanner has to move with the CMM to overcome its field of view 

limitation.  

Following that, the nominal GCS positions of the features and datums (if needed) 

to be measured were obtained from the CAD model based on the GCS position of the 

teach point. The scanner was then moved automatically to the features using DMIS 

program in GEOMeasure, taking snapshots, and collecting the data. Software in C for 

interacting simultaneously with the scanner and the counter card was developed based on 

Gocator SDK [17] of the scanner and Universal Library [38] of the counter card. 

Measurement tools for 3D feature recognition are offered all inside the scanner and 

implemented in the developed software. The software was employed to enable the time 

trigger of the scanner, obtain the scanner measurement data through Ethernet, capture the 

instantaneous compensated scale readings of the CMM, and process and output the data.  

The height of the scanner was adjusted to keep the part in the near view of the 

scanner (50 mm from the part surface) so that higher resolution could be achieved. The 

acquisition speed of the scanner depends much on the resolution, the selected active area 
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size, and exposure time. If the resolution is set high, the active area is large, or the 

exposure time is long, the frame rate of the scanner has to be set low, otherwise the 

processing blocks will be dropped due to heavy CPU load. In this thesis, the resolution 

was set to be the highest 0.1 mm. The active area was set to be square, centered at the 

nominal hole position, and 10 mm larger than the nominal hole diameter to collect the 

points on the surface surrounding the holes.  The exposure was set using the “Auto Set” 

function of the scanner. The frame rate was set as 4 Hz.  

In the case where more than one features needed to be measured in one snapshot, 

the scanner moved to the middle of the features. The active area of each feature was then 

set automatically in the developed C software based on the nominal GCS positions of the 

features, and the instantaneous CMM position. For example, the active area for a hole can 

be expressed as: 

 

 

 
   

. . 10 / 2

. . 10 / 2

. . 32.5

. 10, . 10, . 20

nom

nom

ActArea X CMM X HoleX d

ActArea Y CMM Y HoleY d

ActArea Z CMM Z

ActArea L d ActAreaW d ActArea H

   

    

  
    

  (5.2)

where all the values are in mm,  . , .ActArea X ActArea Y  is the upper left corner of the 

area on X-Y plane, . , , ,CMM I I X Y Z  is the instantaneous compensated scale reading 

of the CMM,  ,nom nomHoleX HoleY  is the nominal GCS position of the hole, and d  is the 

diameter of the hole. There is a minus sign before  . nomCMM Y HoleY , because the 

LCS of the scanner is left-handed. There is also a minus sign before .CMM Z , because 

the Z coordinate of the CMM highest positon is 0. The value 32.5 is to ensure the whole 
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feature is included in the active area in Z direction. This value is related to the Z 

measurement range and clearance distance of the scanner (Fig. 2.7), and can be adjusted 

as needed. The length, width, and height of the active area were set as well.  

5.2.2 Compensation of Counter Card Reading 

The scale readings of the CMM need to be recorded each time the scanner is 

moved to a new location along with the CMM, so that scanner data can be transformed 

from LCS to MCS or GCS. The counter card was used for this purpose. The counter card 

captures the scale readings of the CMM that are later compensated by software 

considering the CMM rigid body errors mentioned in Section 2.6. As mentioned in 

Chapter 3, the volumetric roll/pitch/yaw errors and the straightness errors of the CMM 

were negligible. Only the linear displacement error in each axis as a function of axis 

position and the squareness errors between the axes need to be compensated. They are 

stored in an error map. According to reference [10], the compensation for each axis can 

be expressed as: 

 

 

 
 
 

' '

'

x xy zx

y yz

z

X X Y Z

Y Y Z

Z Z

  

 



   

  

 

  (5.3)

where   , , ,i I I X Y Z   is the linear displacement error,  is the squareness error in 

radians, 'Y  can be expressed as (same for 'Z ): 

 
 

  Min , Max ,

'

ucY YMaxPosition Y YMinPosition

Y ucY YMinPosition



 
  (5.4)
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where YMaxPosition and YMinPosition  are the compensation range of the axis position. 

In order to compensate the readings, X , Y and Z should be added to the measured 

coordinates.  

5.2.3 Scanner Measurement Result 

Measurement tools for feature fitting are offered all inside the sensor. 

Corresponding functions are provided in Gocator SDK and employed in the developed C 

software. For hole feature recognition, there are three phases: Search, Measure, and Filter 

[16]. In search phase, the tool searches for coarse edge data and carries out a rough fitting 

of the hole feature. The data within the measurement region are employed to evaluate the 

part orientation. In measure phase, more strict edge detection is performed to accurately 

determine the hole edge. Outliers and noise are rejected in this step. The set of refined 

edges is then used to locate and inspect the feature. Finally, in filter phase, the detected 

location and size of the hole are decided to be valid or not by comparing them with the 

nominal and tolerance of the hole size. The nominal radius and its tolerance were 

predefined in the developed C software according to engineering drawing. The 

measurement region parameters need to be set to limit the region in which feature 

extraction will occur.  It was set in the same way as the active area as described in Section 

5.2.1, except that it is 4 mm larger than the nominal hole diameter. The actual 

approximate radii and X, Y, and Z positions of the holes, X, Y, and Z positions of the 

teach point and datum features (if needed), and the point cloud data in the active areas 

were output from the software and transformed to the CMM MCS (Eqn. (5.5)). 
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  MCS LCS MCS LCSP HTM P    (5.5)

As mentioned in Section 5.1, in touch probe inspection, the teach point is first 

measured and the CMM MCS is translated to it. Accordingly, the scanner data need to be 

transformed from MCS to PCS, the origin of which is the teach point (Eqn.(5.6)). 

 

 

1 0 0

0 1 0

0 0 1

0 0 0 1

PCS MCS PCS MCS

MCS
TP
MCS

TP
MCS PCS MCS

TP

P HTM P

X

Y
HTM

Z





 

 
  
 
 
 

  (5.6)

where  , ,MCS MCS MCS
TP TP TPX Y Z  is the coordinate of the teach point in MCS obtained from the 

scanner. If a datum reference frame needs to be set up, the PCS will be constructed 

according to it using the measured datum features.  

When touch probing a hole in thin sheet metal, a common challenge is to 

determine the height of the planned touch probe point as mentioned in Section 2.2. With 

this multi-sensor approach, the average height of surface points within a 1 × 1 mm2 

square zone adjacent to each planned touch probe hole point was calculated (Fig. 5.3), 

and offset by half the part thickness to program the touch probe contact. 

5.3 Touch Probe Program Adjustment and Inspection 

The nominal DMIS program created from the CAD model was adjusted using the 

scanner data. The coordinates of the planned touch probe hole points were edited based 

on the approximate radii and X, Y positions of the holes, and the height of the planned 
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hole points obtained from the scanner measurement result. The rest of the program 

remained the same. 

 

Fig. 5.3: Determination of the height of the planned touch probe point. 

In touch probe inspection, the teach point and the datum features (if needed) were 

measured first to construct the PCS. The coordinate system was first translated from MCS 

to the teach point. If the datum features are measured to set up a datum reference frame, 

further transformation is needed. The transformation was all done in DMIS program and 

performed in GEOMeasure. 

When touch probing the holes, iterating process is needed to achieve measurement 

results of high accuracy, until converged results are obtained. The X and Y positions and 

radii of the holes were provided by the scanner result for the first measurement. 

Subsequent measurements were guided by the result of the previous tactile measurement 

for iterating. The heights of the planned touch probe hole points were always determined 

by the scanner result.  
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Chapter 6  

Rotary Table Design 

In this multi-sensor set up, the scanner is projecting structured light vertically. If 

the normal direction of the part surface or the axis of the feature to be measured is far 

from the vertical direction, high uncertainty scanning results will be obtained. At high 

angles, the features cannot be captured at all by the scanner. Therefore, a lightweight 2-

axis rotary table was designed to scan surfaces from different view angles, providing 4th 

and 5th rotary axes in addition to X, Y and Z axis of the CMM. The rotary table shown in 

Fig. 6.1 is the final design. It consists of a pair of vertical base supports, suspend hangers, 

locking hinges, a bottom plate, a round plate and a ring (Lazy Susan style) bearing. The 

vertical base supports are mounted on the CMM granite table through the T-slots using T-

nuts. The round plate is mounted on the bearing, providing one rotary axis. The adjustable 

10° angle increment locking hinges [44] provide the second rotary axis. Three tooling 

spheres mounted on the table provide coordinate system registration for different table 

orientations. During the design process, the dimensions of the parts were determined first, 

ensuring the rotary table can fit in the volume of the CMM. The forces on the parts were 

then calculated, and the structure strength was analyzed with Nastran FEA package in 
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Siemens NX 9.0 [40]. The design was modified in the FEA process, which resulted in 

original design, welding design, and combined final design. Finally, the strength of key 

joints was checked.  

 

Fig. 6.1: Rotary Table Final Design. 

6.1 Dimension Design 

The important dimensions of the DEA IOTA-P CMM that need to be considered 

when determining the rotary table dimension is shown in Tab. 6.1. The CMM axes are 

illustrated in Fig. 3.1(a).  

Item Value (mm) 

Distance between CMM bridges along Y 600.075 

Height of the CMM 558.80 

Tab. 6.1: Important dimensions of the DEA IOTA-P CMM. 
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The diameter of the round plate is 460 mm. When designing the distance between 

the two vertical base supports along the rotary axis of the locking hinges, the thicknesses 

of the vertical base support, the suspend hanger, and the length of the bottom plate (larger 

than 460 mm) should be considered. In addition, the CMM air bearings take space 

between the bridges. Therefore, the rotary axis of the locking hinge was determined to be 

along the CMM X axis.  

6.1.1 Suspend Hanger 

The height of the suspend hanger should be larger than that of the part to be 

measured, so that the center of gravity is lower than the rotary axis of the locking hinge. 

The suspend hanger should be thick enough to bear the sum of the gravities of the round 

plate, the bottom plate and the measured part. The top of the suspend hanger should be 

thick enough to support the hinge base (Fig. 6.2). See Tab. 6.2. 

 

Fig. 6.2: Dimension of the locking hinge (in) [44]. 

Item Condition Conclusion 

Height  Height of measured part. 
100 mm, larger than height of part 

for experiment. 

Thickness Width of hinge base, 1 in. 
12.7 mm (0.5 in) thick,  

25.4 mm (1 in) thick on the top. 
Tab. 6.2: Dimension of suspend hanger. 
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6.1.2 Bottom Plate 

The width of the bottom plate should be larger than the diameter of the round 

plate, and smaller than the distance between the CMM bridges. When designing the 

length of the bottom plate, the thickness of the suspend hanger and the diameter of the 

round plate should be taken into account. See Tab. 6.3. 

Item Condition Conclusion 

Width 
Distance between bridges, 600.075 mm; 

Diameter of round plate, 460 mm. 
480 mm, 

460 < 480 < 600.075. 

Length 
Thickness of suspend hanger, 12.7 mm; 

Diameter of round plate, 460 mm. 

528 mm, 
460 12.7 2 528     

20 mm margin on each side. 

Thickness High rigidity, little bending. 
12.7 mm (0.5 in),  

to be checked by FEA. 
Tab. 6.3: Dimension of bottom plate.  

6.1.3 Vertical Base Support  

The vertical base support should be thick enough to support the weight of the 

whole assembly and the workpiece, and bear large bending moment. When designing the 

height, the height of the locking hinge, the suspend hanger, and the thickness and width of 

the bottom plate should be considered (Fig. 6.3). As the vertical base supports are 

mounted on the CMM granite table through the T-slots using T-nuts, position of clearance 

holes on the base needs to be designed. See Tab. 6.4. 

6.1.4 Assembly Volume Check 

Whether the whole assembly of the rotary table can fit into the CMM is checked 

in this section. 
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Fig. 6.3: Side view of rotary table assembly and key dimensions. 

Item Condition Conclusion 

Thickness 
High rigidity, little bending. 
Width of hinge base, 1 in. 

25.4 mm (1 in) thick. 

Height 

Height of hinge, 35 mm; 
Height of suspend hanger, 

100 mm; 
Thickness of bottom plate, 

12.7 mm; 
Half width of bottom plate, 

240 mm. 

 1 35 100 12.7 cos 240sinH      . 

When 1max58.3912 , 281.807H     mm. 

2 1max

1max 35 246.807.vb

H H

H H



   


 

 Set Hvb = 265 mm. 

Holes 
Distance between T-slots on 
the granite table, 174 mm. 

Distance between holes is the same as 
distance between T-slots. 

Tab. 6.4: Dimension of vertical base support. 

6.1.4.1 Dimension along CMM Y Axis 

Dimension of the assembly along CMM Y axis was calculated and compared with 

the distance between the bridges of the CMM (Fig. 6.3).  

   1 35 100 12.7 sin 240cosL        (6.1)

 When 1max31.6088 , 281.807L     mm. 281.807 < 600.075/2 = 300.038. 
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6.1.4.2 Dimension along CMM Z Axis 

The distance between the highest and lowest point of the assembly was calculated 

and compared with the height of the CMM (Fig. 6.3).  

   2 230sin 35 100 24 cos 35 265L          (6.2)

where 230 is the radius of the round plate, and 24 is the sum of the thicknesses of the 

round plate and the bearing. The derivative of 2L  is, 

  '
2 230cos 111sinL      (6.3)

When '
20 90 , 0L     . Therefore, 2L  keeps increasing with angle θ. When 

90 , 530 558.8L     . 

6.2 Force Analysis 

The force imposed on each component was analyzed and calculated in this section. 

The free body diagram of the whole assembly is shown in Fig. 6.4. 1N  and 2N  are the 

bearing forces imposed by the CMM granite table on the left and right vertical base 

supports. vG , sG , rpG , bG  and pG  are the gravities of the vertical base support, suspend 

hanger, round plate (including bearing ring), bottom plate, and the part to be measured 

respectively. The bearing force can be expressed as: 

   1 2 2 2 / 2v s rp b pN N G G G G G        (6.4)

When considering the round plate, the bottom plate and the suspend hangers as 

one assembly, the force on the assembly is shown in Fig. 6.5. sF  is the pulling force 
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provided by the locking hinge, and f is the bearing force by the joints between the 

suspend hanger and the locking hinge. When the table is rotated angle θ, the forces can be 

expressed as: 

   2 cos / 2s rp b p sF G G G G       (6.5)

   2 sin / 2rp b p sf G G G G       (6.6)

 

Fig. 6.4: Free body diagram of rotary table assembly. 

 

Fig. 6.5: Free body diagram of round plate, bottom plate and suspend hanger assembly. 
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As can be seen in Fig. 6.6, the round plate and the bottom plate are subject to the 

gravities of themselves and the measured part, the pulling force  provided by the suspend 

hanger ( bF ), and the bearing force by the joints between the suspend hanger and the 

bottom plate ( bf ). When the table is rotated angle θ, the forces can be expressed as: 

   cos / 2b rp b pF G G G      (6.7)

   sin / 2b rp b pf G G G      (6.8)

The forces on the suspend hanger are presented in Fig. 6.7. It is subject to its own 

gravity ( sG ), the reaction force by the bottom plate and the round plate ( 'b bF F ), the 

bearing force by the joints between the suspend hanger and the bottom plate ( sf ), and 

force f , sF mentioned above. Force sf  can be expressed as: 

   sin sin / 2s s rp b pf f G G G G        (6.9)

 

Fig. 6.6: Free body diagram of the round plate and the bottom plate. 
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As with the vertical base support, it is subject to its own gravity ( vG ), 

compression force vF , and bearing force 1,2N  (Fig. 6.8). vF  can be expressed as: 

   1,2 / 2v v s rp b pF N G G G G G        (6.10)

 

Fig. 6.7: Free body diagram of suspend hanger. 

 

Fig. 6.8: Free body diagram of vertical base support. 

6.3 Design Based on FEA  
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6.3.1 Original Design 

The three main components of the rotary table in the original design are presented 

in Fig. 6.9. The thicknesses of the suspend hanger, vertical base support, and bottom plate 

are 12.7 mm, 14 mm, and 10 mm respectively. The large hollow of the bottom plate is a 

332.75 mm diameter hole. The total mass of the assembly is 13.776 kg. Using the forces 

calculated from Section 6.2, FEA was performed, assuming the mass of the measured part 

is 7.5 kg, and the result is shown in Fig. 6.10. The ring bearing was added to the CAD 

model when analyzing the bottom plate, so that the loading area of the force could be 

selected easily. As can be seen, the maximum displacement of the bottom plate is large 

(30.6 µm), meaning the bottom plate has low rigidity. This will cause error when merging 

scanner point clouds obtained from different orientations together. The bottom plate 

should be designed thicker, and the hollow should be smaller to strengthen the structure. 

The displacement in the bottom of the suspend hanger below the hollow is large (Fig. 

6.10(b)). Holes can be added to the bottom, so that there are more joints between the 

suspend hanger and the bottom plate. More ribs are needed for the vertical base support to 

strengthen the structure. 

6.3.2 Revision of Original Design 

Revision of original design is shown in Fig. 6.11. The vertical base support is 

thickened to be 15.875 mm (5/8 in). Ribs are added to the hollow part of it. Holes are 

added to the bottom plate and the bottom of the suspend hanger to strengthen the structure. 

The shape and the structure of the bottom plate remain the same, except that the hollow 
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decreases much (6.6 µm smaller than revision of the original design). However, the 

displacement of the vertical base support increases, but is still small (1.5 µm). Changing 

the bottom plate from crossing to quadrilateral structure doesn’t improve it when the table 

is horizontal (Fig. 6.15). However, analysis shows that the displacement of the 

quadrilateral structure is smaller than the crossing one when the table is rotated to a 

degree, as the quadrilateral structure can bear more shear load. Although the displacement 

of the bottom plate of the welding design is smaller, it is inconvenient to mount the 

bearing ring on the bottom plate with screws and washers. Moreover, the welded square 

tubes may bend after they are cooled down.  

6.3.4 Combined Final Design 

At last, a design that combines the revision of original design and the welding 

design was employed. The bottom plate and the suspend hanger of the revision design 

were used, and the vertical base support was from the welding design. FEA was 

performed on each part. The maximum displacements of the bottom plate, the suspend 

hanger, and the vertical base support are 19.4 µm, 0.1 µm, and 1.66 µm respectively. The 

weight of the whole assembly is 14.342 kg, which is less than that of the revision design. 

In addition, the bottom plate and the suspend hanger have higher rigidity than those of the 

original design. Although the displacement of the vertical base support is larger, it is very 

small and will not have much influence on the performance of the rotary table.  
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6.4.1.1 Tensile Strength 

The tensile force on the screws that connect the hinge and the suspend hanger is 

/ 2sF , while the tensile force on the screws that connect the suspend hanger and the 

bottom plate is / 4bF . According to Eqn. (6.5) and (6.7),  

 
 max

max

/ 2 47.007 N

/ 4 22.336 N
s

b

F

F




  (6.11)

Therefore, the screws that connect the hinge and the suspend hanger were checked first, 

 
  max max

2

/ 2 / 2
1.484 MPa < 1100 MPa

/ 4
s sF F

A d
 


      (6.12)

6.4.1.2 Shear Strength 

The shear force on the screws that connect the hinge and the suspend hanger is 

/ 2f , while the shear force on the screws that connect the suspend hanger and the bottom 

plate is / 4bf  and / 4sf  for the portions of the screws in the holes of the suspend hanger 

and the bottom plate respectively. According to Eqn. (6.6), (6.8) and (6.9),  

 
 max

max max

/ 2 47.007 N

/ 4 / 4 22.336 Ns b

f

f f



 
  (6.13)

Therefore, the screws that connect the hinge and the suspend hanger were checked first, 

 
  max max

2

/ 2 / 2
1.484 MPa < =732 MPa

/ 4

f f

A d
 


     (6.14)

6.4.2 Strength Check of Suspend Hanger 
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The material of suspend hanger is Aluminum 6061-T6. Its tensile yield strength 

and bearing yield strength are 276 MPa and 386 MPa respectively [46]. 

 

Fig. 6.16: Tensile force on the suspend hanger bottom joints. 

6.4.2.1 Tensile Strength 

As the cross section area of the suspend hanger bottom is very small, the tensile 

strength near the joints that connect the suspend hanger and the bottom plate is checked 

(Fig. 6.16). The tensile force on cross section A-A is the maximum, sf . When 90    , 

the stress can be expressed as: 

 
 

   max max 1.407 MPa < =276MPas sf f

A b d t
   


  (6.15)
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6.4.2.2 Bearing Strength 

The bearing force on each of the 4 bottom joints of the suspend hanger is / 4sf . 

Therefore, when 90   , the stress can be expressed as: 

 
  max max/ 4 / 4

0.352 MPa < =386 MPas sf f

A dt
      (6.16)

6.4.3 Strength Check of Bottom Plate 

As the cross section area of the bottom plate is large, only the bearing strength of 

the joints was checked. The material of the bottom plate is the same as that of the suspend 

hanger. 

6.4.3.1 Bearing Strength 

The bearing force on each of the joint is / 4bf . Therefore, when 90   , the 

stress can be expressed as: 

 
  max max/ 4 / 4

0.277 MPa < =386 MPab bf f

A dt
      (6.17)

6.4.4 Torque on Hinge Check 

The gravities of rotary table components exert torque on the hinges when the table 

is rotated to an angle.  The distances between the gravity centers of the components and 

the rotation axis of the hinge are illustrated in Fig. 6.17. The distances can be expressed 

as: 
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Fig. 6.17: Distance between gravity centers of components to rotation axis. 

 

 

 
 
 
 

35 100 / 2 sin 85sin
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  (6.18)

where pL  is the distance from the gravity center of the measured part to the rotation axis. 

Therefore, the torque on the hinges is, 

  2 22749.241sins s rp rp b b p pT G L G L G L G L        (6.19)

When 90   , max 22749.241 N mmT  　 .  The allowable torque of the hinge is 500 in-lbs 

= 56490 N·mm > maxT .  
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Chapter 7  

Multiple-Orientation Scanning 

In this section, the workpiece was scanned from different orientations using the 

blue LED scanner with the facility of the rotary table. Point clouds from different 

orientations were transformed into a common coordinate system and merged together. 

Then the merged point cloud was aligned and compared with the CAD model using 

software Geomagic Qualify 12 [42]. To verify the accuracy of the scanner data, the 

workpiece was measured using analog touch probe. The probe data was aligned with the 

CAD model, and compared with the CAD model and the scanner data respectively. 

7.1 Point Cloud Acquisition and Merging 

As discussed in Section 2.5, to obtain all the top surfaces with various normal 

directions, the workpiece was fixed on the lightweight rotary table, and scanned by the 

blue LED scanner at different orientations. The tooling spheres were touch probed at each 

orientation for coordinate system registration that transforms point clouds from different 

orientations into a common coordinate system. Here, the point clouds were all 
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transformed to the horizontal point set in CMM MCS. The sphere centers in CMM MCS 

were determined using Orthogonal Least Squares of GEOMeasure [41]. The registration 

HTM for the ith orientation, ,Ori Hor iHTM  , was obtained by least-square fitting the ith 

oriented point set and the horizontal point set of the sphere centers [47]. The scanner data 

from different view angles were first transformed to the CMM MCS with LCS MCSHTM   

(Eqn. (5.5)). At each orientation, several snapshots were taken to scan the whole 

workpiece. Point clouds of snapshots at the same orientation were merged together, and 

thinned to be an evenly spaced set of points using software Geomagic Qualify to avoid 

overlapped areas. The non-horizontal point clouds were then transformed to the 

horizontal point set (Eqn. (7.1)), merged together, and thinned again. 

  ,
Hor Ori

MCS Ori Hor i MCSP HTM P    (7.1)

7.1.1 Scanner Parameters 

In multiple-orientation scanning, the scanner was set to work in independent 

triangulation mode as described in Section 2.1.2 so that occlusion due to extruding 

features of the workpiece can be reduced. The resolution was set to be the highest 0.1 mm, 

and the active area was set as default (full). The exposure was set using the “Auto Set” 

function. As the normal directions of the surfaces were different, the light reflection was 

different. Multiple exposures were thus used to increase the ability to detect light and 

dark materials that are in the field of view simultaneously [16]. The frame rate was set as 
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0.1 Hz to avoid CPU being overloaded, as the highest resolution and multiple exposures 

were used, and the active area was full. 

7.1.2 Noise Reduction and Post Processing 

As discussed in reference [48], speckle noise in CCD laser images, caused by 

wave cancellation or reinforcement, is one of the main sources of random errors in 

scanner data. Spike noise caused by the weak detection of the laser reflection intensity 

from inclined surfaces, edges, etc. is another source of random error [49]. Imaging noise 

can increase uncertainties in measurement result. Therefore, in this thesis work, noise was 

compensated for using the feature “Reduce Noise” in Geomagic Qualify before post 

processing the points. This feature moves points to statistically correct locations, leading 

to a more smooth arrangement of points. To avoid spike noise, point clouds from each 

orientation were post processed before being merged together. Surfaces with normal 

vectors close to the vertical direction were kept, while the rest were deleted. 

7.2 Alignment and 3D Comparison with CAD Model 

The final merged point cloud was aligned with CAD model for 3D comparison. 

This alignment process is also called data localization in some literature [50]. This is a 

process of calculating rigid body transformation matrix that transforms the scanner data 

so that a squared error cost function between the scanner data and the CAD model is 

minimized. In this thesis, the alignment was performed using the “Best Fit Alignment” 
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feature in Geomagic Qualify that is based on Iterative Closest Point (ICP) algorithm [51]. 

It works as follows [52]: 

1. The scanner data is transformed to a roughly aligned position with the CAD model 

using an initial guess of the rotation and translation. 

2. For each sampled point in the scanner data, sP , the closest point in the CAD model, 

mP , is computed. 

3. Utilizing Least Squares method [48], an optimum combination of rotation ( R ) and 

translation (T ) was found such that the sum of squares of distances between the 

sample pairs, sP  and mP , is minimized (Eqn. (7.2)). 
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Minimize( )

s s

n

s i m i
i

P RP T

S P P
 



 

  
  (7.2)

4. Iterating Step 2 and 3. Re-compute the closest point in CAD model and establish a 

new transformation matrix. 

After alignment, 3D comparison was performed using software Geomagic Qualify 

to measure the deviation between the scanner data and the CAD model by generating a 

three dimensional, color-coded mapping of the deviations. The purpose of 3D comparison 

was to analyze the accuracy of scanner result. 

7.3 Verification with CMM Analog Probe Data 

According to the purpose of 3D comparison in Section 7.2, the scanner data 

should be compared with actual workpiece geometry, given that there may be distortion 
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in actual workpiece. As the analog touch probe is in continuous contact with the 

workpiece when probing, it has relatively high digitizing speed, and is appropriate for 

sculptured surface measurement. Moreover, it has lower uncertainty than the scanner 

(Section 2.1.1.2). Therefore, in this thesis, the workpiece was measured using an analog 

probe equipped Zeiss Prismo [12]. The obtained probe data was aligned with the CAD 

model, and compared with the CAD model and the scanner data for accuracy verification. 

The probe measurement path is illustrated in Fig. 7.1. Five holes of the sheet metal (900 

points inside each hole on average), 928 points on flat plane A, and 39 points on 

sculptured surface B were touch probed. 

 

Fig. 7.1: Analog probe measurement path. 

7.3.1 Alignment with CAD Model and 3D Comparison 

 “Feature-Based Alignment” in Geomagic Qualify was used to align the probe 

data with CAD model. It aligns two objects by pairing corresponding features. In this case, 

measured points of plane A, hole 2 and 4 were fit into a plane and circles respectively, 
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and paired with the corresponding features of the CAD model. The axes of the holes were 

used when pairing them. 

After the alignment, the probe data was compared with the CAD model and the 

scanner data respectively using 3D Comparison in Geomagic Qualify. The probe data of 

the holes were the points inside the hole and below the top surface, while the scanner data 

of the holes were the points on the top surface. Therefore, only the points on Plane A and 

B were compared. Before comparison with the scanner data, the point cloud of the 

scanner data was converted into a polygon object that is consisted of triangle meshes, and 

spikes were removed. The reason why the probe data was not aligned with the scanner 

data directly is that, as discussed in Section 7.2, when Best Fit Alignment aligns a point 

cloud with a polygon object, it minimizes the distance objective function between the two 

objects. As there are measurement uncertainties in both the scanner data and the probe 

data, they should be aligned with a common reference set, namely the CAD model, and 

then compared with each other. 
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Chapter 8  

Experimental Results 

Measurement results are presented and analyzed in this chapter. A stamped 

automotive sheet metal part was measured with the multi-sensor synergistic inspection 

approach when the rotary table was horizontal as shown in Section 8.1. Next, the sheet 

metal was measured from multiple orientations with the blue LED scanner by rotating the 

table as presented in Section 8.2.  Finally, the sheet metal was measured with analog 

probe equipped Zeiss CMM, and the result was compared with the CAD model and 

scanner data as shown in Section 8.3. Measurement uncertainty of the multi-sensor 

system is analyzed in Section 8.4. 

8.1 Measurement of Horizontal Sheet Metal Part 

The five holes of the sheet metal automotive part (Fig. 5.2) were measured with 

the multi-sensor approach when the table was horizontal (Fig. 3.1(a)). The hole positions 

and sizes obtained from the CAD nominal geometry, the blue LED scanner, and the touch 

probe are presented in Tab. 8.1. Starting with the scanner results, the tactile 
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measurements were iterated four times, and finally converged. For brevity, only the initial 

and the converged tactile measurement results are shown here. The numbers of the holes 

are illustrated in Fig. 7.1. From the table, it is observed that the actual positions of the 

holes (the converged results) deviate as much as 0.5 mm from the CAD nominal 

geometry, but only up to 0.1 mm from the scanner data. Tab. 8.1 also indicates that even 

the initial tactile measurements are within 4 µm of the converged results, which implies 

that for typical sheet metal tolerances, much time can be saved by reducing or eliminating 

iterations. This experiment was performed twice to test the repeatability, and the other 

measurement result is shown in Tab. 8.2. Tab. 8.2 shows that the initial tactile 

measurements are within 5 µm of the converged results, which implies high repeatability 

of the multi-sensor approach. 

Hole 
CAD Nominal Blue LED Touch Probe 

X Y R X Y R X Y R 

1 112.012 -57.300 5.000 111.839 -56.805 5.125 
111.881 -56.845 4.957 
111.882 -56.842 4.957 

2 101.342 -80.086 5.000 101.105 -79.688 5.126 
101.131 -79.787 4.959 
101.133 -79.785 4.960

3 49.128 -58.540 5.000 49.024 -58.161 5.128 
48.959 -58.268 4.949 
48.959 -58.268 4.950 

4 76.738 -62.618 11.000 76.493 -62.195 11.202
76.547 -62.277 10.963 
76.547 -62.273 10.963

5 34.714 -126.508 5.000 34.739 -126.112 5.130 
34.792 -126.148 4.971 
34.793 -126.148 4.971

Tab. 8.1: Measurement results of horizontal sheet metal automotive part (mm). 

Only the X and Y positions of the holes were iterated in the experiment, as the 

heights of the planned touch probe hole points (90° apart along X and Y directions of 

CMM MCS) were always determined by the scanner data as described in Section 5.2.3. 

To verify that the scanner results provided effective guidance on the height of the hole 
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points, the center of each adjacent square zone was touch probed. The measurement 

results are shown in Tab. 8.3. The numbers of the square zones are illustrated in Fig. 5.3. 

The Z values in Tab. 8.3 are the average height of the points in each adjacent square zone 

obtained by the blue LED scanner, and the height of the zone center point measured by 

the touch probe. As can be seen in Tab. 8.3, the maximum deviation between them is 

0.074 mm, which is much less than the nominal 1 mm part thickness. 

Hole 
CAD Nominal Blue LED Touch Probe 

X Y R X Y R X Y R 

1 112.012 -57.300 5.000 111.846 -56.805 5.128 
111.884 -56.842 4.954 
111.883 -56.837 4.952 

2 101.342 -80.086 5.000 101.136 -79.679 5.124 
101.132 -79.788 4.958
101.132 -79.787 4.958 

3 49.128 -58.540 5.000 49.042 -58.145 5.129 
48.960 -58.269 4.949 
48.960 -58.267 4.949 

4 76.738 -62.618 11.000 76.508 -62.188 11.201
76.547 -62.281 10.962
76.548 -62.276 10.960 

5 34.714 -126.508 5.000 34.780 -126.083 5.132 
34.791 -126.149 4.972 
34.792 -126.148 4.972 

Tab. 8.2: Measurement of horizontal sheet metal automotive part (second test) (mm). 

Hole 1 2 
Adjacent Zone 1 2 3 4 1 2 3 4 

Z 
Blue LED 2.426 2.504 2.426 2.362 2.036 2.125 2.019 1.956 

Probe 2.355 2.443 2.376 2.295 1.974 2.051 1.974 1.908 
Hole 3 4 

Adjacent Zone 1 2 3 4 1 2 3 4 

Z 
Blue LED 2.206 2.220 2.162 2.144 2.291 2.391 2.210 2.084 

Probe 2.147 2.156 2.128 2.094 2.224 2.317 2.161 2.032 
Hole 5     

Adjacent Zone 1 2 3 4     

Z 
Blue LED 2.042 2.055 2.089 2.021     

Probe 1.976 2.000 2.049 1.966     

Tab. 8.3: Measurement results of the heights of the adjacent zone points (mm). 
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8.2 Multiple-Orientation Scanning of the Sheet Metal 

The sheet metal was scanned at four orientations (Fig. 3.1(b)), beginning with the 

horizontal orientation. Using the locking hinges, the table was rotated ~±40°. Finally, the 

round plate of the rotary table was rotated ~90° with the ring bearing when the table was 

at ~−40°. The point clouds of different orientations are shown in Fig. 8.1. The tooling 

spheres were touch probed at each orientation, and the centers were recorded. The sphere 

centers at each orientation are presented in Tab. 8.4. The corresponding registration 

transformation matrices were calculated and are also presented here. 

 

Fig. 8.1: Digitized point clouds of the sheet metal from four orientations: (a) Horizontal, 

(b) ~+40°, (c) ~−40°, (d) ~90° at ~−40°, (e) Merged cloud of all orientations. 

Several snapshots were taken to cover the whole part at each orientation (7 for 

horizontal orientation, 3 for ~+40°, 4 for ~−40°, and 1 for ~90° at ~−40°). The point 

clouds of two horizontal snapshots were compared with software Geomagic Qualify 12 

(Fig. 8.2). The deviations of points in regions of interest are within 0.033 mm. As shown 

in Fig. 8.2, the points of large deviation gather on the inclined sculptured surface because 

its normal direction is non-vertical and spike noise exists in the point clouds.  
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The deviations are large possibly due to actual workpiece distortion from the CAD 

nominal. This was later verified with analog probe data (Section 8.3). 

 

Fig. 8.4: Post processed point clouds of the sheet metal from four orientations: (a) 

Horizontal, (b) ~+40°, (c) ~−40°, (d) ~90° at ~−40°. 

The distances between the tooling spheres at the four orientations were calculated 

and are presented in Tab. 8.5. The numbers of the spheres are shown in Fig. 3.1(b). The 

maximum deviation of the distances at non-horizontal orientations from the distances 

when horizontal is 0.035 mm, which implies that the rotary table has high rigidity. 

Orientation Horizontal ~+40° ~−40° ~90° at ~−40° 
Distance 
between 
Spheres 

1-2 220.267 220.268 220.259 220.232 
2-3 193.517 193.524 193.529 193.539 
1-3 302.674 302.671 302.671 302.706 

Tab. 8.5: Distances between tooling spheres at different orientations (mm). 

8.3 Measurement of Sheet Metal with Analog Touch Probe 

To analyze the accuracy of the scan result, the sheet metal was measured with 

analog touch probe equipped Zeiss at horizontal orientation. The touch probe data was 
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8.4 Measurement Uncertainty of the System 

Expression of measurement uncertainty is an important assessment of confidence 

in the developed multi-sensor inspection system, and its ability to guide part 

acceptance/rejection decisions [53].  Contributions to the overall uncertainty arise from 

performance of hardware components and software, displacement in the fixtures, 

mathematical algorithms, temperature, and so forth.  The major contributors, and their 

combined uncertainty influence, are: 

 DEA IOTA-P CMM Volumetric Uncertainty 

 Touch-Trigger Probe System 

 Blue LED Scanner System 

 Multi-Sensor Extrinsic Calibration 

 Fixturing System Displacement 

 Temperature 

8.4.1 CMM and Touch-Trigger Probe System 

As noted in Section 2.6, every orthogonal CMM has 21 volumetric error 

components [10]. Before using the developed system, a service provider assessed the 

volumetric errors of the DEA IOTA-P CMM using a laser interferometer and ball bar. All 

errors, other than linear scale and squareness, were negligible. The linear scales use a 

stainless steel substrate. Specific Coefficient of Thermal Expansion (CTE) information is 

not available, and hence a generic value,   6
scale 16 2 10 / C      , was chosen. The 
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laboratory temperature is maintained at 20 2 CT    . The maximum travel lengths for 

the axes are maxX 750 mm , maxY 475 mm , maxZ 275 mm . With this information, 

the method described in [53] can now be used to calculate the linear (or length from 

origin) uncertainty for each axis. Beginning with the X  axis,  

 
     6

max
,X

0.750 m 2 C 2 10 / C
1.7 μm

1.7323

L T
u L

      
  

 

  (8.1)

 
     6

max
,X

0.750 m 16 10 / C 2 C
13.9 μm

1.7323
T

L T T
u L

    
  

 

  (8.2)

   th 2 2
X 1.7 13.9 14.0 μmu L      (8.3)

Similarly,  ,Y 1.1 μmu L  ,  ,Y 8.8 μmTu L  ,  th 2 2
Y 1.1 8.8 8.9 μmu L    , 

 ,Z 0.6 μmu L  ,  ,Z 5.1 μmTu L  , and  th 2 2
Z 0.6 5.1 5.1 μmu L    . The Renishaw 

TP6 touch probe is assigned an uncertainty of 2 μm  [37]. Using Eqn. (2.6) with a 404 

mm long ball bar, the XY squareness error uncertainty is 

  6
XY

0.004 mm
5.0 10  rad

808 mm
u     , or an insignificant maximum of 2.4 μm  along the 

X axis over a 475 mm Y axis length. Similarly, the uncertainties of YZ and ZX 

squareness errors are a maximum of 1.4 μm  along Y axis and 3.8 μm  along Z axis 

respectively. To summarize, in 3D: 

 
        2 2 2th th th th 2 2 2

3D X Y Z 14.0 8.9 5.1 17.4 μmu L u u u         (8.4)

         2 2 2 2 2 2
3D XY YZ ZX 2.4 1.4 3.8 4.7 μmu u u u            (8.5)
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8.4.2 Blue LED Scanner System 

The resolution of the LMI® Gocator 3110 blue LED scanner utilized in the 

experiment is higher than 0.15 mm and 0.16 mm in X and Y axis respectively, and 0.108 

mm in Z axis. For the X axis, assigning a Type B uniform distribution [53] of width 0.15 

mm ( 0.075mm ) yields a standard uncertainty of 
75μm

43.3μm
3

 . Similarly, the 

uncertainties for Y and Z axis are 46.2μm  and 31.2μm  respectively. Therefore, 

res 2 2 2
3D 43.3 46.2 31.2 70.6μmu     . Although noise in the point clouds obtained from 

the scanner was reduced using software Geomagic, small amount of noise may still exist 

in the point cloud as the undesirable image noise varies, and noise reduction is still an 

interesting research area being investigated by researchers. 

8.4.3 Extrinsic Calibration of the Scanner 

The input quantities of uncertainty in the extrinsic calibration of the scanner 

consist of the mathematical algorithm and the flatness of the planes on the calibration 

target. 

8.4.3.1 Calibration Algorithm 

The calibration algorithm is made up of the following steps performed on the 

CMM and the scanner data: plane fitting, plane-plane intersection, line projection and 

line-line intersection [43]. Plane fitting can have a non-unique solution, depending on the 

utilized method, and hence needs uncertainty estimation. However, intersection and 



Master Thesis – K. Xue                                              McMaster – Mechanical Engineering 
 
 

 

85 
 

projection operations have unique solutions, without the need for uncertainty estimation. 

In the calibration process, the scanner and the CMM data were plane fit in MATLAB [54] 

and GEOMeasure respectively. The plane fitting results were then utilized to obtain 

LCS MCSHTM  . 

To analyze the uncertainty in the implemented algorithm for plane fitting of the 

scanner data, testing was performed on 30 reference planar data sets provided by NIST 

ATS [10],[55],[56]. The reference data was fit to planes utilizing the implemented 

algorithm in MATLAB. The obtained plane centers and normal directions were compared 

with the results from NIST. Root Mean Square (RMS) of the differences between the 

results is reported as the uncertainty [10],[53]. The uncertainty in plane center is 

132.9 10 mm  or 102.9 10 μm , and the uncertainty in plane normal is 97.2 10 rad . 

The center position uncertainty is close to the floating point precision of MATLAB ( 1510  

mm, the reference data is in mm). The uncertainty in normal is close to the angle 

calculation precision of MATLAB, estimated based on its floating point precision, as 

15 8arccos(1 10 ) 4.5 10 rad    . Plane fitting results of the scanner data were output to 6 

decimal places ( 610 mm , or 310 μm ). Therefore, the uncertainty in the implemented 

plane fitting algorithm is, 

 
    2 23 3 310 10 1.4 10 μmpfu         (8.6)

Plane fitting of the CMM data was performed in GEOMeasure. Since widely 

utilized software like GEOMeaure are assumed to be standardized by NIST ATS, the 

accuracy of the GEOMeasure plane fitting algorithm is expected to be the same as the 
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NIST algorithm [57], up to the floating point precision. Therefore, the uncertainty of the 

GEOMeasure plane fitting algorithm, GEOu , is the set floating point precision of the 

software output, which in this case is 610  mm, or 310 μm . 

8.4.3.2 Flatness of Target Planes 

The angled slot calibration target consists of five planar features, one top plane 

and four inclined planes of the slots. The flatness of the planar features can lead to 

uncertainty in the estimation of the position of their centers and direction of their normals, 

thus affecting the calibration HTM. During calibration, 30 points on the top plane and 20 

points on each inclined plane were touch probed. The CMM data of each plane was 

imported into Geomagic, fit into a plane, and the flatness was obtained. Four sets of the 

CMM data were analyzed, and the average of the flatness values was recorded as the 

flatness of each plane. The data is presented in Tab. 8.7. The flatness values of the planes 

are utilized to calculate the uncertainty caused by flatness: 

  2 2 2 2 215.8 10.3 10.5 3.4 20.0 29.6μmfu         (8.7)

This estimation may result in a higher uncertainty than actual observation, as the flatness 

of each plane is utilized as the input quantity. Nonetheless, this is commonly seen in 

practice. 

To summarize, the uncertainty in the calibration process is, 

 
    2 22 2 2 3 3 2

GEO 1.4 10 10 29.6 29.6μmcal pf fu u u u            (8.8)
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       Data Set 
Plane   

1 2 3 4 Average 

+X 16.0 14.0 18.2 14.8 15.8 
−X 9.6 11.6 11.1 9.0 10.3 
+Y 8.6 9.4 10.6 13.6 10.5 
−Y 3.8 3.3 3.5 3.2 3.4 
Top 24.2 18.5 19.1 18.2 20.0 

Tab. 8.7: Flatness of the five planes on the calibration target (µm). 

8.4.4 Fixturing System Displacement 

Although strength of the rotary table was checked during design, small 

displacement in the table is unavoidable. Displacements usually occur during 

measurement when rotating the table, which can be seen from Tab. 8.5. This affects the 

accuracy of coordinate system registration using the tooling sphere centers. To evaluate 

the standard uncertainty caused by the displacement of the rotary table, Type A 

evaluation was utilized [53]. The data in Tab. 8.5 was analyzed. The standard deviation of 

the measured distances between spheres 1-2 at different orientations was calculated using 

Eqn. (A-2) in [53], and the value is 1 2 16.8μms   . Similarly, the standard deviations of 

the distances between spheres 2-3 and 1-3 are 2 3 9.3μms   , 1 3 17.1μms   . The standard 

deviations were then combined, weighted by the number of measurements in each data set 

using Eqn. (A-3) in [53]: 

 
 

2 2 2
1 2 2 3 1 33 3 3

14.8μm
4 4 4 3

s s s
s       
 

  
  (8.9)

Therefore, the standard uncertainty caused by the rotary table displacement is 

14.8μmrtu  . This includes the uncertainty of the GEOMeasure sphere fitting algorithm.  
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Chapter 9  

Conclusion and Future Works 

9.1 Conclusion 

The developed multi-sensor inspection system takes advantage of the best 

characteristics of the touch-trigger probe and the blue LED structured light scanner. After 

extrinsic calibration of the scanner with respect to the CMM using the angled slot 

calibration target, the blue LED sensor scanned the part, obtained the approximate sizes 

and positions of the actual holes and other features. The nominal tactile measurement 

DMIS program was then adjusted with the scanner data. Finally, successful tactile 

measurements of features that deviate from nominal geometry and holes on thin sheet 

metal part were accomplished. As a result, probe missing touches or crashes are avoided.  

Moreover, much measurement time can be saved with the guidance of the blue LED 

sensor as iterations of tactile measurement can be reduced or eliminated.  
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Mechanically aligning the scanner and the CMM axes minimized the angular 

misalignment between their axes, so that only small remaining angular misalignment 

needs to be corrected mathematically. 

The designed lightweight 2-axis rotary table facilities multiple-orientation 

scanning for part surfaces or features with normal directions far from vertical direction. 

Using tooling sphere registration, the point clouds digitized from different orientations 

can be merged into a common coordinate system.  

The horizontal measurement experiment of the stamped sheet metal automotive 

part verifies the high efficiency and effectiveness of the multi-sensor synergistic 

inspection. The multiple-orientation scanning experiment confirms the high accuracy of 

extrinsic calibration of the scanner ( LCS MCSHTM  ), and the tooling sphere coordinate 

system registration ( Ori HorHTM  ). The analog probe measurement data verifies the high 

accuracy of the multiple-orientation scanning results. 

9.2 Future Works 

The developed multi-sensor system in this thesis work was implemented on an 

orthogonal CMM. In future work, it can be migrated to a portable CMM, or even CNC 

machine, so that in-line inspection can be accomplished. 

The developed C software in this thesis for outputting point clouds digitized by 

the scanner and scanner measurement results is limited to hole measurement. In future 
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work, a more generic program should be developed for measurement of various kinds of 

features. 

The designed 2-axis rotary table has to be rotated or tilted manually. In future 

work, remote control of the table may be realized by cable or pneumatic release activation 

[58]. 
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Unless otherwise specified, all dimensions are in inches. Material:  stainless steel. 
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A.4 Aluminum Collar on CMM Granite Table 

Unless otherwise specified, all dimensions are in millimeters. Material: aluminum. 
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A.6 Vertical Base Support 

Unless otherwise specified, all dimensions are in millimeters. Material: aluminum. 
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