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Abstract

In this dissertation, we study several stochastic capacity expansion models in the

presence of permanent, spot market, and contract capacity for acquisition. Using a

scenario tree approach to handle the data uncertainty of the problems, we develop

multi-stage stochastic integer programming formulations for these models. First, we

study multi-period single resource stochastic capacity expansion problems, where dif-

ferent sources of capacity are available to the decision maker. We develop efficient

algorithms that can solve these models to optimality in polynomial time. Second,

we study multi-period stochastic network capacity expansion problems with different

sources for capacity. The proposed models are NP-hard multi-stage stochastic integer

programs and we develop an efficient, asymptotically convergent approximation algo-

rithm to solve them. Third, we consider some decomposition algorithms to solve the

proposed multi-stage stochastic network capacity expansion problem. We propose

an enhanced Benders’ decomposition algorithm to solve the problem, and a Benders’

decomposition-based heuristic algorithm to find tight bounds for it. Finally, we ex-

tend the stochastic network capacity expansion model by imposing budget restriction

on permanent capacity acquisition cost. We design a Lagrangian relaxation algorithm

to solve the model, including heuristic methods to find tight upper bounds for it.
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Chapter 1

Introduction

1.1 Introduction

Capacity expansion is the process of adding facility, equipment, or personnel of simi-

lar type, over time, to meet rising demand (Freidenfelds (1981)). Planning for capac-

ity expansion is primarily concerned with decisions on the optimal time of capacity

acquisition, the optimal amount of capacity acquisition, and the optimal capacity

allocation. These decisions must be made in order to address future demand growth,

which is uncertain. On the other hand, planning for capacity expansion is impor-

tant strategic level decision-making for a wide range of applications. In most cases,

capacity expansion involves significant capital investments over a long horizon, and

uncertainties in the future demands. This makes the problem very sophisticated.

Capacity expansion problems can be found in communication networks, automobile

industry, service industry, electricity industry, semiconductor industry, heavy process

industry, water distribution industry, etc. Capacity expansion has been widely stud-

ied in the literature since the 1960s (Freidenfelds (1981); Luss (1982); Van Mieghem

1



Ph.D. Dissertation - Majid Taghavi McMaster - Management Science

(2003)).

Most capacity expansion problems are considered over multiple time periods, and

as a result, the developed capacity expansion models are multi-period problems. In

the literature regarding mathematical programming, stochastic programming (Birge

and Louveaux (2011); Ruszczyski and Shapiro (2003)) is one of the tools that are

used to handle data uncertainties in mathematical problems. Stochastic programming

received a lot of attention because of its power and flexibility in modeling complicated

decision problems by handling the non-stationary stochastic process of uncertain data,

while imposing few modeling restrictions.

Using the stochastic programming approach, the capacity expansion problem can

be modeled either as a two-stage stochastic programming problem, or as a multi-stage

stochastic programming problem. In a two-stage approach, the capacity acquisition

decision for the whole planning horizon will be made in the first stage, before the

realization of the uncertain data, and the capacity allocation decision will be made

at the second stage, after the uncertain data is realized. This means that once the

capacity acquisition decision has been made, it cannot be changed. Multi-stage ap-

proaches can be seen as an extension to the two-stage modeling in that the capacity

acquisition decision can be revised in each time period, based on the data that has

been realized up to that period. Therefore, multi-stage stochastic programming gives

us more modeling power, but it makes the problem computationally more difficult

to solve. Some researches have shown that the value of modeling a problem as a

multi-stage stochastic programming problem justifies its complexities over modeling

the problem as a two-stage stochastic programming problem (Huang and Ahmed

(2009)). On the other hand, this computational issue has been resolved to a great

2
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extent by improvements in computational power and algorithm development (Lulli

and Sen (2004); Shapiro (2006)).

Early models that consider capacity expansion problems are restricted to a single

resource. More recently, considering capacity expansion problems for multiple re-

source models has received a considerable attention in the literature. A major branch

of multiple resource capacity expansion problems is the capacity expansion for net-

works, where the decision maker is interested in the planning of capacity expansion

for network resources, e.g., arcs and nodes. The network capacity expansion problem

has a wide range of applications in areas such as transportation (Magnanti and Wong

(1984); Ahuja et al. (1996); Liu et al. (2007); Maŕın and Jaramillo (2008)), telecommu-

nications (Balakrishnan et al. (1991); Magnanti et al. (1995); Lee and Kang (2000)),

service industry (Berman and Ganz (1994)), water distribution (Hsu et al. (2008)),

and manufacturing (Zhang et al. (2004)).

In classical capacity expansion models, there is only one source of capacity avail-

able to purchase by the decision maker. This type of capacity has a permanent nature

and is assumed to be available to use till the end of the planning horizon. We refer to

this type of capacity as permanent capacity. More specifically, permanent capacity

refers to the capacity purchased and permanently owned by the decision maker.

In practice, there are other sources of capacity, in addition to permanent capacity,

that the decision maker is interested in using. In fact, most decision makers prefer to

have a mixed purchasing strategy that makes other sources of capacity available to

them (Inderfurth and Kelle (2011); Levin et al. (2012); Inderfurth et al. (2013)). Hav-

ing such strategies enables them to benefit from other sources of capacity, whenever

they have a lower price, or when there is not enough permanent capacity to satisfy the

3
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demand. In this dissertation, we introduce two commonly used sources of capacity

available to decision makers besides permanent capacity: spot market capacity and

contract capacity.

Spot market capacity refers to the capacity that can only be purchased and used

in the current period. Unlike permanent capacity, spot market capacity is temporary

in nature and will not be available at the end of the current period. The spot market

capacity purchase takes place after the realization of uncertain data at the beginning

of each period. This enables the decision maker to fully satisfy the demand for each

period. While spot market capacity brings a lot of flexibility to the decision maker,

it also brings high risk of price uncertainty.

Contract capacity refers to the capacity that is available in the current period,

only if a contract has been signed for it in previous periods. The quantity of contract

capacity and the length of the contract are assumed to be fixed. Unlike the permanent

capacity, the contract capacity will be only available for a specified number of periods,

and not to the end of the planning horizon. Signing a contract for the next periods

takes place before the realization of the data for next periods. So, considering the

price uncertainty risks, the decision maker will decide whether to buy permanent

capacity or to sign for contract capacity for future periods.

Similar to the spot market capacity, contract capacity is temporary in nature,

in the sense that the contracted capacity is only available for a specified number of

periods. Contract capacity is different from the spot market capacity in the sense

that it can be used for more than one period. Even when the length of a contract

is only one period, spot market capacity and contract capacity are still different in

nature. The former is obtained after the uncertainty in the current period is revealed,

4
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while the latter is signed before the uncertainty in the next period is revealed.

Capacity delivery lead time is an important issue to address. In modeling capacity

expansion problems, some researchers (Huang and Ahmed (2008)) assume that the

permanent capacity can be purchased and used in the current period, i.e., there is no

lead time. Delivery lead times can be considered with respect to the application of

the model and the way the periods have been defined for the model. In this disserta-

tion, we assume that the permanent capacity purchased in the current period, or the

contract capacity signed in the current period will be available to use starting from

the next period. For the spot market capacity, we assume that it will be purchased

and used in the current period. This means that the delivery lead time for permanent

and contract capacity is one and for the spot market capacity is zero.

Through all chapters of this dissertation, we deal with uncertainty of parameters

in our models. We assume that these uncertain parameters evolve as discrete-time

stochastic processes, and we present them as a scenario tree, which is a well-known

stochastic programming tool (Kall and Wallace (1994); Birge and Louveaux (2011);

Ruszczyski and Shapiro (2003)). A scenario tree assumes that the number of possible

states in each period is finite. In a scenario tree T , each node n represents a possible

realization of a set of data. We use a scenario tree to represent the realization of

stochastic parameters (demand, cost, etc.), as shown in Figure 1.1. Let T be the

scenario tree with T periods and B branches. If N is the total number of nodes in

the scenario tree, and if we assume that B is fixed for all nodes in the scenario tree,

then we can calculate the size of the scenario tree as N =
∑T−1

t=0 B
t = BT−1

B−1
. For

each node n, a(n) is the immediate ancestor node and C(n) is the set of all immediate

descendants. Also, tn shows the period of node n. T (n) denotes the subtree with

5
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1

a(n)

n

t = 1

t = ta(n)

t = tn

t = T

P(n)

T (n)

...

...

Figure 1.1: The scenario tree T

root node n and T̄ (n) = T (n) \ {n}. P(n) denotes the unique path from node n to

the root node of the scenario tree and P̄(n) = P(n) \ {n}.

Our goal in this dissertation is to study stochastic capacity expansion of both

single resource and multiple resource (network) problems in the presence of various

sources of capacity for resources1, and to design efficient exact and approximation

algorithms to solve them. For this purpose, a scenario tree approach will be used

to handle data uncertainties of the models and multi-stage stochastic programming

techniques will be used to model the problems.

1.2 Outline of the Dissertation

In this dissertation, we study stochastic capacity expansion for both single resource

and multiple resource problems in the presence of different sources for capacity. In

Chapter 2, we review the literature of capacity expansion for single resource and

1Note that the use of both source and resource in this dissertation might be confusing. Source
refers to the type of capacity that is being purchased (permanent, spot market, and contract).
Resource is the entity for which, we consider capacity expansion problem (e.g., node and arc).

6
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multiple resource problems in the context of stochastic programming.

In Chapter 3, we first study multi-period single resource stochastic capacity expan-

sion problems, where two sources of capacity (permanent capacity and spot market

capacity) are available for capacity acquisition. Then, we study the extension where

three sources of capacity (permanent capacity, spot market capacity and contract

capacity) are available to the decision maker. The proposed models are multi-stage

stochastic integer programs. We develop efficient algorithms that can solve these

models to optimality in polynomial time. We discuss the complexity of algorithms

and present the experimental results showing their efficiency when compared to a

commercial solver.

In Chapter 4, we study multi-period stochastic network capacity expansion prob-

lems with different sources for capacity. The proposed models are NP-hard multi-stage

stochastic integer programs that can incorporate multiple sources and different types

of capacities in a general network. To solve these models, we develop an efficient

approximation algorithm and prove that it is asymptotically convergent to the opti-

mal solution. We demonstrate the efficiency and convergence of the approximation

algorithm by presenting the experimental results.

Chapter 5 considers the decomposition algorithms to solve the proposed multi-

stage stochastic network capacity expansion problems. We propose a Benders’ de-

composition algorithm to solve them. Then several techniques will be presented for

improved performance. We also develop a Benders’ decomposition-based heuristic

algorithm that can provide tight bounds for the problems.

In Chapter 6, we extend the stochastic network capacity expansion models intro-

duced in Chapter 4 by imposing budget restriction on permanent capacity acquisition

7
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cost. We show that the structural properties that enable the approximation algorithm

to solve the problem will be subverted by introducing the budget constraints, and as a

result, new algorithms must be designed for this extension. We present a Lagrangian

relaxation algorithm to solve the models, including heuristic methods to find upper

bounds for it.

A summary of the major contributions of the dissertation, as well as possible

future research directions are presented in Chapter 7.

1.3 Summary of Contributions

In this dissertation, we study both single resource and multiple resource capacity

expansion problems. For single resource problems, we develop multi-stage stochastic

programming formulations involving spot market and contract capacities. Also, we

present polynomial-time algorithms to solve them. For multiple resource (network)

capacity expansion problems, we develop multi-stage stochastic programming formu-

lations incorporating min-cost network flow model. To solve them, we present an

asymptotically convergent approximation algorithm and a Benders’ decomposition-

based heuristic algorithm. Both these algorithms can outperform CPLEX MIP solver.

Finally, we present a multi-stage stochastic programming formulation for the stochas-

tic network capacity expansion problem with budget constraint. A Lagrangian relax-

ation algorithm is presented to solve this model.

8



Chapter 2

Literature Review

The capacity expansion problem and its extensions have been extensively studied

(Freidenfelds (1981); Luss (1982); Van Mieghem (2003)). We study the literature

of capacity expansion in two streams: single resource models and multiple resource

models.

2.1 Single Resource Capacity Expansion Models

Early approaches to solve capacity expansion problems are limited to a single re-

source with deterministic data. Luss (1984) considered a deterministic multi-period

capacity expansion problem for a single resource that serves the demand for a range

of products. He assumed all cost functions to be concave and found optimal policies

for minimizing the total cost using dynamic programming. Rocklin et al. (1984) also

considered a single resource capacity expansion where capacity can be both added or

dropped. They applied dynamic programming to their model and found an optimal

policy for the problem. Aneja and Chaouch (1993) extended the work of Rocklin et al.

9
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(1984) by considering fixed costs for capacity expansions. They also used dynamic

programming and found the optimal policy for concave demand distribution func-

tions. Saniee (1995) considered multi-period capacity expansion of a single location

in telecommunication systems and modeled it as a time-dependent knapsack problem.

He proposed a combination of dynamic programming and shortest path problem to

solve the model.

Laguna (1998) extended the work of Saniee (1995) to the case of uncertain demand.

He used scenarios to capture the data uncertainty of the problem and applied a robust

optimization technique to solve the problem. Riis and Andersen (2004) considered the

capacity installation on a single telecommunication facility with stochastic demand.

They provided both two-stage and multi-stage formulation for the problem. All these

works only considered permanent capacity.

Interestingly, Ahmed et al. (2003) showed that there is a one to one correspondence

between stochastic single resource capacity expansion problem and stochastic lot-

sizing problem. In fact, stochastic lot-sizing problem can be seen as a sub-structure of

the stochastic single resource capacity expansion problem. They developed a branch-

and-bound algorithm to solve the model. Huang and Ahmed (2008) studied a multi-

stage stochastic version of capacity expansion for a single resource, in which stochastic

demand and cost are represented by a scenario tree. They also considered the lot-

sizing problem as a sub-structure of single resource capacity expansion problems.

They developed polynomial-time algorithms to solve the problem.

There are some works in the literature of capacity expansion that consider spot

market and contract capacity. Atamtürk and Hochbaum (2001) studied subcontract-

ing in deterministic multi-period capacity expansion problems. Oren et al. (2005)

10
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used game theory to model capacity expansion of electric power networks with spot

market. Examples of applications in cellular manufacturing and flexible manufac-

turing systems can be found in Lee et al. (1997), Logendran and Puvanunt (1997),

and Logendran and Ramakrishna (1997). A related but different research stream

is capacity reservation with spot market, as appeared in Erkoc and Wu (2009) and

Inderfurth et al. (2013).

The models that we consider in Chapter 3 are different from the above-mentioned

models in that we consider three sources of capacity available to the decision maker.

2.2 Multiple Resource Capacity Expansion Mod-

els

Multiple resource capacity expansion models can be used for problems involving more

that one resource (Ahmed et al. (2003)). Many of these models can be seen as a net-

work of resources. In this section, we primarily focus on network capacity expansion

problems.

The study of network capacity expansion problems started with the early work

of Fulkerson (1959). He studied arc capacity expansion for a network in order to

maximize the flow of the network. He assumed linear capacity expansion costs and

budget restriction, and developed a labeling algorithm to solve the model. Doulliez

and Rao (1971) considered a network with a common source and multiple sinks. They

allowed capacity reduction in their model and assumed that demand is increasing

with time for some nodes. They developed a dual network flow algorithm to find

the optimal time to satisfy all demand. Christofides and Brooker (1974) considered

11
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a network capacity expansion problem with pre-specified arc capacities and budget

constraint. The model could find which arcs needed to be added to the network,

while maximizing the flow subject to the budget constraint. They developed a tree

search algorithm based on dynamic programming. Doulliez and Rao (1975) applied

shortest path problem to model a deterministic network capacity expansion problem

where arcs are subject to failure and used Dijkstra’s algorithm to solve it. Bansal and

Jacobsen (1975) developed a Benders’ decomposition method to maximize the flow

in a network capacity expansion problem with non-linear capacity expansion costs, a

fixed budget, and one source and one sink for the network. All these early works are

limited to the deterministic setting, where only permanent capacity is available.

In more recent studies with the same limitations, researchers studied deterministic

network capacity expansion in the context of multi-commodity flow problem. Leung

et al. (1990) studied capacity expansion of distribution centers in a route planning

network. Their model considers node capacity expansion only. The original problem

is decomposed into subproblems, solved by a Lagrangian relaxation approach. There

are other works in the same context which considered arc capacity expansion only.

Magnanti et al. (1995) studied telecommunication network capacity installation with

two types of facilities and generalized the results to multiple types of facilities. They

proposed both Lagrangian relaxation and a cutting plane approach with three set

of valid inequalities to solve the model. Bienstock and Günlük (1996) also proposed

a mixed-integer programming formulation for a generic telecommunication network

capacity installation with the objective of minimizing both capacity installation and

flow costs. They studied the polyhedral structure of their model and provided exten-

sions on the valid inequalities proposed in Magnanti et al. (1995). Bienstock et al.
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(1998) studied a special case of the generic model presented in Bienstock and Günlük

(1996), where they considered a directed graph and tried to minimize the capacity

installation cost only. They came up with different sets of valid inequalities and pro-

posed two solution approaches and compared their results. Günlük (1999) considered

additional capacity installation for arcs of a capacitated network and used an aggre-

gate multi-commodity flow formulation to model it. He developed a new branching

technique and incorporated it into a branch-and-cut algorithm to solve the model.

In a more relevant work, Ahuja et al. (1996) addressed arc capacity expansion in

a transshipment network with the objective of minimizing the flow cost subject to

a budget constraint. Using a parametric network flow problem, they developed an

efficient simplex-based algorithm that can solve both linear and integer versions of

the problem. Liu et al. (2007) proposed a railroad network model integrating yard

location and yard capacity expansion decisions. Their model captured both arc ca-

pacity (flow) and node capacity (car handling) and a greedy algorithm was presented

to solve their integrated model. In this work, the additional capacity quantity was

fixed and the decision was whether to add this quantity or not, while in our model,

we decide on the quantity of capacity expansion. Hsu et al. (2008) considered the

capacity expansion of water distribution networks using network flow problem. Their

model turned out to be a linear model and they tested the result of their model on a

real life water distribution system in Taiwan. The models presented in Chapter 4 are

different from all above mentioned models in that first, they consider stochastic cost

and demand, and second, they allow more than one type of capacity.

With the advent of stochastic programming, researchers have considered stochas-

tic network capacity expansion models. Sen et al. (1994) used a two-stage stochastic

13
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programming approach to model private line telecommunication networks. They con-

sidered arc capacity expansion and developed a stochastic decomposition algorithm

to solve the problem. Berman and Ganz (1994) considered the capacity expansion

problem in the service industry. They used a scenario tree and solved a multi-stage

stochastic model, which determines the optimal time, location and size of capacity

expansion with the objective of maximizing the profit. They also considered a fixed-

charge version of the problem and developed an efficient heuristic to solve it. Ra-

jagopalan et al. (1998) studied a multi-stage stochastic capacity planning model with

concave expansion costs. They assumed a single product family with non-decreasing

deterministic demand when the capacity availability time is uncertain. They de-

signed an efficient dynamic programming algorithm to solve their problem. Chen

et al. (2002) developed a multi-stage stochastic programming model to capture tech-

nology choice and capacity expansion. They also used a scenario tree approach to deal

with the uncertainty of product life cycle and demand. They developed an augmented

Lagrangian relaxation approach to solve the model. Christie and David Wu (2002)

proposed a multi-stage stochastic programming model of capacity expansion for a

semiconductor manufacturer. They assumed demand and capacity to be uncertain

and used two different scenario tree approaches. They explored the areas for which

each scenario approach is more efficient. Karabuk and Wu (2003) also considered

the capacity expansion at a semiconductor manufacturer with uncertain demand and

manufacturing capacity. They proposed a planning decomposition approach which

could solve the problem to near optimality.

Ahmed et al. (2003) considered a multi-period model for multiple resource capac-

ity expansion problem with integer variables. They developed a multi-stage stochastic
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integer formulation using a scenario tree approach to handle the uncertain demand,

variable and fixed cost of capacity expansion and demand. They proposed a re-

formulation of their problem using the lot-sizing sub-structure of it and proposed a

heuristic method that could find good solutions by perturbing the LP relaxation solu-

tions. Ahmed and Sahinidis (2003) developed a multi-stage stochastic integer model

to study a capacity expansion problem for multiple production facilities in the context

of a chemical processing network. They assumed costs (both variable and fixed) and

demand to be uncertain and used a scenario tree approach to handle the data uncer-

tainty. They developed an approximation scheme using the decomposable structure

of their model. The approximation scheme was linear programming based and its

solution converges to the optimal solution when the size of the problem increases.

Finally, they tested their heuristic method and its asymptotic convergence property

on a capacity expansion problem from a chemical processing network context. Tarhan

and Grossmann (2008) also addressed the design of chemical process networks with

time varying uncertain yields. Their model integrates expanding process capacity

and locating production plants. They proposed a duality-based branch-and-bound

method to solve their model.

Huang and Ahmed (2009) proposed a multi-stage stochastic programming formu-

lation for a general class of multiple resource capacity expansion problems. They used

a scenario tree to realize the uncertain cost and demand. They defined the value of

multi-stage stochastic programming (VMS) by comparing two-stage and multi-stage

formulation for the general capacity expansion problem. They also provided analytical

bound for VMS. Moreover, by exploiting the decomposable structure of their model,

they could develop an approximation scheme to solve their model. The approximation
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scheme consists of two main steps. The first step solves the single resource capacity

expansion problem for each facility of the problem, and the second step solves an

independent network flow problem for each node in the scenario tree. They proved

that their approximation scheme is asymptotically convergent, i.e. the solution by the

approximation scheme will converge to the optimal solution, if the number of peri-

ods under consideration is large enough. They tested their method on some business

problems from a semiconductor tool planning context. Singh et al. (2009) applied the

Dantzig-Wolfe decomposition method to solve a multi-stage stochastic mixed integer

programming for capacity expansion of production facilities. They used a scenario

tree to represent the uncertainty of the problem and incorporated a variable splitting

technique into their decomposition method. They tested their solution method on a

model from electricity distribution network context. Rasekh and Desrosiers (2010)

proposed a model for outsourcing in production planning. Their model helps the

decision makers to find the optimal policy between capacity expansion of their own

facilities, outsourcing from local suppliers with assured quality, and outsourcing from

overseas suppliers with uncertainty in quality. They proposed three algorithms to

solve their model, including a column generation, a Benders’ decomposition, and an-

other decomposition approach. Pimentel et al. (2013) proposed a multi-stage stochas-

tic mixed-integer programming model for a dynamic network design problem which

integrates facility location, capacity expansion, and network design decisions. They

considered capacity expansion of facilities (nodes) and used a scenario tree approach

to model the uncertainties of demands. They developed a Lagrangian heuristic pro-

cedure which can find feasible solutions with reasonably good bounds.

There are other approaches to deal with stochastic network capacity expansion

16



Ph.D. Dissertation - Majid Taghavi McMaster - Management Science

problems other than stochastic programming. Atamtürk and Zhang (2007), Mud-

chanatongsuk et al. (2007), Ordóñez and Zhao (2007), and Karoonsoontawong (2010)

are examples of addressing arc capacity expansion problem with a robust optimiza-

tion approach. Ordóñez and Zhao (2007) proposed a robust optimization formulation

for arc capacity expansion problem with uncertain demand and travel time. They

showed that a conic linear counterpart can be solved instead of the original problem

and solved it using an interior point method in polynomial time. Mudchanatongsuk

et al. (2007) considered the network design of a multi-commodity flow problem with

availability for arc capacity expansion. They assumed the transportation cost and

demand to be stochastic and the capacity expansion cost to be linear and determin-

istic. They used a robust optimization approach to deal with the uncertainties of

their problem and used column generation technique to solve their model. Another

approach in dealing with stochastic capacity expansion is Markov Decision Processes

as in Bean et al. (1992), Bhatnagar et al. (1998), and Pratikakis (2010).

Network capacity expansion can be applied to a series of applications. For exam-

ple, in telecommunication network systems, the number of users usually increase with

time, and as a result, the decision makers have to expand the capacity of network in

order to be able to satisfy the current users and to absorb new customers. The ca-

pacity expansion can be considered for concentrators, cables, number of switches, etc.

Balakrishnan et al. (1991) presented an overview of local access telecommunication

systems and focused on an expansion planning model for the local access compo-

nent of public telephone networks based on the new technologies. Chang and Gavish

(1993) considered capacity expansion and network design simultaneously, and devel-

oped a Lagrangian based heuristic to solve the model. Balakrishnan et al. (1995) also
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considered local access telecommunication network expansion with piece-wise linear

and concave expansion costs. They combined Lagrangian relaxation and dynamic

programming to solve the problem. Magnanti et al. (1995) considered telecommuni-

cation network capacity installation on a two-type facility problem and generalized

the result for multiple type facilities. First type of facilities has a capacity of 1 unit

while the second type’s capacity is C units. They studied the problem in the con-

text of multi-commodity flow problem and proposed both Lagrangian and cutting

plane solution approaches. Bienstock and Günlük (1996) also proposed a mixed-

integer formulation for telecommunication network capacity installation and studied

its polyhedral structure which led to a cutting plane algorithm for the problem. In

another work, Bienstock et al. (1998) presented two variations of minimum capacity

installation cost problem in the context of multi-commodity flow problem and came

up with different sets of valid inequalities for them. Lee and Kang (2000) considered

the capacity expansion of cells in wireless communications. They formulate their

model as an integer programming problem and proposed a Tabu search algorithm to

solve it. Luna and Mahey (2000) provided a model that could capture both routing

and arc capacity expansion in telecommunication systems and found tight bounds for

their approximated solution.
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Chapter 3

Single Resource Stochastic

Capacity Expansion Models

3.1 Introduction

This chapter considers two models of single resource stochastic capacity expansion

problem. Traditionally, the models developed for capacity expansion problems assume

that there is only one type of capacity available for acquisition. This capacity is

purchased and permanently owned by the decision maker and we call it the permanent

capacity. However, in real world, there are other types of capacity that the decision

maker can use. In this chapter, we introduce two more types of capacity available to

decision maker: Spot market capacity which refers to the capacity that can only be

purchased and used in the current period, and contract capacity which refers to the

capacity that will be available in the current period, only if a contract has been signed

for it in a previous period. It is noteworthy that the decision for spot market capacity

acquisition will be made after the demand is realized in each period, while the decision
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for contract capacity acquisition will be made before the demand is realized.

In the following, we start with a single resource stochastic capacity expansion

model with permanent and spot market capacity (Section 3.2), and then we consider

an extension where contract capacity is available as well (Section 3.3).

3.2 Single Resource Stochastic Capacity Expan-

sion with Two Sources of Capacity

In this section, we consider a multi-period single resource stochastic capacity expan-

sion problem in which permanent capacity and spot market capacity are available to

the decision maker simultaneously. We model the problem using multi-stage stochas-

tic programming approach. As mentioned before, we assume that permanent capacity

acquisition decision will be made at the beginning of each period, before the realiza-

tion of the random data in that period; and spot market capacity acquisition decision

will be made after the realization of the random data in that period. This implies that

the permanent capacity acquisition variable of any scenario tree node will appear in

constraints related to its descendant nodes and the spot market acquisition variable

of any scenario tree node will only appear in the constraint related to the same node.

This model is called SCETWO and its notation is presented in Table 3.1.

Without loss of generality, we assume that there is no previously acquired per-

manent or spot market capacity. We also assume that dn, csn, and cpn are positive

values for all n ∈ T . Moreover, all costs are discounted to their present value. Given

these assumptions, the single resource stochastic capacity expansion problem with

permanent and spot market capacity can be formulated as follows:
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Table 3.1: Notations of the model SCETWO

Parameters:
cpn Permanent capacity acquisition cost for node n
csn Spot market capacity acquisition cost for node n
pn Probability of node n
dn Demand of node n

Decision variables:
xn Permanent capacity acquisition in node n
zn Spot market capacity acquisition in node n

Model SCETWO:

Min
∑
n∈T

pn (cpnxn + csnzn)

s.t.
∑

m∈P̄(n)

xm + zn ≥ dn ∀n ∈ T ,

xn, zn ∈ Z+ ∀n ∈ T .

(3.1)

In model SCETWO, the objective minimizes the expected total acquisition cost of

both permanent and spot market capacity, and the first set of constraints force the

total available capacity to be no less than the demand for each node. Note that the

permanent capacity purchased in the current period will be available to use in the

next period. As a result, permanent capacity acquisition variable xn will appear in

T̄ (n). Moreover, model SCETWO has the total unimodularity property (Wolsey and

Nemhauser (1988)):

Theorem 3.1. If the demands are integer-valued, the LP relaxation of SCETWO will

yield integral optimal solutions.
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Proof. Suppose A is the left hand side matrix of the model SCETWO. Note that A is

a 0-1 matrix and each row of it corresponds to a node in the scenario tree. Consider

the zn columns first. There is only a single 1 in each column and all other entries

are zero. Now, consider columns of xn. Entry of row i and column j is 1 only if

i ∈ T̄ (j). Now, we reorder the constraints based on depth-first search method (for

each column j, the rows corresponding to T̄ (j) are consecutive, and row i1 ∈ T̄ (j)

appears before row i2 ∈ T̄ (j) if i2 ∈ T (i1)). This new ordering guarantees that in

each column, the 1s appear consecutively. Therefore, A is an interval matrix which

is totally unimodular.

Theorem 3.1 shows that if the demands are integer-valued, we can solve a linear

relaxation of SCETWO instead of the original integer problem. The relaxed version is

Model RSCETWO:

Min
∑
n∈T

(cpnxn + csnzn)

s.t.
∑

m∈P̄(n)

xm + zn ≥ dn ∀n ∈ T ,

xn, zn ∈ R+ ∀n ∈ T .

(3.2)

Note that for simplicity of exposition, we have removed the pn’s from the objective

function. In the following, all our algorithms are designed for (3.2) which is an LP1

model.

1Linear Programming
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Figure 3.1: The Primal Indexing System

3.2.1 The Primal Algorithm

In this section, we propose a polynomial-time primal algorithm that can solve the

stochastic single resource capacity expansion problem RSCETWO.

The primal algorithm is based on a shifting-up procedure. It compares the ac-

quisition cost of permanent capacity in an ancestor node with the total acquisition

cost of permanent and spot market capacities in descendant nodes; and if it is more

economical, the capacities of descendant nodes will be shifted to the ancestor node

as permanent capacity. For this algorithm, we index the nodes in the scenario tree T

based on the increasing order of their time periods and we call it the primal indexing

system. Figure 3.1 shows an example of a scenario tree with 3 periods indexed by

primal indexing system. Numbers under each node is the demand of the node and

numbers inside each node represents the index.

The primal algorithm starts with an initial feasible solution where x∗n = 0 and
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z∗n = dn for all n ∈ T . We also need the following definitions:

A1(n) =
{
m ∈ T̄ (n) : xm > 0, and xk = 0,∀k ∈ P̄(m) \ P(n)

}
A2(n) =

{
m ∈ T̄ (n) : zm > 0, and xk = 0,∀k ∈ P̄(m) \ P(n)

}
A(n) = A1(n) ∪ A2(n)

sn =
∑

m∈A1(n)

cpm +
∑

m∈A2(n)

csm

∆n = Min

{
Min

m∈A1(n)
xm, Min

m∈A2(n)
zm

}

Given these definitions, the primal algorithm is given in Algorithm 1.

Algorithm 1 The Primal Algorithm for RSCETWO

1: set x∗n = 0 and z∗n = dn, ∀n ∈ T .
2: set k = Max{n ∈ T : T̄ (n) 6= ∅}.
3: while k ≥ 1
4: compute A1(k), A2(k), sk and ∆k.
5: while cpk ≤ sk

6: x∗m =

{
x∗m + ∆k if m = k,

x∗m −∆k if m ∈ A1(k).

7: z∗m = z∗m −∆k if m ∈ A2(k).
8: update A1(k), A2(k), sk and ∆k.
9: end while

10: k = k − 1
11: end while
12: return x∗ = (x∗1, · · · , x∗N) and z∗ = (z∗1 , · · · , z∗N).

3.2.2 The Dual Algorithm

In this section, we consider the dual of the stochastic single resource capacity expan-

sion model (3.2) called DRSCETWO . Let πn be the dual variable associated with

constraint n in primal problem. Then the dual problem can be formulated as follows:
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Model DRSCETWO:

Max
∑
n∈T

dnπn

s.t.
∑

m∈T̄ (n)

πm ≤ cpn ∀n ∈ T ,

πn ≤ csn ∀n ∈ T ,

πn ∈ R+ ∀n ∈ T .

(3.3)

We present a polynomial-time dual algorithm to solve this dual problem. The

algorithm has a greedy nature and is based on the following observation:

Lemma 3.1. A solution π = (π1, π2, · · · , πN) is dual feasible if and only if:

0 ≤ πn ≤ Min

csn, Min
m∈P̄(n)

cpm − ∑
k∈T̄ (m)\{n}

πk


 . (3.4)

When π is optimal, the second inequality is tight.

Proof. Non-negativity of πn and πn ≤ csn are guaranteed by the constraints in (3.3).

Also, note that for each n, all constraints in which πn appears are corresponding

to nodes in P̄(n). Therefore, for all m ∈ P̄(n), we have
∑

k∈T̄ (m) πk ≤ cpm or πn +∑
k∈T̄ (m)\{n} πk ≤ cpm. So, for all m ∈ P̄(n), we require that πn ≤ cpm−

∑
k∈T̄ (m)\{n} πk,

which implies πn ≤ Minm∈P̄(n)

{
cpm −

∑
k∈T̄ (m)\{n} πk

}
. To prove the last claim, sup-

pose that in the optimal solution, the second inequality is not tight. Then we can

increase πn to get a new feasible solution with greater objective value, which is a

contradiction.

To implement the dual algorithm, we use another indexing system called Dual

Indexing system for nodes in the scenario tree. In dual indexing system, nodes are
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Figure 3.2: The Dual Indexing System

indexed in decreasing order of their demands and we assume that all demands are

different, i.e., d1 > d2 > · · · > dN > 0. Figure 3.2 shows an example of a scenario

tree indexed by dual indexing system.

The dual algorithm is given in Algorithm 2. In the next section, we prove that

the primal and dual algorithms return the optimal solution.

Algorithm 2 The Dual Algorithm for DRSCETWO

1: set π∗n = 0 and c0
n = cpn, ∀n ∈ T .

2: for k = 1, 2, · · · , N

3: π∗k =

 Min
m∈P̄(k)

{
ck−1
m

}
if Minm∈P̄(k)

{
ck−1
m

}
≤ csk,

csk otherwise.

4: ckn =

{
ck−1
n − π∗k if n ∈ P̄(k),

ck−1
n otherwise.

5: end for
6: return π∗ = (π∗1, · · · , π∗N).

3.2.3 Validity of Algorithms

In this section, we verify that the primal and dual algorithms return the primal and

dual optimal solutions, respectively. In the following, we assume that dn, csn, and

cpn are positive numbers for all n ∈ T . We first show some properties of the primal
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solutions produced by Algorithm 1.

Lemma 3.2. In the primal algorithm, if x∗n > 0, we can find k ∈ T̄ (n) such that∑
m∈P(n) x

∗
m = dk.

Proof. The scenario tree has T periods and we use mathematical induction from

period T to 1 to prove the statement. Consider the steps in Algorithm 1. The initial

solution requires that x∗n = 0 and z∗n = dn for all n ∈ T . The statement is true for the

initial solution because x∗n = 0 for all n. For a non-leaf nodes k in period T −1 , if we

shift up capacity from nodes in A(k) to k as permanent capacity, then x∗k = ∆k > 0.

Since ∆k is the minimum demand among all nodes in A(k), the statement holds. If it

is still more economical to shift up capacity from nodes in A(k) to node k, the next

value of x∗k will be equal to the second smallest demand in A(k). When this procedure

stops for node k, the capacity accumulated in node k is equal to the demand of a

node in A(k), so the statement holds. Now consider any non-leaf nodes k in any

period before t < T − 1. Considering the definition of ∆k and the structure of initial

solution, if ∆k takes the minimum value among spot market capacities, it will be

equal to the demand of a direct descendant node. If ∆k takes the minimum value

among permanent capacities, the values are equal to the demand of a future node

due to mathematical induction assumption. Therefore, the statement holds for the

whole scenario tree.

In Lemma 3.3, we show several properties of the dual solutions resulting from

Algorithm 2. To facilitate our following proofs, we define mk for each node k as:

mk = argminn∈P̄(k)

{
ck−1
n

}
. When ck−1

n = ck−1
m , we let mk = m if tm < tn.

Lemma 3.3. In the dual algorithm, the following results hold:
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(a) If π∗k = ck−1
mk

, then
∑

m∈T̄ (mk) π
∗
m = cpmk , and π∗i = 0, ∀i ∈ T̄ (mk) with i > k.

(b) If π∗k = ck−1
mk

, then
∑

m∈T̄ (i),m<k π
∗
m < cpi , ∀i ∈ P̄(mk).

(c) If π∗k = csk, then
∑

m∈T̄ (i),m<k π
∗
m < cpi , ∀i ∈ P̄(k).

Proof. (a) Let us define U , V , and W as follows:

U =

{
i : i ∈ T̄ (mk), i < k, π∗i = Min

m∈P̄(i)
{ci−1
m }

}
V =

{
i : i ∈ T̄ (mk), i < k, π∗i = csi

}
W =

{
i : i ∈ T̄ (mk), i > k

}
According to the step 4 of Algorithm 2, when we consider node k, we have π∗k = ck−1

mk
=

cpmk −
∑

j∈T̄ (mk),j<k π
∗
j = cpmk −

∑
i∈U π

∗
i −

∑
i∈V π

∗
i . Consider the dual constraint:∑

m∈T̄ (mk) π
∗
m = π∗k +

∑
i∈U π

∗
i +

∑
i∈V π

∗
i +

∑
i∈W π

∗
i = cpmk +

∑
i∈W π

∗
i ≤ cpmk . This

implies that
∑

i∈W π
∗
i = 0 and since π∗i ≥ 0 for all i, we must have π∗i = 0 for each

node i ∈ W . This also shows that
∑

m∈T̄ (mk) π
∗
m = cpmk which completes the proof for

(a).

(b) Suppose i ∈ P̄(mk). According to Algorithm 2, when we consider node k, we

have ck−1
i = cpi −

∑
m∈T̄ (i),m<k π

∗
m or

∑
m∈T̄ (i),m<k π

∗
m = cpi − ck−1

i . Since π∗k = ck−1
mk

,

based on the definition of mk, we have ck−1
i > ck−1

mk
≥ 0. Therefore,

∑
m∈T̄ (i),m<k π

∗
m <

cpi .

(c) According to Algorithm 2, for any node i ∈ P̄(k), we can write ck−1
i = cpi −∑

m∈T̄ (i),m<k π
∗
m or

∑
m∈T̄ (i),m<k π

∗
m = cpi − ck−1

i . If ck−1
i = 0, it requires that π∗k = 0

which contradicts π∗k = csk > 0. So,
∑

m∈T̄ (i),m<k π
∗
m < cpi .

Lemma 3.4 shows a property of the dual solution resulting from Algorithm 2. To
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facilitate our proof, we define sets Uki and Vki for node i at iteration k of the dual

algorithm:

Uki =

mj

∣∣∣∣∣∣∣∣∣∣
mj ∈ T (i), j < k, π∗j = cj−1

mj

and there does not exist l < k and l > j such that

π∗l = cl−1
ml
, ml ∈ T (i), and T (ml) ⊃ T (mj)



Vki =

j
∣∣∣∣∣∣∣∣∣∣

j ∈ T̄ (i), j < k, π∗j = csj

and there does not exist l < k and l > j such that

π∗l = cl−1
ml
, ml ∈ T (i), and j ∈ T (ml)


These sets correspond to all of the capacities that could not be shifted up to node mk

in the primal algorithm.

Lemma 3.4. In the dual algorithm,

ck−1
mk

= cpmk −
∑

mj∈Ukmk

cpmj −
∑
j∈Vkmk

csj

Proof. Consider node i such that there does not exist j < k and π∗j = cpj−1
mj

and

i ∈ T̄ (mj). Note that for any j < k, if j ∈ T̄ (i), then either j ∈ Vki or mj ∈ Uki , or

there exists j < l < k such that π∗l = cpl−1
ml

and ml ∈ T (i) and j ∈ T̄ (ml). Therefore,

for node i, we have

ck−1
i = cpi −

∑
j∈T̄ (i),j<k

π∗j = cpi −
∑
mj∈Uki

cpmj −
∑
j∈Vki

csj

The conclusion holds when i = mk.
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Finally, we connect the primal solution and the dual solution in Lemma 3.5 and

3.6, corresponding to the different sources of capacity in the dual solutions:

Lemma 3.5. In the dual algorithm, if π∗k = ck−1
mk

, then:

(a) z∗k = 0, and x∗mk > 0 ;

(b)
∑

m∈P(mk) x
∗
m ≥ dk ;

(c) ∀i ∈ P̄(mk),
∑

m∈P(i) x
∗
m < dk.

Proof. (a) Since π∗k = ck−1
mk

, it requires that ck−1
mk

< csk. On the other hand, from

Lemma 3.4, we have ck−1
mk

= cpmk −
∑

mj∈Ukmk
cpmj −

∑
j∈Vkmk

csj which implies that

cpmk < csk +
∑

mj∈Ukmk
cpmj +

∑
j∈Vkmk

csj . This means that Algorithm 1 will completely

shift up the spot market capacity of node k (if any) to mk, i.e., z∗k = 0.

Next, we need to ensure that the capacity accumulated at node mk will not be

shifted up completely, i.e., x∗mk > 0. Note that for all i ∈ P̄(mk), c
k−1
i = cpi −∑

mj∈Uki
cpmj−

∑
j∈Vki

csj . Since ck−1
mk

< ck−1
i , we have cpmk−

∑
mj∈Ukmk

cpmj−
∑

j∈Vkmk
csj <

cpi−
∑

mj∈Uki
cpmj−

∑
j∈Vki

csj , which implies that cpi > cpmk+
∑

mj∈Uki \Ukmk
cpmj+

∑
j∈Vki \Vkmk

csj

for all i ∈ P̄(mk). According to Algorithm 1, this means that the capacity in mk can-

not be shifted up completely anymore. So x∗mk > 0.

(b) To the contrary, Suppose that
∑

m∈P(mk) x
∗
m < dk. Since z∗k = 0, we can

conclude that there is a node j ∈ P̄(k) \ P(mk) with x∗j > 0. However, in (a), we

proved that Algorithm 1 will shift up any capacity of nodes in P̄(k) \ P(mk) to node

mk. So, for all j ∈ P̄(k) \ P(mk), x
∗
j must be equal to zero, which is a contradiction.

(c) To the contrary, assume that there exists i ∈ P̄(mk) such that
∑

m∈P(i) x
∗
m ≥

dk. Without loss of generality, assume that i is such a node with the largest ti. Then
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in the primal algorithm, we must have cpi ≤
∑

mj∈Uki
cpmj +

∑
j∈Vki

csj . This implies

that node i = mk, which is a contradiction.

Lemma 3.6. In the dual algorithm, if π∗k = csk, then:

(a) z∗k > 0 ;

(b)
∑

m∈P̄(k) x
∗
m + z∗k = dk, and

∑
m∈P̄(k) x

∗
m < dk.

Proof. (a) Since π∗k = csk, we can conclude that for all i ∈ P̄(k), csk < ck−1
i . According

to Lemma 3.4, ck−1
i = cpi−

∑
mj∈Uki

cpmj−
∑

j∈Vki
csj . So, cpi > csk+

∑
mj∈Uki

cpmj+
∑

j∈Vki
csj

which implies that no capacity will be shifted up from node k to nodes i ∈ P̄(k) as

permanent capacity according to Algorithm 1. Since the initialization of Algorithm

1 enforces all zn to be positive, we can conclude that z∗k > 0.

(b) To the contrary, assume that
∑

m∈P̄(k) x
∗
m + z∗k > dk. Since z∗k > 0, we can

decrease z∗k to make the constraint tight. This will give us a new feasible solution

with less objective value, which contradicts optimality. Then the second half of the

claim follows.

The next theorem will show that the solutions returned by the primal and dual

algorithms are optimal.

Theorem 3.2. The solution (x∗, z∗) = (x∗1, x
∗
2, · · · , x∗N , z∗1 , z∗2 , · · · , z∗N) returned by

the primal algorithm and the solution π∗ = (π∗1, π
∗
2, · · · , π∗N) returned by the dual

algorithm are optimal.

Proof. First, we show that (x∗, z∗) and π∗ are both feasible solutions of primal and

dual problem, respectively. In the primal algorithm, we start with a feasible solution
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and in each iteration, we shift up ∆k capacity which preserve feasibility. The feasi-

bility of π∗ is guaranteed by Lemma 3.1.

Next, we need to prove the complementary slackness for primal and dual solutions:

π∗n > 0 =⇒
∑

m∈P̄(n)

x∗m + z∗n = dn (3.5)

∑
m∈T̄ (n)

π∗m < cpn =⇒ x∗n = 0 (3.6)

π∗n < csn =⇒ z∗n = 0 (3.7)

Assume that we are using the dual indexing system. Suppose that π∗n > 0. To prove

(3.5), two cases are Considered:

Case 1: If π∗n = csn, Lemma 3.6(b) guarantees that
∑

m∈P̄(n) x
∗
m + z∗n = dn.

Case 2: If π∗n = cn−1
mn , to the contrary, assume that

∑
m∈P̄(n) x

∗
m + z∗n > dn. Ac-

cording to Lemma 3.5(a), z∗k = 0 and x∗mn > 0. Now, according to Lemma 3.2, there

is a node k ∈ T̄ (mn) such that
∑

m∈P(mn) x
∗
m = dk, which implies that dk > dn or

k < n. Now, consider the optimal dual variable of node k, i.e. π∗k. If π∗k = csk,

Lemma 3.6(b) requires that
∑

m∈P̄(k) x
∗
m < dk, which contradicts

∑
m∈P(mn) x

∗
m = dk,

because k ∈ T̄ (mn). If π∗k = ck−1
mk

, when mk ∈ T̄ (mn), Lemma 3.5(c) requires that∑
m∈P(mn) x

∗
m < dk which contradicts

∑
m∈P(mn) x

∗
m = dk; when mk ∈ P(mn), then

since n > k and n ∈ T̄ (mk), Lemma 3.3(a) requires that π∗n = 0 which contradicts

π∗n > 0. Case
∑

m∈P̄(n) x
∗
m + z∗n < dn is impossible, because it violates primal feasibil-

ity. Therefore,(3.5) holds.

To prove (3.6), we again use contradiction. Suppose that
∑

m∈T̄ (n) π
∗
m < cpn and

x∗n > 0 simultaneously. According to Lemma 3.2, we can find a k ∈ T̄ (n), such that
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∑
m∈P(n) x

∗
m = dk. Now, consider the optimal dual value of k, i.e., π∗k:

Case 1: π∗k = csk. Lemma 3.6(b) implies that
∑

m∈P̄(k) x
∗
m < dk which contradicts∑

m∈P(n) x
∗
m = dk, since P(n) ⊆ P̄(k).

Case 2: π∗k = ck−1
mk

. If mk ∈ T̄ (n), then n ∈ P̄(mk), and Lemma 3.5(c) requires

that
∑

m∈P(n) x
∗
m < dk which contradicts

∑
m∈P(n) x

∗
m = dk. If mk ∈ P̄(n), according

to Lemma 3.5(b), we have
∑

m∈P(mk) x
∗
m ≥ dk. However, since

∑
m∈P(n) x

∗
m = dk and

n ∈ T̄ (mk), it requires that x∗n = 0 which is a contradiction. So, the only remaining

possibility is mk = n. In this case, Lemma 3.3(a) requires that
∑

m∈T̄ (mk) π
∗
m = cpmk .

Since mk = n, then
∑

m∈T̄ (n) π
∗
m = cpn which contradicts

∑
m∈T̄ (n) π

∗
m < cpn. Therefore,

(3.6) holds.

Finally, When π∗n < csn, we have a node mn such that π∗n = cn−1
mn . According to

Lemma 3.5(a), we have z∗n = 0. Therefore, (3.7) holds.

3.2.4 Complexity

Suppose the scenario tree is a complete tree with T time periods and B branches

for every non-leaf node. Then the number of nodes in the scenario tree is equal to

N =
∑T−1

t=0 B
t = BT−1

B−1
, which implies that T ∼ O(log N).

Theorem 3.3. The complexity of the primal algorithm is O(N2).

Proof. Initialization step needs at most N operations. Computing each of A(k), sk,

and ∆k requires at most N operations. The external while (in step 3) will run at

most n times. Each iteration of the internal while (in step 5) will deplete the capacity

for one node and the variable adjustments will be of the complexity of at most O(N).

So the dominant complexity is for two whiles which is O(N2).
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Theorem 3.4. The complexity of the dual algorithm is O(N log N log(log N)).

Proof. Sorting the demands of N nodes has a complexity of N log N . For each node,

updating π∗k and ckn requires at most T minimization and T for new values. Each

minimization has a complexity of T log T . Therefore, the total number of operations is

at mostN logN+N(T log T+T ). Since T ∼ O(logN), the number of operations is no

more thatN log N(2 + log(log N)). So, the complexity is O(N log N log(log N))

3.2.5 Experimental Results

In this section, we present some experimental results that compare the solution times

of the designed primal and dual algorithm with those of CPLEX LP solver.

We create 15 instances of the model SCETWO by changing the number of periods

in the scenario tree (T ) and the number of branches of the scenario tree (B). This

results in generating instances with a wide range of scenario tree size (N). The results

are shown in Table 3.2. It is important to mention that CPLEX is solving an LP in

these tests.

All the codes are written in C++ using IBM/ILOG CPLEX 12.6 Concert Tech-

nology. The experiments are conducted on a computer with an Intel Core i3-M330

2.13GHz processor and 4.00 GB of RAM running Ubuntu 14.04 LTS.

Table 3.2 shows that the primal and dual algorithms can perform better than

CPLEX LP solver in all instances, especially for large-scale problems. The data

presented in Table 3.2 also confirm that the complexity of the dual algorithm is less

than the complexity of the primal algorithm.
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Table 3.2: Performance of the primal and dual algorithms for SCETWO

T B N
Time (s) % of CPLEX Time

CPLEX Primal Dual Primal Dual

5 5 781 0.013 0.003 0.001 23.07 7.69
8 3 3, 280 0.040 0.010 0.004 25.00 10.00

12 2 4, 095 0.043 0.022 0.005 51.16 11.62
5 10 11, 111 0.109 0.025 0.011 22.93 10.09
7 5 19, 531 0.230 0.044 0.026 19.13 11.30

15 2 32, 767 0.669 0.112 0.051 16.74 7.62
8 5 97, 656 0.852 0.235 0.133 27.58 15.61

10 4 349, 525 6.034 0.934 0.551 15.47 9.13
9 5 488, 281 8.826 1.245 0.755 14.10 8.55

13 3 797, 161 18.668 2.526 1.397 13.53 7.48
20 2 1, 048, 575 36.781 4.440 2.161 12.07 5.87
7 10 1, 111, 111 37.341 4.865 2.505 11.89 5.78
8 8 2, 396, 745 67.269 5.708 3.844 9.48 5.71

12 4 5, 592, 405 376.479 16.044 10.225 4.26 2.71
15 3 7, 174, 453 ∗ 23.868 14.109 N/A N/A

* For the last instance, CPLEX LP solver encounters an out of memory exception.

3.3 Single Resource Stochastic Capacity Expan-

sion with Three Sources of Capacity∗

In previous section, we studied multi-stage stochastic capacity expansion for a single

resource problem with two types of capacity (permanent and spot market) available

to purchase. In this section, we add another source of capacity called the contract

capacity. In order to have this capacity available in the current period, the decision

maker has to sign a contract in previous periods. At the first glance, the three capacity

∗ Published as: Taghavi, M., & Huang, K. (2014). Stochastic Capacity Expansion with Multiple
Sources of Capacity. Operations Research Letters, 42(4), 263-267
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sources model of this section is not very different from the two capacity sources

model of the previous section. Thus, one might expect that the algorithm design and

complexities will be similar. However, through the rest of this section, it can be seen

that the algorithms and their validity proofs are quite different and more sophisticated

for the three capacity model of this section. This is because the interactions among

three sources of capacity are more complicated than the interactions between two

sources of capacity.

Furthermore, it is noteworthy that, although the three capacity model presented

in this section assumes that the length of the contract for capacity is one period,

this model can capture the case where the decision maker can sign contracts for

an arbitrary number of periods. Surprisingly, we will show that the complexity of

algorithms that we design will not change, when we implement them for problems

allowing multiple period contracts.

This multi-stage stochastic capacity expansion for a single resource problem with

three types of capacity (permanent, spot market, and contract) is called SCETHREE
and its notation is presented in Table 3.3.

We assume that we do not have any previously purchased or contracted capacity.

We also assume that all costs and demands are positive and all costs are discounted to

their present value. With these assumptions, the model SCETHREE can be formulated

as follows:
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Table 3.3: Notations of the model SCETHREE

Parameters:
cpn Unit cost of permanent capacity acquisition for node n
csn Unit cost of spot market capacity acquisition for node n
ccn Unit cost of contract capacity acquisition for node n
pn Probability of node n
dn Demand of node n

Decision variables:
xn Permanent capacity acquisition in node n
zn Spot market capacity acquisition in node n
yn Contract capacity acquisition in node n

Model SCETHREE :

Min
∑
n∈T

pn (cpnxn + ccnyn + csnzn)

s.t.
∑

m∈P̄(n)

xm + ya(n) + zn ≥ dn ∀n ∈ T ,

xn, yn, zn ∈ Z+ ∀n ∈ T ,

(3.8)

where the objective minimizes the expected total cost of all three types of capacity

acquisition over the scenario tree, and the constraint guarantees that for each node

in the scenario tree, the total capacity available at node n will satisfy the demand.

Note that we purchase the permanent capacity or sign the contract capacity at the

beginning of a period, before the realization of the random demand in the same

period. So that in model (3.8), we make permanent or contract capacity available in

the next period of when they are purchased or signed. In other words, xn will appear

in T̄ (n) and yn will appear in C(n). We emphasize that our model can deal with

contracts with arbitrary number of periods. For simplicity of exposition, we only use
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the one-period contract in (3.8). Model SCETHREE has the following property:

Theorem 3.5. If the demands are integer-valued, the LP relaxation of SCETHREE
will yield integral optimal solutions.

Proof. Suppose A is the left hand side matrix of SCETHREE. Note that A is a 0-1

matrix and each row in A is corresponding to a node in the scenario tree. Consider

the zn columns. Clearly, there is a single 1 in each column and all other entries are

zeros. Consider the yn columns, entry of row i and column j is 1 only if i ∈ C(j).

Consider the xn columns, entry of row i and column j is 1 only if i ∈ T̄ (j). We can

reorder the constraints according to the following procedure: We start from the root

node and after each insertion of a node n, we immediately insert all nodes in C(n). If

there is more than one node in C(n), we will re-start the process from the first inserted

node, and when there is no more node to insert, we continue the procedure from the

last non-inserted node based on a depth-first method. This new ordering guarantees

that in each column, the 1’s appear consecutively. Therefore, A is an interval matrix

which is totally unimodular.

Based on Theorem 3.5, if the demands are integer-valued, we can solve the linear

relaxation of SCETHREE which can be modeled as follows:

Model RSCETHREE :

Min
∑
n∈T

(cpnxn + ccnyn + csnzn)

s.t.
∑

m∈P̄(n)

xm + ya(n) + zn ≥ dn ∀n ∈ T ,

xn, yn, zn ∈ R+ ∀n ∈ T .

(3.9)

Note that for simplicity of exposition, we have removed the pn’s from the objective
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function. In the following, all our algorithms are designed for RSCETHREE.

3.3.1 The Primal Algorithm

In this section, we propose a polynomial-time primal algorithm for RSCETHREE.

The primal algorithm will check if it is more economical to shift up capacity to an

ancestor node as either permanent capacity or contract capacity by comparing the

costs of permanent capacity or contract capacity in an ancestor node with the total

cost of permanent, contract, and spot market capacities in descendant nodes.

For this algorithm, we assume that the nodes in the scenario tree T are indexed

by the primal indexing system. The algorithm starts with an initial feasible solution,

where x∗n = y∗n = 0 and z∗n = dn for all n ∈ T . Besides, we need the following

definitions:

A1(n) =
{
m ∈ T̄ (n) : xm > 0, and xk = 0,∀k ∈ P̄(m) \ P(n)

}
A2(n) =

{
m ∈ T̄ (n) : ym > 0, and xk = 0,∀k ∈ P(m) \ P(n)

}
A3(n) =

{
m ∈ T̄ (n) : zm > 0, and xk = yk = 0,∀k ∈ P̄(m) \ P(n)

}
A(n) = A1(n) ∪ A2(n) ∪ A3(n)

∆1
n = Min

{
Min

m∈A1(n)
xm, Min

m∈A2(n)
ym, Min

m∈A3(n)
zm

}
∆2
n = Min

m∈C(n)
zm>0

zm

B1
n =

∑
m∈A1(n)

cpm +
∑

m∈A2(n)

ccm +
∑

m∈A3(n)

csm − cpn

B2
n =

∑
m∈C(n)
zm>0

csm − ccn

Given these notations, the primal algorithm is presented in Algorithm 3.
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Algorithm 3 The Primal Algorithm for RSCETHREE
1: set x∗n = y∗n = 0 and z∗n = dn, ∀n ∈ T .
2: set k = Max{n ∈ T : T̄ (n) 6= ∅}.
3: while k ≥ 1
4: compute A1(k),A2(k),A3(k), ∆1

k, ∆2
k, B

1
k and B2

k.
5: while B1

k ≥ 0 or B2
k ≥ 0

6: if B2
k > B1

k

7: z∗m = z∗m −∆2
k, ∀m ∈ C(k) and z∗m > 0

8: y∗k = y∗k + ∆2
k

9: else
10: z∗m = z∗m −∆1

k, ∀m ∈ A3(k)
11: y∗m = y∗m −∆1

k, ∀m ∈ A2(k)

12: x∗m =

{
x∗m + ∆1

k if m = k,

x∗m −∆1
k if m ∈ A1(k).

13: end if
14: update A1(k),A2(k),A3(k), ∆1

k, ∆2
k, B

1
k and B2

k.
15: end while
16: k = k − 1
17: end while
18: return x∗, y∗, z∗.

3.3.2 The Dual Algorithm

In this section, we consider the dual of the stochastic single resource capacity expan-

sion model RSCETHREE, which can be formulated as follows:

Model DRSCETHREE:

Max
∑
n∈T

dnπn

s.t.
∑

m∈T̄ (n)

πm ≤ cpn ∀n ∈ T ,∑
m∈C(n)

πm ≤ ccn ∀n ∈ T ,

πn ≤ csn ∀n ∈ T ,

πn ∈ R+ ∀n ∈ T .

(3.10)
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We present a polynomial-time dual algorithm to solve (3.10). The algorithm has a

greedy nature and is based on the following observation.

Lemma 3.7. A solution π = (π1, π2, · · · , πN) is dual feasible for (3.10), if and only

if πn ≥ 0 and:

πn ≤ Min

 Min
m∈P̄(n)

cpm − ∑
k∈T̄ (m)\{n}

πk

 , cca(n) −
∑

m∈C(a(n))\{n}

πm, c
s
n

 . (3.11)

When π is optimal, the second inequality is tight.

Proof. Non-negativity of πn and πn ≤ csn are guaranteed by forth and third constraints

of dual problem (3.10), respectively. Also, note that for each n in first constraint,

all constraints in which πn will appear are corresponding to P̄(n). Therefore, for all

m ∈ P̄(n), we have
∑

k∈T̄ (m) πk ≤ cpm or πn ≤ cpm −
∑

k∈T̄ (m)\{n} πk, which means

πn ≤ Minm∈P̄(n)

{
cpm −

∑
k∈T̄ (m)\{n} πk

}
. Now consider the second constraint. For

each n, πn will appear in the constraint for a(n). Therefore,
∑

m∈C(a(n)) πm ≤ cca(n) or

πn ≤ cca(n) −
∑

m∈C(a(n))\{n} πm. To prove the last claim, suppose that in the optimal

solution, the second inequality is not tight. Then we can always increase πn to get a

new feasible solution with greater objective value, which is a contradiction.

Given the above observation and using the dual indexing system, the dual algo-

rithm is given in Algorithm 4.

3.3.3 Validity of Algorithms

In this section, we verify that the primal and dual algorithms for RSCETHREE return

the primal and dual optimal solutions, respectively. In the following, we assume that
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Algorithm 4 The Dual Algorithm for DRSCETHREE
1: set π∗n = 0, ∀n ∈ T .
2: set cp0

n = cpn, cc
0
n = ccn, ∀n ∈ T .

3: for k = 1, 2, · · · , N
4: If Minm∈P̄(k)

{
cpk−1
m

}
> csk and cck−1

a(k) > csk
5: π∗k = csk
6: else if Minm∈P̄(k)

{
cpk−1
m

}
> cck−1

a(k)

7: π∗k = cck−1
a(k)

8: else
9: π∗k = Minm∈P̄(k)

{
cpk−1
m

}
10: end if

11: cpkn =

{
cpk−1
n − π∗k if n ∈ P̄(k),

cpk−1
n otherwise .

12: cckn =

{
cck−1
n − π∗k if n = a(k) and π∗k 6= Minm∈P̄(k)

{
cpk−1
m

}
,

cck−1
n otherwise .

13: end for
14: return π∗ = (π∗1, · · · , π∗N).

dn, csn, and cpn are positive numbers for all n ∈ T , and d1 > d2 > · · · > dN . We also

define mk for each node k as: mk = argminn∈P̄(k)

{
cpk−1
n

}
. When cpk−1

n = cpk−1
m , we

let mk = m if tm < tn.

We first show some properties of the primal solutions produced by Algorithm 3.

Lemma 3.8. In the primal algorithm:

(a) If x∗n > 0, we can find k ∈ T̄ (n) such that
∑

m∈P(n) x
∗
m = dk ;

(b) If y∗n > 0, we can find k ∈ C(n) such that
∑

m∈P(n) x
∗
m + y∗n = dk.

Proof. Note that the scenario tree has T periods. We can use mathematical induc-

tion from period T to 1 to prove (a) and (b) simultaneously. Consider the steps in

Algorithm 3. The initial solution requires that x∗n = y∗n = 0 and z∗n = dn for all n ∈ T .

Clearly, the statements hold for the initial solution. For a non-leaf node k in period
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T − 1, if we shift up capacity from nodes in A(k) to k as permanent capacity, then

x∗k = ∆1
k > 0. If we shift up capacity from nodes in A(k) to k as contract capacity,

then y∗k = ∆2
k > 0. Note that A(k) = C(k). In either case, x∗k or y∗k will be the

minimum demand among all nodes in C(k), and the statements hold. If it is still

more economical to shift up capacity from the rest of nodes in C(k) to node k, the

next value of x∗k or y∗k will be equal to the second smallest demand in C(k). When

this procedure stops for node k, the statements hold.

Now consider any non-leaf node k in any period t < T − 1. Consider two cases.

Firstly, B1
k ≥ B2

k and B1
k ≥ 0. According to the definition, ∆1

k takes the minimum

value among permanent capacities or contract capacities or spot market capacities of

certain descendants of k, the statements hold according to mathematical induction

assumption. Secondly, B2
k > B1

k and B2
k ≥ 0. Then according to the definition, ∆2

k

takes the minimum value among spot market capacities of direct descendants (sons)

of k. It will be equal to the demand of a future node due to mathematical induction

assumption. Therefore the statements hold for the whole scenario tree.

In Lemma 3.9 and Proposition 1, we show some properties of the dual solutions

produced by Algorithm 4. To facilitate our proofs, we define sets Uki , Vki , and Wk
i for

node i at iteration k in the dual algorithm:

Uki =

mj

∣∣∣∣∣∣∣∣∣∣
mj ∈ T (i), j < k, π∗j = cpj−1

mj

and there does not exist l < k and l > j such that

π∗l = cpl−1
ml
, ml ∈ T (i), and T (ml) ⊃ T (mj)

 ,
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Vki =

a(j)

∣∣∣∣∣∣∣∣∣∣
a(j) ∈ T (i), j < k, π∗j = ccj−1

a(j)

and there does not exist l < k and l > j such that

π∗l = cpl−1
ml
, ml ∈ T (i), and a(j) ∈ T (ml)

 ,

Wk
i =


j

∣∣∣∣∣∣∣∣∣∣∣∣∣

j ∈ T̄ (i), j < k, π∗j = csj

and there does not exist l < k and l > j such that

π∗l = cpl−1
ml
, ml ∈ T (i), and j ∈ T (ml), or

π∗l = ccl−1
a(l), a(l) ∈ T (i), and j ∈ C(a(l))


.

These three sets correspond to all the capacities that could not be shifted up to node

mk in the primal algorithm.

Lemma 3.9. In the dual algorithm, the following results hold:

(a) If π∗k = cpk−1
mk

, then
∑

m∈T̄ (mk) π
∗
m = cpmk , and π∗i = 0, ∀i ∈ T̄ (mk) with i > k.

(b) If π∗k = cpk−1
mk

, then
∑

m∈T̄ (i),m<k π
∗
m < cpi for all i ∈ P̄(mk).

(c) If π∗k = cck−1
a(k), then

∑
m∈C(a(k)) π

∗
m = cca(k), and π∗i = 0, ∀i ∈ C (a(k)) with i > k.

(d) If π∗k = cck−1
a(k), then

∑
m∈T̄ (i),m<k π

∗
m < cpi , ∀i ∈ P(a(k)).

(e) If π∗k = csk, then
∑

m∈T̄ (i),m<k π
∗
m < cpi , ∀i ∈ P̄(k), and

∑
m∈C(a(k)) π

∗
m < cca(k).

Proof. (a) Let us define U , V , W , and X as follows:

U =
{
i : i ∈ T̄ (mk), i < k, π∗i = cpi−1

mi

}
V =

{
i : i ∈ T̄ (mk), i < k, π∗i = cci−1

a(i)

}
W =

{
i : i ∈ T̄ (mk), i < k, π∗i = csi

}
X =

{
i : i ∈ T̄ (mk), i > k

}
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According to the step 11 of Algorithm 4, when we consider node k, we have π∗k =

cpk−1
mk

= cpmk −
∑

j∈T̄ (mk),j<k π
∗
j = cpmk −

∑
i∈U π

∗
i −

∑
i∈V π

∗
i −

∑
i∈W π

∗
i . Consider the

dual constraint:
∑

m∈T̄ (mk) π
∗
m = π∗k +

∑
i∈U π

∗
i +

∑
i∈V π

∗
i +

∑
i∈W π

∗
i +

∑
i∈X π

∗
i =

cpmk +
∑

i∈X π
∗
i ≤ cpmk . This implies that

∑
i∈X π

∗
i = 0 and since π∗i ≥ 0 for all i, we

must have π∗i = 0 for each node i ∈ X . This also shows that
∑

m∈T̄ (mk) π
∗
m = cpmk

which completes the proof of (a).

(b) Suppose i ∈ P̄(mk). According to Algorithm 4 , when we consider node

k, we have cpk−1
i = cpi −

∑
m∈T̄ (i),m<k π

∗
m, i.e.,

∑
m∈T̄ (i),m<k π

∗
m = cpi − cpk−1

i . Since

π∗k = cpk−1
mk

, based on the definition of mk, we have cpk−1
i > cpk−1

mk
≥ 0. Therefore∑

m∈T̄ (i),m<k π
∗
m < cpi .

(c) Define U , V , W , and X similarly as in (a), except that we replace T̄ (mk) with

C(a(k)). Note that for node k, we have π∗k = cck−1
a(k) = cca(k) −

∑
i∈U π

∗
i −

∑
i∈V π

∗
i −∑

i∈W π
∗
i . Consider the dual constraint:

∑
m∈C(a(k)) π

∗
m = π∗k +

∑
i∈U π

∗
i +

∑
i∈V π

∗
i +∑

i∈W π
∗
i +
∑

i∈X π
∗
i ≤ cca(k). This implies that

∑
i∈X π

∗
i = 0, i.e., π∗i = 0 for each node

i ∈ X . This also shows that
∑

m∈C(a(k)) π
∗
m = cca(k) which completes the proof of (c).

(d) Suppose i ∈ P(a(k)). According to Algorithm 4 , when we consider node

k, we have cpk−1
i = cpi −

∑
m∈T̄ (i),m<k π

∗
m, i.e.,

∑
m∈T̄ (i),m<k π

∗
m = cpi − cpk−1

i . Since

π∗k = cck−1
a(k), we have cpk−1

i > cck−1
a(k) ≥ 0. Therefore

∑
m∈T̄ (i),m<k π

∗
m < cpi .

(e) According to Algorithm 4, for any node i ∈ P̄(k), we have cpk−1
i = cpi −∑

m∈T̄ (i),m<k π
∗
m, i.e.,

∑
m∈T̄ (i),m<k π

∗
m = cpi − cpk−1

i . If cpk−1
i = 0, it requires that

π∗k = 0 which is a contradiction of π∗k = csk > 0. So
∑

m∈T̄ (i),m<k π
∗
m < cpi . For node

a(k), we have cck−1
a(k) = cca(k) −

∑
m∈C(a(k)),m<k π

∗
m. Note that cck−1

a(k) > csk ≥ 0, so that∑
m∈C(a(k)),m<k π

∗
m < cca(k).

Proposition 1. In the dual algorithm, the following results hold:
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(a) cpk−1
mk

= cpmk −
∑

mj∈Ukmk
cpmj −

∑
a(j)∈Vkmk

cca(j) −
∑

j∈Wk
mk

csj.

(b) If there exists j ∈ C(a(k)) such that j < k and π∗j = ccj−1
a(j), then cck−1

a(k) = 0;

otherwise cck−1
a(k) = cca(k) −

∑
j∈C(a(k)), j<k, π∗j=csj

csj.

Proof. (a) Consider node i such that there does not exist j < k and π∗j = cpj−1
mj

and

i ∈ T̄ (mj). Note that for any j < k, if j ∈ T̄ (i), then either j ∈ Wk
i , or a(j) ∈ Vki ,

or mj ∈ Uki , or there exists j < l < k such that π∗l = cpl−1
ml

and ml ∈ T (i) and

j ∈ T̄ (ml), or there exists j < l < k such that π∗l = ccl−1
a(l) and a(l) ∈ T (i) and

j ∈ C(a(l)). Therefore, for node i, we have

cpk−1
i = cpi −

∑
j∈T̄ (i),j<k

π∗j = cpi −
∑
mj∈Uki

cpmj −
∑

a(j)∈Vki

cca(j) −
∑
j∈Wk

i

csj

The conclusion holds when i = mk.

(b) Note that cck−1
i = cci −

∑
j∈C(i),j<k π

∗
j and Algorithm 4 will update ccka(k) only

if π∗k = csk or π∗k = cck−1
a(k). If there exists a node j ∈ C(a(k)) such that j < k and

π∗j = ccj−1
a(j), then ccja(k) = ccj−1

a(j) − π∗j = 0. This means that for all nodes k > j,

cck−1
a(k) = 0. If for all j ∈ C(a(k)) with j < k, we have π∗j = csj , then cck−1

a(k) =

cca(k) −
∑

j∈C(a(k)),j<k π
∗
j = cca(k) −

∑
j∈C(a(k)), j<k, π∗j=csj

csj . Therefore the conclusion

follows.

We link the primal solutions and dual solutions in Lemma 3.10, 3.11 and 3.12,

corresponding to the different sources of capacity in the dual solutions.

Lemma 3.10. In the dual algorithm, if π∗k = cpk−1
mk

, then:

(a) y∗a(k) = z∗k = 0 and x∗mk > 0 ;

(b)
∑

m∈P(mk) x
∗
m ≥ dk ;
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(c) For all i ∈ P̄(mk),
∑

m∈P(i) x
∗
m < dk.

Proof. (a) Since π∗k = cpk−1
mk

, it is required that cpk−1
mk
≤ cck−1

a(k). Also, Proposition 1(a)

shows that cpk−1
mk

= cpmk −
∑

mj∈Ukmk
cpmj −

∑
a(j)∈Vkmk

cca(j) −
∑

j∈Wk
mk

csj . If in Propo-

sition 1(b), we have cck−1
a(k) = cca(k) −

∑
j∈C(a(k)), j<k, π∗j=csj

csj , then it holds that cpmk −∑
mj∈Ukmk

cpmj−
∑

a(j)∈Vkmk
cca(j)−

∑
j∈Wk

mk

csj ≤ cca(k)−
∑

j∈C(a(k)), j<k, π∗j=csj
csj , which im-

plies that cpmk ≤ cca(k)+
∑

mj∈Ukmk
cpmj+

∑
a(j)∈Vkmk

cca(j)+
∑

j∈Wk
mk

csj−
∑

j∈C(a(k)), j<k, π∗j=csj
csj .

This means that in Algorithm 3, the contract capacity of node a(k) (if any) will

be totally shifted up to node mk, i.e., y∗a(k) = 0. In Proposition 1(b), if we have

cck−1
a(k) = 0, then it requires that π∗k = cpk−1

mk
= 0 = cck−1

a(k), which also implies

the contract capacity of node a(k) will be totally shifted up to node mk. On the

other hand, π∗k = cpk−1
mk

also requires that cpk−1
mk
≤ csk which means that cpmk ≤

csk +
∑

mj∈Ukmk
cpmj +

∑
a(j)∈Vkmk

cca(j) +
∑

j∈Wk
mk

csj . This means that Algorithm 3 will

completely shift up the spot market capacity of node k (if any) to mk, i.e., z∗k = 0.

Next, we need to ensure that the capacity accumulated at node mk will not

be shifted up completely, i.e., x∗mk > 0. Note that for all i ∈ P̄(mk), cp
k−1
i =

cpi −
∑

mj∈Uki
cpmj −

∑
a(j)∈Vki

cca(j) −
∑

j∈Wk
i
csj . Since cpk−1

mk
< cpk−1

i , we have cpmk −∑
mj∈Ukmk

cpmj −
∑

a(j)∈Vkmk
cca(j) −

∑
j∈Wk

mk

csj < cpi −
∑

mj∈Uki
cpmj −

∑
a(j)∈Vki

cca(j) −∑
j∈Wk

i
csj , which implies that cpi > cpmk +

∑
mj∈Uki \Ukmk

cpmj +
∑

a(j)∈Vki \Vkmk
cca(j) +∑

j∈Wk
i \Wk

mk

csj for all i ∈ P̄(mk). According to Algorithm 3, this means that the

capacity in mk cannot be shifted up completely anymore. So x∗mk > 0.

(b) Suppose that
∑

m∈P(mk) x
∗
m < dk. Since y∗a(k) = z∗k = 0, there is a node in

j ∈ P̄(k)\P(mk) with x∗j > 0. However, in (a), we have proved that Algorithm 3 will

shift up any capacity of nodes in P̄(k)\P(mk) to nodemk. So, for all j ∈ P̄(k)\P(mk),

x∗j must be equal to zero, which is a contradiction.
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(c) Assume that there exists i ∈ P̄(mk) such that
∑

m∈P(i) x
∗
m ≥ dk. Without loss

of generality, assume that i is such a node with the largest ti. Then in the primal

algorithm, we must have cpi ≤
∑

mj∈Uki
cpmj +

∑
a(j)∈Vki

cca(j) +
∑

j∈Wk
i
csj . This implies

that node i = mk, which is a contradiction. Therefore, the conclusion holds.

Lemma 3.11. In the dual algorithm, if π∗k = cck−1
a(k), then:

(a) y∗a(k) > 0 and z∗k = 0 ;

(b)
∑

m∈P̄(k) x
∗
m < dk ;

(c)
∑

m∈P̄(k) x
∗
m + y∗a(k) ≥ dk.

Proof. (a) Since π∗k = cck−1
a(k), cc

k−1
a(k) ≤ csk. If in Proposition 1(b), cck−1

a(k) = cca(k) −∑
j∈C(a(k)), j<k, π∗j=csj

csj , then we have cca(k) −
∑

j∈C(a(k)), j<k, π∗j=csj
csj < csk, i.e., cca(k) <

csk+
∑

j∈C(a(k)), j<k, π∗j=csj
csj . This means that the spot market capacity of node k will be

totally shifted up to node a(k) as contract capacity, i.e., z∗k = 0. In Proposition 1(b),

if there is a node j ∈ C(a(k)) such that j < k and π∗j = ccj−1
a(j), then cck−1

a(k) = 0. Note

that ccj−1
a(j) ≤ csj . This implies that the spot market capacity of nodes in C(a(j)) that

is no less than dj will be shifted up to node a(j) = a(k). Since dj > dk, z
∗
k = 0.

On the other hand, since π∗k = cck−1
a(k), cc

k−1
a(k) < cpk−1

mk
, which implies that for all node

i ∈ P̄(k), we have cck−1
a(k) < cpk−1

i . According to Proposition 1(a), this can be written

as cck−1
a(k) < cpi−

∑
mj∈Uki

cpmj−
∑

a(j)∈Vki
cca(j)−

∑
j∈Wk

i
csj . In Proposition 1(b), if cck−1

a(k) =

cca(k)−
∑

j∈C(a(k)), j<k, π∗j=csj
csj , then cca(k)−

∑
j∈C(a(k)), j<k, π∗j=csj

csj < cpi −
∑

mj∈Uki
cpmj−∑

a(j)∈Vki
cca(j) −

∑
j∈Wk

i
csj , i.e., cpi > cca(k) +

∑
mj∈Uki

cpmj +
∑

a(j)∈Vki
cca(j) +

∑
j∈Wk

i
csj −∑

j∈C(a(k)), j<k, π∗j=csj
csj . This implies that the contract capacity accumulated in node

a(k) will not be shifted up anymore, i.e., y∗a(k) > 0. In Proposition 1(b), if cck−1
a(k) = 0,
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then cpi >
∑

mj∈Uki
cpmj+

∑
a(j)∈Vki

cca(j)+
∑

j∈Wk
i
csj which again implies that no contract

capacity will be shifted up from node a(k), i.e., y∗a(k) > 0.

(b) Suppose
∑

m∈P̄(k) x
∗
m ≥ dk. According to (a), y∗a(k) > 0 and we can decrease

y∗a(k) to make the constraint tight. This will give us a new feasible solution with

decreasing objective value, which is a contradiction of optimality.

(c) The claim is an immediate result of (a) and primal feasibility.

Lemma 3.12. In the dual algorithm, if π∗k = csk, then:

(a) z∗k > 0 ;

(b)
∑

m∈P̄(k) x
∗
m + y∗a(k) + z∗k = dk, and

∑
m∈P̄(k) x

∗
m + y∗a(k) < dk.

Proof. (a) Since π∗k = csk, we can conclude that csk < cck−1
a(k), and for all i ∈ P̄(k), csk <

cpk−1
i . Now, according to Proposition 1(a), cpk−1

i = cpi −
∑

mj∈Uki
cpmj−

∑
a(j)∈Vki

cca(j)−∑
j∈Wk

i
csj . So, csk < cpi −

∑
mj∈Uki

cpmj −
∑

a(j)∈Vki
cca(j) −

∑
j∈Wk

i
csj , i.e., cpi > csk +∑

mj∈Uki
cpmj +

∑
a(j)∈Vki

cca(j) +
∑

j∈Wk
i
csj which implies that no capacity will be shifted

up from node k to nodes i ∈ P̄(k) as permanent capacity according to Algorithm 3.

In Proposition 1(b), if cck−1
a(k) = cca(k) −

∑
j∈C(a(k)), j<k, π∗j=csj

csj , then csk < cca(k) −∑
j∈C(a(k)), j<k, π∗j=csj

csj or cca(k) > csk +
∑

j∈C(a(k)), j<k, π∗j=csj
csj , which implies that no

capacity will be shifted up from node k to a(k) as contract capacity. Since the ini-

tialization of Algorithm 3 enforces all zn to be positive, we can conclude that z∗k > 0.

Also, cck−1
a(k) cannot be zero in Proposition 1(b), because then csk < cck−1

a(k) = 0 will be

a contradiction.

(b) Suppose
∑

m∈P̄(k) x
∗
m+y∗a(k)+z

∗
k > dk. Since z∗k > 0, we can decrease z∗k to make

the constraint tight. This will give us a new feasible solution with less objective value,

which is a contradiction of optimality. Then the second half of the claim follows.
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Theorem 3.6. The solution (x∗, y∗, z∗) returned by the primal algorithm and the

solution π∗ returned by the dual algorithm are optimal.

Proof. Firstly, (x∗, y∗, z∗) and π∗ are feasible solutions of primal and dual problems

respectively. Indeed, in the primal algorithm, we start with a feasible solution and in

each iteration, we preserve feasibility. Therefore, (x∗, y∗, z∗) is feasible. The feasibility

of π∗ is guaranteed by Lemma 3.7.

Next, we only need to prove the complementary slackness for primal and dual

solutions:

π∗n > 0 =⇒
∑

m∈P̄(n)

x∗m + y∗a(n) + z∗n = dn (3.12)

∑
m∈T̄ (n)

π∗m < cpn =⇒ x∗n = 0 (3.13)

∑
m∈C(n)

π∗m < ccn =⇒ y∗n = 0 (3.14)

π∗n < csn =⇒ z∗n = 0 (3.15)

Assume we are using the dual indexing system. Suppose that π∗n > 0. To prove

(3.12), three cases are considered:

Case 1: If π∗n = csn, Lemma 3.12(b) guarantees that
∑

m∈P̄(n) x
∗
m + y∗a(n) + z∗n = dn.

Case 2: If π∗n = ccn−1
a(n) > 0, then we assume that

∑
m∈P̄(n) x

∗
m + y∗a(n) + z∗n > dn.

According to Lemma 3.11(a), z∗n = 0. So,
∑

m∈P̄(n) x
∗
m + y∗a(n) > dn. Since y∗a(n) > 0,

according to Lemma 3.8(b), there is a node k ∈ C(a(n)) such that
∑

m∈P(a(n)) x
∗
m +

y∗a(n) = dk, or (since P(a(n)) = P̄(n)),
∑

m∈P̄(n) x
∗
m + y∗a(n) = dk, which implies that

dk > dn or k < n. Now consider the dual variable of node k, i.e., π∗k. If π∗k = csk,

according to Lemma 3.12(b),
∑

m∈P̄(k) x
∗
m + ya(k) < dk, which is a contradiction with
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∑
m∈P̄(n) x

∗
m + y∗a(n) = dk, since P̄(n) = P̄(k). If π∗k = cck−1

a(k), then since k < n,

Lemma 3.9(c) requires that π∗n = 0 which is a contradiction. Finally, if π∗k = cpk−1
mk

,

then mk ∈ P(a(n)), and according to Algorithm 4, π∗n = 0, which is a contradiction.

Case 3: If π∗n = cpn−1
mn > 0, then we assume that

∑
m∈P̄(n) x

∗
m + y∗a(n) + z∗n > dn.

According to Lemma 3.10(a), y∗a(n) = z∗n = 0, and x∗mn > 0. Then according to

Lemma 3.8(a), there is a node k ∈ T̄ (mn) such that
∑

m∈P(mn) x
∗
m = dk, which

implies that dk > dn or k < n . Now consider the dual variable of node k, i.e., π∗k.

If π∗k = csk, according to Lemma 3.12(b),
∑

m∈P̄(k) x
∗
m + ya(k) < dk or

∑
m∈P̄(k) x

∗
m <

dk, which is a contradiction with
∑

m∈P(mn) x
∗
m = dk, since mn ∈ P̄(k). If π∗k =

cck−1
a(k), Lemma 3.11(b) requires that

∑
m∈P̄(k) x

∗
m < dk, which is a contradiction with∑

m∈P(mn) x
∗
m = dk. Finally, if π∗k = cpk−1

mk
, when mk ∈ T̄ (mn), Lemma 3.10(c)

requires that
∑

m∈P(mn) x
∗
m < dk which is a contradiction with

∑
m∈P(mn) x

∗
m = dk;

when mk ∈ P(mn), since k < n and n ∈ T̄ (mk), Lemma 3.9(a) implies that π∗n = 0

which is a contradiction. Therefore, (3.12) holds.

To prove (3.13), we also use contradiction. Assume that
∑

m∈T̄ (n) π
∗
m < cpn and

x∗n > 0 simultaneously. According to Lemma 3.8(a), we can find a k ∈ T̄ (n), such

that
∑

m∈P(n) x
∗
m = dk. Now, consider the optimal dual value of k, i.e., π∗k:

Case 1: π∗k = csk. According to Lemma 3.12(b),
∑

m∈P̄(k) x
∗
m + y∗a(k) < dk which is

a contradiction with
∑

m∈P(n) x
∗
m = dk, since k ∈ T̄ (n).

Case 2: π∗k = cck−1
a(k). According to Lemma 3.11(b),

∑
m∈P̄(k) x

∗
m < dk and since

a(k) ∈ T (n), it is a contradiction with
∑

m∈P(n) x
∗
m = dk.

Case 3: π∗k = cpk−1
mk

. If mk ∈ T̄ (n), Lemma 3.10(c) implies that
∑

m∈P(i) x
∗
m <

dk, ∀i ∈ P̄(mk). Since n ∈ P̄(mk), we must have
∑

m∈P(n) x
∗
m < dk, which is a

contradiction with
∑

m∈P(n) x
∗
m = dk. If mk ∈ P̄(n), Lemma 3.10(b) shows that
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∑
m∈P(mk) x

∗
m ≥ dk. Since n ∈ T̄ (mk) and

∑
m∈P(n) x

∗
m = dk, we can conclude

that x∗n = 0 which is a contradiction. The only possibility left is mk = n. In this

case, Lemma 3.9(a) requires that
∑

m∈T̄ (n) π
∗
m = cpn which is a contradiction with∑

m∈T̄ (n) π
∗
m < cpn. Therefore, (3.13) holds.

To prove (3.14), we again use contradiction. Assume that
∑

m∈C(n) π
∗
m < ccn and

y∗n > 0 simultaneously. According to Lemma 3.8(b), we can find a node k ∈ C(n) such

that
∑

m∈P(n) x
∗
m + y∗a(k) = dk (note that y∗a(k) = y∗n). Now consider the dual variable

of node k, i.e., π∗k:

Case 1: π∗k = csk. According to Lemma 3.12(b),
∑

m∈P̄(k) x
∗
m + y∗a(k) < dk which is

a contradiction with
∑

m∈P(n) x
∗
m + y∗a(k) = dk, since P̄(k) = P(n).

Case 2: π∗k = cck−1
a(k). According to Lemma 3.9(c),

∑
m∈C(a(k)) π

∗
m = cca(k). Since

a(k) = n, it is a contradiction with
∑

m∈C(n) πm < ccn.

Case 3: π∗k = cpk−1
mk

. In this case, mk ∈ P(n). Then, Lemma 3.10(b) implies

that
∑

m∈P(n) x
∗
m ≥ dk. This means that y∗a(k) = y∗n = 0, which is a contradiction.

Therefore, (3.14) holds.

Finally, when π∗n < csn, we have either π∗n = cpn−1
mn or π∗n = ccn−1

a(n). Lemma 3.10(a)

and Lemma 3.11(a) show that z∗n = 0, respectively. Therefore, (3.15) holds.

3.3.4 Complexity

Suppose the scenario tree is a complete tree with T time levels and B branches for

every non-leaf node. Then the number of nodes in the scenario tree is N =
∑T−1

t=0 B
t =

BT−1
B−1

, which implies that T ∼ O(log N).

Theorem 3.7. The complexity of the primal algorithm is O(N2).

Proof. Initialization step needs at most N operations. Computing A(k), ∆1
k, ∆2

k,
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B1
k, and B2

k requires at most N operations. The loop in step 3 will run at most N

times. Each iteration of the loop in step 5 will deplete the capacity for one node

and the subsequent adjustments will be of complexity O(N). So the complexity of

Algorithm 3 is O(N2).

Theorem 3.8. The complexity of the dual algorithm is O(N logN).

Proof. Sorting the demands of N nodes has a complexity of N logN . For each it-

eration, calculating π∗k involves minimization of at most T + 1 values; updating cpkn

and cckn requires at most T operations. Therefore, the total number of operations is

at most N logN + 2NT +N . Since T ∼ O(log N), the complexity of Algorithm 4 is

O(N logN).

Surprisingly, if we assume the contracts can take arbitrary length, the complexity

of the primal algorithm will keep the same, O(N2). This is due to the fact that the

size of A(k) is at most N no matter what are the lengths of the contracts. Similarly,

if we assume the contracts can take arbitrary length, the complexity of the dual

algorithm will keep the same, O(N logN). This is due to the fact that there are at

most O(N) operations in the loop of Algorithm 4.

3.3.5 Experimental Results

In this section, we compare the solution times of the primal and dual algorithm

designed to solve SCETHREE with those of CPLEX LP solver. We created 15 instances

of SCETHREE with the same sizes created for SCETWO in Section 3.2.5. We present

the results in Table 3.2.

All the codes are written in C++ calling CPLEX 12.6. The experiments are
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conducted on a computer with an Intel Core i3-M330 2.13GHz processor and 4.00

GB of RAM running Ubuntu 14.04 LTS.

Table 3.4: Performance of the primal and dual algorithms for SCETHREE

T B N
Time (s) % of CPLEX Time

CPLEX Primal Dual Primal Dual

5 5 781 0.015 0.003 0.001 19.56 7.55
8 3 3, 280 0.048 0.011 0.005 22.20 9.59

12 2 4, 095 0.058 0.024 0.006 41.97 9.51
5 10 11, 111 0.108 0.034 0.011 31.44 10.08
7 5 19, 531 0.255 0.047 0.035 18.26 13.76

15 2 32, 767 0.657 0.147 0.054 22.42 8.16
8 5 97, 656 0.938 0.309 0.143 32.92 15.25

10 4 349, 525 6.502 1.217 0.576 18.72 8.85
9 5 488, 281 7.345 1.454 0.786 19.80 10.69

13 3 797, 161 22.721 2.771 1.858 12.19 8.17
20 2 1, 048, 575 50.323 6.050 2.287 12.02 4.54
7 10 1, 111, 111 52.387 6.232 2.376 11.89 4.53
8 8 2, 396, 745 72.733 7.241 4.069 9.95 5.59

12 4 5, 592, 405 391.762 21.490 12.925 5.48 3.29
15 3 7, 174, 453 ∗ 25.133 16.329 N/A N/A

* For the last instance, CPLEX LP solver encounters an out of memory exception.

Table 3.2 shows that both primal and dual algorithms can outperform CPLEX LP

solver in all instances, especially for large-scale ones. Table 3.2 also confirms that the

complexity of the dual algorithm is less than the complexity of the primal algorithm.
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Chapter 4

Stochastic Network Capacity

Expansion Models

4.1 Introduction

In this chapter, we consider multiple resource stochastic capacity expansion mod-

els in the context of network flow problems. All of the models that we considered

in Chapter 3 were involved with only one single resource, whereas in this chapter,

we consider network models that involve multiple resources. More specifically, we

consider stochastic network capacity expansion models in the context of a general

min-cost network flow problem.

Stochastic network capacity expansion problem can be modeled as a multi-stage

stochastic integer problem. A scenario tree can be used to handle data uncertainty of

the model. In this problem, the objective is to minimize the expected total capacity

acquisition cost over the whole scenario tree. We start with a model that allows two

sources of capacity (permanent and spot market) in Section 4.2 and then, we extend
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the result to the model that allows three sources of capacity (permanent, spot market,

and contract) in Section 4.4

4.2 The Stochastic Network Capacity Expansion

Model with Two Sources of Capacity

In this section, we consider a multi-period, multiple resource stochastic capacity ex-

pansion model in the context of min-cost network flow problem. This model can be

used in a wide range of network applications, where the decision maker has the choice

to obtain the capacities from different sources, and is interested in expanding the

capacities of both nodes and arcs. In this section, we assume permanent and spot

market capacities are available.

Consider an arbitrary network (N ,A) with |N | nodes and |A| arcs. We will

consider capacity expansion of |N | + |A| resources over T periods. We assume that

there are three types of nodes in the network: origin, destination, and transient. If i

is an origin node, then its demand is negative; if i is a destination node, its demand

is positive; otherwise, for transient nodes, the demand is zero.

In the model notations presented in Table 4.1, we use u and v to distinguish

parameters and decision variables between arcs and nodes, respectively. In addition,

note that index n refers to a node in the scenario tree T . Furthermore, δ+(i) is the

set of arcs in A emanating from node i, and δ−(i) is the set of arcs in A entering node

i. Also, we assume that the demand in the network is balanced. This assumption

requires that the summation of demand for all origin and destination nodes in the

network is equal to zero, i.e., for all n ∈ T ,
∑

i:dni<0 dni +
∑

i:dni>0 dni = 0.
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Table 4.1: Notations of the models SNCETWO

Parameters:
cupnij Permanent capacity acquisition cost for arc (i, j) ∈ A at node n ∈ T
cvpni Permanent capacity acquisition cost for node i ∈ N at node n ∈ T
cusnij Spot market capacity acquisition cost for arc (i, j) ∈ A at node n ∈ T
cvsni Spot market capacity acquisition cost for node i ∈ N at node n ∈ T
cuij Flow cost on arc (i, j) ∈ A
Cu
ij Unit capacity of arc (i, j) ∈ A

Cv
i Unit capacity of node i ∈ N

dni Random demand for node i ∈ N at node n ∈ T

Decision variables:
xnij Flow on arc (i, j) ∈ A at node n ∈ T
upnij Permanent capacity acquisition for arc (i, j) ∈ A at node n ∈ T
vpni Permanent capacity acquisition for node i ∈ N at node n ∈ T
usnij Spot market capacity acquisition for arc (i, j) ∈ A at node n ∈ T
vsni Spot market capacity acquisition for node i ∈ N at node n ∈ T

The stochastic network capacity expansion problem with permanent and spot

market capacity can be formulated as a mixed-integer programming (MIP) problem

in (4.1)-(4.7). In this formulation, the objective function (4.1) minimizes the expected

total flow costs and capacity acquisition costs related to nodes and arcs. Constraint

(4.2) ensures that all demands are satisfied for all nodes in the scenario tree. Con-

straint (4.3) guarantees that the flow on each arc will not exceed the total permanent

and spot market capacity acquired for that arc. Constraint (4.4) ensures that the

outgoing flow of each node cannot exceed the total permanent and spot market ca-

pacity acquired for that node. Non-negativity and integrality constraints are enforced

through (4.5) and (4.7).
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Model SNCETWO:

Min
∑
n∈T

pn

 ∑
(i,j)∈A

(cuijxnij + cupniju
p
nij + cusniju

s
nij) +

∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni)

 (4.1)

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T , (4.2)

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 ∀(i, j) ∈ A,∀n ∈ T , (4.3)

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 ∀i ∈ N ,∀n ∈ T , (4.4)

xnij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T , (4.5)

upnij, u
s
nij ∈ Z+ ∀(i, j) ∈ A,∀n ∈ T , (4.6)

vpni, v
s
ni ∈ Z+ ∀i ∈ N ,∀n ∈ T . (4.7)

Theorem 4.1. The stochastic program SNCETWO and its deterministic counterpart

are NP-hard.

Proof. We show that any instance of the NP-hard integer knapsack problem (Garey

and Johnson (1979)) with |N |+|A| items can be polynomially transformed to a single

period instance of the deterministic network capacity expansion problem, which is

just a single node scenario instance of the stochastic model SNCETWO. Suppose the

scenario tree has one node, so we can drop the index n in the model. Also, let upnij and

vpni be zero. Now, from (4.2), we have
∑

(j,i)∈δ−i
xji − di =

∑
(i,j)∈δ+i

xij. If we insert

this in (4.4), we will have
∑

(j,i)∈δ−i
xji − di ≤ Cv

i v
s
i , or Cv

i v
s
i −

∑
(j,i)∈δ−i

xji ≥ −di.

Also, according to (4.3), we have xij ≤ Cu
iju

s
ij or

∑
(i,j)∈δ−i

xij ≤
∑

(i,j)∈δ−i
Cu
iju

s
ij, or

−∑(j,i)∈δ−i
xji ≤

∑
(i,j)∈δ−i

Cu
iju

s
ij. Therefore, Cv

i v
s
i +

∑
(i,j)∈δ−i

Cu
iju

s
ij ≥ −di. Now
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assume that in the network, there is only one origin (node 1) and all other nodes are

destinations. So, for all nodes i other than node 1, we have vsi = d di
Cvi
e, where dxe is

the closest integer value greater than or equal to x; and the rest of the problem can

be stated as follows:

Min
∑

(1,j)∈A

cus1ju
s
1j + cvs1 v

s
1

s.t. Cv
1v

s
1 +

∑
(1,j)∈δ−1

Cu
1ju

s
1j ≥ −d1

us1j, v
s
1 ∈ Z+, ∀j ∈ N ,

which can be seen as the integer knapsack problem presented by Garey and John-

son (1979). Note that minimization knapsack problem can be transfered into an

equivalent maximization knapsack problem in polynomial time (Han and Makino

(2010)).

Theorem 4.1 shows that the problem SNCETWO is intractable for large-scale in-

stances. Therefore, we will develop a decomposition-based approximation algorithm

in Section 4.3. This approach will decompose the original problem into subprob-

lems of single resources, corresponding to the nodes and arcs of the network. The

approximation algorithm returns near-optimal solutions, and can be proved to be

asymptotically convergent to the optimal solution.
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4.3 The Approximation Algorithm

In this section we develop an approximation algorithm for the problem SNCETWO

which returns near optimal solutions, and can be proved to be asymptotically con-

vergent.

The problem SNCETWO can be decomposed into smaller subproblems, which is

the key to our approximation scheme. Ahmed and Sahinidis (2003) and Huang and

Ahmed (2009) also explore decomposition structures to solve multi-stage stochastic

capacity expansion problems. However, our method is different in that it includes

multiple sources of capacity, which makes the analysis relevant to costs of multiple

sources and different from previous works.

For simplicity of exposition, let X = (xn)n∈T where xn = (xnij)(i,j)∈A and Y =

(yn)n∈T = (up
n,v

p
n,u

s
n,v

s
n)n∈T where up

n = (upnij)(i,j)∈A, vp
n = (vpni)i∈N , us

n = (usnij)(i,j)∈A,

and vs
n = (vsni)i∈N .

We start with an illustration of the decomposition structure. Note that the prob-

lem SNCETWO is equivalent to:

Min
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij +
∑
i∈N

Q1
i (X ) +

∑
(i,j)∈A

Q2
(i,j)(X )

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T ,

xnij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T ,

(4.8)
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where

Q1
i (X ) = Min

∑
n∈T

pn (cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥
∑

(i,j)∈δ+i
xnij

Cv
i

∀n ∈ T ,

vpni, v
s
ni ∈ Z+ ∀n ∈ T ,

(4.9)

and

Q2
(i,j)(X ) = Min

∑
n∈T

pn
(
cupniju

p
nij + cusniju

s
nij

)
s.t.

∑
m∈P̄(n)

upmij + usnij ≥
xnij
Cu
ij

∀n ∈ T ,

upnij, u
s
nij ∈ Z+ ∀n ∈ T .

(4.10)

The problem (4.8) involves the capacity allocation decisions, while (4.9) involves

the capacity acquisition for nodes of the network, and (4.10) involves the capacity

acquisition for arcs of the network. Note that for a fixed capacity allocation decision

X = (xn)n∈T , (4.9) and (4.10) can be seen as the single resource capacity expansion

subproblems SCETWO introduced in Section 3.2. More specifically, if we let

δ1
n =

[∑
(i,j)∈δ+i

xnij

Cv
i

]
i

and δ2
n =

[
xnij
Cu
ij

]
(i,j)

,
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we can see (4.9) and (4.10) as single resource subproblems SCETWO:

Min
∑
n∈T

pn (cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥ δ1
n ∀n ∈ T ,

vpni, v
s
ni ∈ Z+ ∀n ∈ T .

(4.11)

and

Min
∑
n∈T

pn
(
cupniju

p
nij + cusniju

s
nij

)
s.t.

∑
m∈P̄(n)

upmij + usnij ≥ δ2
n ∀n ∈ T ,

upnij, u
s
nij ∈ Z+ ∀n ∈ T .

(4.12)

Both (4.11) and (4.12) can be solved using the polynomial-time primal and dual

algorithms developed in Section 3.2.1 and Section 3.2.2.

Having identified the sub-structure of the problem SNCETWO, we propose the

approximation algorithm outlined in Algorithm 5. In Step 1, the LP relaxation of

SNCETWO is solved to optimality. This problem is a multi-stage stochastic linear

program. Step 2 requires the solution of |N |+ |A| single resource stochastic capacity

expansion subproblems, which are multi-stage stochastic integer programs. It is note-

worthy that if we replace the right hand side in constraints of (4.9) by

⌈∑
(i,j)∈δ+

i
xnij

Cvi

⌉
,

and the right hand side in constraints of (4.10) by
⌈
xnij
Cuij

⌉
, then the programs can

be solved using the primal and dual algorithms developed in Section 3.2.1 and Sec-

tion 3.2.2. Finally, Step 3 requires the solution of N (for all nodes in the tree)

independent linear capacity allocation problems, which are min-cost flow problems.
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Algorithm 5 The Approximation Algorithm for SNCETWO

1: Solve the LP relaxation of SNCETWO and Let (X LP ,YLP ) := (xLPn ,yLPn )n∈T .
If yLPn is integral for all n, stop and return (X LP ,YLP ).

2: Fix the capacity allocation decisions X LP . For each resource, solve the indepen-
dent single resource capacity expansion problem, i.e., for node i ∈ N , solve (4.11)

with δ1
n =

⌈∑
(i,j)∈δ+

i
xLPnij

Cvi

⌉
, and for arc (i, j) ∈ A, solve (4.12) with δ2

n =
⌈
xLPnij
Cuij

⌉
.

Let YH = (yHn )n∈T = (upH
n ,vpH

n ,usH
n ,vsH

n )n∈T denote the corresponding optimal
solution.

3: Fix the capacity allocation decisions YH . For each n ∈ T , solve the independent
network flow problem (4.13) and let xHn denote the corresponding optimal solution,
and XH = (xHn )n∈T .

Min
∑

(i,j)∈A

cuijxnij

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upHmij + usHnij

 ∀(i, j) ∈ A,

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpHmi + vsHni

 ∀i ∈ N ,

xnij ∈ R+ ∀(i, j) ∈ A.

(4.13)

4: Return (XH ,YH) := (xHn ,y
H
n )n∈T .

We can prove that the approximation algorithm has an asymptotic convergence

property. First, we present an upper bound for the gap between the optimal solution

and the solution returned by the approximation algorithm:

Theorem 4.2. For a solution (X ,Y), let f(X ,Y) be the objective function. If

(X ∗,Y∗) is the optimal solution of SNCETWO and (XH ,YH) is the solution returned
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by the approximation algorithm, then,

f(XH ,YH)− f(X ∗,Y∗) ≤
∑

(i,j)∈A

(
cup1ij + cus1ij

)
+
∑
i∈N

(cvp1i + cvs1i ) .

Proof. We know that f(X LP ,YLP ) ≤ f(X ∗,Y∗). Therefore,

f(XH ,YH)− f(X ∗,Y∗) ≤ f(XH ,YH)− f(X LP ,YLP )

= f(XH ,YH)− f(X LP ,YH)

+f(X LP ,YH)− f(X LP ,YLP )

≤ f(X LP ,YH)− f(X LP ,YLP ),

where the last inequality holds since XH is an optimal capacity allocation correspond-

ing to YH , while X LP is just a feasible solution. Therefore, f(XH ,YH) ≤ f(X LP ,YH).

Now we have:

f(X LP ,YH)− f(X LP ,YLP ) =∑
(i,j)∈A

∑
n∈T

pn

[
cupnij

(
upHnij − upLPnij

)
+ cusnij

(
usHnij − usLPnij

)]
+
∑
i∈N

∑
n∈T

pn

[
cvpni

(
vpHni − vpLPni

)
+ cvsni

(
vsHni − vsLPni

)]
.

(4.14)

Note that we can analyze the subproblems for nodes and arcs separately. For any
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node i ∈ N ,

∑
n∈T

pn

(
cvpniv

pH
ni + cvsniv

sH
ni

)
= Min

∑
n∈T

pn (cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥
⌈∑

(i,j)∈δ+i
xLPnij

Cv
i

⌉
∀n ∈ T

vpni, v
s
ni ∈ R+ ∀n ∈ T

= Max
∑
n∈T

⌈∑
(i,j)∈δ+i

xLPnij

Cv
i

⌉
πin

s.t.
∑

m∈T̄ (n) πim ≤ pnc
vp
ni ∀n ∈ T

πin ≤ pnc
vs
ni ∀n ∈ T

πin ∈ R+ ∀n ∈ T ,

(4.15)

and

∑
n∈T

pn

(
cvpniv

pLP
ni + cvsniv

sLP
ni

)
= Min

∑
n∈T

pn (cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥
∑

(i,j)∈δ+i
xLPnij

Cv
i

∀n ∈ T

vpni, v
s
ni ∈ R+ ∀n ∈ T

= Max
∑
n∈T

∑
(i,j)∈δ+i

xLPnij

Cv
i

πin

s.t.
∑

m∈T̄ (n) πim ≤ pnc
vp
ni ∀n ∈ T

πin ≤ pnc
vs
ni ∀n ∈ T

πin ∈ R+ ∀n ∈ T .

(4.16)
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Therefore,

∑
n∈T

pn

[
cvpni(v

pH
ni − vpLPni ) + cvsni(v

sH
ni − vsLPni )

]
≤ Max

∑
n∈T

(⌈∑
(i,j)∈δ+i

xLPnij

Cv
i

⌉
−
∑

(i,j)∈δ+i
xLPnij

Cv
i

)
πin

s.t.
∑

m∈T̄ (n)

πim ≤ pnc
vp
ni ∀n ∈ T ,

πin ≤ pnc
vs
ni ∀n ∈ T

vpni, v
s
ni ∈ R+ ∀n ∈ T

≤ Max
∑
n∈T

πin

s.t.
∑

m∈T̄ (n)

πim ≤ pnc
vp
ni ∀n ∈ T

πin ≤ pnc
vs
ni ∀n ∈ T

vpni, v
s
ni ∈ R+ ∀n ∈ T

= Min
∑
n∈T

pn (cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥ 1 ∀n ∈ T

vpni, v
s
ni ∈ R+ ∀n ∈ T

≤ cvp1i + cvs1i ,

(4.17)

where in (4.17), the first inequality comes from (4.15) and (4.16), the second inequality

holds because

⌈∑
(i,j)∈δ+

i
xLPnij

Cvi

⌉
−

∑
(i,j)∈δ+

i
xLPnij

Cvi
≤ 1, and the equality comes from duality.

Finally, consider the case when the demand is 1 in all nodes of the scenario tree.

Note that a feasible solution is to buy 1 unit of permanent capacity at the root node

(which will satisfy the demands for all nodes except for the root node) and 1 unit of

spot market capacity to satisfy the demand of the root node. This feasible solution
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will provide an upper bound cvp1i + cvs1i for the optimal objective value. Therefore, the

last inequality holds. We can repeat this reasoning for each arc and show that for all

arc (i, j) ∈ A:

∑
n∈T

pn

[
cupnij(u

pH
nij − upLPnij ) + cusnij(u

sH
nij − ssLPnij )

]
≤ cup1ij + cus1ij (4.18)

The result will follow if we incorporate (4.18) and (4.17) into (4.14).

Theorem 4.2 shows that the optimality gap of the solution returned by Algorithm 5

is bounded by the sum of the permanent and spot market capacity acquisition costs of

arcs and nodes of the network for the root node in the scenario tree, and is independent

of other model parameters such as the number of time periods, the number of branches

in the scenario tree, etc. This property enables us to get the following asymptotic

convergence result:

Theorem 4.3. Assume that:

(i) There exists ε1 > 0 such that for all n ∈ T , there is at least one node in the

network whose demand is at least ε1;

(ii) There exists ε2 > 0 such that for all n ∈ T , and for any arc (i′, j′) ∈ A

with
∑

(j′,i′)∈δ−
i′
xnj′i′ −

∑
(i′,j′)∈δ+

i′
xni′j′ < 0, the total capacity allocation cost

cui′j′ + cvi′ ≥ ε2;

then

lim
T→∞

f(XH ,YH)− f(X ∗,Y∗)
f(X ∗,Y∗) = 0

for SNCETWO.
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Proof. According to Theorem 4.2, we have:

f(XH ,YH)− f(X ∗,Y∗)
f(X ∗,Y∗) ≤

∑
(i,j)∈A

(
cup1ij + cus1ij

)
+
∑

i∈N (cvp1i + cvs1i )

f(X ∗,Y∗) .

Therefore, we only need to show that limT→∞ f(X ∗,Y∗) =∞. For a fixed T , consider

the dual of the linear relaxation of SNCETWO with dual variables πdni, π
u
nij, and πvni

for (4.2), (4.3), and (4.4), respectively:

Max
∑
n∈T

πdnidni

s.t. − πdni + πdnj − πunij − πvni ≤ pnc
u
ij ∀(i, j) ∈ A,∀n ∈ T ,

Cu
ij

∑
m∈T̄ (n)

πunij ≤ pnc
up
nij ∀(i, j) ∈ A,∀n ∈ T ,

Cv
i

∑
m∈T̄ (n)

πvni ≤ pnc
vp
ni ∀i ∈ N ,∀n ∈ T ,

Cu
ijπ

u
nij ≤ pnc

us
nij ∀(i, j) ∈ A,∀n ∈ T ,

Cv
i π

v
ni ≤ pnc

vs
ni ∀i ∈ N ,∀n ∈ T ,

πdni, π
v
ni ∈ R+ ∀i ∈ N ,∀n ∈ T ,

πunij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T .

Let the vector form of the dual variables be πdn, πun, and πvn. For any dual feasible

solution (πdn, π
u
n, π

v
n), let g(πdn, π

u
n, π

v
n) =

∑
n∈T π

d
nidni denote the objective value of the

above dual problem. Clearly, weak duality ensures that f(X LP ,YLP ) ≥ g(πdn, π
u
n, π

v
n).

Now, we try to find a dual feasible solution (π̄dn, π̄
u
n, π̄

v
n) such that g(π̄dn, π̄

u
n, π̄

v
n) ≥ Tε

for some ε > 0. We set π̄un = π̄vn = 0, for all n ∈ T . Assumption (i) requires that there

is at least one node i′ ∈ N such that −dni′ ≥ ε1. So, constraint (4.2) ensures that
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there is at least one node i′ such that
∑

(j′,i′)∈δ−
i′
xnj′i′−

∑
(i′,j′)∈δ+

i′
xni′j′ < 0; and we can

find at least one emanating arc (i′, j′) of node i′. Now, if we let π̄dni′ = −pn(cui′j′ + cvi′)

and π̄dni = 0 for all i ∈ N \ {j′}, then (π̄dn, π̄
u
n, π̄

v
n) is a dual feasible solution. Also,

assumption (ii) requires that −π̄dni′ ≥ pnε2. Therefore, g(π̄dn, π̄
u
n, π̄

v
n) =

∑
n∈T π̄

d
nidni =∑

n∈T π̄
d
ni′dni′ ≥

∑
n∈T pnε1ε2. Since the summation of probabilities of each stage

in the scenario tree is 1 and we have T stages,
∑

n∈T pn = T , which means that

g(π̄dn, π̄
u
n, π̄

v
n) ≥ Tε1ε2. Using weak duality, we can conclude that f(X LP ,YLP ) ≥

Tε1ε2. Therefore, limT→∞ f(X LP ,YLP ) =∞.

We showed that the approximation scheme will converge to the optimal solution,

if we consider a sufficiently large number of periods.

4.4 The Stochastic Network Capacity Expansion

Model with Three Sources of Capacity

We can extend all the results in Section 4.2 and 4.3 to the situation where three

sources of capacity, i.e., permanent, spot market, and contract capacities interact

with each other. We assume that the contract capacity will be available in the next

period right after signing the contract. Here, we consider the case that the contract

length is one period, but our model can capture the case where the contract can be

signed for an arbitrary number of periods. In addition to notations introduced in

Table 4.1, we need the ones presented in Table 4.2.

The stochastic network capacity expansion model with three sources of capacity

can be formulated as follows:
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Table 4.2: Additional notations of the model SNCETHREE

Parameters:
cucnij Contract capacity acquisition cost for arc (i, j) ∈ A at node n ∈ T
cvcni Contract capacity acquisition cost for node i ∈ N at node n ∈ T

Decision variables:
ucnij Contract capacity acquisition for arc (i, j) ∈ A at node n ∈ T
vcni Contract capacity acquisition of node i ∈ N at node n ∈ T

Model SNCETHREE:

Min
∑
n∈T

pn

 ∑
(i,j)∈A

(cuijxnij + cupniju
p
nij + cusniju

s
nij + cucniju

c
nij)

+
∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni + cvcniv

c
ni)

]

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N , ∀n ∈ T ,

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij + uca(n)ij

 ∀(i, j) ∈ A, ∀n ∈ T ,

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni + vca(n)i

 ∀i ∈ N , ∀n ∈ T ,

xnij ∈ R+ ∀(i, j) ∈ A, ∀n ∈ T ,

upnij, u
s
nij, u

c
nij ∈ Z+ ∀(i, j) ∈ A, ∀n ∈ T ,

vpni, v
s
ni, v

c
ni ∈ Z+ ∀i ∈ N , ∀n ∈ T .

Similar to SNCETWO, it can be proved that SNCETHREE is an NP-hard problem.
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The approximation algorithm presented in Section 4.3 can be used to solve this prob-

lem, since SNCETHREE has the same decomposition structure as SNCETWO, i.e., it

can be decomposed into single resource capacity expansion problems corresponding

to nodes and arcs. Each subproblem of SNCETHREE, which includes all three kinds

of capacity, can be formulated as:

Model SCETHREE:

Min
∑
n∈T

pn (cpnxn + csnzn + ccnyn)

s.t.
∑

m∈P̄(n)

xm + zn + ya(n) ≥ dn ∀n ∈ T

xn, zn, yn ∈ Z+ ∀n ∈ T .

(4.19)

Therefore, the approximation algorithm can also be applied to SNCETHREE, provided

that in step 2, SCETHREE can be solved efficiently for all nodes and arcs. This can be

done by applying polynomial-time algorithms that we designed in Section 3.3.1 and

Section 3.3.2.

For SNCETHREE, we define Y = (yn)n∈T = (up
n,v

p
n,u

s
n,v

s
n,u

c
n,v

c
n)n∈T where

up
n = (upnij)(i,j)∈A, vp

n = (vpni)i∈N , us
n = (usnij)(i,j)∈A, vs

n = (vsni)i∈N ,u
c
n = (ucnij)(i,j)∈A,

and vc
n = (vcni)i∈N . Then the following results hold:

Theorem 4.4. For SNCETHREE, given the same assumptions as in Theorem 4.3,

we have

lim
T→∞

f(XH ,YH)− f(X ∗,Y∗)
f(X ∗,Y∗) = 0

The proof of Theorem 4.4 is analogous to that of Theorem 4.3. So we omit it for

brevity. Theorem 4.4 shows that the approximation algorithm keeps its asymptotic

convergence property when dealing with three sources of capacity.
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4.5 Experimental Results

In this section, we report on the experimental results of the approximation algorithm

for solving SNCETWO. We mainly focus on two objectives: (i) to show the perfor-

mance of the approximation algorithm compared to CPLEX MIP solver, and (ii) to

show the asymptotically convergence property of the approximation algorithm proved

in Theorem 4.3.

We present the experimental results in two parts: in the first part (Section 4.5.1),

we consider small and medium-sized problems that can be solved by CPLEX MIP

solver within two hours. Therefore, we can compare the solution time of the ap-

proximation algorithm and that of CPLEX. In the second part (Section 4.5.2), we

report on the performance of the approximation algorithm on large-scale instances

that cannot be solved by CPLEX MIP solver within two hours.

The test problems have been generated as follows: We generate random numbers

for costs of the problem. The demand for each node of the scenario tree has been

independently generated by multiplying the demand of the root node by a random

number generated from a lognormal distribution with mean µ and standard deviation

σ. For each time period, we increase the mean of the demand by 0.5tn and keep the

same standard deviation. This guarantees that we have increasing demand through-

out the scenario tree. Note that when we increase the size of the scenario tree, we

keep the same structure for the network. This enables us to track the performance of

the approximation algorithm for different scenario tree sizes.

All the codes are written in GAMS 24.2.2 calling CPLEX 12.6. The experiments

are conducted on a computer with an AMD Opteron 2.79GHz processor and 64 GB

of RAM running Microsoft Windows Server 2008 R2.
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Table 4.3: Data for instances of SNCETWO

|N | |T.N | |A| T
No. of Variables No. of

N
Real Integer Constraints

10 6 36

3 252 644 392 7
4 540 1, 380 840 15
5 1, 116 2, 852 1, 736 31
6 2, 268 5, 796 3, 528 63
7 4, 572 11, 684 7, 112 127

15 9 84

3 588 1, 386 798 7
4 1, 260 2, 970 1, 710 15
5 2, 604 6, 138 3, 534 31
6 5, 292 12, 474 7, 182 63
7 10, 668 25, 146 14, 478 127

20 12 152

3 1, 064 2, 408 1, 344 7
4 2, 280 5, 160 2, 880 15
5 4, 712 10, 664 5, 952 31
6 9, 576 21, 672 12, 096 63
7 19, 304 43, 688 24, 384 127

4.5.1 Comparing CPLEX and the Approximation Algorithm

In the first experiment, we increase the number of nodes in the network (|N |) from 10

to 20, and the number of periods in the scenario tree (T ) from 3 to 7. The number of

branches for each non-leaf node in the scenario tree is 2. The combination of number

of branches and different scenario tree periods results in various scenario tree sizes

which are presented as N . These parameters have been set so that CPLEX MIP

solver can solve the model SNCETWO within two hours.

Table 4.3 shows the data for 15 instances created for this part. To get a sense of

the size of these instances, we present the number of constraints and variables, the

number of periods in the scenario tree (T ), and the size of the scenario tree (N). We
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Table 4.4: Comparison of CPLEX and the approximation algorithm for SNCETWO

|N | T
Time (s) Time Optimality

CPLEX Approx. Alg. (%) Gap (%)

10

3 0.42 1.91 454.76 0.3028
4 0.95 1.96 206.31 0.1297
5 3.64 2.01 55.21 0.0340
6 11.42 3.82 33.45 0.0121
7 44.27 5.26 11.88 0.0044

15

3 0.73 3.75 513.69 0.3447
4 6.51 4.26 65.43 0.0206
5 102.05 5.91 5.79 0.0183
6 187.35 5.37 2.86 0.0179
7 239.01 7.18 3.00 0.0032

20

3 4.71 5.24 111.25 0.1641
4 11.02 6.49 58.89 0.0499
5 125.08 6.57 5.25 0.0046
6 363.85 7.52 2.06 0.0005
7 422.17 9.92 2.34 0.0002

also identify the structure of the network by presenting the number of nodes (|N |),

the number of arcs (|A|), and the number of transient nodes (|T.N |).

In Table 4.4, we compare the solution time by CPLEX and the solution time by the

approximation algorithm. Also, we provide the optimality gap between the optimal

solution and the solution given by the approximation algorithm. From Time (%)

column, we can observe that the approximation algorithm can solve most of instances

much faster that CPLEX. The Optimality Gap(%) column shows that as the number

of period increases, the gap decreases which is in accordance with the convergence

result that we obtained in Theorem 4.3.
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Table 4.5: Data for large-scale instances of SNCETWO

|N | |T.N | |A| T
No. of Variables No. of

N
Real Integer Constraints

50 30 980

3 6, 860 14, 420 7, 560 7
4 14, 700 30, 900 16, 200 15
5 30, 380 63, 860 33, 480 31
6 61, 740 129, 780 68, 040 63
7 124, 460 261, 620 137, 160 127

100 60 3,960

3 27, 720 56, 840 29, 120 7
4 59, 400 121, 800 62, 400 15
5 122, 760 251, 720 128, 960 31
6 249, 480 511, 560 262, 080 63
7 502, 920 1, 031, 240 528, 320 127

250 150 24,900

3 174, 300 352, 100 177, 800 7
4 373, 500 754, 500 381, 000 15
5 771, 900 1, 559, 300 787, 400 31
6 1, 568, 700 3, 168, 900 1, 600, 200 63
7 3, 162, 300 6, 388, 100 3, 225, 800 127

500 300 99,800

3 698, 600 1, 404, 200 705, 600 7
4 1, 497, 000 3, 009, 000 1, 512, 000 15
5 3, 093, 800 6, 218, 600 3, 124, 800 31
6 6, 287, 400 12, 637, 800 6, 350, 400 63
7 12, 674, 600 25, 476, 200 12, 801, 600 127

4.5.2 Approximation Algorithm’s Performance for Large-scale

Instances

For large-scale instances of SNCETWO, CPLEX cannot find the solution in a reason-

able time (we stop the solver when it exceeds two hours time limit). We create 20

large-scale instances and present their data in Table 4.5.

Table 4.6 shows the solution time of the approximation algorithm for large-scale
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instances. For these instances, since we do not have the optimal solution, we use the

optimal objective value of the linear relaxation as the lower bound and report the

relative gap between the objective value returned by the approximation algorithm and

the lower bound. The reported gap confirms the convergence result of Theorem 4.3.

Table 4.6: Approximation algorithm results for large-scale instances of SNCETWO

|N | T Approx. Alg. Time (s) Gap (%)

50

3 28.02 1.641
4 29.32 0.807
5 30.79 0.346
6 33.20 0.124
7 40.20 0.037

100

3 116.75 1.710
4 117.78 0.949
5 118.18 0.380
6 125.66 0.134
7 141.55 0.041

250

3 705.81 1.587
4 724.78 0.871
5 730.28 0.377
6 871.54 0.138
7 2841.56 0.040

500

3 2803.02 1.475
4 2919.53 0.823
5 3488.39 0.354
6 4361.44 0.126
7 21264.61* 0.036

*The time to solve the linear relaxation is 18,381.57 seconds.
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Chapter 5

Decomposition Algorithms for the

Stochastic Network Capacity

Expansion Problem

In Chapter 4, we designed an approximation algorithm to solve SNCETWO and

SNCETHREE. We showed that the approximation algorithm solution converges to

the optimal solution, as the number of scenario tree periods increases. In this chap-

ter, we consider some decomposition algorithms for the stochastic capacity expansion

problem SNCETWO.

5.1 Classical Benders’ Decomposition

In this section, we consider Benders’ decomposition, introduced by Benders (1962), as

one of the most used methods to solve stochastic programming problems. The Ben-

ders’ decomposition method used to solve two-stage stochastic programming problems
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is called L-shaped method and was introduced by Van Slyke and Wets (1969). Multi-

stage stochastic programming problems can be seen as a nested series of two-stage

problems to which Benders’ decomposition can be applied. This method is called

nested L-shaped method as described in Birge and Louveaux (2011).

Based on Theorem 4.1, solving the stochastic network capacity expansion problem

SNCETWO for large-scale instances could be time consuming. Therefore in this sec-

tion, we propose a Benders’ decomposition algorithm to solve the model SNCETWO

to optimality. Then, we discuss some improvements to the algorithm and their limi-

tations in Section 5.2. Finally in Section 5.4, we propose a Benders’ decomposition-

based algorithm that can find tight bounds for the model SNCETWO.

The SNCETWO is an MIP model including continuous flow variables and integer

capacity acquisition variables. If the capacity acquisition variables are fixed, the prob-

lem becomes a network flow problem with real variables. This observation motivates

us to design the Benders’ decomposition algorithm by fixing all integer variables for

the subproblems, and keeping all integer variables in the master problem. With this

setting, in each iteration of the Benders’ decomposition algorithm, we have to solve

N subproblems, corresponding to each node in the scenario tree. After solving each

subproblem, if it is unbounded, a feasibility cut will be added to the master problem.

If all subproblems are optimal, then N optimality cuts will be added to the master

problem.

To design the classical Benders’ decomposition algorithm, we keep the capacity

acquisition (integer) variables in the master problem and move the flow (real) variables
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to the subproblems. Thus, the initial master problem can be modeled as follows:

Min
∑
n∈T

pn

 ∑
(i,j)∈A

(cupniju
p
nij + cusniju

s
nij) +

∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni) + ηn


s.t. upnij, u

s
nij ∈ Z+ (i, j) ∈ A,∀n ∈ T ,

vpni, v
s
ni ∈ Z+ i ∈ N ,∀n ∈ T ,

ηn ∈ R+ ∀n ∈ T ,

(5.1)

where ηn is an auxiliary variable that is used to underestimate the flow cost for node

n in the scenario tree. Since the flow costs are non-negative, then for all n ∈ T ,

the variable ηn is also non-negative. After each iteration of Benders’ decomposition

procedure, optimality or feasibility cuts will be added to the above master prob-

lem. Now, we fix the capacity acquisition variables for the subproblems. As be-

fore, let Y = (yn)n∈T = (up
n,v

p
n,u

s
n,v

s
n)n∈T where up

n = (upnij)(i,j)∈A, vp
n = (vpni)i∈N ,

us
n = (usnij)(i,j)∈A, and vs

n = (vsni)i∈N . Then for a fixed Y and for each n ∈ T , the

subproblem of SNCETWO can be formulated as follows:

SP(Y)n = Min
∑

(i,j)∈A

cuijxnij

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 ∀(i, j) ∈ A,

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 ∀i ∈ N ,

xnij ∈ R+ ∀(i, j) ∈ A.
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Now suppose πdni, π
u
nij, and πvni are dual variables corresponding to demand, arc

capacity, and node capacity constraints of the above subproblem, respectively. Then

the dual of the above subproblem for a fixed Y and each n ∈ T can be written as

follows:

DSP(Y)n = Max
∑
i∈N

πdnidni − πvniCv
i

 ∑
m∈P̄(n)

vpmi + vsni


−
∑

(i,j)∈A

πunijC
u
ij

 ∑
m∈P̄(n)

upmij + usnij


s.t. −πdni + πdnj − πunij − πvni ≤ cuij ∀(i, j) ∈ A,

πunij ∈ R+ ∀(i, j) ∈ A,

πdni, π
v
ni ∈ R+ ∀i ∈ N .

(5.2)

If the subproblem SP(Y)n is feasible, solving the dual subproblem (5.2) will result in

optimality cut for the master problem. This cut can be constructed as:

∑
i∈N

πd∗nidni − πv∗niCv
i

 ∑
m∈P̄(n)

vpmi + vsni

− ∑
(i,j)∈A

πu∗nijC
u
ij

 ∑
m∈P̄(n)

upmij + usnij

 ≤ ηn (5.3)

where πd∗ni , π
u∗
nij, and πv∗ni are optimal solutions returned by (5.2). On the other hand,

if the subproblem SP(Y)n is infeasible, its dual will be unbounded and solving it will

result in a feasible direction defined by ψdni, ψ
u
nij, and ψvni. Then the feasibility cut

can be constructed as:

∑
i∈N

ψdnidni − ψvniCv
i

 ∑
m∈P̄(n)

vpmi + vsni

− ∑
(i,j)∈A

ψunijC
u
ij

 ∑
m∈P̄(n)

upmij + usnij

 ≤ 0 (5.4)

Now, let Z∗master be the objective function value of the master problem and Z∗n be
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the objective function value for subproblem associated with node n. The classical

Benders’ decomposition algorithm is presented in Algorithm 6.

Algorithm 6 Classical Benders’ Decomposition for SNCETWO

1: Set opt = 0, UBtmp = 0, LB = −∞ and UB = +∞.
2: Create master problem (5.1) with no cuts.
3: while (UB − LB)/LB > ε do
4: Solve master problem (5.1) and obtain the incumbent solution Y .
5: LB = Z∗master.

6: UBtmp =
∑
n∈T

pn

 ∑
(i,j)∈A

(cupniju
p
nij + cusniju

s
nij) +

∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni)


7: for n ∈ T do
8: Solve dual subproblem (5.2).
9: if dual subproblem is unbounded,

10: Add feasibility cut (5.4) to the master problem.
11: else
12: opt = opt+ 1.
13: end for
14: if opt = N
15: Add optimality cuts (5.3) to the master problem.

16: UB = min(UB,
∑
n∈T

pnZ
∗
n + UBtmp)

17: end if
18: end while

There are several considerations about this classical Benders’ decomposition algo-

rithm. First, in each iteration, an integer program (master problem) must be solved.

Solving this integer program becomes more difficult as the algorithm adds optimality

and feasibility cuts in each iteration. Second, the upper bound updating procedure

does not guarantee that a better upper bound will be found in each iteration. In

order to ease these difficulties, we propose several techniques that can improve the

performance of the classical Benders’ decomposition.
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5.2 Improvements to Classical Benders’ Decompo-

sition

In this section, we propose some techniques to improve the performance of the classi-

cal Benders’ decomposition for model SNCETWO depicted in Algorithm 6. In general,

there are two types of techniques used to improve the performance of Benders’ decom-

position: (i) reducing the number of integer master programs that must be solved,

(ii) speeding-up the solution of integer master programs.

5.2.1 Valid Inequalities

Adding valid inequalities to the master problem is a common practice in the litera-

ture of Benders’ decomposition method. Valid inequalities will help to speed up the

solution of master problem. For our model SNCETWO, we came up with three sets

of valid inequalities for the master problem:

Node Valid Inequalities: There are three types of nodes in the network of our

problem: origin, destination, and transient. Since the network is balanced, all the

flow generated in the origin nodes must be able to go out to satisfy the demand of

destination nodes. This means that the capacity of origin nodes must be at least

equal to the generated flow. This will result in the following valid inequalities for

each n ∈ T and for each origin node i with dni < 0:

−dni ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 (5.5)
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On the other hand, each destination node must be able to absorb enough flow to

satisfy its demand. This means that the total capacity of arcs that enter a destination

node must be at least equal to the demand of that destination node. Thus, for each

n ∈ T and for each destination node i with dni > 0:

dni ≤
∑
j

Cu
ji

 ∑
m∈P̄(n)

upmji + usnji

 (5.6)

Arc Valid Inequalities: Following the above explanation, there must be enough

capacity for arcs starting from each origin node to carry the flow from it. This means

that the total capacity acquired for arcs emanating from origin nodes must be at least

equal to their demand. Thus, for each n ∈ T and for each origin node i with dni < 0:

−dni ≤
∑
j

Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 (5.7)

These valid inequalities can improve the performance of Benders’ decomposition

by speeding up the solution of integer master problem.

5.2.2 LP Relaxation of the Master Problem

Another common practice for Benders’ decomposition is to solve the linear relaxation

of the master problem. Proposed by McDaniel and Devine (1977), this method tries

to reduce the number of integer problems that must be solved in two phases. In the

first phase, the feasibility and optimality cuts are generated using the solutions of the

linear relaxation of the master problem. After a specified number of iterations, or

reaching a pre-defined gap between lower and upper bound, the integrality constraints
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will be introduced to the master problem. In the second phase, the lower bound and

upper bounds will be reset and the procedure restarts with integer master problems.

All optimality and feasibility cuts generated in phase one are valid for the original

MIP problem. Using the previously generated cuts, we hope this method can find the

optimal solution in a few iterations of solving MIP master problem in phase two.

5.2.3 Pareto-Optimal Cuts

Another method that focuses on reducing the number of integer programs that must

be solved is introduced by Magnanti and Wong (1981). This method tries to select the

best optimality cut, if more than one is available. That cut is called Pareto-optimal.

Formally, a Pareto-optimal cut is a cut that cannot be dominated by any other cut.

Having more than one optimality cut happens when the dual subproblem has

multiple optimal solutions. The method proposed by Magnanti and Wong (1981)

uses a core point of Y to evaluate all optimality cuts associated with the solution

of the dual subproblem, and then selects the non-dominant one. Adding this non-

dominant (or Pareto-optimal) cut to the master problem can reduce the number of

iterations in Benders’ decomposition method.

In order to find the Pareto-optimal cut, a linear program that uses a core point of

Y must be solved. By definition, Y0 is a core point of Y , if it is in the relative interior

of the convex hull of Y , i.e., Y0 ∈ ri(Yc). Let Y0 = (up0nij, u
s0
nij, v

p0
ni , v

s0
ni) be a core point

of Y and let π̄ be the optimal solution of the dual subproblem (5.2) and Z(π̄) be

the corresponding objective function value. Then, the solution of the following linear
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program

Max
∑
i∈N

πdnidni − πvniCv
i

 ∑
m∈P̄(n)

vp0mi + vs0ni


−
∑

(i,j)∈A

πunijC
u
ij

 ∑
m∈P̄(n)

up0mij + us0nij


s.t.

∑
i∈N

πdnidni − πvniCv
i

 ∑
m∈P̄(n)

vpmi + vsni


−
∑

(i,j)∈A

πunijC
u
ij

 ∑
m∈P̄(n)

upmij + usnij

 = Z(π̄)

−πdni + πdnj − πunij − πvni ≤ cuij ∀(i, j) ∈ A,

πunij ∈ R+ ∀(i, j) ∈ A,

πdni, π
v
ni ∈ R+ ∀i ∈ N .

(5.8)

creates the Pareto-optimal cut. In our Benders’ decomposition implementation, we

solve problem (5.8) and add the Pareto-optimal cut to the master problem in step 15

of Algorithm 6.

5.2.4 Maximum Feasible Subsystem Cut Generation (MFS)

This method has been proposed by Saharidis and Ierapetritou (2010) for problems

in which more feasibility cuts than optimality cuts is being generated in Benders’

decomposition procedure. The method generates a semi-optimality cut, called MFS

cut, for the master problem each time the Benders’ decomposition procedure generates

a feasibility cut. The structure of this cut is similar to the feasibility cut, but it

involves the decision variable η. This method tries to identify the maximum feasible
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subsystem (Amaldi and Kann (1995)) of the subproblems and to relax the minimum

possible number of infeasible constraints to make them feasible.

In order to find the minimum number of infeasible constraints, a 0-1 program must

be solved. This problem has a binary variable associated with each constraint of the

subproblem, or each real variable of the dual subproblem, i.e., wdi , w
u
ij, and wvi . This

binary problem must be solved for each infeasible subproblem associated with node

n in the scenario tree. For node n, this 0-1 program can be formulated as follows:

BMFSn = Min
∑
i∈N

(
wdi + wvi

)
+
∑

(i,j)∈A

wuij

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij −Mwdi = dni ∀i ∈ N ,

xnij −Mwuij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 ∀(i, j) ∈ A,

∑
(i,j)∈δ+i

xnij −Mwvi ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 ∀i ∈ N ,

wdi , w
v
i ∈ {0, 1} ∀i ∈ N ,

xnij ∈ R+, wuij ∈ {0, 1} ∀(i, j) ∈ A.

(5.9)

where M is a very big positive number. In the solution of BMFSn problem, a

variable w takes value 1 only if its constraint is infeasible. This guarantees that after

solving this problem, we identify the minimum number of constraints that must be

relaxed to make the subproblem feasible.

The next step is to add M to the right hand side of the constraints that have been

chosen by solving the BMFSn. By doing this, we will have a relaxed subproblem

RSPn which is always feasible, and as a result, its dual always generates optimality
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cut. This cut is called Maximum Feasibility Subsystem (MFS) cut. Using the optimal

solution of RSPn, i.e., φdni, φ
u
nij, and φvni, the MFS cut can be constructed as follows:

∑
i∈N

φdnidni − φvniCv
i

 ∑
m∈P̄(n)

vpmi + vsni

− ∑
(i,j)∈A

φunijC
u
ij

 ∑
m∈P̄(n)

upmij + usnij

 ≤ ηn (5.10)

In summary, the MFS method can be incorporated into the Benders’ decomposition

algorithm in the following steps: whenever a subproblem is unbounded, (i) add a

feasibility cut to the master problem, (ii) solve model BMFSn described in (5.9),

(iii) solve RSPn and generate MFS cut (5.10), (iv) add MFS cut to the master

problem.

5.3 Computational Results for Classical Benders’

Algorithms

In this section, we present the computational results for SNCETWO that compare the

solution time among CPLEX, the classical Benders’ decomposition algorithm, and

four improvements that we introduced in Section 5.2.

For this purpose, we created 10 instances called S01 to S10, and solved them

using classical Benders’ decomposition and CPLEX. Then we separately tested all

four improvements presented in Section 5.2. Finally, we tested a procedure named

all-in-one, which includes all four improvement methods at the same time. To begin

with, we present the size of these instances in Table 5.1.

All algorithms have been implemented in C++ using IBM/ILOG CPLEX 12.6
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Table 5.1: Data for instances of SNCETWO

Sample |N | |T.N | |A| No. of Variables No. of
N

Real Integer Constraints

S01 5 3 8 104 338 234 13
S02 6 3 16 240 660 420 15
S03 4 2 8 320 960 640 40
S04 6 2 18 126 336 210 7
S05 10 6 26 3, 146 8, 712 5566 121
S06 3 1 6 1, 530 4, 590 3, 060 255
S07 8 4 18 270 780 510 15
S08 6 2 16 640 1, 760 1, 120 40
S09 20 9 102 714 1, 708 994 7
S10 15 8 58 406 1, 022 616 7

Concert Technology. All experiments were performed on a 2.5GHz Intel Core i5-

2520M processor with 8.00 GB of RAM running Microsoft Windows 8.1.

Table 5.2 summarizes the solution time for 10 instances using CPLEX, classical

Benders’ method, four improvement methods, and all-in-one method. It can be seen

that the improvement methods can enhance the performance of the classical Benders’

decomposition. However, none of them can perform better than CPLEX MIP solver.
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Table 5.3 shows the following additional information related to these instances.

For all methods, we show the number of feasibility and optimality cuts that have been

generated during the Benders’ decomposition procedure. We also present the number

of valid inequalities that have been added to the master problem. For methods that

solve linear master program (MLP and all-in-one), we present the total number of

linear and integer programs solved. Note that for Pareto method, the number of

Pareto-optimal cuts is equal to the number of optimality cuts, and for the MFS

method, the number of MFS cuts is equal to the number of feasibility cuts.
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There are certain reasons why the classical Benders’ decomposition and its im-

provements cannot outperform CPLEX. In MLP method, after introducing the inte-

grality constraints, the algorithm has to solve an integer program with all feasibility

and optimality cuts that have been added to it during the steps in phase one. Solving

this integer master program could be time-consuming and may result in a large so-

lution time for Benders’ decomposition compared to CPLEX. In Pareto method, the

auxiliary linear program (5.8) must be solved for each feasible node of the scenario

tree. The equality constraint of (5.8) can be troublesome for large-scale problems, and

may result in large solution times for this method compared to CPLEX. The MFS

method seems promising in the sense that it includes variable ηn in semi-optimality

cuts. However, it comes at the price of solving a 0-1 program and an extra dual sub-

problem for each infeasible node in the scenario tree. This could be a major drawback

of this method.

In the next section, we design a Benders’ decomposition-based algorithm that can

perform well in finding tight bounds for the problem SNCETWO.

5.4 New Benders’ Decomposition-based Algorithm

In Section 5.3, we showed that the classical Benders’ decomposition is not efficient

for solving the stochastic network capacity expansion problem SNCETWO. In this

section, we design an algorithm based on Benders’ decomposition that can produce

tight bounds for models SNCETWO.

The classical Benders’ decomposition methods used for multi-stage stochastic pro-

gramming problems decompose the problem by nodes of the scenario tree, as explained

in Section 5.1. In the new Benders’ decomposition-based algorithm, we decompose
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the problem by each resource, i.e., nodes and arcs of the network. By doing this, the

master problem will be a linear program containing flow variables and all subprob-

lems will be integer programs including capacity variables. These integer program

subproblems are difficult to solve. However, we exploit the totally unimodular prop-

erty proved in Theorem 3.1 and Theorem 3.5, and as a result, we solve a linear

relaxation of them. In the following, we describe this algorithm for SNCETWO.

Based on the above explanations, the initial master problem can be modeled as

follows:

Min
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij +
∑

(i,j)∈A

ηij +
∑
i∈N

θi

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T ,

θi ∈ R+ ∀i ∈ N ,∀n ∈ T ,

xnij, ηij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T .

where η and θ are auxiliary variables corresponding to arcs and nodes, respectively.

We define subproblems for each resource of the network. For each arc (i, j), the

subproblem is SP(i,j):

SP(i,j)(X ) = Min
∑
n∈T

pn(cupniju
p
nij + cusniju

s
nij)

s.t.
∑

m∈P̄(n)

upmij + usnij ≥
⌈
xnij
Cu
ij

⌉
∀n ∈ T ,

upnij, u
s
nij ∈ R+ ∀n ∈ T ,
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and for each node i, the subproblem is SP i:

SP i(X ) = Min
∑
n∈T

pn(cvpniv
p
ni + cvsniv

s
ni)

s.t.
∑

m∈P̄(n)

vpmi + vsni ≥
⌈∑

(i,j)∈δ+i
xnij

Cv
i

⌉
∀n ∈ T ,

vpni, v
s
ni ∈ R+ ∀n ∈ T .

Note that for both arc and node subproblems, the right-hand-side is integer-

valued, so we can relax the integrality constraints. Furthermore, for any X returned

by the master problem, these subproblems are feasible. Therefore, solving these

subproblems will always result in optimality cuts for the master problem. These op-

timality cuts can be derived from solving the dual of these problems. For each arc

(i, j), the arc dual subproblem is:

DSP(i,j)(X ) = Max
∑
n∈T

⌈
xnij
Cu
ij

⌉
πnij

s.t.
∑

m∈T̄ (n)

πmij ≤ pnc
up
nij ∀n ∈ T ,

πnij ≤ pnc
us
nij ∀n ∈ T ,

πnij ∈ R+ ∀n ∈ T ,

(5.11)
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and for each node i, the node dual subproblem is:

DSP i(X ) = Max
∑
n∈T

⌈∑
(i,j)∈δ+i

xnij

Cv
i

⌉
πni

s.t.
∑

m∈T̄ (n)

πmi ≤ pnc
vp
ni ∀n ∈ T ,

πni ≤ pnc
vs
ni ∀n ∈ T ,

πni ∈ R+ ∀n ∈ T ,

(5.12)

Solving arc dual subproblem (5.11) will yield optimality cut of form

∑
n∈T

⌈
xnij
Cu
ij

⌉
π∗nij ≤ ηij (5.13)

and solving node dual subproblem (5.12) will yield optimality cut of form

∑
n∈T

⌈∑
(i,j)∈δ+i

xnij

Cv
i

⌉
π∗ni ≤ θi. (5.14)

Obviously, both (5.13) and (5.14) are non-linear cuts and cannot be used in Benders’

decomposition procedure. However, by proving the following two theorems, we can

modify them to find bounds using Benders’ decomposition procedure.

Theorem 5.1. If we use the cuts

∑
n∈T

xnij
Cu
ij

π∗nij ≤ ηij (5.15)
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and

∑
n∈T

∑
(i,j)∈δ+i

xnij

Cv
i

π∗ni ≤ θi (5.16)

then we will obtain a lower bound of the original master problem.

Proof. Since π∗nij ≥ 0 and π∗ni ≥ 0, for all n ∈ T , we have
⌈
xnij
Cuij

⌉
≥ xnij

Cuij
and⌈∑

(i,j)∈δ+
i
xnij

Cvi

⌉
≥

∑
(i,j)∈δ+

i
xnij

Cvi
, which means cut (5.13) dominates cut (5.15) and cut

(5.14) dominates cut (5.16).

Theorem 5.2. If we use the cuts

∑
n∈T

(
xnij
Cu
ij

+ 1

)
π∗nij ≤ ηij, (5.17)

and

∑
n∈T

(∑
(i,j)∈δ+i

xnij

Cv
i

+ 1

)
π∗ni ≤ θi, (5.18)

then we will obtain an upper bound of the original master problem.

Proof. Similar to the proof of Theorem 5.2, cuts (5.17) and (5.18) dominate cuts

(5.13) and (5.14), respectively.

It is noteworthy that we need to keep two master problems, corresponding to

each set of cuts. At the end of the Benders’ decomposition procedure, the master

problem that used cuts (5.15) and (5.16) will generate a lower bound for the problem

SNCETWO, and the master problem that used cuts (5.17) and (5.18) will generate

an upper bound for it. The first master problem, to which cuts (5.15) and (5.16) will
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be added is MAST ERLB:

Min
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij +
∑

(i,j)∈A

ηij +
∑
i∈N

θi

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T ,

∑
n∈T

xnij
Cu
ij

π∗nij ≤ ηij ∀(i, j) ∈ A,

∑
n∈T

∑
(i,j)∈δ+i

xnij

Cv
i

π∗ni ≤ θi ∀i ∈ N ,

θi ∈ R+ ∀i ∈ N ,

ηij ∈ R+ ∀(i, j) ∈ A,

xnij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T .

(5.19)

and the second master problem to which cuts (5.17) and (5.18) will be added is

MAST ERUB:

Min
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij +
∑

(i,j)∈A

ηij +
∑
i∈N

θi

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T ,

∑
n∈T

(
xnij
Cu
ij

+ 1

)
π∗nij ≤ ηij ∀(i, j) ∈ A,

∑
n∈T

(∑
(i,j)∈δ+i

xnij

Cv
i

+ 1

)
π∗ni ≤ θi ∀i ∈ N ,

θi ∈ R+ ∀i ∈ N ,

ηij ∈ R+ ∀(i, j) ∈ A,

xnij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T .

(5.20)

97



Ph.D. Dissertation - Majid Taghavi McMaster - Management Science

Now, let Z∗LB be the objective function value of theMAST ERLB in each iteration.

Also, suppose ZL
ij and ZL

i are the objective function value of arc (i, j) and node i

subproblems solved using the incumbent values returned byMAST ERLB. Similarly,

ZU
ij and ZU

i are the objective function value of arc (i, j) and node i subproblems solved

using the incumbent values returned byMAST ERUB. Given these explanations, we

present the new Benders’ decomposition-based algorithm formally in Algorithm 7.

Algorithm 7 New Benders’ Decomposition-based Algorithm for SNCETWO

1: Set UBLBtmp = UBUBtmp = 0, LB = −∞ and UB = +∞.
2: Create MAST ERLB and MAST ERUB with no cuts.
3: repeat
4: Solve MAST ERLB and obtain the incumbent solution XLB
5: Solve MAST ERUB and obtain the incumbent solution XUB
6: LB = Z∗LB
7: Using XLB, let UBLBtmp =

∑
n∈T

pn
∑

(i,j)∈A

cuijxnij

8: Using XUB, let UBUBtmp =
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij

9: for (i, j) ∈ A
10: Using XLB, solve DSP ij and get ZL

ij. Add cut (5.15) toMAST ERLB

11: Using XUB, solve DSP ij and get ZU
ij . Add cut (5.17) toMAST ERUB

12: end for
13: for i ∈ N
14: Using XLB, solve DSP i and get ZL

i . Add cut (5.16) toMAST ERLB
15: Using XUB, solve DSP i and get ZU

i . Add cut (5.18) toMAST ERUB

16: end for

17: UB = Min

(
UB,

∑
ij

ZL
ij +

∑
i

ZL
i + UBLBtmp,

∑
ij

ZU
ij +

∑
i

ZU
i + UBUBtmp

)
18: Gap = (UB − LB)/LB.
19: until Gap < ε or no gap improvement for 3 iterations.
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It is important to note that the structure of the node and arc subproblems guar-

antees that Algorithm 7 will return an integer-valued feasible solution of SNCETWO.

5.5 Experimental Results for the New Benders’

Method

In this section, we present the experimental results related to the New Benders’

method. We compare the solution time of CPLEX MIP solver with that of the new

Benders’ decomposition-based algorithm. Also, we test the quality of the gap provided

by Algorithm 7 by comparing it to the gap that can be obtained from solving the

linear relaxation of the SNCETWO problem. This gap is called the LP gap.

We do these experiments in two parts. In the first part, we select instances that

can be solved by CPLEX MIP solver within an hour. As a result, in addition to

comparing the new Benders’ decomposition-based algorithm gap and the LP gap,

we are able to compare the gap between the solution returned by the new Benders’

decomposition-based algorithm and the optimal solution. In the second part, we select

large-scale instances that cannot be solved by CPLEX MIP solver within an hour.

Then, we verify the quality of gaps provided by the new Benders’ decomposition-based

algorithm by comparing them to the LP gaps.

All algorithms have been implemented in C++ using IBM/ILOG CPLEX 12.6

Concert Technology. All experiments were performed on a 2.5GHz Intel Core i5-

2520M processor with 8.00 GB of RAM running Microsoft Windows 8.1.

For the experiments in the first part, we solved 50 small and medium-sized in-

stances. For simplicity of exposition, we present the data for 15 of them. To begin
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with, we present the size of the instances that have been created for the first part of

the experiments in Table 5.4. Then, we compare the solutions returned by CPLEX

Table 5.4: Data for small and medium-sized instances of SNCETWO

Sample |N | |T.N | |A| No. of Variables No. of
N

Real Integer Constraints

N01 5 2 8 6, 248 20, 306 14, 058 781
N02 15 8 58 406 1, 022 616 7
N03 10 5 28 196 532 336 7
N04 5 2 8 74, 648 242, 606 167, 958 9,331
N05 4 2 6 117, 186 390, 620 273, 434 19,531
N06 20 12 102 612 1, 464 852 6
N07 25 10 138 966 2, 282 1, 316 7
N08 10 6 56 1, 736 4, 092 2, 356 31
N09 30 18 188 2, 444 5, 668 3, 224 13
N10 12 7 92 644 1, 456 812 7
N11 14 8 172 1, 204 2, 604 1, 400 7
N12 20 10 136 952 2, 184 1, 232 7
N13 10 5 68 1, 020 2, 340 1, 320 15
N14 10 4 46 1, 426 3, 472 2, 046 31
N15 35 19 238 1, 666 3, 822 2, 156 7

with the solutions returned by the new Benders’ decomposition-based algorithm. The

gap for the new Benders’ decomposition-based algorithm is returned by Algorithm 7.

To obtain the LP gap, we solve the linear relaxation of the problem to get a lower

bound, and then round all integer variables up to get a feasible solution. The up-

per bound is the objective function value for that feasible solution, and the gap is

the difference between the lower bound and upper bound. The results are presented

in Table 5.5. The last column shows the percentage of gap improvement resulting

from using the new Benders’ decomposition-based algorithm over solving the linear
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relaxation of the problem SNCETWO. The columns ”Dev.” show the deviation of the

solution provided by two methods, from the optimal solution, in percentage.

Table 5.5: Performance of the new Benders’ decomposition-based algorithm for small
and medium-sized instances of SNCETWO

Sample
CPLEX LP New Benders Gap

Time(s) Time(s) Gap(%) Dev.(%) Itr. Time(s) Gap(%) Dev.(%) Imp.(%)

N01 0.24 0.16 0.69 0.24 2 1.83 0.44 0.00 56.95
N02 3.12 0.02 6.26 2.08 11 3.20 4.84 0.63 29.41
N03 4.14 0.06 3.19 0.75 6 0.56 2.92 0.44 9.36
N04 4.21 2.19 0.48 0.24 2 122.23 0.25 0.00 96.68
N05 4.75 2.48 0.13 0.04 2 390.02 0.08 0.00 51.02
N06 5.06 0.03 9.41 1.15 9 4.39 10.00 1.53 −5.91
N07 27.19 0.03 8.11 2.47 11 14.91 6.36 0.69 27.45
N08 49.74 0.05 4.24 0.41 13 12.11 5.07 1.18 −16.38
N09 85.48 0.06 3.61 1.00 5 12.07 2.93 0.28 23.40
N10 111.61 0.02 5.89 2.83 10 5.03 5.42 2.32 8.72
N11 114.70 0.05 9.62 3.50 10 15.98 11.16 4.82 −13.81
N12 187.22 0.03 4.18 0.99 10 11.42 4.62 1.36 −9.47
N13 339.71 0.05 4.76 2.45 10 6.88 4.44 1.98 7.19
N14 1065.32 0.06 8.31 4.82 16 12.94 7.52 3.48 10.54
N15 1245.19 0.05 5.86 1.73 12 48.61 5.28 1.10 10.94

This result shows that although the new Benders’ method cannot guarantee gap

improvement, in 62% of instances (31 out of 50), it could provide gaps tighter than

LP gaps. The average gap improvement is 43.05%. Moreover, there are instances

for which, the new Benders’ decomposition-based algorithm can provide the optimal

solution of the original problem (where Dev. = 0.00).

In second part of our experiments, we consider large-scale instances of SNCETWO.

The purpose of these experiment is to check if the gap provided by the new Benders’

method is better than the LP gap, and to observe the time needed to obtain feasible

solutions. We present the data related to 12 instances that we created for this part
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in Table 5.6.

Table 5.6: Data for large-scale instances of SNCETWO

Sample |N | |T.N | |A| No. of Variables No. of
N

Real Integer Constraints

P01 7 3 14 8, 190 24, 570 16, 380 585
P02 10 5 36 36, 828 94, 116 57, 288 1,023
P03 10 6 36 39, 348 100, 556 61, 208 1,093
P04 16 7 88 10, 648 25, 168 14, 520 121
P05 25 14 260 203, 060 445, 170 242, 110 781
P06 25 12 260 8, 060 17, 670 9, 610 31
P07 30 15 364 145, 600 315, 200 169, 600 400
P08 30 20 364 5, 096 11, 032 5, 936 14
P09 40 25 576 23, 040 49, 280 26, 240 40
P10 50 25 962 6, 734 14, 168 7, 434 7
P11 50 30 770 11, 550 24, 600 13, 050 15
P12 100 55 2,030 30, 450 63, 900 33, 450 15

These 12 instances cannot be solved by CPLEX MIP solver within an hour. For

some of them, CPLEX even terminates before an hour due to out of memory excep-

tion. The results are presented in Table 5.7.

These computational results show that the new benders’ decomposition-based

algorithm does not guarantee better gaps compared to LP gaps. However, it can

improve the gap in many instances. Moreover, although the LP solution time is

always better than that of the new Benders’ decomposition-based algorithm, in some

instances, it worth spending more time to find tighter gaps.
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Table 5.7: Performance of the new Benders’ decomposition-based algorithm for large-
scale instances of SNCETWO

Sample
LP New Benders Gap

Time(s) Gap(%) Itr. Time(s) Gap(%) Imp.(%)

P01 0.204 2.14 3 4.34 1.60 34.42
P02 1.094 0.15 3 20.06 0.11 39.09
P03 1.125 0.12 2 20.05 0.67 −82.77
P04 1.172 2.07 16 219.13 1.05 97.15
P05 17.055 0.82 3 417.77 0.31 169.03
P06 0.219 0.86 3 18.69 0.31 179.15
P07 12.948 0.82 3 366.77 0.85 −2.76
P08 0.109 11.77 10 123.02 9.56 23.07
P09 0.438 1.05 5 247.51 0.59 77.57
P10 0.11 1.77 3 56.66 0.62 186.41
P11 0.36 3.93 11 828.75 2.68 46.86
P12 1.078 0.97 4 876.36 0.68 42.57

5.6 Comparison of the Approximation Algorithm

and the New Benders’ decomposition-based Al-

gorithm

In Chapter 4, we developed an asymptotically convergent approximation algorithm

to solve SNCETWO. The approximation algorithm provides tight bounds for the

original problem. On the other hand, in Section 5.4, we presented a new Benders’

decomposition-based algorithm that provide bounds for SNCETWO, too. In this

section, we compare the performance of these two algorithms for SNCETWO.

For this purpose, we test both algorithm on 15 instances. To begin with, we

present the size of the instances in Table 5.8.
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Table 5.8: Data for instances of SNCETWO

Sample |N | |T.N | |A| No. of Variables No. of
N

Real Integer Constraints

I01 15 8 60 420 1, 050 630 7
I02 10 6 36 252 644 392 7
I03 10 4 36 540 1, 380 840 15
I04 5 2 8 680 2, 210 1, 530 85
I05 15 7 96 672 1, 554 882 7
I06 8 3 38 266 644 378 7
I07 20 10 160 1, 120 2, 520 1, 400 4
I08 30 15 188 2, 444 5, 668 3, 224 13
I09 25 13 138 5, 520 13, 040 7, 520 40
I10 25 15 260 5, 460 11, 970 6, 510 21
I11 30 15 364 5, 096 11, 032 5, 936 14
I12 10 5 36 3, 060 7, 820 4, 760 85
I13 10 6 32 2, 720 7, 140 4, 420 85
I14 4 1 6 1, 530 5, 100 3, 570 225
I15 12 5 34 8, 806 23, 828 15, 022 259

For these experiments, we report the solution gap returned by the approximation

algorithm. For instances that can be solved by CPLEX MIP solver within an hour,

the gap is the difference between the optimal solution and the solution returned by the

approximation algorithm. For large-scale instances that cannot be solved by CPLEX

MIP solver within an hour, we calculate the gap using the result of Theorem 4.2. We

also report the gap provided by the new Benders’ decomposition-based algorithm.

When the CPLEX MIP solution is in hand, the gap is the difference between the

upper bound returned by the new Benders’ decomposition-based algorithm and the

optimal solution. Otherwise, it is the difference between the upper bound and the

lower bound, both provided by the new Benders’ decomposition-based algorithm.
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Finally, we report the percentage of gap improvement if we use the new Benders’

decomposition-based algorithm over the approximation algorithm. The results are

presented in Table 5.9.

All algorithms have been implemented in C++ using IBM/ILOG CPLEX 12.6

Concert Technology. All experiments were performed on a 2.5GHz Intel Core i5-

2520M processor with 8.00 GB of RAM running Microsoft Windows 8.1.

Table 5.9: Performance comparison for the approximation algorithm and the new
Benders’ decomposition-based algorithm for SNCETWO

Sample
Approximation Alg. New Benders Gap

Time(s) Gap(%) Itr. Time(s) Gap(%) Imp.(%)

I01 0.070 0.263 5 0.972 0.286 −8.056
I02 0.029 4.671 9 1.298 0.970 381.353
I03 0.063 1.586 8 1.687 5.035 −68.506
I04 0.078 0.000 3 0.251 0.000 0.000
I05 0.078 2.004 10 6.189 2.375 −15.614
I06 0.047 2.111 7 0.735 3.359 −37.160
I07 0.172 1.039 6 7.674 0.591 75.900
I08 0.328 0.459 5 12.068 0.287 60.201
I09 0.578 0.250 4 13.094 0.060 315.079
I10 0.605 0.822 7 46.181 0.653 25.811
I11 0.859 5.025 10 123.015 9.560 −47.438
I12 0.328 0.097 5 3.984 0.039 146.667
I13 0.354 0.015 3 1.665 0.015 0.000
I14 0.470 0.001 2 0.644 0.060 −97.148
I15 1.676 0.005 2 3.156 0.005 0.000

The result presented in Table 5.9 shows that the new Benders’ decomposition-

based algorithm cannot outperform the approximation algorithm in solution time.

However, it can provide tighter bounds in several cases. It is noteworthy that there is
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no analytical result for the performance of the new Benders’ decomposition-based al-

gorithm, while it has been proved that the approximation algorithm is asymptotically

convergent. Therefore, for large number of scenario tree periods, the approximation

algorithm is likely to outperform the new Benders’ decomposition-based algorithm in

all cases (e.g., in I14, T = 8). On the other hand, based on our observation during the

experiments, it seems that the new Benders’ decomposition-based algorithm is more

efficient that the approximation algorithm in memory usage. When the memory is

limited, there are cases that can be solved by the new Benders’ decomposition-based

algorithm, and cannot be solved by approximation algorithm due to out of memory

exception.
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Chapter 6

Stochastic Network Capacity

Expansion Problem with Budget

Constraint

In the stochastic network capacity expansion models SNCETWO and SNCETHREE
presented in Chapter 4, there is no restriction on the budget that the decision maker

can spend on expanding the capacity of arcs and nodes. Although the solution of such

models give us an estimation on the required budget, in real world problems, decision

makers often have to deal with budget limitations. In this chapter, we consider the

stochastic network capacity expansion problem with budget restriction.

6.1 The Formulation

In order to formulate the budget version of SNCETWO, we assume that the budget

restriction is only applicable to the permanent capacity acquisition, and spot market
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capacity acquisition does not have budget restriction. This assumption guarantees

that the problem is always feasible. Furthermore, we assume that the imposed budgets

are the same for all the nodes in the same period of the scenario tree. Now, let Btn

denote the budget for all nodes of the scenario tree which are in the same time period

tn. Using the same notations from Section 4.2, we can state the formulation for the

network capacity expansion problem with budget constraints as follows:

Model BSNCETWO:

Min
∑
n∈T

pn

 ∑
(i,j)∈A

(cuijxnij + cupniju
p
nij + cusniju

s
nij) +

∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni)


s.t.

∑
(i,j)∈A

cupniju
p
nij +

∑
i∈N

cvpniv
p
ni ≤ Btn ∀n ∈ T ,

∑
(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N , ∀n ∈ T ,

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 ∀(i, j) ∈ A, ∀n ∈ T ,

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 ∀i ∈ N , ∀n ∈ T ,

xnij ∈ R+ ∀(i, j) ∈ A, ∀n ∈ T ,

upnij, u
s
nij ∈ Z+ ∀(i, j) ∈ A, ∀n ∈ T ,

vpni, v
s
ni ∈ Z+ ∀i ∈ N , ∀n ∈ T .

Similar to SNCETWO, this problem is also an NP-hard problem and the presence of

budget constraints will make it even harder to solve. Some preliminary computational

results showed that the solution time for BSNCETWO could be up to 10 times more
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than the solution time of SNCETWO with the same parameters.

The approximation algorithm presented for SNCETWO in Section 4.3 cannot solve

BSNCETWO because the budget constraint will subvert the decomposable structure

of the model SNCETWO. Motivated by this observations, we develop a Lagrangian

relaxation method for BSNCETWO by relaxing the budget constraint.

6.2 Lagrangian Relaxation

Suppose λn are the Lagrange multipliers for the budget constraints. Then the La-

grangian relaxation subproblem of BSNCETWO can be written as follows:

Model BSNCETWO − LRλ

Min
∑
n∈T

pn

 ∑
(i,j)∈A

(cuijxnij + cupniju
p
nij + cusniju

s
nij) +

∑
i∈N

(cvpniv
p
ni + cvsniv

s
ni)


+
∑
n

λn

 ∑
(i,j)∈A

cupniju
p
nij +

∑
i∈N

cvpniv
p
ni −Btn


s.t.

∑
(i,j)∈δ+i

xnij −
∑

(i,j)∈δ−i

xnji = dni ∀i ∈ N , ∀n ∈ T ,

xnij ≤ Cu
ij

 ∑
m∈P̄(n)

upmij + usnij

 ∀ij ∈ A, ∀n ∈ T ,

∑
(i,j)∈δ+i

xnij ≤ Cv
i

 ∑
m∈P̄(n)

vpmi + vsni

 ∀i ∈ N , ∀n ∈ T ,

xnij ∈ R+ ∀(i, j) ∈ A, ∀n ∈ T ,

upnij, u
s
nij ∈ Z+ ∀(i, j) ∈ A, ∀n ∈ T ,

vpni, v
s
ni ∈ Z+ ∀i ∈ N , ∀n ∈ T .
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A general discussion of Lagrangian relaxation method can be found in Guignard

(2003). For brevity of exposition, in the following, we only discuss several key tune-

ups that improves the efficiency of the Lagrangian relaxation method.

Initial Multipliers: Lagrangian relaxation methods are sensitive to the choice of

initial multipliers. We obtained the initial multipliers by solving the linear relaxation

of BSNCE and setting the initial multipliers equal to the dual value of the budget

constraint.

Multiplier Updating: In order to solve the Lagrangian dual problem, we use the

well-known sub-gradient method (Fisher (2004)). In each iteration of sub-gradient

method, the sub-gradient vector is
∑

(i,j)∈A c
up
niju

p
nij +

∑
i∈N c

vs
niv

s
ni −Btn and the step

size in iteration k is

µk = θk
UBk − z(λkn)

‖∑(i,j)∈A c
up
niju

p
nij +

∑
i∈N c

vs
niv

s
ni −Btn‖2

where z(λk) is the value of Lagrangian function calculated in iteration k, UBk is the

best upper bound found so far for iteration k, and θk is a constant in iteration k,

initialized to 2 and will be divided by 2 if two consecutive iterations cannot improve

the lower bound. As a result, the multipliers will be updated as follows:

λk+1
n = Max

λkn + µk

 ∑
(i,j)∈A

cupniju
p
nij +

∑
i∈N

cvsniv
s
ni −Btn

 , 0


Initial Upper Bound: A key for the success of the Lagrangian relaxation method

is to find a good upper bound fast. For this purpose, we first solve the minimum cost

flow problem without any capacity variable. Then, we use the obtained flow variables

to calculate the values of permanent capacity variables up and vp. These values

110



Ph.D. Dissertation - Majid Taghavi McMaster - Management Science

must be rounded up to satisfy integrality constraints. Then, we check the budget

constraints with these integer permanent capacity variables. If they are satisfied, we

already have a feasible solution and we can calculate the upper bound. If some budget

constraints are not satisfied, say for node n, then we reduce the value of permanent

capacity variables by the proportion that the budget constraint is violated (if the new

permanent capacity variables are not integers, we round them down). This will affect

the feasibility of capacity constraints related to all nodes m ∈ T̄ (n). Therefore, we

add the reduced permanent capacity as spot market capacity to all nodes m ∈ T̄ (n)

in order to preserve the feasibility. This procedure is explained in more details in

Algorithm 8. Note that the whole procedure performs local operations at each node,

and is very efficient.

Upper Bound Updating: To update the upper bound in each iteration of the

Lagrangian relaxation procedure, we use a method similar to the one that we use to

find the initial upper bound. This method checks the budget constraints after each

iteration. If they are satisfied, it updates the upper bound if a better upper bound

is found. Otherwise, it will reduce permanent capacity variables by the proportion

that the budget constraint is violated, and increase the same value in the spot market

capacity to preserve the feasibility. This procedure is explained in Algorithm 9.

Stopping Criteria: There are several criteria that can be used to terminate the

Lagrangian relaxation procedure, such as running a pre-specified number of iterations,

reaching a pre-specified minimum, and reaching a predefined gap between lower bound

and lower bound. We used the last one in our implementation:

UBk − z(λk)

z(λk)
< γ.
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Algorithm 8 Initial Upper Bound Construction Algorithm for Lagrangian Relax-
ation

1: Solve the minimum cost flow problem for xnij:

Min
∑
n∈T

pn
∑

(i,j)∈A

cuijxnij

s.t.
∑

(j,i)∈δ−i

xnji −
∑

(i,j)∈δ+i

xnij = dni ∀i ∈ N ,∀n ∈ T ,

xnij ∈ R+ ∀(i, j) ∈ A,∀n ∈ T .

2: for n = 1 to N ,

3: Using xnij from step 1, solve the following system of equations to get
up and vp:

xnij = Cu
ij

∑
m∈P̄(n)

upmij ∀(i, j) ∈ A,∀n ∈ T ,

∑
(i,j)∈δ+i

xnij = Cv
i

∑
m∈P̄(n)

vpmi ∀i ∈ N ,∀n ∈ T .

4: end for
5: upnij ← dupnije, vpni ← dvpnie , usnij ← 0 , vsni ← 0

6: for n = 1 to N ,

7: Rn ←
∑

(i,j)∈A

cupniju
p
nij +

∑
i∈N

cvpniv
p
ni

8: if Rn > Btn

9: utemp ← upnij, upnij ← bupnij ×Btn/Rnc
10: vtemp ← vpni, vpni ← bvpni ×Btn/Rnc
11: for m ∈ T̄ (n)
12: usnij ← utemp − upnij
13: vsni ← vtemp − vpni
14: end for
15: end if
16: end for

17: UB ←
∑
n∈T

pn

 ∑
(i,j)∈A

(
cusniju

s
nij + cuijxnij

)
+
∑
i∈N

cvsniv
s
ni


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Algorithm 9 Upper Bound Updating Algorithm for Lagrangian Relaxation

1: for n = 1 to N ,

2: Rn ←
∑

(i,j)∈A

cupniju
p
nij +

∑
i∈N

cvsniv
s
ni

3: if Rn > Btn

4: utemp ← upnij, upnij ← bupnij ×Btn/Rnc
5: vtemp ← vpni, vpni ← bvpni ×Btn/Rnc
6: for m ∈ T̄ (n)
7: usnij ← usnij + utemp − upnij
8: vsni ← vsni + vtemp − vpni
9: end for
10: end if

11: end for

12: UB ←
∑
n∈T

pn

 ∑
(i,j)∈A

(
cusniju

s
nij + cuijxnij

)
+
∑
i∈N

cvsniv
s
ni



6.3 Experimental Results for the Lagrangian Re-

laxation

We present the experimental results for the Lagrangian relaxation method designed

for BSNCETWO. We compare the solution time by Lagrangian relaxation method

with that of CPLEX MIP solver. We also report the gap between the upper bound

and the lower bound given by the Lagrangian relaxation. For these experiments, we

set γ = 0.02 and set a limit of an hour for CPLEX running time.

All algorithms have been implemented in GAMS 24.2.2 using IBM/ILOG CPLEX

12.6. All experiments were performed on a 2.79GHz AMD Opteron processor with

64.00 GB of RAM running Microsoft Windows Server 2008 R2.

Table 6.1 presents the data for 10 instances of BSNCETWO that have been created

for these experiments.
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Table 6.1: Data for instances of BSNCETWO

Sample |N | |T.N | |A| No. of Variables No. of Transient
N

Real Integer Constraints Nodes

L01 10 5 18 126 392 273 3 7
L02 10 4 18 270 840 585 6 15
L03 10 6 27 837 2, 294 1, 488 4 31
L04 12 7 27 837 2, 418 1, 612 10 31
L05 20 10 76 532 1, 344 819 11 7
L06 10 5 18 558 1, 736 1, 209 5 31
L07 10 6 18 1, 134 3, 528 2, 457 6 63
L08 20 10 76 1, 140 2, 880 1, 755 12 15
L09 20 12 76 2, 356 5, 952 3, 627 5 31
L10 20 8 76 4, 788 12, 096 7, 371 6 63

The results are summarized in Table 6.2. In this table, ”+3600” means that

CPLEX could not solve the problem in an hour. As a result, the percentage of time

for S05 to S10 are actually less than the reported number.

Table 6.2: CPLEX and Lagrangian relaxation algorithm comparison for BSNCETWO

Sample CPLEX Time(s) LR Time(s) % of Time Gap(%) Iterations

L01 398.41 48.63 12.21 0.91 41
L02 545.52 86.23 15.81 0.91 34
L03 629.35 191.07 30.35 1.98 20
L04 1, 845.07 102.32 5.55 1.94 48
L05 +3, 600.00 145.63 4.05 0.62 23
L06 +3, 600.00 193.98 5.39 1.84 66
L07 +3, 600.00 285.46 7.93 1.92 87
L08 +3, 600.00 456.25 12.67 1.37 44
L09 +3, 600.00 608.53 16.90 2.00 20
L10 +3, 600.00 3, 276.42 91.01 1.96 32
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Table 6.2 shows that the Lagrangian relaxation is more efficient than the CPLEX

MIP solver in solution time and it is capable of providing a feasible solution within

2% of optimality in a reasonable time. One limitation for this algorithm is that as

the size of the problem gets very large, a large-scale NP-hard problem must be solved

in each iteration of the Lagrangian relaxation algorithm. This issue can be addressed

by incorporating that approximation algorithm into the Lagrangian relaxation pro-

cedure. This requires some minor changes in the way that the lower bound and the

upper bound are updated in each iteration.

115



Chapter 7

Conclusions and Future Research

Directions

In this chapter, we summarize the major contributions of this dissertation and possible

future research directions.

7.1 Conclusions

In this dissertation, we studied capacity expansion problem of both single resource

and multiple resource models in the presence of permanent, spot market, and contract

capacity for acquisition. This problem has applications in areas such as transportation

and logistics, telecommunication industry, service industry, water distribution, and

manufacturing. A scenario tree approach has been used in order to handle the data

uncertainty of the models, and a multi-stage stochastic programming approach has

been used to formulate the problems.

To begin with, we presented multi-stage stochastic programming formulation for
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two versions of single resource capacity expansion problems with different sources of

capacity. We developed polynomial-time primal and dual algorithms that can solve

them efficiently. Both algorithms can outperform CPLEX LP solver.

Using the multi-stage stochastic programming approach, we then presented a for-

mulation for stochastic network capacity expansion problem with different sources of

capacity. This formulating has been done in the context of a min-cost network flow

problem and resulted in a large-scale MIP model which is notoriously difficult to solve.

Exploring the decomposable structure of the problem led to identifying the previously

studied single resource capacity expansion problems as subproblems of the network

capacity expansion problem. These subproblems correspond to each resource (e.g.,

node, arc) of the network. Exploiting the polynomial-time algorithms developed

to solve these subproblems, we designed an approximation algorithm to solve the

stochastic network capacity expansion problem. The approximation algorithm was

proved to be asymptotically convergent to the optimal solution. The presented ex-

perimental results confirmed that the approximation algorithm is efficient compared

to CPLEX, and asymptotically convergent to the optimal solution.

Moreover, decomposition algorithms have been developed to solve the stochastic

network capacity expansion problem. First, a classical Benders’ decomposition pro-

cedure has been presented for the problem. Then, several improvement techniques

were introduced to speed up the classical Benders’ decomposition. The experimental

results showed that these algorithms cannot outperform CPLEX MIP solver. As a

result, a new Benders’ decomposition-based algorithm has been presented. This new

method can provide a lower bound for the network capacity expansion problem and

use a heuristic method to construct an upper bound. The experiments showed that
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the gap provided by this method can be better than the LP gap. The experimental

results for both the approximation algorithm and the new Benders’ decomposition-

based algorithm confirm that both algorithms can outperform CPLEX MIP solver.

Finally, an extension of network capacity expansion problem with budget restric-

tion imposed on permanent capacity expansion cost has been studied. Introducing

the budget constraint to the problem subverts the decomposable structure that had

been used to design the approximation algorithm. Therefore, a Lagrangian relaxation

method has been designed to solve the stochastic network capacity expansion problem

with budget constraint. Computational results showed that the proposed approach

is more efficient than CPLEX MIP solver.

7.2 Future Research Directions

Studies in this dissertation lead to several open questions in stochastic capacity ex-

pansion context. For all models that we considered in this dissertation, we assumed

there is no fixed-charge for buying the capacity. Potentially, a study on the fixed-

charge version of our presented model could be done. The designed algorithms will

fail for fixed-charge models and new ones must be developed. The stochastic network

capacity expansion formulation is defined on a min-cost network flow problem. Alter-

nately, one could study capacity expansion on a multi-commodity flow model which

has several applications in areas such as railroad transportation. In this case, the ap-

proximation algorithm would fail because multiple MIP subproblems must be solved.

Therefore, a different solution methodology must be developed. It would be useful

and interesting to study the stochastic capacity expansion in the blocking problem

(Barnhart et al. (2000); Ahuja et al. (2007)), and to develop efficient algorithm to
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solve such NP-hard problem. For the Lagrangian relaxation algorithm designed for

the stochastic network capacity expansion with budget constraints, one could study

more efficient heuristics to find the initial feasible solution and to update the upper

bound in each iteration.
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