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Abstract 

The natural soils and sedimentary rocks are typically formed by deposition and progressive 

consolidation of marine sediments. Consequently, they are characterized by the presence 

of closely spaced bedding planes, resulting in anisotropy in their mechanical behaviour. 

Among anisotropic rocks, the group of sedimentary rocks known as shales is of a particular 

interest as it is often the host rock in nuclear waste storage and oil industry. The Tournemire 

shales are anisotropic in terms of deformability and the failure mode, which means that 

complex constitutive models should be used to describe their mechanical response. 

In this thesis a pragmatic methodology based on the notion of a microstructure tensor, as 

suggested by Pietruszczak and Mroz (2001), has been employed for the description of 

orientation dependent characteristics of Tournemire shale. This has been combined with a 

plasticity framework that incorporates an anisotropic deviatoric hardening. The formulation 

requires identification of several parameters including strength descriptors associated with 

the failure criterion and constants that are involved in describing the anisotropy and strain 

hardening. All the material functions/parameters have been identified here based on the 

experimental results reported by Niandou et al. (1997). Using those parameters, the 

numerical simulations of a number of triaxial tests were conducted and the results compared 

with the experimental data in order to verify the performance of the model. 

After the verification stage, the formulation was incorporated in a commercial FE code 

(Abaqus/standard) using the UMAT interface and was then applied to a numerical analysis 

of a tunnel excavation within the anisotropic rock mass. The numerical results, including 

the distribution of the damage and vertical/horizontal displacements, have been compared 

for different orientations of the bedding planes. 
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1. Introduction 

The natural soils and sedimentary rocks such as shale, slate, gneiss, and schist are typically 

formed by deposition and progressive consolidation during the diagenesis. Such formations 

usually have a distinct internal structure, which is characterized by the appearance of 

multiple sedimentary layers or bedding planes. Consequently, the mechanical 

characteristics display an inherent anisotropy. Inherent anisotropy is strongly linked with 

the microstructural arrangement, e.g. crack pattern, bedding planes, foliation, presence of 

joints and micro/ macro fissures, etc. Anisotropy may also occur in granular media, but it 

is mostly associated with sedimentary rocks. Deformation behavior and failure mode of 

these materials are strongly dependent on the loading orientation with respect to the 

microstructure arrangement. Typically, the inherent anisotropy in a soil or rock takes the 

form of transverse-isotropy characterized by one direction with distinctive anisotropy 

perpendicular to an isotropic bedding or lamination plane (Kirkgard & Lade, 1993; Abelev 

& Lade, 2004; Niandou et al., 1997). This direction, normally coincident with the direction 

of deposition, is referred to as the axis of anisotropy and the plane is referred to as the plane 

of transverse-isotropy. 

Over the last few decades, an extensive research effort has been dedicated to study the 

mechanical behaviour of anisotropic rocks.  Comprehensive references on this topic can be 

found in a number of papers (Amadei, 1983; Kwasniewski, 1993; Ramamurthy, 1993). The 

notion of transverse isotropy in geomaterials has been studied primarily through triaxial 

tests, and has been found of a significant importance in the analysis and design of a variety 

of geotechnical structures, such as foundations, retaining walls and slopes (Casagrande & 

Carillo, 1944; Arthur & Menzies, 1972; Oda et al.,1978).  

Experimental evidence indicates that most sedimentary rocks display an anisotropy of 

strength and deformation (Donath, 1964; Colak & Unlu, 2004; Hoek, 1964; McLamore & 

Gray, 1967; Horino & Ellickson, 1970a; Kwasniewski, 1993; Ramamurthy, 1993; Nasseri 

et al., 2003; Colak & Unlu, 2004;  Karakul et al., 2010) and the degree of anisotropy varies 
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from one sedimentary rock to another. Some geological formations behave more 

anisotropically than others due to well defined bedding planes (Chappell, 1990). 

The strength anisotropy of diverse types of rocks have been investigated by many 

researchers. As an example, Donath, (1964), McLamore & Gray, (1967) and Attewell & 

Sandford, (1974) conducted a series of triaxial experimentation on slate. Chenevert & 

Gatlin, (2013) evaluated the directional properties of two type of shales using a triaxial 

compression cell and auxiliary stress - strain measuring equipment. Colak & Unlu, (2004) 

investigated the strength of anisotropic intact rocks using the data from compressive 

(uniaxial and triaxial) and indirect tensile (Brazilian) tests. Brown et al., (1977)  studied the 

Shear strength characteristics of Delabole slate. Deklotz et al., (1966) conducted several 

direct tension and unconfined and triaxial compression tests in order to investigate the 

anisotropic behaviour of a schistose gneiss. Martin McCabe and Koerner, (1975) studied 

the changes in friction and cohesion of Mica schist tested in tension and compression at 

different orientations. They also examined the fracture surfaces by use of a scanning 

electron microscope. Nasseri et al., (2003) evaluated the failure pattern of four anisotropic 

schistose rocks in macro and micro scale with the aid of unconfined and confined triaxial 

compression tests. Behrestaghi et al., (1996), conducted uniaxial and triaxial tests on schists 

by considering different orientation of schistosity with respect to the major principal stress. 

Ramamurthy et al., (1988) and Rao et al., (1986) focussed on two intrinsically anisotropic 

phyllites which were tested in high pressure triaxial apparatus. They proposed a simple 

strength criterion based on experimental results of these anisotropic rocks. Sandstones were 

investigated by Horino and Ellickson, (1970), Arora, (1987) and Al-Harthi, (1998) by 

conducting uniaxial compressive strength tests. Pomeroy et al., (1971) evaluated the 

anisotropy of coal by use of a triaxial compression apparatus and applying a uniaxial 

compressive load. Tien & Tsao, (2000) studied the strength anisotropy of artificial rock-

like materials which represent the anisotropic behavior of rocks such as shale, slate and 

sandstone. Uniaxial and triaxial compression tests were performed on these artificial 

interlayered rocks. Angabini, (2003) investigated on limestone. The stress–strain behaviors 

were determined by uniaxial strength, tensile strength and shear strength tests. Ajalloeian 
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and Lashkaripour, (2000) concentrated on performing uniaxial compression tests on two 

anisotropic mudrocks (siltshale and mudshale). Salager et al., (2012) assessed the 

transverse isotropic behaviour of Opalinus clay using several triaxial tests and Niandou et 

al., (1997) conducted triaxial compression tests for studying the strength anisotropy of 

Tournemire shale.  

A large number of triaxial compression tests have been conducted on oriented samples (H. 

Niandou et al., 1997, Donath, 1961;  McLamore & Gray, 1967; Attewell & Sandford, 1974; 

Hoek, 1983). By reviewing the experimental evidence, investigators generally concluded 

that maximum failure strength is either at 0   or 90  and the minimum value 

usually is within the range 30 60  , where β is the angle between major principal stress 

and the plane of weakness, fracture or sliding. The studies on the effects of bedding plane 

orientation on the elastic properties of anisotropic rocks reveal that the Young's modulus 

normal to bedding plane is lower than along bedding plane (Chenevert & Gatlin, 2013).  

Experimental data by  Halidou et al. (1994), have shown that in most rock materials, plastic 

deformation is generally coupled with damage due to development of microcracks. The 

damage is typically associated with strain softening. In the paper by Chen et al.  (2010), a 

constitutive model for plastic and damage modeling of anisotropic materials has been 

suggested. Their work is an extension of the plastic model proposed by Pietruszczak et al. 

(2002) by considering induced damage caused by micro cracks. 

The directional dependence of strength is an important property that should be taken into 

account in the analysis of different geostructures. For the safety analysis of structures 

constructed in such geological formations, it is important to develop constitutive models 

able to account for influence of structural anisotropy. Therefore, in addition to experimental 

research, an extensive research has been carried out on formulation of appropriate general 

failure criteria and plastic deformation. A comprehensive review on this topic, examining 

different approaches, is provided in the article by Duveau et al. (1998).  



M.A.Sc. Thesis Aida Rezapour McMaster University – Civil Engineering 

4 
 

In general, the formulation of anisotropic models follows different approaches. The primary 

methodologies are derived either from the extension of isotropic criteria and introduce 

several parameters that change with loading orientation or are proposed by considering the 

concept of discontinuous weakness planes (Walsh and Brace, 1964; McLamore and Gray, 

1967; Hoek and Brown, 1980; Ramamurthy, 1993; Jaeger, 2009). These criteria require a 

large amount of experimental data and curve fitting. Also it’s difficult to relate certain 

parameters to the microstructure of the rock. In view of this, they are not very convenient 

for use in complex engineering applications. 

The second approach is based on incorporating fabric tensors of different orders in the 

failure function (Boehler, 1978; Cazacu and Cristescu, 1998). Such an approach is very 

complex and also the parameter identification from experimental data is difficult. 

Therefore, this methodology does not seem appropriate for use in practical problems.  

The third family of models  involves incorporation of  the second order microstructure 

tensor (Ken-Ichi, 1984; Qiang et al., 2001; Chen et al., 2010; Chen et al., 2012). Here, the 

most pragmatic formulation is perhaps the one that employs a scalar anisotropy parameter 

which is expressed in terms of mixed invariants of the stress and structure-orientation 

tensors. This approach  was effectively applied to failure criterion of anisotropic rocks 

(Pietruszczak and Mroz, 2001). The same methodology was also used for  deriving an 

elastoplastic model for anisotropic sedimentary rocks (Pietruszczak et al., 2002). The 

model can be used in practical engineering problems and in comparison with the other 

approaches, does not require a large number of laboratory tests to estimate its parameters. 

Also, the mathematical formulation is not overly complex.  

In this thesis one type of sedimentary rock is considered, namely Tournemile shale, which 

consists of both clay and silt and has a laminated or fissile texture. Since shales have low 

porosity and permeability, time dependent effects associated with pressure diffusion and 

ionic convection should be considered. Capillary effects between diphasic fluids could also 

play an important role (Schmitt et al., 1994). Shales are widely used in nuclear waste 

storage and in oil industry. In the latter case, the extra drilling cost attributed to shale-
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instability problems is often very substantial prompting extensive research into this topic 

(Schmitt et al., 1994). It should be mentioned that the mechanical behavior of shales, due 

to their high clay content, is very sensitive to the saturation state. An extensive investigation 

on the effects of degree of saturation on the physical/mechanical properties for Tournemire 

shale has been presented in the article by Vales et al., (2004). 

This research thesis contains six chapters. The next chapter discusses the formulation of 

two simplified failure criteria for anisotropic materials with emphasising on microstructure 

tensor approach. A complete plasticity framework incorporating this failure function in 

specification of deformation characteristics in anisotropic sedimentary rocks is then 

discussed. The third chapter provides the numerical scheme that is used for integrating the 

elastoplastic constitutive equations. In the fourth chapter the identification of basic material 

parameters, which are required in applying microstructure tensor formulation, is discussed 

and several numerical simulations that verify the performance of the model are presented. 

The results are compared with the experimental data; in particular the results of tests 

reported by  Niandou et al., (1997) are considered. Chapter five deals with application of 

this methodology in Finite Element analysis. This chapter provides a numerical example 

solved by Abaqus which deals with the assessment of damage in a tunnel excavated in 

Tournemire shale. The geometry, boundary and initial conditions related to this model is 

taken from a paper by Le & Nguyen, (2014). The last chapter provides conclusions and 

recommendation for future work. 
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2. Formulation of anisotropic failure criteria 

2.1 Introduction 

The formulation of failure criteria for anisotropic materials constitutes an important 

problem which has attracted the attention of numerous researchers. An extensive review 

and assessment of various failure functions can be found in a paper by Duveau et al. (1998). 

The analytical formulations usually employ linear and second order terms in stress 

components referred to principal material axes. An example here is the orthotropic criterion 

formulated by Hill (1948) for metals, which was subsequently extended by Tsai and Wu 

(1971) for composite materials and by Pariseau (1968) for rocks. A more  general approach  

which employs ten independent basic and mixed invariants of stress and microstructure 

tensors was introduced by Boehler and Sawczuk(1970). Cowin (1986), also used a similar 

formulation and developed a simplified approximation in which the failure criterion is 

defined as a quadratic function of stress and fabric tensors. Another approach to formulate 

the failure criteria involves the notion of the existence of a critical plane, or the weakest 

orientation, along which the failure function reaches a maximum (Hoek and Brown, 1980; 

Hoek, 1983; Walsh and Brace, 1964). More recently, the problem was also formulated by 

invoking the notion of a fabric tensor specifying the directional distribution of lineal/areal 

porosity (Pietruszczak, 1999). The main difficulty with implementation of these approaches 

is the fact that they require a large number of material parameters and/or functions to be 

identified.  

In this chapter, two simplified approaches are discussed. The first one is the critical plane 

approach, which employs a spatial distribution of strength parameters (Pietruszczak and 

Mroz, 2001). This criterion requires a development of a constrained optimization procedure 

in order to define the orientation of the critical plane. The second  approach, which is the 

main focus of this thesis, is based on the structure-orientation tensors ( Pietruszczak and 

Mroz , 2001). This framework employs a scalar anisotropy parameter η defined in terms of 

mixed invariants of stress and microstructure tensors. A complete plasticity  formulation 
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incorporating the microstructure tensor  for determining the deformation characteristics is 

discussed in Pietruszczak  (2010). 

2.2 Specification of conditions at failure based on critical plane approach 

The approach employs a spatial distribution of strength parameters and the orientation of 

the critical plane can be defined by maximizing the failure function with respect to the 

orientation. The failure function, F, is defined in terms of tangential and normal traction 

components, τ and σ, acting on a plane with unit normal ni. 

 ( , ) ( )iF f c n     (2.1) 

where 

 ; ; 0ij i j ij i j i in s n n n s        (2.2) 

And is  is an arbitrary unit vector normal to in . In equation (2.1), ( )ic n is  a scalar valued 

function defined over a unit sphere and it may be assumed in the form 

  0( ) 1i ij i j ijkl i j k l ijklmn i j k l m nc n c n n n n n n n n n n n n       (2.3) 

where Ω’s  are symmetric traceless tensors of even rank describing the bias in the spatial 

distribution and 0c is a constant. For simplicity, the higher order tensors may be defined as 

dyadic products 

 
1 2; .......ijkl ij kl ijklmn ij kl mnb b           (2.4) 

which yields 

  2 3

0 1 2( ) 1 ( ) ( )i ij i j ij i j ij i jc n c n n b n n b n n         (2.5) 
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 In representation (2.5), it is assumed that eigenvectors of 
ij coincide with the principal 

material axes. For transversely isotropic material there is only one independent eigenvalue 

of 
ij (since 0ii  ), while for an isotropic material 

ij vanishes.  

If 1 2 .... 0b b   , then, 

  0( ) 1i ij i jc n c n n    (2.6) 

In this case, the constant 0c is the orientation average of ( )ic n .  

The onset of failure and specification of the orientation of the critical plane can be 

formulated as a constrained optimization problem, i.e. 

  
, ,

max  max  ( , ) ( ) 0; 1, 0, 1
i i i i

i i i i i i i
n s n s

F f c n n n n s s s         (2.7) 

Alternatively, one can define the tangential traction as  

  s

k ki k i ij jt n n n       (2.8) 

so that 

  max  max  ( , ) ( ) 0; 1
i i

i i i
n n

F f c n n n       (2.9) 

The above equations can be solved by Lagrange multipliers or any other suitable 

optimization technique. The solution provides the orientation of the critical/localization 

plane and defines the conditions at which the failure occurs.  

2.2.1 Example: Mohr-coulomb criterion 

Assuming that both strength parameters, c and µ, are orientation dependent and have linear 

form analogous to that employed in equation (2.6), this criterion can be written as 



M.A.Sc. Thesis Aida Rezapour McMaster University – Civil Engineering 

9 
 

   
, ,

max max 0
i i i in s n s

F c       (2.10) 

Where 

 
0 0(1 ), (1 )c

kl k l ij i jn n c c n n       (2.11) 

Here,  represents the tangent of internal friction angle and c is referred to as cohesion. 

The failure function, F, may now be defined as 

 0 0(1 ) (1 )c

ij i j kl k l ij i j ij i jF n s n n n n c n n         (2.12) 

 For the constraints given in equation (2.7), the Lagrangian function may be constructed as  

 
0 0

1 2 3

(1 ) (1 )

( 1) ( 1)

c

ij i j kl k l ij i j ij i j

i i i i i i

G n s n n n n c n n

n n n s s s

  

  

    

    
  (2.13) 

Where 1 2 3,  and    are the Lagrangian multipliers. The stationary conditions with respect 

to in and is take the form 

 

2 0 0 1

0

2 3

( ) 2( )

2 ( ) 0

( ) 2 0

c

ij ij j ij ij ij j

i

ip jk jp ik p j k

ij ij j i

i

G
S s c n

n

n n n

G
S n s

s

 

     

  

   


      



   


   



  (2.14) 

where sgn( )ij i jS n s . By solving equations (2.14) simultaneously along with constraints 

in (2.7), the orientation of critical plane, ni and si, as well as the Lagrangian multipliers may 

be determined.   
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2.3 Formulation of anisotropic failure criteria in terms of microstructure tensor 

The present formulation incorporates scalar anisotropy parameters that are functions of 

invariants of stress and microstructure tensors. A microstructure tensor represents a 

measure of material fabric such as arrangement of intergranular contacts, pore size 

distribution, distribution of cracks in the damaged material, etc. It is defined as  

 (1) (1) (2) (2) (3) (3) (1) (2) (3)

1 2 3 1 2 3ij i j i j i j ij ij ija a e e a e e a e e a m a m a m        (2.15) 

where 1 2 3, ,a a a  are the principal values of the microstructure tensor and 
ij i jm e e    are the 

respective structure-orientation tensors.  

The most general approach assumes that the failure criterion depends on both the stress and 

microstructure tensors, i.e. 

 
2 3 2 3 2 2 2 2

( , ) ( , )

    = [tr ,tr , , , , , ( ), ( ), ( ), ( )] 0

ij ij ip jq pq ip jq pqF F a F T T T T a

F tr tra tra tra tr a tr a tr a tr a

 

      

 


  (2.16) 

where 
ijT  is the transformation tensor. The above formulation provides a general framework 

which is complex for practical engineering applications. A simpler approach can be defined 

by considering the failure condition to depend on the relative orientation of the principal 

axes of both, 
ij  and 

ija  tensors. Considering the principal triad of the microstructure 

tensor and specifying the traction moduli (components of iL  ) on the planes normal to 

principal axes, Figure 2.1, one can write 
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Figure 2. 1 Principal triad of the microstructure tensor a and the traction moduli 𝐿1, 𝐿2, 𝐿3 (Pietruszczak and 

Mroz, 2001) 

 2 2 2 1/2 2 2 2 1/2 2 2 2 1/2

1 11 12 13 2 12 22 23 3 13 23 33( ) ;    ( ) ;    ( )    L L L                   (2.17) 

A generalized loading vector, which is a unit vector along iL , is defined as 

 
( ) ( )2

2

i i

k kj m mji
i

k k pq pq

e eL
l

L L

 

 
    (2.18) 

Note that 

 2 2 2 2

1 2 3 ( ) ( )k k kj kj kl ljL L L L L tr tr            (2.19) 

 2 ( ) ( ) ( ) ( ) 2( ) ( )i i i i

i k kj l lj kp ql lkL e e tr m tr m         (2.20) 

The projection of the microstructure tensor on the loading direction becomes 

 

(1) 2 (2) 2 (3) 2 2

1 2 32 2 2 2

( ) ( ) ( ) ( )

( )
ij i j

tr m tr m tr m tr a
a l l a a a

tr tr tr tr

   


   
       (2.21) 

The scalar variable, η, is defined as the ratio of joint invariant of stress and microstructure 

tensor to the stress invariant and it identifies the effect of loading orientation relative to 

material axes. It is a homogeneous function of degree zero, so that stress magnitude does 

not affect its value (Pietruszczak and Mroz, 2000).  This parameter is named as anisotropy 

1

s




11

L2

L3




12


13

L1

2

3

1

s




11


11

L2L2

L3L3




12


12


13


13

L1L1

2

3
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parameter since it reveals the orientation-dependent nature of the material strength.  The 

equation (2.21) can be expressed as   

  0 1 ij i jA l l     (2.22) 

where 

 
0 0

1
dev( ) /  ;    

3
ij ij kkA a a     (2.23) 

Here, 
ijA is a symmetric traceless operator and it is defined as the deviatoric part of the 

microstructure tensor normalized with respect to 0 . The former representation (2.22) can 

be generalized by considering higher order tensors 

  0 1 ij i j ijkl i j k l ijklmn i j k l m nA l l A l l l l A l l l l l l        (2.24) 

For simplicity, the higher order tensors can be replaced by dyadic products as follows 

 
1 2 ;    ijkl ij kl ijklmn ij kl mnA b A A A b A A A    (2.25) 

so that 

  2 3

0 1 21 ( ) ( )ij i j ij i j ij i jA l l b A l l b A l l        (2.26) 

where b’s are constants. 

Thus, the failure function (2.16) can now be expressed in a simplified form 

 2 3( , ) ( , , , ) 0F F a F tr tr tr         (2.27) 

As mentioned before, the value of parameter   is assumed to depend on the orientation of 

bedding planes relative to loading orientation. Thus, the existing failure criteria can be 

extended to anisotropic material by assuming that strength parameters change according to 
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equation (2.26). Generally, based on different types of materials and failure criteria which 

are used, several anisotropy parameters may be employed. 

2.3.1 Plasticity formulation incorporating a microstructure tensor 

In the previous section, failure condition for inherently anisotropic materials was presented. 

In this part, the approach is extended to the description of the inelastic deformation process, 

and the corresponding plasticity framework is discussed.  

Considering the elastoplasticity framework, the general form of the yield/loading surface, 

as well as the plastic potential function, are as follows 

    2 3,  ,    , , , , 0p trf a f tr rf t         (2.28) 

   2 3, ,,  , )  .(tr tr tr cona st          (2.29) 

where   is the scalar-valued function of irreversible deformation history. It should be 

mentioned that loading surface is defined in such a way that when κ→∞ »» ƒ→Ϝ, where Ϝ 

is the failure function. 

The non-associated flow rule, which is essential in considering a progressive transition 

from compaction to dilatancy, can be expressed as 

 
p

ij

ij

d d


 






  (2.30) 

Imposing the consistency condition ԁƒ = 0, yields 

 

1/2

1  ;   p ij p p
ij ij ijq

f f
d H d H dev dev

 
 

  


    

   
     

  (2.31) 
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where
pH is the plastic hardening modulus. More details on the formulation discussed here 

are provided in the next section, where a specific form of failure criterion is considered. 

2.3.2 Illustrative example: Mohr-Coulomb criterion 

The Mohr-Coulomb failure function for isotropic material can be written as 

  3 ( ) 0f mF g C         (2.32) 

where 

 
3 sin 6sin

( ) ; ; cot
3 sin2 3 cos 2sin sin

fg C c
 

  
  


  


  (2.33) 

In the above equations,  is equivalent to Lode’s angle,  and c  are the angle of friction 

and cohesion, respectively. The stress measures  and m are defined as 

 
1 3

3

1 3 3
sin   -

3 2 6 6

J  
 




 

     
 

  (2.34) 

 
1

2
2 1

1
( )  ;   

3
mJ I      (2.35) 

where I1 and J2 are the first stress invariant and second invariant of the stress deviator, 

respectively. 

The above failure criterion can be straightforwardly extended to anisotropic regime by 

assuming that strength parameters, 
f  and C, are orientation dependent. Thus, they both 

might have the representation consistent with equation (2.26), i.e. 

 

0

2 3

1 2

2 3

1 2

0  (1 C (C ) (C ) )

(1 ( ) ( ) )

ij i j ij i j ij i j

f ij i j ij i j ij if j

C C l l a l l a l l

l l b l l b l l 

    

    
  (2.36) 
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In the framework of Mohr-Coulomb failure criterion, C is the strength under hydrostatic 

tension and is in fact independent of the orientation of the sample. For hydrostatic tension, 

 
0ij ij p    (2.37) 

and the loading vector components in equation (2.18) become invariant with respect to the 

orientation, that is 

 
1 2 3 1/ 3 .l l l const      (2.38) 

Thus, referring the problem to principal material axes 𝑥𝑖, in Figure 2. 2, 

 
1 2 30  for  ;    C 0 ( ) / 3 0ij ii ij i jC i j C l l C C C          (2.39) 

which indicates that .C const  Therefore, in this case the only orientation dependent 

strength parameter is 
f . 

  
0

2 3

1 21 ( ) ( )  ; .f f ij i j ij i j ij i jA l l b A l l b A l l C const         (2.40) 

By examining the conditions at failure in samples having  different orientation   with 

respect to loading direction, coefficients appearing in equation (2.40) can be identified, 

which will be described in details in chapter four.  
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Figure 2. 2  principal material triad (Pietruszczak, 2010) 

 

Consider now axial compression at confinement, 0P , and refer the problem to material axes 

as shown in Figure 2.2. In this case, the stress tensor in the local coordinate system of the 

sample 1 2{ , }x x  may be defined as 

 

2 2

0 1 0 1

2 2

0 1 0 1

0

cos ( ) sin ( ) cos( )sin( ) cos( )sin( ) 0

=T T cos( )sin( ) cos( )sin( ) sin ( ) cos ( ) 0

0 0

ij im mn jn

P P

P P

P

       

         

   
 

    
 
 

 

  (2.41) 

in which 

 
0

1

0

cos( ) sin( ) 0 0 0

sin( ) cos( ) 0  ;    0 0

0 0 1 0 0

im mn

p

T

p

 

   

   
   

  
   
      

  (2.42) 

imT  is the transformation matrix and 
mn    is the stress tensor associated with triaxial tests.  

Using the representation above, the loading vector in equations (2.17) becomes 

 



x1

x2

in

Failure plane

1y 

2 3 .const  

x

y



x1

x2

in

Failure plane

1y 

2 3 .const  

x

y
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2 2 2 2 2 2 2 2

1 11 12 13 0 1

2 2 2 2 2 2 2 2

2 21 22 23 0 1

2 2 2 2 2

3 31 32 33 0

cos ( ) sin ( )

sin ( ) cos ( )

L P

L P

L P

     

     

  

    

    

   

  (2.43) 

Now, the unit vector, il , along loading vector, iL , can be expressed in the form 

 

2 2 2 22
2 0 11

1 2 2 2 2 2

1 2 3 0 1

2 2 2 22
2 0 11
2 2 2 2 2 2

1 2 3 0 1

22
2 01
3 2 2 2 2 2

1 2 3 0 1

cos ( ) sin ( )

2

sin ( ) cos ( )

2

2

PL
l

L L L P

PL
l

L L L P

PL
l

L L L P

  



  






 

  


 

  

 
  

  (2.44) 

Considering transverse isotropy, the fabric tensor, 
ijA , in the principal material axes  

( 0  for  ;    A 0ij iiA i j   ), may be identified as  

 
1

2

3

0 0

0 0

0 0

ij

A

A A

A

 
 


 
  

  (2.45) 

in which, 1 3 20.5A A A   . Also note that 2 2 2

1 2 3 1l l l   . Thus, 

 

2 2 2 2 2 2

1 1 2 2 3 3 1 1 1 2 1 3

2 2 2 2

1 1 2 3 1 2

2

( 2 ) (1 3 )

ij i jA l l A l A l A l Al Al Al

A l l l A l

     

    
  (2.46) 

Now, the equation (2.40) may be reduced to  

  
0

2 2 2 2 3 2 3
1 2 1 1 2 2 1 21 (1 3 ) (1 3 ) (1 3 ) .....f f A l b A l b A l           (2.47) 
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In the absence of confinement, when 0 0P  , the anisotropy parameter is solely a function 

of deposition angle β 

  
0

2 2 2 2

2 1 1 1cos 1 (1 3cos ) (1 3cos ) .....f fl A b A              (2.48) 

For defining the plasticity framework, the loading surface may be expressed as 

  3 ( ) 0mf g C         (2.49) 

in which 

 
2

2
( )   ;

3
p

p

f qd d J
A 


     


   


  (2.50) 

Here, 2J   represents the second invariant of deviatoric plastic strain increment and Β is a 

material constant. As mentioned before, when κ→∞ there is 
f  that results in ƒ→Ϝ, 

which implies that the conditions at failure are compatible with Mohr-Coulomb criterion. 

The plastic potential may be defined as 

  
 

0
3 ( ) ln 0   

m

c m

m

C
g C


    




      (2.51) 

where,  

 ( )c f c c il        (2.52) 

and 0

m  is evaluated from the condition of 0  . Now pursuing the standard plasticity 

methodology and applying the consistency condition 0df  , yields 
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1

1
2

; ;

2

3

p
p ijij

ij ij

p p
ij ijq

f
d d d H d

f
H dev dev


   

 

  

  

 
 

 

    
   

     

  (2.53) 

For the considered Mohr-Coulomb functional form in equation (2.49), the gradient operator 

may be defined as 

 
fm

ij m ij ij ij f ij

f f f f f   

        

         
      
              

  (2.54) 

whereas 

 23

3 2

31 1 3 2
  ;  s   ;  

3 2 2 cos3 2 3

m
ij ij ij ik kj ij

ij ij ij

J
s s s

  
  

      

    
      

    
 (2.55) 

The last term in equation (2.54) involves the anisotropy parameter and represents the 

influence of the loading orientation on plastic flow. Note that 

 
( )

( )( )m
f f

f
g C

 
 

 


  


 (2.56) 

   ;  
f f ik ij kj

ij i j
ij ij pq pq

A
A l l

   


    

  
  

  
  (2.57) 

Considering equation (2.40) and differentiating yields 

 2
1 2 2

ˆ2 (1 2 3 ...)
( )

f ki kj pq pq pk pq kq ij
f

ij mn mn

A A
b b

      
  

  

 
   


  (2.58) 

The gradient of the plastic potential function can be derived by using a similar procedure. 

The constitutive relation can now be obtained by invoking the additivity postulate. The 

general form is  
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1( )e p e

ij ijkl kl ij ijkl p kl ijkl kl

ij kl

f
d C d d C H d C d


    

 

  
    

 
  (2.59) 

Where e

ijklC is the elastic compliance matrix whose representation depends on the type of 

material anisotropy. In case of transverse isotropy, e

ijklC  may be defined as  

 

12 12

2 1 1

1321

2 1 1

1321

2 1 1

13

32

21

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

E E E

E E E

E E E
C

G

G

G

 





 
  

 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
  

  (2.60) 

Here, 2E  is the Young’s modulus in the direction normal to the bedding plane, 1E  is the 

modulus in the plane of isotropy, 
ij  is the Poisson’s ratio defining the deformation in j  

direction due to loading in i direction and 
ijG is the shear modulus in ( , )i jx x plane. It should 

be mentioned that 13G  and 21  are not independent and may be expressed as 

 
1 21 12

13

13 2 1

   ;   
2(1 )

E
G

E E

 


 


  (2.61) 

Thus, the representation (2.61) has only five independent parameters. 
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3. Numerical integration of constitutive relations 

3.1   Introduction 

The elastoplastic constitutive relation for modeling the mechanical behaviour of 

Tournemire shale, which has been discussed in the previous chapter, represents a 

differential equation that cannot be reduced to a finite relation between stress and strain 

tensors, due to nonlinear/history dependent response. Therefore, for this class of 

constitutive models, a numerical integration is required. Numerical integration of 

incremental plasticity relations generally starts from a known state of stress, strain and 

internal plastic variables, at step n , i.e. { , , }n   . By satisfying the equilibrium and the 

constitutive relation, the corresponding stress/strain increments can be found. Using those 

values, the corresponding variables can be updated to 1{ , , }n    at step 1n  . The 

available integration schemes can be divided into two main groups, namely, implicit and 

explicit. The most common explicit scheme is Forward-Euler (FE). The fully implicit or 

Backward-Euler (BE) and the midpoint-Euler (ME) are two commonly used implicit 

schemes. Consider the initial-value problem given by the differential equation 

 ( )  ( )y f x dy df x     (3.62) 

and assume the value of f to be known at time t . According to the Euler’s scheme, for a 

small enough time increment t , there is a linear variation of function f  within the time 

interval  ,t t t  . So the value of f  at time step t t  may be estimated as 

 
t t

t t t t t

t

f f fdt f f t f df



          (3.63) 

 The general Euler’s integration scheme, t tf   may be written as 
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 (1 )  ;  [0,1]t t t t t tf f f t f t            (3.64) 

By assuming a particular value to coefficient  , various algorithms may be defined. The 

most common ones are  

α = 1.0 → explicit (Forward-Euler) 

α = 0.5 → implicit (midpoint-Euler) 

α = 0.0 → implicit (backward-Euler) 

It should be mentioned that for the explicit scheme, the value of t tf   depends only on the 

known value of function f  at time t , while for implicit scheme the value of f at t t   is 

needed, which is unknown. So an iterative procedure is required. 

As mentioned before, the microstructure tensor approach, which is used here for describing 

the anisotropic mechanical behavior of Tournemire shale, is based on Mohr-Coulomb 

failure criterion. Considering that the Mohr-Coulomb criterion is linear, the Forward-Euler 

scheme is chosen as a numerical integration scheme. 

In analysing the initial boundary-value problems using finite element or finite difference 

methodologies, the basic unknowns are the displacement rates. The local strain rates that 

are determined from the kinematic relations are then used in the constitutive law for 

evaluating the stress rates. Thus, the integration algorithms should be written in strain-

control regime. 

In this chapter, point integration algorithms considering both implicit and explicit scheme 

are briefly presented. Later, the details of the explicit point integration methodology in 

relation to the microstructure tensor approach used for Tournemire shale are discussed. 

3.2   Forward-Euler scheme 

Applying the explicit (Forward-Euler) scheme, strain and stress at t t   can be defined as 

 t t t t

ij ij ijd       (3.65) 
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 ( )

  

t t t t

ij ij ij

t t pt

ij ijkl ij ij

t t t

ij ijkl ij ijkl t

ij

d

D d d

D d D d

  

  


  



  

  


  



  (3.66) 

 where 

  
 

0
  ;   3 ( ) ln 0

mp

ij c m

ij m

C
d d g C


      

 


    


  (3.67) 

 In the expressions above, 
ijklD  is the elastic stiffness operator,   is the potential function 

defined in equation (3.67) and d  is an unknown plastic multiplier that may be identified 

by considering the consistency condition, 0df  , i.e. 

 0 ( ) 0t t pt t t t

ij q ijkl ijt pt t t pt t

ij q ij ij q

f f f f
df d d D d d d

q

 
    

    

     
      
     

  (3.68) 

Thus, d  can be evaluated as  

 1

 

( )

 

t

ijt

ijt

e p ijkl ij

ij
ijklt t pt t

ij ij q

f
D d

f
d H H D d

f f
D

q




 
  

  





 
  

    


   

  (3.69) 

 where 

 ( ) ;    e ijkl p p

ij kl q

f f
H D H

q

 

  

      
              

  (3.70) 

 Given 
td , the updated t t

ij  may be determined and used as the initial value for the next 

step.  
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3.3   Backward-Euler scheme 

For the implicit (Backward-Euler) scheme, the constitutive relation at t t   can be written 

as 

 t t t t t

ij ij ijd       (3.71) 

 ( )   t t t p t t t t t t t

ij ij ijkl ij ij ij ijkl ij ijkl t t

ij

D d d D d D d


      


   




     


  (3.72) 

In equation (3.72) the values of both, d  and 
ij








 are evaluated at time step t t  , which 

requires an iterative procedure. With reference to consistency condition, ( , ) 0t t p

ij qf    , 

Maclaurin series is chosen for determining the value of d , and consequently 
ij and 

ij









, at each iteration. The details of the procedure are as follows: 

 1( ) 0 

i i
i i i i

i

f f
f d f

f
   





   
      

   
 
 

  (3.73) 

 where 

 ( ) ( )

p

ij q

ijkl e pp p

ij q ij kl q

f f f f f
D H H

q

   

       

          
                        

 (3.74) 

Thus, 

 

i

i

e p

f

H H


 
    

  (3.75) 

 
1i i id d       (3.76) 
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 1 1( )i i i i

ij ijkl kl

kl

d D d d


  


  
  

 
  (3.77) 

    
1 1i i

t t t

ij ij ijd  
 

     (3.78) 

 

The procedure has to be repeated until 
1i id d   within an acceptable range of error is 

reached, or in other words, 0i  .  Given  t td 
, the stress at  t t  , represented by 

t t

ij  , may be determined. This can be used as the initial value for the next increment.  

 

3.4   Explicit integration algorithm (strain-controlled) incorporating microstructure     

tensor for Tournemire shale 

Considering 
ijd  as a known parameter, and also knowing stress and strain at each time 

step, t , the algorithm below may be used to calculate the stress at time t t  . 

The first step is to compute the plastic multiplier. It should be pointed out again that, in 

order to simplify the algebra, the components of strain and the stress tensors can be referred 

to the coordinate system associated with the principal material axes. Their values can then 

be transformed to the global frame of reference using the standard transformation rules. For 

completeness, let us first review the key governing equations. The loading surface is 

expressed as 

 
 3 ( ) 0mf g C      

 

where 

 

1 3

3

3 sin 1 3 3
( )   ;  sin   -

3 2 6 62 3 cos 2sin sin

J
g

  
  

  


  

           



M.A.Sc. Thesis Aida Rezapour McMaster University – Civil Engineering 

26 
 

 

1
2

2 1

1
( )  ;   

3
mJ I   

  

 and   is the hardening parameter defined as 

p

q

f p

qA


 





 

The expression for the anisotropy parameter
f  takes the form 

 
 

0

2 3 2 2 2

1 2 1 1 2 2 3 3 1 ..... ;   f f ij i jb b A l l Al A l A l             
  

 where 2 2 2

1 2 3,  and l l l  are unit vectors along the loading direction referred to the principal 

material axes coordinates (equation (2.45)).  

Since the response of Tournemire shale is transversely isotropic, the expression for 
f may 

be reduced to 

 
 

0

2 2 2 2 3 2 3
1 2 1 1 2 2 1 21 (1 3 ) (1 3 ) (1 3 ) .....f f A l b A l b A l        

 

The plastic potential function is defined as  

 

 
 

0
3 ( ) ln 0  ; 

m

c m c f

m

C
g C


      




    

   

where, 0

m and c are constants.  

Applying the consistency condition, 𝑑𝑓 = 0, yields 

 1

 

( )

 

t

ijkl ijt

ijt t t t

e p ijkl ijt
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ijklt t pt t
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D d
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 
 

  






  

   


   
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in which 

 

tt t t
fm

t t t t t t t t t
ij m ij ij ij f ij

f f f f f   

        

         
      
                 

The derivatives appearing in the expression above take the following form  

 

1
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In the next step, the plastic strain and the deviatoric plastic strain increments have to be 

evaluated and all variables should be updated. Thus, 
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Moreover, in order to use the formulation as the constitutive model in finite element, the 

tangential stiffness operator 
ijklD  must be calculated, as 
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  This finalizes the constitutive model that can be used in FEM packages. 
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4. Identification of parameters and verification of the model 

4.1   Identification of material parameters 

The framework outlined in the second chapter, third section, requires specification of 

several parameters including strength descriptors associated with the failure criterion, 

coefficients of best-fit approximation governing their distribution and the hardening 

parameters. Let’s consider the Mohr-Coulomb failure criterion in p-q space, 

 ( ) 0F q p C      (4.79) 

 where   is a hardening function which is defined in equation (2.50) and C=const. is a 

strength parameter. The stress measures p and q may are defined in the form 

 1 3
1 3 0

2
  ;  

3 3

q
q p P

 
 


       (4.80) 

Here, 1  is the major principal stress and 2 3 0P    are the minor principal stresses. In 

order to identify   and C a series of triaxial tests is required. For this purpose, experimental 

results at different initial confining pressure, performed  by Niandou et al. (1997), are 

employed. The material tested is a shale taken from Tournemire site in the Massif Central, 

France. The mechanical behavior is transversely isotropic due to existence of bedding 

planes. Table 4. 1 shows the mineralogical composition of this type of shale, while Figure 

4. 1 shows the variation of axial strength versus orientation of bedding planes. 
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Table 4. 1  The mineralogical composition of the Tournemire shale (H. Niandou et al., 1997) 

Minerals Weight Proportion (%) 

Kaolinite 27.5% 

Illite 16.5% 

Quartz 19% 

Calcite 15% 

Chlorite 2.7% 

Interstratifier 8.3% 

Other minerals 11% 

Water 4.5% - 8% 

 

Figure 4. 3  variation of deviatoric stress at failure vs. orientation of bedding planes for various confining 

pressures (H. Niandou et al., 1997) 
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Failure surface in p q  plane for different orientations can be drawn by considering the 

deviatoric stress, q, at failure for different initial pressures and calculating the 

corresponding mean stress, p. The Mohr-Coulomb failure line can be created by best fit 

approximation of these points. Then, the C parameter may be determined by dividing the 

intercept of each line by the slope of it. As C must be constant and invariant with respect 

to orientation, an average value of 1.2 01E  MPa has been selected. Now   at different 

initial pressures and different orientation of bedding planes can be evaluated as  

 
( )

q

p C
 


  (4.81) 

It should be stressed here that the identification is based on tests involving low initial 

confining pressures only 0( 1,5,20 )P MPa , which is due to the fact that the linear form of 

Mohr-Coulomb criterion cannot adequately describe the response at higher pressures. The 

latter requires a non-linear form of the failure criterion. Figure 4. 4 and Figure 4. 5 show 

the failure envelopes in p q  space for 30   and 45  degrees, respectively. The rest of 

the p q  data, also the resultant C and   values, are summarized in Table 4. 2 through 

Table 4. 4. It should be restated that when κ→∞ there is ƒ→Ϝ and   →
f . As can be 

seen from the data, the C parameter for 90   degrees is out of range. So it is not 

considered in identifying the average value of the parameter C value.  
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Figure 4. 4  Variation of deviatoric stress vs. the mean stress at failure for different values of initial pressure 

at β = 30◦ 

 

 

Figure 4. 5  Variation of deviatoric stress vs. the mean stress at failure for different values of initial pressure 

at β = 45◦ 
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Table 4. 2  Mohr-Coulomb failure envelope data for 𝛽 = 0°, 20° 

 

Table 4. 3  Mohr-Coulomb failure envelope data for 𝛽 = 60°, 70° 

 

𝛽 = 0° 𝛽 = 20° 

P0(MPa) 1 5 20 1 5 20 

q (MPa) 4.602E+01 5.365E+01 8.277E+01 2.877E+01 4.487E+01 7.162E+01 

P (MPa) 1.634E+01 2.288E+01 4.759E+01 1.059E+01 1.996E+01 4.387E+01 

C (MPa) 1.447E+01 1.244E+01 

f  1.623E+00 1.537E+00 1.389E+00 1.273E+00 1.403E+00 1.282E+00 

𝛽 = 60° 𝛽 = 70° 

P0(MPa) 1 5 20 1 5 20 

q (MPa) 2.000E+01 3.131E+01 6.389E+01 2.937E+01 3.890E+01 7.155E+01 

P (MPa) 7.666E+00 1.544E+01 4.130E+01 1.079E+01 1.797E+01 4.385E+01 

C (MPa) 1.235E+01 1.380E+01 

f  1.016E+00 1.141E+00 1.198E+00 1.288E+00 1.297E+00 1.281E+00 
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Table 4. 4  Mohr-Coulomb failure envelope data for 𝛽 = 90° 

 

Figure 4. 6 shows anisotropy parameter variation as a function of bedding plane orientation 

corresponding to various confining pressures. 

𝛽 = 90° 

P0 (MPa) 1 5 20 

q (MPa) 3.471E+01 5.507E+01 8.493E+01 

P (MPa) 1.257E+01 2.336E+01 4.831E+01 

C (MPa) 2.274E+01 

f  1.412E+00 1.557E+00 1.408E+00 
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Figure 4. 6  Variation of f vs. orientation of bedding planes for various confining pressures 

Evidently, the results indicate that the maximum strengths is associated with specimens in 

which the direction of major principal stress is either parallel or perpendicular to the 

bedding planes, while the minimum strength has been observed for orientations between 

30 and 60 degrees.  

The next step is to calculate the coefficients 
0 1 1 2( , , , ,...)f A b b  which appear in the anisotropy 

parameter. With reference to chapter two, the anisotropy parameter can be written as 

  
0

2 2 3 3
1 1 1 2 11 .....f f A b A b A           (4.82) 

where 

 
2 2 2 2

2 2 0 1
2 2 2 2

0 1

sin cos
(1 3 )  ;   

2

P
l l

P

 
   


  (4.83) 
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For triaxial tests,   can be identified simply by substituting 0P  and 1  at failure 

corresponding to each bedding plane orientation. So, by knowing 
f  and   for different 

orientation and initial pressure, the 
f   diagram can be drawn. Figure 4. 7  shows the best 

fit approximation based on equation (4.82), which incorporates second order term. The 

corresponding values of the coefficients of approximation are as follows,  

0
 1.14f  , 1  0.122A  , 1 10.22b   

 

Figure 4. 7  variation of 𝜂𝑓 vs. ζ 

The next issue is to identify the material constant, A, which appears in the hardening 

parameter, ( )  , i.e. 

 ( )   ; p

f q
A


     


  


  (4.84) 
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 where   is deviatoric plastic strain. As can be seen from this equation, the plastic strain 

must be quantified in order to be able to identify the value for A. The plastic strain can be 

extracted from the available total strain by defining the elastic response. The latter can be 

estimated by using the elastic material properties evaluated from unloading curves. Elastic 

constants for Tournemire shale were estimated here based on the work of Halidou et al. 

(1994) and are as follows, 

 1 2 21 13 22000 ;   7000 ;   0.12;   0.14;    4000E MPa E MPa G MPa     
  

Here, E1 is the Young’s modulus in the direction tangential to the bedding plane, E2 is the 

Young’s modulus in the direction normal to the bedding plane, while υij is the Poisson’s 

ratio that defines deformation in the 
jX  direction due to normal stress in the iX  direction. 

Once the total and elastic strains are defined, the equivalent (distortional) strain, 
q  and e

q

, can be determined. Then, the equivalent plastic strain, p

q  or , may be calculated as a 

difference between the total and elastic equivalent strain. Then, by plotting 
f




 against p

q

, equivalent plastic strain, and performing the curve-fitting, the A  parameter can be 

identified. It should be noted that since the material is transversely isotropic, traditional 

triaxial measurements (i.e. axial and volumetric strains) are, in general, not sufficient.  In 

fact, for the inclined samples, shearing deformations as well as out of plane deformations 

will develop, which play an important role in estimation of the equivalent plastic strain. 

Thus, in Niandou et al. (1997) experiments ,  only the tests on horizontal samples provide 

reliable measures of plastic deformation. Therefore, the A parameter has been identified 

here from these measurements alone and then calibrated using numerical simulation for 

other orientations, by matching the axial deformation-deviatoric stress curves.  

The key assumptions adopted here for constructing the 
q

p

f





  diagram, and for obtaining 

the best fit approximation, as shown in Figure 4. 8, are listed below 
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1)   Since the approximation of conditions at failure is based on a linear representation, 

the tests at high confinements, viz. 3 30   and 50MPa , are not considered.  

2)  The results shown in Figure 4. 8, show that the initial part of the initial portion of the 

deviatoric characteristic shows a concavity, which is not typical. This may be due 

to closure of some fractures which might have been present within the sample at the 

start of axial loading. Thus, the points up to 0.4
f




 have been disregarded in 

performing the curve-fitting. 

3)   The experimental data indicate that the failure is not associated with unlimited 

deformation, but there is an abrupt transition to localized deformation. In order to 

account for this, another coefficient B  has been incorporated in the hardening 

function, viz. 

                                    ; p

q

f

B
A

 
 

 
 


  (4.85) 

The best-fit approximation, Figure 4.6, resulted in the following values 

 0. 0027;    1.28A B   

Since A and B are defined only based on horizontal bedding plane, it is expected 

not to get accurate deformation responses for other oriented samples.  One way that 

this issue can be addressed is by conducting numerical simulations for other 

orientations of the bedding planes and comparing the response with experimental 

data. This will results in modified valued for A and B that can reproduce the 

experimental data more accurately for all orientations. Following this approach, A 

and B may be modified to  

 0.001;    1.1A B 
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Figure 4. 8  q

p  vs. / f   curves for different confining pressure and the resulting curve-fitting 

The next step is to specify the parameter, c , which appears in the plastic potential function 

as defined in equation (2.52). This parameter is a constant that describes the transition from 

plastic compaction to dilatancy before failure, where there is  0 p

vd d
p


 


  


 

0
p





. Thus, its value defines the slope of zero dilatancy line c  . The details of the 

identification of c  are provided below.  

The plastic potential function in equation (2.51) can be rewritten in p-q space as  

 ( ) ln( ) 0c

p C
q p C

p
 


      (4.86) 
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Where p  is a constant that can be obtained by considering the condition of ( , ) 0p q  . 

Also, according to equation (4.86), there is  

 ln 1c c

p C

p p


  
  

    
  

  (4.87) 

So that  0 0p

c v

q
d

p C p


  


     

 
, which defines the transition from 

compaction to dilatancy. Consequently, the value of c  may be determined by plotting the 

p

v   diagram Figure 4. 7. For the locus where 0p

vd  , c  . Obviously, for c    

there is compaction whereas, c   corresponds to dilation. 

 

Figure 4. 7 
p

v  vs. ϑ variation (evolution of volume change) 
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4.2   Model verification through numerical simulations 

After identifying basic material parameters which are needed in applying the microstructure 

tensor formulation, the numerical simulations for other loading histories are required in 

order to verify the performance of the model. For this purpose the results of a number of 

triaxial tests  reported by Niandou et al. (1997) are chosen . As mentioned before, tests were 

carried out on Tournemire shale at various initial confining pressures and orientations of 

the bedding planes.  

A set of numerical predictions and experimental data for triaxial compression tests with 

confining pressures ranging from 5 to 30 MPa, and bedding planes orientations equal to 0, 

45, and 90 degrees are presented in Figure 4. 8 to Figure 4. 13. Comparisons between 

numerical simulation and experimental results show that the model is capable of 

reproducing the main features in the mechanical response of the transversely isotropic 

Tournemire shale. For example, the fact that the mechanical strength increases and plastic 

deformation becomes more noticeable under higher confining pressure. The transition from 

volumetric compaction to dilatancy is also well reproduced. However, it seems that a 

quadratic form of the failure function may be more adequate to reproduce the mechanical 

behavior of Tournemire shale at higher confining pressures. Moreover, it is noted that the 

strain softening associated with strain localization takes place under lower confining 

pressures. Since the formulation discussed here is limited to the strain hardening range, the 

numerical simulations were stopped at the point where 0.98
f




 . The strain softening part  

of experimental results taken from the research of H. Niandou et al., (1997) is also omitted 

as it should be considered as a boundary-value problem.  

Figure 4. 8 to Figure 4. 10 show the mechanical response of samples loaded in the direction 

normal to the bedding planes, i.e.  β = 0 degrees and confining pressures of 5, 10, and 30 

MPa respectively. Figure 4. 8a, Figure 4. 9a and Figure 4. 10  show the deviatoric stress 
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against axial deformation. It is obvious that the ultimate strength is considerably affected 

by the confining pressure.  

Figure 4. 8b and Figure 4. 9b present the deviatoric stress against volume change 

characteristics. It should be noted that for P0 = 30 MPa, the vq   diagram is not shown as 

there is no experimental information available. It can be seen that the samples go through 

progressive compaction before the conditions at failure are reached.  

Figure 4. 11  shows the mechanical response of inclined samples with bedding planes 

orientation of β = 45 degrees and confining pressure of 5 MPa. Here, the simulation is not 

quite consistent with the experimental data. However, it should be pointed out again that   

for inclined samples the deformation is no longer axisymmetric and the experimental 

results should be taken with caution. In general, the axial strength at failure and the 

corresponding axial strain is significantly lower compared to those for samples tested at β 

= 0 degree. For instance, the axial strain corresponding to peak deviatoric stress is about 

1.8%  for β = 0 degrees, while the axial strain for β = 45 degrees corresponding to peak 

stress (37 MPa) is 0.85%. These resultants indicate a significant effect of anisotropy on 

both the failure stress and the plastic deformation.   

Finally, the comparisons of simulations and the results of triaxial compression tests at β = 

90 degrees are presented in Figure 4. 12 and Figure 4. 13. The results correspond to 

confining pressures of 5MPa  and 30MPa  respectively. It can be seen that the strength of 

these samples is higher compared to the samples tested at β =45 degrees. Also, the 

volumetric dilatancy becomes more noticeable, probably because of the opening of the 

foliation in this direction. It should again be noted that there is no experimental data 

available on volumetric strain for the vertical samples tested at P0 = 30 MPa  
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 (a) 

  

(b)  

Figure 4. 8  numerical results of compression triaxial tests for horizontal bedding planes, β = 0, at P0 = 

5MPa; (a) deviatoric stress versus axial strain and (b) volumetric strain, εv = - (εx + εy + εz) 
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 (a) 

  

(b) 

Figure 4. 9  numerical results of compression triaxial tests for horizontal bedding planes, β = 0, at P0 = 10 

MPa; (a) deviatoric stress versus axial strain and (b) volumetric strain, εv = - (εx + εy + εz). 
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Figure 4. 10  Numerical simulation of triaxial tests (deviatoric stress versus axial strain for horizontal 

bedding planes, β = 0, at P0 = 30 MPa) 
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 (a) 

  

(b) 

Figure 4. 11  Numerical results of compression triaxial tests for horizontal bedding planes, β = 45º, at P0 = 5 

MPa; (a) deviatoric stress versus axial strain and (b) volumetric strain, εv = - (εx + εy + εz). 
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(a) 

 

(b) 

Figure 4. 12  Numerical results of compression triaxial tests for vertical bedding planes, β = 90º, at P0 = 5 

MPa; (a) deviatoric stress versus axial strain and (b) volumetric strain, εv = - (εx + εy + εz). 
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Figure 4. 13  Numerical simulation of triaxial tests (deviatoric stress versus axial strain for horizontal 

bedding planes, β = 90º, at P0 = 30 MPa)  

 

Finally, Figure 4. 14  and Figure 4.15 Show the comparisons between numerical predictions 

and experimental data for the bedding plane orientations equal to 0 and 90 degrees at the 

confining pressure of 40 MPa. Note that there was not experimental evidence for plotting 

volumetric strain at β = 0 degree. It is evident here that at higher confining pressures the 

model prediction is not in a good agreement with the experimental results. As mentioned 

earlier, the reason is that at higher pressures a non-linear form of the failure criterion is 

required.  
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Figure 4. 14  Numerical simulation of triaxial tests (deviatoric stress versus axial strain for horizontal 

bedding planes, β = 0, at P0 = 40 MPa) 
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(a) 

 

 

(b) 

Figure 4.15   Numerical results of compression triaxial tests for vertical bedding planes, β = 90º, at P0 = 40 

MPa; (a) deviatoric stress versus axial strain and (b) volumetric strain, εv = - (εx + εy + εz). 
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5. Finite element modelling of tunnel excavation in   

Tournemire shale 

5.1   Introduction 

Most of the practical engineering problems are non-linear and cannot be solved 

analytically. In view of this, different numerical techniques, such as Finite Element Method 

(FEM), are employed.  In this approach, the domain is discretized into a number of finite 

elements and the numerical integration schemes are employed to solve the governing set of 

partial differential equations.  As stated by Wood and Clayton, (1993), there are several 

sources of error that cause us to consider the FEM modelling predictions with caution. 

Those include modelling of the geometry of the problem, construction sequence, 

constitutive modelling and parameter selection, the general solution technique, etc.  

As mentioned before, the shale studied in this research is an anisotropic rock, taken from 

the Tournemire site in the Massif Central region of France. It is known to be an appropriate 

host for chemical and nuclear waste storage and oil borehole formations. Therefore, an 

understanding of the deformation and failure mechanisms in this type of rock is of a 

significant importance. The problem addressed here deals with an assessment of damage 

around a tunnel excavated in Tournemire shale formation. The geometry, as well as the 

boundary and initial conditions related to this model, are taken from a study by Le and 

Nguyen, (2014). The constitutive relation incorporated in the FE analysis is based on a 

microstructure tensor approach that was discussed in chapter 2.  

This chapter gives a brief description of the 3D FEM model of the tunnel excavation as 

well as a detailed presentation of the results of numerical analysis. The latter include the 

assessment of the deformation field around the tunnel for different orientations of the 

bedding planes. The analysis was carried out using the commercial code Abaqus/Standard 

in which the constitutive relation was incorporated. 
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5.2   FEM modelling of the tunnel excavation 

 Any commercial FE program is typically divided into separate modules for creating the 

geometry of the model, specification of material properties, assigning boundary, initial and 

loading conditions, and generating a mesh (discretization). After submitting the input file 

to the solver, the user can monitor the progress of the analysis and generate an output 

database. It should be noted that some finite element programs have interfaces that allow 

the users to implement their own constitutive equations when the existing material models 

included in the program material library are not adequate. For example user subroutine 

UMAT in Abaqus/Standard and user subroutine VUMAT in Abaqus/Explicit allow user-

defined constitutive models to be added to the program, while the user subroutine UEL in 

Abaqus/Standard allows the creation of user-defined elements. The UMAT subroutine 

header is shown below: 

 

 

SUBROUTINE UMAT ( STRESS, STATEV, DDSDDE, SSE, SPD, SCD, 

                                          RPL, DDSDDT, DRPLDE, DRPLDT, STRAN,  

                                          DSTRAN, TIME, DTIME, TEMP, DTEMP,  

                                          PREDEF, DPRED, CMNAME, NDI, NSHR,  

                                          NTENS, NSTATV, PROPS, NPROPS, COORDS,  

                                          DROT, PNEWDT, CELENT, DFGRD0, DFGRD1,  

                                          NOEL, NPT, LAYER, KSPT, KSTEP, KINC) 

 

 

The key variables employed here are defined below.  
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DDSDDE: Jacobian (tangential) matrix of the constitutive model, / ,   where   

represents the stress increments and   is the strain increment. It should be pointed out 

that an unsymmetric equation solution for the user-defined material has to be invoked, 

otherwise the program will only use the symmetric part of DDSDDE which is one half the 

sum of the matrix and its transpose. 

STRESS: This array is passed in as the stress tensor at the beginning of the increment and 

must be updated in this routine to represent the stress tensor at the end of the increment. If 

initial stresses are defined, this array will contain the initial stresses at the start of the 

analysis. 

STATEV: An array containing the solution-dependent state variables. These are passed in 

as the values at the beginning of the increment, unless they are updated in other user 

subroutines in which case the updated values are passed in. In all cases STATEV must be 

returned as the values at the end of the increment.  

SSE, SPD, SCD: Specific elastic strain energy, plastic dissipation, and creep dissipation, 

respectively. These are passed in as the values at the start of the increment and should be 

updated to the corresponding specific energy values at the end of the increment. They have 

no effect on the solution, except that they are used for energy output. 

STRAN: An array containing the total strains at the beginning of the increment.  

DSTRAN: An array of strain increments. 

NSTATV: The number of solution-dependent state variables that are associated with this 

material type. 

PROPS: A user-specified array of material constants associated with the user material. 

In the following parts, the basic   steps that are employed in the analysis of the tunnel 

excavation problems are described. 

5.2.1  Modelling of the geometry 

This first step is to idealize the geometry of the problem. In this research both 2D and 3D 

finite element analyses are performed and the results are compared. The computational 

domain includes a cubic/square in which a tunnel has been excavated and the corresponding 
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initial stress is applied within the entire region. The in-plane size of the considered domain 

is 20 20 m m . For the 3D model, the depth along the tunnel axis is 18  m. The tunnel’s 

length and diameter are 13 m and 1.036 m, respectively. Plane strain conditions are imposed 

in 2D analysis. 

5.2.2  Assigning the material properties 

In the property module, material characteristics have to be specified. Space must be 

allocated to store each of the solution-dependent state variables defined in a user 

subroutine. In this study, the material properties of Tournemire shale, as identified in 

Chapter 3, have been employed.  

5.2.3  Applying loading, boundary and initial conditions 

 For the tunnel excavation problem examined here, the  initial, boundary and loading 

conditions are consistent with those employed in  the study by Le & Nguyen, (2014).  

Figure 5.1 shows a cross-sectional view of the geometry of the problem. The analysis has 

been conducted for two different orientations of the bedding planes, viz. 450 and 900. The 

displacements along all external boundaries have been constrained (zero displacement) and 

the initial horizontal, vertical and axial stresses were taken as  

 
4.4   ;  6.5   ;  2.2 x y zMPa MPa MPa    

  

The excavation process is mathematically modelled by reducing traction on the tunnel wall 

boundary according to the tunnel drilling progress. The traction vectors that are initially 

assessed based on the in-situ stress field are reduced to zero at the end of the excavation. 
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Figure 5. 1  The cross-sectional view of the model geometry and boundary conditions (after Le& Nguyen, 

2014) 

 

 5.2.4  Mesh discretization and element type 

In this study, the considered domain is discretized using 3D wedge elements with 6 nodes 

and linear interpolation for displacements.  The total number of elements   is 43870 and the 

total number of degrees of freedom is 72036. 

The 2D model has 2522 triangular plane strain elements with 3 nodes and a linear 

interpolation for displacement field. The total number of degrees of freedom is 5236. The 

computational domain and the corresponding discretization, for both 3D and 2D 

representation, are shown in figure 5. 2. 
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(a)                                                                      (b) 

Figure 5. 2   Computational domain and FE discretization in (a) 3D analysis (b) 2D analysis 

                                                               

5.3 Numerical results and discussion 

In this part the evolution of the mechanical response of the sedimentary rock surrounding 

the tunnel is simulated. The numerical results related to distribution of horizontal and 

vertical displacements ( , )x yU U , the damage/failure ratio ( )/ f  , and deviatoric plastic 

strain ( )p

q are presented.   

First, the results of 3D analysis are discussed. Figure 5. 3 shows the horizontal and vertical 

displacement after excavation for the case of inclined bedding planes (45º). The 

displacement contours are superimposed on the deformed shape of the tunnel with a scale 

factor of 130. As can be seen, an approximately symmetric positive/negative horizontal 

displacement distribution is generated along the direction of bedding planes. For the 

vertical displacement contours, there is a similar symmetry in the distribution, while the 



M.A.Sc. Thesis Aida Rezapour McMaster University – Civil Engineering 

57 
 

magnitudes are larger than those of horizontal displacements. Figure 5. 4 depicts the 

magnitude of displacements at the face of the tunnel as well as in a 3D view. 

 

 

(a)                                                                                           (b) 

Figure 5. 3   (a) Horizontal displacements (b) Vertical displacements at the face of the tunnel for 3D 

analysis, β = 45º  

 

 

(a)                                                                                            (b)   

Figure 5. 4   Displacement magnitudes (a) at face of the tunnel (b) along the length of tunnel, for 3D 

analysis, β = 45º 

 

Figure 5. 5 represents the horizontal and vertical displacements in the neighbourhood of 

the tunnel face as obtained from two dimensional analysis ( 45   ). The distribution of 
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displacement contours is approximately the same as for 3D analysis; however, the predicted 

values are slightly lower.    

 

 

                                    (a)                                                                                      (b) 

Figure 5. 5   (a) Horizontal displacements (b) Vertical displacements at the face of the tunnel  for 2D 

analysis, β = 45º 

 

Figure 5. 6 gives horizontal and vertical displacements after excavation obtained from 3D 

analysis for   the case when the bedding planes are horizontal (0º). The distribution of 

displacements also shows a symmetry with respect to the direction of the bedding planes. 

The deformed shape is now significantly different. As can be seen, the right side of the 

tunnel has negative horizontal displacements while the left side has positive displacements, 

i.e. in the direction of the x axis. The magnitudes are generally lower than those for the 

previous case of inclined bedding planes.  At the same time, for the vertical component, the 

predicted values of displacements are larger than those obtained in the case of inclined 

bedding planes (45º). 

Again, the absolute magnitudes of displacement vectors at the face of the tunnel as well as 

in a 3D view are depicted in Fig. 5.7.  
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(a)                                                                               (b) 

Figure 5. 6   Horizontal displacements (b) Vertical displacements at the face of the tunnel for 3D analysis,  

β = 0º 

 

 

 

(a)                                                                                   (b) 

Figure 5. 7  Displacement magnitudes (a) at face of the tunnel (b) along the length of tunnel, for 3D 

analysis, β = 0º  

 

 

Figure 5. 8 presents the results of two dimensional analysis. Once more, the values and the 

distribution of vertical and horizontal displacement are very similar to those obtained in 3D 

analysis, indicating that the 2D approximation is fairly accurate here. 
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(a)                                                                                         (b) 

Figure 5. 8   (a) Horizontal displacement (b) Vertical displacement at the face of the tunnel for 2D analysis, 

β = 90º 

 

Figure 5. 9 (a) shows the distribution of the damage ratio ( )/ f   obtained from 3D analysis 

for the case of bedding planes at orientation of 45º. The parameters  and f  are defined 

according to equations (2.50) and (2.48). Note that the ratio of / f   varies between zero 

and one 10 )( / f   . Furthermore, 1/ f   , implies the onset of damage formation. 

Here, the value of the damage ratio does not exceed 0.525, indicating that no cracks will 

form immediately after the excavation. The maximum intensity of the damage ratio is along 

the horizontal axis of the tunnel. Figure 5. 9 (b) shows the damage ratio distribution 

obtained from 2D analysis. The maximum value of the damage ratio is now lower (0.503) 

and the distribution of the damage domain is slightly different.  
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(a)                                                                         (b) 

 

Figure 5. 10  shows the evolution of the damage ratio ( )/ f   for the case of horizontal 

bedding planes. The nature of the distribution is now different and the values are lower than 

those   predicted for inclined bedding planes . For 3D analysis, the maximum value of 0.508 

occurs now within a small region  at the end of the tunnel.  For a 2D analysis, the 

distribution is qualitatively similar to that corresponding to 3D case; however, the values 

of the damage ratio are slightly lower. 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1   Failure ratio /
f

   at the face of the tunnel (a) 3D analysis (b) 2D analysis, β = 45º 
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                   (a)                                                                           (b)     

                                                                                                         

 

Figure 5. 11 shows the distribution of the deviatoric plastic strain around the face of the 

tunnel for the case of inclined bedding planes. For 3D analysis, the calculated maximum 

value is 0.0009298 and it’s attained along the horizontal axis. Again, for 2D analysis, the 

distribution is only marginally the same while the maximum value remains lower. 

 

 

 

 

 

(a)                                                                        (b) 

 

 

Figure 5. 2   Failure ratio /
f

   at the face of the tunnel (a) 3D analysis (b) 2D analysis, β = 0º 

Figure 5. 3   Deviatoric plastic strain at the face of the tunnel (a) 3D analysis (b) 2D analysis, 

β = 45º 
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Finally, Figure 5. 12 shows the  contours of deviatoric plastic strain  for the case of 

horizontal bedding planes. The results are, generally, in agreement with those showing the 

distribution of damage ratio. Comparing the  solution with  that for inclined bedding planes, 

it is seen that the model predicts  lower values of plastic  distortion. This is  consistent with 

the fact that the maximum strength is associated with configurations in which the bedding 

planes are either parallel or perpendicular to the loading direction. Once more, the results 

of 2D analysis, Figure 5.12b, display the same trend as those of 3D simulations, while the 

value of maximum plastic distortion is slightly lower in the entire domain.  

 

 

 

 

                             (a)                                                                           (b) 

 

                                           

 

 

 

 

Figure 5. 4   Deviatoric plastic strain at the face of the tunnel (a) 3D analysis (b) 2D analysis, 

β = 0º 
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6. Concluding remarks 

Many geomaterials display a structural anisotropy which is closely related to their 

microstructure. In this study the main focus was on a specific sedimentary rock known as 

Tournemire shale. This shale was formed by compaction, cementation or crystallization of 

successive layers of deposited material.  It is characterized by the presence of closely 

spaced bedding planes and exhibits a strong directional dependence of strength as well as 

deformation properties. Its mechanical behaviour is transversely isotropic and the plane of 

isotropy is the bedding plane. An understanding of the mechanical behaviour of Tournemire 

shale is of a significant importance due to its widespread applications in many types of 

geotechnical projects, including oil industry and nuclear waste storage. 

Extensive triaxial compression tests under different confining pressures have been 

conducted on this rocks. The results generally show that the failure mode depends on 

confining pressure and loading orientation relative to the bedding planes. The volumetric 

strain is mainly compressive and the transition to dilatancy occurs only in the zone near the 

peak stress. Moreover, the maximum failure strength is associated with configurations in 

which the bedding planes are either parallel or perpendicular to the loading direction and 

the minimum strength is typically associated with failure along the weakest plane, which 

corresponds to sample orientations within the range 30 60 .  

The experimental results offer a comprehensive database to establish and validate 

constitutive models for anisotropic rocks. In this work,  the mathematical formulation  

incorporating a microstructure tensor approach (Pietruszczak & Mroz, 2001) has been 

chosen for the description of orientation dependent characteristics of Tournemire shale. A 

plasticity framework incorporating an anisotropic deviatoric hardening model has also been 

presented. The condition at failure   have been described by employing the Mohr-Coulomb 

failure criterion.  
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The elastoplastic constitutive relation for modeling the mechanical behaviour of 

Tournemire shale, represents a differential equation that cannot be reduced to a finite 

relation between stress and strain tensors due to nonlinear/history dependent response. 

Therefore an explicit integration scheme has been developed and employed for obtaining 

the numerical solution. 

Using the experimental results reported by Niandou et al. (1997),  the material 

parameters/function,  including strength descriptors associated with the failure criterion, 

coefficients of best-fit approximation governing their distribution, and the hardening 

parameters, have been  identified. Using those parameters, the numerical simulations of a 

number of triaxial tests were conducted and the results compared with the experimental 

data in order to verify the performance of the model.  

After the verification stage, the formulation was incorporated in a commercial FE code 

(Abaqus/standard) using the UMAT interface and was then applied to a numerical analysis 

of a tunnel excavation within the anisotropic rock mass. The numerical results of 2D and 

3D simulations for two different orientations of the bedding planes, 45 and 0º, have been 

compared. Those included the distribution of the damage ratio

0f





 
 
 
 

, vertical and 

horizontal displacements and the deviatoric plastic strains. It was demonstrated that the 2D 

approximation gives quite a reasonable approximation for the problem considered in this 

work.  

In general, the methodology presented is simple enough to be used for the solution of 

practical engineering problems. Some concluding remarks associated with this study are as 

follows 
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- Availability of the experimental data for specification of material constants as well 

as the verification of predictive abilities of the model are two important concerns 

for choosing an appropriate approach. 

- Triaxial test results on inclined samples are not very reliable because the triaxial 

apparatus imposes kinematic constraints and the deformation field is not uniform. 

-  For the safety analysis of structures constructed in geological formations with the 

directional dependence of strength, it is important to develop constitutive models 

able to account for influence of structural anisotropy. 

- The main concern with most of the anisotropic formulations is the fact that they 

employ numerous material parameters and/or functions. Identifying these 

parameters requires an extensive experimental program which needs to be 

conducted in relation to material. 

- In this work the anisotropic formulation was based solely on one scalar anisotropy 

parameter which is a homogeneous function of stress of degree zero.  Thus, the 

value of this parameter does not depend on the value of stress but only on the 

relative orientation of the principal stress triad with respect to the eigenvectors of 

the microstructure tensor. 

- An associated flow rule used with the Mohr–Coulomb yield criterion would over-

predicts the plastic volumetric deformation (dilatancy) compared to experimental 

results (Paterson & Wong, 2005). Therefore, a non-associated flow rule was 

implemented.  

- For an anisotropic material, the compressive strength is sensitive to the value of the 

intermediate principal stress, since it affects the evolution of the anisotropy 

parameter. However for an isotropic material, 
0

const., (A 0),f f ij    the 

results based on the Mohr Coulomb criterion are independent of the intermediate 

principal stress. 

- Comparison between numerical simulations and experimental results show that the 

model which is used in this research is capable of reproducing the main features in 

the mechanical response of the transversely isotropic Tournemire shale. For 
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instance, under higher confining pressure, the mechanical strength increases and 

inelastic deformations turn out to be more noticeable. The transition from 

volumetric compaction to dilatancy is also accounted for. 

- At higher confining pressures the model prediction is not in a good agreement with 

the experimental results. Thus, at higher pressures a non-linear form of the failure 

function is required to predict the mechanical behavior of Tournemire shale. The 

results associated with the quadratic failure function can be found in the study by 

Pietruszczak et al., (2002). 

- Strain softening due to strain localization under lower confining pressures cannot 

be modeled here, since the formulation discussed is limited to the strain hardening 

range. Due to this reason the numerical simulations were stopped at the point where 

0.98
f




 .  The strain softening needs to be considered as a boundary-value 

problem.  

- In analysing the initial boundary-value problems using finite element 

methodologies, the basic unknowns are the displacement rates. The local strain rates 

that are determined from the kinematic relations can be used in the constitutive law 

for evaluating the stress rates. The integration algorithms should be written in a 

strain-controlled regime. 

-  For the tunnel excavation problem analysed in this thesis, 2D analysis predicts 

nearly the same values of displacements as 3D analysis. On the other hand, 3D 

analysis predicts slightly higher values of plastic strain and damage ratio than 2D 

analysis.  

- The damage ratio and plastic strain obtained from both 2D and 3D analyses is larger 

when the bedding plane orientation is 45º compared to a horizontal bedding plane. 

This is consistent with the fact that maximum compressive strength is either at 

0  or 90  and the minimum value is usually within the range 30 60 

. 
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Finally, it should be noted that the time dependency of the mechanical behaviour of 

Tournemire shale is quite important, particularly in relation to the deep excavation 

problems. Therefore, for long term stability study of structures, it will be necessary to 

develop time dependent constitutive models. Moreover, given the existing experimental 

data, the compressive strength properties of Tournemire shale are not linear in terms of 

pressure. Choosing a higher order terms in the failure criterion will lead to more reliable 

results.  
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