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Abstract

Many industrial control systems use programmable logic controllers (PLCs)

since they provide a highly reliable, off-the-shelf hardware platform. On the

programming side, function blocks (FBs) are reusable PLC components that

can be composed to implement the required system behaviour. A higher qual-

ity system may be realized if the FBs are pre-certified to be compliant with

an international standard such as IEC 61131-3.

Unfortunately, the set of programming notations defined in IEC 61131-

3 lack well-defined formal semantics. As a result, tool vendors and users of

PLCs may have inconsistent interpretations of the expected system behaviour.

To address this issue, we propose an engineering method for formally verifying

the conformance of candidate implementations of FBs (and their composi-

tions) to their high-level, input-output requirements. The proposed method is

sufficiently general to handle FBs supplied by IEC 61131-3, and industrial FB

applications involving real-time requirements. Our method involves several

steps. First, we use tabular expressions to ensure the completeness and dis-

jointness of the requirements for the FB. Second, we formalize the candidate

implementation(s) of the FB in question. Third, we state and prove theo-

rems regarding the consistency and correctness of the FB. All three steps are

performed using the Prototype Verification Systems (PVS) proof assistant.

As a first case study, we apply our approach to the IEC 61131-3 stan-

dard to examine the entire library of FBs and their supplied implementations

described in structured text (ST) and function block diagrams (FBDs). As a

second case study, we apply our approach to two realistic sub-systems taken

from the nuclear domain. Applying the proposed method, we identified three

kinds of issues: ambiguous behavioural descriptions, missing assumptions, and

erroneous implementations. Furthermore, we suggest solutions to these issues.
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Chapter 1

Introduction

1.1 General Background and Motivation

Many industrial control systems with traditional analog equipment have been

replaced using components that are based upon programmable logic controllers

(PLCs) to address increasing market demands for high quality (Bakhmach

et al., 2009). Function blocks (FBs) are basic design units that implement the

behaviour of a PLC, where each FB is a reusable component for building new,

more sophisticated components or systems. The search for higher reliability

and predictability may be realized if the FBs are pre-certified with respect to

an international standard such as IEC 61131-3 (IEC, 2003; IEC, 2013). The

IEC 61131-3 standard defines a set of PLC programming languages, and de-

scribes a set of FBs commonly used in the industry as examples of how to use

the PLC programming languages (the 2003 version of IEC 61131-3 includes an

informative annex – Annex F – with a significant number of FBs, but Annex

F was removed in the 2013 version of the Standard). Standards such as DO-

178C (Special Committee 205 of RTCA, 2011a) (in the aviation domain) and

IEEE 7-4.3.2 (IEEE, 2010) (in the nuclear domain) list acceptance criteria

of mission- or safety-critical systems for practitioners to comply with. Two

important criteria are that: (1) the system requirements are precise and com-

plete; and (2) the system implementation exhibits behaviour that conforms to

these requirements. In one of its supplements, DO-333 (Special Committee

1
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205 of RTCA, 2011b), DO-178C (Special Committee 205 of RTCA, 2011a)

advocates the use of formal methods to construct, develop, and reason about

the mathematical models of system behaviours.

Formal methods have been successfully employed in the development

of many safety-critical systems to provide verifiable specifications for require-

ments, designs and implementations, and to automate the verification and/or

validation of the system. Formal methods can dramatically enhance software

quality and reduce (yet not eliminate) reliance on testing. Formal method ver-

ification and testing are independent activities. Verification by formal analysis

does not have the same challenges that testing does, for example, exhaustive

testing is only feasible in very narrow circumstances. Hence, we can gain con-

fidence in the correctness of our system by performing both formal verification

and testing. This effectively reduces our reliance on testing as the only means

of verification.

There have been many approaches to formalizing and verifying PLC

programs. The employment of formal methods to verify computer systems,

championed by (Hoare, 1969), has become the core of a “grand challenge”

taken up by the computer science community (Woodcock and Banach, 2007).

In this regard, we believe that there are three major challenges in formalizing

and verifying FB-based systems: (1) creating a unified framework within which

requirement and implementation specifications are formalized in a way that

facilitates formal proofs; (2) implementing a practical approach for verifying

that a FB-based systems conforms to its (hard real-time) requirements; and

(3) developing a pre-certified block repository that can be reused safely in

practice.

In this thesis, we present a systematic verification approach for FBs,

including FBs that exhibit real-time behaviour. IEC 61131-3 (IEC, 2003),

including its Annex F, provides a candidate block library for us to apply our

approach. We had two reasons for choosing IEC 61131-3 for our case study.

First, this provided a number of FBs that represent useful behaviours in a

number of application domains, so our methods could be applied to FBs that

we knew were representative of industrial use. Second, although the FBs of

Annex F are not technically part of the Standard, since the appendix is labeled

2
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“Informative”, the entire document, including all annexes, has become a de

facto standard for FBs as many FB libraries, including those provided by PLC

vendors, are heavily based on the FBs from Annex F, as well as those described

in the body of the Standard.

Our task is complicated somewhat by the fact that IEC 61131-3 does

not adopt a consistent and unified programming notation for defining stan-

dard functions and FBs. In many cases, multiple programming languages are

used to describe a single FB. The Standard defines five languages for use on

PLCs, of which the two most commonly used languages are Structured Text

(ST) and Function Block Diagrams (FBDs). However, these five languages

are implementation-oriented notations that lack a unified formal semantics,

and are thus not adequate for capturing the precise input-output relation that

satisfies both a coverage property (i.e., the input domain covers all cases) and

a mutual exclusion property (i.e., no two cases overlap). Moreover, in the ab-

sence of high-level, black-box requirements, it is not possible to formally estab-

lish that these implementations are consistent with their input-output require-

ments. Thus, we provide high-level, input-output requirements for FBs that

are missing from IEC 61131-3. Such formal, compositional requirements are

developed for the purpose of formalizing and verifying sophisticated, composite

candidate FB implementations. Moreover, formal descriptions are amenable

to mechanized support such as PVS (Owre et al., 1992). If practitioners can

use pre-defined and pre-verified FBs, then this will help raise the quality of

FB-based implementations in industry without the overhead that would be

required, if each practitioner had to perform a verification separately.

As indicated earlier, two versions of IEC 61131-3 are cited here. The

earlier version (IEC, 2003) has been in use since 2003. In 2013, a new version

of the Standard was issued (IEC, 2013), and this version did not include An-

nex F. Some of the FBs in the new version do still exhibit behaviour that we

believe could be improved through use of our methodology. Our intent is to

illustrate how our methodology raised questions about some of IEC 61131-3

FBs. Since the Standard does not attempt to define the required behaviour

of each FB in any formal sense, we had to create formalisms based on experi-

ence that would be consistent with industrial norms and on what we deduced

3
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was the intended behaviour of the FB. In any case, our primary motivation

here is to demonstrate our methods, not to criticize the Standard. We hope

that FB users will be interested that the methodology highlighted potential

problems with FBs that have been in use for many years, and that this type

of methodology can help improve the quality of FB-based designs.

1.2 Problem Statement, Objectives, and Method-

ology

This thesis aims to develop a systematic, formal approach to specifying the

requirements and design of a FB, and verifying the conformance of a FB imple-

mentation with its requirements. In particular we adopt the formal notation

of tabular expressions (a. k. a. function tables or tables) that have proven to be

both practical and effective in formally documenting system requirements in

industry (Lawford et al., 2000; Wassyng and Janicki, 2003), to formalize the re-

quirements of FBs. We also report on using PVS, a general purpose theorem

prover, that provides an integrated reasoning environment with mechanized

support for writing specifications using tabular expressions and (higher-order)

predicates, to (interactively) prove that implementations satisfy the tabular

requirements using sequent calculus style deductions. In this thesis we focus

on FBs that are described in the more commonly used languages of ST and

FBDs.

More precisely, we set out to achieve the following three objectives:

1. Specify the black-box input-output relation for each FB. Cur-

rently the intended behaviour of a FB is provided either by a natural

language description or a timing diagram in IEC 61131-3. The primary

issue for specifying such a relation is identifying the intended behaviour

and documenting the behaviour in a rigorous notation. We analyzed the

behavioural FB descriptions (i.e., in ST, FBD or timing diagram) and

informal descriptions in the Standard of the FB. For timer blocks, we

formalized the behaviour using pre-verified timing operators to address

the ambiguities introduced by timing diagrams. We then described our

4
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interpretation of the intended behaviour of a FB (i.e., its requirements

specification) using tabular expressions. One may disagree with our cho-

sen requirements specification and have another in mind. This is quite

usual in practice. The essential point here is that the requirements be-

haviour needs to be precise, and we did not make up these requirements

behaviours simply to generate discrepancies between the requirements

and implementations of the FBs in the Standard. We based our require-

ments on the informal description of behaviour included in the Standard,

as well as on consultation with colleagues who have extensive industrial

experience (Wassyng et al., 2011).

2. Formalize the FB implementations. We focused on those FBs that

are described either in ST, FBD or both. For the FBD implementa-

tion (i.e., implementations that contain functions, basic FBs, and/or

other pre-developed composite FBs), we analyzed the connection be-

tween components and conjoined the requirement predicates for compo-

nents (obtained by the first objective) in a compositional manner. For

the ST implementation, we formalized several translation rules, sufficient

for the ST descriptions supplied by IEC 61131-3.

3. Verify the conformance between the supplied FB implementa-

tions (formalized by the second objective) and their intended

behaviours (obtained by the first objective). A potential way to

verify the behaviour of FB-based systems is to use formal methods. How

to use formal methods in an effective way is still a topic of research in

academia and discussion in industry. Such formal verification is reason-

able if the complexity of reasoning can be handled well. The verification

of FB behaviour can be complicated due to the use of complex design con-

structs. For example, nested for-loops in the case of ST implementations

or complex timing behaviour implemented by the use of timer blocks, in

the case of FBD implementations. We used logical implication to verify

that an implementation satisfies its requirements. We also proved the

equivalence of ST and FBD implementations, if they were both supplied

for a given FB. Our verification approach is also applicable to FBs with

5
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more complex timing requirements. To be of practical use, the timing

requirements for these blocks incorporate tolerances. To assist others

in performing proofs in PVS, we have provided proof strategies for our

approach.

1.3 Related Work

In this section we review several related works on formal modelling and verifi-

cation of PLC programs in the literature. We investigate the related works in

two categories, model checking and theorem proving (Section 1.3.1). We also

compare our work with the related works in terms of three aspects: extent of

case study, value of results and practical implication (Section 1.3.2).

1.3.1 Related Work on Verifying Function Blocks

There are many articles on formalizing and verifying PLC programs specified

by programming languages covered in IEC 61131-3, such as sequential func-

tion charts (SFCs).

Some approaches do this using model checking:

• by formalizing a subset of the language of instruction lists (ILs) using

timed automata, and verifying real-time properties in the Uppaal model

checker (Mader and Wupper, 1999);

• by automatically transforming SFC programs into the synchronous data

flow language Lustre, which is amenable to mechanized support for

checking properties (Kabra et al., 2012);

• by translating ST and FBD into a synchronized data-flow language SIG-

NAL to compile and analyze the verification of specifications (Jimenez-

Fraustro and Rutten, 2001);

• by transforming FBD specifications to Uppaal formal models to ver-

ify safety properties of applications in the industrial automation do-

main (Soliman et al., 2012);
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• by providing the formal operational semantics of ILs, which is encoded

into the input language for the symbolic model checker Cadence SMV,

and then verifying rich behavioural properties written in linear temporal

logic (LTL) (Canet et al., 2000);

• by providing the formal verification of a safety procedure in a nuclear

power plant (NPP) in which a verified Coloured Petri Net (CPN) model

is derived by reinterpretation from the FBD description (Németh and

Bartha, 2009); and

• by translating the algorithms of ladder diagrams (LDs) and timed FBs

into finite state automata for which some properties are verified in the

model checker SMV (Rossi and Schnoebelen, 2000).

There is also an integration of SMV and Uppaal to handle, respectively, un-

timed and timed SFC programs (Bauer et al., 2004).

It is well-known that the technique of model checking is only applicable to

relatively small systems. In contrast to model checking, another approach is

to use the verification environment of a theorem prover:

• to check the correctness of SFC programs, automatically generated from

a graphical front-end, in Coq (Blech and Biha, 2013); and

• to formalize PLC programs using higher-order logic to discharge safety

properties in HOL (Völker and Krämer, 2002).

Also, an algebraic approach for PLC program verification is presented in (Rous-

sel and Faure, 2002). In (Liu et al., 2010), a trace function method (TFM)

based approach is presented to verify the conformance between combined com-

ponents and system requirements.

1.3.2 Summary and Comparison

These works are similar to ours in that PLC programs are formalized, and the

intention is to develop support for mechanized verifications of implementations.
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Our work is inspired by (Melham, 1987) in that the overall system

behaviour is defined by taking the conjunction of internal components (circuits

in (Melham, 1987) or FBs in our case). Our solution to the timing issues of the

PULSE timer is consistent with (John and Tiegelkamp, 2010). However, our

approach is novel in that: (1) we also obtain tabular requirements to be checked

against, instead of writing properties directly for the chosen theorem prover or

model checker; and (2) our formalization makes it easier to comprehend and

to reason about properties of disjointness and completeness.

The above related work is motivated by the lack of formal semantics for

the programming notations defined in the Standard, and attempts to remove

ambiguities. Our work is different in three ways: (1) extent of the case study;

(2) value of the results; and (3) the practical implication.

Extent of the Case Study. Our approach is able to handle all ST and

FBD programs that are listed in (IEC, 2003), including its Annex F, whereas

other work (Mader and Wupper, 1999; Jimenez-Fraustro and Rutten, 2001;

Canet et al., 2000; Rossi and Schnoebelen, 2000) focuses on limited language

constructs or example FBs.

Value of the Results. To our knowledge, there are only a limited number

of papers that illustrate the proposed verification approach via a case study,

but none of them conducts a case study to the same extent as ours, let alone

categorizes all of the issues uncovered. In this thesis, our results are based on

the formalization and proofs of all FBs listed in the Standard and its Annex

F, whereas others (Bauer et al., 2004; Blech and Biha, 2013) validate their

approach via only a limited number of example blocks.

The Practical Implication. Our experiments are conducted on the basis of a

mature theorem prover, and of a practical timing theory that are tailored to the

execution context of FBs, whereas some related work does not even have tool

support (Liu et al., 2010). Our results show that with the assistance of function

tables and PVS, verification can be conducted in an industrial context with

manageable mathematical artifacts (e.g., background theories, specifications,

theorems, proofs, etc.). Nonetheless, there are existing works (Kabra et al.,

2012; Jimenez-Fraustro and Rutten, 2001; Soliman et al., 2012; Canet et al.,
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2000; Németh and Bartha, 2009; Rossi and Schnoebelen, 2000; Völker and

Krämer, 2002) that prove certain desired properties of FBs, similar to the

additional requirements which we formulate as lemmas. More specifically:

(1) work in (Canet et al., 2000) verifies some behavioural properties written

in linear temporal logic; (2) work in (Soliman et al., 2012) verifies the FBs

against several safety requirements expressed as invariant properties; (3) work

in (Németh and Bartha, 2009) proves properties using CTL temporal logic

based model checking of safety, liveness, and fairness; and (4) (Bauer et al.,

2004) proves SFC programs against a given set of requirements. However,

none of these attempts to provide input-output requirements that are provably

complete and disjoint.

1.4 Scope

Our aim was to explore and develop a practical and effective approach to

the formal verification of FB-based computer system. Our approach relies

upon and incorporates existing notations (programming notations listed in IEC

61131-3 and tabular expressions), and the PVS theorem prover that supports

higher-order logic. Our verification approach is based on the formalization

of requirements and implementation of FB-based computer system. We are

dealing with design level verification, not at the level of actual machine level

implementation. Hence, the issues of floating point arithmetic are out of scope

for this thesis. We can now summarize our approach and contributions of

specifying and verifying FBs with reference to Figure 1.1.

As shown on the left of the figure, a FB will typically have a natu-

ral language description of the block behaviour accompanied by a detailed

implementation given in the ST or FBD languages, or in some cases, both.

Based upon all of this information, we created a black box tabular require-

ments specification in PVS for the behaviour of the FB (Chapter 3). The

ST and FBD implementations are formalized as predicates in PVS as shown

on the right of the figure, again making use of tables (Chapter 5). In the

case when there are two implementations for a FB, one in a FBD and the

other in ST, we attempt to prove their (functional) equivalence in PVS. We
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FBD 
Implementation

ST 
Implementation

Natural 
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Description

IEC 61131-3 Standard
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FB Requirements

Correctness

Formalization
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Formalization

Manual 
translation
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Correctness
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Figure 1.1: Framework

also use PVS to attempt to prove the consistency1 and correctness of each

implementation with respect to its FB requirements (Chapter 6). We took

IEC 61131-3 (IEC, 2003) FBs as a case study and provided proof strategies

for verifying consistency and correctness of FBs (Chapter 7). For FBs that

are distinguished by their real-time behaviour (i.e., timers), we reused a pre-

verified timing operator, Held For (Hu, 2008), to formalize three IEC 61131-3

timer blocks (Chapter 4).

1.5 Contributions

Through the fulfilment of the above objectives, we now summarize our ap-

proach and contributions:

1. Formalization of input-output requirements for FBs: We formal-

ized the black-box requirements of FBs using tabular expressions. We

parameterized the inputs and outputs by time instants, and character-

ized the temporal relation between inputs and outputs as a universal

quantification over discrete time instants. By embedding tabular re-

1In this thesis, we overload the term consistency in two contexts. Two implementa-
tions are consistent if they exhibit the same input-output behaviour. An implementation is
consistent (or feasible) if for any legitimate input, it produces an expected output. However,
the context should be clear when we use the term.
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quirements in predicates in PVS, the prover generates proof obligations

for completeness and disjointness. For real-time FBs (built from timers),

we reuse the timing operator Held For I (Hu, 2008) within requirements

tables to formalize timing behaviours.

2. Formalization of FBD implementations: We present a composi-

tional approach formalizing the FBD implementations. The implemen-

tation specification is a predicate formed by taking the conjunction of

the predicates of the internal components used to create the FBD. The

interconnections between components are existentially quantified. For

real-time FBs (built from timers), we apply the same approach, with

the difference that we reuse the timing operator Timer I (Hu, 2008),

suited to implementations rather than requirements, to formalize the

timer component of the implementation.

3. Formalization of ST implementations: We developed a limited set

of translation rules that suffice to translate the ST implementations that

are supplied by Annex F of IEC 61131-3 (IEC, 2003) as well as those

described in the body of the Standard into their equivalent expressions

in PVS. Since the IEC 61131-3 FBs are commonly used in industry, our

rules can be applied to FBs that are representative of industrial use. This

step, that of formalizing the implementation in PVS, allows us to verify

the correctness and consistency of ST implementations with respect to

their input-output requirements.

4. Formal verification of FB implementations: We present a tech-

nique verifying the correctness and consistency of a FB implementation

with respect to its requirements. We use logical implication to spec-

ify a correctness theorem for a FB. The correctness theorem proves that

the behaviour of the FB implementation conforms to its requirements. A

separate consistency theorem proves that the FB implementation always

produces outputs for any given valid inputs. If the FBD and ST imple-

mentation are both given for the same FB, we formulate an equivalence

theorem verifying the consistency between these two implementations.

11
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5. Applications to IEC 61131-3 FBs and a realistic real-time FB

subsystem: We applied our methodology to FBs supplied by IEC 61131-

3 (IEC, 2003) and two realistic real-time FB subsystems, Trip Sealed-In

and Pushbutton. We identified several kinds of issues in the Standard:

ambiguous behaviour, missing input assumptions and inconsistent FB

implementations. We found an initialization failure in the FBD imple-

mentation of Trip Sealed-In. We corrected each issue and verified the

proposed fix using our methodology.

6. Developed proof strategies for consistency and correctness in

PVS: We developed proof strategies that can be used as guidance to

discharge the consistency and correctness theorems of those FBs that

require real-time requirements and those do not, respectively. Using our

proof strategies significantly reduces interactive proof effort in PVS.

1.6 Publications and Industrial Application

This subsection lists all of our publications, technical reports, and industrial

application. All of the following are based on discussion with my colleagues.

1.6.1 Journals

• (Pang et al., 2014a) Linna Pang, Chen-Wei Wang, Mark Lawford, and

Alan Wassyng. Formal verification of IEC 61131-3 function blocks using

tabular expressions. Science of Computer Programming. Invited submis-

sion for a special issue (ID: SCICO-D-14-00102). Under minor revision.

1.6.2 Refereed Conferences and Workshops

• (Pang et al., 2013a) Linna Pang, Chen-Wei Wang, Mark Lawford, and

Alan Wassyng. Formalizing and verifying function blocks using tab-

ular expressions and PVS. Formal Techniques for Safety-Critical Sys-

tems, FTSCS2013, volume 419 of Communications in Computer and In-

formation Science, pages 163–178, Springer, Queenstown, New Zealand,
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October, 2013.

• (Pang et al., 2015) Linna Pang, Chen-Wei Wang, Mark Lawford, Alan

Wassyng, Josh Newell, Vera Chow and David Tremaine. Formal verifi-

cation of real-time function blocks using PVS. Engineering Safety and

Security Systems, ESSS2015. EPTCS 184, 2015, pages 65–79, Oslo,

Norway, June, 2015.

1.6.3 Technical Reports

• (Pang et al., 2013b) Linna Pang, Chen-Wei Wang, Mark Lawford, and

Alan Wassyng. Formalizing and verifying function blocks using tabular

expressions and PVS. Technical Report 11, McMaster Centre for Soft-

ware Certification (McSCert), McMaster University, August, 2013.

• (Pang et al., 2014b) Linna Pang, Chen-Wei Wang, Mark Lawford, Alan

Wassyng, Josh Newell, Vera Chow and David Tremaine. Formal ver-

ification of real-time function blocks using PVS. Technical Report 16,

McMaster Centre for Software Certification (McSCert), McMaster Uni-

versity, September, 2014.

1.6.4 Industrial Application

Our methodology has been successfully adopted in an on-going industrial

project, i.e., Darlington Nuclear Generating Station (DNGS) Shutdown Sys-

tem Number One (SDS1) Replacement Project, Ontario, Canada, to formally

verify the correctness of PLC programs.

The process is as follows: (1) the trip computer design is described in

a collection of FBD and ST blocks; (2) the design is translated into PVS spec-

ifications; and (3) PVS is then run to perform disjointness and completeness

checks on the requirements and to verify that the design matches the require-

ments. As a result, the proposed method successfully identified discrepancies

in the requirements and the PLC implementation.
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1.7 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces

the required mathematical and technical background of the thesis. The pro-

posed systematic verification approach for FB-based system is discussed in

Chapters 3, 4, 5, and 6. In particular, Chapters 3 and 4 present a method of

formalizing input-output requirements for FBs, including timer blocks. Chap-

ter 5 provides a compositional approach to the formalization of FB imple-

mentations. Chapter 6 provides a formal technique for the verification of FB

implementations with respect to their tabular requirements. Chapter 7 dis-

cusses two case studies using our approach. Chapter 8 concludes our research

and suggests future work.
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Chapter 2

Preliminaries

In this chapter we introduce notations and concepts that are used throughout

this thesis 1. Section 2.1 presents the basis of tabular expressions. Section 2.2

introduces function blocks and the related standards. Section 2.3 presents an

overview of the PVS verification system. Section 2.4 reviews the time model

we will use in PVS. Section 2.5 introduces two running examples in the thesis.

2.1 Tabular Expressions

Tabular expressions (Janicki et al., 1997; Parnas, 1983; Parnas et al., 1994;

Parnas and Madey, 1995) are a proven and effective approach to describing

conditionals and relations, and they are thus ideal for documenting many

system requirements. Tabular expressions have also been proven to be of

great help both in inspections (Wassyng and Janicki, 2003) and in testing and

verification (Wassyng et al., 2011). They are arguably easier to comprehend

and to maintain than conventional mathematical expressions. In principle,

tabular expressions are a generalization of two dimensional tables. Formal

semantics for tabular expressions have been developed, because of its great

importance in practice. Reference (Janicki and Wassyng, 2005) presents a

relational semantics for tabular expressions, which covers the most common

types of tabular expressions used in software practice. Recently, (Jin and

1This chapter is based on our published work in (Pang et al., 2015).
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Parnas, 2010) presented a new semantics for tabular expressions by using

indexing to decouple the appearance of a tabular expression from its semantics.

From practical point of view, only limited types of table are used for

most of the cases in relational systems. Normal one-dimensional and struc-

tured decision tables are used mostly, and normal two-dimensional tables oc-

casionally. For our purpose of capturing the input-output requirements of

function blocks in IEC 61131-3, tabular expressions of the form shown in

Figure 2.1 are appropriate. These tabular expressions are called horizontal

condition tables (HCTs). The input domain is partitioned into condition rows

in the left column(s), while rows in the right column(s), inside double borders,

denote the corresponding output results. Rows in the input columns may be

divided to specify sub-conditions. We may interpret the tabular structure in

Figure 2.1 as a list of “if-then-else” statements, without the sequence impli-

cations of the “if-then-else” construct. This is shown in the right part of the

figure. Each row defines the input circumstances under which the output F is

bound to a particular result value. For example, the first row corresponds to

the predicate (C1 ∧ C1.1 ⇒ F = RES1), and so on.

Result

Condition F

C1

C1.1 RES1
C1.2 RES2
. . . . . .
C1.m RESm

. . . . . .

Cn RESn

IF C1

IF C1.1 THEN F = RES1

ELSEIF C1.2 THEN F = RES2

...

ELSEIF C1.m THEN F = RESm

ELSEIF ...

ELSEIF Cn THEN F = RESn

Figure 2.1: Semantics of horizontal condition table (HCT)

In documenting input-output behaviours using HCTs as illustrated in

Figure 2.1, we need to reason about their completeness and disjointness. Com-

pleteness ensures that there is an output specified for every combination of

inputs – the rows cover all input combinations, i.e., if we suppose that there

are no sub-conditions, (C1 ∨ C2 ∨ · · · ∨ Cn ≡ TRUE). Disjointness ensures

that the rows do not overlap, e.g., (i 6= j ⇒ ¬(Ci ∧ Cj), i, j ∈ {1, 2, . . . , n}).
Similar constraints apply to the sub-conditions, if any.
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2.2 Function Blocks and Related Standards

2.2.1 Programmable Logic Controller and Function Blocks

A programmable logic controller (PLC) is a digital computer used in automa-

tion for industrial electromechanical processes. PLCs are widely utilized in

hard real-time control systems since output results need to be produced in

response of input values within a limited time span.

MemoryInputs 
Device

Outputs 
Device

CPU

External Programming Device

PLC

Input Signals Output Signals

Figure 2.2: Architecture of a PLC

A PLC contains a central processing unit (CPU), main memory, one

or more input devices and output devices. An input device converts the sig-

nals from the environment to logic levels for the processing unit to read. The

processing unit uses the signals from the input device to perform control func-

tions based on application software. An output device transmits the signals to

the environment. The architecture of a PLC is shown in Figure 2.2. A PLC

operates by continually scanning the application software. One cycle through

the program is called a scan time and involves reading the inputs from the

environment, executing the application software based on these inputs and

then updating the outputs accordingly.

As a basic element to create a PLC program, a function block (FB) is

an abstract component that can be implemented either by hardware, software

or both. FBs can be reused in different PLC programs. It is only possible

to access the interface (i.e., input and output variables) of a FB externally.

The FB implementation is hidden from the users. In other words, a FB is a
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black-box component that can be reused without knowing the details of its

implementation. FBs are fed by input values, perform computations on them

according to the behaviour specification (i.e., implementation), and produce

output values. All the values of the internal and output variables persist from

one execution of the FB to the next. FBs are used for a wide range of PLC-

based systems that require retained state.

2.2.2 IEC 61131-3 and PLC Programming Languages

For the purpose of unifying the syntax and semantics of programming lan-

guages for PLCs, the International Electrotechnical Committee (IEC) first

published IEC 61131-3 in 1993 with revisions in 2003 (IEC, 2003) and 2013 (IEC,

2013). It is considered as one of the most important standards in industrial

automation. The Standard has been used predominantly by control engineers

to help specify the software parts of PLC-based control systems. Most of our

research results were completed before the third edition was released in 2013.

Nonetheless, the third edition is fully compatible with the second.

IEC 61131-3 defines a set of programming languages for PLC program-

ming, namely two graphical languages, function block diagram (FBD) and

ladder diagram (LD), two textural languages, instruction list (IL) and struc-

tured text (ST), and sequential function chart (SFC).

In this thesis we focus on two programming languages that are covered

in IEC 61131-3 for writing behavioural descriptions of FBs: ST and FBDs.

These two languages are widely used in PLC-based systems. The ST nota-

tion is a high-level textural programming language which resembles, in syn-

tax, another high-level programming language, Pascal. FBDs are a graphical

programming notation. The fundamental concept behind FBDs is the inter-

connections among block components, which specify the data flow dependency.

We found that in some cases for the same FB, its ST and FBD im-

plementations (supplied in IEC 61131-3 2003 and its Annex F) cannot be

mapped from one to the other, and thus cannot be proved as equivalent; in-

stead, we prove that one implementation conforms to the other (but not vice

versa). More precisely, the FBD language does not easily support efficient
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corresponding constructs for all of the ST iterations (i.e., FOR, WHILE, and

REPEAT) and the EXIT statement to terminate iteration. On the other hand,

the ST language does not support jumps (denoted by “+-->>LABEL” in FBD)

to transfer program control to the designated network label. For example, the

FBD implementation supplied for the STACK INT block (discussed later in

Susbection 7.1.3.1) uses three labels RESET, PUSH_STK, and POP_STK to per-

form the reset, push, and pop operations on the stack. Moreover, the supplied

FBD implementation has an explicit execution order for its component FBs

(by the use of auxiliary variables), and such specificity is not required in the

ST implementation for the same block.

Given the use of PLCs in industry, especially in safety-critical applica-

tions, the correctness of PLC implementations plays an important role. Usu-

ally, it is achieved by testing, and sometimes formal verification and test.

2.2.3 Classification for Function Blocks

The PLC program units are classified at the level of standard functions, basic

function blocks, and composite function blocks. The behaviour of standard

function or function block is time-dependent, i.e., variables are parameterized

by time instants.

Standard Function

A standard function is a program organization unit that, when executed, out-

puts exactly one data element as the function result. Standard functions con-

tain no internal state information. Therefore, invocation of a standard function

with the same input values always generates the same output values.

The IEC 61131-3 standard defines eight groups of standard functions,

including: (1) data type conversion; (2) numerical; (3) arithmetic; (4) bit-

string; (5) selection and comparison; (6) character string; (7) time and date

types; and (8) enumerated data types.

As an example of a timed function, consider the MOVE function (de-

clared in Figure 2.3) that takes as input an integer IN, and that outputs an
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+--------+

| := |

| |

INT --|IN OUT|-- INT

| |

+--------+

Figure 2.3: Standard function MOVE declaration (IEC, 2003)

integer OUT. The behaviour of MOVE is time-dependent: OUT is equal to

IN at every time t.

Basic Function Block

A basic (or primitive) FB is a program organization unit which, when executed,

yields one or more values. All the values of the output (and internal variables)

persist from one execution of the FB to the next; therefore, invocation of a FB

with the same input values needs not always generate the same output values.

+--------+

| := |

| |

BOOL --|EN OUT|-- INT

INT --|IN |

+--------+

Figure 2.4: Function block MOVE declaration (IEC, 2003)

As an example of a basic FB, consider the MOVE function block that

takes as inputs an enabling condition EN and an integer IN, and that outputs

an integer OUT. The behaviour of MOVE is time-dependent: at the very first

clock tick, OUT is initialized to zero; otherwise, at time instant t (t > 0),

OUT is either equal to IN at time t, if condition EN holds at t, or otherwise

OUT is equal to IN at time t− α ∗ δ (α = 1, 2, . . . , and δ is the time interval

between two time ticks introduced in Section 2.4) where EN was last enabled

(i.e., a case of “no change” for OUT ).

Timer blocks are a special kind of basic FBs. The accumulated data

regarding the current state of the timer will influence the output values in
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response to the same input values. IEC 61131-3 defines three kinds of timers:

TON (on-delay), TOF (off-delay), and TP (pulse) timers. They are widely

used to specify the timing behaviour of real-time FBs.

Composite Function Block

A composite FB consists of standard functions, basic FBs and any pre-developed

composite FBs. Different from basic FBs, composite FBs are often used to

solve much complicated problems and the component FBs can be programmed

using different languages. It encourages a well-structured software develop-

ment using either a top-down or bottom-up approach.

For example, The LIMITS ALARM block (Figure 5.4 in Section 5.1.1)

is a composite FB consisting of basic FBs and two instances of the pre-

developed FB HYSTERESIS. The formalization of LIMITS ALARM block

is presented in Section 3.4

2.3 PVS Language and Prover

Prototype Verification System (PVS) (Owre et al., 1992) was developed by SRI

International’s Computer Science Laboratory as an interactive environment for

writing specifications and performing proofs. It is intended to be sufficiently

used for significant applications to capture the state-of-the-art mechanized

formal methods. PVS consists of a specification language, predefined theo-

ries, a parser, a type checker, a theorem prover that supports several decision

procedures, a symbolic model checker, pre-developed libraries, utilities and

documentation with examples in different application areas.

2.3.1 PVS Preliminaries

The PVS specification language is based on classical, typed higher-order logic.

The base types include uninterpreted types and built-in types, such as the

Booleans. The type-constructors include functions, sets, tuples, records, enu-

merations, and inductively-defined (or coinductively-defined) abstract data
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types. Also, users can adopt predicate subtypes and dependent types to intro-

duce constraints to greatly increase the expressiveness and naturalness of spec-

ifications. But the expense is that these constrained types may generate proof

obligations called Type Correctness Conditions (TCCs) during typechecking.

In many cases, these generated TCCs can be discharged automatically by the

theorem prover.

PVS specifications are organized into theories that may include im-

ported theorems, assumptions, definitions, axioms, lemmas, and goal theo-

rems. The theories can be parameterized with constants, types, and theory

instances. PVS expressions support the arithmetic and logical operators, func-

tion application, lambda abstraction, and quantifiers, within a natural syntax.

Tabular expressions are also provided with automated checks for disjointness

and completeness. A prelude is included in PVS providing over 1000 definitions

and lemmas. The NASA PVS Library is also a collection of formal develop-

ments contributed and maintained by the NASA Langley Formal Methods

Team (NASA Langley PVS Libraries Official Website, 2014).

The built-in theorem prover provides a collection of powerful proof com-

mands to conduct propositional and quantifier rules, equality, and arithmetic

formal reasoning under user guidance. Proof commands can be combined to

form higher-level proof strategies. PVS specification language is designed to

work with the prover so that the inference mechanisms exploit the type infor-

mation of a defined term and most of the generated TCCs are automatically

discharged by the prover.

We chose the PVS theorem prover to formalize the input-output re-

quirements of FBs primarily because it supports the syntax and semantics of

tables (Section 2.1). In particular, for each table that is syntactically valid,

PVS automatically generates its associated healthiness conditions of complete-

ness and disjointness as TCCs. We have expertise built from past experience in

applying PVS to check requirements and designs in the nuclear domain (Law-

ford et al., 2000) that gave us confidence in using the toolset, and for modelling

real-time behaviour we reused parts of the PVS theories from (Hu et al., 2009;

Hu, 2008). Nonetheless, the techniques presented in this thesis are trans-

ferrable to other theorem provers that support reasoning in higher-order logic,
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although checks of completeness and disjointness may then have to be manu-

ally encoded or a generator for the properties would have to be developed.

The basic structure of the PVS sequent calculus is a sequent (Shankar

et al., 1999). PVS has a interactive proof checker to perform sequent-style

deductions. Syntactically, a PVS sequent is showed as: P1, P2, . . . , Pm `
Q1, Q2, . . . , Qn, where Pi, i = 1, 2, . . . ,m are antecedent formulas and Qj,

j = 1, 2, . . . , n are consequent formulas and ` is syntactic entailment. The

prover maintains a proof tree and it is the final goal to discharge each leaf of

this proof tree by invoking proof commands. Each node of the proof tree is a

proof goal that produces its offspring nodes by means of a proof step. The final

goal of a PVS sequent is to determine whether at least one of the consequents

is a logical consequence of its antecedents. In PVS, a sequent is displayed as:

[-1] P1

... ...

[-m] Pm

|-------

[1] Q1

... ...

[n] Qn

The antecedents are combined by conjunctives while consequents are

connected by disjunctives. Thus, a PVS sequent P1, P2, . . . , Pm `Q1, Q2, . . . , Qn

is logically equivalent to P1∧P2∧· · ·∧Pm ` Q1∨Q2∨· · ·∨Qn. In our specifi-

cation, we use ¬, ∧, ∨, ⇒ to denote logical negation, conduction, disjunction

and implication and ∀, ∃ for universal and existential quantifiers.

A sequent can be discharged only if one of the three cases applies: (1)

FALSE occurs in the antecedents; (2) TRUE occurs in the consequents; or

(3) the formula P occurs in both the antecedents and the consequents (Hu,

2008). A PVS sequent may be discharged by splitting it into sub-goals and by

proving all of these sub-goals.

2.3.2 Naming Convention in PVS

In this section we introduce the naming convention we employ in this thesis.
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Theories

Specification in PVS is built from theories, which consists of a theory identifier,

a list of formal parameters, a list of imported theories, an exporting clause, an

importing clause, a theory body, and an ending identifier. PVS theories may

be parameterized to provide generality, reusability, and structure (Owre et al.,

1999). We use the closest names as supplied by IEC 61131-3 FBs and other

FB subsystems as their PVS theory identifiers. It is more readable to place

“ ” in between words for theory name. For example, we use LIMITS ALARM

as the theory name for block LIMITS ALARM.

Theorems and Lemmas

As the main proof obligations, we name the theorems and lemmas as un-

ambiguously and uniquely as possible. Again, we use “ ” to make names

more readable. For example, a consistency theorem is a proof obligation

goal for each FB. We name the consistency theorem for FB SR latch as

SR CONSISTENCY .

Variables

We follow the input and output variables names as supplied by IEC 61131-3

and other FB subsystems in a straightforward manner. Most of them are a

few letters in upper case convention (e.g., S1). We keep the time variable in

lower case (i.e., t). In addition, we define the inter-connectors (or wires) that

connect components as w‘s followed by a number (e.g., w1).

Proof Commands

The sequent calculus inference rules are used to construct proofs with PVS.

The PVS proof commands are powerful, making the proof construction process

more illumining and less tedious. Any proof command must be in parentheses

either in upper case or lower case. Proof commands can be typed in by the

user at the (Rule?) prompt, or they can be automatically applied by PVS

as part of a proof strategy (Shankar et al., 1999). For example, the (lift-if)
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command is used to bring the case analyses in an expanded definition to the

surface of the proof sequent, where it may be propositionally simplified. A

PVS glossary on page xvi provides a quick reference to the used PVS names

in this thesis.

2.3.3 Support for Tabular Expressions in PVS

The PVS specification language provides two alternative built-in constructs for

specifying function tables: COND and TABLE. They are semantically equiv-

alent to a series of IF-THEN-ELSE-ENDIF statements. The use of COND

and TABLE causes PVS to generate the proof obligations on disjointness and

completeness to guarantee that the function table is well-defined. These can

often be discharged automatically using the built-in proof strategies in PVS,

i.e., (COND-COVERAGE-TCC) and (COND-DISJOINT-TCC). When the

table cannot be automatically proven as being well-defined, some useful feed-

back is returned (i.e., unproven TCCs). However, for readability, it is more

advisable for users to adopt the TABLE construct, which will be translated

into the equivalent COND construct in PVS for typechecking and proofs. In

Subsection 7.1.2.2, we will discuss an issue in which the ST implementation

supplied by IEC 61131-3 is formalized as a PVS table, but the table fails the

proof on the TCC of disjointness. The syntactic constructs that we use the

most are IF-THEN-ELSE-ENDIF predicates and tables. An example of using

tabular expressions to specify and verify the Darlington Nuclear Shutdown

System (SDS) in PVS can be found in (Lawford et al., 2000).

2.3.4 Type Correctness Conditions

PVS automatically generates TCCs as proof obligations, which often can be

automatically discharged, if they are provable, using the default proof strate-

gies. However, in cases where they are too complicated to be discharged auto-

matically, human interaction is required to guide the prover. We briefly review

failed TCCs that we encountered in our verification process.

Unproven TCCs often help users reveal issues (e.g., incompleteness,

non-disjointness, ill-definedness, etc.) that can be traced back to the original
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specifications. One may choose to continue other proofs for the same specifica-

tion while bypassing unproven TCCs, but until all TCCs have been discharged,

a specification is not considered as type-correct, and lemmas and theorems that

depend on those unproven TCCs are considered provisional. PVS checks the

completeness and disjointness properties for a function table (Section 2.1) by

automatically generating two types of TCCs: (COND-COVERAGE-TCC ) for

coverage (i.e., completeness) and (COND-DISJOINT-TCC ) for disjointness.

As an example, consider a simple Boolean function f(x) with an integer

parameter x:

f(x) =

{
TRUE if x ≥ 0

FALSE if x < 0

In PVS, function f can be specified as a function table using either the COND

construct or the TABLE construct as shown on the left in Figure 2.5. The asso-

ciated TCCs2 of (COND-COVERAGE-TCC ) and (COND-DISJOINT-TCC )

are automatically generated by PVS — see the right in Figure 2.5.

x: VAR int

f cond(x) : bool =
COND

x >= 0 -> TRUE,

x < 0 -> FALSE

ENDCOND

f table(x) : bool =
TABLE

|x >= 0| TRUE||

|x < 0 | FALSE||

ENDTABLE

% Disjointness TCC generated (at line 15, column 2) for

% COND x >= 0 -> TRUE, x < 0 -> FALSE ENDCOND

% proved - complete

f cond TCC1: OBLIGATION

FORALL (x: int): NOT (x >= 0 AND x < 0);

% Coverage TCC generated (at line 15, column 2) for

% COND x >= 0 -> TRUE, x < 0 -> FALSE ENDCOND

% proved - complete

f cond TCC2: OBLIGATION

FORALL (x: int): x >= 0 OR x < 0;

Figure 2.5: Function tables and TCCs in PVS

Another category of TCCs concerns the well-definedness of expressions,

which might be used in tables or other functions. As an example, consider a

function g(x) with a real parameter x:

g(x) = 1/x.

2We show only the generated TCCs for function f COND , as the same TCCs are gener-
ated for f TABLE .
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To model g in PVS, we use the built-in division operator (LHS in Figure 2.6).

For g to be well-defined, all expressions involved in its definition must be well-

defined, i.e., the denominator x must be non-zero. Such a well-definedness

constraint is formulated automatically by PVS as a TCC (RHS in Figure 2.6).

x : VAR real

g(x) : real = 1/x

% Subtype TCC generated (at line 108, column 17) for x

% expected type nznum

% unfinished

g TCC1: OBLIGATION FORALL (x: real): x /= 0;

Figure 2.6: Expressions and well-definedness TCCs in PVS

There are several other categories of TCCs that are automatically gen-

erated in PVS: subtype TCCs, existence TCCs, and termination TCCs. Sub-

type TCCs are generated for expressions whose types are defined using the

predicate subtype notation (e.g., positive real numbers posreal). Existence

TCCs are generated for expressions whose types are declared as non-empty.

Termination TCCs are generated to ensure that recursive functions cannot be

unfolded an infinite number of times.

2.4 Modelling Time in PVS

2.4.1 Modelling Time in the Physical Domain

As PLCs are widely used in real-time systems, modelling of time is a critical

aspect in our formalization. We consider a discrete-time model, where a time

series consists of equally distributed time samplings, or “ticks”. More precisely:

{t0, t1, t2, . . . , tn, . . . } = {0, δ, 2δ, . . . , nδ, . . . }

where δ ∈ R+ is small enough to represent the time interval between two

consecutive clock ticks. This kind of definition of tick is reproduced by (Hu

et al., 2009) from (Lawford and Wu, 2000). It represents the type TIME in

IEC 61131-3. In the real world, the sampling frequency is usually different from

the clock tick frequency, i.e., the clock tick frequency should be significantly
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larger than the sampling frequency. In the physical domain, all the actions

occurring at the sampling times can be captured at the corresponding clock

ticks. To approximate the continuous time model, the value of δ may be

arbitrarily small.

As a result, we define a Time theory in PVS:

delta t: posreal

time: TYPE+ = nonneg real

tick: TYPE = { t: time | EXISTS (n: nat): t = n × delta t }

Constant delta t is a positive real number. We define two type syn-

onyms: time as the set of non-negative real numbers, and tick as the set of

non-negative multiples of delta t . We will perform operations on tick (Hu

et al., 2009): e.g., init (the very first tick) and pre(t) (the tick preceeding t ,

given that init(t) does not hold).

We define a characteristic predicate init which is TRUE only at the

initial tick t0:

init(t: tick): bool = (t = 0)

It is important to explicitly identify the initial values of internal or output

variables of FBs in PLC-based control system.

Given a time instant t , we use rank(t) to denote the ordinal of t in a

discrete time setting.

rank(t: tick): nat = t / delta t

For example, time instant 8.8 is the 4th tick given that delta t = 2.2.

However, we choose to adopt the notion of real-valued ticks, rather

than their corresponding integer ranks, for specifying function blocks (and

their properties) as they more closely correspond to the sampling times in

reality. In other words, the notion of ticks is more meaningful for the user to

manipulate: e.g., for timer blocks, an output that denotes the elapsed time

should be measured in real-valued units rather than integer ranks. However,

given some fixed delta t, the set of real-valued ticks is isomorphic to its set of

integer ranks. Consequently, proving lemmas or theorems in both domains is

equally complex.
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As PVS requires that all functions are total, to define the pre operator,

we need a subtype noninit elem that denotes the set of ticks starting from t1

(i.e., excluding t0):

noninit elem: TYPE = { t : tick | NOT init(t) }

Using noninit elem, the pre operator is defined as follows:

pre(t: noninit elem): tick = t − delta t

An important yet simple proposition we use in our model to prove some

desired properties is an induction scheme over time ticks (Hu, 2008). It states

that predicate P holds at all ticks if (1) P holds at the initial tick t0; and (2)

for any t > 0, the fact that P holds at tick tn−1 implies that P holds at tick

tn. The formalization of this induction scheme is as follows:

time induction : PROPOSITION

FORALL (P: pred[tick]):

(FORALL (t: tick): init(t) ⇒ P(t)) AND

(FORALL (t: noninit elem): P(pre(t)) ⇒ P(t))

⇒ (FORALL (t: tick): P(t))

We consider FBs listed in IEC 61131-3 as time-dependent. Each FB is

formalized as a theory in PVS, parameterized by the constant time interval

delta t and by importing our timing theory presented in this section.

2.4.2 Modelling Samples in the Software Domain

We use a variable Sample : N→ R≥0 to denote the series of samples over time,

such that the time of each sample (i.e., Sample(n), n ∈ N) maps to a valid

clock tick. As shown in Figure 2.7, realistically, the clock tick frequency 1
δ

in

the physical domain should be significantly larger than the sampling frequency

in the software domain. The sample intervals is bounded between Tmin and

Tmax, determined by considering the shortest time after which events must

be detected.

29



PhD Thesis – Linna Pang – McMaster – Computing and Software

SOFTWARE DOMAIN

PHYSICAL DOMAIN

t
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Tmin

Figure 2.7: Time models in physical and software domains based on tick
type (Hu, 2008)

2.4.3 Operators for Specifying Timing Requirements

An infix operator Held For is defined as:

Held For : (tick → B)×(tick → R>0)×(tick → R≥0)×(tick → R≥0)→ (tick → bool)

to specify a common functional timing requirement, e.g., P Held For (d, δL, δR),

that a monitored Boolean condition P should sustain over a positive time dura-

tion d, with non-negative left and right tolerances, δL and δR. More precisely,

P Held For (d, δL, δR)(tnow) ≡ ∃tj : tnow− tj ≥ d • ∀ti : tj ≤ ti ≤ tnow • P (ti)

where d ∈ [d − δL, d + δL]. However, the behaviour of Held For is nondeter-

ministic when P has last been TRUE in-between [d− δL, d+ δR].

To resolve the non-determinism in Held For, two refinement operators

are defined: Held For S and Held For I. Since it has been verified that the

Held For I operator (with a sustained duration of d − δL) is a refinement

of Held For, meeting the functional timing requirements (FTRs) and perfor-

mance timing requirements (PTRs), we can use Held For I to replace the

requirement using the Held For operator with tolerance (Hu, 2008). Thus

both operators are deterministic by fixing the duration d in the above defini-

tion of Held For as d−δL. We will only see Held For I in the case studies, but

it is defined in terms of Held For S. Held For S is a partial function on tick

that produces values only at points of sampling (i.e., it is undefined on ticks

in-between samples).
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Held For S(P, duration, Sample)(ne): bool =

EXISTS (n0 | Sample(ne) - Sample(n0) ≥ duration):

FORALL (n: nat | n0 ≤ n AND n ≤ ne): P(Sample(n))

On the other hand, Held For I is a totalized version of Held For S: its value at

time t, where Sample(n) ≤ t < Sample(n + 1), is equivalent to that produced

at time Sample(n) (i.e., the closest left sample calculated by Left Sample).

Function sup returns the unique least upper bound of a set.

Left Sample(Sample, t):

{n: nat | Sample(n) ≤ t AND t < Sample(n + 1)} =

sup(LAMBDA (n: nat): Sample(n) ≤ t)

Held For I (P, duration, Sample)(t): bool =

Held For S(P, duration, Sample)(Left Sample(Sample, t))

2.4.4 Implementing the Held For I Timing Operator

We use Timer I (defined in terms of Timer S) to implement the Held For I

timing operator. Timer I agrees on outputs from Timer S at sample points

and keep the same value at any clock tick until the next sample point (this is

analogous to how Held For I is related to Held For S):

Timer I (P, Sample, TimeOut)(t): tick =

Timer S(P, Sample, TimeOut)(Left Sample(Sample, t))

where Timer S counts, starting from the closest left sample to the clock tick

in question, for how long the monitored condition P has been enabled, and

stops counting when TimeOut is reached. The output type of Timer S is

tick, calculated from how many samples P has been held across. The value of

Timer S function is updated through a TimerUpdate function (Hu, 2008) by

passing a condition at both the current and last samples, the previous value

of the timer, the timeout value, and the elapsed time since the last update of

the timer. The theorem TimerGeneral I is proved to ensure that Timer I is a

proper implementation for Held For I.

31



PhD Thesis – Linna Pang – McMaster – Computing and Software

TimerGeneral I : THEOREM

Held For I (P, timeout − delta L, Sample)(t) ⇔
Timer I (P, timeout − delta L, Sample) ≥ timeout − delta L

2.5 Running Examples for this Thesis

Two running example FBs are used to exemplify our approach through the

thesis, HYSTERESIS and LIMITS ALARM. They both are supplied by

IEC 61131-3 (IEC, 2003). Block HYSTERESIS is a basic FB implemented

in ST language, while block LIMITS ALARM is a composite FB (built from

two instances of block HYSTERESIS) implemented in FBD language. In this

section, we will introduce the declarations and informal descriptions for these

two FBs provided by the Standard.

2.5.1 Running Example: HYSTERESIS

+------------+

| HYSTERESIS |

| |

REAL --|XIN1 Q|-- BOOL

REAL --|XIN2 |

REAL --|EPS |

+------------+

Figure 2.8: Basic FB HYSTERESIS declaration (IEC, 2003)

As an example, the block HYSTERESIS implements a Boolean hystere-

sis: the output value depends not only on the current input values, but also the

output value in the past. Its declaration (Figure 2.8) requires three real-valued

input numbers: XIN1 is typically read from a sensor, XIN2 specifies its set

point, and EPS indicates that the deadband (above and below the set point)

within which the Boolean output signal value Q should remain unchanged. If

the current sensor value XIN1 is such that XIN1 < XIN2−EPS, then output
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Q becomes FALSE. Similarly, if it is the case that XIN1 > XIN2 + EPS,

then Q becomes TRUE. For the stability of Q’s value, if the sensor value lies

within the deadband (i.e., XIN2−EPS ≤ XIN1 ≤ XIN2 + EPS), then output

Q remains unchanged. The requirement of block HYSTERESIS is formalized

in Section 3.3. We will discuss this example in detail in Subsection 7.1.2.2.

2.5.2 Running Example: LIMITS ALARM

+---------------+

| LIMITS_ ALARM |

| |

REAL --|H QH|-- BOOL

REAL --|X Q|-- BOOL

REAL --|L QL|-- BOOL

REAL --|EPS |

+---------------+

Figure 2.9: Composite FB LIMITS ALARM declaration (IEC, 2003)

As another example FB, the block LIMITS ALARM implements an

alarm with high- and low-limit. Its declaration (Figure 2.9) requires four real-

valued inputs, high limit H, low limit L, real value X, and hysteresis deadband

EPS (for both high- and low- limits), and three Boolean outputs, high flag

QH, low flag QL and alarm output Q. When variable value X exceeds the

high limit H, the high flag QH becomes TRUE. Symmetrically, when X goes

below the low limit L, the low flag QL becomes TRUE. Both flags QH and

QL are set to FALSE when X is in the exclusive range of (L+EPS , H−EPS ).

There exists a hysteresis band for the high limit inside which the value of QH

remains unchanged: [H−EPS , H]. Symmetrically, there exists a hysteresis

band for the low limit: [L,L+EPS ]. Finally, the alarm output Q is set to

TRUE if and only if either of the flags is set to TRUE, or set to FALSE

otherwise. The input-output requirement is captured in three function tables

in Section 3.4. More detailed discussion on this example will be presented in

Subsection 7.1.2.3.
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Chapter 3

Formalizing Requirements of

Function Blocks

This chapter presents a formal approach for defining IEC 61131-3 standard

functions and FBs using tabular expressions and PVS 1. We first introduce

a general approach for formalizing input-output black-box requirements for

standard functions and FBs in Section 3.1. This approach is then applied to

various kinds of standard functions in Section 3.2, basic FBs in Section 3.3,

and composite FBs in Section 3.4, respectively.

3.1 A General Approach for Formalizing Input-

output Relations

As stated in Section 2.2.2, IEC 61131-3 supplies low-level, implementation-

oriented ST and FBD descriptions for FBs. For the purpose of verifying

the correctness of the supplied implementation, it is necessary to obtain re-

quirements for FBs that are both complete and disjoint. Tabular expressions

(Section 2.1) are an excellent notation for describing such requirements. Our

method for deriving the tabular, input-output requirement for each FB is to

partition its input domain into equivalence classes, and for each such input

condition, we consider what the corresponding output from the FB should be.

1This chapter is based on the published work in (Pang et al., 2013a).
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Similar to the basic idea for specifying the behaviour of a hardware

device in (Gordon, 1985; Melham, 1989) that stating a combination of values

observed on its external variables, the requirement of each standard function

or FB is formalized as a predicate constraining input and output variables as

parameters, to characterize its input-output relation. To reflect the intended

behaviour, the requirement predicate is defined such that the combinations of

inputs and outputs values satisfying this constraint are exactly those which can

be observed simultaneously on the corresponding input and output variables

at the same time tick.

In general, let us consider a FB with m inputs, i1, i2, . . . , im, and n

outputs, o1, o2, . . . , on. The black-box input-output requirement of the FB

is formalized in function tables (Section 2.1). For output op, p = 1, 2, ....n, a

function table is used to capture the input-output relation between op and its

dependents, i.e., the combinations of inputs and possibly outputs.

There are three kinds of relation between output op and its dependents:

1. The value of output op is determined only by a set of the input values

at current time tick.

The requirement of op is formalized as a predicate op REQ as follows:

op REQ : bool ≡ op = f(i1, i2, . . . , im),

where f is the function table for op, depending on those of the inputs.

2. The value of output op is determined by the values of a set of inputs

at current time tick and the values of a set of other outputs up to the

current time tick.

The requirement of op is formalized as a predicate op REQ as follows:

op REQ : bool ≡ op = f(i1, i2, . . . , im, o1, o2, . . . , op−1, op+1, . . . , on),

where f is the function table for op. Different from case 1, the require-

ment predicate for op takes a set of inputs and a set of other outputs as

parameters. Thus, the table for f is composed with those tables for its

dependent outputs. However, the requirement for a standard function
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or FB is not implementable, if two outputs depend on each other at the

current time. For example, output o1 is determined by the value of o2

at current time t, while o2 is determined by the value of o1 at the same

time. It is implementable if two outputs depend on each other but not

both at the current time. For example, output o1 is determined by the

value of o2 at previous time t−1
2, while output o2 is determined by the

value of o1 either at current time t or previous time tick t−1.

3. The value of output op is determined by the values of a set of inputs

at the current time tick, the values of a set of other outputs up to the

current time tick, and the values of itself up to the previous time tick.

The requirement of op is formalized as a predicate op REQ as follows:

op REQ : bool ≡ op = f(i1, i2, . . . , im, o1, o2, . . . , op, . . . , on)

where f is the function table for op. Different from cases 1 and 2, output

op depends on the values of a set of inputs, the values of a set of other

outputs, and the values of itself at previous time ticks. Thus, the function

table for f has to be recursively defined (i.e., with the presence of “NC”

in the last result column).

All input-output requirements tables that we propose are completely

functional. This claim is supported by the fact that all our proposed function

tables are provably complete and disjoint, meaning that at any time instant,

exactly one value can be produced for each output. Consequently, it is always

possible to separate the definition of an output by projecting onto its relevant

range of values. We are able to: (1) specify a separate function table that

characterizes its relationship with the inputs; and (2) prove its correctness

separately.

2We use subscription “−1” to denote the value of a variable at previous time tick.
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3.2 Formalizing Requirements of Standard Func-

tions

In general, we formalize the behaviour of a standard function f as a relation

(i.e., Boolean function or predicate), constraining the permissible combinations

of input and output values:

f(i1, i2, . . . , im) : (o1, o2, . . . , on) , f REQ(i1, i2, . . . , im, o1, o2, . . . , on), (3.1)

where the symbol , denotes that function f is formalized using a relation (or

predicate) f REQ. Predicate f REQ represents the specification of function f

with input vector i and output vector o, by characterizing the precise relation

on the m inputs and the n outputs of function f .

For example, consider the standard function of MOVE (see Figure 2.3),

which translates the input-output relation of function MOVE into PVS:

MOVE(IN , OUT: [tick -> int]): bool =

FORALL (t: tick): OUT(t) = IN (t)

We characterize the temporal relation between IN and OUT as a uni-

versal quantification over discrete time instants. Function [tick -> int] cap-

tures the input and output values at different time instants.

We also support a functional version of the specification for standard

functions. For the blocks that consist of standard functions, we formalize them

as function compositions of their internal blocks. Given the function f and

the formalizations for internal standard functions f1: X → Y and f2: Y →
Z, we formalize f as functional composition of f1 and f2 (denoted by f1 ◦ f2),
i.e., f2 ◦ f1(x) = f2(f1(v1)).

For example, the functional version of MOVE returns an integer value:

MOVE(IN : [tick -> int]): int = IN (t)
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3.3 Formalizing Requirements of Basic

Function Blocks

Similarly, a basic FB is formalized as a relation constraining the permissi-

ble combinations of input and output values. In general, we formalize the

requirement of a basic FB as a Boolean function BFB REQ:

BFB REQ(i1, i2, . . . , im, o1, o2, . . . , on) : bool

≡ o1 = f o1(i1, i2, . . . , im, o1, o2, . . . , on) ∧
o2 = f o2(i1, i2, . . . , im, o1, o2, . . . , on) ∧ . . .

on = f on(i1, i2, . . . , im, o1, o2, . . . , on),

(3.2)

where predicate BFB REQ characterizes the precise relation on the m inputs

and the n outputs of the basic FB, and function f oi specifies the behaviour

of output oi using a function table. Functions f oi, i = 1, 2, . . . , n are defined

recursively if any values of themselves at previous time ticks are dependent.

Revisiting the running example of basic FB HYSTERESIS (Section 2.5.1),

we formalize its requirements using function tables. The shaded area on the left

(Figure 3.1) denotes the hysteresis deadband (with a size of 2×EPS ). The ta-

ble on the right (Figure 3.1) specifies the requirement for HYSTERESIS. Note

we use “NC” to denote the case of “no change” for output Q. Alternatively, we

can use Q−1 to denote the value at previous time tick. At the bottom of tabular

requirement, we incorporate with the assumption: EPS > 0. Otherwise, the

two intervals [ XIN2 + EPS,+∞ ] and [−∞,XIN2 − EPS ] may overlap (i.e.,

the first and third rows, XIN1 > (XIN2 + EPS) and XIN1 < (XIN1 − EPS),

of tabular requirement are not disjoint). More explanation for this missing

assumption will be discussed in Chapter 7.

More precisely, we translate the input-output relation of HYSTERESIS

into PVS (Figure 3.2). The behaviour of FB HYSTERESIS at each time in-

stant is specified as an IF -THEN -ELSE -ENDIF statement. The initial case

is defined in the IF branch separately, while construct TABLE -ENDTABLE

in the ELSE branch specifies the tabular requirement (Figure 3.1). Embed-

ding table in a predicate allows PVS prover to generate proof obligations for

disjointness and completeness automatically.
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Time

HYSTERESIS

XIN1>XIN2+EPS

XIN2-EPS<=XIN1
<=XIN2+EPS

XIN1<XIN2-EPS

TRUE

FALSE

NC(No Change)

Result

Condition Q

XIN1 > (XIN2 + EPS) TRUE

(XIN2 − EPS) ≤ XIN1 ∧
NC

XIN1 ≤ (XIN2 + EPS)

XIN1 < (XIN2 − EPS) FALSE

assume: EPS > 0

Figure 3.1: Requirement for HYSTERESIS: with the assumption EPS > 0

HYSTERESIS REQ(XIN1, XIN2: [tick -> real],
EPS: [tick -> posreal],
Q: [tick -> bool]): bool =

FORALL t:
Q(t) = IF init(t) THEN FALSE

ELSE LET PREV = Q(pre(t)) IN

TABLE

| XIN1(t) < (XIN2(t) - EPS(t)) | FALSE ||

| ((XIN2(t) - EPS(t)) <= XIN1(t)) &

(XIN1(t) <= (XIN2(t) + EPS(t))) | PREV ||

| (XIN2(t) + EPS(t)) < XIN1(t) | TRUE ||

ENDTABLE

ENDIF

Figure 3.2: PVS formalization of FB HYSTERESIS input-output relation

3.4 Formalizing Requirements of Composite

Function Blocks

A composite FB is also formalized as a relation constraining the permissi-

ble combinations of input and output values. In general, we formalize the
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requirement of a composite FB as a Boolean function CFB REQ:

CFB REQ(i1, i2, . . . , im, o1, o2, . . . , on) : bool

≡ o1 = f o1(i1, i2, . . . , im, o1, o2, . . . , on) ∧
o2 = f o2(i1, i2, . . . , im, o1, o2, . . . , on) ∧ . . .

on = f on(i1, i2, . . . , im, o1, o2, . . . , on)

(3.3)

where predicate CFB REQ characterizes the precise relation on the m inputs

and the n outputs of composite FB, function f oi specifies the behaviour of

output oi using function table. Functions f oi, i = 1, 2, . . . , n are defined

recursively if any values of themselves at previous time ticks are dependent.

Revisit the example of composite FB LIMITS ALARM (Section 2.5.2),

we formalize its requirement using our approach. The expected input-output

behaviour is depicted in Figure 3.3, and its tabular requirement (which con-

strains the relation between inputs X, H, L, EPS and outputs Q, QH, QL) is

captured in the three surrounding tables for outputs Q, QH, and QL.

Time

H

H-(EPS/2)

QH=1(TRUE)

NC(No change)

L

L+(EPS/2)

H-EPS

L+EPS

QH=0(FASLE)

QL=0(FALSE)

QL=1(TRUE)

NC(No change)

X

Result

Condition Q
QH ∨ QL TRUE
¬(QH ∨ QL) FLASE
assume: L+ EPS < H − EPS

Result

Condition QH
X > H TRUE

H - EPS ≤ X ≤ H NC
X < H − EPS FALSE

assume: EPS > 0

Result

Condition QL
X < L TRUE

L ≤ X ≤ L + EPS NC
X > L + EPS FALSE

assume: EPS > 0

Figure 3.3: LIMITS ALARM requirement in tabular expression

Let predicates P QH , P QL, and P Q formalize, respectively, the table

for QH, QL and Q. Then, we translate the above requirement into PVS as:
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LIMITS ALARM REQ(H,X,L,EPS,QH ,Q,QL): bool =

P QH (X,H,L,EPS,QH ) & P QL(X,L,EPS,QL) & P Q(QH ,QL,Q)

Thus, we formalize the overall requirement for a composite FB by con-

juring those predicates that specify the behaviour of outputs. For the given in-

put and output sequences, requirement predicate returns TRUE if they match

according to the behaviours described in output predicates; otherwise, it re-

turns FALSE. This can later be used to verify the correctness of the FBD

implementation of LIMITS ALARM (Section 6.1).

3.5 Summary

This chapter introduced an approach for formalizing requirements of standard

functions, basic FBs and composite FBs using tabular expressions and PVS.

We first introduced a general approach for formalizing input-output relation.

We then applied our approach to formalize the requirements of standard func-

tions, basic FBs and composite FBs respectively. We exemplify each kind by

providing concrete examples from IEC 61131-3 (IEC, 2003).

As a result, we obtained complete and disjoint black-box requirements

of standard functions and FBs. Our formalized requirements then can be used

to verify the consistency and correctness of the supplied implementation.
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Chapter 4

Formalizing Idealized and

Practical IEC 61131-3 Timers

In this chapter we focus on the formalization of IEC 61131-3 timers 1. We

first discuss problems raised by the correctness check for real-time behaviour

and the techniques that we use to handle them in general (Section 4.1). We

then formalize the idealized behaviour of IEC 61131-3 timers using function

tables (Section 4.2). We implement the idealized timers using a pre-verified

timing operator Timer I (Section 4.3), which can be used to build real-time

FB-based systems. We then discuss the incorporation of timing tolerances

with the real-time requirements for timer-based systems (Section 4.4).

4.1 General Description

The correctness for a hard real-time system depends not only on values of its

outputs, but also on the times at which they are produced (Rushby, 1992).

Especially for safety-critical systems, it is important to specify and verify the

real-time behaviour. Such a system often determines the values of outputs by

the values of current inputs and the history of both inputs and outputs. For

example, based on our knowledge of the Darlington Nuclear Shutdown System

Trip Computer Software Redesign Project (Wassyng and Lawford, 2003), “if

1This chapter is based on our published work in (Pang et al., 2015).
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power and pressure both exceed their maximum allowable limits for 3 seconds,

then open the relay for 2 seconds” (Lawford and Wonham, 1995). Any failure

or malfunction may result in death or serious injury to people, severe damage

to equipment or environmental harm.

IEC 61131-3 provides timer FBs as a special yet important type of basic

FB (Section 2.2.3), describing real-time behaviour. There are three types of

timer FBs, TON (On-delay), TOF (Off-delay), and TP (Pulse). However,

IEC 61131-3 uses timing diagrams to describe the expected (and idealized)

behaviour of these timers, which is limited to an incomplete set of use cases.

As a result, the lack of formal semantics for the behaviour of the three timers

results in difficulties in formalizing and verifying timing behaviour of any real-

time system which is built from these timers.

An implementable timing requirement must specify tolerances associ-

ated with time duration to account for various factors - e.g., sampling rates,

computation time, and latency - that will delay the software controller’s re-

sponse to its operating environment (i.e., the plant). Such a requirement, even

when implementable, allows for inconsistent implementations since it is non-

deterministic. For example, a common type of functional timing requirements

specifies that a monitored condition P must sustain a time duration, say d,

with tolerances δL and δR, before being detected by the controller. When

input condition P has been enabled in-between [d−δL, d+δR], the controller

can take action at any time in-between [d−δL, d+δR]. As we will see in our

case study (Section 7.2), such a simple requirement can be used as part of spec-

ifying more complex real-time behaviour. To resolve such non-determinism,

at the requirement level, we adopt a deterministic operator Held For I (Hu,

2008), which becomes TRUE at the first sampling point after the monitored

condition P has been enabled for d − δL time units. Similarly, at the im-

plementation level we adopt the Timer I operator (Hu, 2008) for counting

the elapsed time of some monitored condition (i.e., condition P). We thus

implement IEC 61131-3 timers using Timer I operator. The implemented

timers can then be used to formalize any FB-based system which is built from

IEC 61131-3 timers. The relationship between these two operators is proved as

a theorem TimerGeneral I (Hu, 2008): (P Held For I (d − δL)) is equivalent

43



PhD Thesis – Linna Pang – McMaster – Computing and Software

to (Timer I(P ) ≥ d − δL). More precise definitions are in Chapter 2. The

use of the general theorem TimerGeneral I simplifies our verification work for

FB-based real-time systems.

4.2 Formalizing Idealized Behaviour for the

IEC 61131-3 Timers

4.2.1 Timer On-delay (TON)

The TON block is commonly used as a component of safety-critical systems.

For example, it can be used to determine if a sensor signal has gone out of its

safety range for too long, as we will see in Section 7.2.

+------+

| TON |

| |

BOOL--|IN Q|--BOOL

| |

TIME--|PT ET|--TIME

| |

+------+

+--------+ +---+ +--------+

IN | | | | | |

--+ +----+ +----+ +---

t0 t1 t2 t3 t4 t5

+----+ +----+

Q | | | |

------+ +-----------------+ +---

t0+PT t1 t4+PT t5

PT +---+ +---+

: / | + / |

ET : / | /| / |

: / | / | / |

: / | / | / |

0-+ +----+ +----+ +---

t0 t1 t2 t3 t4 t5

Figure 4.1: Timer TON declaration and its timing diagram (IEC, 2003)

Figure 4.1, extracted from IEC 61131-3, shows the input-output dec-

laration (on the LHS) and a timing diagram2 (on the RHS) illustrating the

expected behaviour of the TON block. The TON block is declared with two in-

puts (a Boolean condition IN and a time period of length PT) and two outputs

(a Boolean value Q and a length ET of time period). Timer TON monitors

the input condition IN and sets the output Q as TRUE whenever IN remains

enabled for longer than a time period of some input length PT; otherwise, it

2The horizontal axis is labelled with time instants ti, i ∈ 0..5
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sets output Q as FALSE. If the monitored input IN has been enabled for some

time t < PT , then the timer sets the output ET (i.e., elapsed time) with value

t-last enabled, where a time stamp last enabled is used to record the exact time

(with no delay) that the input condition IN just becomes enabled; otherwise,

it sets ET with value PT or it sets ET to default time value 0 if IN is disabled.

We formalize the black-box requirement of the TON block (Figure 4.2) using

function tables.

Result

Condition last enabled
¬IN−1 ∧ IN t
IN−1 ∨ ¬IN NC

Result

Condition Q
IN ∧ (t - last enabled ≥ PT) TRUE
IN ∧ (t - last enabled < PT) FALSE

¬IN FALSE

Result

Condition ET
IN ∧ (t - last enabled ≥ PT) PT
IN ∧ (t - last enabled < PT) t - last enabled

¬IN 0

Figure 4.2: Tabular requirements of timer TON: idealized behaviour

4.2.2 Timer Off-delay (TOF)

The TOF block delays the falling edge of a Boolean input by a specified du-

ration. For example, a TOF block can be used to keep cooling fans on for a

specific time period after the oven has been turned off.

Figure 4.3, extracted from IEC 61131-3, shows the input-output dec-

laration (on the LHS) and a timing diagram (on the RHS) illustrating the

expected behaviour of the TOF block. The TOF block is declared with two

inputs (a Boolean condition IN and a time period of length PT) and two out-

puts (a Boolean value Q and a length ET of time period). Timer TOF monitors

the input condition IN and sets the output Q as FALSE whenever IN remains

disabled for longer than a time period of some input length PT; otherwise, it

sets the output Q as TRUE. If the monitored input IN has been disabled for

some time t < PT , then the timer sets the output ET (i.e., elapsed time) with
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+------+

| TOF |

| |

BOOL--|IN Q|--BOOL

| |

TIME--|PT ET|--TIME

| |

+------+

+----+ +---+ +-----+

IN | | | | | |

--+ +--------+ +---+ +-------

t0 t1 t2 t3 t4 t5

+---------+ +------------------+

Q | | | |

--+ +---+ +--

t0 t1+PT t2 t5+PT

PT +---+ +--

: / | + /

ET : / | /| /

: / | / | /

: / | / | /

0------+ +---+ +-----+

t1 t3 t5

Figure 4.3: Timer TOF declaration and its timing diagram (IEC, 2003)

value t-last disabled, where a time stamp last disabled is used to record the

exact time (with no delay) that the input condition IN just becomes disabled;

otherwise, it sets ET with value PT or it sets ET with default time value 0 if

IN is enabled.

Result

Condition last disabled
IN−1 ∧ ¬IN t
¬IN−1 ∨ IN NC

Result

Condition Q
¬IN ∧ (t - last disabled ≥ PT) FALSE
¬IN ∧ (t - last disabled < PT) TRUE

IN TRUE

Result

Condition ET
¬IN ∧ (t - last disabled ≥ PT) PT
¬IN ∧ (t - last disabled < PT) t - last disabled

IN 0

Figure 4.4: Tabular requirements of timer TOF: idealized behaviour

4.2.3 Timer Pulse (TP)

Timer pulse acts as a pulse generator: as soon as the input condition

IN is detected to hold, it generates a pulse to let output Q remain TRUE for

a constant PT of time units. The elapsed time that Q has remained TRUE

can be monitored via output ET.
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+------+

|PULSE |

| |

BOOL--|IN Q|--BOOL

| |

TIME--|PT ET|--TIME

| |

+------+

+-------+ ++ ++ +--------+

IN | | || || | |

--+ +---++-++-----+ +--

t0 t1 t2 t3 t4 t5

+----+ +----+ +----+

Q | | | | | |

--+ +------+ +----+ +------

t0 t0+pt t2 t2+pt t4 t4+pt

PT +--+ + +---+

: / | /| / |

ET : / | / | / |

: / | / | / |

: / | / | / |

0-+ +---+ +----+ +--

t0 t1 t2 t4 t5

Figure 4.5: Timer TP declaration and its timing diagram (IEC, 2003)

Figure 4.5, again extracted from IEC 61131-3, shows the input-output

declaration (on the LHS) and a timing diagram (on the RHS) illustrating the

expected behaviour of timer TP. The timing diagram suggests that, when

a rising edge of the input condition IN is detected at time t, another rising

edge that occurs before time t+PT may not be detected, e.g., the rising edge

occurring at t3 might be missed as t3 < t2 + PT .

We use the three tables in Figure 4.6 to formalize the behaviour of

the PULSE timer, where its outputs Q and ET and the internal variable

pulse start time are initialized to, respectively, FALSE, 0, and 0. The tables

have their obvious equivalents in PVS. To make the timing behaviour precise,

we define an auxiliary predicate Held For which is based on the work presented

in (Hu et al., 2009). Predicate Held For(P, duration) holds when the input

predicate P holds for at least duration units of time.

Held For(P: pred[tick], duration: posreal)(t: tick): bool =

EXISTS(t j: tick):

(t - t j >= duration) &

(FORALL (t n: tick | t n >= t j & t n <= t): P(t n))

However, we found two scenarios that are not covered by the above tim-

ing diagram supplied by IEC 61131-3. We make the definition of the PULSE

timer both complete and disjoint using function tables (Figure 4.6). We will
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discuss these missing scenarios and our solution in Subsection 7.1.1.1.

Result

Condition Q

¬Q−1
¬IN−1 ∧ IN TRUE
IN−1 ∨ ¬IN FALSE

Q−1
Held For(Q, PT) FALSE
¬Held For(Q, PT) TRUE

Result

Condition pulse start time
¬Q−1 ∧ Q t
Q−1 ∨ ¬Q NC

Result

Condition ET
Q t − pulse start time

¬Q
¬IN 0
IN PT

Figure 4.6: Tabular requirements of timer TP: idealized behaviour

4.3 Formalizing Practical Behaviour for the

IEC 61131-3 Timers

4.3.1 Timer On-delay (TON)

As we discussed in Section 4.2.1, timer TON is implemented using the pre-

verified Timer I operator (Figure 4.7). We use Timer I for counting the

elapsed time of monitored condition (i.e., input IN). We then simplify the func-

tion table of output ET to ET(IN, Samsple,PT) = Timer I(IN, Sample,PT).

Result

Condition Q
Timer I(IN, Sample, PT) ≥ PT TRUE
Timer I(IN, Sample, PT) < PT FALSE

Result

Condition ET
Timer I(IN, Sample, PT) ≥ PT PT
Timer I(IN, Sample, PT) < PT Timer I(IN, Sample, PT)

¬IN 0

Figure 4.7: Re-formalization of timer TON
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4.3.2 Timer Off-delay (TOF)

Similarly, we implement timer TOF using Timer I operator (Figure 4.8). We

then simplify the function table of output ET to ET(¬IN, Samsple,PT) =

Timer I(¬IN, Sample,PT).

Result

Condition Q
Timer I(¬IN, Sample, PT) ≥ PT FALSE
Timer I(¬IN, Sample, PT) < PT TRUE

Result

Condition ET
Timer I(¬IN, Sample, PT) ≥ PT PT
Timer I(¬IN, Sample, PT) < PT Timer I(¬IN, Sample, PT)

IN 0

Figure 4.8: Re-formalization of timer TOF

4.3.3 Timer Pulse (TP)

Similar to timers TON and TOF, we implement timer TP using Timer I op-

erator (Figure 4.9).

Result

Condition Q

¬Q−1
¬IN−1 ∧ IN TRUE
IN−1 ∨ ¬IN FALSE

Q−1
Timer I(Q, Sample, PT) ≥ PT FALSE
Timer I(Q, Sample, PT) < PT TRUE

Result

Condition ET
Q Timer I(Q, Sample, PT)

¬Q
¬IN 0
IN PT

Figure 4.9: Re-formalization of timer TP
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4.4 Formalizing Real-Time Requirements

In Chapter 3 we provide a formal approach for formalizing the requirements of

standard functions and FBs, without mentioning the formalization for timing

requirements. However, it is critical to specify timing requirements for many

real-time safety-critical systems, e.g., medical device or nuclear power plant.

The formalized IEC 61131-3 timers (Section 4.3) are used to build such real-

time systems. It is important to specifying timing requirement against with

which the conformance of such real-time systems is verified.

We follow the approach for formalizing standard functions and FBs

(Chapter 3), i.e., using function tables to perform a complete and disjoint

analysis on the input domains. To formalize timing requirements, we incor-

porate timing tolerances on time duration into the requirements model using

the Held For operator (Secion 2.4.3). The Held For operator specifies the left

and right tolerances on the time duration of the sustained condition, allowing

non-deterministic implementations. The Held For I operator is a refinement

of Held For, meeting the functional and performance requirements (Hu, 2008).

Thus we can use the Held For I operator in the FB requirements model which

is verified against by the supplied FB implementation.

More precisely, we use Held For I (with the time duration d − δL)

to specify Held For operator with timing tolerances, imposing the constraint

that only a single value (i.e., d− δL where both are declared constants) is cho-

sen from the duration and is used consistently for detecting sustained events.

Hence, the use of operator Held For I resolves the non-determinism by fixing

the level of timing tolerances (i.e., as long as the condition has been activated

for or longer than d−δL, the event is guaranteed to be detected). An example

of real-time subsystem Trip Sealed-in is in Section 7.2.

4.5 Summary

In this chapter we formalized three IEC 61131-3 timer FBs using tabular ex-

pressions. We first provided the complete and disjoint requirements for ide-

alized behaviour of timers. In our approach, missing scenarios of timer TP
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are detected and resolved. To specify practical timers, we then implemented

the idealized timers using the pre-verified timing operator Timer I. The re-

sulting formalization can be used to verify timing requirements. To obtain

timing requirements, we discussed the incorporation of timing tolerances into

a requirements model of real-time systems using the pre-developed Held For I

operator. As a result, our formalized timers can be composed to build com-

plex real-time systems within our approach. The behaviour of such real-time

systems can be formally verified against a timing requirements model. All of

the specifications are formalized in the PVS environment.
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Chapter 5

Formalizing Implementations of

Function Blocks

In this chapter we discuss the formalizations for ST and FBD implementa-

tions 1. We present a compositional approach formalizing FBD implemen-

tations (Section 5.1). We first formalize non real-time FBD implementations

(Section 5.1.1). Following the same approach, we incorporate timing behaviour

with real-time FBD implementations using previously formalized IEC 61131-3

timers (Section 5.1.2). We then present a list of translation rules as a guid-

ance for converting ST implementations into PVS, sufficient for handling ST

descriptions supplied by IEC 61131-3 (Section 5.2). Consequently, we have a

unified, formal framework to verify the correctness of FBs.

5.1 Formalizing FBD Implementations

5.1.1 Formalizing Non Real-Time FBD Implementation

For non real-time FBD implementation, our formalization of each internal

FB as a predicate results in compositionality : a predicate that formalizes a

composite FB is obtained by taking the conjunction of those that formalize its

component FBs.

1This chapter is based on the work in (Pang et al., 2014a) (under minor revision), and
the published work in (Pang et al., 2013a).
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To illustrate the case of formalizing a non real-time FBD implemen-

tation supplied by IEC 61131-3, consider the following FBD in Figure 5.1:
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Figure 5.1: Example of non real-time FBD implementation

The example FBD takes as two inputs, i1 and i2, and two outputs, o1

and o2, consisting of four internal blocks, B1, . . . , B4. Blocks B1, . . . , B4 are

connected via three wires w1, w2, and w3 (arrowed lines in Figure 5.1). All

internal blocks are viewed as black-box components, that have been formalized

as predicates B1 REQ, . . . , B4 REQ. The predicates that formalize the inter-

nal components, do not denote those translated from the implementations of

IEC 61131-3. Instead, they are input-output relations obtained by our method

(presented in Chapter 3). The behavioural descriptions of internal FBs can be

written in different languages. For example, the implementation of block B1 is

written in FBD, while the implementation of block B2 is written in ST. When

blocks B1 and B2 are used to build more complex FB (as shown in Figure 5.1),

their internals (i.e., the implementations of blocks B1 and B2) are invisible to

block user. Hierarchically, only the interface of FBD is visible to a user who

uses it to build other FB, i.e., the implementations of blocks B1, . . . , B4 and

the way they wire up together is hidden from FBD user.

PLC applications often use feedback loops: outputs of a FB are con-

nected as inputs of either another FB, or the FB itself. IEC 61131-3 specifies

feedback loops through either a connecting line or shared same names of in-

puts and outputs. However, feedback values (or of intermediate output values)
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cannot be computed instantaneously in practice. For instance, in our example

FBD inter-connector w3 produced by block B4 depends on o1 (as an input of

block B4), which indirectly depends on w3 (through blocks B2 and B3). The

FBD implementation (Figure 5.1) is unimplementable, since it specifies cyclic

dependency (i.e., the value of w3 is determined by itself at the same time).

We address this issue by introducing a unit delay block z−1 (e.g., type

of Boolean) with its formalization as shown in Figure 5.2:

 z-1i o

z−1(i, o)(t) =

{
o(t) = i(t− 1) if t > 0
False if t = 0

Figure 5.2: Block Boolean unit delay declaration and formalization

For any non-initial tick (i.e., t > 0), there is an explicit one-tick delay

between the input and output of block z−1, making it suitable for denoting

feedback values as output values produced in the previous execution cycle.

The type of i and o can be any defined type, e.g., Boolean type as defined in

Figure 5.2 is used in block SR in Subsection 7.1.1.2, but have to be the same

type. For initial tick (i.e., t = 0), it sets the corresponding default value of

required type as output value, e.g., block z−1 sets the default Boolean value

of FALSE to output o initially.

We now revise the non real-time FBD (Figure 5.1) by explicitly adding a

unit delay block z−1 in feedback loop (Figure 5.3a). Accordingly, an additional

wire w4 connects blocks B4 and z−1. The high-level requirement (as opposed to

the implementation supplied by IEC 61131-3) for each internal FB constrains

upon its inputs and outputs (i.e., their formalizing predicates B1 REQ, . . . ,

B4 REQ exist). To describe the overall behaviour of the revised composite FB,

we take advantage of our formalization being compositional. In other words,

we formalize a composite FB by existentially quantifying over the list of its

inter-connectives, such that the conjunction of predicates that formalize the

internal components hold (predicate NRT FBD IMPL in Figure 5.3b).

Since we use tabular expressions to specify the predicates for internal
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blocks, their behaviours are deterministic. This allows us to easily compose

their behaviours using logical conjunction. The conjunction of deterministic

components is functionally deterministic.
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(a) Revised non real-time FBD example

NRT FBD IMPL(i1, i2, o1, o2)
≡ ∃w1, w2, w3 •

B1 REQ(i2, w1)
∧ B2 REQ(w1, w3, w2)
∧ B3 REQ(i1, w2, o1)
∧ B4 REQ(w4, w3, o2)
∧ z−1(o1, w4)


(b) Formalizing predicate of non real-
time FBD example

Figure 5.3: Revised non real-time FBD example and its formalization

HIGH_ALARM

+------------+

| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH

+---+ w2| | | |

H----------------| - |------|XIN2 | |

+---| | | | | |

| +---+ | | | |

+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |

EPS --| / |--| | | |--Q

2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+

| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL

| | | | | |

+---| | +--|XIN2 |

| +---+ | |

+--------------|EPS |

+------------+

Figure 5.4: FBD implementation of block LIMITS ALARM (IEC, 2013)

For example, consider the FB LIMITS ALARM (Sections 2.5.2), its

FBD implementation is shown in Figure 5.4. The FBD implementation of
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block LIMITS ALARM consists of six internal blocks, division (“/”), subtrac-

tion (“−”), disjunction (“≥ 1”), addition (“+”), and two instances of hystere-

sis blocks (“LOW ALRAM” and “HIGH ALRAM”). They are wired up via

inter-connectors w1, w2, and w3. The predicate formalizes the FBD implemen-

tation by taking the conjunction of requirement predicates that formalize its

internal blocks.

More precisely, the following mathematical Formula 5.1 specifies the

FBD implementation of block LIMITS ALARM. Predicates DIV, SUB, DISJ,

ADD, HYSTERESIS REQ formalize the input-output requirements of internal

blocks division, subtraction, disjunction, addition, and two hysteresis blocks2.

There are two explanations for Formula 5.1: (1) Since internal blocks are

formalized as relations on timed variables, we adopt λ-expression to specify

constant input. For example, we specify the constant input of block division

(i.e., 2.0) as λt : 2.0, where t ∈ tick; and (2) Instead of a timed variable, the

first input of block SUB is a function H which takes inputs L and EPS as

arguments. We will explain this constraint in detail in Subsection 7.1.2.3.

LIMITS ALARM IMPL(X,H,L,EPS,QH, Q,QL) : bool

≡ ∃ w1, w2, w3 •
DIV(EPS, λt : 2.0, w1) ∧
SUB(H(L,EPS), w1, w2) ∧
DISJ(QH,QL, Q) ∧
ADD(L,w1, w3) ∧
HYSTERESIS REQ(X,w2, w1,QH) ∧
HYSTERESIS REQ(w3, X, w1,QL)

(5.1)

We formalize Formula 5.1 as predicate LIMITS ALARM IMPL in PVS

(Figure 5.5). Predicates DIV , SUB , DISJ , ADD , HYSTERESIS REQ for-

malize requirements of internal blocks.

5.1.2 Formalizing Real-Time FBD Implementation

We present a compositional approach for formalizing non real-time FBD im-

plementation (Section 5.1.1). We apply the same compositional approach on

2The complete formalizations for internal blocks are in Appendixes C and F
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LIMITS ALARM IMPL(X,H,L,EPS,QH ,Q,QL): bool =

EXISTS (w1,w2,w3):
DIV (EPS,LAMBDA (t1: tick): 2.0,w1) &

SUB(H(L,EPS),w1,w2) &

DISJ(QH ,QL,Q) &

ADD(L,w1,w3) &

HYSTERESIS REQ(X,w2,w1,QH ) &

HYSTERESIS REQ(w3,X,w1,QL)

Figure 5.5: PVS formalization of the LIMITS ALARM implementation

real-time FBD implementation, with the difference that timing behaviour is

incorporated by IEC 61131-3 timers. Hence, at the implementation level we

incorporate with IEC 61131-3 timers as internal blocks. Timer blocks adopt

operator Timer I (Hu, 2008) for counting the elapsed time of some monitored

condition (Chapter 4).
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(a) Real-time FBD example

RT FBD IMPL(i1, i2, o1, o2)
≡ ∃w1, w2, w3, w4, et •

B1 REQ(i2, w1)
∧ TON(w3, w1, w2, et)
∧ B3 REQ(i1, w2, o1)
∧ B4 REQ(w4, 33, o2)
∧ z−1(o1, w4)


(b) Formalizing predicate of real-
time FBD example

Figure 5.6: Real-time FBD example and its formalization

To illustrate the case of formalizing a real-time FBD implementation,

consider the same FBD as shown in Figure 5.1. We replace internal block B2

with a IEC 61131-3 timer (e.g., timer TON), and leave others unchanged (Fig-

ure 5.6a). As a result, blocks B1, B3, and B4 are non real-time blocks, while B2

is on-delay timer. The high-level requirements for all internal FBs constraining

upon their inputs and outputs are already formalized as predicates B1 REQ,

B3 REQ, B4 REQ, and TON using function tables. To formalize real-time
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FBD implementation (i.e., one built from IEC 61131-3 timers), we again take

advantage of our compositional formalization to describe the overall behaviour

by existentially quantifying over the list of its inter-connectives, such that the

conjunction of predicates that formalize the internal components hold.

5.2 Formalizing ST Implementations

As discussed in Section 2.2.2, in general it is not possible to translate an arbi-

trary ST implementation into its equivalent FBD implementation. Instead, for

the purpose of our verification in PVS, we develop a limited set of translation

rules that suffices to translate the ST implementations that are supplied by

Annex F of IEC 61131-3 (IEC, 2003) into their equivalent expressions in PVS.

This step of formalization in PVS allows us to verify the correctness of ST

implementations against their input-output requirements.

5.2.1 Scope and Input Assumptions

The main challenge of using PVS to formalize ST is that these two languages

belong to two distinct paradigms. The ST programming language is an im-

perative notation, whereas the PVS specification language is a functional no-

tation. For example, an IF-THEN-ELSE statement in ST is meant to perform

conditional updates on the state (i.e., output or local variables), whereas an

IF-THEN-ELSE expression in PVS is side-effect-free and returns a value (cor-

responding to the satisfying branch condition).

Nonetheless, our ultimate goal is to use only function blocks that are

listed in the Annex of the standard (IEC, 2003) to illustrate our proposed

approach. Consequently, our intention is not to formalize any arbitrary ST

code whose syntax conforms with the standard. Instead, for the purpose of our

verification, our rules of ST –to–PVS translation are designed to only handle

the syntactic constructs of the ST language that are exploited in Annex F.

That is, constructs that are supported by the ST language but not used in the

Annex of the standard (IEC, 2003) (e.g., CASE statement, WHILE and REPEAT

loops, etc.). Nonetheless, the value of our translation should be justified by
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the fact that the Annex F example function blocks are commonly used in

industry. In other words, our translation rules should be able to handle many

other similar function blocks outside the scope of Annex F (IEC, 2003).

For our ST –to–PVS translation, there are two primary assumptions

about the input ST code. Both of the following assumptions are satisfied by

all function blocks listed in Annex F (IEC, 2003).

• Type Correctness . Each ST code is assumed to be type-correct: e.g.,

no references to unknown function blocks in variable declarations, no

references to undeclared variables, no references to unknown formal pa-

rameters of a function in its invocation, etc. The PVS type system may

be exploited to type-check the ST code, because if the source ST code is

not type-correct, then neither will its corresponding formalized PVS the-

ory. However, for the purpose of tracing type errors in the original code,

if any, adopting a third-party ST programming tool is more appropriate.

• Non-Nested Iteration. Each iteration in the body of the ST code is not

nested in another iteration. This allows us to formalize each iteration

as a recursive function in PVS. As far as the formalization of function

blocks in Annex F (IEC, 2003) is concerned, this assumption is always

met. However, to relax this assumption, we will need to introduce a

mechanism for handling such nested iterations.

Given the above assumptions, and the richness of the specification lan-

guage and supported libraries of PVS, our ST-to-PVS translation is reasonably

straightforward. As we shall see, our translation rules shown below, although

presented in a formal way, are still meant as guidance for users who want

to translate the ST code manually into PVS. To adapt them for automation,

some further context-sensitive analysis needs to be performed beforehand. Ex-

tension to the full coverage of ST syntax, or to the automation of these rules,

is outside this section.
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FUNCTION_BLOCK F
VAR_INPUT

v1: T1
END_VAR

VAR_OUTPUT

v2: T2
END_VAR

VAR

v3: T2
END_VAR

v3:= f(p1:= e1,

p2:= e2);

IF e5 THEN

v2:= v3;

ELSIF e6 THEN

G(p3:= e3,

p4:= e4);

v2:= G.Q;

END_IF;

END_FUNCTION_BLOCK

F[(IMPORTING Time) delta t: posreal]: THEORY

BEGIN IMPORTING ClockTick[delta t]
t: VAR tick
v1: VAR [tick -> [[T1]]]
v2: VAR [tick -> [[T2]]]
F ST IMPL(v1, v2): bool =

FORALL t:
EXISTS (v3, Q: [tick -> [[T2]]):

f REQ([[e1]], [[e2]], v3) AND

G REQ([[e3]], [[e4]], Q) AND

v2(t) =

IF init(t) THEN [[T2 INI]]
ELSE LET PREV = v2(pre(t)) IN

TABLE

| [[e5]] | v3(t) ||
| NOT [[e5]] AND [[e6]] | Q(t) ||
| NOT [[e5]] AND NOT [[e6]] |PREV ||

ENDTABLE

ENDIF

END F

Figure 5.7: ST –to–PVS translation: a contrived example

5.2.2 An Overview and an Example

Our strategy of translation is to map each complete ST program (i.e., with

variable declarations and function block body) into a PVS theory. More pre-

cisely, we map (unconditional, conditional, or iterative) variable assignments

into PVS predicates (Boolean functions) that encode the intended state effect

as variable constraints. Let [[ ]] : ST 9 PVS denote our translation function

that maps ST code to PVS expressions. Since we do not intend to handle the

full ST syntax, the translation function is declared as partial.

Translation Example Figure 5.7 presents an overview of our ST –to–PVS

translation. On the left we have the complete definition of a function block

named F , declared with an input v1 (of type T1), an output v2 (of type T2 and

of default initial value T2 INI ). There is also a local variable v3 whose type
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is declared to match that of the output v2. We assume that: (1) a standard

function f is declared with parameters p1 and p2 and a return value of type T2;

(2) a function block G is declared with parameters p3 and p4 and an output

value of type T2; (3) types of expressions e1, e2, e3, and e4 match those of,

respectively, p1, p2, p3, and p4; and (4) e5 and e6 are Boolean expressions.

The body of function block F is defined as a sequential composition

(denoted by a semicolon ;) of three programming statements: (1) assign to v3

the return value of invoking the standard function f ; (2) invoke the function

block G; and (3) assign to v2, depending on the values of e5 and e6. In both

cases of invoking a standard function and a function block, the order in which

argument values are passed is flexible: names of the formal parameters (e.g.,

p1, p2, etc.) are specified explicitly to bind those argument values.

On the RHS of Figure 5.7 we have a PVS theory3 F that formalizes

the function block F defined on the LHS. As our translation is recursive, we

write [[T1]], [[T2]], [[e1]], [[e2]], etc. to denote the corresponding, equivalent PVS

expressions. In the following, we summarize (part of) our translation strategy

as exemplified in Figure 5.7:

• For readability, we retain names of the declared variables of function and

function block. To invoke a function or a function block, the name of

the relation has the REQ suffix to denote that it is the requirement

predicate for the corresponding function or function block in ST.

• The theory is parameterized by an arbitrary clock tick interval delta t,

which is used to instantiate the imported timing theory (Section 2.4).

• We formalize all ST (input, output, and local) variables as time-dependent

logical variables in PVS (i.e., functions with the tick domain). We for-

malize ST functions and function blocks as input-output relations whose

parameters are time-dependent (i.e., function blocks constrain inputs

and outputs over time). All ST input and output variables are trans-

lated into global variables in PVS, so that they are implicitly, universally

quantified. On the other hand, local variables and return values from

3Note that negation (NOT ) binds the tightest. Conjunction (AND) binds tighter than
implication (IMPLIES or ⇒).
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function or function block invocations are translated into dummy vari-

ables of an existential quantification, so that they are hidden inside the

function block.

• The function block body is formalized as a relation (i.e., Boolean func-

tion) which constrains the list of input and output variables over all

discrete time ticks. The name of the relation has the ST IMPL suffix

to indicate that it is translated from ST code.

• We define the input-output relation using logical conjunction.

– The first two conjuncts constrain the input and output values of

function and function block invocations, so that their output val-

ues (i.e., v3 and Q) can be referenced later in the table. For each

invocation that occurs in the context of some (nested) conditional

branch, it is invoked by satisfying the corresponding condition row

(e.g., the invocation of function block G is invoked by ¬[[e5]]∧ [[e6]]).

– As output and local variables may be initialized, we use a universal

quantification (over discrete tick values) to distinguish cases of the

initial tick and non-initial ticks. At the initial tick, we constrain

the values of those output and local variables that are explicitly

initialized in the ST code; if no variables are explicitly initialized,

they are set to the default initial values for associated data types

(e.g., [[T2 INI]]). At non-initial ticks, we constrain the value of

each output variable according to how it is updated in the ST code.

For example, the value of v2 at time t, where ¬ init(t), is equal to

either: (1) the value of v3 at time t if [[e5]] holds; (2) the value of

Q at time t if ¬[[e5]] ∧ [[e6]] holds4; or (3) itself at the previous time

tick if ¬[[e5]] ∧ ¬[[e6]].

4This branching condition is guaranteed by the fact that the ST IF-THEN-ELSE statement
evaluates those conditions in order.
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5.2.3 Translation Rules

In this section, we provide the list of translation rules sufficient for translating

ST code supplied by Annex F (IEC, 2003) into PVS.

Notational Convention For clarity, we typeset ST constructs in the code

style (e.g., a + b), and PVS constructs in the math style (e.g., a + b). As

our translation is recursive, when the translation of an ST construct (e.g.,

If-THEN-ELSE statement) involves the translation of its components (e.g.,

branching conditions, body statements, etc.), say e, then we write [[e]] to de-

note the translated PVS expression for e. Moreover, as partly illustrated in

Figure 5.7, we adopt the following conventions: (1) e, e1, e2, etc., denote ST

expressions; (2) v, v1, v2, etc., denote ST variables; (3) f , g, h, etc. denote

standard functions; (4) F , G, H, etc. denote function block names; (5) T , T1,

T2, etc. denote ST types; (6) T INI, T1 INI, T2 INI, etc. denote default initial

values of ST types; (7) S, S1, S2, etc., denote ST statements; and (8) i denotes

a loop counter.

Translation Context Analysis Our translation function [[ ]] often needs

to carry around context information from the translation of one component

to another. Since all ST variables are mapped into time-variant sequences in

PVS, when generating a reference to a variable v, we need to determine either

to refer to: (1) its entirety v as a timed sequence; (2) its value v(0) at the initial

tick; or (3) its value v(t) at some non-initial tick t. As a result, given that

v is the target variable, and ρ ∈ {init, ninit, seq} is the context for variable

references, we write [[ ]]ρv to denote the corresponding translation. We drop the

context when it is unnecessary for the translation in question to proceed. For

example, we write [[ ]]seq to translate the invocation of a function block, where

its arguments are expected to be time-dependent (i.e., timed sequences). In

this example, the target variable is irrelevant and is thus dropped.

Also, we often need to extract information from the ST code fragment

under consideration. For example, given a statement (e.g., the function block

body as a sequential composition), we may extract the list of function block

invocations that it makes. Furthermore, for those invocations, we need to ex-
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tract the exact conditions where they occur and make them as table conditions

accordingly (e.g., see Figure 5.7 where the invocation of function block G is

properly invoked).

We may calculate the write set of a given assignment statement S – the

set of variables that get assigned – so as to determine if a variable has already

been written. If the assignment target matches the context variable v (i.e.,

v ∈ write(S)), variable v is written (or updated) according to our translation

rules; otherwise, we return a special value ε. In the context of ST language,

variables retain the values from the last execution cycle if they are not written

in the current execution cycle (i.e., indicated by returning ε).

Translation Rule 1: Function Block Definition We present the trans-

lation rules to define function blocks in Table 5.1. The definition of each

function block consists of two parts: variable declarations and body definition

(denoted as S). Without loss of generality, the function block declares one

variable from each of the categories (i.e., input, output, and local variable)

with implicit initialization for output variable and explicit initialization for

local variable.

As illustrated in Figure 5.7, each function block defined in ST is mapped

into a PVS theory that has a matching name, and instantiates our timing the-

ory (Section 2.4) with an arbitrarily small, positive clock tick interval delta t.

The ST function block body S is translated into the PVS relation F ST IMPL

that constrains the values of its parameters: the list of inputs and outputs.

Inside the definition of this relation, the invoked functions and function blocks

are mapped to the corresponding requirements predicates (i.e., each has REQ

suffix). We use an existential quantification to hide: (1) the list of local vari-

ables (i.e., v3); and (2) return values from functions or function block invoca-

tions. For (2), we use q (of Type Tq) and Q (of type TQ) to denote the list of

return values of functions and function blocks that are referenced in S, if any.

In the case of functions and function block invocations, as discussed,

we model each function and function block as a relation (a Boolean function)

on the lists of inputs and outputs. Each input or output is time-dependent

and thus modelled as a timed sequence. For example, the translated argument
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ST FB Definition PVS Theory

FUNCTION_BLOCK F

VAR_INPUT

v1: T1
END_VAR

VAR_OUTPUT

v2: T2
END_VAR

VAR

v3: T3 := c

END_VAR

S

END_FUNCTION_BLOCK

F[(IMPORTING Time) delta t: posreal]: THEORY

BEGIN IMPORTING ClockTick[delta t]
[[v1: T1]]
[[v2: T2]]
F ST IMPL(v1, v2): bool =

FORALL (t: tick):
EXISTS ([[v3: T3]], [[q: Tq]], [[Q: TQ]]):
f REQ([[e1]]

seq, . . ., [[em]]seq, q) AND

F REQ([[e1]]
seq, . . ., [[en]]seq, Q) AND

v3(t) = IF init(t) THEN [[c]] ELSE [[S]]v3 ENDIF AND

v2(t) = IF init(t) THEN [[S]]initv2
ELSE [[S]]v2 ENDIF

END F

Table 5.1: ST –to–PVS : function block definition

values of a function or a function block are expected to be timed sequences

[[e1]]
seq, . . . , [[en]]seq, if the associated inputs are i1, i2, . . . , in. In some cases,

multiple function blocks use the same name for their outputs (e.g., both FB1

and FB2 has output Q). We resolve the ambiguity by adding their names as

prefixes (i.e., FB1 Q and FB2 Q). In the same scope of context, these output

variables may be referenced to assign values to other variables. In the case

where an invocation occurs within some (nested) conditional branch, we often

refer to these output variables as the results under the satisfying conditions.

For local and output variables, we consider the initial and non-initial

time ticks separately. In the case of the initial time tick, we constrain values

of variables according to their specified initial values, if specified5. For exam-

ple, v3 is explicitly initialized with the constant [[c]] (of type [[T3]], while v2 is

implicitly initialized with the default value T2 INI (or equivalently [[S]]initv2
).

In the case of non-initial time ticks, we generate a constraint that encodes its

intended update via [[S]]v2 . Given an ST statement S, our translation function

effectively “projects” S onto the target variable (e.g., v2). For example, for

output variable v2, we generate its constraint of intended update via [[S]]v2 .

5According to the IEC 61131-3 (IEC, 2003), uninitialized variable are defaulted to some
values for the associated types (e.g., the default value for Boolean is FALSE).
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The resulting list of “guarded values”, where guards correspond to the branch-

ing conditions of the IF-THEN-ELSE statements in the source ST code can then

be straightforwardly encoded as a TABLE expression in PVS. For example,

as already seen in Figure 5.7, the projection onto output variable v2 results in

three guarded values. When there are multiple output and local variables, we

combine all these constraints via logical conjunctions (e.g., v2 and v3).

Translation Rule 2: Interface Declaration We present the translation

rules for variable declarations in Table 5.2. We retain all variable names in

PVS. Our treatment of the declarations of input (declared under VAR INPUT

... END VAR), output (declared under VAR OUTPUT ... END VAR), and local

variables (declared under VAR ... END VAR) are the same.

ST Variable Declaration PVS Variable Declaration

Variable Declaration without Initialization

v: T v: VAR [tick -> [[T ]]]
Variable Declaration with Initialization

v: T := c v: VAR [tick -> [[T ]]]

Table 5.2: ST –to–PVS : variable declarations

As mentioned above, each ST variable is time-dependent, we thus pa-

rameterize the PVS type [[T ]] (translated from the ST type T) by discrete time

ticks (Section 2.4). Since PVS does not handle initialization in the decla-

ration part, our translation rule does not consider whether or not an initial

value is specified in the source ST code at the level of variable declarations.

Instead, such information is handled at the level of function block definitions

(Table 5.1), where the context init is passed for translating the specified initial

value (i.e., [[c]] of type [[T ]]).

Translation Rule 3: Data Types We present the translation rules for ST

types in Table 5.3. There are four categories of ST types: (1) primitive types

(e.g., integers, reals and Booleans); (2) built-in types (e.g., words and time);
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(3) structured data type (e.g., aggregation data types6 and arrays); and (4)

user-defined function blocks (e.g., F ).

ST Type PVS Type

Primitive Types

INT int
REAL real
BOOL bool

Built-In Types
WORD bvec
TIME tick

Structured Types

STRUCT v1: T1; v2: T2; END STRUCT [#v1: [[T1]], v2: [[T2]]#]

ARRAY[e1 .. e2] OF T ARRAY[subrange([[e1]]
init, [[e2]]

init) -> [[T ]]]

User-Defined Function Blocks
F F REQ

Table 5.3: ST –to–PVS : data types

We interpret each type in PVS as follows:

• Primitive types – we adopt the direct corresponding types in PVS.

• Built-in types – we import relevant theories to support their operations

(i.e., bit vectors bvec from the bv prelude library represents type WORD,

and tick in Section 2.4 represents type TIME).

• Structured types – we need two structured data types: aggregation data

types and arrays. The ST aggregation data types are encoded as PVS

records. Each PVS record element corresponds to one element in the ST

STRUCT. For example, element v1 (of type T1) corresponds to v1 (of type

[[T1]]). Any element of a variable (declared of aggregation data type) can

be referneced. For example, l is of such type and the first element of l is

referneced via l’v1 in PVS. Another structured data type is array which

is directly supported in PVS. The ARRAY type in PVS is essentially

6Aggregation data type is a structured data type which has been declared using STRUCT

in ST. An example is structure ANALOG LIMITS which implements the declarations of pa-
rameters for analog signal monitoring.
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a special case of type FUNCTION with a contiguous subset of integers

for the domain and a proper range type. We use the operator subrange

supported by PVS to denote an integer range with specified lower and up-

per bounds. PVS automatically generates the associated subtype TCCs

for the validity of indices of any variable declared as of type ARRAY .

Lower and upper bounds, e1 and e2, should be integer expressions, which

is guaranteed by our assumption of input type-correctness. As the size

of an array remains unchanged at runtime, values of e1 and e2 must be

available initially. As a result, we write [[e1]]
init and [[e2]]

init to denote the

translated values in PVS.

• Function block – we simply reuse its name with the REQ suffix, assum-

ing that its input-output specification (i.e., F REQ) is translated into a

PVS theory.

Translation Rule 4: Basic Assignments Table 5.4 presents the transla-

tion rules for basic variable assignments in ST. In all cases of assignments, we

return a special value ε when the assignment target does not match the con-

text variable v. Otherwise, the variable assignment is translated in a straight-

forward manner: return the translated value of the assignment source (i.e.,

[[e]]ninit). A match in the case of an aggregation variable assignment returns

the translated value of the assignment source (i.e., [[e2]]
ninit) to the corre-

sponding element (i.e., v’[[e1]]
ninit). A match in the case of an array variable

assignment returns an array that is identical to the original (i.e., v(pre(t))),

except that the item at the specified index is updated.

ST Statement PVS Expression Side Condition

v := e [[e]]ninit v ∈ write(e)
x := e ε x /∈ write(e)

v.e1 := e2 [[e2]]
ninit v.e1 ∈ write(e)

x.e1 := e2 ε x.e1 /∈ write(e)
v[e1] := e2 v(pre(t)) WITH [[[e1]]

ninit := [[e2]]
ninit] v[e1] ∈ write(e)

x[e1] := e2 ε v[e1] /∈ write(e)

Table 5.4: ST –to–PVS : basic assignments
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Translation Rule 5: Conditional Assignments Table 5.5 presents the

translation rule for the IF-THEN-ELSE conditional statement in ST (see an

example in Figure 5.7). In the case of that the context variable v is not

written at all by any of the body statements Si (0 ≤ i ≤ n), we return

ε. Otherwise, the execution semantics of the ST conditional statement is

translated into a list of (disjoint and complete) guards of tables in PVS. Each

guard (e.g., NOT(
∨k−1
j=0 [[ej]]

ninit) AND [[ek]]
ninit, 1 ≤ k ≤ n− 1) is defined as the

conjunction of the translated value of the corresponding branching Boolean

expression (e.g., [[ek]]
ninit) and the translated values of all earlier branching

Boolean expressions (e.g., NOT(
∨k−1
j=0 [[ej]]

ninit)). We use
∨

as a meta-operator

to denote the disjunction of a sequence of expressions occurring in PVS.

ST Statement PVS Expression Side Condition

IF e0
THEN S0

ELSIF e1
THEN S1

. . .
ELSIF en−1

THEN Sn−1

ELSE Sn
END_IF

TABLE

|[[e0]]
ninit

|[[S0]]
ninit
v ||

|NOT([[e0]]
ninit

)AND[[e1]]
ninit

|[[S1]]
ninit
v ||

. . .

|NOT(
∨n−2

j=0 [[ej ]]
ninit

)AND[[en−1]]
ninit

|[[Sn−1]]
ninit
v ||

|NOT(
∨n−1

j=0 [[ej ]]
ninit

) |[[Sn]]
ninit
v ||

ENDTABLE

∃i • v ∈ write(Si)

ε ∀i • v /∈ write(Si)

Table 5.5: ST –to–PVS : conditional statement

The resulting PVS table (i.e., Table 5.5) is a list of translated values

that are guarded by corresponding branching conditions. If any of the body

statements (S0, S1, . . . , Sn) contain further nested IF-THEN-ELSE statements,

then we will have nested table expressions. If the ELSE part is missing from

the source ST code, then v retains the value of itself at the previous tick.

Accordingly, we specify v(pre(t)) as the return value in the PVS table.

Translation Rule 6: Iteration Statements Two types of iterations are

used for the purpose of IEC 61131-3 (IEC, 2003): (1) array assignments; and

(2) sum of array elements. Similar to the case of translating the conditional
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statements, if the context variable v is not written by the loop body statement

S, then we return ε. Otherwise, the target ST code is encoded as (1) an

universally quantified predicate for the case of array assignments; and (2) a

recursive addition for the case of the sum of array elements.

For case (1), the loop body S is of form A[i] := e, where A is an

array which elements are assigned by the evaluated values of e. The assign-

ments statements are encoded as a conjunction of the assignment for each

element, i.e.,
∧[[e2]]

ninit

[[e1]]
ninit [[A]](i) = [[e]]ninit. Equivalently, we generate an univer-

sally quantified predicate over array elements, and the indices of the assigned

elements are bounded by the translated lower and upper bounds (i.e., [[e1]]
ninit

and [[e2]]
ninit). For case (2), the loop body S is of form v := v + A[i], where

some consecutive elements of array A are added. We formulate a recursive

function loop implementing the addition of array elements in PVS. Its termi-

nation is guaranteed by terminate-TCC proof obligation in PVS. The source

ST code is then encoded as an instantiation of function loop added by the

initial value of v (i.e., [[S]]initv ). We instantiate the loop function by passing:

(1) the translated type of v (i.e., [[T ]]); (2) the translated lower and upper

bounds (i.e., [[e1]]
ninit and [[e2]]

ninit); and (3) the translated array A (i.e., [[A]]).

Translation Rule 7: Sequential Assignments We present the translation

rules for the sequential composition of assignments in Table 5.7. We discuss

two scenarios: (1) single assignments; and (2) non-single assignments. For case

(1), when translating assignments statements, we aim to retrieve the list of

guarded values for the context variable v, if v is only assigned once in the block

body. Consequently, when given a sequential composition of two statements

S1 and S2, exactly one of them will return the list of guarded values for the

context variable v. For case (2), we return the list of guarded values generated

in statement S2 for the context variable v, within which v has been updated

by the list of guarded values generated in statement S1, if v is assigned both

in bodies S1 and S2.

We present the translation rules for ST expressions in Tables 5.8 to

5.11. As we have seen so far, each translation of an expression requires a

context of variable reference ρ (i.e., init , ninit , or seq). For the purpose
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ST Statement PVS Expression Side Condition

FOR

i:= e1 TO e2
DO

A[i] := e;

END_FOR

FORALL(i: subrange([[e1]]
ninit

, [[e2]]
ninit

)):

[[A]](i) = [[e]]
ninit

v ∈ write(S)

ε v 6∈ write (S)

FOR

i:= e2 TO e1 BY -1

DO

v := v + A[i];

END_FOR

loop(i, j, [[A]]): RECURSIVE [[T ]] =

IF j = i THEN [[A]](j)
ELSE loop(i, j - 1) + [[A]](j)
ENDIF

MEASURE j

v = loop([[e1]]
ninit

,[[e2]]
ninit

,[[A]]) + [[S]]
init
v

v ∈ write(S)

ε v 6∈ write (S)

where [[e1]]
ninit < [[e2]]

ninit

Table 5.6: ST –to–PVS : iteration statements

of IEC 61131-3 (IEC, 2003), we consider four categories of expressions: (1)

variable referencing (Table 5.8); (2) literal expressions (Table 5.9); (3) standard

function invocations (Table 5.10); and (4) operations (Table 5.11).

Translation Rule 8: Variable Referencing Expressions In the case of

variable referencing (Table 5.8), the referenced variable may be of a basic type

(e.g., real), aggregation type, array type, or to an output of some function block

ST Statement PVS Expression Side Condition

Single Assignments

S1 ; S2

[[S1]]v v ∈ write(S1) ∧ v /∈ write(S2)

[[S2]]v v /∈ write(S1) ∧ v ∈ write(S2)

ε v /∈ write(S1) ∧ v /∈ write(S2)

Non-single Assignments

S1 ; S2 [[S2]][[S1]]v
v ∈ write(S1) ∧ v ∈ write(S2)

Table 5.7: ST –to–PVS : sequential composition
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that was invoked previously. The treatment of each kind of these variables

is similar: depending on the given context ρ of the variable referenced, we

generate the references accordingly. In the case of aggregation variables and

array indexing, we propagate the variable reference context ρ to the translation

of its specified element and index. Furthermore, the sequential execution of

the source ST code makes it possible to refer to the value of context variable

at previous tick. To formalize this, we need to make a case distinction when

the context ρ is ninit : if the variable v has not yet been written, then we write

v(pre(t)) to denote its value from the previous time tick; otherwise, we refer

to its latest value at the current time tick (i.e., v(t)).

ST Expression PVS Expression Side Condition

Referencing Variable

v

v(0) ρ = init

v ρ = seq

v(t) ρ = ninit ∧ v ∈ write(S)

v(pre(t)) ρ = ninit ∧ v /∈ write(S)

Referencing Elements of Aggregation Date

v.e

v’[[e]]init ρ = init

v’[[e]]seq ρ = seq

v(t)’[[e]]ninit ρ = ninit ∧ v ∈ write(S)

v(pre(t))’[[e]]ninit ρ = ninit ∧ v /∈ write(S)

Referencing Elements of Array

v[e]

v(0)[[[e]]init] ρ = init

v[[[e]]seq] ρ = seq

v(t)[[[e]]ninit] ρ = ninit ∧ v ∈ write(S)

v(pre(t))[[[e]]ninit] ρ = ninit ∧ v /∈ write(S)

Referencing Output of Function Block

F.Q

Q(0) ρ = init

Q ρ = seq

Q(t) ρ = ninit ∧ Q ∈ write(S)

Q(pre(t)) ρ = ninit ∧ Q /∈ write(S)

Table 5.8: ST –to–PVS : variable referencing expressions
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Translation Rule 9: Literal Expressions We present the translation rules

for literal expressions in Table 5.9. Integer literals (e.g., 2), real literals (e.g.,

2.0), time literals (e.g., delta t), and Boolean literals (e.g., TRUE) can all

be directly used in PVS. However, since we model each variable as a timed

sequence, we use the lambda expression to create a constant timed sequence.

For example, when the context of a variable reference suggests that a timed

sequence is expected (e.g., in the context of some function block invocation),

then we use the lambda expression to create a constant parameterized by time

ticks (e.g., LAMBDA(t : tick) : 2 .0 ).

ST Expression PVS Expression Side Condition

Integer, Real, or Boolean Literal

l
l ρ 6= seq

LAMBDA(t: tick): l ρ = seq

Time Literal

t 0 ρ = init

[[t]]ρ ρ 6= init ∧ ∃(n : nat) • n× delat t = t

Table 5.9: ST –to–PVS : literal expressions

Translation Rule 10: Function Invocation Expressions Table 5.10

presents the translation rule for the invocation of a standard function f . For

the standard function invocation, we: (1) refer to the output of the predicate

form of f (i.e., [[q]]ρ); or (2) pass the translated argument values in the order

that is defined in the functional form definition of f (i.e., f ([[e1]]
ρ, . . . , [[en]]ρ).

ST Expression PVS Expression Side Condition

Standard Function Invocation

f(p1 := e1, . . . , pn := en) [[q]]ρ f invoked as predicate

f ([[e1]]
ρ
, . . ., [[en]]ρ) f invoked as function

Table 5.10: ST –to–PVS : function invocation expressions
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Translation Rule 11: Operations Expressions The translation rules for

operations expressions are presented in Table 5.11. For all the unary (denoted

by ⊕1) and binary (denoted by ⊕2), we can find the obvious corresponding

operators in PVS. For examples, we generate the ST numerical expressions

(e.g., 1 + 2), relational expressions (e.g., EPS > 0), and logical expressions

(e.g., e1 & e2) directly in PVS. To translate the operands, we propagate the

given context ρ (e.g., [[e]]ρ).

ST Expression PVS Expression Side Condition

Unary Operation
⊕1 e ⊕1 [[e]]ρ none

Binary Operation
e1 ⊕2 e2 [[e1]]

ρ ⊕2 [[e2]]
ρ none

Table 5.11: ST –to–PVS : operation expressions

Our example translation in Table 5.1, though informative, is never-

theless contrived. We provide a complete example translation that is ap-

plied to the HYSTERESIS function block from Annex F (IEC, 2003) in the

Appendix F. This example illustrates the generation of nested PVS tables,

mapped from the nested IF-THEN-ELSE statement in the source ST code.

5.3 Summary

The main contribution of this chapter is a method for formalizing the imple-

mentation of FBs using tabular expressions and the PVS theorem prover.

We formalized the FB implementations written in FBD and/or ST.

To formalize FBD implementations, we provided a compositional approach to

specify the overall behaviour which is built on the formalization of its inter-

nal components. For those FBs that are built on timers, our compositional

approach is still applicable, except that we use the re-formalized timer com-

ponent(s). This allows us to verify the correctness of such real-time FBs con-

cerning timing resolution. To formalize the ST implementation, we developed

a list of translation rules to convert ST descriptions into PVS, sufficient for

formulating all ST specifications supplied by IEC 61131-3 (IEC, 2003). Hence,
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using our method, we are able to formalize all FBs written in FBD and ST in

IEC 61131-3 (IEC, 2003). In the next chapter, we reason about the correctness

of FBs based on our formalizations.
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Chapter 6

Proving Correctness and

Consistency of Function Blocks

In this chapter we discuss how to ensure the correctness and consistency of

FB implementation 1. In Section 6.1, we verify the correctness of FB im-

plementation with respect to its input-output requirements. We discuss the

correctness verification for those FBs that require timing behaviour and for

those that do not, respectively. In Section 6.2, we then verify the consistency

of FB implementation. For those FBs supplied with both ST and FBD in

the standard, we verify the functional equivalence between these two imple-

mentations in Section 6.3. By proving the functional equivalence between two

implementations, we only need to prove the correctness theorem with either

one implementation.

6.1 Proving Correctness of Function Block Im-

plementation

Given the requirements and implementation predicates of a FB, its correctness

can be expressed by a logical implication which asserts that the implementa-

tion conforms to its input-output requirements. The requirements of a FB are

1This chapter is based on the published works in (Pang et al., 2013a) and (Pang et al.,
2015).
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formalized as a predicate constraining the allowable input and output values.

The implementation of a FB, however, describes the combinations of values

which not only appear on the input and output variables (i.e., variables ob-

servable by FB user), but also auxiliary variables (i.e., variable not observable

by FB user). The correctness theorem is formalized in terms of behaviour ob-

served through input and output values, to expresses a relationship between

the implementation and its input-output requirements. We prove the same

correctness theorem to verify both non real-time and real-time FBs. This is

shown in Figure 1.1 on page 10 as proofs of correctness.

Verifying the Correctness of Non Real-Time FB

To be able to reflect the intent of a FB design, the requirements usually spec-

ify a more abstract (and probably non-deterministic) view of its intended be-

haviour than the corresponding implementation. The relationship used to ex-

press correctness between an implementation and its requirements therefore,

in general, is by logical implication rather than strict logical equivalence.

For a given non real-time FB with input list i1, . . . , im and output list

o1, . . . , on, we formulate the correctness of its implementation (say FB IMPL)

with respect to the intended behaviour (say FB REQ) as:

∀ i1, . . . , im • ∀ o1, . . . , on •
FB IMPL(i1, . . . , im, o1, . . . , on) ⇒FB REQ(i1, . . . , im, o1, . . . , on)

(6.1)

Instead of logical implication, logical equivalence can also be a candi-

date way of specifying correctness. The correctness of an implementation is

then asserted by the following theorem:

∀ i1, . . . , im • ∀ o1, . . . , on •
FB IMPL(i1, . . . , im, o1, . . . , on) ≡FB REQ(i1, . . . , im, o1, . . . , on)

(6.2)

The above theorem states that, the behaviour described by implemen-

tation is identical to that formalized by its requirement. Since our formalizing

requirements of FBs are specified using function tables that are completely

deterministic, proving theorem 6.1 entails theorem 6.2.
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For example, to prove that the FBD implementation of block LIM-

ITS ALARM (Figure 5.4) is correct with respect to its requirements (Fig-

ure 3.3), we must prove the following:

∀ H,X,L,EPS • ∀ QH,Q,QL •
LIMITS ALARM IMPL(H,X,L,EPS,QH,Q,QL)

⇒ LIMITS ALARM REQ(H,X,L,EPS,QH,Q,QL)

(6.3)

The above correctness check is encoded in PVS as follows:

LIMITS ALARM CORRECTNESS: THEOREM

FORALL (H,X,L,EPS):

FORALL (QH ,Q,QL):

LIMITS ALARM IMPL(H,X,L,EPS,QH ,Q,QL)

IMPLIES LIMITS ALARM REQ(H,X,L,EPS,QH ,Q,QL)

Verifying the Correctness of Real-Time FB

We prove the same correctness theorem (Equation 6.1) to verify a FB with

timing behaviour. To deal with timing properties, we incorporate the notion

of timing tolerances. Verifying the correctness of FBs with or without timers

both fit into the same framework, and the only difference occurs when timing

requirements are used to monitor elapsed time. The timing tolerance argu-

ment incorporated with timing requirements is passed to a pre-verified timing

operator.

Figure 6.1 shows the same verification process for real-time FBs. We

reuse the operator Held For I to incorporate the notion of timing tolerances

for formalizing input-output requirements (Sections 4.4), and reuse the op-

erator Timer I to formalize IEC 61131-3 timers for formalizing implemen-

tations (Section 5.1.2). The requirements specification is documented as a

Software Requirements Specification (SRS), and the implementation specifi-

cation is as a Software Design Description (SDD). The verification goal of

correctness for real-time FBs remains consistent within our framework. The

relationship between these two timing operators is proved as a general Theo-

rem TimerGeneral I (Hu, 2008): (P Held For I (timeout − δL)) is equivalent
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Pre-developed
Held_For Theory

Held_For_I

TimerGeneral_I
Theorem

Timer_I ≥ timeout - δL IEC 61131-3
Timers

IEC 61131-3 Timers 
Described Using 
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Figure 6.1: Framework of applying the same approach on real-time FBs

to (Timer I (P ) ≥ timeout − δL). For real-time FB, the use of Theorem

TimerGeneral I simplifies the verification work for verifying its correctness.

More precise definitions are provided in Chapter 2.

We follow the same proof patterns as to those FBs that do not use

timers. We apply our approach to verify a realistic real-time subsystems

Trip Sealed-In (Section 7.2) from industry. The patterns of correctness proofs

are identified in Section 7.3.

6.2 Proving Consistency of Function Block Im-

plementation

For a given implementation, we need to ensure that the implementation is

consistent (or feasible), i.e., for each input list, there exists at least one corre-

sponding list of outputs, such that implementation predicate holds. Otherwise,

the implementation trivially implies any requirements. In addition to the cor-

rectness theorem (Equation 6.1), proving the consistency theorem ensures that

the the correctness theorem is proved not merely because it is inconsistent it-
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self. We prove the same consistency theorem to verify both non real-time and

real-time FBs. This is shown in Figure 1.1 on page 10 as proofs of consistency.

Proving Consistency of Non Real-Time Function Block

Consider the same general non real-time FB (Section 6.1), we formulate the

consistency of implementation as:

∀ i1, . . . , im • ∃ o1, . . . , on • FB IMPL(i1, . . . , im, o1, . . . , on) (6.4)

An inconsistent implementation (formalized as a predicate) is one which

is evaluated to FALSE by any allowable values to its input and output vari-

ables. If the correctness is formulated as a logical implication, the inconsistent

implementation implies any requirement specification. It is also considered as

“false implies anything problem” in (Camilleri et al., 1987). In general, con-

sider Equation 6.1, if the implementation predicate FB IMPL is evaluated to

FALSE by any possible values of the variables i1, . . . , im and o1, . . . , on, then

this implication trivially evaluates to TRUE, regardless of what FB REQ is.

The truth of inconsistency for the FB implementation makes the proof of its

correctness invalid.

For example, a simple FBD consists of a negation (NOT) and an ad-

dition FB (AND or +) as shown in Figure 6.2. It takes as inputs i1 (of type

Boolean), i1 (of type integer), and an output o (of type integer). Internal

variable w connects these two FBs by feeding the output of NOT as input of

AND. For simplicity, we omit time argument t for each variable.

i
1

w oANDNOT

i
2

Figure 6.2: Example of an inconsistent FBD

The input-output relations for components are formalized as predicates

REQ NOT and REQ AND. The FBD is formalized as FBD INCONSISTENCY
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in Equation 6.5:

∀ i1, i2 • ∃ o • FBD INCONSISTENCY (i1, i2, o)

≡ ∀ i1, i2 • ∃ o, w • REQ NOT (i1, w) ∧ REQ AND (w, i2, o)

≡ ∀ i1, i2 • ∃ o, w • w = ¬i1 ∧ o = w + i2

≡ ∀ i1, i2 • ∃ o • o = ¬i1 + i2

(6.5)

It is impossible to find such output o that o = ¬i1 + i2 holds, since the input

of AND has to be type of integer. Correspondingly, PVS will generate a proof

obligation (i.e., SUBTYPE -TCC ) for the type mismatch.

Practically, the consistency theorem can be proved trivially for simple

FBs (i.e., one built from basic FBs, without feedback loops or timers). For

example, if we replace NOT with MOVE, and change the type of i1 and w

from Boolean to integer. We then have the following FBD formalization in

Equation 6.6. It is easy to find output o such that o = i1 + i2 holds. For

complex FBs, it may not explicit enough to see the consistency. We consider

the proof of consistency is necessary for both simple and complex FBs.

∀ i1, i2 • ∃ o • FBD CONSISTENCY (i1, i2, o)

≡ ∀ i1, i2 • ∃ o, w • REQ MOVE (i1, w) ∧ REQ AND (w, i2, o)

≡ ∀ i1, i2 • ∃ o, w • w = i1 ∧ o = w + i2

≡ ∀ i1, i2 • ∃ o • o = i1 + i2

(6.6)

In the case of FB LIMITS ALARM, we must prove the following:

∀ H ,X ,L,EPS • ∃ QH ,Q ,QL •
LIMITS ALARM IMPL (H ,X ,L,EPS ,QH ,Q ,QL)

(6.7)

The above consistency check is encoded in PVS as follows:

LIMITS ALARM CONSISTENCY : THEOREM

FORALL (H,X,L,EPS):

EXISTS (QH ,Q,QL):

LIMITS ALARM IMPL(H,X,L,EPS,QH ,Q,QL)
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Proving Consistency of Real-Time Function Block

As shown in Figure 6.1, we prove the same consistency theorem (Equation 6.4)

to verify those FBs that build from IEC 61131-3 timers. We have formalized

these timers using the operator Timer I. The FB implementation is formal-

ized as shown in Equation 5.6b (Section 5.1.2). We also follow the same proof

patterns for the consistency theorem of real-time FBs. The patterns of con-

sistency proofs are identified in Section 7.3.

6.3 Proving Equivalence between FBD and ST

Implementations

In Chapter 5 we discussed how to obtain, for a given FB, a predicate for

its FBD description (say FB FBD IMPL) and one for its ST description (say

FB ST IMPL). Both predicates share the same input list i1, . . . , im and output

list o1, . . . , on. When both ST and FBD implementations are supplied for

the same FB (i.e., STACK INT), it may suffice to verify that each of the

implementations is correct with respect to the requirement. However, as the

behaviour of FB implementations is intended to be deterministic in most cases,

it would be worth proving that the implementations (if they are given to

implement the same algorithm) are equivalent, and generate scenarios (i.e.,

inconsistent behaviour), if any, where they are not. This is also labelled in

Figure 1.1 on page 10 as proofs of equivalence.

Consequently, to verify that the two supplied implementations are equiv-

alent, we must prove the following:

∀ i1, . . . , im • ∀ o1, . . . , on •
FB FBD IMPL(i1, . . . , im, o1, . . . , on) ≡

FB ST IMPL(i1, . . . , im, o1, . . . , on)

(6.8)

As an example, the STACK INT block implements a last-in-first-out

(LIFO) data structure for storing integers. As illustrated in Figure 6.3, it has

five inputs (PUSH, POP, R1, IN, and N) and three outputs (OUT, EMPTY

and OFLO).
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It outputs:

1. an integer value OUT, depending upon which operation was just per-

formed;

2. a Boolean value EMPTY reporting if the current stack has become

empty; and

3. a Boolean value OFLO indicating if the operation performed has caused

a stack overflow.

It may perform:

1. a push operation (set by both the Boolean flag PUSH and the integer

value IN), subject to a limit N on its maximum depth;

2. a pop operation (set by the Boolean flag POP); or

3. a reset operation (set by both the Boolean flag R1 and the new maximum

depth N).

In IEC 61131-3, there are three FBs provided both by ST and FBD

implementations (i.e., WEIGH, ALRM INT and STACK INT). However, the

verification of block STACK INT is an exception in that equivalence check

fails. The ST and FBD implementations are supplied at different levels of ab-

straction. The use of EN/ENO constrains a specific (sequential) order of exe-

cuting internal blocks in the FBD implementation. There is no correspoding

construct in the ST implementation. Consequently, we only attempt to prove

that the implementation predicate of the FBD implementation implies that of

the ST implementation in Equation 6.9. More details on block STACK INT

is discussed in Subsection 7.1.3.1.

∀ PUSH ,POP ,R1 , IN ,N • ∀ OUT ,EMPTY ,OFLO •
STACK INT FBD IMPL(PUSH ,POP ,R1 ,IN ,N ,

OUT ,EMPTY ,OFLO)

⇒ STACK INT ST IMPL(PUSH ,POP ,R1 ,IN ,N ,

OUT ,EMPTY ,OFLO)

(6.9)
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+-----------+

| STACK_INT |

| |

BOOL --|PUSH EMPTY|-- BOOL

BOOL --|POP OFLO|-- BOOL

BOOL --|R1 OUT|-- INT

INT --|IN |

INT --|N |

+-----------+

VAR_INPUT

PUSH, POP: BOOL R_EDGE ; (* Basic stack operations *)

R1 : BOOL ; (* Over-riding reset *)

IN : INT ; (* Input to be pushed *)

N : INT ; (* Maximum depth after reset *)

END_VAR

VAR_OUTPUT

EMPTY : BOOL := 1 ; (* Stack empty *)

OFLO : BOOL := 0 ; (* Stack overflow *)

OUT : INT := 0 ; (* Top of stack data *)

END_VAR

VAR

STK : ARRAY[0..127] OF INT; (* Internal stack *)

NI : INT :=128 ; (* Storage for N upon reset *)

PTR : INT := -1 ; (* Stack pointer *)

END_VAR

Figure 6.3: Block STACK INT declaration (IEC, 2003)

Another example function ALRM INT (declared in Figure 6.4) is sup-

plied both by ST (Figure 6.5a) and FBD (Figure 6.5b). It provides simple

high and low level alarming for an input. It takes as input IN, high threshold

THI, and low threshold TLO, and outputs ALRM INT, high level alarm HI,

and low level alarm LO. The output ALRM INT is TRUE if either a high or

low threshold is exceeded or both, and outputs HI and LO are provided for

the high- or low-level alarm conditions.

However, we identify an issue that high and low alarms are allowed to

occur simultaneously. Our solution will be discussed in detail later in Sec-

tion 7.1.2.8.

We prove that the ST implementation is equivalent to the FBD imple-
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+-----------+ VAR_INPUT

| ALRM_INT | IN : INT ;

| | THI: INT ; (* High threshold *)

INT --|IN |-- BOOL TLO: INT ; (* Low threshold *)

INT --|THI HI|-- BOOL END_VAR

INT --|THL LO|-- BOOL VAR_OUTPUT

| | HI: BOOL; (* High level alarm *)

+-----------+ LO: BOOL; (* Low level alarm *)

END_VAR

Figure 6.4: Block ALRM INT declaration (IEC, 2003)

+---+

IN---| > |---+-----------------HI

THI--| | | +----+

+---+ +--| OR |---ALRM_INT

+---| |

+---+ | +----+

IN---| < |--+------------------LO

THL--| |

+---+

(a) FBD implementation of function
ALRM INT

HI := IN > THI ;

LO := IN < THL ;

ALRM_INT := THI OR THL ;

(b) ST implementation of function ALRM INT

Figure 6.5: FBD and ST implementations of block ALRM INT (IEC, 2013)

mentation as in Equation 6.10:

∀ IN ,THI ,TLO • ∀ HI ,LO ,OUT •
ALRM INT FBD IMPL (IN ,THI ,TLO ,HI ,LO ,OUT ) ≡

ALRM INT ST IMPL (IN ,THI ,TLO ,HI ,LO ,OUT )

(6.10)

6.4 Summary

In this chapter we formally verified the correctness of a FB that is described

in FBD and ST languages. Based on the formalization of the requirements
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and implementation of FBs (Chapters 3, 4 and 5), we formulated three kinds

of verification conditions.

We verified the correctness of a FB that is correct with respect to its

input-output requirement. The correctness theorem is expressed by a logical

implication such that any input and output values that satisfy an implemen-

tation predicate also satisfy their requirement predicate. We then ensure that

the requirement predicate is satisfied – not only because the implementation

predicate is itself inconsistent (i.e., the implementation predicate is evaluated

to FALSE for any possible values of inputs and outputs). We thus formulated

a consistency theorem, which ensures that, for any input values, there exists

an output value such that the implementation predicate holds. Moreover, for

those FBs supplied both by FBD and ST, we proved their equivalence. As a

result, we only need to prove the consistency and correctness for either the ST

implementation or the FBD implementation.

In the next chapter, we present case studies from the IEC 61131-3

FB library and a realistic real-time FB subsystem. We also summarize proof

patterns for our verification conditions.
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Chapter 7

Case Studies

In this chapter we apply our approach to two case studies, the standard

IEC 61131-3 block library and a Trip Sealed-In subsystem from a safety criti-

cal industrial application, to illustrate the value of our approach 1. In the first

case study of the IEC 61131-3 block library, we classify a number of issues into

three broad categories: ambiguous behaviour, missing input assumptions, and

inconsistent implementations (Section 7.1). We provide our suggested solution

for each issue. In the second case study of the Trip Sealed-In subsystem, we

identify an initialization failure, and suggest a possible solution (Section 7.2).

We then summarize the proof patterns that can be used as guidance to dis-

charge the proof obligations of consistency and correctness (Section 7.3).

7.1 Example: IEC 61131-3 Block Library

To justify the value of our approach, we formalized and verified all of the

standard functions and FBs supplied by IEC 61131-3 including Annex F (IEC,

2003). As a result, we uncovered blocks with ambiguous behaviour, missing

input assumptions, and inconsistent implementations. We will discuss each

issue in the following subsections.

1This chapter is based on the work in (Pang et al., 2014a) (under minor revision), and
the published work in (Pang et al., 2015).
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7.1.1 Ambiguous Bahaviour

7.1.1.1 Timer Pulse in Timing Diagrams

Block PULSE is a timer defined in IEC 61131-3, which has been introduced in

Section 4.2.3. We already formalized the black-box behaviour of the PULSE

timer using function tables (Figure 4.6). In this section we discuss two scenar-

ios that are not specified in the standard, and suggest possible behaviours for

these input trajectories.

Most of the critical behaviours have been captured by the timing di-

agrams in the Standard, but subtle or critical boundary cases are likely to

be missing, since timing diagrams specify a limited number of use cases for

the intended behaviour. We formalize the PULSE timer using function tables

that ensure that all possible input sequences are covered (completeness) and

are handled in an unambiguous fashion (disjointness). We found that there

are at least two scenarios that are not covered by the timing diagram supplied

by IEC 61131-3 (Figure 4.5).

1. If a rising edge of condition IN occurred at t2 + PT, should there be

a pulse generated to let output Q remain TRUE for another PT time

units? If so, there would be two connected pulses: from t2 to t2 + PT

and from t2 + PT to t2 + 2PT.

2. If the rising edge that occurred at t3 stays high until some time tk (t2 +

PT ≤ tk ≤ t4), should the output ET be reset to 0 at time t2 + PT or

at time tk?

We use three function tables (Figure 4.2.3) to formalize the complete

and disjoint behaviour of the PULSE timer. As a result, we make explicit

assumptions to disambiguate the above two scenarios. Scenario 1 would match

the condition row in the upper-left table for output Q, where Q at the previous

time tick holds (i.e., Q−1) and Q has already held for PT time units, so the

problematic rising edge that occurred at t2 + PT would be missed. Due to

our solution to Scenario 1 (that the rising edge of IN at t2 + PT is missed),

Scenario 2 would match the condition row in the lower table for output ET,
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where both Q and condition IN at the current time tick do not hold (i.e., ¬Q

∧ ¬IN), so the value of ET is reset back to 0.

As PULSE timer is not supplied with an implementation, there are no

correctness and consistency proofs to be conducted. Nonetheless, obtaining

a precise, complete, and disjoint requirements specification is invaluable for

anyone creating a concrete implementation.

7.1.1.2 Implicit Delay Unit of the SR and RS Latches

The semantics of feedback loops is critical for defining the exact behaviour of

FBs that use them, and should thus be made explicit and precise. In an effort

to achieve this, we introduce mathematical rigour for the purpose of making

implicit meanings both explicit and precise. Therefore, in our modelling frame-

work of time, we formalize a delay unit z−1 (Section 5.1.1) to explicitly inform

users that there will be delay of one unit of time before the newly-evaluated

feedback value can be used as an input.

+-------+

| SR |

BOOL --|S1 Q1|-- BOOL

BOOL --|R |

+-------+

(a) Declaration of function block SR

+-----+

S1----------------| >=1 |---Q1

+---+ | |

R------o| & |-----| |

Q1------| | | |

+---+ +-----+

(b) FBD implementation of function block SR

Figure 7.1: Block SR declaration and FBD implementation (IEC, 2003)

The block SR creates a set-dominant latch (a.k.a., flip-flop) in Fig-

ure 7.1. Block SR takes as inputs a Boolean set flag S1 and a Boolean reset

flag R, and returns a Boolean output Q1. The value of Q1 is fed back as
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∧ DISJ (S1 , w2,Q1 )
∧ z−1 (Q1 , w3)



Figure 7.2: Block SR implementation in FBD and its formalizing predicate

another input of block SR itself. Value of Q1 remains TRUE as long as the

set flag S1 is enabled. Q1 is reset to FALSE not only when the reset flag is

enabled, but also when the set flag is disabled (so it cannot dominate the out-

put result). Otherwise, Q1 stays unchanged. There should be a delay between

the value of Q1 which is computed and passed to the next execution cycle.

We formalize this by adding the explicit unit delay block z−1 (as formalized in

Figure 5.2) and conjoining predicates for the internal blocks. IEC 61131-3 uses

a circle (e.g., the upper input to conjunction block in Figure 7.1b) to negate

the value of Boolean input signal. We explicitly replace such circle with a

negation block wherever it occurs.

Thus we revise the FBD implementation of block SR in Figure 7.2.

Blocks B1 (formalized by predicate NEG), B2 (CONJ ), B3 (DISJ ), and B4

(z−1) in Figure 7.2 denote the FB of, respectively, logical negation, conjunc-

tion, disjunction, and delay. Arrows w1, w2, and w3 are internal connectives

that are used to connect those internal blocks.

Adding an explicit unit delay block z−1 to formalize feedback loops led

us to discharge the correctness and consistency theorems of the FBD imple-

mentation in Figure 7.2. More precisely, the following theorems, as formulated

in (7.1) and (7.2), are discharged in PVS, in which SR FBD IMPL, SR REQ

denote the FBD implementation and the tabular requirement of block SR.

∀S1, R • ∀Q1 • SR FBD IMPL (S1, R,Q1)⇒ SR REQ (S1, R,Q1) (7.1)
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∀S1, R • ∃Q1 • SR FBD IMPL (S1, R,Q1) (7.2)

The requirement of SR is formalized using a function table (Figure 7.3).

Result

Condition Q1

S1 1

¬S1
R 0
¬R NC

Figure 7.3: Requirement of the SR block using tabular expression

Symmetrically, we explicitly add a unit delay into the FBD implemen-

tation of the reset-dominant latch RS. As a result, we prove its consistency

and correctness theorems as well.

7.1.2 Missing Input Assumptions

7.1.2.1 Limit on the Counters Blocks CTU, CTD, and CTUD

IEC 61131-3 describes three types of counters. An up-down counter (CTUD)

in IEC 61131-3 is composed of an up counter (CTU ) and a down counter

(CTD). The ST implementation and graphical declaration are provided in the

standard as shown in Figure 7.4.

The output counter value CV is incremented (using the up counter)

if a rising edge is detected on an input condition CU, or CV is decremented

(using the down counter) if a rising edge is detected on the input CD. Actions

of increment and decrement are subject to, respectively, a high limit PVmax

and a low limit PVmin. The value of CV is loaded to a preset value PV,

if a load flag LD is TRUE ; and it is defaulted to 0 if a reset condition R is

enabled. Two Boolean outputs are produced to reflect the change on CV :

QU ≡ (CV > PV) and QD ≡ (CV <= 0). Note that the lines connected to CU

and CD inputs are right-arrowed. In the IEC 61131-3, it denotes the signals

from a rising edge detector function block. Similarly, left-arrowed lines denote

the signals from a falling edge detector function block. We have formalized

and verified these two blocks in PVS.

91



PhD Thesis – Linna Pang – McMaster – Computing and Software

+--------+

| CUTD |

BOOL -->CU QU|-- BOOL

BOOL -->CD QD|-- BOOL

BOOL --|R |

BOOL --|LD |

INT --|PV CV|-- INT

+--------+

FUNCTION_BLOCK CTUD

VAR_INPUT

CU, CD : BOOL R_EDGE; (* Value to be

counted up/down *)

R : BOOL (* Reset *)

LD : BOOL (* Load value flag *)

PV : INT (* Preset value *)

END_VAR

VAR_OUTPUT

QU : BOOL(* Compare CV with PV for up counter *)

QD : BOOL(* Compare CV with 0 for down counter *)

CV : INT (* Current counted value *)

END_VAR

IF R THEN CV := 0 ;

ELSIF LD THEN CV := PV ;

ELSE

IF NOT (CU AND CD) THEN

IF CU AND (CV < PVmax)

THEN CV := CV + 1 ;

ELSIF CD AND (CV > PVmin)

THEN CV := CV - 1 ;

END_IF ;

END_IF ;

END_IF ;

QU := (CV >= PV) ;

QD := (CV <= 0) ;

END_FUNCTION_BLOCK

Figure 7.4: Block CTUD declaration and ST implementation (IEC, 2003)

As we attempted to formalize and verify the correctness of the ST im-

plementation of block CTUD supplied by IEC 61131-3, we found two missing

input assumptions:

1. The relationship between the high and low limits is not stated. Let

PVmin be 10 and PVmax be 1, then the counter can only increment

when CV < 1, decrement when CV > 10 (disabled when 1 ≤ CV ≤ 10).

This contradicts with our intuition about how low and high limits are

used to constrain the behaviour of a counter. Consequently, we introduce

a new assumption2: PVmin < PVmax.

2. The range of the preset value PV, with respect to the limits PVmin and

2If the less intuitive interpretation is intended, we fix the assumption accordingly.
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PVmax, is not clear. If CV is loaded by the value of PV, such that PV >

PVmax, the output QU can never be TRUE, as the counter increments

when CV < PVmax. Similarly, if PV is such that PV < PVmin and

PV = 1, the output QD can never be TRUE, as the counter decrements

when CV > PVmin. As a result, we introduce another assumption:

PVmin < PV < PVmax.

Result

Condition CV
R 0

¬R

LD PV

¬LD

CU ∧ CD NC

CU∧¬CD
CV−1< PVmax CV−1+1
CV−1≥ PVmax NC

¬CU∧CD
CV−1> PVmin CV−1-1
CV−1≤ PVmin NC

¬CU ∧ ¬CD NC
assume: PVmin < PV < PVmax

Figure 7.5: The requirement of block CTUD using tabular expression

Our tabular requirement for the up-down counter that incorporates the

missing assumption is shown in Figure 7.5. Similarly, we added PV < PVmax

and PVmin < PV as assumptions for, respectively, the up and down counters.

7.1.2.2 Deadband Size of the HYSTERESIS Block

As one running example (Section 2.5.1), block HYSTERESIS implements a

Boolean hysteresis. The input-output requirement is formalized using function

table (Figure 3.1). In Section 3.3, we indicate a missing assumption on the

deadband size (i.e., the deadband size should be positive). In this section, we

will discuss the found issue in detail.

For the behaviour specified in Figure 3.1, it is necessary to have the

assumption about the value of EPS being non-negative. Otherwise, the two

intervals XIN1 > (XIN2+EPS) and XIN1 < (XIN2−EPS) may overlap

(i.e., the two constraints are not disjoint) when EPS < 0, and an unprov-

able proof obligation (TCC of Disjointness) is generated in PVS (Figure 7.6).
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We differentiate the deadband size defined in the Standard with respect to

EPS NO and the deadband size with our suggested assumption with respect

to EPS in PVS.

% Disjointness TCC generated (at line 63, column 7) for

% TABLE

% ------------------------------------------+-------++

% | XIN1(t) < (XIN2(t) - EPS NO(t)) | FALSE ||

% ------------------------------------------+-------++

% |(XIN2(t) - EPS NO(t)) <= XIN1(t) AND

% XIN1(t) <= (XIN2(t) + EPS NO(t)) |PREV ||

% ------------------------------------------+-------++

% | (XIN2(t) + EPS NO(t)) < XIN1(t) | TRUE ||

% ------------------------------------------+-------++

% ENDTABLE

% unfinished

HYSTERESIS REQ WITHOUT ASSUMP TCC1: OBLIGATION

FORALL (XIN1 ,XIN2 ,EPS NO: [tick[delta t] → real],
Q: pred[tick[delta t]], t):

NOT init(t) IMPLIES

(FORALL (PREV : bool):
PREV = Q(pre(t)) IMPLIES

NOT (XIN1(t) < (XIN2(t) - EPS NO(t)) AND

((XIN2(t) - EPS NO(t)) < XIN1(t)) &

(XIN1(t) <= (XIN2(t) + EPS NO(t)))) AND

NOT (XIN1(t) < (XIN2(t) - EPS NO(t)) AND

(XIN2(t) + EPS NO(t)) < XIN1(t)) AND

NOT ((((XIN2(t) - EPS NO(t)) <= XIN1(t)) &

(XIN1(t) <= (XIN2(t) + EPS NO(t))))
AND (XIN2(t) + EPS NO(t)) < XIN1(t)))

Figure 7.6: Unprovable disjointness TCC for the HYSTERESIS block

Nonetheless, in practice, subject to the oscillation on the sensor value

XIN1, the value of input EPS should be positive (and sufficiently large) to

create a deadband for stabilizing the value of output Q. For example, the

deadband size of a trip hysteresis is 50 mV in nuclear domain. Therefore, in

our PVS models, when proving the correctness of HYSTERESIS and blocks
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that use it (e.g., the LIMITS ALARM block discussed in Subsection 7.1.2.3),

we adopt a stronger assumption EPS > 0 than that for Figure 3.1.

FUNCTION_BLOCK HYSTERESIS

(* Boolean hysteresis on difference *)

(* of REAL inputs, XIN1 - XIN2 *)

VAR_INPUT

XIN1, XIN2, EPS : REAL;

END_VAR

VAR_OUTPUT

Q : BOOL := 0;

END_VAR

IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := 0; END_IF;

ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1;

END_IF ;

END_FUNCTION_BLOCK

Figure 7.7: ST Implementation for the HYSTERESIS Block (IEC, 2003)

We will relax such assumption later in this section (in Figure 7.9), by

considering the behaviour of the HYSTERESIS block with a negative dead-

band size. For the purpose of verification, we translate the ST implementation

(as shown in Figure 7.7) into a PVS predicate that has a tabular structure in

Figure 7.8. In this complete and disjoint tabular representation of the ST

code, there is no assumption about the value of input EPS (i.e., whether or

not it is positive).

Result

Condition Q

¬Q−1
XIN1 > (XIN2 + EPS ) TRUE
XIN1 ≤ (XIN2 + EPS ) NC

Q−1
XIN1 ≥ (XIN2 − EPS ) NC
XIN1 < (XIN2 − EPS ) FALSE

Figure 7.8: ST implementation of block HYSTERESIS in tabular expressions:
with no assumption on EPS

However, the behaviour of the ST code (Figure 7.8) does not conform

to that in Figure 3.1. The implementation supplied by the standard actually

allows a toggling behaviour on the value of output Q. In the case of a negative
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value for EPS, the value of output Q alternates between FALSE and TRUE

Let’s consider a concrete example. Say EPS = −2, XIN1 = 1, and XIN2 = 2,

then by executing the ST code (Figures 7.7 and 7.8) multiple times, we obtain

alternating (or toggling) results (of FALSE and TRUE) for Q.

Nonetheless, the toggling behaviour may or may not be what users of

IEC 61131-3 expect. In case it is, we provide an extended tabular requirement

that incorporates the case of negative EPS (Figure 7.9), where the two rows

under the condition that EPS < 0 ∧ (XIN2 + EPS) < XIN1 < (XIN2 − EPS)

represent the toggling behaviour.

Result

Condition Q

EPS ≥ 0
XIN1 > (XIN2 + EPS ) TRUE

(XIN2 − EPS ) ≤ XIN1 ≤ (XIN2 + EPS )
Q−1 TRUE
¬Q−1 FALSE

XIN1 < (XIN2 − EPS ) FALSE

EPS < 0

XIN1 ≥ (XIN2 − EPS ) TRUE

(XIN2 + EPS ) < XIN1 < (XIN2 − EPS )
Q−1 FALSE
¬Q−1 TRUE

XIN1 ≤ (XIN2 + EPS ) FALSE

Figure 7.9: Requirement of block HYSTERESIS: no assumption on EPS

7.1.2.3 High/Low Limits of the LIMITS ALARM Block

As another running example (Section 2.5.2), the LIMITS ALARM block im-

plements a high/low limit alarm with hysteresis on both outputs. The input-

output requirement is formalized using function tables (Figure 3.3). We for-

malize the supplied FBD implementation as a conjunction of those predicates

that formalize internal components (Equation 5.1). Its verification conditions

are in Equations 6.3 and 6.7. In this section we discuss how our formalization

process reveals the need for two missing input assumptions of this block.

1. Similar to the case of the HYSTERESIS block (Subsection 7.1.2.2), we

impose an assumption EPS > 0 (i.e., positive hysteresis deadband size)

to ensure that the two hysteresis zones [L, L+ EPS] and [H − EPS, H]
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are computed in the right directions and non-empty. Otherwise, an

unprovable disjointedness TCC will be generated.

We solve it by defining a function type timed posreal , i.e., a function

from tick to positive real. Variable EPS is declared to be of this type.

The other two inputs X and L are declared of type timed real , i.e., a

function from tick to real.

timed posreal: TYPE = [tick -> posreal]

EPS: VAR timed posreal

2. We impose another assumption H − EPS > L + EPS, or equivalently

H − L > 2EPS, to separate two hysteresis zones. The intention of

having both high and low limits is to have two disjoint hysteresis zones.

Otherwise, if the two zones overlap, then the high and low alarms may

be tripped simultaneously, which would falsify the system property that

at any time only the high limit or low limit can be tripped.

We solve this by introducing a dependent type to impose the constraint

on the relationship between high limit and low limit. Input H is declared

to be of this type.

dependent high limit type: TYPE =

[L: timed real, EPS: timed posreal ->

{H : timed real | FORALL (t: tick): H(t) - L(t) > 2*EPS(t)}]

H : VAR dependent high limit type

During the proof of overall correctness, we introduce three lemmas,

each corresponding to the correctness of an output variable. P QH , P QL,

and P Q are predicates specifying the intended behaviour of outputs QH, QL,

and Q. This exemplifies the decomposition of the proof for the goal theorem

into smaller ones.

OUTPUT QH CORRECTNESS CHECKING: LEMMA

LIMITS ALARM IMPL(H ,X ,L,EPS,QH ,Q,QL)=>f QH(X ,H ,L,EPS,QH )

OUTPUT QL CORRECTNESS CHECKING: LEMMA
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LIMITS ALARM IMPL(H ,X ,L,EPS,QH ,Q,QL) => f QL(X ,L,EPS,QL)

OUTPUT Q CORRECTNESS CHECKING: LEMMA

LIMITS ALARM IMPL(H ,X ,L,EPS,QH ,Q,QL) => f Q(QH ,QL,Q)

Having introduced the dependent type of dependent high limit type,

we are able to prove the invariant property, that high alarm and low alarm

can not be tripped at the same time, as a theorem PROPERTY0 .

PROPERTY0: THEOREM

LIMITS ALARM IMPL(X ,H ,L,EPS,QH ,Q,QL)

=> FORALL (t: tick): NOT (QH (t) AND QL(t))

Incorporating these two assumptions with our tabular requirement, we

proved that the ST implementation supplied by IEC 61131-3 is both correct

and consistent.

7.1.2.4 Initialization Failure of the DELAY Block

The DELAY block (Figure 7.10a) generates an N-sample delay between the

input XIN and the output XOUT. That is, the value of XOUT corresponds

to the value of the last N th XIN. The delay may be disabled, i.e., XOUT =

XIN, by setting a Boolean input flag RUN to FALSE.

More precisely, we formulate the requirement of the DELAY block using

the tabular expressions in Figure 7.11. The upper table in Figure 7.11 specifies

last disabled, the latest moment in time when the input flag RUN is set to

FALSE. The lower table in Figure 7.11 documents the relation between the

inputs (i.e., N, XIN, and RUN) and the output (i.e., XOUT). When the delay

is disabled (i.e., RUN is FALSE), the value of XOUT is set to that of XIN (i.e.,

no delay is occurring). Otherwise, when the delay is enabled, we differentiate

between two cases: whether or not RUN is set to TRUE for a time period of

at least N ticks. First, if the delay has been enabled for sufficiently long, the

value of XOUT is set to that of XIN N ticks behind. Second, before the value

of delayed XIN is ready, the value of XOUT is set to that of XIN at time (i.e.,

last disabled) when the DELAY block was last disabled.
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+------------+

| DELAY |

BOOL --|RUN XOUT|-- REAL

REAL --|XIN |

INT --|N |

+------------+

(a) Declaration of function block DELAY

FUNCTION_BLOCK DELAY (* N-sample delay *)

VAR_INPUT

RUN : BOOL ; (* 1 = run, 0 = reset *)

XIN : REAL ;

N : INT ; (* 0 <= N < 128 or manufacturer- *)

END_VAR (* specified maximum value *)

VAR_OUTPUT XOUT : REAL; END_VAR (* Delayed output *)

VAR X : ARRAY [0..127] (* N-Element queue *)

OF REAL; (* with FIFO discipline *)

I, IXIN, IXOUT : INT := 0;

END_VAR

IF RUN THEN IXIN := MOD(IXIN + 1, 128) ; X[IXIN] := XIN ;

IXOUT := MOD(IXOUT + 1, 128) ; XOUT := X[IXOUT];

ELSE XOUT := XIN ; IXIN := N ; IXOUT := 0;

FOR I := 0 TO N DO X[I] := XIN; END_FOR;

END_IF ;

END_FUNCTION_BLOCK

(b) ST implementation of function block DELAY

Figure 7.10: Block DELAY declaration and ST implementation (IEC, 2003)

The ST implementation of the DELAY block (Figure 7.10b) uses a

circular array X to maintain a sliding window of size N, as new values of the

sample XIN are read. Then, the output XOUT corresponds to the cell in array

X that is N-position behind the current sample XIN. Two auxiliary variables,

IXIN and IXOUT, are used to store indices of cells that store, respectively,

XIN and XOUT. When the input flag RUN is set to TRUE, indicating that

the N-sample delay should be in effect, values of both IXIN and IXOUT are

incremented accordingly to slide the window3. Otherwise, values of IXIN,

IXOUT, and their in-between cells are reset.

Inspecting its ST implementation, the intended usage of the DELAY

3This circular operation is implemented by a division modulo operator mod.
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block requires RUN being disabled in order to properly set the two indices. As

an example, consider the following use case: (1) disable RUN initially (t = 0)

to properly separate the two indices apart; and (2) enable RUN from then on

(t > 0). For phase (2), there are two cases to consider. Before N samples have

been collected, the output value should equal to that of the input when RUN

was last disabled. After N samples have been buffered, the proper delay effect

should be observed: output value equals to that of the last Nth input.

However, we discovered that the supplied ST implementation does not

prevent users from enabling RUN initially, in which case the delay effect will

never occur, even after N sample have been collected. More precisely, we were

unable to prove the following property, which justifies itself by formalizing the

informal requirements of the DELAY block (IEC, 2003, p187): “This function

function block implements an N-sample delay”, meaning that the value of

output should equal to that of the input N-samples ago.

IXIN IXOUT REL: LEMMA

MOD(f IXOUT (RUN )(t) + N , 128) = f IXIN (RUN ,N )(t)

Recursive functions f IXOUT and f IXIN return the current value of, respec-

tively, IXOUT and and IXIN. Lemma IXIN IXOUT REL states that, in the

context of a circular array of size 128, IXOUT is N always samples behind

IXIN. The proof is based upon an induction on time t using the induc-

tion scheme time induction (see Section 2.4). By reformatting the generated

unprovable PVS sequent, we obtained an unprovable predicate: init(t) ⇒
mod(0 + N , 128) = 0. That is, the initial distance between cells referenced

by IXIN and IXOUT should be N, but the initialization in the original imple-

mentation in the standard failed to satisfy this constraint.

From the ST implementation in Figure 7.10, both IXIN and IXOUT

are initialized to 0. This means that initially they point to the same the cell

in array X. As the DELAY block remains enabled (i.e., input RUN set to

TRUE), both IXIN and IXOUT are incremented and will thus always point

to the same cell. Consequently, there is no effect of an N-sample delay.

We propose to solve this issue by initializing IXIN to N instead of

0, such that cells referenced by IXIN and IXOUT are N samples apart. As
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a result, we are able to prove that the revised implementation satisfies the

lemma IXIN IXOUT REL.

Moreover, the value of N may be set to 0, which means there should be

0-sample delay in effect. In this case, both IXIN and IXOUT will, consistently,

always point to the same cell in array X. However, allowing such a boundary

value for N can have dangerous consequence, e.g., the client block PID (Sub-

section 7.1.2.6) uses the DELAY block as one of its components. As a result,

we consider the input of N = 0 to be an unacceptable case and redefine the

type of N by excluding value 0: {1, 2, . . . , 128}.
Finally, based on the above reasoning, we formalize the complete tab-

ular requirement for the DELAY block (Figure 7.11).

Result

Condition last disabled
t = 0 0

t > 0
RUN NC
¬RUN t

Result

Condition XOUT
¬RUN XIN

RUN
Held For(RUN, N·δ) XIN−N
¬Held For(RUN, N·δ) XIN−rank(t−last disabled)

Figure 7.11: Requirement of block DELAY

7.1.2.5 Division by Zero of the AVERAGE Block

The AVERAGE block (whose declaration is shown in Figure 7.12a) computes

a running average XOUT over the last N values of the input sample XIN.

The ST implementation of AVERAGE (shown in Figure 7.12b) indicates that

it is a composite FB. It references an instance of the DELAY block (Sub-

section 7.1.2.4), storing the latest N values of the input XIN, to maintain an

internal sliding window of size N. An internal variable SUM is used to store the

running average, updated by subtracting the oldest value (i.e., output value

from the DELAY instance) and adding the current value of XIN. Furthermore,

the output XOUT may be calculated differently depending upon the value of a
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Boolean input flag RUN. If RUN is TRUE, then the value of XOUT represents

the running average SUM /N as expected. Otherwise, it is reset to the current

value of the input XIN.

+------------+

| AVERAGE |

BOOL --|RUN XOUT|-- REAL

REAL --|XIN |

INT --|N |

+------------+

(a) Declaration of function block AVERAGE

FUNCTION_BLOCK AVERAGE

VAR_INPUT

RUN : BOOL ; (* 1 = run, 0 = reset *)

XIN : REAL ; (* Input variable *)

N : INT ; (* 0 <= N < 128 or manufacturer *)

END_VAR (* specified maximum value *)

VAR_OUTPUT XOUT : REAL ; (* Averaged output *)

END_VAR

VAR SUM : REAL := 0.0; (* Running sum *)

FIFO : DELAY ; (* N-Element FIFO *)

END_VAR

SUM := SUM - FIFO.XOUT ;

FIFO (RUN := RUN , XIN := XIN, N := N) ;

SUM := SUM + FIFO.XOUT ;

IF RUN THEN XOUT := SUM/N ;

ELSE SUM := N*XIN ; XOUT := XIN ;

END_IF ;

END_FUNCTION_BLOCK

(b) ST implementation of function block AVERAGE

Figure 7.12: Block AVERAGE declaration and ST implementation (IEC,
2003)

Based on our understanding of the ST implementation, we formulate

the requirement of the AVERAGE block in Figure 7.13. Similar to the case

of the the DELAY block (Subsection 7.1.2.4), the value of XOUT is specified

using last disabled (i.e., the time when RUN was last set to FALSE) and the

Held For (Section 4.2.3) timing operator. There are four cases to consider:

1. If RUN is FALSE, then XOUT is set to the current value of XIN.
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Result

Condition last disabled
RUN NC
¬RUN t

Result

Condition XOUT
¬RUN XIN

RUN

Held For(RUN, N·δ) XIN +
∑N−1

i=1 XIN−i

N

¬Held For(RUN, N·δ)

¬RUN−1 XIN−1

RUN−1

XIN +
∑#new vals

i=1 XIN−i

N +∑#old vals
i=1 XIN−rank(t−last disabled)

N
#new vals = rank(t - last disabled) - 1

#old vals = N - #new vals - 1

Figure 7.13: Requirement of block AVERAGE

2. If RUN remains TRUE for a time period of at least N ticks, then XOUT

is set to the average of the most recent N values of input sample XIN.

3. If RUN has just become TRUE at the current instant, then XOUT is set

to the value of XIN when RUN was last stopped (i.e., XIN −1).

4. If RUN has not remained TRUE for sufficiently long, then XOUT is set to

the average over: (1) samples taken since after the moment in which RUN

was last FALSE (i.e., instant last disabled); and (2) a number of copies of

the value of XIN at instant last disabled (i.e., XIN−rank(t−last disabled)
4).

The obvious constraint is that the total number of samples from (1) and

(2) equals N.

As an example, consider the following scenario, where currently t = 6

and RUN has become and remained TRUE since when t = 4:

4Here rank(t− last disabled) denotes the number of ticks occurring between last disabled
and now (i.e., the current time tick).
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RUN

         t=3
 (rank of last_disabled)

t=4 t=5   t=6
 (now)

t=2
time

TRUE

FALSE

In the above scenario, the resulting average XOUT should be

XIN + (XIN−1 +XIN−2) +XIN−3 × 2

5

where XIN−1 and XIN−2 denote values of XIN when, respectively, t =

5 and t = 4. Say the sliding window size is 5, so we need to count two

copies of the value of XIN at instant last disabled (i.e., XIN−3).

However, the range of N (i.e., {0, 1, 2, ..., 128}) includes the possibility

of zero. This means that when RUN is TRUE and the value of N happens to

be set zero, the value of the running average will be undefined due to a division

by zero. This issue is reflected by an unprovable PVS proof obligation:

% Subtype TCC generated (at line 72, column 31) for n

% expected type nznum

% unfinished

Average impl st TCC1: OBLIGATION

FORALL(run:pred[tick[delta t]], n:DelayUnits[delta t], t:tick[delta t]):

run(t) AND NOT init(t) => n /= 0;

The above proof obligation is generated when the implementation predicate is

type-checked. It states that when input RUN is TRUE and the current tick is

not the initial tick, the value of N can not be zero. However, this sequent is

unprovable. We propose to solve this issue by constraining the type of N such

that the value of zero is excluded: {1, 2, ..., 128}.

7.1.2.6 Division by Zero of the PID Block

A PID (proportional-integral-derivative) controller (see Figure 7.14) is a widely

used control loop feedback mechanism. The output signal from the PID, based
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upon its internal three-term computation, is used in many industrial applica-

tions where stable control is required using the feedback of the input process

value. It calculates an error value as the difference between a measured process

variable (PV ) and a desired setpoint (SP ) to minimize the error by adjusting

the process. The output of the PID controller is calculated by summing up

the proportional, integral, and derivative terms. The PID output is as follows:

output(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
d

dt
e(t),

where Kp is proportional gain, Ki is integral gain, Kd is derivative gain, e is

error, t is time, and τ is variable of integration.

  
K i ∫0

t
error (t)dt

K p error (t )

  K d

d error (t )
dt

Proportional

Integral

Differential

Error∑ ∑ Process

Output

SP

PV

+

-

Figure 7.14: A block diagram of a PID controller

The PID block (declared in Figure 7.15a) implements this classical

three-term controller for closed-loop feedback control. At each current time

instant t, the PID controller computes an “error” value as the difference be-

tween values of a measured process (PV) variable and a desired set point

(SP). The controller then outputs a control signal (XOUT) as the result of

a weighted sum of three terms: (1) the proportional term (depending on the

current error); (2) the integral term (depending on errors accumulated from
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+------------+

| PID |

BOOL --|AUTO XOUT|-- REAL

REAL --|PV |

REAL --|SP |

REAL --|X0 |

REAL --|KP |

REAL --|TR |

REAL --|TD |

TIME --|CYCLE |

+------------+

(a) Declaration of function block PID

FUNCTION_BLOCK PID

VAR_INPUT

AUTO : BOOL ; (* 0 - manual , 1 - automatic *)

PV : REAL ; (* Process variable *)

SP : REAL ; (* Set point *)

X0 : REAL ; (* Manual output adjustment - *)

(* Typically from transfer station *)

KP : REAL ; (* Proportionality constant *)

TR : REAL ; (* Reset time *)

TD : REAL ; (* Derivative time constant *)

CYCLE: TIME ; (* Sampling period *)

END_VAR

VAR_OUTPUT XOUT : REAL; END_VAR

VAR ERROR : REAL ; (* PV - SP *)

ITERM : INTEGRAL ; (* FB for integral term *)

DTERM : DERIVATIVE ; (* FB for derivative term *)

END_VAR

ERROR := PV - SP ;

(*** Adjust ITERM so that XOUT := X0 when AUTO = 0 ***)

ITERM (RUN := AUTO, R1 := NOT AUTO, XIN := ERROR,

X0 := TR * (X0 - ERROR), CYCLE := CYCLE) ;

DTERM (RUN := AUTO, XIN := ERROR, CYCLE := CYCLE) ;

XOUT := KP * (ERROR + ITERM.XOUT/TR + DTERM.XOUT*TD) ;

END_FUNCTION_BLOCK

(b) ST implementation of function block PID

Figure 7.15: Block PID declaration and ST implementation (IEC, 2003)

past); and (3) the derivative term (predicting error in the future). The compu-

tation also depends on other inputs constants: KP (proportionality constant),

TR (reset time), TD (derivative time), and CYCLE (sampling period). At
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the top level, we formalize the requirements of the PID block as a one-line

equation, resembling the last statement of its ST implementation (shown in

Figure 7.15b):

XOUT = KP×( (PV−SP) +
ITERM .XOUT

TR
+ DTERM .XOUT×TD ) 5

where ITERM and DTERM are instances of, respectively, the INTEGRAL

(Figure 7.16 and Figure 7.17) block and the DERIVATIVE (Figure 7.18 and

Figure 7.19) block. Indeed, formalizing the requirements of these two func-

tional units is also our contribution. As components of the composite PID

block, these two FBs are used to compute, respectively, the integral and deriva-

tive terms. We write ITERM.XOUT and DETERM.XOUT to denote output

values resulting from their last invocations.

The INTEGRAL block (Figure 7.16 and Figure 7.17) implements the

integral of values of input XIN over time. The strategy of implementation is an

approximation using partitions with right endpoints (with an input sampling

period CYCLE). The integral result XOUT is reset to a preset value X0 if the

Boolean input flag R1 is enabled. The integral is calculated if another input

flag RUN is also enabled; otherwise, no new partitions are added (i.e., XOUT

remains unchanged). Another output Q is set to TRUE while the integral is

not reset; otherwise, Q is set to FALSE.

+-----------+

| INTEGRAL |

BOOL---|RUN Q|---BOOL

BOOL---|R1 |

REAL---|XIN XOUT|---REAL

REAL---|X0 |

TIME---|CYCLE |

+-----------+

VAR_INPUT

RUN : BOOL ;(* 1 = integrate,0 = hold *)

R1 : BOOL ;(* Overriding reset *)

XIN : REAL ;(* Input variable *)

X0 : REAL ;(* Initial value *)

CYCLE: TIME ;(* Sampling period *)

END_VAR

VAR_OUTPUT

Q : BOOL ;(* NOT R1 *)

XOUT : REAL ;(* Integrated output *)

END_VAR

Figure 7.16: Declarations of block INTEGRAL (IEC, 2003)

The DERIVATIVE block (Figure 7.18 and Figure 7.19) computes the

differentiation of values of input XIN with respect to time. The rate of change

5Also, we write x−n to denote the previous value of variable x at the last nth tick.
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Result

Condition Q
R1 0
¬R1 1

Result

Condition XOUT
R1 X0

¬R1
RUN XOUT−1 + XIN ∗ CYCLE
¬RUN XOUT−1

Figure 7.17: Requirement of block INTEGRAL

is computed on the basis of: (1) an input sampling period CYCLE; and (2)

values of input XIN at present and at the previous three clock ticks (i.e., XIN

and XIN −i, i ∈ {1, 2, 3}). The derivative result XOUT is reset to 0.0 if a

Boolean flag RUN is disabled.

+------------+

| DERIVATIVE |

BOOL---|RUN |

REAL---|XIN XOUT|---REAL

TIME---|CYCLE |

+------------+

VAR_INPUT

RUN :BOOL;(* 0 = reset *)

XIN :REAL;(* Input to be differentiated *)

CYCLE :TIME;(* Sampling period *)

END_VAR

VAR_OUTPUT

XOUT :REAL;(* Differentiated output *)

END_VAR

Figure 7.18: Declarations of block DERIVATIVE (IEC, 2003)

Result

Condition XOUT

R1 3.0×(XIN−XIN−3) + (XIN−1−XIN−2)
10.0×CYCLE

¬R1 0.0

Figure 7.19: Requirement of block DERIVATIVE

As indicated from the ST implementation of PID (Figure 7.15b) and

tabular requirements of INTEGRAL and DERIVATIVE (Figure 7.16 to 7.19),

an input Boolean flag AUTO is set to distinguish cases in the computation.

If AUTO is set TRUE, the controller attempts to output XOUT closer to the
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desired set point value. Otherwise, another input X0, typically suppled by a

transfer station, is used for a manual output adjustment.

However, observing the ST implementation of the PID block, the inte-

gral term is calculated through a division (of the output value XOUT from the

FB instance ITERM) by the reset time TR. The type of TR, the set of real

numbers, includes the possibility of zero that will lead to an undefined integral

term. Similar to the case of the AVERAGE block (Subsection 7.1.2.5), this

issue is reflected by an unprovable proof sequent generated by PVS, requiring

that the value of TR can not be zero. As a result, our proposed solution is to

redefine the data type for TR to exclude the value of zero.

7.1.2.7 Incorrect Length Setting of the DIFFEQ Block

The DIFFEQ block (whose declaration is shown in Figure 7.20a6) im-

plements the difference equation, an invariant on the present and past input

and output values. The output XOUT represents the weighted sum of val-

ues drawn from three categories: (1) the current value of input XIN; (2) the

previous N values of XIN; and (3) the previous M values of XOUT. More

precisely:

XOUT (t) = B0 ·XIN(t) +
∑N

i=1Bi ·XIN(t− i) +
∑M

j=1Aj ·XOUT (t− j)

where A and B coefficients are inputs to the DIFFEQ block. Based on this

formula, we formalize the requirement of the DIFFEQ block accordingly in

Figure 7.20. When the Boolean input flag RUN is set to FALSE, the value of

XOUT is calculated by B0 ·XIN(t), just as if the input and output histories

were empty.

The sum function (i.e.,
∑

) is implemented using a for-loop in the ST

implementation (shown on the RHS in Figure 7.20). When the input flag

RUN is set to TRUE, two for-loops are used to compute the weighted sum

of the (present and past) input and output values using coefficients stored in,

6The textual comments in the standard are in fact mistakenly placed to annotate the
variables of input and output histories and coefficients, but since it does not affect the
semantic verification, the corrected version is presented for readability.
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+------------+

| DIFFEQ |

BOOL --|RUN XOUT|-- REAL

REAL --|XIN |

REAL --|A |

INT --|M |

REAL --|B |

INT --|N |

+------------+

(a) Declaration of function block PID

FUNCTION_BLOCK DIFFEQ

VAR_INPUT

RUN : BOOL ; (* 1 = run, 0 = reset *)

XIN : REAL ;

A : ARRAY[1..127] OF REAL ; (* Output coefficients *)

M : INT ; (* Length of output history *)

B : ARRAY[0..127] OF REAL ; (* Input coefficients *)

N : INT ; (* Length of input history *)

END_VAR

VAR_OUTPUT XOUT : REAL := 0.0 ; END_VAR

VAR (* NOTE : Manufacturer may specify other array sizes *)

XI : ARRAY [0..127] OF REAL; (* Input history *)

XO : ARRAY [0..127] OF REAL; (* Output history *)

I : INT ;

END_VAR

XO[0] := XOUT ; XI[0] := XIN ;

XOUT := B[0] * XIN ;

IF RUN THEN

FOR I := M TO 1 BY -1 DO

XOUT := XOUT + A[I] * XO[I] ; XO[I] := XO[I-1];

END_FOR;

FOR I := N TO 1 BY -1 DO

XOUT := XOUT + B[I] * XI[I] ; XI[I] := XI[I-1];

END_FOR;

ELSE

FOR I := 1 TO M DO XO[I] := 0.0; END_FOR;

FOR I := 1 TO N DO XI[I] := 0.0; END_FOR;

END_IF ;

END_FUNCTION_BLOCK

(b) ST implementation of function block DIFFEQ

Figure 7.20: Block DIFFEQ declaration and ST implementation (IEC, 2003)

110



PhD Thesis – Linna Pang – McMaster – Computing and Software

respectively, the input array B and array A. Otherwise, another two for-loops

are used to reset the input and output histories as all 0’s.

Result

Condition XOUT

RUN B0 · XIN +
∑N

i=1 Bi · XIN−i +
∑M

j=1 Aj · XOUT−j
¬RUN B0 · XIN

Figure 7.21: Tabular requirements of the DIFFEQ block

However, observing the ST implementation, the type of input history

length N (i.e., INT) is inconsistent with the length of input coefficients array,

i.e., 128. More precisely, an issue of out-of-bound array indices would occur

if N ≤ 0 or N > 127. A similar issue also applies to the type of output

history M and the length of the output coefficients array. Consequently, the

implementation predicate in PVS cannot be type-checked. We propose to solve

this problem by constraining the types of M and N: from INT to the interval

between 1 and 127.

Moreover, lengths of the coefficient arrays A and B depend upon values

of, respectively, M and N. To specify such constraints, we use dependent types

in PVS:

M , N : subrange(1,127)

A: VAR ARRAY[subrange(0,M ) -> real]

B: VAR ARRAY[subrange(0,N ) -> real]

7.1.2.8 High/Low Limits on the ALRM INT Function

The function ALRM INT (declared in Figure 6.4) is introduced as an example

in Section 6.3. We prove the equivalence between the supplied ST and FBD

implementations for function ALRM INT.

Similar to one issue of block LIMITS ALARM (Subsection 7.1.2.3), we

identify a missing input assumption. The high and low alarm is allowed to

be tripped simultaneously that contradicts the intended behaviour of both

alarming levels. We resolve this by incorporating an assumption THI > TLO.
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As a result, we are able to prove the following invariant property, that

high and low alarm can not be tripped at the same time:

HI LO: LEMMA

THI (t) > TLO(t) =>

(f HI (INP,THI )(t) AND NOT f LO(INP,TLO)(t)) OR

(NOT f HI (INP,THI )(t) AND f LO(INP,TLO)(t)) OR

(NOT f HI (INP,THI )(t) AND NOT f LO(INP,TLO)(t))

7.1.3 Inconsistent Implementations

7.1.3.1 Missing Internal Component of the STACK INT Block

The STACK INT block implements a stack of up to 128 integers (as introduced

in Section 6.3). IEC 61131-3 supplies both ST and FBD implementations for

the STACK INT block. In this section we discuss the issue of a missing internal

component of the FBD implementation, and suggest our solution.

Figure 7.22a lists the complete ST implementation, and Figure 7.22b

shows the MAIN part of the FBD implementation. For the FBD implemen-

tation, there are four separate parts connected with each other. The MAIN

part is connected with three other sub-parts: RESET, POP_STK and PUSH_STK.

Conditions for connecting these sub-parts correspond to those of the “if-then-

else” statements in the ST implementation. The control of execution flow

is transferred from the MAIN to each sub-part using the “jumps-to” notation

(analogous to the standard go-to statement), i.e., -->>RESET, -->>POP_STK,

and -->>PUSH_STK. The jumped-to locations are defined using labels, e.g.,

PUSH_STK in Figure 7.23. We formulate this “jumps-to” mechanism in the

conceivable manner: by defining a Boolean flag for each possible entry point.

Of particular interest is the PUSH_STK part of the FBD implementation

(shown in Figure 7.23), which is built up from four components: MOVE (:=),

ADDITION (+), EQUATION (=) and SELECTION (SEL). Enabling input

(EN) and output (ENO) are Boolean flags used to constrain the data flow in

the FBD. The MOVE block, if enabled, passes on the input value as the out-

put. The ADDITION block outputs the result of adding two input numbers.
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IF R1 THEN

OFLO := 0; EMPTY := 1; PTR := -1;

NI := LIMIT (MN:=1, IN:=N, MX:=128); OUT := 0;

ELSIF POP & NOT EMPTY THEN

OFLO := 0; PTR := PTR-1; EMPTY := PTR < 0;

IF EMPTY THEN OUT := 0;

ELSE OUT := STK[PTR];

END_IF ;ELSIF PUSH & NOT OFLO THEN

EMPTY := 0; PTR := PTR + 1; OFLO := (PTR = NI);

IF NOT OFLO THEN OUT := IN ; STK[PTR] := IN;

ELSE OUT := 0;

END_IF ;

END_IF ;

(a) ST implementation of block STACK INT

MAIN:

R1--+-->>RESET

| +---+

+---------------------------------o| & |--<RETURN>

| +---+ +----------------------o| |

+--o| & | | +--o| |

POP-----| |--+-->>POP_STK | +---+

EMPTY--o| | | +---+ |

+---+ +-----------o| & |--+-->>PUSH_STK

R1-------------------------o| |

PUSH------------------------| |

OFLO-----------------------o| |

+---+

(b) The FBD implementation of block STACK INT : MAIN part

Figure 7.22: ST and FBD implementations of block STACK INT (IEC, 2003)

The EQUATION block outputs TRUE if two input numbers are equal. The

SELECTION block selects one of the two input values based upon an input

Boolean flag.

We found two issues in the STACK INT block:

1. Non-equivalent ST and FBD implementations.

The ST and FBD implementations are actually not specified at the

same level of abstraction. The use of EN/ENO constrains a specific
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PUSH_STK:

+---------+ +-------+ +-------+

| := | | + | | = |

1--|EN ENO|-------------|EN ENO|-------------|EN ENO|--

0--| |--EMPTY 1--| |-----PTR-----|G |--+--OFLO

+---------+ +--| | NI--| | |

PTR----------------------+ +-------+ +-------+ |

+----------------------------------------+--------------+

| | +-------+

| +---------+ | | SEL |

| | := | +---|G |-----OUT

+------|EN ENO| +------|IN0 |

IN--+-------| |--STK[PTR] | 0--|IN1 |

| +---------+ | +-------+

+--------------------------------------+

Figure 7.23: The FBD implementation of the STACK INT block (IEC, 2003):
PUSH STK part

(sequential) order of executing internal blocks in the FBD implementa-

tion. However, there is no such constraint7 in the ST implementation

(as we parallelize assignment whenever possible).

Consequently, we only attempt to prove that the implementation predi-

cate of the FBD implementation implies that of the ST implementation

in Equation 6.9.

2. A missing FB in the FBD implementation.

However, we failed to prove Equation 6.9. In other words, we found

inconsistency between these two implementations. By looking into the

proofs, the following unprovable sequent was generated in PVS8.

As introduced in Section 2.3, this proof sequent can be discharged by

proving that the conjunction of antecedents implies the disjunction of

consequents. Variables ending in “!n” (n = 1,2,. . . ) are skolem constants

(i.e., arbitrary constants of the corresponding types) that are used to

7In fact, there is no mechanism to translate one programming language to another that
is semantically equivalent in IEC 61131-3. Furthermore, it may be impossible to translate
one to another, since the lack of corresponding elements. For example, a pair of EN and
ENO is used in FBD, but it cannot be used in ST.

8For clarity, we omit the irrelevant lines in this proof sequent.
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eliminate quantifiers. The COND construct is a multi-way extension

to the polymorphic “if-then-else” construct in PVS. t!2, PTR!1, INP!1,

and PUSH!1 are all arbitrary (yet type-correct) constants. At the t!2th

tick (Section 2.3) of time, an input request PUSH!1 is made to push an

integer INP!1 onto a stack STK!1, and the push operation moves the

internal stack pointer to a new position PTR!1.

STACK INT fbd implies st original.3.2.2.1 :

[-1] · · ·
· · · · · ·
[-13] COND init(t!2) -> STK!1(PTR!1(t!2)) = 0,

OFLO!1(t!2) -> STK!1(PTR!1(t!2)) = INP!1(t!2),

ELSE STK!1(PTR!1(t!2)) = STK!1(PTR!1(pre(t!2)))

ENDCOND

|-------

[1] NOT R1!1(t!2) & NOT (POP!1(t!2) &

NOT EMPTY !1(pre(t!2))) & PUSH !1(t!2) &

NOT OFLO!1(pre(t!2)) & NOT OFLO!1(t!2)

IMPLIES STK!1(PTR!1(t!2)) = INP!1(t!2)

[2] init(t!2)

In the above sequent, the antecedent is inferred from the behaviour of the

FBD implementation (Figure 7.23), and the consequence from that of

the ST implementation (Figure 7.22a). Inspecting the sequent, we iden-

tified a missing negation from the antecedent. From the consequence,

we observe that the push operation is performed and the pointer is up-

dated accordingly (i.e., STK (PTR(t)) = INP(t)) when the stack would

not overflow (i.e., ¬OFLO(t)). On the other hand, from the antecedent,

the same push operation is not associated with the wrong guard (i.e.,

OFLO(t)), meaning that the push operation is performed when the stack

is already full.

Similarly, by inspecting the FBD and ST code, we found that there is a

missing negation block NOT between the EQUATION the and the lower

MOVE block (Figure 7.23). That is, output OFLO from the EQUATION
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block (i.e., whether or not there is a stack overflow) should be negated

so that it can be passed as the enabling condition of the lower MOVE

block.

PUSH_STK_REVISED:

+---------+ +-------+ +-------+ +-------+

| := | | + | | = | | NOT |

PUSH_STK--|EN ENO|--------------|EN ENO|-------------|EN ENO|--+------------|EN |

0--| |--EMPTY 1--| |----PTR------|G |--|--OFLO--+---| |--+

+---------+ +--| | NI--| | | | | | |

PTR-----------------------+ +-------+ +-------+ | | +-------+ |

+--------------------------------------------------------|--------|--------------+

| +-----------------|--------+

| | +--------------+

| | | +-------+

| +---------+ | | | SEL |

| | := | | +---|EN |

+------|EN ENO| +------|G |-----OUT

IN--+-------| |--STK[PTR] +------|IN0 |

| +---------+ | 0--|IN1 |

+---------------------------------------+ +-------+

Figure 7.24: PUSH STK part of the FBD implementation of block
STACK INT : a negation block added

With the revised FBD implementation for PUSH_STK (Figure 7.24 with

modifications), we are able to prove Equation 6.9. We also proved that both

the ST and FBD implementations are consistent (Section 6.2). For the cor-

rectness theorem, as the logical implication is transitive, we only need to prove

that the more abstract ST implementation conforms to the requirement:

∀ PUSH ,POP ,R1 , IN ,N • ∀ OUT ,EMPTY ,OFLO •
STACK INT ST IMPL (PUSH ,POP ,R1 ,IN ,N ,OUT ,EMPTY ,OFLO)

⇒
STACK INT REQ (PUSH ,POP ,R1 ,IN ,N ,OUT ,EMPTY ,OFLO)

(7.3)

Finally, we provide the complete requirement of the STACK INT block

in tabular expressions in the Appendix. A table is created for each output

variable: EMPTY (Figure E.4), OFLO (Figure E.5), and OUT (Figure E.6).

In fact, we found that the state of internal variables is necessary for us to

define the behaviour of the stack: NI (Figure E.1), PTR (Figure E.2), and

STK(PTR) (Figure E.3).
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7.2 Example: the Trip Sealed-In Subsystem

In this section we include a complete verification work for a real-time FB

subsystem that is generalized from the nuclear industry. We apply the same

approach to verify the consistency and correctness of the Trip Sealed-In sub-

system. During the verification process, we identified an initialization error

and suggest our solution.

7.2.1 Overview: Informal Description

+----------------------------------+

| Trip Sealed-In |

| |

BOOL --|Any_parm_trip Trip_SealedIn|-- BOOL

{e_Trip, e_NotTrip} --|Trip |

REAL --|k_Sealindelay |

BOOL --|Man_reset_req |

+----------------------------------+

Figure 7.25: Input-output declaration of Trip Sealed-In subsystem

The Trip Sealed-In subsystem is a generic subsystem which monitors:

(1) a set of sensor values; and (2) an alarm value produced by some other

subsystem. It signals an alarm (denoted by the output Trip SealedIn), which

may be manipulated by other subsystems, when two conditions are met. First,

any of the monitored sensor values goes out of its safety range (called a pa-

rameter trip and denoted by an input condition Any parm trip). Second, the

monitored input alarm is signalled continuously for longer than some preset

constant k Seqlindelay9 amount of time (denoted by an input value Trip of

enumerated type {e Trip,e NotTrip}). Once the alarm Trip SealedIn is acti-

vated, it is not deactivated until all monitored sensor values fall back within

their safety ranges, and when a manual reset is requested (denoted as an input

Man reset req).

9The k name prefix is reserved for system-wide constants.
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7.2.2 Tabular Requirements with Timing Tolerances

We use a function table (Figure 7.26) to perform a complete and disjoint

analysis on the input domains. To incorporate timing tolerances into the

requirements of Trip Sealed-In, we use the non-deterministic Held For operator

(Chapter 2) to specify a sustained window of a time duration [k Sealindelay−
δL, k Sealindelay + δR].

Result
Condition Trip SealedIn

Any parm trip
(Trip = e Trip)Held For(k Sealindelay, δL, δR) TRUE
¬[(Trip = e Trip)Held For(k Sealindelay, δL, δR)] NC

¬Any parm trip
Man reset req FALSE
¬ Man reset req NC

Figure 7.26: The Trip Sealed-In subsystem: (non-deterministic) requirements
of with tolerances

However, for the purpose of verification in PVS, we reformulate the

non-deterministic behaviour of Figure 7.26 in a recursive function10 using the

deterministic Held For I operator to impose the constraint that only a single

value (i.e., k Sealindelay−delta L where both are declared constants) is chosen

from the duration and is used consistently for detecting sustained events.

Channel trip sealedin REQ f

(Any parameter tripped: pred[tick],

c ChanTrip : timed trip,

Manual reset request: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN TRUE

ELSE LET

ChanTrip status = LAMBDA (t: tick): c ChanTrip(t) = e Trip,

PREV = Channel trip sealedin REQ f

(Any parameter tripped,

c ChanTrip,

Manual reset request)(pre(t)) IN

10For proving termination, its progress is measured using discrete time instants rank(t).
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TABLE

%-----------------------------------------------------+--------%

|Any parameter tripped(t) &

Held For I (ChanTrip status,

k Sealindelay req - delta L,

Sample t)(t) | TRUE ||

%-----------------------------------------------------+--------%

|Any parameter tripped(t) &

NOT (Held For I (ChanTrip status,

k Sealindelay req - delta L,

Sample t)(t)) | PREV ||

%-----------------------------------------------------+--------%

|NOT Any parameter tripped(t) & Manual reset request(t) | FALSE ||

%-----------------------------------------------------+--------%

|NOT Any parameter tripped(t) & NOT Manual reset request(t)| PREV ||

%-----------------------------------------------------+--------%

ENDTABLE

ENDIF

MEASURE rank(t)

Using the above recursive function Channel trip sealedin REQ f , over all ticks,

we have a deterministic requirements (Figure 7.27) for the Trip Sealed-In sub-

system.

Compared with Figure 7.26, the use of the operator Held For I resolves

the non-determinism by fixing the level of timing tolerance (i.e., as long as the

alarm input Trip has been activated for or longer than k Sealindelay− δL, the

Trip Sealed-In subsystem is guaranteed to detect it and act accordingly).

7.2.3 Formalization on FBD Implementation

For a given FBD implementation (Figure 7.28), we prove that it should satisfy

the intended behaviour (Figure 7.27).

We use the IEC 61131-3 TON timer (see Chapter 4 for its formalization in-

corporated with tolerances) to implement the use of the Held For I operator
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Channel trip sealedin REQ P(Any parameter tripped: pred[tick],
c ChanTrip: timed trip,
Manual reset request: pred[tick],
Channel trip sealedin: pred[tick]): bool =

FORALL (t: tick):
Channel trip sealedin(t) =

Channel trip sealedin REQ f (Any parameter tripped,
c ChanTrip,
Manual reset request)(t)

Figure 7.27: The Trip Sealed-In subsystem: (deterministic) requirements with
tolerances in PVS

NOT
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NOT

OR
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w1

RS_Sealln
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S Q1

R1

w5
w4

w3w2 Trip_Sealedin

Man_reset_req

k_Sealindelay

Trip
(TRUE: Trip = e_NotTrip,

False: Trip = e_Trip)

Any_parm_trip
(TRUE: Tripped,

FALSE: Not Tripped)

w6

et_sealin

Figure 7.28: Trip Sealed-In implementation in FBD

(subject to a correctness proof below). As the recursive function used to define

the requirements depends on the value of itself (at the previous time tick), a

feedback loop (dashed line) is specified in the FBD implementation.

The use of the left-most NOT (negation) block in Figure 7.28 addresses

the mismatch between type at the requirements level (i.e., {e Trip,e NotTrip})
and that at the FB implementation level (i.e., Boolean): somehow the engi-

neers interpret value e Trip as FALSE and e NotTrip as TRUE, so a conversion

is necessary to make sure the Trip Sealed-In has the consistent interpretation.

The requirements that the alarm output Trip Sealedin is deactivated (or re-

set) when there is no parameter trips, and when a manual reset is requested,

is implemented using a standard block RS (reset-dominant flip flop).

To prove that the proposed FBD implementation of Trip Sealed-In (Fig-

ure 7.28) is both consistent and conforms to its requirements (Figure 7.27),

120



PhD Thesis – Linna Pang – McMaster – Computing and Software

we first follow our approach to formalize it by composing, using conjunction,

the formalizing predicates11 of all component blocks (all inter-connectors are

hidden using an existential quantification.):

Trip SealedIn IMPL(Any parm trip, Trip,Man reset req, T rip SealedIn)

≡ ∃ w1, w2, w3, w4, w5, w6, et sealin •

NOT(Trip, w6)

∧ TON(w6, k Sealindelay − delta L, w1, et sealin)

∧ CONJ(Any parm trip, w1, w2)

∧ DISJ(w2,Trip SealedIn, w3)

∧ NOT(Any parm trip, w5)

∧ CONJ(w5,Man reset req, w4)

∧ RS(w4, w3,Trip SealedIn)


7.2.4 Proofs of Consistency and Correctness

First, we prove that the FBD implementation (Figure 7.28) is feasible by

instantiating Equation 6.4:

∀ Any parm trip,Trip,Man reset req • ∃ Trip SealedIn •
Trip sealedin IMPL(Any parm trip, AbstParmTrip timed(Trip),

Man reset req, Trip SealedIn)

The abstraction function AbstParmTrip timed handled the mismatched

types of input Trip at levels of requirement and implementation (i.e., e NotTrip

mapped to TRUE while e Trip mapped to FALSE). We discharge the above

consistency proof using proper instantiations.

Second, we prove that the FBD implementation is correct with respect

to Figure 7.27, considering timing tolerances, by instantiating Equation 6.1:

∀ Any parm trip, Trip, Man reset req, Trip SealedIn •
Trip sealedin REQ(Any parm trip,Trip, Man reset req, Trip SealedIn)

⇒ Trip sealedin IMPL(Any parm trip, AbstParmTrip timed(Trip),

Man reset req, Trip SealedIn)

11Predicates NOT (logical negation), CONJ (logical conjunction), DISJ (logical disjunc-
tion), TON (on-delay timer), and RS (reset dominant latch).
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As there is a feedback loop in the FBD implementation (Figure 7.28),

our strategy of discharging the correctness theorem is by mathematical induc-

tion (using the time induction proposition in Section 2.4) over tick values. In

both the base and inductive cases, we have to expand the definition of the

Timer I operator, because it is used to formalize the requirements of the TON

timer that contributes to the FBD implementation.

7.2.5 Proof Discussion

In this section we present the proof patterns of consistency and correctness

for the Trip Sealed-In subsystem. They exemplify the proof strategies later in

Section 7.3.

For the consistency proof, we explicitly formulate the requirements of

internal components in functional form to assist instantiation steps. The con-

sistency proof can be discharged easily with proper instantiations (using these

separately defined functions) to existentially quantified inter-connectors. The

completion of consistency proof proves the feasibility of the design.

For the correctness theorem, we perform three important steps.

1. An inductive proving approach (i.e., time induction) is applied. The

mathematical induction allows us to apply induction over tick values.

We prove that the requirement specification and the corresponding im-

plementation specification are equivalent at all ticks within acceptable

timing tolerances.

2. For the base step (i.e., initial case of t=0 ), expending the definition of

the SEL block and applying basic PVS commands are sufficient. For

the inductive step, an important general theorem TimerGeneral I is

reused and instantiated properly. A large amount of proving effort can

be simplified.

3. For the inductive step, after instantiating theorem TimerGeneral I we

encounter a situation where the form of the λ-expression of inter-connector

w6 mismatches the form that appears as the first argument of Held For I

operator. The occurrence of λ-expressions can be difficult to deal with
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in PVS. We introduce an auxiliary lemma (i.e., PROPERTY0 ) to prove

their logical equivalence. Lemma PROPERTY0 can be proved by extensionality

axiom for the required types (i.e., the types of two λ-expressions). The

PVS specification of PROPERTY0 is as follows:

PROPERTY0: LEMMA

FORALL c Trip:

(LAMBDA (t: tick[delta t]):

NOT COND (c Trip(t) = e Trip) -> FALSE,ELSE -> TRUE ENDCOND)=

(LAMBDA (t: tick[delta t]): c Trip(t) = e Trip)

However, by trying to prove the base case in Step 2 (when t = 0), we

found that the initial value of output Q1 of the RS Sealin block and the

initial value of the subsystem output Trip SealedIn — these two values

are directly connected in the initial FBD implementation (Figure 7.28) —

are inconsistent. According to the SRS, value of Trip SealedIn is initial-

ized to TRUE, whereas that of Q1 is FALSE. We resolve this issue of

inconsistency by suggesting a revised FBD implementation (Figure 7.29)

and prove that it is correct with respect to Figure 7.27.

Trip_Sealedin
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w7NOT
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AND
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w1
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R1

w5
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w3w2
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k_Sealindelay
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(TRUE: Tripped,

FALSE: Not Tripped)

w6

SEL_Sealln
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G
IN0
IN1
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Figure 7.29: Revised Trip Sealed-In implementation in FBD

To revise the given FBD implementation, we add an IEC 61131-3 selec-

tion block (i.e., SEL Sealin), acting as a multiplexer to discriminate the

value of Q1 (at the initial tick and at the non-initial tick) that is output

as Trip SealedIn. If input G is TRUE (i.e., initial case of t=0 ), output

Trip SealedIn is set to TRUE ; otherwise, it is set to the value from in-

put INO (i.e., from output Q1 of block RS Sealin). By imposing block
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SEL Sealin and applying the above three proof steps, the correctness

theorem of the Trip Sealed-In subsystem can be completed.

7.3 Lessons learned: Proof Strategies

In this section we summarize the proof strategies applied in our verification

approach. In general, there are two typical kinds of proofs in our work: those

that require induction and those that do not. PLC programs often use feedback

loops, i.e., outputs of a FB are connected as inputs of either another FB or the

FB itself. Since the feedback values (or of intermediate output values) cannot

be computed instantaneously in practice, the current feedback values depend

on the values of themselves at earlier time ticks. In most of cases, only the

depending value at a previous time tick is sufficient to generate the current

output value. The proofs that involve such values usually require induction.

For proofs by induction, we apply an induction scheme (i.e., time induction)

over time ticks. For proofs that do not require induction, we apply definition

expansion, arithmetic, equality, and quantifier reasoning. We follow certain

proof structures to discharge the proofs of consistency and correctness.

Some of our proofs that only depend on skolemization, propositional

simplification, rewriting and linear arithmetic can be handled automatically,

e.g., use of PVS proof command grind is sufficient. More complex proofs, on

the other hand, require manual control. For the cases splits, the instantiation

of universally quantified formulas and application of additional lemmas, man-

ual control is necessary. To control the proofs as much as possible, we do not

rely on powerful proving strategies (e.g., induct-and -simplify that combines

of induct and repeated simplification) in key steps until the proof task can be

handled automatically.

We first discuss the proof strategies for consistency theorem in Sec-

tion 7.3.1. We then provide the proof strategies for correctness theorem in

Section 7.3.2. They can be used to guide any verification work for PLC pro-

grams that are formalized based on our approach.
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7.3.1 Proof Structure for Consistency Theorem

For a given FBD, in general, we perform the following key steps to prove the

consistency theorem.

1. Applying skolem! to introduce Skolem constants on the universally quan-

tified input variables in the consequent.

2. Using inst ’s to instantiate existentially quantified output variables in the

consequent with pre-defined functions. The instantiation for each output

is the functional version of the requirement predicate for this output.

3. Using inst ’s to instantiate existentially quantified inter-connector vari-

ables in the consequent with pre-defined functions. The internal variable

connects an output of a component to an input (or more inputs) of other

component(s). The instantiation for each internal variable is the func-

tional version of the requirement predicate for the connecting output.

4. Applying split to split the conjunctive predicates of internal components.

5. Applying expand ’s to expand the requirement predicate for each inter-

nal component, and then introducing Skolem constant to existentially

quantified t in the consequent via skolem!.

6. Using a combination of basic commands to complete the proof.

For the steps 2 and 3, the functional versions of requirement predicates

are formulated in the corresponding theory separately. They are defined re-

cursively if any earlier time ticks of value is depended on. Otherwise, they

are non-recursive functions. By importing the theory of a component, they

can be used by calling the function names. Alternatively, one can explicitly

instantiate universally quantified internal or output variable by involving such

functional definition within a proof command. However, it is error-prone for

complex functionality. It is also tedious if multiple instances of a component

are used in the same (or different) FBD.

Consider the given FBD in Figure 7.30, which is constructed using

logical conjunctions to compose the requirements predicates of the four internal
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Figure 7.30: Example of a FBD implementation

FBs, B1, B2, B3, and B4. Their requirements predicates are formalized as

B1 REQ, . . . , B4 REQ, and their corresponding functional forms are f1 REQ,

. . . , f4 REQ. The variables wi, i = 1, 2, 3 represent inter-connectors between

internal blocks. They are hidden from the user using existential quantifiers.

The consistency theorem can be proved when, for any values of input variables

i1 and i2, there exists the values of output variables o1 and o2 such that the

implementation predicate FB IMPL is satisfied. The consistency theorem can

be proved as follows:

∀ i1, i2 • ∃ o1, o2 • FB IMPL(i1, i2, o1, o2)

≡ < expand the definition of FB IMPL >

∀ i1, i2 • ∃ o1, o2 •

(∃ w1, w2, w3 •

B1 REQ(i2, w1) ∧ B2 REQw1, w3, w2)∧

B3 REQ(i1, w2, o1) ∧ B4 REQ(o1, w3, o2)

≡ < expand the definitions of Bi REQ with fi REQ, i = 1, ..., 4 >

∀ i1, i2 • ∃ o1, o2 •

∃ w1, w2, w3 •

w1 = f1 REQ(i2) ∧ w2 = f2 REQ(w1, w3)∧

o1 = f3 REQ(i1, w2) ∧ w3 = f4 REQ w3(o1) ∧ o2 = f4 REQ o2(o1)
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≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w1 >

∀ i1, i2 • ∃ o1, o2 •

∃ w2, w3 •

w2 = f2 REQ(f1 REQ(i2), w3) ∧ w3 = f4 REQ w3(o1)∧

o1 = f3 REQ(i1, w2) ∧ o2 = f4 REQ o2(o1)

≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w2 >

∃ i1, i2 • ∀ o1, o2 •

∃ w3 •

w3 = f4 REQ w3(o1)∧

o1 = f3 REQ(i1, f2 REQ(f1 REQ(i2), w3))∧

o2 = f4 REQ o2(o1)

≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w3 >

∀ i1, i2 • ∃ o1, o2 •

(o1 = f3 REQ(i1, f2 REQ(f1 REQ(i2), f4 REQ w3(o1)))∧

o2 = f4 REQ o2(o1))

≡ < by ∀ − elimination, let i
′

1 and i
′

2 denote skolemization constants >

∃ o1, o2 •

(o1 = f3 REQ(i
′

1, f2 REQ(f1 REQ(i
′

2), f4 REQ w3(o1)))∧

o2 = f4 REQ o2(o1))

≡ < since requirement is both disjoint and complete, the witness chosen for o1

and o2 is recursive function f2 REQ and f4 REQ o 2 >

TRUE

To assist the proof of consistency theorem, we formulate function for

each and internal variable and output variable explicitly. We have functions

f1 REQ, f2 REQ, f4 REQ w3, for w1, w2, and w3, and functions f3 REQ,

f4 REQ o2 for o1 and o2. The behaviour of an internal or output variable

that depends on the value of itself at earlier time ticks (implemented by feed-

back loops), is defined using a recursive function. For example, output o1

depends on the value of itself at a previous time tick. The corresponding func-
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tion f3 REQ (i1, f2 REQ(f1 REQ(i2), f4 REQ w3(o1))) specifying its behaviour

is defined recursively.

7.3.1.1 Proof Strategy of Consistency for IEC 61131-3 Function

Block LIMITS ALARM

For the LIMITS ALARM block (Subsection 7.1.2.3), where outputs QH and

QL depend on the value of itself at a previous time tick, and output Q does

not, we have recursive functions f QH , f QL, and non-recursive function f Q

specified for the instantiations of outputs QH, QL, and Q. We also have a

functional form of component DIV , SUB , ADD for inter-connecters w1, w2,

and w3. These are used in the key steps 2 and 3 to discharge the consistency

theorem for block LIMITS ALARM.

In Figure 7.31, we summarize the proof structure of the consistency the-

orem for LIMITS ALARM (i.e., theorem LIMITS ALARM CONSISTENCY ).

The key proof steps are as follows:

1. Applying skolem! to introduce skolem constants X!1, H!1, L!1, and

EPS!1 on the input variables X, H, L, and EPS in the consequent.

2. Using inst ’s to instantiate the output variables QH, QL, and Q with

f QH, f QL, and f Q in the consequent.

3. Using inst ’s to instantiate inter-connectors w1, w2, and w3 with func-

tional form of basic FB DIV, SUB, and ADD in the consequent. By

instantiating w1, a subtype TCC is generated to constrain it as posi-

tive reals. It is proved by applying typepred on EPS and assert to use

decision logic.

4. Applying split to split the conjunctive predicates for components, two

instances of HYSTERESIS (high and low alarms), SUB, ADD, DISJ,

and DIV.

5. Applying expand ’s to expand the requirement predicate for each compo-

nent, and then using skosimp on t in the consequent.
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6. Using a combination of basic commands12 to complete the proof.

(a) For two instances of HYSTERESIS, expand ’s the functional defini-

tions of its arguments and complete the rest by basic commands.

(b) For DISJ, expand f QH and complete the rest by basic commands.

(c) For SUB, ADD, and DIV, it is proved by the propositional axiom

rules.

7.3.1.2 Proof Strategy of Consistency for Subsystem Trip Sealed-In

For the Trip Sealed-In subsystem (Section 7.2), where the output Trip SealedIn

is fed back as input of component OR, we have (a revised version of) recursive

function Sealin IMPL f Chan Trip Sealedin revised for output Trip SealedIn,

and non-recursive functions for all inter-connectors.

In Figure 7.32, we summarize the proof structure of the consistency the-

orem for subsystem Trip Sealed-In (i.e., theorem Channel trip sealedin consistency).

The key proof steps are as follows:

1. Applying skosimp to introduce three skolem constants Any parameter trip!1,

c ChanTrip!1, and Manual reset request!1 on the universally quantified

input variables Any parameter trip, c ChanTrip, and Manual reset request.

2. Using inst to instantiate the output variable Trip SealedIn with the re-

vised version of Sealin IMPL f Chan Trip Sealedin revised in the conse-

quent. By instantiating Trip SealedIn, two subtype TCCs are generated

for time period k Sealindelay impl. We prove them by applying typepred

on delta L and delta R and assert to use decision logic.

3. Using inst ’s to instantiate inter-connecters w1, . . . , w7 with functions

f w1, . . . , f w7 in the consequent. By instantiating w1, w2, w3, and w7,

subtype TCCs are generated for time period k Sealindelay impl. We also

prove them by applying typepred on delta L and delta R and assert to

use decision logic.

12Those proofs that do not require induction can be proved by basic commands of defini-
tion expansion, and arithmetic equality, and quantifier reasoning.
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Figure 7.31: Consistency proof structure for block LIMITS ALARM

4. Applying split to split the conjunctive predicates for components, twoNEG’s,

TON, two CONJ’s, DISJ, RS, and SEL.
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5. Applying expand ’s to expand the requirement predicate for each compo-

nent, and then using skosimp on t in the consequent.

6. Using a combination of basic commands to complete the proof.

(a) For blocks RS SEL, expand ’s the functional definitions of its argu-

ments and complete the rest by basic commands.

(b) For NEG’s, TON, DISJ, and CONJ’s, we prove them using the

propositional axiom rules.

7.3.2 Proof Structure for Correctness Theorem

For a given FBD, in general we perform the following key steps to prove the

correctness theorem.

1. Applying skosimp13 to introduce Skolem constants on the universally

quantified inputs and outputs in the consequent, and then disjunctively

simplify the implication into implementation predicate in the antecedent

and requirement predicate in the consequent.

2. Using expand ’s to expand requirement and implementation predicates.

3. Using skolem! to introduce Skolem constant for each existentially quan-

tified inter-connector in the antecedent.

4. Applying induction scheme time induction on time tick t, generating two

branches: base case and inductive step.

(a) Base case: using skolem! to introduce Skolem constant t!1 on t and

expand ’s on the predicate requirement of each component. Then

using inst ’s to instantiate Skolem constant t!1 on each universally

quantified formula of component. Complete the rest of the proof

by decision logic.

13Proof command skosimp is a compound of skolem! and flatten.
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Figure 7.32: Consistency proof structure for the Trip Sealed-In subsystem
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(b) Inductive step: the same strategies as for base case first, then

expand the recursive function in the consequent. For real-time FBs,

repeatedly using lemma TimerGeneral I with proper instantiations

to link the requirement and implementation domains for operator

Held For . Complete the rest of the proof by decision logic.

5. For those proofs that do not require induction, we can skip Step 4 by

using a combination of basic commands to complete the proof.

Consider the FBD in Figure 5.1 again. The correctness theorem is

proved for any values of input variables, i1 and i2, and output variables, o1

and o2, such that the implementation predicate FB IMPL implies the re-

quirement predicate FB REQ. The requirements predicate FB REQ is for-

malized using a function table for each output. The tables for output o1

and o2 are f REQ o1 and f REQ o2. They are defined as f REQ o1 =

f3 REQ(i1, f2 REQ(f1 REQ(i2), f4 REQ w3(o1)) and f REQ o2 = f4 REQ o2(o1).

The correctness theorem can be proved as follows:

∀ i1, i2 • ∀ o1, o2 • FB IMPL(i1, i2, o1, o2)⇒ FB REQ(i1, i2, o1, o2)

≡ < expand the definitions of FB IMPL and FB REQ >

∀ i1, i2 • ∀ o1, o2 •

(∃ w1, w2, w3 •

B1 REQ(i2, w1) ∧ B2 REQ(w1, w3, w2)∧

B3 REQ(i1, w2, o1) ∧ B4 REQ(o1, w3, o2))⇒

(o1 = f REQ o1(i1, i2, o1) ∧ o2 = f REQ o2(o1))

≡ < expand the definitions of Bi REQ with fi REQ, i = 1, ..., 4 >

∀ i1, i2 • ∀ o1, o2 •

(∃ w1, w2, w3 •

w1 = f1 REQ(i2) ∧ w2 = f2 REQ(w1, w3)∧

o1 = f3 REQ(i1, w2) ∧ w3 = f4 REQ w3(o1) ∧ o2 = f4 REQ o2(o1))⇒

(o1 = f REQ o1(i1, i2, o1) ∧ o2 = f REQ o2(o1))
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≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w1 >

∀ i1, i2 • ∀ o1, o2 •

(∃ w2, w3 •

w2 = f2 REQ(f1 REQ(i2), w3) ∧ w3 = f4 REQ w3(o1)∧

o1 = f3 REQ(i1, w2) ∧ o2 = f4 REQ o2(o1))⇒

(o1 = f REQ o1(i1, i2, o1) ∧ o2 = f REQ o2(o1))

≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w2 >

∀ i1, i2 • ∀ o1, o2 •

(∃ w3 •

w3 = f4 REQ w3(o1)∧

o1 = f3 REQ(i1, f2 REQ(f1 REQ(i2), w3))∧

o2 = f4 REQ o2(o1))⇒

(o1 = f REQ o1(i1, i2, o1) ∧ o2 = f REQ o2(o1))

≡ < by (∃x • x = term ∧ expr[x]) = expr[term/x] to eliminate w3 >

∀ i1, i2 • ∀ o1, o2 •

(o1 = f3 REQ(i1, f2 REQ(f1 REQ(i2), f4 REQ w3(o1)))∧

o2 = f4 REQ o2(o1))⇒

≡ < by ∀ − elimination, let i
′

1, i
′

2, o
′

1 and o
′

2 denote skolemization constants >

(o
′

1 = f3 REQ(i
′

1, f2 REQ(f1 REQ(i
′

2), f4 REQ w3(o
′

1)))∧

o
′

2 = f4 REQ o2(o
′

1))⇒

(o
′

1 = f REQ o1(i
′

1, i
′

2, o
′

1) ∧ o
′

2 = f REQ o2(o
′

1))

≡ < by the definitions of f REQ o1 and f REQ o2 >

TRUE

The requirements predicates both for the FBD and its components are

already formalized. The above proof illustrates the process of proving the

correctness for a FBD in terms of its requirements.

For those FBs whose outputs are fed back into the FB itself, we ap-

ply mathematical induction on time ticks (i.e., time induction) to prove the

correctness theorem; on the other hand, for those FBs whose outputs are not
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fed back into the FB itself, we prove the correctness theorem by standard

predicate logic. For any reasonably complex FBs supplied by IEC 61131-3, an

output variable either is fed back as an input to the FB itself or is connected

as an input to another internal FB.

7.3.2.1 Proof Strategy of Correctness for IEC 61131-3 Function

Block LIMITS ALARM

For the LIMITS ALARM block (Subsection 7.1.2.3), we split the proof of over-

all correctness into three lemmas. Each proves the correctness of one output

variable. For example, lemma OUTPUT QH CORRECTNESS CHECKING

proves the correctness of output QH.

In Figure 7.33, we summarize the proof structure of the correctness of

output variable QH. The key proof steps are as follows:

1. Applying skosimp to introduce Skolem constants, H!1, L!1, EPS!1, QH!1,

QL!1, Q!1, on the universally quantified inputs and outputs, H, L, EPS,

QH, QL, Q in the consequent, and then disjunctively simplify the impli-

cation into the form that LIMITS ALARM IMPL in the antecedent and

P QH in the consequent.

2. Using expand ’s to expand LIMITS ALARM IMPL and P QH.

3. Using skosimp to introduce Skolem constants, w1!1, w2!1, and w3!1,

for existentially quantified inter-connectors, w1, w2, and w3, in the an-

tecedent, and then split the conjuncts of components in the antecedent.

4. Applying induction scheme time induction on time tick t, generating two

branches: base case and inductive step.

(a) Base case:

i. Using skosimp to introduce Skolem constant t!1 on t, and then

simplify the implication in the consequent.

ii. Using expand ’s to expand the requirement predicate of each

component, SUB, DIV, and HYSTERESIS REQ.
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skosimp

expand  LIMITS_ALARM_IMPL, P_QH

skosimp

induct  time_induction on t

base case inductive case

Expand SUB, DIV, HYSTERESIS_REQ

grind
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skosimp
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split

basic commandsbasic commands

skosimp skosimp
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Expand f_QH +

inst  SUB with “t!1”

inst  DIV with “t!1”

inst  HYSTERESIS_REQ with “t!1”

inst  DIV with “t!1”

Expand SUB, DIV, HYSTERESIS_REQ

Figure 7.33: Correctness proof structure for output QH of LIMITS ALARM

iii. Using inst ’s to introduce Skolem constant t!1 on each univer-

sally quantified formula of component.

iv. Completing the rest of the proof by decision logic.

(b) Inductive step: the same strategies as for base case first, then

expand the recursive function f QH in the consequent14. Complet-

ing the rest of the proof by decision logic.

14Proof command (expand “expr” +) expands expression expr throughout the formulas
occurred in the consequent.
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7.3.2.2 Proof Strategy of Correctness for Subsystem Trip Sealed-In

For the subsystem Trip Sealed-In, we prove the correctness of which timing

behaviour is considered (Section 7.2).

In Figure 7.34, we summarize the proof structure of the correctness

theorem for Trip Sealed-In (i.e., theorem Channel trip sealedin correctness).

The key proof steps are as follows:

1. Applying skosimp to introduce Skolem constants, Any parameter trip!1,

c ChanTrip!1, and Manual reset request!1, Channel trip sealedin!1, on

universally quantified inputs and outputs, Any parameter trip, c ChanTrip,

and Manual reset request, Channel trip sealedin, in the consequent, and

then disjunctively simplify the implication into the form that implemen-

tation predicate Channel trip sealedin IMPL P revised in the antecedent

and requirement predicate Channel trip sealedin REQ P in the conse-

quent.

2. Using expand ’s to expand the (revised version of) implementation predi-

cate of Channel trip sealedin IMPL P revised, and the requirement pred-

icate of Channel trip sealedin REQ P.

3. Using skosimp to introduce Skolem constants, w1!1, . . . , and w7!1, for

existentially quantified inter-connectors, w1, . . . , and w7, in the an-

tecedent, and then split the conjuncts of components in the antecedent.

4. Applying induction scheme time induction on time tick t, generating two

branches: base case and inductive step.

(a) Base case:

i. Using skosimp to introduce Skolem constant t!1 on t, and then

simplify the implication in the consequent.

ii. Using expand ’s to expand the functional form of the tabular

requirement Channel trip sealedin REQ f, and the component

SEL that initializes the subsystem.

iii. Using inst to introduce Skolem constant t!1 on t for the uni-

versally quantified formula of SEL.
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Figure 7.34: Correctness proof structure for the Trip Sealed-In subsystem
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iv. Completing the rest of the proof by decision logic.

(b) Inductive step:

i. Repeat the first step of base case.

ii. Using expand ’s to expand the functional form of the tabular re-

quirement Channel trip sealedin REQ f in the consequent. Af-

ter simplification, the resulting proof goals can be proved in the

same pattern. For each proof goal, expanding each component

by expand , and then introducing Skolem constant t!1 on t via

inst . For the component SEL of which the output is fed as

input back to the subsystem, using inst-cp to remain a copy of

its requirement predicate and then instantiate another constant

pre(t!1) by inst . By using lemma TimerGeneral I that links the

Held For operator in implementation and requirement domains,

and lemma PROPERTY0 that deals with the λ-expressions oc-

curred in Held For, the rest of the proof is completed by proper

instantiations and decision logic.

iii. Along with the use of induction, two subtype TCCs are gen-

erated for time period k Sealindelay req. They can be proved

using typepred ’s on delta L and delta R and decision logic.

7.4 Summary

In this chapter, we demonstrated the verification process for the consistency

and correctness of the IEC 61131-3 block library and the Trip Sealed-In sub-

system using our methodology. We provided proof strategies to guide the

proofs for consistency and correctness.

For the verification of IEC 61131-3 block library, we identifed a number

of different kinds of issues: ambiguous behaviour, missing input assumptions,

and inconsistent implementations. We grouped the problematic FBs according

to the kinds of issues we found. We discussed each issue in detail and suggested

possible solutions to each. For the verification of the Trip Sealed-In subsys-

tem (i.e., one built from IEC 61131-3 TON timer), we formalized the timing
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requirement (using the pre-developed timing operator Held For I in physical

domain) and its FBD implementation (using another pre-developed timing op-

erator Timer I in the software domain) in PVS. We identified an initialization

issue and suggested a solution. We were then able to prove its consistency

and correctness theorems. For the proof strategies, we provided the key steps

to achieve consistency and correctness. We applied our methodology to func-

tion block LIMITS ALARM and subsystem Trip Sealed-In to illustrate the

application of our proof strategies.

The results we achieved on those IEC standard functions and FBs will

benefit PLC developers enabling them to reuse these FBs safely, since this rep-

resents a one time cost that afterwards can be used in any application. These

identified proof strategies are amenable to proof scripts that will facilitate the

automated verification work of the consistency and correctness theorems for

other FB-based control applications.
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Chapter 8

Conclusion

In this thesis we have investigated formal reasoning about function block based

PLC control systems, creating a framework in which the consistency and cor-

rectness of PLC programs written in industry standard IEC 61131-3 function

block diagram (FBD) and structured text (ST) programming languages can

be verified. In the 2003 version of IEC 61131-3 (IEC, 2003), an appendix

also supplies a block library consisting of some of the most commonly used

standard functions and FBs. The main goal of this thesis was to provide a

systematic verification approach to function block based control systems uti-

lizing the block library by first formalizing and verifying the block library. As

a result, those pre-verified FBs can be safely reused in other PLC applications.

We performed our verification work in the environment of the theorem prover

PVS, applying it to both real- and non real-time FBs. The basis of higher-

order logic, formal verification, tabular expression and an understanding of

PLCs are required to apply our proposed method in real applications.

8.1 Highlight of the Contributions

In this section we highlight the contributions related to the proposed formal

reasoning approach for FB-based control systems.

We formalized the input-output requirements of standard functions and

FBs as predicates using tabular expressions, a proven and effective approach
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describing conditionals and relations. The formalized black-box requirements

predicate captures the constraints characterizing the relation between input

and output variables at each time instant. With the use of pre-verified tim-

ing operator Held For, we also formalized three types of timers supplied by

IEC 61131-3 that can be used to design real-time FB subsystems. The result-

ing requirements for standard functions and FBs are well-defined, i.e., they

are both complete and disjoint.

We formalized the FB implementations that are described in ST and/or

FBD. For the ST implementation, we developed a list of translation rules as

guidance to convert ST description into PVS, sufficient for all ST descriptions

in IEC 61131-3. For the FBD implementation, we provided a compositional

approach to specify the overall behaviour predicate, which is based on the

formalizations of its internal FBs.

Utilizing PVS formalizations for requirements and implementation of

a FB, we perform two kinds of verification. We first verify the correctness of

a FB, i.e., the given FB implementation is functionally correct with respect

to its intended behaviour (black-box requirements). The proof for the overall

correctness can be decomposed into the correctness proof for each output vari-

able. We then verify the consistency of a FB, i.e., for each input combination,

there exists at least one corresponding assignment to the outputs such that

implementation predicate holds. In addition, we verify the equivalence of ST

and FBD implementations if both are supplied for a FB.

We applied our verification approach on the standard functions and

FBs supplied by the IEC 61131-3 standard, which has been widely used for

over two decades in industrial automation. Our effort has led to the discovery

of several kinds of issues in the standard: ambiguous behaviour, missing input

assumptions, and inconsistent implementations. We provide our suggested

solution to each. As a result, with the incorporation of our solutions, the

IEC 61131-3 standard functions and FBs can be reused safely in any PLC-

based control system development. Table 8.1 summarizes the issues found in

the IEC 61131-3 standard, as well as our suggested solutions.

To assist the verification work, we provided proof strategies for the

consistency and correctness theorems. These proof strategies have been suc-
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Issue FB Subsystem Solution

PULSE Timer
Using function tables to formalize
its behaviour which ensures both

Ambiguous completeness and disjointness.
Behaviour

SR and RS latches
Explicitly adding unit delay block
z−1 to formalize feedback loop.

LIMITS ALARM

Imposing two assumptions to
ensure that two hysteresis zones
(1) are computed in the right
directions; and (2) do not overlap.

Up Counter CTU
Adding assumption to constrain
the preset value PV has to less
than maximal value PVmax.

Down Counter CTD
Adding assumption to constrain
the preset value PV has to larger
than minimal value PVmin.

Missing Input
Up-down Counter

Adding assumption to constrain
Assumption the preset value PV has to be

CTUD in-between minimal and maximal
valves PVmin and PVmax.

HYSTERESIS
Adding assumption on deadband
size to eliminate unintended
toggling behaviour.

DIFFEQ
Using dependent types to specify
the constraint on the lengths of
input and output history.

N-sample DELAY
Redefining the length of N to
exclude the case of 0-delay.

AVERAGE
Constraining the type of N to
exclude value 0.

PID
Constraining the type of TR to
exclude value 0.

ALRM INT
Adding assumption to constrain
the high and low limits.

Inconsistent
STACK INT

Adding one negation block NEG
Implementations to correct the supplied FBD.

Table 8.1: Summary for problematic FBs in IEC 61131-3
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cessfully applied on all case studies in this thesis. We distinguish the proofs

by those who require induction and those that do not. For those proofs

that require induction, we adopted an induction scheme (i.e., time induction)

over time ticks; for those proofs that do not require induction, we com-

pleted the proofs using definition expansion, arithmetic, equality, and quanti-

fier reasoning. We illustrated the applications of the proof structures on block

LIMITS ALARM from IEC 61131-3 and a generalized real-time FB subsystem

Trip Sealed-In from an industrial application.

Overall, we manually formalized and verified 29 FBs from the IEC 61131-

3 standard into PVS, 16 FBs in ST, 4 FBs in FBDs, 5 FBs in both of ST and

FBDs, 3 FBs in timing diagrams and 1 FB is described in natural language.

We performed 115 proof tasks for consistency, correctness, functional equiv-

alence (if applicable), and some required properties. Additionally, 350 proof

obligations of TCCs are automatically generated in PVS. We also applied our

methodology to two realistic sub-systems taken from the nuclear domain, i.e.,

the Trip Sealed-In subsystem and the Pushbutton subsystem. We proved 43

TCCs and 40 proof tasks in PVS. Only simple TCCs can be proved automat-

ically, while others need human intervention.

The methodology has been tried successfully on real industrial prob-

lems in the nuclear industry, and its applicability has been demonstrated in

it being chosen for use by the companies performing this work in a regulated

environment.

8.2 Limitations and Future Research

In this thesis we have not provided complete translation rules for arbitrary

ST –to–PVS . No attempt was made to deal with ST constructs such as WHILE

and REPEAT, and more complex ST structures such as nested IF statements

in FOR loops, or vice versa. The provided rules can be further extended to

formally translate more general ST program into PVS, not just the rules that

are sufficient for the examples of the IEC 61131-3 standard.

Requirement validation is concerned with checking whether the re-

quired behaviour of the PLC software system will result in a system that
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meets its users expectations. It is necessary to ensure that the requirements

specification contains no errors and that it specifies the intended behaviour

correctly. The work reported in this thesis involves providing and making as-

sumptions about the requirements specifications of IEC 61131-3 FBs, based

on experience that would be consistent with industrial norms. It helps to vali-

date the requirements specifications with the engineers and users of FBs. Since

the requirements specifications of FBs are specified in tabular expressions, it

helps the engineers and users to comprehend and maintain the requirements

specifications.

Although the proof strategies are used as guidance for the proofs of con-

sistency and correctness theorems, the proofs still involve a certain amount of

moderately tedious interactions. Developing proof tactics to provide a more

automated method for proving consistency and correctness theorems would

greatly facilitate the use of our approach in larger practical applications. One

possible solution to this problem is the use of advanced user-defined proof

scripts supported by PVS to achieve greater levels of automation and cus-

tomization. Similar to LCF-style tactics, the capabilities of the PVS proof

checker can be extended by defining proof scripts. The proof scripts are of-

ten used to discharge TCCs, make simplifications, rewrite decision procedures,

and perform proofs by induction. These proof scripts can be made based on:

(1) our suggested proof patterns; (2) the construction of definitions, lemmas,

and theorems; and (3) recovering from failed proof attempts.

As a candidate successor of IEC 61131-3, IEC 61499 provides a generic

model for distributed control systems. The basic concept of function block

in this standard has more features, e.g., separation of data and event flow

and object-orientation. We may adapt, and possibly extend, our approach for

verifying IEC 61499 function blocks in the future.
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Appendix A

Time Theory

This appendix contains the PVS file for Time theory (Hu, 2008).

Time: THEORY

BEGIN

time: TYPE+ = nonneg_real

non_initial_time: TYPE+ = posreal

END Time
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Appendix B

ClockTick Theory

The ClockTick theory imports the Time theory, and defines the tick type as
a subtype of the time type. Variable delta t is passed as a parameter that can
be instantiated when the theory is imported. The ClockTick theory is updated
from (Hu, 2008).

ClockTick[delta_t: posreal]: THEORY

BEGIN

IMPORTING Time

n: VAR nat

tick: TYPE = {t: time | EXISTS (n: nat): t = n * delta_t}

x: VAR tick

init(x): bool = (x = 0)

snd(x): bool = (x = delta_t)

trd(x) : bool = (x = 2 * delta_t)

fth(x) : bool = (x = 3 * delta_t)

noninit_elem: TYPE = {x | NOT init(x)}

from_2nd_tick: TYPE = { x | NOT init(x) & NOT snd(x) }

from_3rd_tick: TYPE = { x | NOT init(x) & NOT snd(x) & NOT trd(x) }

y: VAR noninit_elem

yy: VAR from_2nd_tick
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yyy: VAR from_3rd_tick

pre(y): tick = y - delta_t

pre_2(yy): tick = yy - 2 * delta_t

pre_3(yyy): tick = yyy - 3 * delta_t

next(x): tick = x + delta_t

rank(x): nat = x / delta_t

time_induct: LEMMA

FORALL (P: pred[tick]):

(FORALL x, n: rank(x) = n IMPLIES P(x)) IMPLIES (FORALL x: P(x))

time_induction: PROPOSITION

FORALL (P: pred[tick]):

(FORALL (t: tick): init(t) IMPLIES P(t)) AND

(FORALL (t: noninit_elem): P(pre(t)) IMPLIES P(t))

IMPLIES (FORALL (t: tick): P(t))

tick_PROPERTY0: LEMMA

FORALL (n1, n2: nat):

n1 * delta_t > n2 * delta_t IFF n1 * delta_t - delta_t >= n2 * delta_t

tick_PROPERTY1: LEMMA FORALL (t: tick | t > 0): t > x IFF pre(t) >= x

END ClockTick
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Appendix C

Defined operators Theory

The defined operators theory defines basic operators.

defined_operators[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

Condition_type: TYPE = pred[tick]

t, ts, te, duration: VAR tick

neg(i, out: bool): bool = (out = NOT i)

conj(i1, i2, out: bool): bool = (out = (i1 & i2))

conj_3(i1, i2, i3, out: bool): bool = (out = (i1 & i2 & i3))

conj_4(i1, i2, i3, i4, out: bool): bool = (out = (i1 & i2 & i3 & i4))

disj(i1, i2, out: bool): bool = (out = (i1 OR i2))

disj(i1: pred[tick], i2: pred[tick], out: pred[tick]): bool =

FORALL (t:tick): out(t) = (i1(t) OR i2(t))

disj_4(i1, i2, i3, i4, out: bool): bool = (out = (i1 OR i2 OR i3 OR i4))

Z(i, out: pred[tick])(t): bool =

IF init(t) THEN (out(t) = False) ELSE out(t) = i(pre(t)) ENDIF

add(i1, i2: int): int = (i1 + i2)

add(i1, i2: real): real = (i1 + i2)
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add(i1, i2, out: real): bool = (out = (i1 + i2))

add(i1: [tick->real], i2: [tick->real], out: [tick->real]): bool =

FORALL (t: tick): (out(t) = (i1(t) + i2(t)))

add(en, eno: pred[tick], i1, i2, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = -1) & NOT eno(t)

ELSE TABLE

%------------------------------------------------------------%

| en(t) | (out(t) = (i1(pre(t)) + i2(pre(t)))) & eno(t) ||

%------------------------------------------------------------%

| NOT en(t) | (out(t) = i1(pre(t))) & NOT eno(t) ||

%------------------------------------------------------------%

ENDTABLE

ENDIF

add_1(en, eno: pred[tick], i, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = -1) & NOT eno(t)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = (i(pre(t)) + 1)) & eno(t) ||

%--------------------------------------------------%

| NOT en(t) | (out(t) = i(pre(t))) & NOT eno(t) ||

%---------------------------------------------------%

ENDTABLE

ENDIF

mul(i1, i2: int): int = (i1 * i2)

div(i1: real, i2: {i:real| i /= 0 }): real = i1 / i2

div(i1: real, i2: {i:real| i /= 0 }, out: real): bool = (out = (i1 / i2))

div(i1: [tick->real], i2: [tick->{i:real| i /= 0 }],

out: [tick->real]): bool =

FORALL (t:tick): (out(t) = (i1(t) / i2(t)))

sub(i1, i2: int): int = (i1 - i2)

sub(i1, i2: real): real = (i1 - i2)

sub(i1, i2, out: real): bool = (out = (i1 - i2))

sub(i1: [tick->real], i2: [tick->real], out: [tick->real]): bool =

FORALL (t: tick): (out(t) = (i1(t) - i2(t)))

sub(en, eno: pred[tick], i1, i2, out: [tick->int]): bool =
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FORALL t:

IF init(t) THEN (out(t) = -1) & NOT eno(t)

ELSE TABLE

%------------------------------------------------------------%

| en(t) | (out(t) = (i1(pre(t)) - i2(pre(t)))) & eno(t) ||

%------------------------------------------------------------%

| NOT en(t) | (out(t) = i1(pre(t))) & NOT eno(t) ||

%------------------------------------------------------------%

ENDTABLE

ENDIF

sub_1(en, eno: pred[tick], i, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = -1) & NOT eno(t)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = (i(pre(t)) - 1)) & eno(t) ||

%--------------------------------------------------%

| NOT en(t) | (out(t) = i(pre(t))) & NOT eno(t) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

move(i,out: int): bool = (out = i)

move_int(en, eno: pred[tick], i, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = 0) & NOT eno(t)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & eno(t) ||

%--------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

move_bool(en, eno: pred[tick], i, out: pred[tick]): bool =

FORALL t:

IF init(t) THEN (out(t) = False) & NOT eno(t)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & eno(t) ||

%--------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t) ||

%--------------------------------------------------%

ENDTABLE

ENDIF
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move(en: pred[tick], i, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = 0)

ELSE TABLE

%-------------------------------------%

| en(t) | (out(t) = i(t)) ||

%-------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) ||

%-------------------------------------%

ENDTABLE

ENDIF

gt(i1, i2: int): bool = (i1 > i2)

gt(i1, i2: real): bool = (i1 > i2)

gt(i1, i2: int, out: bool): bool = (out = (i1 > i2))

eq(i1, i2: int): bool = (i1 = i2)

eq(en, eno: pred[tick], i1, i2: [tick->int], out: pred[tick]): bool =

FORALL t:

IF init(t) THEN NOT out(t) & NOT eno(t)

ELSE TABLE

%----------------------------------------------------------------%

| en(t) & (i1(t) = i2(t)) | out(t) & eno(t) ||

%----------------------------------------------------------------%

| en(t) & (i1(t) /= i2(t))| NOT out(t) & eno(t) ||

%----------------------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t)||

%----------------------------------------------------------------%

ENDTABLE

ENDIF

eq(en: pred[tick], i1, i2: [tick->int], out: pred[tick]): bool =

FORALL t:

IF init(t) THEN NOT out(t)

ELSE TABLE

%--------------------------------------------------%

| en(t) & (i1(t) = i2(t)) | out(t) ||

%--------------------------------------------------%

| en(t) & (i1(t) /= i2(t)) | NOT out(t) ||

%--------------------------------------------------%

| NOT en(t) | out(t) = out(pre(t))||

%--------------------------------------------------%

ENDTABLE

ENDIF

ge(i1, i2: int): bool = (i1 >= i2)
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ge(i1, i2: real): bool = (i1 >= i2)

le(i1, i2: int): bool = (i1 <= i2)

le(i1, i2: real): bool = (i1 <= i2)

lt(i1, i2: int): bool = (i1 < i2)

lt(i1, i2: int, out: bool): bool = (out = (i1 < i2))

lt(i1, i2: real): bool = (i1 < i2)

lt(en, eno: pred[tick], i1, i2: [tick->int], out: pred[tick]): bool =

FORALL t:

IF init(t) THEN NOT out(t) & NOT eno(t)

ELSE TABLE

%---------------------------------------------------------------%

| en(t) & (i1(t) < i2(t)) | out(t) & eno(t) ||

%---------------------------------------------------------------%

| en(t) & (i1(t) >= i2(t))| NOT out(t) & eno(t) ||

%---------------------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t)||

%---------------------------------------------------------------%

ENDTABLE

ENDIF

ne(i1, i2: int): bool = (i1 /= i2)

sel(g: bool, i1, i2: int): int = IF g = FALSE THEN i1 ELSE i2 ENDIF

sel(en, eno, g: pred[tick], in0, in1: int, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = 0) & NOT eno(t)

ELSE TABLE

%---------------------------------------------------------%

| en(t) & NOT g(t) | (out(t) = in0) & eno(t) ||

%---------------------------------------------------------%

| en(t) & g(t) | (out(t) = in1) & eno(t) ||

%---------------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t) ||

%---------------------------------------------------------%

ENDTABLE

ENDIF

sel(g: pred[tick], in0, in1: [tick->int], out: [tick->int]): bool =

FORALL t:

IF init(t) THEN out(t) = 0

ELSE TABLE
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%-----------------------------%

| NOT g(t) | out(t) = in0(t) ||

%-----------------------------%

| g(t) | out(t) = in1(t) ||

%-----------------------------%

ENDTABLE

ENDIF

min(i1, i2: int): int = IF i1 <= i2 THEN i1 ELSE i2 ENDIF

max(i1, i2: int): int = IF i1 >= i2 THEN i1 ELSE i2 ENDIF

limit(i, mn, mx: int): int = min(max(i,mn),mx)

limit(en, eno: pred[tick], i, mn, mx, out: [tick->int]): bool =

FORALL t:

IF init(t) THEN (out(t) = 128) & NOT eno(t)

ELSE TABLE

%-------------------------------------------------------------%

| en(t) | (out(t) = min(max(i(t),mn(t)),mx(t))) & eno(t) ||

%-------------------------------------------------------------%

| NOT en(t) | (out(t) = out(pre(t))) & NOT eno(t) ||

%-------------------------------------------------------------%

ENDTABLE

ENDIF

mux(k: {i:int| i >= 0 & i <= 3 }, i0, i1, i2, i3: int): int =

TABLE

%-------------%

| k = 0 | i0 ||

%-------------%

| k = 1 | i1 ||

%-------------%

| k = 2 | i2 ||

%-------------%

| k = 3 | i3 ||

%-------------%

ENDTABLE

Held_For(P: Condition_type, duration: tick)(t): bool =

EXISTS(t_j:tick):

(t - t_j >= duration) &

(FORALL (t_n: tick | t_n >= t_j & t_n <= t): P(t_n))

Held_For_ts(P: Condition_type, duration, ts: tick)(t): bool =

(t - ts >= duration) &

(FORALL (t_n: tick | t_n >= ts & t_n <= t): P(t_n))

END defined_operators
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Appendix D

Timers Blocks

This appendix contains the PVS formalizations for timer blocks TON, TOF,
and PULSE.

TON[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

t: VAR tick

IN: VAR pred[tick]

PT: VAR [tick -> tick]

last_enabled(IN)(t): RECURSIVE tick =

IF init(t) THEN 0

ELSE

TABLE

%-----------------------------------------------------%

| NOT IN(pre(t)) & IN(t) | t ||

%-----------------------------------------------------%

| IN(pre(t)) OR NOT IN(t) | last_enabled(IN)(pre(t)) ||

%-----------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

q(IN,PT)(t): bool =

IF init(t) THEN False

ELSE

TABLE

%-----------------------------------------------------%

| IN(t) & (t - last_enabled(IN)(t) >= PT(t)) | TRUE ||
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%-----------------------------------------------------%

| IN(t) & (t - last_enabled(IN)(t) < PT(t)) | FALSE ||

%-----------------------------------------------------%

| NOT IN(t) | FALSE ||

%-----------------------------------------------------%

ENDTABLE

ENDIF

ET(IN,PT)(t): tick =

IF init(t) THEN 0

ELSE

TABLE

%-------------------------------------------------------------------%

| IN(t) & t - last_enabled(i)(t) >= PT(t) | PT(t) ||

%-------------------------------------------------------------------%

| IN(t) & t - last_enabled(i)(t) < PT(t) |t - last_enabled(IN)(t) ||

%-------------------------------------------------------------------%

| NOT IN(t) | 0 ||

%-------------------------------------------------------------------%

ENDTABLE

ENDIF

END TON

TOF[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

t: VAR tick

IN: VAR pred[tick]

PT: VAR [tick -> tick]

last_disabled(IN)(t): RECURSIVE tick =

IF init(t) THEN 0

ELSE

TABLE

%------------------------------------------------------%

| IN(pre(t)) & NOT IN(t) | t ||

%------------------------------------------------------%

| NOT IN(pre(t)) OR IN(t) | last_disabled(IN)(pre(t)) ||

%------------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)
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Q(IN,PT)(t): bool =

IF init(t) THEN True

ELSE

TABLE

%----------------------------------------------------------%

| NOT IN(t) & (t - last_disabled(IN)(t) >= PT(t)) | FALSE ||

%----------------------------------------------------------%

| NOT IN(t) & (t - last_disabled(IN)(t) < PT(t)) | TRUE ||

%----------------------------------------------------------%

| IN(t) | TRUE ||

%----------------------------------------------------------%

ENDTABLE

ENDIF

ET(IN,PT)(t): tick =

IF init(t) THEN 0

ELSE

TABLE

%---------------------------------------------------------------------%

|NOT IN(t) & t - last_disabled(IN)(t)>=PT(t)| pt(t) ||

%---------------------------------------------------------------------%

|NOT IN(t) & t - last_disabled(IN)(t)< PT(t)|t - last_disabled(IN)(t)||

%---------------------------------------------------------------------%

| IN(t) | 0 ||

%---------------------------------------------------------------------%

ENDTABLE

ENDIF

END TOF

PULSE[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

IMPORTING defined_operators[delta_t]

t: VAR tick

IN: VAR pred[tick]

PT: VAR [tick -> tick]

Q: VAR pred[tick]

ET: VAR [tick -> tick]
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Q(IN,PT,Q)(t): bool =

IF init(t) THEN FALSE

ELSE

TABLE

%----------------------------------------------------%

| NOT Q(pre(t)) & NOT IN(pre(t)) & IN(t) | TRUE ||

%----------------------------------------------------%

| NOT Q(pre(t)) & (IN(pre(t)) OR NOT IN(t)) | FALSE ||

%----------------------------------------------------%

| Q(pre(t)) & NOT Held_For(Q,PT(t))(t) | TRUE ||

%----------------------------------------------------%

| Q(pre(t)) & Held_For(Q,PT(t))(t) | FALSE ||

%----------------------------------------------------%

ENDTABLE

ENDIF

pulse_start_time(Q)(t): RECURSIVE tick =

IF init(t) THEN 0

ELSE

TABLE

%------------------------------------------------------%

| NOT Q(pre(t)) & Q(t) | t ||

%------------------------------------------------------%

| Q(pre(t)) OR NOT Q(t) | pulse_start_time(Q)(pre(t)) ||

%------------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

ET(IN,PT,Q)(t): tick =

IF init(t) THEN 0

ELSE

TABLE

%---------------------------------------------------%

|Q(t) | t - pulse_start_time(Q)(t) ||

%---------------------------------------------------%

|NOT Q(t) & NOT IN(t) | 0 ||

%---------------------------------------------------%

|NOT Q(t) & IN(t) | PT(t) ||

%---------------------------------------------------%

ENDTABLE

ENDIF

END PULSE
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Appendix E

Block STACK INT

To define the requirements of the STACK INT block, we consider its three
output variables (EMPTY, OFLO, and OUT) and three internal variables
(NI, PTR, and STK). The stack is represented using a zero-based array STK
with a preset size NI. A pointer PTR (of STK) references the last item pushed
onto the stack.

Internal Variables

The value of NI restricts the maximum capacity of the stack. Its value may
be set upon a reset operation, where an internal function LIMIT is used to
return a value N, bounded by some preset (lower and upper) limits. Its value
stays unchanged until another reset operation is requested.

Result

Condition NI
R1 LIMIT(1,N,128)
¬R1 NC

Figure E.1: Requirement for internal NI of block STACK INT

Since indices of the array representation of the stack start with 0, the
initial value of the pointer value PTR (for an empty stack) is set to -1. The
pointer position may shift to the left or to the right when, respectively, a pop
operation (from a non-empty stack) or a push operation (not resulting in a
stack overflow) is performed.

For the array representation STK of stack, we are only interested in
querying the value stored at index PTR. When a valid push operation occurs
(not resulting in a stack overflow), the value of STK(PTR) is set to that of
the input IN.

Output Variables

The output EMPTY is a Boolean flag indicating if the current stack is empty.

159



PhD Thesis – Linna Pang – McMaster – Computing and Software

Result

Condition PTR
R1 -1

¬R1
POP ∧ ¬EMPTY−1 PTR−1-1

¬POP ∨ EMPTY−1
PUSH ∧ ¬OFLO−1 PTR−1+1
¬PUSH ∨ OFLO−1 NC

Figure E.2: Requirement for internal PTR of block STACK INT

Result

Condition STK(PTR)
¬ R1 ∧ ¬ (POP ∧ ¬ EMPTY−1) ∧ IN

PUSH ∧ ¬ OFLO−1 ∧ ¬ OFLO
R1 ∨ (POP ∧ ¬ EMPTY−1) ∨ ¬ NC

PUSH ∨ OFLO−1 ∨ OFLO

Figure E.3: Requirement for internal STK of block STACK INT

The current stack may be reinitialized (to be an empty stack) by a reset
operation (by enabling another Boolean flag R1). When a push operation
occurs, as long as there was not previously a stack overflow (i.e., ¬OFLO−1),
then the stack remains (or becomes) non-empty (i.e., ¬EMPTY ). When a pop
operation occurs, if the stack was previously left with only one item, then the
stack becomes empty (by setting the internal pointer PTR to -1); otherwise,
when more than one items were previously left, then the stack remains non-
empty.

Result

Condition EMPTY
R1 TRUE

¬R1
POP ∧ ¬EMPTY−1

PTR < 0 TRUE
PTR ≥ 0 FALSE

¬POP ∨ EMPTY−1
PUSH ∧ ¬OFLO−1 FALSE
¬PUSH ∨ OFLO−1 NC

Figure E.4: Requirement for output EMPTY of block STACK INT

The output OFLO is a Boolean flag indicating if the current operation
has resulted in a stack overflow. Obviously, a stack overflow can occur only
when the stack previously reached its maximum capacity NI1 and a push
operation is performed. Once there is a stack overflow, the value of OFLO
holds until a reset operation is requested. Otherwise, the stack remains in its
normal state (i.e., ¬OFLO).

1The internal pointer variable starts with 0, so when it reaches NI - 1, the stack is full.
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Result

Condition OFLO
R1 FALSE

¬R1

POP ∧ ¬EMPTY−1 FALSE

¬POP ∨ EMPTY−1
PUSH ∧ ¬OFLO−1

PTR = NI TRUE
PTR 6= NI FALSE

¬PUSH ∨ OFLO−1 NC

Figure E.5: Requirement for output OFLO of block STACK INT

The output OUT indicates the top of the stack. The value of OUT is
set to 0 when either (1) the stack is reinitialized to be empty; (2) the stack is
currently empty; or (3) the current push operation results in a stack overflow.
Otherwise, popping from a non-empty stack (with more than one item results
in OUT being set to where the current PTR points to (i.e., STK (PTR));
pushing onto a stack results in OUT being set to the value just added to the
stack (i.e., input IN).

Result

Condition OUT
R1 0

¬R1

POP ∧ ¬EMPTY−1
EMPTY 0
¬EMPTY STK(PTR)

¬POP ∨ EMPTY−1
PUSH ∧ ¬OFLO−1

¬OFLO IN
OFLO 0

¬PUSH ∨ OFLO−1 NC

Figure E.6: Requirement for output OUT of block STACK INT
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The PVS formalization for block STACK INT is as follows. It imports
two theories, Time (Appendix A), and defined_operators (Appendix C).

STACK_INT[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

IMPORTING defined_operators[delta_t]

t: VAR tick

inp, n, out: VAR [tick -> int]

r1, oflo, empty, pop, push, ret1, ret2, ret3: VAR pred[tick]

index: TYPE = {ind: int | ind >= -1 & ind <= 127 }

index_revised: TYPE = {ind: int | ind >= -1 & ind <= 128 }

storage_size: TYPE = {size: posint | size >= 1 & size <= 128}

stack: TYPE = ARRAY[index -> int]

stack_revised: TYPE = ARRAY[index_revised -> int]

ni: VAR [tick -> storage_size]

ptr: VAR [tick -> index]

ptr_revised: VAR [tick -> index_revised]

stk: VAR stack

stk_revised: VAR stack_revised

move_int(en, eno: pred[tick], i, out: [tick->int])(t): bool =

IF init(t) THEN (out(t) = 0) & (eno(t) = FALSE)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & (eno(t) = TRUE) ||

%--------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

move_int_en(en: pred[tick], i, out: [tick->int])(t): bool =
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IF init(t) THEN out(t) = 0

ELSE TABLE

%------------------------------%

| en(t) | (out(t) = i(t)) ||

%------------------------------%

| NOT en(t) | TRUE ||

%------------------------------%

ENDTABLE

ENDIF

move_int_ptr(en, eno: pred[tick], i, out: [tick->int])(t): bool =

IF init(t) THEN (out(t) = -1) & (eno(t) = FALSE)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & (eno(t) = TRUE) ||

%--------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

move_bool_oflo(en, eno: pred[tick], i, out:pred[tick])(t): bool =

IF init(t) THEN (out(t) = FALSE) & (eno(t) = FALSE)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & (eno(t) = TRUE) ||

%--------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

move_bool_empty(en, eno: pred[tick], i, out: pred[tick])(t): bool =

IF init(t) THEN (out(t) = TRUE) & (eno(t) = FALSE)

ELSE TABLE

%--------------------------------------------------%

| en(t) | (out(t) = i(t)) & (eno(t) = en(t)) ||

%--------------------------------------------------%

| NOT en(t) | (eno(t) = en(t)) ||

%--------------------------------------------------%

ENDTABLE

ENDIF

sub_1_ptr(en, eno: pred[tick], out: [tick->int])(t): bool =

IF init(t) THEN (out(t) = -1) & (eno(t) = FALSE)

ELSE TABLE

%------------------------------------------------------------%

| en(t) & (out(pre(t)) = -1) | (out(t) = (out(pre(t)))) &

(eno(t) = FALSE) ||
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%------------------------------------------------------------%

| en(t) & (out(pre(t)) /= -1) | (out(t) = out(pre(t)) - 1) &

(eno(t) = TRUE) ||

%------------------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%------------------------------------------------------------%

ENDTABLE

ENDIF

add_1_ptr(en, eno: pred[tick], out, sp: [tick->int])(t): bool =

IF init(t) THEN (out(t) = -1) & (eno(t) = FALSE)

ELSE TABLE

%--------------------------------------------------------------%

| en(t) & (out(pre(t)) = sp(t)) | (out(t) = out(pre(t))) &

(eno(t) = FALSE) ||

%--------------------------------------------------------------%

| en(t) & (out(pre(t)) /= sp(t)) | (out(t) = out(pre(t)) + 1) &

(eno(t) = TRUE) ||

%--------------------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%--------------------------------------------------------------%

ENDTABLE

ENDIF

lt_empty(en,eno:pred[tick], i1,i2:[tick->int], out:pred[tick])(t): bool =

IF init(t) THEN (out(t) = TRUE) & (eno(t) = FALSE)

ELSE TABLE

%---------------------------------------------------------------%

| en(t) & (i1(t) < i2(t)) |(out(t) = TRUE) & (eno(t) = TRUE) ||

%---------------------------------------------------------------%

| en(t) & (i1(t) >= i2(t)) |(out(t) = FALSE) & (eno(t) = TRUE) ||

%---------------------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE)||

%---------------------------------------------------------------%

ENDTABLE

ENDIF

sel_update(en,eno,g:pred[tick], in0,in1:int, out:[tick->int])(t): bool =

IF init(t) THEN (out(t) = 0) & (eno(t) = FALSE)

ELSE TABLE

%-------------------------------------------------------%

| en(t) & NOT g(t) | (out(t) = in0) & (eno(t) = TRUE) ||

%-------------------------------------------------------%

| en(t) & g(t) | (out(t) = in1) & (eno(t) = TRUE) ||

%-------------------------------------------------------%

| NOT en(t) | (eno(t) = FALSE) ||

%-------------------------------------------------------%

ENDTABLE

ENDIF
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sel_update_en(en,g:pred[tick], in0,in1: int, out:[tick->int])(t): bool =

IF init(t) THEN (out(t) = 0)

ELSE TABLE

%-------------------------------------%

| en(t) & NOT g(t) | (out(t) = in0) ||

%-------------------------------------%

| en(t) & g(t) | (out(t) = in1) ||

%-------------------------------------%

| NOT en(t) | TRUE ||

%-------------------------------------%

ENDTABLE

ENDIF

eq_oflo(en: pred[tick], i1, i2: [tick->int], out: pred[tick])(t): bool =

IF init(t) THEN (out(t) = 0)

ELSE TABLE

%-----------------------------------------------%

| en(t) & (i1(t) = i2(t)) | (out(t) = TRUE) ||

%-----------------------------------------------%

| en(t) & (i1(t) /= i2(t)) | (out(t) = FALSE) ||

%-----------------------------------------------%

| NOT en(t) | TRUE ||

%-----------------------------------------------%

ENDTABLE

ENDIF

neg_en(en: pred[tick], i, out: pred[tick])(t): bool =

IF init(t) THEN out(t) = FALSE

ELSE TABLE

%--------------------------------%

| en(t) | out(t) = NOT i(t) ||

%--------------------------------%

| NOT en(t) | out(t) = FALSE ||

%---------------------------------%

ENDTABLE

ENDIF

Z_update(i, out: [tick->index])(t): bool =

IF init(t) THEN (out(t) = -1) ELSE out(t) = i(pre(t)) ENDIF

f_stk_ptr(r1, pop, empty, push, oflo,

inp, ptr_revised)(t): RECURSIVE stack_revised =

IF init(t) THEN LAMBDA (ptrr: index_revised): 0

ELSE TABLE

%--------------------------------------------------------------%

| NOT r1(t) & NOT (pop(t) & NOT empty(pre(t))) &

push(t) & NOT oflo(pre(t)) & NOT oflo(t)

|f_stk_ptr(r1,pop,empty,push,oflo,inp,ptr_revised)(pre(t))
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WITH [(ptr_revised(t)) := inp(t)]||

%--------------------------------------------------------------%

| r1(t) OR (pop(t) & NOT empty(pre(t))) OR

NOT push(t) OR oflo(pre(t)) OR oflo(t)

|f_stk_ptr(r1,pop,empty,push,oflo,inp,ptr_revised)(pre(t))||

%--------------------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

unifun_empty_oflo_ptr(r1,pop,push,ni)(t):RECURSIVE[bool,bool,index_revised]=

IF init(t) THEN (TRUE,FALSE,-1)

ELSE LET PREV = unifun_empty_oflo_ptr(r1, pop, push, ni)(pre(t)) IN

TABLE

%----------------------------------------------------------------%

| r1(t) | (TRUE,FALSE,-1) ||

%----------------------------------------------------------------%

| NOT r1(t) & (pop(t) & NOT PREV‘1) &

(PREV‘3 >= 0) | (TRUE,FALSE,PREV‘3 - 1)||

%----------------------------------------------------------------%

| NOT r1(t) & (pop(t) & NOT PREV‘1) &

(PREV‘3 = -1) | (PREV‘1,PREV‘2,PREV‘3) ||

%----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR PREV‘1) & (push(t) &

NOT PREV‘2) & (PREV‘3 = ni(t) - 1) | (FALSE,TRUE,PREV‘3 + 1)||

%----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR PREV‘1) & (push(t) &

NOT PREV‘2) & (PREV‘3 /= ni(t) - 1) | (PREV‘1,PREV‘2,PREV‘3) ||

%----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR PREV‘1) &

(NOT push(t) OR PREV‘2) | (PREV‘1,PREV‘2,PREV‘3) ||

%----------------------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

f_ni(r1, n)(t): RECURSIVE storage_size =

IF init(t) THEN 128 ELSIF r1(t) THEN limit(1,n(t),128)

ELSE f_ni(r1,n)(pre(t))

ENDIF

MEASURE rank(t)

f_out(r1, pop, push, empty, oflo, stk, ptr, inp, ni, out)(t): bool =

out(t) =

IF init(t) THEN 0

ELSE LET PREV = out(pre(t)) IN

TABLE

%-----------------------------------------------------------------%

| r1(t) | 0 ||
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%-----------------------------------------------------------------%

| NOT r1(t) & (pop(t) & NOT empty(pre(t))) & empty(t)| 0 ||

%-----------------------------------------------------------------%

| NOT r1(t) & (pop(t) & NOT empty(pre(t))) &

NOT empty(t) |stk(ptr(t))||

%-----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR empty(pre(t))) &

(push(t) & NOT oflo(pre(t))) & (ptr(t) /= ni(t)) | inp(t) ||

%-----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR empty(pre(t))) &

(push(t) & NOT oflo(pre(t))) & (ptr(t) = ni(t)) | 0 ||

%-----------------------------------------------------------------%

| NOT r1(t) & (NOT pop(t) OR empty(pre(t))) &

NOT (push(t) & NOT oflo(pre(t))) | PREV ||

%-----------------------------------------------------------------%

ENDTABLE

ENDIF

ret1(ret1,empty,oflo,out)(t): bool =

IF init(t) THEN TRUE ELSIF ret1(t) THEN

out(t) = out(pre(t)) & empty(t) = empty(pre(t)) & oflo(t) = oflo(pre(t))

ELSE TRUE ENDIF

ENDIF

STACK_INT_FBD(push,pop,r1,inp,n,empty,oflo,out)(t): bool =

EXISTS (ptr_revised,ni,stk_revised):

IF init(t) THEN (empty(t) = True) & (oflo(t) = False) & (out(t) = 0) &

ptr_revised(t) = -1 & ni(t) = 128 & stk_revised(ptr_revised(t)) = 0

ELSE

EXISTS (d1,d2,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,

w16,w18,w19,w20:pred[tick],ret1,ret2,ret3,pop_stk,push_stk:pred[tick]):

Z(empty,d1)(t) & neg(r1(t),w1(t)) & neg(d1(t),w2(t)) &

conj_3(w1(t),pop(t),w2(t),pop_stk(t)) & neg(r1(t),w3(t)) &

neg(pop_stk(t),w4(t)) & neg(push_stk(t),w5(t)) &

conj_3(w3(t),w4(t),w5(t),ret1(t)) &

neg(pop_stk(t),w6(t)) & neg(r1(t),w7(t)) &

Z(oflo,d2)(t) & neg(d2(t),w8(t)) &

conj_4(w6(t),w7(t),push(t),w8(t),push_stk(t)) &

move_int(r1,w9,LAMBDA t:0,out)(t) &

move_int_ptr(w9,w10,LAMBDA t:-1,ptr_revised)(t) &

move_bool_oflo(w10,w11,LAMBDA t:False,oflo)(t) &

move_bool_empty(w11,w12,LAMBDA t:True,empty)(t) &

limit(w12,ret2,n,LAMBDA t:1,LAMBDA t:128,ni)(t) &

sub_1_ptr(pop_stk,w13,ptr_revised)(t) &

lt_empty(w13,w14,ptr_revised,LAMBDA t:0,empty)(t) &

sel_update(w14,w15,empty,stk_revised(ptr_revised(t)),0,out)(t) &

move_bool_oflo(w15,ret3,LAMBDA t:False,oflo)(t) &

move_bool_empty(push_stk,w18,LAMBDA t:False,empty)(t) &

add_1_ptr(w18,w19,ptr_revised,lambda t:ni(t)-1)(t) &
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eq_oflo(w19,ptr_revised,ni,oflo)(t) &

move_int_en(w16,inp,lambda t:stk_revised(ptr_revised(t)))(t) &

neg_en(w20,oflo,w16)(t) &

sel_update_en(w20,oflo,inp(t),0,out)(t) &

ret1(ret1,empty,oflo,out)(t)

ENDIF

STACK_INT_ST(push,pop,r1,inp,n,empty,oflo,out): bool =

FORALL t:

EXISTS (ptr_revised,ni,stk_revised):

ptr_revised(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘3 &

ni(t) = f_ni(r1,n)(t) &

stk_revised = f_stk_ptr(r1,pop,empty,push,oflo,inp,ptr_revised)(t) &

empty(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘1 &PREV

oflo(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘2 &

out(t) = f_out(r1,pop,push,empty,oflo,stk_revised,ptr_revised,inp)(t)

STACK_INT_REQ(push,pop,r1,inp,n,empty,oflo,out): bool =

FORALL t:

EXISTS (ptr_revised,ni,stk_revised):

empty(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘1 &

oflo(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘2 &

ptr_revised(t) = unifun_empty_oflo_ptr(r1,pop,push,ni)(t)‘3 &

ni(t) = f_ni(r1,n)(t) &

stk_revised = f_stk_ptr(r1,pop,empty,push,oflo,inp,ptr_revised)(t) &

out(t) = f_out(r1,pop,push,empty,oflo,stk_revised,ptr_revised,inp)(t)

STACK_INT_FBD_IMPLIES_ST: LEMMA

STACK_INT_FBD(push,pop,r1,inp,n,empty,oflo,out)

IMPLIES

STACK_INT_ST(push,pop,r1,inp,n,empty,oflo,out)

STACK_INT_ST_CONSISTENCY: THEOREM

FORALL (pop,push,r1,inp,n):

EXISTS (empty,oflo,out):

STACK_INT_ST(push,pop,r1,inp,n,empty,oflo,out)

STACK_INT_FBD_CONSISTENCY: THEOREM

FORALL (pop,push,r1,inp,n):

EXISTS (empty,oflo,out):

STACK_INT_FBD(push,pop,r1,inp,n,empty,oflo,out)

STACK_INT_CORRECTNESS: THEOREM

FORALL (pop,push,r1,inp,n):

FORALL (empty,oflo,out):

STACK_INT_ST(push,pop,r1,inp,n,empty,oflo,out)

IMPLIES

STACK_INT_REQ(push,pop,r1,inp,n,empty,oflo,out)

END STACK_INT
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Appendix F

Block HYSTERESIS

This appendix contains the PVS specification for block HYSTERESIS (Sec-
tion 7.1.2.2). The ClockTick theory is imported by the HYSTERESIS theory.

HYSTERESIS[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

t: VAR tick

XIN1, XIN2, EPS_NO: VAR [tick -> real]

EPS: VAR [tick -> posreal]

Q: VAR pred[tick]

HYSTERESIS_IMPL_ST(XIN1,XIN2,EPS,Q): bool =

FORALL t:

Q(t) =

IF init(t) THEN False

ELSIF Q(pre(t)) & XIN1(t) < (XIN2(t) - EPS(t)) THEN FALSE

ELSIF XIN1(t) > (XIN2(t) + EPS(t)) THEN TRUE

ELSE Q(pre(t))

ENDIF

f_Q(XIN1,XIN2,EPS)(t): RECURSIVE bool =

IF init(t) THEN False

ELSIF f_Q(XIN1,XIN2,EPS)(pre(t)) & XIN1(t) < (XIN2(t) - EPS(t)) THEN FALSE

ELSIF XIN1(t) > (XIN2(t) + EPS(t)) THEN TRUE

ELSE f_Q(XIN1,XIN2,EPS)(pre(t))

ENDIF

MEASURE rank(t)
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HYSTERESIS_REQ(XIN1,XIN2,EPS,Q): bool =

FORALL t:

Q(t) =

IF init(t) THEN FALSE

ELSE LET PREV = Q(pre(t)) IN

TABLE

%----------------------------------------------------------%

| XIN1(t) < (XIN2(t) - EPS(t)) | FALSE ||

%----------------------------------------------------------%

| ((XIN2(t) - EPS(t)) <= XIN1(t)) &

(XIN1(t) <= (XIN2(t) + EPS(t))) | PREV ||

%----------------------------------------------------------%

| (XIN2(t) + EPS(t)) < XIN1(t) | TRUE ||

%----------------------------------------------------------%

ENDTABLE

ENDIF

HYSTERESIS_REQ_WITHOUT_ASSUMPTION(XIN1,XIN2,EPS_NO,Q): bool =

FORALL t:

Q(t) =

IF init(t) THEN FALSE

ELSE LET PREV = Q(pre(t)) IN

TABLE

%-------------------------------------------------------------%

| XIN1(t) < (XIN2(t) - EPS_NO(t)) | FALSE ||

%-------------------------------------------------------------%

| ((XIN2(t) - EPS_NO(t)) <= XIN1(t)) &

(XIN1(t) <= (XIN2(t) + EPS_NO(t))) | PREV ||

%-------------------------------------------------------------%

| (XIN2(t) + EPS_NO(t)) < XIN1(t) | TRUE ||

%-------------------------------------------------------------%

ENDTABLE

ENDIF

HYSTERESIS_CONSISTENCY: THEOREM

FORALL (XIN1,XIN2,EPS):

EXISTS Q:

HYSTERESIS_IMPL_ST(XIN1,XIN2,EPS,Q)

HYSTERESIS_CORRECTNESS: THEOREM

HYSTERESIS_IMPL_ST(XIN1,XIN2,EPS,Q)

IMPLIES

HYSTERESIS_REQ(XIN1,XIN2,EPS,Q)

END HYSTERESIS
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Appendix G

Block LIMITS ALARM

This appendix contains the PVS specification for block LIMITS ALARM (Sec-
tion 7.1.2.3). It imports three theories, ClockTick , defined operators and
HYSTERESIS .

LIMITS_ALARM[(IMPORTING Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING ClockTick[delta_t]

IMPORTING defined_operators[delta_t]

IMPORTING HYSTERESIS[delta_t]

timed_real: TYPE = [tick -> real]

timed_posreal: TYPE = [tick -> posreal]

dependent_high_limit_type: TYPE =

[L: timed_real, EPS: timed_posreal ->

{ H: timed_real | FORALL (t: tick): H(t) - L(t) > 2 * EPS(t) } ]

t: VAR tick

X, L: VAR timed_real

H: VAR dependent_high_limit_type

EPS: VAR timed_posreal

QH, QL, Q: VAR pred[tick]

w1: VAR [tick -> posreal]
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w2, w3: VAR [tick -> real]

f_QH(X,H,L,EPS)(t): RECURSIVE bool =

IF init(t) THEN FALSE

ELSE LET PREV = f_QH(X,H,L,EPS)(pre(t)) IN

TABLE

%----------------------------------------------------------------%

| X(t) > H(L,EPS)(t) | TRUE ||

%----------------------------------------------------------------%

| X(t) >= SUB(H(L,EPS)(t),EPS(t)) & X(t) <= H(L,EPS)(t) | PREV ||

%----------------------------------------------------------------%

| X(t) < SUB(H(L,EPS)(t),EPS(t)) | FALSE ||

%----------------------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

f_QL(X,L,EPS)(t): RECURSIVE bool =

IF init(t) THEN FALSE

ELSE LET PREV = f_QL(X,L,EPS)(pre(t)) IN

TABLE

%--------------------------------------------------%

| X(t) < L(t) | TRUE ||

%--------------------------------------------------%

| X(t) <= ADD(L(t),EPS(t)) & X(t) >= L(t) | PREV ||

%--------------------------------------------------%

| X(t) > ADD(L(t),EPS(t)) | FALSE ||

%--------------------------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

f_Q(QH,QL)(t): bool =

TABLE

| QH(t) OR QL(t) | TRUE ||

| NOT QH(t) & NOT QL(t) | FALSE ||

ENDTABLE

P_QH(X,H,L,EPS,QH): bool =

FORALL (t:tick): QH(t) = f_QH(X,H,L,EPS)(t)

P_QL(X,L,EPS,QL): bool =

FORALL (t:tick): QL(t) = f_QL(X,L,EPS)(t)

P_Q(QH,QL,Q): bool =

FORALL (t:tick): Q(t) = f_Q(QH,QL)(t)
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LIMITS_ALARM_REQ(X,H,L,EPS,QH,Q,QL): bool =

P_QH(X,H,L,EPS,QH) & P_QL(X,L,EPS,QL) & P_Q(QH,QL,Q)

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL): bool =

EXISTS (w1,w2,w3):

DIV(EPS,LAMBDA (t1:tick): 2.0,w1) &

SUB(H(L,EPS),w1,w2) &

ADD(L,w1,w3) &

HYSTERESIS_REQ(X,w2,w1,QH) &

HYSTERESIS_REQ(w3,X,w1,QL) &

DISJ(QH,QL,Q)

OUTPUT_QH_CORRECTNESS_CHECKING: LEMMA

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL) IMPLIES P_QH(X,H,L,EPS,QH)

OUTPUT_QL_CORRECTNESS_CHECKING: LEMMA

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL) IMPLIES P_QL(X,L,EPS,QL)

OUTPUT_Q_CORRECTNESS_CHECKING: LEMMA

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL) IMPLIES P_Q(QH,QL,Q)

LIMITS_ALARM_CONSISTENCY: LEMMA

FORALL (X,H,L,EPS):

EXISTS (QH,Q,QL):

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL)

LIMITS_ALARM_CORRECTNESS: LEMMA

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL)

IMPLIES

LIMITS_ALARM_REQ(X,H,L,EPS,QH,Q,QL)

PROPERTY0: THEOREM

LIMITS_ALARM_IMPL(X,H,L,EPS,QH,Q,QL)

IMPLIES

FORALL (t: tick): NOT (QH(t) & QL(t))

END LIMITS_ALARM
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Appendix H

The Trip Sealed-In Subsystem

This appendix contains the PVS specification for the Trip Sealed-In subsys-
tem. It consists of seven parts, abstractions, comlibrary, srslibrary, sddlibrary,
srsfunctions, sddfunctions, and obligations.

Common Library (comlibrary)

Common library includes common imports used by both the SRS and the
SDD. It consists of seven theories: Time theory (Appendix A), ClockTick
theory (Appendix B), SampleInstance theory (Appendix B in (Hu, 2008)),
FeasibilityResults theory (Appendix C in (Hu, 2008)), SampleInstanceOnTick
theory (Appendix E in (Hu, 2008)), Held For theory (Appendix F in (Hu,
2008)), and TimerGeneral (Appendix G in (Hu, 2008)) theory.

SRS Library (srslibrary)

SRS library consists of the formalizations for SRS common functions, SRS
constants, and SRS types.

SRSTypes: THEORY

BEGIN

t_real: TYPE = real

t_integer: TYPE = int

y_trip: TYPE = {e_Trip, e_NotTrip}

y_pb: TYPE = {e_NotPressed, e_Pressed}
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y_pbdesign: TYPE = {e_pbDebounced, e_pbStuck, e_pbNotDebounced}

END SRSTypes

SRSCommonFunctions: THEORY

BEGIN

IMPORTING SRSTypes

trunc(r: real) : int = IF 0 <= r THEN floor(r) ELSE ceiling(r) ENDIF

END SRSCommonFunctions

RSUBRANGE: THEORY

BEGIN

rsubrange(x, y: real): TYPE = {z:real | (x <= z) & (z <= y)}

END RSUBRANGE

SRSConstants: THEORY

BEGIN

IMPORTING SRSTypes

IMPORTING comlibrary@Time

k_Sealindelay_req : non_initial_time = 150

k_Sealindelay_deltaL_req : non_initial_time = 25

k_Sealindelay_deltaR_req : non_initial_time = 50

END SRSConstants

SRS Functions (srsfunctions)

Theory Channel trip sealedin req formalizes the black-box requirements in
the SRS. It imports: the Time theory (Appendix A); SRS types and con-
stants from srslibrary; and Held For and SampleInstanceOnTick theories from
comlibrary.
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Channel_trip_sealedin_req

[(IMPORTING comlibrary@Time)

K: non_initial_time,

TL, TR: {t: time | t < K},

delta_t: {tk: non_initial_time | tk < K - TL AND tk < TR + TL},

(IMPORTING srslibrary@SRSConstants)

delta_L, delta_R: {t: time | t < k_Sealindelay_req}]: THEORY

BEGIN

IMPORTING comlibrary@SampleInstanceOnTick[K, TL, TR, delta_t]

IMPORTING comlibrary@Held_For[K, TL, TR, delta_t, delta_L, delta_R]

IMPORTING srslibrary@SRSTypes

IMPORTING srslibrary@SRSConstants

timed_trip: TYPE = [tick -> y_trip]

Channel_trip_sealedin_REQ_f

(Any_parameter_tripped: pred[tick],

c_ChanTrip: timed_trip,

Manual_reset_request: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN TRUE

ELSE LET ChanTrip_status = LAMBDA (t: tick): c_ChanTrip(t) = e_Trip,

PREV = Channel_trip_sealedin_REQ_f

(Any_parameter_tripped,

c_ChanTrip,

Manual_reset_request)(pre(t)) IN

TABLE

%-------------------------------------------------------------%

|Any_parameter_tripped(t) & % %

Held_For_I(ChanTrip_status, % %

k_Sealindelay_req - delta_L, % %

Sample_t)(t) | TRUE ||

%-------------------------------------------------------------%

|Any_parameter_tripped(t) & % %

NOT (Held_For_I(ChanTrip_status, % %

k_Sealindelay_req - delta_L,% %

Sample_t)(t)) | PREV ||

%-------------------------------------------------------------%

|NOT Any_parameter_tripped(t) & % %

Manual_reset_request(t) | FALSE ||

%-------------------------------------------------------------%

|NOT Any_parameter_tripped(t) & % %

NOT Manual_reset_request(t) | PREV ||

%-------------------------------------------------------------%

ENDTABLE
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ENDIF

MEASURE rank(t)

Channel_trip_sealedin_REQ_P(Any_parameter_tripped: pred[tick],

c_ChanTrip: timed_trip,

Manual_reset_request: pred[tick],

Channel_trip_sealedin: pred[tick]): bool =

FORALL (t: tick):

Channel_trip_sealedin(t) =

Channel_trip_sealedin_REQ_f(Any_parameter_tripped,

c_ChanTrip,

Manual_reset_request)(t)

END Channel_trip_sealedin_req

SDD Library (sddlibrary)

SDD library consists of the formalizations of SDD core functions (i.e., theory
Defined operators), SDD constants, SDD types, formalization for component
FBs (TON timer and FB RS).

SDDTypes : THEORY

BEGIN

REAL : TYPE = real

DINT : TYPE = integer

BOOL : TYPE = bool

END SDDTypes

SDDConstants : THEORY

BEGIN

IMPORTING SDDTypes

IMPORTING comlibrary@Time

k_Sealindelay_impl : non_initial_time = 150

END SDDConstants
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RS_Latch[(IMPORTING comlibrary@Time) delta_t: non_initial_time]: THEORY

BEGIN

IMPORTING comlibrary@ClockTick[delta_t]

f_RS_init_F(r1, s: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN FALSE

ELSE

LET PREV = f_RS_init_F(r1, s)(pre(t)) IN

TABLE

%-----------------------------------%

| r1(t) | FALSE ||

%-----------------------------------%

| NOT (r1(t)) & s(t) | TRUE ||

%-----------------------------------%

| NOT (r1(t)) & NOT (s(t)) | PREV ||

%-----------------------------------%

ENDTABLE

ENDIF

MEASURE rank(t)

RS_init_F(r1, s, q: pred[tick]): bool =

FORALL (t: tick):

q(t) =

IF init(t) THEN FALSE

ELSE

LET PREV = q(pre(t)) IN

TABLE

%-----------------------------------%

| r1(t) | FALSE ||

%-----------------------------------%

| NOT (r1(t)) & s(t) | TRUE ||

%-----------------------------------%

| NOT (r1(t)) & NOT (s(t)) | PREV ||

%-----------------------------------%

ENDTABLE

ENDIF

end RS_Latch

ton[(IMPORTING comlibrary@Time)

K: non_initial_time, TL,TR: {t: time | t < K},

delta_t: {tk: non_initial_time | tk < K - TL AND tk < TR + TL},

delta_L, delta_R: time]: THEORY

BEGIN
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IMPORTING comlibrary@TimerGeneral[K, TL, TR, delta_t, delta_L, delta_R]

q(i: pred[tick], pt: non_initial_time)(t: tick ): bool =

TABLE

%------------------------------------+-------++

| Timer_I(i, Sample_t, pt)(t) >= pt | TRUE ||

%------------------------------------+-------++

| Timer_I(i, Sample_t, pt)(t) < pt | FALSE ||

%------------------------------------+-------++

ENDTABLE

et(i: pred[tick], pt: non_initial_time)(t: tick): tick =

Timer_I(i, Sample_t, pt)(t)

TON(i: pred[tick], pt: non_initial_time,

q: pred[tick], et: [tick -> tick]): bool =

FORALL(t: tick): q(t) = q(i, pt)(t) & et(t) = et(i, pt)(t)

END ton

SDD Functions (sddfunctions)

Theory Sealin impl formalizes the FBD implementation in SDD. It imports:
the Time theory (Appendix A); SDD core functions, constants, ton theory
and RS Latch theory from sddlibrary.

Sealin_impl[(IMPORTING comlibrary@Time)

K: non_initial_time,

TL, TR: {t: time | t < K},

delta_t: {tk: non_initial_time | tk < K - TL AND tk < TR + TL},

(IMPORTING sddlibrary@SDDConstants)

delta_L, delta_R: {t: time | t < k_Sealindelay_impl}]: THEORY

BEGIN

IMPORTING sddlibrary@SDDCore

IMPORTING sddlibrary@SDDConstants

IMPORTING sddlibrary@ton[K, TL, TR, delta_t, delta_L, delta_R]

IMPORTING sddlibrary@RS_Latch[delta_t]

Channel_trip_sealedin_IMPL_P_original

(Any_parm_trip: pred[tick],

ChanTrip: pred[tick],

179



PhD Thesis – Linna Pang – McMaster – Computing and Software

Man_Reset_Req: pred[tick],

Chan_Trip_Sealedin: pred[tick]): bool =

EXISTS(w1, w2, w3, w4, w5, w6: pred[tick],

et_sealin: [tick -> tick]):

NEG(Any_parm_trip, w5) &

w6 = NEG_f(ChanTrip) &

TON(w6, k_Sealindelay_impl - delta_L, w1, et_sealin) &

CONJ(Any_parm_trip, w1, w2) &

DISJ_PRE(Chan_Trip_Sealedin, w2, w3) &

CONJ(w5, Man_Reset_Req, w4) &

RS_init_F(w4, w3, Chan_Trip_Sealedin)

Channel_trip_sealedin_IMPL_P_revised

(Any_parm_trip: pred[tick],

ChanTrip: pred[tick],

Man_Reset_Req: pred[tick],

Chan_Trip_Sealedin: pred[tick]): bool =

EXISTS(w1, w2, w3, w4, w5, w6, w7: pred[tick],

et_sealin: [tick -> tick]):

NEG(Any_parm_trip, w5) &

w6 = NEG_f(ChanTrip) &

TON(w6, k_Sealindelay_impl - delta_L, w1, et_sealin) &

CONJ(Any_parm_trip, w1, w2) &

DISJ_PRE(Chan_Trip_Sealedin, w2, w3) &

CONJ(w5, Man_Reset_Req, w4) &

RS_init_F(w4, w3, w7) &

SEL(LAMBDA (t: tick): init(t), w7,

LAMBDA (t: tick): TRUE, Chan_Trip_Sealedin)

Sealin_IMPL_f_Chan_Trip_Sealedin_original

(Any_parm_trip: pred[tick],

ChanTrip: pred[tick],

Man_Reset_Req: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN FALSE

ELSE

(Sealin_IMPL_f_Chan_Trip_Sealedin_original

(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

(Sealin_IMPL_f_Chan_Trip_Sealedin_original

(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

CONJ_2_f(Any_parm_trip,

q(NEG_f(ChanTrip),

k_Sealindelay_impl - delta_L))(t))) &

NEG_f(CONJ_2_f(NEG_f(Any_parm_trip), Man_Reset_Req))(t)

ENDIF

MEASURE rank(t)
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Sealin_IMPL_f_Chan_Trip_Sealedin_revised

(Any_parm_trip: pred[tick],

ChanTrip: pred[tick],

Man_Reset_Req: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN TRUE

ELSE

(Sealin_IMPL_f_Chan_Trip_Sealedin_revised

(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

(Sealin_IMPL_f_Chan_Trip_Sealedin_revised(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

CONJ_2_f(Any_parm_trip,

q(NEG_f(ChanTrip),

k_Sealindelay_impl - delta_L))(t))) &

NEG_f(CONJ_2_f(NEG_f(Any_parm_trip), Man_Reset_Req))(t)

ENDIF

MEASURE rank(t)

Sealin_IMPL_f_w7(Any_parm_trip: pred[tick],

ChanTrip: pred[tick],

Man_Reset_Req: pred[tick])(t: tick): RECURSIVE bool =

IF init(t) THEN FALSE

ELSE

(Sealin_IMPL_f_Chan_Trip_Sealedin_revised

(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

(Sealin_IMPL_f_Chan_Trip_Sealedin_revised

(Any_parm_trip,

ChanTrip,

Man_Reset_Req)(pre(t)) OR

CONJ_2_f(Any_parm_trip,

q(NEG_f(ChanTrip),

k_Sealindelay_impl - delta_L))(t))) &

NEG_f(CONJ_2_f(NEG_f(Any_parm_trip), Man_Reset_Req))(t)

ENDIF

MEASURE rank(t)

END Sealin_impl

Abstraction Functions (abstractions)

Theory AbstractionFunctions formalizes the abstraction functions between the
SRS and the SDD. It consists of: the ClockTick (Appendix B) theory, SRS
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types, constants, and common functions from srslibrary , and SDD types from
sddlibrary.

AbstractionFunctions[(IMPORTING comlibrary@Time) delta_t:posreal]: THEORY

BEGIN

IMPORTING comlibrary@ClockTick[delta_t]

IMPORTING srslibrary@SRSTypes

IMPORTING sddlibrary@SDDTypes

IMPORTING srslibrary@SRSConstants

IMPORTING srslibrary@SRSCommonFunctions

AbstDINT(x: int): DINT = x

AbstRealToDINT(x: real) : DINT = AbstDINT(trunc(x))

AbstTrip(x: y_trip): bool =

COND ( x = e_Trip ) -> TRUE, ( x = e_NotTrip ) -> FALSE ENDCOND

AbstParmTrip(x: y_trip): bool =

COND (x = e_Trip) -> FALSE, (x = e_NotTrip) -> TRUE ENDCOND

AbstParmTrip_timed(x : [tick -> y_trip]) : pred[tick] =

LAMBDA (t: tick):

COND (x(t) = e_Trip) -> FALSE, x(t) = e_NotTrip) -> TRUE ENDCOND

END AbstractionFunctions

Proof Obligations (obligations)

Theory Channel trip sealedin obl formalizes the auxiliary lemmas and proof
obligations. It imports theory Time (Appendix A), the requirement theory
Trip sealedin req from srsfunctions, the FBD implementation theory Sealin impl
from sddfunctions, the abstraction functions theory AbstractionFunctions from
abstractions, and SDD constants theory SDDConstants from sddlibrary.

Channel_trip_sealedin_obl: THEORY

BEGIN

IMPORTING comlibrary@Time
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K: non_initial_time = 35

TL: {t: time | t < K & t < 4 & t > 1}

TR: {t: time | t < K & t < 10 & t > 1}

delta_t: {tk: non_initial_time | tk < K - TL & tk < TR + TL}

delta_L, delta_R: {t: time | t < 50}

IMPORTING srsfunctions@Trip_sealedin_req[K,TL,TR,delta_t,delta_L,delta_R]

IMPORTING sddfunctions@Sealin_impl[K,TL,TR,delta_t,delta_L,delta_R]

IMPORTING abstractions@AbstractionFunctions

IMPORTING sddlibrary@SDDConstants

PROPERTY0: LEMMA

FORALL (c_ChanTrip: timed_trip):

(LAMBDA (t: tick[delta_t]):

NOT COND (c_ChanTrip(t) = e_Trip) -> FALSE, ELSE -> TRUE ENDCOND) =

(LAMBDA (t: tick[delta_t]): c_ChanTrip(t) = e_Trip)

PROPERTY1: LEMMA

FORALL (A, B: bool): (A <=> B) => (NOT A <=> NOT B)

Channel_trip_sealedin_consistency_check_revised: THEOREM

FORALL(Any_parameter_trip: pred[tick],

c_ChanTrip: timed_trip,

Manual_reset_request: pred[tick]):

EXISTS(Channel_trip_sealedin: pred[tick]):

Channel_trip_sealedin_IMPL_P_revised

(Any_parameter_trip,

AbstParmTrip_timed(c_ChanTrip),

Manual_reset_request,

Channel_trip_sealedin)

Channel_trip_sealedin_correctness_check_original: THEOREM

FORALL(Any_parameter_trip: pred[tick],

c_ChanTrip: timed_trip,

Manual_reset_request: pred[tick],

Channel_trip_sealedin: pred[tick]):

Channel_trip_sealedin_IMPL_P_original

(Any_parameter_trip,

AbstParmTrip_timed(c_ChanTrip),

Manual_reset_request,

Channel_trip_sealedin)
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=>

Channel_trip_sealedin_REQ_P(Any_parameter_trip,

c_ChanTrip,

Manual_reset_request,

Channel_trip_sealedin)

Channel_trip_sealedin_correctness_check_revised: THEOREM

FORALL(Any_parameter_trip: pred[tick],

c_ChanTrip: timed_trip,

Manual_reset_request: pred[tick],

Channel_trip_sealedin: pred[tick]):

Channel_trip_sealedin_IMPL_P_revised(Any_parameter_trip,

AbstParmTrip_timed(c_ChanTrip),

Manual_reset_request,

Channel_trip_sealedin)

=>

Channel_trip_sealedin_REQ_P(Any_parameter_trip,

c_ChanTrip,

Manual_reset_request,

Channel_trip_sealedin)

END Channel_trip_sealedin_obl
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