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ABSTRACT

This thesis presents our work on two separate subfields and has for this reason been divided into
two parts: (I) the development and implementation of a numerical technique for non-equilibrium
dynamics and a (II) detailed investigation of the dirty-boson problem.

In part (I), we optimize and develop the quantum phase space method known as the positive-P
representation (PPR) specifically for the simulations of the real time quench dynamics of quantum
spin systems. The main benefit of this approach is that the dynamics of the density operator is
mapped onto ∼ N stochastic variables (where N is the size of the system) that obey Langevin-type
stochastic differential equations, thereby greatly reducing the complexity of the problem.

The first publication presents our initial use of the PPR on spin systems by using a Schwinger
mapping for spin operators on to Bosonic operators since the underlying basis comprises of Bosonic
coherent states. We simulate the quench dynamics of the generalized transverse-field spin-1/2 XXZ
model in 1d showing that simulations of up to 100 spins are possible, albeit for relatively short
simulation times. In our second publication, we reformulate the PPR using SU(2) spin coherent
states and further optimize simulation lifetimes by implementing an extrapolation scheme, to achieve
several-fold improvements over the results of our first publication. We focus solely on the transverse
Ising model and simulate its quench dynamics in 1d and 2d using up to 104 spins, while significantly
extending simulation lifetimes.

The second part of this thesis is a numerical study of the universality class of the Superfluid-Bose
Glass transition of the dirty-boson system. Recently the longstanding exact result z = d, where z is
the dynamic critical exponent and d is the dimensionality of the system, has been challenged by a
series of numerical studies, suggesting the alternative scenario that z should be instead unconstrained.
To address this controversy, we use large scale quantum Monte-Carlo simulations on two independent
quantum models, and average over 5× 104 − 105 disorder realizations to numerically determine the
universality class of the dirty-boson transition, paying particular attention to the dynamic critical
exponent, z and without any biasing assumptions.
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Thesis structure

This thesis aims to progress the field of condensed matter physics in vastly opposite areas, namely
that of non-equilibrium dynamics and equilibrium critical phenomena using numerical means. As
such, I saw it fitting to divide it into two parts. To optimize readability and coherence, I have also
decided to write separate introductions for each area as opposed to writing a single comprehensive
introduction section here. I would also like to state that this is a ’Sandwich’ thesis and so the results
can be found in the papers inserted ad verbatim.

The first part of this thesis is titled: Part I: Stochastic evolution equations for real time
quantum spin quench dynamics and comprises of chapter 1 to chapter 3 and contains two
publications. The premise of part I is the development and application of a real time simulation
technique for spin systems, based on the positive-P representation (PPR). We use the paradigmatic
transverse field Ising model as a test system in order to study the limits of the formalism and as a
proof-of-concept.

In Chapter 1: An overview of non-equilibrium physics and its resurgence, we first discuss
the renewed interest in non-equilibrium phenomena by reviewing two key areas of the sub-field,
namely the Kibble-Zurek mechanism and quantum thermalization. Although our research does not
directly address these areas, I have nonetheless seen it fitting to include a brief review to convey the
general research direction of both subfields. It provides the motivation for the timely development
of a numerical tool for real time simulations, which is currently a very challenging problem.

In Chapter 2: The positive-P representation, we introduce the PPR and provide explicit
derivations of the formalism for both real and imaginary time evolution, and simulate the quench
dynamics of 1D Bose-Hubbard model in the presence of harmonic confinement as an explicit example
to elucidate the formalism. The details and results of our pioneering simulation of quantum spin
dynamics however, can be found in the paper: ’Exact real-time dynamics of quantum spin
systems using the positive-P representation’ in section 2.13 at the end of the chapter.

In Chapter 3: Spin coherent states, we reformulate the PPR by switching the underlying basis to
that of SU(2) spin coherent states. We further implement an extrapolation scheme (cf section 3.7) and
an elaborate change of variables scheme (cf section 3.5) with the primary goal of extending simulation
lifetimes. These overall results are showcased in our publication: ’Simulation of the dynamics
of many-body quantum spin systems using phase-space techniques’ in section 3.8.

The second part of the thesis titled: Part II: Universality Class of the dirty-boson transition
in 2d pertains to our numerical study of the Superfluid (SF)-Bose Glass (BG) transition in disordered
bosonic models in 2d and covers our efforts to determine the highly debated value of the dynamical
critical exponent: z.

In Chapter 4: The ’Dirty-Boson’ problem, we provide a review of the relevant results from
scaling theory and discuss the existing controversy in the literature regarding value of z. We use large
scale 2d QMC simulations on two independent disordered quantum models: (i) soft-core quantum
rotors and (ii) hard-core bosons (HCB) to achieve this end. Because I was responsible for all results
on the HCB, I decided to include the details of the Quantum Monte-Carlo technique used, i.e. the
Stochastic Series Expansion (SSE) in Chapter 5: Quantum Monte-Carlo technique. The
SSE is discussed in the context of simulating HCB with disorder. Finally we present our results in
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the article: ’Quantum Critical Scaling of Dirty Bosons in Two Dimensions’ included in
section 5.7.

Having familiarised myself with the SSE and PPR, it only seemed natural to explore the possibilities
of hybridizing the best features from each numerical techniques into a single algorithm. To this end,
we document our ongoing research efforts in Chapter 6: QMC-SDE technique: a hybrid.

This thesis is finally summarised in Chapter 6: Conclusion and a brief insight on its future
direction is given.
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CHAPTER 1

AN OVERVIEW OF
NON-EQUILIBRIUM PHYSICS AND ITS

RESURGENCE

1.1 A new numerical tool for non-equilibrium dynamics

The last decade has seen a renewed interest in the field of non-equilibrium physics owing to the fea-
sibility of isolated non-equilibrium experiments afforded by ultra-cold atoms (Bloch, 2010). This has
opened up the possibilities of testing long-standing theoretical phenomena, which heavily revolves
around two areas (Dziarmaga, 2010, Polkovnikov et al., 2011). The first of these is the extension of
the notion of universality, a concept that has its roots in equilibrium critical phenomena. In essence,
this sets out to answer what is universal in regards to the non-equilibrium dynamics of a many-
body system. Universality in this context is primarily addressed via the Kibble-Zurek Mechanism
(KZM) (Kibble, 1976, Zurek, 1985) for defect generation. The second area deals with the thermaliza-
tion of out-of-equilibrium isolated integrable and non-integrable quantum systems and the character-
ization of their long time asymptotic properties. The conditions under which a quantum mechanical
system thermalizes are important areas of research. In particular, for certain non-integrable models,
the conjecture known as the eigenstate thermalization hypothesis (ETH) (Srednicki, 1994) is the
widely accepted mechanism behind quantum thermalization. Interestingly, integrable systems can
also be shown to relax to the predictions of a generalized Gibbs ensemble (GGE) (Rigol et al., 2007a).
While we have only briefly introduced these two areas an extended discussion can be found in the
later parts of section 1.1.1 and section 1.1.2.

The investigation of non-equilibrium phenomena however requires a simulation technique that is
capable of accurately producing the real time dynamics of a quantum system which is a notoriously

5
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difficult problem since real time non-equilibrium simulations in general, require knowledge of the
entire Hilbert space which grows exponentially with system size. In light of the rapid advances in
this field, there is now more than ever a demand for such novel numerical techniques particularly
in strongly-correlated quantum models. Several methods exist but each have their own limitations.
Specifically for one-dimensional systems, the time-dependent density matrix renormalization group
(tDMRG) (Daley et al., 2004, Schollwöck, 2005, White, 1992) and time-evolved block decimation
(TEBD) methods (Zwolak and Vidal, 2004, Vidal, 2003, 2004) while highly efficient only last for
relatively short simulation life times. In higher dimensions, the typical numerical methods used
are exact diagonalization (ED) (Lin, 1990, Caffarel and Krauth, 1994) and numerical link-cluster
expansions (NLCE) (Rigol, 2014), both of which are however limited to small system sizes. As a
viable alternative, we turn our attention to the quantum phase space method known as the positive-P
representation (PPR) (Drummond and Gardiner, 1980, Drummond, 2013).

The PPR is an exact quantum phase space method that was originally developed to simulate the
real time dynamics of few-mode problems (McNeil and Craig, 1990, Smith and Gardiner, 1989,
Plimak et al., 2001) in quantum optics. In essence, the quantum dynamics of the system is mapped
on to ∼ N coupled classical fields obeying stochastic Langevin-type equations, where N is the size
of the system. This vast improvement over the typical exponential scaling in CM problems is a
very appealing feature of this technique. A brute-force approach by way of exact diagonalization
(ED) for instance, while exact can only handle systems up to N ∼ 40. Results thus obtained while
capable of providing insight into strongly-correlated phenomena are not an ideal representation of
the thermodynamic limit.

A major triumph of the PPR was achieved in 2007 through a pioneering work by Deuar et al (Deuar
and Drummond, 2007) and has since shifted the focus of its application to many-body systems (Deuar
et al., 2009, Midgley et al., 2009) particularly in dilute Bose-Einstein condensates (BECs). Deuar
et al successfully simulated the ’Halo effect’ in momentum space resulting from the collision of two
weakly interacting three-dimesional BECs of nearly ∼ 150,000 atoms. This ’Halo Effect’ refers to the
preferential scattering of particles into a spherical shell in momentum space of radius roughly equal
to the colliding velocity. While this was observed much earlier on in experiments (Vogels et al.,
2002) (see fig. 1.1), numerical treatments of BECs relied heavily on approximate schemes using
the mean-field Gross-Pitaevskii Equation (GPE) (Dalfovo et al., 1999) and the semi-classical phase
space method, Truncated Wigner Approximation (TWA) (Norrie et al., 2005). The GPE does not
take quantum depletion into consideration and is therefore unable to simulate spontaneous scattering
altogether. For the parameters of the simulation chosen, the TWA on the other hand produced clearly
unphysical results, i.e. negative density of particles at larger velocities and a fictitious enhancement
of particle density at the lower velocities. This is attributed to an artificial seeding of half a virtual
particle per mode in the initial conditions to model quantum fluctuations as is typical in TWA
simulations (Norrie et al., 2005, Sinatra et al., 2002). Surprisingly, the stochastic equations derived
from the PPR bore a striking resemblance to the GPE, and only required the inclusion of independent
white noise terms to reproduce the exact quantum dynamics of the colliding BECs. Fig 1.1 shows a
comparison between experimental images (albeit for different parameters) and the simulation results
using the PPR.

In addition to real time simulations, the versatility of the PPR was further demonstrated in simulating
the imaginary-time dynamics as a possible alternative to conventional Monte-Carlo approaches. This

6
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(a) Absorption imaging of velocity dis-
tribution taken from (Vogels et al.,
2002)

(b) Full PP quantum dynamics taken from Deaur et
al (Deuar and Drummond, 2007)

Figure 1.1: ’Halo effect’ resulting from collision of two BECs.s

was carried out using the gauge-P representation (Deuar and Drummond, 2002), an extension of the
PPR which entails the incorporation of an additional weight variable. Using the gauge-P, both the
imaginary time evolution of the two point correlation functions in the 1D BH model (Ghanbari et al.,
2010) and a 1D weakly interacting dilute bose-gas (Deuar et al., 2009) were simulated.

The PPR shows promise as a potential state-of-the-art numerical technique and leads one to wonder
if it can be applied to strongly correlated quantum systems as well. In addition, it appears insensitive
to the effects of frustration and unconstrained by the dimensionality of the system, both of which are
afflictions of Quantum Monte Carlo (QMC) techniques (Henelius and Sandvik, 2000, Sandvik, 2010)
and the DMRG (White, 1992) respectively. Surprisingly, its applicability to quantum simulations
of spin systems had not been deeply explored. Given the resurgence of the field of non-equilibrium
dynamics, it seemed timely to engage in a detailed study on the practical application of the PPR,
details of which will comprise chapter 2. Before proceeding however, we shall survey the field of
non-equilibrium dynamics by reviewing both the Kibble-Zurek Mechanism (KZM) and the notion of
thermalization in quantum systems using select results in the literature to provide further insight on
this exciting field. In order to not mislead the reader, I would like to highlight that the remainder of
this chapter is purely pedagogical and the familiar reader can instead skip to chapter 2 for a direct
introduction to the positive-P representation, which is the main numerical tool used in part I of this
thesis.

1.1.1 Universality: Kibble-Zurek Mechanism

The Kibble-Zurek mechanism describes non-equilibrium dynamics and topological defect generation
as a system passes through a continuous critical point at a finite rate. It was originally developed by
Kibble (Kibble, 1976) to study domain structure formation in the early universe but later generalized
to condensed matter systems by Zurek (Zurek, 1985).

7
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Classical Kibble-Zurek mechanism

First let us derive the key result for the classical KZM (Kibble, 2007, Zurek, 1985). To this end, we
consider a simple linear quench experiment, in which a system is swept through its finite temperature
critical point, Tc with a quench velocity v. The temperature varies linearly as:

T = Tc − vt, (1.1.1)

where t ∈ (−∞,∞) represents real time and T is the instantaneous temperature of the system. In
this experiment there exist two time scales, the time to reach the critical point: t′ = |T− Tc|/v and
the relaxation time, which scales as: trel ∼ 1/|T − Tc|zν where ν represents the critical exponents
for the spatial correlation length and z the dynamic critical exponent. When t′ � trel, the system
is adiabatic and has sufficient time to equilibrate to the changes in the Hamiltonian. It therefore
remains in equilibrium in this regime. On the other hand when t′� trel, the system is diabatic and
the formation of topological defects or excitations can occur. In light of this, there exists a time
scale, t∗ at which a crossover from adiabatic to diabatic behaviour occurs. This can be obtained by
equating trel and t′ to yield the scaling relation:

t∗ ∼ v−
zν

zν+1 (1.1.2)

and in turn an expression for a corresponding length scale:

ξ∗ ∼ (t∗)1/z ∼ v−
ν

zν+1 . (1.1.3)

This distance also represents the average separation between defects and as such immediately gives
us the expression for the defect density:

nex = (ξ∗)−d ∼ v
dν

zν+1 , (1.1.4)

which is the celebrated expression characteristic of the KZM, that relates the defect density, nex in
a linear quench to the quench velocity, v and the system’s equilibrium critical exponents, ν and z
that are associated with its spatial correlation length and characteristic energy gap.

Quantum Kibble-Zurek mechanism

Interestingly, this universal scaling carries over to the quantum regime as well, albeit using dif-
ferent arguments. Insight for the quantum case can be easily achieved by generalizing the results
from a Landau-Zener (Zener, 1932, Majorana, 1932) analysis of a driven two-level quantum system,
described by the Hamiltonian:

Ĥ = g(t)σ̂z + ∆σx, (1.1.5)

where g(t) = vt is a time-dependent splitting of the energy level and ∆ is the excitation gap. The
central result we will use is the expression for the excitation probability, i.e. the probability of a
transition to the excited state at t→ ∞, starting from the ground state at t→−∞, which can be
shown to be:

pex = e−πγ, (1.1.6)

8
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where γ = ∆2/v is called the Landau-Zener parameter. We see that when γ� 1, the system remains
in it ground state, whereas when γ� 1, a transition to the excited state that is equivalent to defect
generation occurs. We can again quantify the crossover from adiabatic to diabatic regimes as taking
place when γ ≈ 1. For a generic quantum phase transition, we can generalize this condition (using
dimensional arguments) to:

d∆̃
dt
≈ ∆̃2, (1.1.7)

were ∆̃ is a characteristic energy scale and d∆̃
dt is the rate of change of this energy scale. Interestingly,

this result has recently been reformulated using the adiabatic-impulse approximation (Damski, 2005)
although this is not the route we have taken. In the event that the system crosses a QCP generically
located at λ = λc where λ is the tuning parameter, the characteristic energy scale is instead given
by the energy gap which obeys the scaling relation:

∆̃(λ) ∼ |λ− λc|−zν. (1.1.8)

Once again assuming a linear quench with velocity, v, such that λ(t) = λc + vt, we can write:

∆̃(t) ∼ |vt|zν, (1.1.9)

which relates the gap via a scaling relation of its velocity and time. Via a simple substitution of
eq. 1.1.9 into eq. 1.1.7, we can solve for the energy scale at which adiabaticity breaks down, i.e.

∆̃∗ ∼ |v| zν
zν+1 (1.1.10)

and the corresponding length scale as well:

ξ∗ ∼ |v|− ν
zν+1 . (1.1.11)

Noting that the defect density scales as: nex ∼ (ξ∗)−d we obtain the quantum KZM (Polkovnikov,
2005, Zurek et al., 2005) result:

nex ∼ |v|
dν

zν+1 , (1.1.12)

which is identical to the classical result. It is important to note that in both cases, the KZM of
eq. 1.1.12 and eq. 1.1.4 is not an exact equality but only an estimate of the order of magnitude. What
is most intriguing about it is the appearance of power law exponents that are universal quantities.

Extensions of the KZM

The KZM is indeed a remarkable result where the controlled quench dynamics of the model can give
insight to its equilibrium properties. We have thus far only covered the result of the bare KZM and
other extensions do exist. It is possible for instance to take the effects of inhomogeneities in the
system into consideration. This is of particular importance for an honest comparison with ultra-cold
atoms (Lamporesi et al., 2013, Chen et al., 2011, Navon et al., 2015) and trapped ions (Ejtemaee and
Haljan, 2013, Ulm et al., 2013, Pyka et al., 2013) experiments where the effects of inhomogeneous
trap geometries (del Campo and Zurek, 2014, del Campo et al., 2013) have to be considered. For a
linear temperature quench in a 2D BEC, the modifications to the generic KZM scaling for homoge-
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neous, harmonic (del Campo et al., 2011) and toroidal confinement (Zurek, 2009) are summarized
in table 1.1.

Homogenous Harmonic Toroidal

Scaling (n) 2ν
1+νz

2(1+2ν)
1+νz

1+3ν
1+νz

Table 1.1: KZM scaling for the density of vortices ascribing to different trap geometries for the cooling of a
2D BEC: nex ∼ vn, where n are the exponents detailed in the table.

For a more general, non-linear quench protocol that varies the tuning parameter as:

λ(t) ∼ λc ± v|t|r, (1.1.13)

Polkovnikov et al (De Grandi et al., 2010) were able to derive the following modifed KZM:

nex ∼ |v|
dν

(zνr+1) , (1.1.14)

by examining scaling relations for the adiabatic fidelity: F(t) = |〈ψ(t)|ψgs(t)〉|, where |ψgs(t)〉 is the
instantaneous ground state of the system and |ψ(t)〉 is the instantaneous wavefunction at time t.
Note that the result for a linear quench is correctly reproduced upon setting r = 1. Interestingly, the
heuristic arguments of section 1.1.1 can be used to derive the result of eq. 1.1.14 as well.

In general, the defect density can be a difficult quantity to measure. To this end, other analogous
relations for more accessible physical quantities have also been derived, an obvious example of this
is the energy of the system. More precisely, excess heat is guaranteed to be generated from a
general quench as in eq. 1.1.13 as the QCP is crossed. For a quench that ends close to the critical
point (De Grandi et al., 2010), this quantity has been shown to scale as:

Q ∼ |v|
(d+z)ν
zνr+1 (1.1.15)

Likewise, the entropy is also expected to increase when adiabaticity breaks down in the vicinity of
the QCP. In the weakly interacting limit, the relation between the entropy and the energy is known
and can just as easily be measured. While the Von-Neumann entropy: S = −Tr(ρ̂ ln ρ̂) is conserved
for unitary evolution, the diagonal entropy (Polkovnikov, 2005) which is defined by the relation:

Sd = −∑
n

ρnn lnρnn, (1.1.16)

proliferates when adiabaticity breaks down. This quantity has been shown to obey the same scaling
relation as the defect density in eq. 1.1.14.

Detection of the KZM

Several experiments have verified the KZM, mostly in classical phase transitions. Examples of which
include the scaling of defect formation in multiferroics samples of rare earth compounds such as

10
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ErMnO3 (Chae et al., 2012), proliferation of solitons in thermal BECs (Damski and Zurek, 2010,
Witkowska et al., 2011) and the formation of kinks in coulombic crystals (Dubin and O’Neil, 1999,
Ejtemaee and Haljan, 2013, Pyka et al., 2013, Cormick and Morigi, 2012, del Campo et al., 2010) to
name a few.

Testing the KZM in quantum systems however is more challenging due to complications of inho-
mogeneities and small system sizes (del Campo et al., 2013). Recently, a quench experiment has
been performed on the generic transition in the SF-MI transition of the 1D BH model (Chen et al.,
2011) using a gas of 87Rb atoms trapped in an optical lattice. In this study, they use time-of-fight
(TOF) imaging to retrieve the density profile of the expanding gas and calculated its deviation from
a smooth Thomas-Fermi (TF) profile, as a measure of excitations, denoted by χ̃2. While they did
indeed observe power law scaling with quench rate, they measured an exponent of αexp = 0.31± 0.03
instead, contrary to the expected exponent: αMF = 0.75. The latter result is consistent with the uni-
versality class of the generic MI-SF crossing of the 1D BH model that has exponents (ν,z) = ( 1

2 ,2).
A possible explanation for this discrepancy among others is decoherence brought about by finite tem-
perature effects, since the experimental condensate was noted to have a significant normal fraction
of ∼ 10% (del Campo et al., 2013).

In the presence of disorder, deriving a modified expression for the KZM, is not usually possible. Rare
exceptions include disordered 1D spin chains where a logarithmic scaling is obtained instead (Dziar-
maga, 2006, Caneva et al., 2007). To elucidate the KZM in a general disordered system, a recent
quench experiment on the Superfluid (SF)- Bose Glass (BG) transition (Meldgin et al., 2015) of a
3D disordered Bose-Hubbard model (using 87Rb atoms) was performed. A similar analysis as the
experiments of del Campo et al showed a variation of χ̃2 with quench velocity that was too slight to
detect and instead the excess heat was used. Indeed a power law scaling, indicative of a KZM was
observed as opposed to a logarithmic one. The observed power scaling is a novel result that has yet
to be reproduced numerically as well

1.1.2 Thermalization in integrable and non-integrable quantum systems

We now turn our attention to the thermalization of quantum system which is another focus of
non-equilibrium dynamic research. As a definition, when an isolated system that is initially out-of-
equilibrium relaxes to a state that can be described by a standard statistical ensemble, e.g. canonical,
microcanonical, etc, we say that is has thermalized or that thermalization has occurred. We refer
to a system as integrable if there exists additional constants of motion other than its energy. Typ-
ically, quantum integrable models can also be diagonalized using an appropriate basis choice and
are therefore exactly solvable. Non-integrable systems however only conserve energy. In general,
the conventional expectation is that thermalization only occurs in non-integrable systems and not
in integrable ones.

1.1.3 Non-integrable models: the Eigenstate-thermalization hypothesis
(ETH)

In classical systems, generic thermalization has its roots in dynamical chaos, which in turn implies
ergodicity (Kardar, 2007); This can be neatly summarized by the expression (Polkovnikov et al.,
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2011):

δ(X− X(t)) ≡ lim
T→∞

1
T

∫ T

0
dtδ(X− X(t)) = ρmc(E), (1.1.17)

where X is a point in phase space and δ(.) is a dirac-delta function. Eq. 1.1.17 states that that the
long time average of the set of phase space points, X, visited by dynamic trajectory of the system,
X(t), will uniformly cover the constant energy (E) hypersurface essentially mapping out a density of
states that is reflective of the microcanonical ensemble, ρmc(E). As a result, the long time averages of
a generic observable, Â will likewise match the ensemble averages of the microcanonical distribution,
ρmc(E) i.e.:

Ā(t) = 〈A〉mc. (1.1.18)

The conventional wisdom is that non-integrable systems thermalize and while this generalization
applies to quantum mechanical systems as well and has indeed been observed, the underlying mech-
anism necessarily differs. It is after all strange to attribute cause of thermalization to dynamical
chaos given that quantum mechanical time evolution, governed by the Schrodinger equation, is lin-
ear. To address this paradox, a possible mechanism for quantum thermalization was conjectured
by Schrednicki (Srednicki, 1994, Deutsch, 1991) known as the eigenstate thermalization hypothe-
sis (ETH), which we will elucidate for a general quantum system. In (Srednicki, 1994), the ETH
was used in tandem with Berry’s conjecture (Berry and Keating, 1999)1 to reproduce the Maxwell-
Boltzmann distribution for a box of particles with hard-sphere constraints. Taking Bose and Fermi
statistics into consideration, Srednicki was further able to reproduce the expected, Bose and Fermi
distributions as well.

Formulation of the ETH

Let us consider a non-degenerate, isolated quantum system that is bounded and described by the
Hamiltonian, Ĥ, such that Ĥ|α〉 = Eα|α〉, where {|α〉} are complete orthonormal energy eigenstates
with eigenvalue spectrum: {Eα}. We also consider generic initial states defined by the usual
superposition of basis states:

|ψ(0)〉 = ∑
α

Cα|α〉, (1.1.19)

where ∑α |Cα|2 = 1 but subject to the key additional constraint that its distribution is sufficiently
narrow in energy with a quantum uncertainty:

∆E ≡
√
〈E2〉 − 〈E〉2〉 � 〈E〉, (1.1.20)

that vanishes in the limit that the linear size of the system L goes to infinity. Such generic initial
states can be easily prepared experimentally as well. Naturally, the time-evolved quantum state,
|ψ(t)〉 obeys Schrodinger’s equation:

|ψ(t)〉 = ∑
α

Cαe−i Eα t
h̄ |ψα〉. (1.1.21)

1In (Srednicki, 1994), Berry’s conjecture states that each eigenfunction of chosen basis appears to be a superposition
of plane waves with random phase and Gaussian random amplitudes with fixed wavelengths. It is believed to hold for
quantum systems which exhibit classical chaos in all or at least most of classical phase space.
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We are now ready to explore the possibility of quantum thermalization but from the perspective
of "special" observables, Â. There is no clear distinction as to what observables are considered
"special" but typically they are physically relevant and experimentally measurable, an example being
the magnetization in spin systems or the momentum distribution of bosons. It is further worth
mentioning that eq. 1.1.20 originates from the condition that

(∆E)2|A
′′(E)

A(E)
| � 1, (1.1.22)

where A(E) is a smooth function of energy (Srednicki, 1994). The latter is true if we make the
additional assumption that the difference between the neighboring elements: Aα+1,α+1 − Aαα are
exponentially small in L (Rigol and Srednicki, 2012) so that Aαα is indeed a smooth function of Eα

with small eigenstate-to-eigenstate fluctuations.

Now for thermalization to occur, analogous to the classical case, we expect the following equivalence
of the time average of the observable A with the predictions of the quantum microcanonical ensemble:
ρQ,mc(E), analogous to eq. 1.1.18. To see how this may arise, let us first evaluate the long time average
of the expectation value of Ā:

A ≡ 1
T

lim
T→∞

∫ T

0
〈A(t)〉dt (1.1.23)

=
1
T

lim
T→∞

∫ T

0

[
∑
α,β

C∗αCβ Aαβe−i(Eα−Eβ)t/h̄

]
dt (1.1.24)

= ∑
α

|Cα|2 Aαα + ih̄ lim
T→∞

∑
α 6=β

[
C∗αCβ Aαβ

Eβ − Eα

(
e−i(Eβ−Eα)T/h̄ − 1

T

)]
(1.1.25)

= ∑
α

|Cα|2 Aαα. (1.1.26)

The final expression is referred to in the literature as the expectation of the diagonal ensemble and
is exact as long as the cross terms can be safely ignored. Interestingly, we see that time plays a
different role in classical and quantum systems. Due to the chaotic origins in classical systems, time
constructs the thermal state as it maps out the energy hypersurface. In QM systems however, time
serves to reveal the quantum state as the cross terms in eq. 1.1.25 vanish. However, eq. 1.1.26 is not
solely due to temporal dephasing. Let us look more closely at the second term in eq. 1.1.25. using
L’hopital’s rule to evaluate the limit we note that:

ih̄ lim
T→∞

∑
α 6=β

[
C∗αCβ Aαβ

Eβ − Eα

(
e−i(Eβ−Eα)T/h̄ − 1

T

)]
= lim

T→∞
∑
α, β

α 6= β

[
C∗αCβ Aαβe−i(Eβ−Eα)T/h̄

]
, (1.1.27)

where we have taken the derivative with respect to T in the numerator and denominator of the
cross terms. Following the arguments of (Rigol et al., 2008), we note that the dephasing factors
only scale as the square root of the number of terms, then ∑α,β;α 6=β ei(Eα−Eβ)T/h̄ ∼

√
N2

b , where Nb is
the number of basis states. Furthermore, assuming that the initial state has a finite overlap with a
substantial number of eigenstates of the final Hamiltonian (as is usually the case), then the typical

13



Ph.D. Thesis Ray Ng; McMaster University Condensed Matter Physics

overlap amplitude Cα ∼ 1/
√

Nb. Taken together then, we see that

∑
α, β

α 6= β

[
C∗αCβ Aαβe−i(Eβ−Eα)T/h̄

]
∼

√
N2

b
1

Nb
Atypical

αβ (1.1.28)

= Atypical
αβ , (1.1.29)

where Atypical
αβ is the typical value of an off-diagonal element. We therefore see that it is necessary

to make the additional assumption that:

Atypical
αβ � Atypical

αα (1.1.30)

to obtain the diagonal ensemble result of eq. 1.1.26. There is indeed strong numerical evidence for
this condition to be true (Rigol et al., 2008).

The microcanonical ensemble on the other hand requires that for an energy window: I(E) ≡
[〈E〉 − ∆E, 〈E〉+ ∆E], the expectation value is given by:

〈A〉Q,mc =
1

N′ ∑
α:Eα∈I

Aαα (1.1.31)

where N′ is the number of states in the interval I(E). Thermalization requires the agreement of
eq. 1.1.26 and eq. 1.1.31, so that:

∑
α:Eα∈I

|Cα|2 Aαα =
1

N′ ∑
α:Eα∈I

Aαα (1.1.32)

However, eq. 1.1.32 appears to be paradoxical. The LHS of eq. 1.1.32 depends on the initial conditions
through the coefficients: {Cα}, while the RHS of eq. 1.1.32 only depends on 〈E〉, which could be the
same for different sets of {Cα}. In order for this to be true, the most likely possibility is that Aαα is
roughly constant for eigenstates that are close in energy, i.e. in the energy interval (although non-
generic possibilities can also arise (Rigol and Srednicki, 2012)), in which case eq. 1.1.32 is justified
since we can now rewrite it as

Aαα ∑
α:Eα∈I

|Cα|2 =
1

N′
Aαα ∑

α:Eα∈I
1 (1.1.33)

Aαα =
1

N′
AααN′, (1.1.34)

where Aαα represents a typical value in the interval I(E). In addition, it is also necessary to show
that temporal fluctuations are small. This can be quantified by the formula:

(At − Ā)
2 ≡ lim

T→∞

1
T

∫ T

0
(At − Ā)2dt, (1.1.35)
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which can be explicitly evaluated to be:

(At − Ā)
2
= ∑

α 6=β

|Cα|2|Cβ|2|Aαβ|2. (1.1.36)

This condition is guaranteed by the second assumption of the ETH in eq. 1.1.30 that was earlier men-
tioned, providing further evidence that the observable is indeed well described by its microcanonical
ensemble and therefore thermal. To summarise, the ETH tells us that thermalization in quantum
systems generically happens at the level of individual eigenstates such that:

Aαα = 〈A〉Q,mc(Eα)∀α ∈ I(E). (1.1.37)

Additionally, this can only occur for initial states that are sufficiently narrow in energy so that
eq. 1.1.20 is satisfied.

Review of literature

The ETH is a widely accepted paradigm responsible for quantum thermalization and has been
shown to hold for a number of non-integrable systems (Rigol et al., 2008, Rigol, 2009a,b, Santos
and Rigol, 2010b,a). In particular, the pioneering work of Rigol et al (Rigol et al., 2008) elegantly
demonstrated the validity of the ETH in a system of 2D network of hardcore bosons with weak
nearest-neighbour repulsion after a quench using exact diagonalization. Details of the geometry
and the quench protocol can be found in (Rigol et al., 2008). The measured observable was the
asymptotic momentum distribution and was shown to conform unequivocally with the predictions
of the ETH.

It does however beg the question on its limitations, in particular, does the ETH hold for near-
integrable (albeit marginally non-integrable) systems as well, or is there a threshold amount of non-
integrability that has to be present? This line of research was primarily motivated by the ground
breaking experiments of Kinoshita et al (Kinoshita et al., 2006), where the near ideal realization of
the integrable Lieb-Liniger gas with point-like collisions, failed to thermalize even after thousands of
collisions, thereby behaving like a quantum Newton’s cradle. Despite the pristine nature of optical
lattice experiments, experimental imperfections such as anharmonicities or the axial trap potential
ensures that the system is only nearly-integrable. However contrary to expectation, these effects
were unable to bring about thermalization. To address this, let us consider a quench experiment that
mimics the conditions of the experiments of Kinoshita et al. Let us introduce an integrable quantum
system (with a tunable parameter, λ, such as the strength of an external field) that is made non-
integrable by explicitly introducing integrability-breaking terms, whose strength can be parametrized
by the parameter, λ2. In this scenario, one can then as the question: "Is the ETH satisfied for
arbitrarily small λ2 or does a threshold strength: λ2,c exist before integrability is restored?".

The numerical experiments on a system of integrable 1D HC bosons by Rigol et al (Rigol, 2009a)
were aimed at elucidating the nature of this phenomena. To this end, integrability breaking terms
taking the form of next-nearest neighbour (NNN) interactions terms, quantified by the tunnelling
and potential energy parameters (t′,V′), were added. When (t′,V′) = (0,0), the system is perfectly
integrable. Using the long-time momentum distribution as the measured observable, the breakdown
of the ETH was quantified by calculating the difference between the predictions of the diagonal
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ensemble and the ETH for a series of instantaneous quenches of the NN parameters: (tini,Vini)→
(t f inal ,Vf inal) with different values of (t′,V′). The deviations were observed to become appreciable
once t′ = V′ < 0.1 signifying the absence of thermalization.

To further pin down the breakdown of the ETH, the distribution of n(k = 0)α,α versus energy Eα was
studied. Recall that the ETH requires it to be smooth with minimal fluctuations between adjacent
states. Close to integrability (t′ = V′ = 0.03), it was indeed observed that state to state fluctuations
of n(k = 0)α,α were noticeably large for the entire spectrum and thermalization is absent. Far from
integrability (t′ = V′ = 0.24) however, there exists an extended region where the fluctuations are
suppressed in addition to a region with large fluctuations. Naturally the farther away the system
is from integrability, one would expect the suppressed fluctuation region to grow, suggesting that
there exists a smooth crossover to thermalization. However since the numerical experiments were
performed using exact diagonalizaton, it is possible that this smooth crossover is a finite-size effect.
It would be interesting to investigate how this behaviour scales with system size and if thermalization
will occur for a sufficiently large system arbitrarily close to the the integrable point or if a sharp
cut-off exists at some finite critical value.

Recently, a similar study on quantum spin chains, more specifically the spin-1/2 Heisenberg model
have reached similar conclusions within the limitations of small system sizes as well (Steinigeweg
et al., 2013). In this study, next-nearest neighbor (NNN) Ising interaction terms:

{
Sz

i Sz
i+2
}

were
used to break integrability instead. Other measures of identifying the breakdown of ETH include
observing the crossover of level-spacing statistics of the eigen spectrum from Poisson to Wigner-
Dyson statistics in the integrable and non-integrable limits (Rabson et al., 2004).

1.1.4 Integrable systems: the generalized Gibbs ensemble (GGE)

Thus far, our definitions of thermalization have relied on the standard statistical mechanic ensembles
as a measure. In that sense, integrable systems do not thermalize. It is then reasonable to ask:
Does there exist some other ensemble that the system can equilibrate to? An example of such an
ensemble is the generalized Gibbs ensemble (GGE). To derive this ensemble, we follow the standard
prescription of statistical mechanics that one should maximize the entropy:

S = kBTTr [ρ ln(1/ρ)] , (1.1.38)

(where kB is Boltzmann’s constant) but take into consideration all the integrals of motion of the
model: {Jm}. This yields the GGE:

ρ̂ = Z−1e−∑m λm Ĵm , (1.1.39)

where Z = Tr
[
−∑m λm Ĵm

]
and the set {λm} are Lagrange multipliers that are determined by the

initial condition: Tr
[

Ĵmρ̂
]
= 〈 Ĵm〉(t = 0). If only the energy is conserved, such that Ĵ1 = Ĥ then we

obtain the canonical ensemble as expected.

Using the GGE, Rigol (Rigol et al., 2007b) et al correctly calculated the asymptotic momentum
distribution of a completely integrable system of 1d HC bosons by performing two numerical quench
experiments with different initial conditions. In the first experiment, the system is prepared in the
ground state of the box of size L, which is then abruptly brought out of equilibrium by a sud-
den increase to L′ > L. As expected, the grand-canonical ensemble was incapable of predicting the
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momentum distribution of the relaxed state, but instead showed excellent agreement with the fully-
constrained GGE. The second experiment closely mimicked the experiments of Kinoshita (Kinoshita
et al., 2006) et al and initialized in a quantum superposition of opposite momentum states. In par-
ticular, the well-defined peaks in the initial momentum distribution were seen to persist throughout
the simulations, instead of degrading into a single Gaussian distribution, as would be expected for a
thermal system. Remarkably, the GGE was able to capture the resilience of the initial momentum
distribution, a feature absent when using standard ensembles. The mechanism responsible for the
applicability of the GGE in integrable system was conjectured to take the form of a generalized-
ETH (GETH) (Cassidy et al., 2011). A general microcanonical ensemble (GME) was created using
eigenstates with expectation values of conserved currents (instead of energy as in the standard ME),
i.e.

〈A〉GME ≡
1

NJ′m
∑

α:Jm,αα∈I′
Aαα, (1.1.40)

fell within a certain window, I′ = [〈Jm〉o − δGME, 〈Jm〉o + δGME], where 〈Jm〉o is the initial expec-
tation of the conserved charge and δGME is variable window 2. This approach showed impressive
agreement with the expectation values of a diagonal ensemble and GGE (Cassidy et al., 2011). Yet
there are instances where the GGE is known to fail. The GGE for instance is incapable of predicting
the asymptotic state for a generic non-translationally invariant initial state (Caneva et al., 2011).
The quench of an anisotropic spin-1/2 Heisenberg chain (Wouters et al., 2014) and spin-1/2 XXZ
chain (Pozsgay, 2014, Pozsgay et al., 2014, Goldstein and Andrei, 2014), also show a similar discrep-
ancy that has been attributed to a breakdown of the GETH. One possible explanation is that local
conserved charges have typically been used to construct the GGE and it has been suggested that a
GGE incorporating non-local charges may be necessary (Mierzejewski et al., 2014).

2The actual criteria used to construct the GME is actually more involved and the reader is encouraged to refer
to (Cassidy et al., 2011) for technical details.
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CHAPTER 2

THE POSITIVE-P REPRESENTATION

2.1 Quantum phase space methods: Wigner representation

Quantum phase space techniques are designed to provide a classical interpretation of quantum me-
chanics by mapping quantum degrees of freedom onto equivalent classical phase space variables. A
notable example of such a technique is the pioneering semi-classical Wigner representation (Wigner,
1932, Moyal, 1949) which we will briefly outline to provide a general idea of phase space techniques.
The Wigner representation begins by mapping the quantum density operator, ρ̂ = |ψ〉〈ψ|, onto a
phase space distribution using the transformation:

fW(~q,~p) =
∫

d~se
i~p.~s

h̄ 〈~q− ~s
2
|ψ〉〈ψ|~q + ~s

2
〉, (2.1.1)

where ~p and ~q are momentum and position states and fW(~q,~p) is called the Wigner distribution, that
is reminiscent of a joint probability distribution of ~p and ~q. Using this basis, we now have a D = 6N-
dimensional continuous phase space spanned by the variables {~p,~q}. A strong case for interpreting
fW as a joint probability distribution can be made if we evaluate the marginal distributions of
eq. 2.1.1 individually to yield ∫ dp

(2πh̄)D/2 fW(q, p) = |ψ(q)|2 (2.1.2)

and ∫ dq
(2πh̄)D/2 fW(q, p) = |ψ(p)|2, (2.1.3)
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(where |ψ(p)|2 and |ψ(q)|2 are the momentum and position probability distributions respectively)
and further take into consideration the fact that it is normalized, i.e.:

∫
fW(q, p)

dqdp
(2πh̄)D = 1. (2.1.4)

Despite having such attractive properties of a conventional probability distribution however, one
must be cautious in adopting such an interpretation and note that fW(q, p) is in fact only a quasi-
probability distribution. As much as one would hope, it does not satisfy a cardinal property of
semi-positive definiteness. Regardless, the usefulness of the Wigner representation is evident when
we wish to calculate observables. Just as we performed a transformation on the density operator to
yield the Wigner function, one can also carry out the same transformation on a generic operator,
Ô( p̂, q̂) that is a function of the momentum and position operators:

OW(~q,~p) =
1

2πh̄

∫ ∞

−∞
e

i~p.~s
h̄ 〈~q− ~s

2
|Ô(~̂p,~̂q)|~q + ~s

2
〉ds, (2.1.5)

to yield the Weyl symbol, OW(~q,~p), of the operator, Ô(~̂p,~̂q). Strictly speaking then, the Wigner
function is nothing more than the Weyl symbol of the density operator. While eq. 2.1.5 might
seem like a cumbersome expression, it is surprisingly easy to evaluate if Ô(~p,~q) is a symmetrized
operator. For example, consider the operator: Â(~̂p,~̂q) = 1

2

(
~̂q.~̂p + ~̂p.~̂q

)
, its Weyl symbol can be

automatically obtained by making the direct substitution: (~̂p,~̂q)→ (~p,~q) so that AW(~p,~q) =~q.~p. A
more general and equally simpler approach to calculating the Weyl symbols for general operators
can also be achieved using Bopp operators (Polkovnikov et al., 2011), where instead the substitution:(
~̂p,~̂q
)
→
(
~p− ih̄

2
∂
∂~q ,~q + ih̄

2
∂

∂~p

)
is made. The classical nature of the Wigner formalism is most evident

when calculating expectations values, where quantum mechanical expectation values now take the
form of neat statistical expressions instead, i.e.

〈Ô(~̂q,~̂p)〉 =
∫ ∫ d~pd~q

(2πh̄)D fW(~q,~p)OW(~q,~p). (2.1.6)

Furthermore, if we are interested in the dynamics of the system, this can be taken into account by
evolving the ~p,~q variables using Hamilton’s classical equation of motion

d~q
dt

= {~q, H(~p,~q)} , (2.1.7)

and
d~p
dt

= {~p, H(~p,~q)} (2.1.8)

where H is the classical version of the Hamiltonian and

{O1,O2} ≡
∂O1

∂q
∂O2

∂p
− ∂O1

∂p
∂O2

∂q
(2.1.9)

defines the Poisson bracket. Quantum mechanics is then incorporated into the system only through
quantum fluctuations that are mimicked by sampling initial conditions from the Wigner distribution
(which typically has a finite width). This therefore necessitates an averaging over all possible initial
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conditions, which modifies eq. 2.1.6 to:

〈Ô(~̂q,~̂p)〉 =
∫ ∫ d~p0d~q0

(2πh̄)D fW(~q0,~p0)OW(~q(t),~p(t)), (2.1.10)

where ~p0 and ~q0 are the initial conditions of the system obtained from sampling the Wigner function.
This approach however is only justified when the Wigner function is semi-positive definite which is
only guaranteed for specific initial density operators (Olsen and Bradley, 2009), otherwise one would
run into a similar type of ’sign-problem’ as Monte-Carlo techniques.

While we have introduced phase space methods using the Wigner representation, other phase space
methods include the Q-distribution, Husimi distribution, the Glauber-Sudarshan’s P-representation
(or P-representation for short) (see (Lee, 1995) for a review) and most recently Bosonic and Fermionic
Gaussian phase space representations (Corney and Drummond, 2006, 2004, 2003). We are however,
interested in the method called the positive-P distribution (Drummond and Gardiner, 1980) (cf
section 2.4) as the title of this chapter suggests, which is in effect a more generalized extension of
the P-representation (cf section 2.3).

Finally we note that there is of course nothing special about the conjugate operators ~q and ~p and
they were only chosen in our discussion of the Wigner representation so as to draw parallels with
classical physics. For Hamiltonians comprising of the Bosonic creation (â†) and annihilation (â)
operators, as is commonplace in quantum optics, the Bosonic coherent states is a more appropriate
choice. It is indeed the conventional basis chosen for P-representations (including the positive-P)
and as such we have decided it worthwhile to review some of its key properties.

2.2 Bosonic coherent states

This section will only cover certain properties of coherent states that are relevant to PP formalism.
We would like to point out however, that there are many more properties (Carmichael, 2002) that
have been omitted for brevity.

1. A coherent state is a quantum mechanical state that is parameterized by a single complex
number, α ∈ C so that every point in the complex plane represents a unique state. The
mathematical definition of a normalized coherent state has the following equivalent forms:

|α〉 = e−
1
2 α∗αeαâ† |0〉, (2.2.1)

which tells us that it can be generated by the action of the creation operator â† on the vacuum
state |0〉 or alternatively:

|α〉 = e−
1
2 α∗α

∞

∑
n=0

αn
√

n!
|n〉, n = 0,1,2, . . . , (2.2.2)

which expresses it as a superposition of Fock or number states.
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2. It is the eigenstate of the destruction operator

â|α〉 = α|α〉, 〈α|â† = 〈α|α∗, (2.2.3)

with a complex eigenvalue α ∈ C.

3. The set of Coherent states are non-orthogonal. This implies that two different states |α〉 and
|β〉 have a non-zero overlap given by:

〈α|β〉 = e−
1
2 |α2|e−

1
2 |β2|eα∗β (2.2.4)

4. Coherent states are overcomplete and so that an integration over the entire complex plane does
not yield the identity, instead: ∫

d2α|α〉〈α| = π, (2.2.5)

.

5. Using a Coherent state basis, it is possible to express any operator in terms of just diagonal
terms i.e. any operator is determined by its expectation value in all Coherent states. We can
show this by using eq. 2.2.2 to calculate

〈α|T̂|α〉 = ∑
m,n
〈n|T̂|m〉e−|α|2(α∗)n(α)m 1√

n!m!
, (2.2.6)

which upon simple differentiation with respect to α and α∗ gives

〈n|T̂|m〉 =
√

m!n!
∂n

∂α∗n
∂m

∂αm (eαα∗〈α|T̂|α〉). (2.2.7)

Thus the matrix elements of any operator, T̂ can be expressed in terms of the diagonal elements
of T̂ in the Coherent state basis.

2.3 Glauber-Sudarshan’s P-representation

The P-representation can be thought of as the predecessor of the PPR and was originally developed in
1963 by 2005 Nobel Prize winner, Roy J. Glauber1 (Sudarshan, 1963, Glauber, 1963). In describing
quantum systems, what we are interested in in particular, is the density operator, ρ̂ as it contains
all the necessary information about the system. According to property 5 in section 2.2, the diagonal
matrix elements of any operator in a Coherent state basis, are all we need to span any operator.
Using this property then, we can simply expand ρ̂ in terms of a sum of diagonal matrix elements
using some distribution function P(α,α∗):

ρ̂ =
∫

d2α|α〉〈α|P(α,α∗). (2.3.1)

1The nobel prize was attributed to his contribution to the quantum theory of optical coherence
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This representation of ρ̂ is known as the Glauber-Sudarshan P-representation. The benefit in using
the P-representation is in calculating expectation values of normal-ordered operators as they take
the trivial form:

〈â†p âq〉 ≡ tr(ρâ†p âq)

= tr
(∫

d2α|α〉〈α|P(α,α∗)â†p âq
)

=
∫

d2αP(α,α∗)〈α|â†p âq|α〉

=
∫

d2αP(α,α∗)α∗pαq, (2.3.2)

which makes it tempting to interpret P(α,α∗) as a probability distribution function, i.e. P(α) =
〈α|ρ̂|α〉 being the probability of the system occupying the state |α〉. Note the similarities between
the expectation values of a generic observable in P-representation (eq. 2.3.2) and the Wigner represen-
tation (eq. 2.1.10) that was discussed in section 2.1, further reinforcing the statistical interpretation
of quantum mechanics as is typical of phase space techniques. Furthermore, P(α,α∗) is normalized
as well, i.e.

∫
d2αP(α,α∗) =

∫
d2α〈α|α〉P(α)

= tr
(∫

d2α|α〉〈α|P(α)
)

= tr(ρ̂)

= 1, (2.3.3)

where we used the normalization of the trace of ρ̂. However, this interpretation must be made with
reservation as in the Wigner case. Owing to the overcompleteness of the Coherent states, P(α,α∗) is
not unique. It is additionally not guaranteed to be strictly positive and like the Wigner function is
instead a quasi-probability distribution function. This is an issue if we wish to calculate the dynamics
of the system. Instead of using Hamilton equations of motion, the dynamics of the system in the
P-representation can in some cases be mapped exactly onto Langevin-type Ito stochastic differential
equations (SDEs) using the theory of stochastic calculus (Arnold, 1974). This exact mapping only
exists if the P -function remains strictly positive semi-definite throughout its evolution, a property
which is not generally guaranteed.

2.4 The positive-P representation

In 1980 however, Drummond and Gardiner (Drummond and Gardiner, 1980) formulated the positive-
P representation of the density operator which circumvents the problems associated with the P-
representation, in particular the P- function being only a quasi distribution function. The PPR for
the density operator, ρ̂ is now instead given by the expansion

ρ̂ =
∫

d2αd2α+
|α〉〈(α+)∗|
〈(α+)∗|α〉 P(α,α+) =

∫
d2αd2α+Λ̂(α,α+)P(α,α+), (2.4.1)
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where |α〉 is the bosonic coherent state and P(α,α+) is a distribution function over a doubled complex
phase space of variables α and α+ and

Λ̂(α,α+) =
|α〉〈(α+)∗|
〈(α+)∗|α〉 (2.4.2)

is called the projection operator or the kernel of the density operator. Note that α and α+ are
two independent complex variables and not the complex conjugate of each other. This certainly
introduces an extra degree of freedom since according to property 5 in section 2.2, a diagonal kernel:
|α〉〈α| would have sufficed. The upshot of using the kernel in eq. 2.4.2 however, is that an explicit
form for the distribution always exists and is given by the expression:

P(α,α+) =
1

4π2 e−|α−α+∗ |2/4〈 (α + (α+)∗)
2

|ρ̂| (α + (α+)∗)
2

〉. (2.4.3)

If ρ̂ is a positive-definite operator (which is the case for physical density operators) then P(α,α+)
is also real and positive by definition and given the way that P(α,α+) appears in eq. 2.4.1, it has
the reminiscent properties of a probability distribution. This is further evidenced by evaluating the
unit trace of the density operator which demonstrates that P is properly normalized over the α-α+
complex phase space:

tr(ρ̂) =
∫

P(α,α+)d2αd2α+

= 1. (2.4.4)

Furthermore, the expression for the expectation value of normal-ordered operators has a probabilistic
interpretation:

〈â†p âq〉 ≡ tr(ρ̂â†p âq)

=
∫

d2αd2α+P(α,α+)(α+)pαq, (2.4.5)

where p,q ∈R+. In essence, the beauty of the PPR is the mapping of quantum degrees of freedom
onto a simplified classical phase space so that a true probabilistic (and not quasi probabilistic as in
the P-representation and Wigner representation) interpretation emerges.

2.5 Simulating dynamics

Having described what the PPR is, we now put it to practical use. We note that the PP-formalism
can in principle be used for both real and imaginary time dynamics. Deriving SDEs for the real
time case is relatively straightforward and is treated as the conventional application of the PPR.
Imaginary-time evolution requires a modification of the real-time approach as well as the use of
stochastic gauges, which is covered in section 2.6.1.
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2.5.1 Real time dynamics: Master equation

Our starting point is the equation of motion governing the unitary evolution of the density operator:
ρ̂ for an isolated system in real time:

d
dt

ρ̂ = − i
h̄
[
Ĥ, ρ̂

]
, (2.5.1)

which we will refer to as the Master equation. A corresponding Fokker-Planck equation can be
derived by first substituting eq. 2.4.1 into eq. 2.5.1 to obtain:

∫
∂

∂t
P(α,α+)Λ̂(α,α+)d2αd2α+ = − i

h̄

∫
P(α,α+)

[
Ĥ(â, â†)Λ̂(α,α+)

−Λ̂(α,α+)Ĥ(â, â†)
]

d2αd2α+, (2.5.2)

where we have made the additional assumption that our Hamiltonian: Ĥ(â, â†) consists of bosonic
annihilation and creation operators. This is an operator equation that is usually difficult to solve.
Fortunately, there exist correspondence relations which will allow us to write the master equation in
terms of a partial differential equation for α and α+ in place of an operator equation for a and â†. In
general, the master equation will contain combinations of â and â† on the left hand side (LHS) and
right hand side (RHS) of the projection operator: Λ̂(α,α+) which are then replaced with algebraic
operations using the correspondence relations. The two obvious correspondence relations are given
by the action of â and â† on the LHS and RHS of Λ̂(α,α+) respectively:

âΛ̂ =
(â|α〉)〈α+∗|
〈α+∗|α〉

= αΛ̂ (2.5.3)

and

Λ̂â† =
|α〉〈(α+∗|â†)

〈α+∗|α〉
= α+Λ̂, (2.5.4)

which can be seen from a direct application of eq. 2.2.3. We can therefore replace â and â† by
complex phase space variables α and α+ when this type of ordering appears. To obtain expressions
for the reverse orderings, we take our expression for Λ̂ and use eq. 2.2.1 and the overlap relation in
eq. 2.2.4 to write it explicitly as:

Λ̂(α,α+) =
|α〉|〈α+∗|
〈α+∗|α〉

= e(αâ†−αα+)|0〉〈0|eα+ â. (2.5.5)
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We then differentiate eq. 2.5.5 with respect to α

∂

∂α
Λ̂ =

∂

∂α
(e(αâ†−αα+))|0〉〈0|eα+ â

= (â† − α+)Λ̂(α,α+), (2.5.6)

and carry out a simple rearrangement to get

â†Λ̂ = (α+ +
∂

∂α
)Λ̂. (2.5.7)

On the other hand, by taking the derivative with respect to α+ and rearranging we get:

Λ̂â = (α +
∂

∂α+
)Λ̂. (2.5.8)

To summarize then, the correspondence relations for the positive-P representation are:

Λ̂â† = α+Λ̂.

âΛ̂ = αΛ̂.

â†Λ̂ = (α+ +
∂

∂α
)Λ̂

Λ̂â = (α +
∂

∂α+
)Λ̂. (2.5.9)

which can be thought of as its defining feature.

2.5.2 Deriving the Fokker-Planck equation

Upon subsitituting the correspondence relations. 2.5.9 into the Master equation in eq. 2.5.1, it is
generally possible to convert the latter to the standard form:

∂ρ̂

∂t
=

∫ ∫
Λ̂(α,α+)

∂P(α,α+)
∂t

d2αd2α+

=
∫ ∫

P(α,α+)
{
(Aµ(α)

∂

∂αµ +
1
2

Dµν(α)
∂

∂αµ

∂

∂αν
)Λ̂(α)

}
d2αd2α+, (2.5.10)

where µ is an index over stochastic variables. In the case of a single mode system described by â,
we denote α0 = α,α1 = α+. Already, this is reminiscent of a Fokker-Planck equation (FPE) (Risken,
1989), which by definition is the equation of motion for a conditional probability distribution function,
and we can intuitively identify the first term A(α,α+) as the drift vector and the second term:
D(α,α+) as the diffusion matrix. The next key step is an integration by parts of eq. 2.5.10 with the
assumption that boundary terms vanish.

For now we focus on the drift terms, for which an integration by parts yields:
∫ ∫

P(α,α+)Aµ(α,α+)
∂

∂αµ Λ̂(α,α+)d2αd2α+ =
∫

d2α+
[

P(α,α+)A0(α,α+) (2.5.11)

26



Ph.D. Thesis Ray Ng; McMaster University Condensed Matter Physics

Λ̂(α,α+)
]
|α=boundaries +

∫
d2α

[
P(α,α+)A1(α,α+)Λ̂(α,α+)

]
|α+=boundaries

−
∫ ∫

Λ̂(α,α+)
∂

∂αµ

[
AµP(α,α+)

]
d2αd2α+,

where there is an implied summation in the last term. If we have an unbounded phase space, then
the first two terms are evaluated at the regions |α|, |α+| → ∞ which we will assume to vanish. The
effect of integrating by parts then is the introduction of a negative sign to the drift term and a
transfer of derivatives away from the projection operator Λ̂(α,α+), i.e.:

∫ ∫
P(α,α+)Aµ(α,α+)

∂

∂αµ Λ̂(α,α+)d2αd2α+ = −
∫ ∫

Λ̂(α,α+)
∂

∂αµ

[
AµP(α,α+)

]
d2αd2α+.

(2.5.12)

If we repeat this process for the diffusion term, then we see that there is no change in sign since we
integrate by parts twice. However, the derivatives will also be removed from Λ̂(α,α+) and transferred
to the remaining terms: DµνP(α). The final result is eq. 2.6.3 being converted to:

∫ ∫
Λ̂(α,α+)

{
∂P(α,α+)

∂t

}
d2αd2α+

=
∫ ∫

Λ̂(α,α+)
{
− ∂

∂αµ Aµ(α,α+) +
1
2

∂

∂αµ

∂

∂αν
Dµν(α)

}
P(α)d2αd2α+

(2.5.13)

from which we can tell that at least one solution that exists is given by:

∂P(α,α+)
∂t

=

[
− ∂

∂αµ Aµ(α,α+) +
1
2

∂

∂αµ

∂

∂αν
Dµν(α,α+)

]
P(α,α+). (2.5.14)

Eq. 2.5.14 has the conventional form of a Fokker-Planck equation (FPE). Since we have established
that P(α,α+) in section 2.4 does have the properties of probability distribution then this interpreta-
tion is valid as long as D is symmetric and positive semi-definite. The symmetricalness of D depends
on the form of the master equation whereas its positive semi-definiteness is automatically guaranteed
by use of the PP kernel (Drummond and Gardiner, 1980).

2.5.3 Deriving Ito stochastic differential equations

Solving the FPE analytically is usually impossible with some notable exceptions (Risken, 1989) and
a numerical solution is highly non-trivial. A simpler approach is to map the dynamics of an FPE
onto a set of Ito Stochastic differential equations (SDEs) (Arnold, 1974) which is then much simpler
to integrate numerically. The equivalent Ito SDEs that describe the evolution of our phase space
variables are given by:

dαµ = Aµ(α,α+)dt + Bµν(α,α+)dWν(t) (2.5.15)

where B is the noise matrix that is related to the diffusion matrix via the following factorization:

D(α,α+) = B(α,α+)BT(α,α+). (2.5.16)
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The condition imposed by eq. 2.5.16 grants us the freedom in constructing a noise matrix with a
variable second dimension, Nw. Thus if D is an N×N matrix then B has dimensions: N×Nw. The
terms dWν(t), where ν = 1 . . . Nw, are independent Wiener increments or white noise terms with the
statistical properties that

〈dWµ(t)〉 = 0

〈dWµ(t)dWν(t′)〉 = δµνδ(t− t′)dt. (2.5.17)

and can be easily numerically generated using a Gaussian distribution with mean 0 and variance dt,
i.e. ∼ N(0,dt) which can be related to a standard normal random variable, N(0,1) via the relation

dWµ(t) ∼
√

dtN(0,1). (2.5.18)

It is important to make the distinction that we have derived Ito SDEs and a technical point is that is
necessary to evaluate the noise matrix using the value of the stochastic variables at the beginning of
the time step (see Appendix A in (Ng, 2010) for an abridged treatment of SDEs.). They also obey a
modified calculus (Arnold, 1974) which necessitates the inclusion of second order differential terms:

d(xy) = ydx + xdy + dxdy, (2.5.19)

in contrast to the rules of ordinary calculus where dx,dy are Ito differentials.

2.5.4 Stratonovich correction terms

In practice, it is the Stratonovich form of the SDEs that are numerically integrated due to better
numerical convergence (Drummond and Mortimer, 1991). To obtain these, one simply needs to
include correction terms in the drift terms of the Ito SDEs:

Aµ
Strat = Aµ

Ito −
1
2 ∑

νγ

Bγν(~α,~α+)
∂

∂xγ
Bµν(~x). (2.5.20)

whereas the form of the noise terms are unchanged. It is however necessary to evaluate the noise
matrix at the midpoint of each time step interval as opposed to the start. The benefit of using
Stratonovich SDE is that they obey the rules of ordinary calculus, so that:

d(xy) = xdy + ydx, (2.5.21)

where the differentials dx,dy are now in Stratanovich form and which allows for more intuitive
algebraic manipulation. For a generic Stratonovich differential dx, we denote the Stratanovich noise
by the symbol ◦, where d~x = A(~x)dt + B(~x) ◦ d~W.

2.5.5 Noise matrix factorization

In general for non-diagonal diffusion matrices, finding the noise matrix B that satisfies eq. 2.5.16 is
not an easy task, especially so for the multidimensional case. There are two ways to go about this.
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The first way utilizes the symmetry of D, i.e. since

D = DT = BBT (2.5.22)

then we can write
D = B2 (2.5.23)

and a straightforward decomposition is given by the square root of the diffusion matrix:

B =
√

D, (2.5.24)

which can be carried out using common symbolic manipulation software such as Maple or Mathe-
matica.

Alternatively we could makes use of the ambiguity of the second dimension of B. Note that since D
is an N× N matrix then any noise matrix of dimension N× Nw, will preserve the dimensionality of
D. It is generally possible to break up D into Nc constituents such that:

D =
Nc

∑
i=1

D(i). (2.5.25)

Of course, one should be strategic in choosing these constituents so that factorizing each D(i) is
a considerably easier task. Mathematically this means finding an N × Ni

w matrix, B(i) so that
D(i) = B(i)B(i)T. Using this strategy then, the total noise matrix is given by

B =
[
B1B2 . . . . . . BNc

]
(2.5.26)

since

BBT =
[
B(1)B(2) · · ·+ B(Nc)

]




B(1)T

B(2)T

...

...
B(Nc)T




= B(1)B(1)T + B(2)B(2)T + · · ·+ B(Nc)B(Nc)T

= D(1) + D(2) + · · ·+ D(Nc)

= D (2.5.27)

as required. The benefit of using the square root factorization is that we only require 4N noise terms
(recall eq. 2.5.15), at the cost of a (usually) much more complicated expression for the noise matrix.
On the other hand, using the latter trick we end up introducing ∑i N(i)

w ≥ N noise terms. In the case
of multiplicative noise, this can have unfavourable effects such as a rapid growth of the variances of
the stochastic variables which can lead to numerical instabilities (Deuar and Drummond, 2006).
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2.5.6 Diffusion gauges

Due to the structure of the noise decomposition, another possible choice for noise matrix is given by:

B′ = BO, (2.5.28)

where O is an orthognal matrix satisfying OOT = I. This choice of noise matrix is also known as
a diffusion gauge (Plimak et al., 2001), since it directly modifies the form of the noise terms, which
originate from the diffusion components of the FPE. For a single mode system, a possible choice of
O is given by:

O =

[
cos(g) −sin(g)
sin(g) cos(g)

]
, (2.5.29)

where g is an arbitrary parameter. In some instances such as in the anharmonic oscillator (Plimak
et al., 2001), it has been shown to enhance the numerical stability in the SDEs.

2.5.7 Initial distribution

A salient point that we have not yet addressed is the initialization of the stochastic variables before
evolving them according to eq. 2.5.15. In reality, all one has to do is to calculate the PP-distribution
using eq. 2.4.3 for an initial density operator: ρ̂. This step is analogous to calculating the Wigner
function in the truncated Wigner semiclassical technique (Polkovnikov et al., 2011).

Coherent state

The simplest state to initialize the system however is that of a generic coherent state, |γ〉〈γ| such
that γ ∈R+ with average particle number: |γ|2. In the PP formalism, this can be simply achieved
by setting the positive-P function in eq. 2.4.1:

ρ̂ =
∫

P(α,α+)Λ̂(α,α+)d2αd2α+ (2.5.30)

to the following delta function:

P(α,α+) = δ(α− γ)δ(α+ − γ). (2.5.31)

This distribution function can also be used to set the vacuum state of the system by setting γ = 0 ().

Fock state

Now suppose for a single mode system, we would like to initialise our system in a, i.e. ρ̂ = |n〉〈n|.
This can be achieved by introducing the change of variables: µ = α+(α+)∗

2 and γ = α−(α+)∗
2 which we

can then substitute into eq. 2.4.3 to get

P(µ,ν) =
1

4π2 |〈µ|n〉〈n|µ〉| e
−|γ|2 |J(α,α+)|, (2.5.32)
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where J(α,α+) is the Jacobian matrix:

J(α,α+) =




∂α
∂µ

∂α
∂γ

∂(α+)∗
∂µ

∂(α+)∗
∂γ


 =

∣∣∣∣
[

1 1
1 −1

]∣∣∣∣ = 2. (2.5.33)

Note that: α = µ + γ and (α+)∗ = µ− γ.

Using the overlap between a coherent state |µ〉 = e−
|µ|2

2 ∑∞
m=0

µm
√

m!
|m〉 and an arbitrary fock state

|n〉, the distribution function P(µ,γ) is then given by

P(µ,γ) =
1

4π2 ∑
m,m′

∣∣∣∣∣
(µ∗)m
√

m!
(µ)m′

√
m′!

e−
|µ|2

2 e−
|µ|2

2 〈m|n〉〈m′|n〉
∣∣∣∣∣ e
−|γ|24

=
1

π2 ∑
m,m′

∣∣∣∣∣
(µ∗)m
√

m!
(µ)m′

√
m′!

e−|µ|
2

∣∣∣∣∣δmnδm′ne−|γ|
2

=
1

π2

∣∣∣∣
(µ∗)n
√

n!
(µ)2n
√

n!
e−|µ|

2
∣∣∣∣ e−|γ|

2

=

(
e−|γ|

2

π

)(
|µ|2ne−|µ|

2

πn!

)
(2.5.34)

or more succinctly

P(µ,γ) =
e−|γ|

2

π

Γ(|µ|2,n + 1)
π

, (2.5.35)

where
Γ(x,n) =

e−xxn−1

(n− 1)!
(2.5.36)

is the Gamma distribution. So we see that in order to sample a fock state, we need to sample the real
number z = |µ|2 using a gamma distribution and the real and imaginary parts of γ using a Gaussian
distribution, i.e.:

γ =
1√
2
(n1 + in2) (2.5.37)

where n1,n2 ∼ N(0,1) are independent Gaussian random variables and µ is given by

µ =
√

zeiθ , (2.5.38)

with θ being drawn from a uniform distribution: θ ∈ [0,2π). The gamma distribution can be easily
coded and efficient algorithms are readily available (Marsaglia and Tsang, 2000). Once we sample,
µ and γ then the original phase space variables can be easily obtained from the equations:

α = µ + γ (2.5.39)
α+ = µ∗ − γ∗. (2.5.40)

A variety of initial states can also be set up within the PPR and this has been well detailed in (Olsen
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and Bradley, 2009).

2.6 Imaginary time dynamics

The PP can also be reformulated to obtain ground state properties. We will use a canonical ensemble
in the following derivations, although calculations in the grand canonical ensemble are possible as
well (Deuar et al., 2009). To do so, we construct an analogous equation of motion but in imagi-
nary time, β = 1/kBT instead, for the unnormalized thermal density operator: ρ = e−βĤ. T is the
temperature of the system and kB is Boltzmann’s constant. A simple differentiation yields:

d
dβ

ρ̂ =
1
2
[
Ĥρ̂ + ρ̂Ĥ

]
. (2.6.1)

By applying the same procedure in section 2.5.1- 2.5.3, a subtle issue arises. In the imaginary time
master equation, the different permutations of ρ̂Ĥ are added instead of subtracted. The result is
that constant terms (C(α,α+)) arise, yielding an equation that no longer fits the canonical form of
a FPE:

∂ρ̂

∂β
=

∫ ∫
Λ̂(α,α+)

∂P(α,α+)
∂t

d2αd2α+ (2.6.2)

=
∫ ∫

P(α,α+)
{
(Aµ(α)

∂

∂αµ +
1
2

Dµν(α)
∂

∂αµ

∂

∂αν
) + C(α,α+)

}
Λ̂(α)d2αd2α+.

(2.6.3)

2.6.1 The Gauge-P representation

In order to remove the constant term, C(α,α+), we will have to make use of the gauge-P representa-
tion (Deuar and Drummond, 2002) that allows for arbitrary modifications in eq. 2.4.2 by introducing
an extra complex variable, Ω in the stochastic kernel. Ω plays the role of a weight term.

The modified kernel is:
Λ̂g = ΩΛ̂ = Ω

|α〉〈α+∗|
〈α+∗|α〉 , (2.6.4)

from which we can introduce an extra correspondence gauge relation.
(

Ω
∂

∂Ω
− 1
)

ΛgC(α,α+,Ω) = 0, (2.6.5)
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where C(α,α+,Ω) is any arbitrary function. Adding this gauge into eq. 2.6.3, we get:

∂ρ̂

∂β
=
∫ ∫ ∫

Λ̂g
∂P(α,α+,Ω)

∂β
d2αd2α+dΩ

=
∫ ∫

P(α,α+,Ω)

{
Aµ(α)

∂

∂αµ +
1
2

Dµν(α)
∂

∂αµ

∂

∂αν
+ C(α,α+,Ω)

}
Λ̂g(α,Ω)d2αd2α+d2Ω.

+
∫ ∫

P(α,α+,Ω)

{
(

∂

∂Ω
− 1)C(α,α+,Ω)

}
Λ̂g(α)d2αd2α+d2Ω

=
∫ ∫

P(α,α+,Ω)

{
Aµ(α)

∂

∂αµ +
1
2

Dµν(α)
∂

∂αµ

∂

∂αν
+

∂

∂Ω
C(α,α+,Ω)

}
Λ̂g(α,Ω)d2αd2α+d2Ω.

(2.6.6)

Remarkably, the simple addition of an extra "weight" term allows us to arbitrarily remove constant
terms above. The stochastic evolution for Ω is determined by the unwanted constant terms and has
the form:

dΩ/Ω = C(α,α+,Ω)dβ. (2.6.7)

Meanwhile, the evolution of the α,α+ variables are left unchanged.

2.6.2 Drift gauges

The gauge-P representation in fact grants us even more flexibility in altering the FPE other than
for the removal of constant terms. Consider the choice:

C(α,α+,Ω) = A′µ(~α)
∂

∂αµ , (2.6.8)

which has the overall effects of both modifying the corresponding drift terms of the ~α variables
∫ ∫

P(α,α+,Ω)
{
(Aµ(α)− A′µ(α)

} ∂

∂αµ Λ̂g(α,Ω)d2αd2α+d2Ω. (2.6.9)

as well as generating diffusion terms.:
∫ ∫

P(α,α+,Ω)A′µ
∂

∂Ω
∂

∂αµ Λ̂g(α,Ω)d2αd2α+d2Ω. (2.6.10)

Note that this will have effect of generating SDEs that couple Ω and ~α variables through common
noise terms. The term drift gauges refers to the use of the gauge-P representation in this above
fashion and is formalized in (Deuar and Drummond, 2002). It has been known to have a stabilizing
effect when applied to the single mode anharmonic oscillator for example (Deuar and Drummond,
2006).
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2.7 Stochastic averages of observables

2.7.1 Standard PPR

The advantage of using SDEs is in the relative ease in calculating normal ordered expectation values.
As mentioned in section 2.5.2, the calculation of quantum mechanical normal ordered observables is
given by the statistical expression in eq. 2.4.5:

〈â†(t)p â(t)q〉 =
∫

P(α,α+)α(t)+pα(t)qd2αd2α+. (2.7.1)

where p,q ∈R+ and we see that the dynamics is implicitly built in to the stochastic evolution of the
variables, α(t) and α+(t). Furthermore, from the correspondence relations in eq. 2.5.9, we see that
there is a direct relation between the bosonic operators: â† and â with α+ and α, respectively. There
also exists an exact correspondence between the quantum mechanical average and the stochastic
average of their respective phase space variable functions, i.e.:

〈â†p(t)âq(t))〉 = lim
ntraj→∞

〈〈α+(t)pα(t)q)〉〉ntraj, (2.7.2)

in the limit of an infinite number of trajectories, ntraj, where

〈〈α+(t)p,α(t)q〉〉ntraj ≡
1

ntraj

ntraj

∑
i=1

[
α+i (t)

pαi(t)q] (2.7.3)

and i labels the individual realization of each trajectory of the phase space variables. The dynamics
of any normal ordered operator can therefore be monitored by numerically integrating SDEs of
the form 2.5.15 and calculating simple stochastic averages. Although the exact correspondence is
achieved in the limit that the total number of trajectories tends to infinity, in practice it is usually
sufficient to use ∼ 104 − 107 trajectories, depending on the nature of the problem.

2.7.2 Gauge-P

Within the gauge-P representation, the normalization is no longer preserved and instead, we find
that:

Tr(Λg) = Ω. (2.7.4)

Observables expression are then modified in the following way:

〈O(â(t), â†(t))〉 = 〈〈Ω(t)O(α(t),α+(t))〉〉
〈〈Ω(t)〉〉 . (2.7.5)

This expression gives further credence to the reason that Ω is called the "weight" term. The Gauge-
P representation brings to light a salient point. If an unnormalized kernel is used, the trace of the
density operator has to be explicitly taken into account. It manifest itself in the denominator of our
stochastic estimators in our observable calculations as seen in eq. 2.7.4.
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2.8 Multimode case

Although our discussion carried out so far has been explicitly used for the single mode case, the PPR
can also be generalized to a system with N-modes, taking the form:

ρ̂ =
∫

Λ̂(~α,~α+)P(~α,~α+)d2~αd2~α+ (2.8.1)

where the generalized off-diagonal Coherent state projection operator is obtained from a direct
product of single mode kernels:

Λ̂(~α, ~α+) =
N

∏
i
⊗|αi〉〈(α+i )∗|
|(α+i )∗〉〈αi|

(2.8.2)

and αi and α+i for i = 1 . . . N are independent complex variables. The quantum mechanical average
of normal ordered moments can be analogously calculated via:

〈
N

∏
i
(âi

†)pi (âi)
qi 〉 =

∫
P(~α, ~α+)

N

∏
i
(αi)

pi (α+i )
qi d2~αd2 ~α+ (2.8.3)

which is also equivalent to the stochastic average and an implicit time dependence in the stochastic
variables are implied but not explicitly written out for brevity.

lim
ntraj→∞

〈〈
N

∏
i
(αi)

pi (α+i )
qi 〉〉ntraj. (2.8.4)

The PPR can therefore be easily generalized to multimode systems and that the number of variables
required to simulate the system scales linearly with N. In this respect, exact many-body dynamics
is reduced to a tractable one that is not computationally exhaustive.

2.9 Short lifetimes and spiking

In principle, the PPR allows us to simulate the exact dynamics of a Bosonic system and seems to
be a very powerful method. However, there is a notorious problem associated with the method;
its short simulation lifetime: tli f e. This means that beyond t > tli f e, simulations fail to produce
correct results. The single most defining feature is the onset of "spiking" in observable calculations.
This is an indication that the stochastic differential equations are stiff and the ensuing evolution is
systematically incorrect. In the extreme case, this can result in numerical overflow.

As detailed in (Deuar, 2005), spiking simulations are features that arise when two types of boundary
errors occur. In deriving the FPE, we carried out an integration by parts and discarded boundary
terms in the process, assuming they were negligible. This is true granted that the P(α,α+) distri-
bution function does not develop fat tails, in which case the entire formalism breaks down. Such
an error is called a Type-I boundary error. It is usually not possible to evaluate these boundary
terms but there are tell-tale signs for when they could be a problem. Examples of which include:
Moving singularities in the drift, i.e. a set of solutions of measure zero that diverge in a finite time.
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The location of the pole depends on the initial conditions and is moving in that sense. An overly
broad initial probability distribution (Gilchrist et al., 1997) has also been observed to have undesir-
able effects. A very general criteria that was outlined in (Deuar, 2005) states that drift and noise
instabilities arise unless the two conditions:

lim
|αj |→∞

Aj

|αj|
= 0 (2.9.1)

and
lim
|αj |→∞

Bjk

|αj|
= 0, (2.9.2)

for all k are satisfied. This simple check will give us a good idea if simulation of our SDEs will be
the victim of early peril or not. The type-II boundary error (Deuar, 2005) occurs at the level of our
observable estimates. The quantum mechanical average given by the integral

〈Ô〉 =
∫

P(α,α+)<
[
Tr(ÔΛ̂(α,α+))

]
∫

P(α,α+)<
[
Tr(Λ̂(α,α+))

] (2.9.3)

may fail to converge when either Ô or Λ in the numerator, grows faster than P(α,α+) close to the
boundaries of phase space. Note that in eq. 2.9.3, we have assumed an unnormalized kernel for
generality.

Typically, there is no way apriori to know what tli f e will be or how many trajectories are needed
to obtain convergence. The latter usually ranges from 104 − 107 depending on the problem and the
nature of the SDEs, and has to be determined empirically. The positive-P representation is therefore
a method that is particularly useful in simulating many-body systems where the interesting physics
occur at short time scales before spiking occurs. In essence, most of the issues with spiking arises as
a result of a sub-optimal normalization for the kernel chosen. In the PPR in particular, the kernel:

Λ =
|α〉〈α+∗|
〈α+∗|α〉 (2.9.4)

while well defined in the diagonal limit, i.e. α = α+∗ is ill-equipped to represent off-diagonal elements
in an orthogonal basis. For instance, suppose Λ takes the form |n〉〈m| in the fock basis and |n〉, |m〉
are Fock states. The denominator in this case approaches zero and is ill-defined for such non-
hermitian operators. Points in phase space with a vanishing normalization is ironically favored by
trajectories which are drawn over to compensate by their sheer numbers. On the other hand, points
in phase space with a large normalization are avoided since they have a higher weight (Deuar, 2015)
and fewer trajectories are required. Ideally one must find an optimal normalization that abates
such extreme behavior, which is a non-trivial task. Regardless, for times t < tli f e, exact quantum
dynamics are still amenable.
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2.10 General recipe

To summarise then, the PPR is the expansion of the quantum density operator, ρ̂, in terms of an
off-diagonal kernel, Λ̂ formed from Bosonic coherent states. The benefit of doing so is that in this
form, the equation of motion for ρ̂ may take the form of a Fokker-Planck Equation (FPE), which can
then be mapped onto a set of Ito SDES, that are relatively easy to simulate. This is the final goal
of using the PPR i.e. being able to derive Ito SDEs that just as equivalently describe the quantum
system.

2.11 Example: Quench dynamics of the Bose-Hubbard Hamil-
tonian

As an example, let us consider the quench dynamics of the 1D BH model in an external parabolic
potential. It is described by the Hamiltonian:

Ĥ = ∑
j

[
−J
(

â†
j âj+1 + â†

j+1 âj

)
+

U
2

n̂j
(
n̂j − 1

)
+

K
2

n̂j j2
]

, (2.11.1)

where U is the onsite repulsion energy and K = mω2d2, represents the external potential. ω is the
trapping frequency of the harmonic trap and d is the lattice spacing. We follow closely the quench
protocol carried out in (Trotzky et al., 2012). At an initial time to, the system is prepared in the
U→∞ ground state at half filling described by the state: |ψ(0)〉 = |1,0,1,0,1,0, . . .〉. At t > t0, the
system is instantaneously quenched to a new set of values {J,U,K} and allowed to evolve under the
full Hamiltonian 2.11.1. The dynamics of the system is monitored by a series of observables that are
both experimentally and numerically calculable using t-DMRG.

2.11.1 Application of the PPR

We now derive the SDEs for Hamiltonian 2.11.1 as a contemporary, instructive example to elucidate
the PP-formalism. We shall also explore its limitations as highlighted in 2.9. Our starting point is
the master equation:

d
dt

ρ̂ = − i
h̄
[
Ĥ, ρ̂

]
, (2.11.2)

which we will use to first obtain a FPE by mapping the operator equation onto a differential equation.
Let us deal with the terms individually. Using the correspondence relations in eq. 2.5.9, the tunnelling
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term maps to:

d
dt

ρ̂ ∼ − i
h̄

[
−J
(

â†
j âj+1 + â†

j+1 âj

)
, ρ̂
]

=
i J
h̄

(
â†

j âj+1Λ̂− Λ̂â†
j âj+1 + â†

j+1 âjΛ̂− Λ̂â†
j+1 âj

)

=
i J
h̄

(
αj

(
βi +

∂

∂αi

)
− βi

(
αj +

∂

∂β j

)
+ αi

(
β j +

∂

∂αj

)
− β j

(
αi +

∂

∂βi

))

=
i J
h̄

(
αj

∂

∂αi
− βi

∂

∂β j
+ αi

∂

∂αj
− β j

∂

∂βi

)

=
i J
h̄

(
(αi+1 + αi−1)

∂

∂αi
− (βi+1 + βi−1)

∂

∂βi

)
,

(2.11.3)

where we have suppressed summation and integration notations. For the on-site repulsion term, we
can first simplify it by using the commutation relations for bosons

onsite repulsion =
U
2

â†
i âi

(
â†

i âi − 1
)

(2.11.4)

=
U
2

(
â†

i (1 + â†
i âi)âi − â†

i âi

)
(2.11.5)

=
U
2

â†2
i â2

i (2.11.6)

which corresponds to a local anharmonic oscillator (Dowling et al., 2007). Applying the correspon-
dence relations yields:

d
dt

ρ̂ ∼ − i
h̄

[
U
2

â†2 â2, ρ̂
]

(2.11.7)

= − iU
2h̄

[
â†2 â2, ρ̂

]
(2.11.8)

= − iU
2h̄

(
â†2

i â2
i Λ̂− Λ̂â†2

i â2
i

)
(2.11.9)

= − iU
2h̄

(
α2

i

(
βi + 2βi

∂

∂αi
+

∂2

∂α2
i

)
− β2

i

(
αi + 2αi

∂

∂βi
+

∂2

∂β2
i

))
(2.11.10)

= − iU
h̄

(
α2

i βi
∂

∂αi
+

1
2

α2
i

∂2

∂α2
i
− αiβ

2
i

∂

∂βi
− 1

2
β2

i
∂2

∂β2
i

)
(2.11.11)
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Lastly, we focus on the external harmonic potential term, which gives

d
dt

ρ̂ ∼ − i
h̄

[
K
2

â† âj2, ρ̂
]

(2.11.12)

= −i
j2K
2h̄

(
â†

j âjΛ̂− Λ̂â†
j âj

)
(2.11.13)

= −i
j2K
2h̄

(
αj

(
β j +

∂

∂αj

)
− β j(αj +

∂

∂β j
)

)
(2.11.14)

= −i
j2K
2h̄

(
αj

∂

∂αj
− β j

∂

∂β j

)
. (2.11.15)

Gathering the three different terms we get the resulting FPE:

d
dt

P(~α,~β) = ∑
j

[
i J
h̄

(
(αj+1 + αj−1)

∂

∂αj
− (β j+1 + β j−1)

∂

∂β j

)
(2.11.16)

− iU
h̄

(
α2

j β j
∂

∂αj
+

1
2

α2
j

∂2

∂α2
j
− αiβ

2
j

∂

∂β j
− 1

2
β2

j
∂2

∂β2
j

)
(2.11.17)

−i
j2K
2h̄

(
αj

∂

∂αj
− β j

∂

∂β j

)]
P(~α,~β), (2.11.18)

which (in units of h̄ = 1) yields the corresponding SDEs:

dαj = i J
(
αj+1 + αj−1

)
dt− iUα2

j β jdt− i(
j2K
2

)αjdt + i
√

iUαjξ jdt (2.11.19)

dβ j = −i J
(

β j+1 − β j−1
)

dt + iUβ2
j αjdt + i(

j2K
2

)β jdt +
√

iUβ jηjdt (2.11.20)

where we have introduced two independent noise terms: ηi,ξi ∼ 1√
dt

N(0,1). Since the diffusion
matrices are diagonal, obtaining a noise matrix decomposition (see section: 2.5.3) is trivially obtained
by taking the square root of the diagonal elements. The Stratonovich correction terms can be
calculated using the formula:

Sj = −
1
2 ∑

l,k

∂Bjk

∂xl
Blk. (2.11.21)

and are especially easy to calculate for a diagonal diffusion matrix, e.g. for j = αj:

Sαj = −1
2

∂Bαjαj

∂αj
Bαjαj (2.11.22)

= −1
2

i
√

iUi
√

iUαj (2.11.23)

= i
U
2

αj (2.11.24)
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and similarly
Sβ j = −i

U
2

β j (2.11.25)

The Stratonovich form of the equations is then given by

dαj = i J
(
αj+1 + αj−1

)
dt− iUα2

j β jdt− i(
j2K
2
− U

2
)αjdt + i

√
iUαj ◦ ξ jdt

dβ j = −i J
(

β j+1 − β j−1
)

dt + iUβ2
j αjdt + i(

j2K
2
− U

2
)β jdt +

√
iUβ j ◦ ηjdt,

(2.11.26)

with an appropriately modified drift term. In most cases, it is often better to work with log variables
as they exhibit better convergent properties. As a demonstration of Stratonovich calculus, it would
be instructive to go through this change of variables procedure. In particular we choose to work with
the variables:

θj =
1
2

ln(αjβ j) (2.11.27)

and
φj =

1
2i

ln(
αj

β j
), (2.11.28)

and derive SDEs for it. In the Stratonovich form, we can treat the variables using the rules of regular
calculus so that:

dθj =
1

2αjβ j

(
dαjβ j + dβ jαj

)
(2.11.29)

=
1
2

(
dαj

αj
+

dβ j

β j

)
(2.11.30)

=
1
2

(
i J

(
αj+1 + αj−1

αj
− β j+1 + β j−1

β j

)
dt +

√
iU
(
ξ j + iηj

)
dt

)
(2.11.31)

which only retains the tunneling term in the drift. We should now express α, β in terms of the log
variables. Note that since:

αj = eθj+iφj (2.11.32)

β j = eθj−iφj (2.11.33)

the tunneling term can be rewritten as:

αj+1 + αj−1

αj
− β j+1 + β j−1

β j
=

eθj+1+iφj+1 + eθj−1+iφj−1

eθj+iφj
− eθj+1−iφj+1 + eθj−1−iφj−1

eθj−iφj

= e∆θ+j ei∆φ+
j + e∆θ−j ei∆φ−j − e∆θ+j e−i∆φ+

j − e∆θ−j e−i∆φ−j

= e∆θ+j
(

ei∆φ+
j − e−i∆φ+

j
)
+ e∆θ−j

(
ei∆φ−j − e−i∆φ−j

)

= 2ie∆θ+j sin(∆φ+
j ) + 2ie∆θ−j sin(∆φ−j ),

(2.11.34)
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where ∆θ±j = θj±1 − θj and ∆φ±j = φj±1 − φj. For later reference, we will also calculate the addition
of the tunnelling term

αj+1 + αj−1

αj
+

β j+1 + β j−1

β j
=

eθj+1+iφj+1 + eθj−1+iφj−1

eθj+iφj
+

eθj+1−iφj+1 + eθj−1−iφj−1

eθj−iφj

= e∆θ+j ei∆φ+
j + e∆θ−j ei∆φ−j + e∆θ+j e−i∆φ+

j + e∆θ−j e−i∆φ−j

= e∆θ+j
(

ei∆φ+
j + e−i∆φ+

j
)
+ e∆θ−j

(
ei∆φ−j + e−i∆φ−j

)

= 2e∆θ+j cos(∆φ+
j ) + 2e∆θ−j cos(∆φ−j ),

(2.11.35)

The Stratonovich SDEs for the θj variable is then given by

dθj = −J
(

e∆θ+j sin(∆φ+
j ) + e∆θ−j sin(∆φ−j )

)
dt +

1
2

√
iU
(
iξ j + ηj

)
dt (2.11.36)

We can similarly derive SDES for the φ = 1
2i ln( α

β ) variable:

dφj =
1
2i

β

α

(
dα

β
− α

β2 dβ

)
(2.11.37)

=
1
2i

(
dα

α
− dβ

β

)
(2.11.38)

=
1
2i

(
J

(
αj+1 + αj−1

αj
+

β j+1 + β j−1

β j

)
dt− 2iUαjβ jdt− i

(
j2K−U

)
dt

+
√

iU(iξ j − ηj)
)

dt (2.11.39)

= −i J
(

e∆θ+j cos(∆φ+
j ) + e∆θ−j cos(∆φ−j )

)
dt−Ue2θj dt− 1

2

(
j2K−U

)
dt

+
1
2

√
iU
(
ξ j + iηj

)
dt (2.11.40)

Taken together, the SDEs to integrate are

dθi = −J
(

e∆θ+j sin(∆φ+
j ) + e∆θ−j sin(∆φ−j )

)
dt +

i
2

√
iUΞ∗j dt

dφi = −i J
(

e∆θ+j cos(∆φ+
j ) + e∆θ−j cos(∆φ−j )

)
dt−Ue2θj dt− 1

2

(
j2K−U

)
dt +

1
2

√
iUΞjdt

(2.11.41)

where we define the complex noise: Ξj =
(
ξ j + iηj

)
. Note that we can also take diffusion gauges into
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consideration. Following the receipe in section 2.5.3, the noise matrix can be modified as:

B ~ξ = Bo.O ~ξ (2.11.42)

=

√
iU
2

[
i 1
1 i

][
cosh(A) −i sinh(A)

i sinh(A) cosh(A)

][
ξ j
ηj

]
(2.11.43)

=

√
iU
2

[
i 1
1 i

][
cosh(A)ξ j − i sinh(A)ηj
i sinh(A)ξ j + cosh(A)ηj

]
(2.11.44)

which means that our original noise terms are affected in the following way: ξ j → cosh(A)ξ j +

i sinh(A)ηj and ηj→ i sinh(A)ξ j + cosh(A)ηj. The equations are changed in the following way:

dθi = −J
(

e∆θ+j sin(∆φ+
j ) + e∆θ−j sin(∆φ−j )

)
dt +

i
2

√
iUeAΞ∗j dt

dφi = −i J
(

e∆θ+j cos(∆φ+
j ) + e∆θ−j cos(∆φ−j )

)
dt−Ue2θj dt− 1

2

(
j2K−U

)
dt + e−A 1

2

√
iUΞjdt

(2.11.45)

where A is an arbitrary constant and determined empirically so as to maximize simulation lifetimes.
From eq. 2.11.45, we can see how the diffusion gauge stabilizes the equations. Its effect is such that
for A > 0(A < 0), the noise terms in φj decrease (increase) whereas for θj increasing (decreasing).
An optimal value of A can therefore be chosen so as to minimize the variances of θj or φj (Plimak
et al., 2001, Deuar and Drummond, 2006). In principle, it could also be generalized to a function
of stochastic variables, in which case it would be necessary to properly take into consideration
Stratonovich correction terms.

2.11.2 Results for the non-interacting case: U = 0

For a test quench protocol, we perform an extreme quench to the non-interacting limit: Ui = ∞→
U f = 0 and evolve the system using the pure Superfluid Hamiltonian, starting from the Mott state of
|ψ(t)〉 = |1,0,1,0, . . .〉. Note that this requires the use of the gamma distribution function to model
the Fock state as mentioned in section 2.5.7. The results in this section were performed using the
αi, βi variables and subsequently setting U = 0 in eq. 2.11.26. In the non-interacting regime, the
thermodynamics limit of several observables can be calculated analytically (Flesch et al., 2008) and
serve as a benchmark to compare our results against. The main observable is given by the average
occupation number for odd and even site

〈n̂i(t)〉 =
1
2
− (−1)i

2L

L

∑
k=1

e4i Jtcos(2πk/L)

→ 1
2
− (−1)i

2
J0(4Jt), (2.11.46)
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Figure 2.1: Average occupation number of even/ odd site (〈ni(t)〉) vs tJ/h̄. The results are for N = 4 (even
and odd) and N = 32 (even and odd). The exact results for an infinite lattice with (U = 0) are also shown in
the plot. Simulations parameters: T = 5.0,dt = 0.005, Nbins = 100, Nsample = 100.

.

where J0(x) is the bessel J function of the first kind, i is either even or odd and L is the number of
sites. The complex phase space function associated with the number operator is given by:

〈〈n̂i〉〉 = <
[

1
(N/2) ∑

i
(βiαi)

]
(2.11.47)

Next we calculate the correlators or green’s function between sites j and k, which in the thermo-
dynamic limit has the exact result:

f j,k ≡ 〈b̂†
j (t)b̂k(t)〉 =

1
2

δjk −
(−1)jik−j

2
Jk−j(4Jt) (2.11.48)

so that the nearest neighbor and the next nearest neighbor correlators are given by:

f j+1,j =
1
2

δj+1,j −
(−1)j+1ij−(j+1)

2
Jj−(j+1)(4Jt) (2.11.49)

= − (−1)(−1)j

2
(i−1)J−1(4Jt) (2.11.50)

=
(−1)j

2i
J−1(4Jt) (2.11.51)

Using the property of Bessel functions that: J−n = (−1)n Jn(x),where n ∈ Z we get:

f j+1,j = −
(−1)j

2i
J1(4Jt), (2.11.52)

43



Ph.D. Thesis Ray Ng; McMaster University Condensed Matter Physics

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  1  2  3  4  5

<
b

+
i+

1
 b

i>
 

tJ/
−

h

Hopping Bosons with U=0 initialised in the Mott Insulator state

50-site re (o)
-  (o)
+  (o)

L=inf (o)
50-site im (o)

-  (o)
+  (o)

50-site re (e)
-  (e)
+  (e)

50-site im (e)
-  (e)
+  (e)

L=inf (e)
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i+1 b̂i〉 are shown.The results are for N = 50 (even and odd). The exact results for an infinite

lattice with (U = 0) are also shown in the plot. Simulations parameters: T = 5.0,dt = 0.005, Nbins = 100, Nsample =
100.
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which depends on the evenness and oddness of j. Note that this quantity is pure imaginary as well
and so the calculation of the real part should yield zero. This is indeed observed in fig. 2.2. Similarly
the next-nearest-neighbor (NNN) correlator is given by

f j+2,j =
1
2

δj+2,j −
(−1)j+2ij−(j+2)

2
Jj−(j+2)(4Jt) (2.11.53)

= − (−1)(−1)j

2
(i−2)J−2(4Jt) (2.11.54)

=
(−1)j

2
J−2(4Jt) (2.11.55)

and in contrast to the NN correlator in eq. 2.11.51, this is a real quantity. The general expression
for the stochastic estimator of the correlators are

<
[
〈〈b̂†

i+1b̂i〉〉
]
= <

[
1

(N/2) ∑
i∈e or o

βi+1αi

]
(2.11.56)

and

=
[
〈〈b̂†

i+1b̂i〉〉
]
= =

[
1

(N/2) ∑
i∈e or o

βi+1αi

]
. (2.11.57)

It is important to note that i is either even or odd and does not simply run over the entire lattice.
The last observable which we calculated is the global density density correlator defined in the large
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L limit as:

〈N̂e(t)N̂o(t)〉 − 〈N̂e(t)〉〈N̂o(t)〉 → −
L
16

{
3 + J0(8Jt)− 4 [J0(4Jt)]2

}
, (2.11.58)

where Ne,o(t) = ∑i∈e,o ni is the total number of particles in the even/odd sites. The stochastic
estimator of the first term has to be evaluated as a single expression and one should be careful not
to take the real part of the even and odd terms individually. Namely, we want to calculate the
stochastic average of

〈〈Ne(t)No(t)〉〉 = <
[
∑
i∈e

∑
j∈o

β jαjβiαi

]
, (2.11.59)

and not

<
[
∑
j∈e

β jαj

]
<
[
∑
i∈o

βiαi

]
, (2.11.60)

which is instead the stochastic estimator for the second term on the LHS of eq. 2.11.58.

In Fig 2.1-Fig 2.4, we have compared the exact analytic results with PPR simulations for all ob-
servables discussed above. Even though in the non-interacting regime, the SDEs reduce to ordinary
differential equations, stochasticity is still present in the sampling of the initial state and is necessary
to reproduce the exact dynamics. Despite the simplicity of this treatment, it demonstrates excellent
agreement with the exact results while requiring only a small number of trajectories.

2.11.3 The interacting case: U 6= 0

Needless to say, it would be more interesting to examine the evolution of the Mott state for U 6= 0.
First of all since such quenches have no known analytic solution, its dynamics have to be determined
either by numerical simulations or experiments (Trotzky et al., 2012). Secondly, it also serves as
an illustrative demonstration of spiking in numerical simulations and the limitations of the PP
formalism. Our results for the odd and even site occupation number are plotted in Fig. 2.5 for a
series of U values ranging from 0.1− 1.0. The simulation lifetime for each U value is taken as the time
at which the first sign of spiking is observed. Such spiking is expected since the drift terms arising
from the anharmonic contributions in eq. 2.11.26 violates eq. 2.9.1. The appearance of the standalone
single mode anharmonic oscillator: Ĥi = âi

†2 âi
2 is the root of this behavior and several attempts have

been made to circumvent it. These include Monte-Carlo techniques (Dowling et al., 2007), adhoc
modifications to the SDEs themselves (Perret and Petersen, 2011) and the use of a combination of
drift and diffusion gauges (Deuar, 2005). Gauges are arguably the most effective and reliable way for
improving the simulation lifetimes of the single mode anharmonic oscillator. However when coupling
between modes is present, their positive effects are neutralized. See (Deuar and Drummond, 2006)
for a detailed study. From our simulations, we find that that including interactions severely reduces
the lifetimes of the bare PPR simulations and decays exponentially with U as seen in Fig. 2.6. We
also note that the use of log variables or drift and diffusion gauges were unsuccessful in improving
simulation lifetimes.
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2.12 The transverse Ising model

In this thesis, we are interested in simulating the quench dynamics of quantum spin systems. As a
test system, we focus primarily on the paradigmatic spin-1/2 transverse Ising model (TIM) (Pfeuty,
1970) defined by:

Ĥ = −J ∑
〈i,j〉

Ŝz
i Ŝz

j − h∑
i

Ŝx
i , (2.12.1)

in 1D and 2D for quantum dynamic simulations, although we have also attempted to calculate the
dynamics of the more general transverse field anisotropic Heisenberg model as well (Ng, 2010). In
eq. 2.12.1,

{
Ŝα
}
|α=x,y,z are the usual Pauli matrices multiplied by a factor of 1

2 and 〈i, j〉 denotes
nearest-neighbour sites. The 1D TIM is an integrable model and can be diagonalized using Jordan-
Wigner transformation (Sachdev, 2011). In higher dimensions however, no known exact solution
exists which makes it dynamics only accessible either by numerical efforts or experiments. Despite
its simplicity, it manifests several interesting dynamical properties (Heyl et al., 2013, Rossini et al.,
2009, Silva, 2008) and its asymptotic temporal properties after a quench have only recently been
calculated (Calabrese et al., 2011, 2012a,b). This is largely in part owing to the shifting interest of
research efforts to that of non-equilibrium phenomena and the successful emulation of spin systems
in optical lattices (Simon et al., 2011, Friedenauer et al., 2008, Porras and Cirac, 2004, Britton
et al., 2012). The publication included in section 2.13 presents our first application of the PPR on
simulating the quench dynamics of transverse field spin systems in 1D. Majority of the derivations
can be found in the paper to follow and explicit details can be found in (Ng, 2010).
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2.13 Paper 1: Exact real-time dynamics of quantum spin
systems using the positive-P representation

Exact Real-Time Dynamics of Quantum Spin Systems Using the Positive-P Represen-
tation
– Ray Ng and Erik S. Sørensen

J. Phys. A: Math. Theor. 44 065305

doi: 10.1088/1751-8113/44/6/065305

c©IOP PUBLISHING, LTD (2011)

Calculations: I performed all the simulations and produced all the figures.

Manuscript: I wrote the bulk of the manuscript. Erik S. Sørensen helped to refine and edit the
Introduction.

In this publication, we set out to answer the following questions:

• Is the PPR amenable to quantum spin systems in particular: the transverse field spin-1/2 XXZ
and transverse-field Ising model?

• To what extent are we able to simulate the real time dynamics of spin system following a
quantum quench?

• What are the largest system sizes that we can simulate?
• What are the largest time scales that can be achieved (without gauges)?
• What are the causes of the limitations (if any) of the PPR in the context of spin systems?
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Abstract
We discuss a scheme for simulating the real-time quantum quench dynamics of
interacting quantum spin systems within the positive-P formalism. As model
systems we study the transverse field Ising model as well as the Heisenberg
model undergoing a quench away from the classical ferromagnetic ordered state
and the antiferromagnetic Néel state, depending on the sign of the Heisenberg
exchange interaction. The connection to the positive-P formalism as it is
used in quantum optics is established by mapping the spin operators on to
Schwinger bosons. In doing so, the dynamics of the interacting quantum spin
system is mapped onto a set of Ito stochastic differential equations the number
of which scales linearly with the number of spins, N, compared to an exact
solution through diagonalization that, in the case of the Heisenberg model,
would require matrices exponentially large in N. This mapping is exact and can
be extended to higher dimensional interacting systems as well as to systems
with an explicit coupling to the environment.

PACS numbers: 05.10.Gg, 75.10.Pq, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The real-time quantum dynamics following a quench [1–15] is a problem of considerable
current interest. Here, our focus is on methods applicable to this problem that are in principle
exact (up to controllable errors) and we leave approximate methods aside. Unfortunately,
standard quantum Monte Carlo techniques yield results in the imaginary time domain and
require an explicit analytic continuation to access real times, a notoriously difficult procedure.
For lattice-based models it is possible to perform exact diagonalization but for an N site
quantum spin system the size of the Hilbert space is exponential in N, severely limiting
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the applicability of this method. In recent years, methods rooted in the density matrix
renormalization group (DMRG) such as TEBD [16] and t-DMRG [17] have been developed to
study real-time dynamics of one-dimensional systems. Most recently the infinite size TEBD
(iTEBD) has been tuned to yield results for the time dependence of the transverse field Ising
model (TFIM) out to relatively large times of order tJ/h̄ ∼ 6–10 [18] as well as in the XXZ
and related spin chain models tJ/h̄ ∼ 20 [5, 9] and often times scales of order tJ/h̄ ∼ 100 can
be accessed [19]. How well such methods will perform in higher dimensions or in the presence
of a coupling to the environment is presently a point of intense research and very promising
progress has been made [20–23]. Here we investigate an alternative approach for studying
the dynamics of interacting quantum spin systems using quantum phase space methods, in
particular, the positive-P representation (PPR) [24] of the density operator. As model systems
we have studied the one-dimensional TFIM as well as the Heisenberg model. This approach
is quite general and can be extended to higher dimensional interacting quantum spin systems
and to open systems with an explicit coupling to the environment.

In general, quantum phase space methods map the dynamics of bosonic operators onto
the stochastic evolution of complex phase space variables [24]. Using the PPR, we can easily
calculate the expectation values of any normal-ordered products of creation and annihilation
operators by calculating the stochastic averages of their equivalent representation in terms
of phase-space variables. This is carried out in two steps; first we use Schwinger bosons to
replace the Heisenberg spin operators, then employ the PPR. The PPR converts the master
equation into a Fokker–Planck equation (FPE) which can then be mapped onto a set of coupled,
complex Ito stochastic differential equations (SDEs). The number of SDEs to simulate scales
linearly with the number of spins in the system, N, in contrast to an exact diagonalization
approach.

To illustrate the feasibility of this approach we study the dynamics of the TFIM as well
as the isotropic ferromagnetic (FM) Heisenberg model subject to a quantum quench at T = 0.
The different models are related through the anisotropy parameter, �/J . The spin chains are
prepared in the FM state at t = 0 whenever we assume a FM Heisenberg model, and evolved
by including the transverse magnetic field term at t � 0. We calculate the time evolution of the
expectation values of the spin operators: [Sx] , [Sy] [Sz], which is an average of the individual
components over the entire lattice. The averaging is allowed because of the translational
symmetry of the system. In addition, we also calculate the results of Ŝz nearest-neighbor
correlation functions:

[
Ŝz

i Ŝ
z
i+1

]
for the TFIM. In order to verify the validity of our results,

we in all cases compare them with results from exact diagonalization obtaining the excellent
agreement.

In a bid to fully take advantage of the PPR, we also attempt to explore finite size effects
by simulating lattice sizes of up to 100 spins for the FM isotropic model and 10 spins for the
antiferromagnetic (AFM) anisotropic model. Finite size effects are more noticeable in the
AFM Hamiltonian, and for the latter the natural choice for an initial state is the classical Néel
state.

Since the PPR is well established in quantum optics, we will relegate the details of the
formalism to appendix A. Readers who are already familiar with the PPR may continue to
section 2 where Schwinger bosons are employed to map the spin operators onto bosonic
operators. The resulting SDEs are derived in this section with more explicit details laid out in
appendic C. In section 3, the results of the TFIM (�/J = 0.0) and the isotropic (�/J = 1.0)

Heisenberg model are compared with exact diagonalization calculations. We also carry out
a brief discussion on the possibility of extending simulation life times by potentially using
the gauge-P representation [25] instead. In section 3.1, we present our results for finite-size
effects in both the anisotropic AFM and the isotropic FM Hamiltonian and discuss our findings.

2
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Results and a short discussion on the correlation functions can be found in section 3.2. The
conclusion is presented in section 4.

2. Using Schwinger bosons to derive SDEs

The PPR is based on bosonic coherent states and is only directly applicable to Hamiltonians
written in terms of bosonic annihilation and creation operators. In order to apply it to
the Heisenberg model or any spin Hamiltonian, we therefore need to rewrite the spin
operators in terms of bosonic operators. A convenient way of doing this is by employing
the Schwinger boson representation [26, 27] and we will demonstrate how it can be applied
to the Heisenberg model. A similar approach, based on Schwinger bosons, was previously
applied to the study of spontaneous emission non-interacting two-level atoms [28] in quantum
optics.

The Heisenberg Hamiltonian with FM (J > 0) or AFM interaction (J < 0) subject to a
quench in the x-direction at t � 0 is given by

Ĥ = −J
∑
〈i,j〉

Ŝi · Ŝj − h(t)
∑

i

Ŝx
i , h(t) =

{
h, t � 0
0, t < 0

(1)

and can be written in terms of the usual raising and lowering operators, Ŝ± = Ŝx ± iŜy. If we
allow anisotropy in the transverse direction1, then the Hamiltonian takes the following form:

ĤHeis = −
∑
〈i,j〉

[
J Ŝz

i Ŝ
z
j + �

1

2

(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j

)]− 1

2
h(t)

∑
i

[
Ŝ+

i + Ŝ−
i

]
(2)

where 〈i, j 〉 indicates nearest-neighbor pairs and �/J is a measure of anisotropy. The two
models which we first examined were the (i) TFIM (�/J = 0):

ĤTFIM = −
∑
〈i,j〉

[
J Ŝz

i Ŝ
z
j

]− 1

2
h(t)

∑
i

[
Ŝ+

i + Ŝ−
i

]
(3)

and the (ii) isotropic Heisenberg model (see equation (2)) with an anisotropy of �/J = 1.0.
The Schwinger boson representation of spins (setting h̄ = 1) is given by

Ŝ+ → b̂â†, Ŝ− → b̂†â, Ŝz → 1
2 (â†â − b̂†b̂). (4)

where â and b̂ represent two types of bosons and the following commutation relations:[
Ŝ+, Ŝ−] → [

â†b̂, b̂†â
] = â†â − b̂†b̂ → 2Ŝz,[

Ŝ+, Ŝz
] →

[
â†b̂,

1

2
(â†â − b̂†b̂)

]
= −â†b̂ → −Ŝ+, (5)

[
Ŝ−, Ŝz

] →
[
b̂†â,

1

2
(â†â − b̂†b̂)

]
= b̂†â → Ŝ−

demonstrate that the commutation relations of the spin operators are indeed preserved. This
is a necessary requirement for a successful mapping. With the Schwinger representation, the
two states of a spin-1/2 particle are now described by either an â-boson or a b̂-boson per site.
A spin-up state: |↑〉 is the same as having a single â-boson whereas a spin down-state: |↓〉 is
the same as having a single b̂-boson. We can therefore replace the spin operators in equations
(2) and (3) with the bosonic mapping in equation (4) without altering the physics.

1 The transverse direction is relative to the quantization axis which we have taken to be the z-axis.

3
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As the PPR is well established2, we will relegate a brief review of the formalism to
appendix A. Additional technical details pertaining to the specific examples in this paper can
be found in appendix C. For brevity we will present the derivations for only the TFIM (see
equation (3)) where �/J = 0.

Using equation (4), the equivalent bosonic Hamiltonian for the TFIM is given by

Ĥ = −J

4

∑
〈i,j〉

(
â
†
i âi â

†
j âj − â

†
i âi b̂

†
j b̂j − b̂

†
i b̂i â

†
j âj + b̂

†
i b̂i b̂

†
j b̂j

)−
(

h(t)
∑

i

â
†
i b̂i + b̂

†
i âi

)
. (6)

Now if we take our system to be closed, its dynamics can be captured via the master
equation for the density operator, i.e.

d

dt
ρ̂ = − i

h̄

[
Ĥ , ρ̂

]
, (7)

which allows us to use a generalized prescription of the PPR. In principle, it is also possible
to calculate open system dynamics by including a Liouvillan term in equation (7): L̂[ρ̂],3 and
so this approach is by no means limited to closed system.

To proceed, we first write our density operator in terms of a direct product of projection
operators for each site, i.e.

�̂(�α, �α+, �β, �β+) =
N−1∏
i=0

⊗|αi〉〈α+∗
i |

〈α+∗
i |αi〉 ⊗ |βi〉〈β+∗

i |
〈β+∗

i |βi〉 (8)

where �α = (α0, . . . , αN−1), �α+ = (α+
0 , . . . , α+

N−1), �β = (β0, . . . , βN−1) and �β+ =
(β+

0 , . . . , β+
N−1) so that

ρ̂ =
∫

P(�α, �α+, �β, �β+)�̂(�α, �α+, �β, �β+)d2 �αd2 �α+d2 �βd2 �β+. (9)

We can then use the usual correspondence relations (see equation (A.3)) to obtain an FPE (see
equation (A.4)) for the PPR distribution function: P(�α, �α+, �β, �β+). A particular factorization
of the diffusion matrix results in a noise matrix which gives us a set of Ito SDEs for 4N of our
phase space variables, i.e.

dαi =
{

iJ

4h̄
αi

[(
nα

i+1 − n
β

i+1

)
+
(
nα

i−1 − n
β

i−1

)]
+

ih(t)

2h̄
βi

}
dt

+
1

2

√
iJ

2h̄

[−√
αiαi+1

(
dWα

2i + i dWα
2i+1

)− √
αiαi−1

(
dWα

2i−2 − i dWα
2i−1

)]
+

i

2

√
iJ

2h̄

[
−
√

αiβi−1
(
dW

αβ

2i−2 + i dW
αβ

2i−1

)−
√

αiβi+1
(
dW

βα

2i − i dW
βα

2i+1

)]
(10)

dβi =
{

iJ

4h̄
βi

[
(n

β

i+1 − nα
i+1) + (n

β

i−1 − nα
i−1)

]
+

ih(t)

2h̄
αi

}
dt

+
1

2

√
iJ

2h̄

[
−
√

βiβi+1
(
dW

β

2i + i dW
β

2i+1

)−
√

βiβi−1
(
dW

β

2i−2 − i dW
β

2i−1

)]

+
i

2

√
iJ

2h̄

[
−
√

αi+1βi

(
dW

αβ

2i − i dW
αβ

2i+1

)−
√

αi−1βi

(
dW

βα

2i−2 + i dW
βα

2i−1

)]
(11)

2 See [28–33] for successful applications of the PPR.
3 The Liouvillian term models the effect of the environment on the system.
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dα+
i =

{
iJ

4h̄
α+

i

[(
n

β

i+1 − nα
i+1

)
+
(
n

β

i−1 − nα
i−1

)]− ih(t)

2h̄
β+

i

}
dt

+
i

2

√
iJ

2h̄

[−
√

α+
i α+

i+1

(
dWα+

2i + i dWα+

2i+1

)−
√

α+
i α+

i−1

(
dWα+

2i−2 − i dWα+

2i−1

)]
+

1

2

√
iJ

2h̄

[−
√

α+
i β+

i−1

(
dW

α+β+

2i−2 + i dW
α+β+

2i−1

)−
√

α+
i β+

i+1

(
dW

β+α+

2i − i dW
β+α+

2i+1

)]
(12)

dβ+
i =

{
iJ

4h̄
β+

i

[(
nα

i+1 − n
β

i+1

)
+
(
nα

i−1 − n
β

i−1

)]− ih(t)

2h̄
α+

i

}
dt

+
i

2

√
iJ

2h̄

[−
√

β+
i β+

i+1

(
dW

β+

2i + i dW
β+

2i+1

)−
√

β+
i β+

i−1

(
dW

β+

2i−2 − i dW
β+

2i−1

)]
+

1

2

√
iJ

2h̄

[−
√

α+
i+1β

+
i

(
dW

α+β+

2i − i dW
α+β+

2i+1

)−
√

α+
i−1β

+
i

(
dW

β+α+

2i−2 + i dW
β+α+

2i−1

)]
, (13)

where i = 0 . . . N − 1 labels the vector components and we have defined nα
i = α+

i αi and
n

β

i = β+
i βi , which are complex phase space functions representing the number of â and

b̂-bosons (per site i), respectively. With this particular choice of noise matrix, we have
introduced eight 2N × 1 Wiener increment vectors with the usual statistical properties
that 〈dWx

i dW
y

j 〉 = dtδxyδij and 〈dWx
i 〉 = 0, where i = 0 . . . N − 1 and x, y =

α, α+, β, β+, βα, αβ, β+α+, α+β+ labels each Wiener increment vector. We would like to
point out that the subscript labels of the Wiener increment vector are not unique and the
labeling scheme4 was chosen simply for convenience (see appendix C).

2.1. Inclusion of anisotropy

Had we begun with the full anisotropic Hamiltonian in equation (2) instead and carried out
the same steps as in section 2, it would have been shown that anisotropy is included by adding
the following expressions into the drift terms of equations (10)–(13):

dαi ∼ +
i�

2h̄
βi(mi−1 + mi+1) dt (14)

dβi ∼ +
i�

2h̄
αi(m

+
i−1 + m+

i+1) dt (15)

dα+
i ∼ − i�

2h̄
β+

i (m+
i−1 + m+

i+1) dt (16)

dβ+
i ∼ − i�

2h̄
α+

i (m+
i−1 + m+

i+1) dt (17)

where the following shorthand mi = αiβ
+
i , m+

i = α+
i βi was used. For the stochastic terms,

however, only the mixed derivative diffusion terms (i.e. those containing αβ and α+β+) are
modified in the following way:

dαi ∼ +
i

2

√
i

2h̄

[
−
√

Jαiβi−1 − 2�βiαi−1(. . . . . .) −
√

Jαiβi+1 − 2�αi+1βi(. . . . . .)
]

(18)

4 Note that with the inclusion of periodic boundary conditions: α−1 → αN−1 and αN → α0. However, since there
are 2N × 1 Wiener increments, then it is periodic in 2N instead. For example dWx

−1 = dWx
2N−1 and dWx

2N = 0.
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dβi ∼ +
i

2

√
i

2h̄

[
−
√

Jβiαi+1 − 2�βi+1αi(. . . . . .) −
√

Jβiαi−1 − 2�αiβi−1(. . . . . .)
]

(19)

dα+
i ∼ +

i

2

√
i

2h̄

[
−
√

Jβ+
i−1α

+
i − 2�β+

i α+
i−1(. . . . . .) −

√
Jβ+

i+1α
+
i − 2�α+

i+1β
+
i (. . . . . .)

]
(20)

dβ+
i ∼ +

i

2

√
i

2h̄

[
−
√

Jβ+
i α+

i−1 − 2�β+
i−1α

+
i (. . . . . .) −

√
Jβ+

i α+
i+1 − 2�α+

i β+
i+1(. . . . . .)

]
(21)

where the terms in (. . . . . .) represent the same Wiener increment combinations as in equations
(10)–(13). The Ito SDEs we have derived are able to describe other types of spins models
such as the XY model and the XYZ model (to name a few), just by adjusting or including
a few parameters. For the last two cases, we would have to take a trivial generalization in
the derivations by introducing two different anisotropy terms in equation (2). An informative
review article on the the quantum quench dynamics of other variants of the Heisenberg
Hamiltonian using other numerical methods can be found in [9].

3. Results and discussion

To test our formalism, we first simulated the FM (J > 0) spin Hamiltonian for the TFIM
(�/J = 0) and the isotropic Heisenberg Hamiltonian (�/J = 1.0) in equation (2) for
high (h/J = 10) and low (h/J = 0.5) field values. This was compared to results from
exact diagonalization calculations using a small system with N = 4 spins. The Stratanovich
version of the SDES5 in equations (10)–(13) were simulated using a semi-implicit Stratanovich
algorithm as they are known to exhibit superior convergence properties [34]. To track the
dynamics of the system, we calculated the expectation values of all three spin components at
each site i: 〈Sx

i 〉, 〈Sy

i 〉, 〈Sz
i 〉. Using the translation symmetry of the system, we further averaged

them over the entire lattice to obtain an average expectation value of the spin components per
site: [Sx] , [Sy] , [Sz]. These expectation values were calculated using the stochastic averages
of their respective phase space functions, i.e.

[
Sx
] =

N−1∑
i=0

〈
1

2

(
â
†
i b̂i + b̂

†
i âi

)〉 =
N−1∑
i=0

〈〈
1

2

(
α+

i βi + β+
i αi

)〉〉
, (22)

[
Sy
] =

N−1∑
i=0

〈
1

2i

(
â
†
i b̂i − b̂

†
i âi

)〉 =
N−1∑
i=0

〈〈
1

2i

(
α+

i βi − β+
i αi

)〉〉
, (23)

[
Sz
] =

N−1∑
i=0

〈
1

2

(
â
†
i âi − b̂

†
i b̂i

)〉 =
N−1∑
i=0

〈〈
1

2

(
α+

i αi − β+
i βi

)〉〉
, (24)

where 〈〈·〉〉 denotes a stochastic average.
The initial state of the system was taken to be the classical FM state: | ↑↑ . . . ↑〉 and the

dynamics were observed for t � 0 during which a transverse field is turned on. The results
for the TFIM are shown in figures 1 and 2 for different field strengths while the results for
the isotropic (�/J = 1.0) model are shown in figures 3 and 4. Both models show a good
agreement with exact diagonalization calculations.

5 The Stratanovich correction terms worked out to be zero and hence the Stratanovich form of the SDEs from
equations (10)–(13) have the exact same form as the derived Ito SDEs.
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Figure 1. TFIM following a transverse quench. From top to bottom: plots of [Sx ] , [Sy ] , [Sz]
versus tJ/h̄, respectively. The stochastic averages, 〈〈·〉〉 are given by red solid lines while
exact diagonalization results are represented by green dashed lines. Simulation parameters:
N = 4, ntraj = 106, dt = 0.001, h/J = 0.5,�/J = 0.0. The agreement remains good until
approximately tJ/h̄ = 0.6.

 0

 0.01

 0.02

 0  0.1  0.2  0.3  0.4  0.5  0.6

[S
x ]

tJ/−h

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

[S
y ]

-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

[S
z ]

Figure 2. TFIM following a transverse quench. From top to bottom: plots of [Sx ] , [Sy ] , [Sz]
versus tJ/h̄, respectively. The stochastic averages, 〈〈·〉〉 are given by red solid lines while
exact diagonalization results are represented by the green dashed lines. Simulation parameters:
N = 4, ntraj = 2 × 105, dt = 0.001, h/J = 10.0,�/J = 0.0. Agreement remains good until
approximately tJ/h̄ = 0.65.
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Figure 3. Isotropic Heisenberg model following a transverse quench. From top to bottom: plots
of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively. The stochastic averages, 〈〈·〉〉 are given by red
solid lines while exact diagonalization results are represented by green dashed lines. Simulation
parameters: N = 4, ntraj = 106, dt = 0.001, h/J = 0.5,�/J = 1.0. The agreement remains
good and both results are nearly indistinguishable. The simulations diverge at approximately
tJ/h̄ = 0.45.

The only drawback of the PPR is that the simulations are usually valid only for relatively
short lifetimes (roughly tJ/h̄ ∼ 0.45–0.65 for the models examined) before sampling errors
caused by diverging trajectories take over. In figure 1 for example, the onset of the effects of
diverging trajectories can be seen at around tJ/h̄ ∼ 0.58 where a deviation of the SDE results
and exact calculations begin to appear. However, for the time scales where the simulations
remain finite, it does yield good results.

One should not be alarmed as this is a common problem associated with using the PPR
and can be attributed to the nature of the SDEs derived and not due to a non-converging
numerical algorithm [35–37]. In fact, Deuar [38] examined this issue when applying the PPR
to the exact dynamics of many-body systems. If we abide by Deuar’s findings strictly,
we see that there are no drift and noise divergences present in the SDEs in equations
(10)–(13). However, we suspect drift terms of the form ∼ iXi

[( ∓ nα
i+1 ± n

β

i+1

)
+
(
nα

i−1 ±
n

β

i−1

)]
, where Xi = αi, α

+
i , β, β+ can be problematic. This is because if we take into

consideration the translational symmetry of the system, then we can approximately say
that

iXi

[(∓ nα
i+1 ± n

β

i+1

)
+
(∓ nα

i−1 ± n
β

i−1

)] ≈ 2iXi

(∓ nα
i ± n

β

i

)
, (25)

which now clearly exhibits offending terms [38] that cause trajectories to escape to infinity,
since dXi ∼ X2

i [· · ·] dt + · · ·.
The gauge-P representation [25, 37–40] was developed to specifically deal with such drift

instabilities. In the gauge-P representation, arbitrary gauge functions, {gk} can be introduced
into the SDEs whose effect is a modification of the deterministic evolution. This can be done
at the expense of introducing another stochastic variable (�), in �̂, which manifests itself as
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Figure 4. Isotropic Heisenberg model following a transverse quench. From top to bottom: plots
of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively. The stochastic averages, 〈〈·〉〉 are given by red
solid lines while exact diagonalization results are represented by green dashed lines. Simulation
parameters: N = 4, ntraj = 105, dt = 0.001, h/J = 10.0,�/J = 1.0. The agreement remains
good and both results are nearly indistinguishable. The simulations diverge at approximately
tJ/h̄ = 0.45.

a weight term when calculating stochastic averages. To be more specific using the gauge-P
representation [25], the Ito SDEs are altered such that

dαi = (
A+

i − gkBjk

)
dWk (26)

d� = �(V dt + gkdWk), (27)

where summation over k is implied and V is the constant term that may appear after substituting
the correspondence relations into an equation of motion for ρ̂.

The gauge-P representation has been very successful in simulating the dynamics of many-
mode Bose gases [41–43] partly because such systems result in neat diagonal noise matrices
that are easier to handle as seen in equation (26). However, it is evidently not as straightforward
to apply it in our case as we have a much more complicated non-diagonal noise matrix. The
true complication arises when we attempt to calculate Stratonovich correction terms as it is
the Stratanovich version of the SDEs that are simulated. We believe that the application of the
gauge-P is possible in principle but requires a bit more thought for Heisenberg systems when
using the Schwinger boson approach.

3.1. Finite size effects

The main advantage of the PPR is the linear scaling with the number of spins, N, as compared
to the exponentially large matrices needed for an exact solution. We first demonstrate the
capabilities of the PPR at simulating large system sizes by showing results for the FM
isotropic Heisenberg case at a field value of h/J = 10, prepared in the initial FM state
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Figure 5. Isotropic Heisenberg model following a transverse-field quench at tJ/h̄ = 0 from h/J =
0.0 to h/J = 10.0, beginning in the FM ground state: | ↑↑ . . . ↑〉. FM interactions assumed:
sign(J ) = +1. From top to bottom: plots of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively. The
stochastic averages, 〈〈·〉〉 are for N = 4: ( ), N = 10: ( ◦ ), N = 100: ( ),

while exact diagonlization results for N = 4 are represented by the black solid line. Simulation
parameters: n

(N=4)
traj = 105, n

(N=10)
traj = 2 × 105, n

(N=100)
traj = 5 × 104, dt = 0.001,�/J = 1.0.

The agreement remains good and finite size effects are negligible. The simulations diverge at
approximately tJ/h̄ ∼ 0.45.

as in figure 4. As expected, we do not observe any finite size effects within the life time
of the stochastic simulations. Even with a chain consisting of 100 spins (figure 5), the
dynamics exhibited are similar to that of a 4-spin chain. The simulations are compared
against the exact diagonalization results for an N = 4 system and exhibit identical real-time
evolution of the spin components for a 1D chain with FM interactions, i.e. finite size effects are
negligible.

This is not the case for a 1D AFM (J < 0), however. A quantum quench in this model
with h = 0 starting from the Néel state has previously been extensively studied [5]. In order
to verify that in our approach finite size effects do exist, we performed N = 4 and N = 10
exact calculations for the anisotropic AFM with different values of anisotropy: �/J . Two
sample exact calculations are shown in figures 6 and 7, respectively, for �/J = −0.8 and
�/J = −1.5 for low field values of h/J = 0.5. For the AFM Heisenberg Hamiltonian, the
system is initialized in the classical AFM Néel state: | ↑↓ . . . ↑↓〉.

An immediate observation is that increasing the value of �, reduces the time, tfinite, which
we define as the time that significant finite size effects are noticeable. A natural progression
to make in order to take advantage of the SDES we have derived, is to increase the value �/J

till tfinite < tlife, thereby allowing us to explore the finite size effects of macroscopically large
systems.
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Figure 6. Anisotropic Heisenberg model following a transverse-field quench at tJ/h̄ = 0 from
h/J = 0.0 to h/J = 10.0, beginning in the AFM Néel state: | ↑↓ . . . ↑↓〉. AFM interactions
assumed: sign(J ) = −1. From top to bottom: plots of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively.
The exact calculations for the N = 4 (solid black lines) and N = 10 (dashed red lines) are
compared. We observe tfiniteJ/h̄ ∼0.8 for �/J ∼ −0.8.
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Figure 7. Anisotropic Heisenberg model following a transverse-field quench at tJ/h̄ = 0 from
h/J = 0.0 to h/J = 10.0, beginning in the AFM Néel state: | ↑↓ . . . ↑↓〉. AFM interactions
assumed: sign(J ) = −1. From top to bottom: plots of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively.
The exact calculations for the N = 4 (solid black lines) and N = 10 (dashed red lines) are
compared. We observe tfiniteJ/h̄ ∼ 0.5 for a given anisotropy of �/J ∼ −1.5.
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Figure 8. Anisotropic Heisenberg model following a transverse-field quench at tJ/h̄ = 0 from
h/J = 0.0 to h/J = 10.0, beginning in the AFM ground state: | ↑↓ . . . ↑↓〉. AFM interactions
assumed: sign(J ) = −1. From top to bottom: plots of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively.
The stochastic averages, 〈〈·〉〉 are for N = 4: ( ) and N = 10: ( ◦ ), while exact

diagonalization results are for N = 4: (black solid lines) and N = 10: ( ). Simulation

parameters: n
(N=4)
traj = 106, n

(N=10)
traj = 105, dt = 0.001,�/J = −0.5. The agreement remains

good and finite size effects are unnoticeable up to tJh̄ = 1. The SDEs diverge at tlifeJ/h̄ ∼ 0.48.

We observe finite size effects through the same observables as in equations (22) to
(24). However for the initial Néel state, it is more meaningful to take into consideration the
alternating sign of spins when calculating the averaged spin components6, i.e.

[
Sx
] =

N−1∑
i=0

〈
1

2

(
â
†
i b̂i + b̂

†
i âi

)〉 =
N−1∑
i=0

〈〈
1

2

(
α+

i βi + β+
i αi

)〉〉
, (28)

[
Sy
] =

N−1∑
i=0

〈
1

2i
(−1)i

(
â
†
i b̂i − b̂

†
i âi

)〉 =
N−1∑
i=0

(−1)i
〈〈

1

2i

(
α+

i βi − β+
i αi

)〉〉
, (29)

and

[
Sz
] =

N−1∑
i=0

〈
1

2
(−1)i

(
â
†
i âi − b̂

†
i b̂i

)〉 =
N−1∑
i=0

(−1)i
〈〈

1

2

(
α+

i αi − β+
i βi

)〉〉
. (30)

Increasing �/J however has the adverse effect of decreasing tlife significantly. Thus, while it
is possible to simulate macroscopically large system sizes, we find that the SDE simulations
diverge much sooner than tfinite. Figure 8 (�/J = −0.5, h/J = 10.0) reinforces our claim
that tfinite decreases with �/J as no finite size effects are observed up to tJ/h̄ = 1, in sharp
comparison to figure 6 (�/J = −0.8) and figure 7 (�/J = −1.5), albeit for h/J = 0.5.

6 Note that there exists an exception. There is no need to account for a sign change for the observable: [Sx ].
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Figure 9. Anisotropic Heisenberg model following a transverse-field quench at tJ/h̄ = 0 from
h/J = 0.0 to h/J = 0.5, beginning in the AFM ground state: | ↑↓ . . . ↑↓〉. AFM interactions
assumed: sign(J ) = −1. From top to bottom: plots of [Sx ] , [Sy ] , [Sz] versus tJ/h̄, respectively.
The stochastic averages, 〈〈·〉〉 are for N = 4: ( ◦ ) and N = 10: ( ∗ ), while exact

diagonalization results are for N = 4: (black solid lines) and N = 10: ( ). Simulation

parameters: n
(N=4)
traj = 106, n

(N=10)
traj = 105, dt = 0.001,�/J = −0.8. Finite size effects are

unnoticeable at tlifeJ/h̄ ∼ 0.4.

Our last effort to observe finite size effects was to increase �/J to −0.8 with hopes that
tlife > tfinite. As seen in figure 9, our simulations do not survive beyond tfinite. Since tfinite

depends on the anisotropy �/J , increasing the system size while possible will result in tlife of
the same order. In general, we find that increasing �/J will decrease tlife as well as tfinite such
that tlife < tfinite always holds true. This thwarts our efforts to examine finite size effects for the
AFM case. Furthermore, we find that using an initial Néel state results in poor convergence
for the observable: [Sx] as seen in figure 8 (and even more so in figure 9) compared to an
initial FM ground state and it is likely that we have used an insufficient number of trajectories
in our simulations. Nevertheless, we have demonstrated the applicability of the PPR to AFM
systems.

3.2. Nearest-neighbor correlation functions

Correlation functions are generally of greater interest seeing as they are experimentally
accessible quantities. In order to demonstrate the applicability of the PPR in this respect,
we calculate the nearest-neighbor spin correlation functions for the z-component, which is
defined as

[
Ŝz

i Ŝ
z
i+1

] =
N−1∑
i=0

〈Ŝz
i Ŝ

z
i+1〉

N
= 1

4

N−1∑
i=0

〈〈(
nα

i − n
β

i

)(
nα

i+1 − n
β

i+1

)〉〉
N

, (31)
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Figure 10. TFIM following a transverse-field quench at tJ/h̄ = 0 from h/J = 0.0 to h/J = 0.5
(top) and h/J = 0.0 to h/J = 10.0 (bottom) beginning in the FM ground state: | ↑↑ . . . ↑↑〉.
FM interactions assumed: sign(J ) = 1. Plots of

[
Ŝz

i Ŝ
z
i+1

]
versus tJ/h̄, respectively. The

stochastic averages, 〈〈·〉〉 for N = 4 are represented by solid red lines ( ) while the

averages plus and minus one standard deviation are presented by ( ) and ( ◦ ) lines,
respectively. Exact diagonalization results are given by dot-dashed black curves. Simulation
parameters: ntraj = 106dt = 0.001,�/J = 0.0.

where periodic boundary conditions apply and as before the following shorthand has been used:
nα

i = α+
i αi, n

β

i = β+
i βi . Our calculations in figure 10 compares the stochastic averages of

correlation functions with the results from exact diagonalization. It is because the correlation
function shows poorer convergence than the spin components that we include error bars for
this calculation. Error bars can be calculated from a simple binning analysis of the trajectories
and applying the central limit theorem [32]. It is not surprising to find poorer convergence
for the correlation functions since they amount to higher order moments of the complex phase
space variables. Due to the noise terms in the SDEs, the phase space variables are exponentials
of Gaussian random numbers which are known to diverge sooner for higher moments.

4. Conclusion

We have shown how the real-time quantum quench dynamics of spin systems can be simulated
via the use of SDEs. This was done by writing the Heisenberg spin operators in terms of
Schwinger bosons and deriving a Fokker–Planck Equation using the PPR for the density
operator. This in turn allows us to obtain Ito SDEs which can be used to calculate the
expectation values of normally ordered bosonic operators. An attractive feature of this
prescription is that the number of SDEs scale linearly as N and can in principle be used
to simulate macroscopic system sizes. In addition, our method is generalizable to higher
dimensions and other geometries as well and explicit couplings to the environment can be
included.
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The main drawback of the PPR, however, is its notoriously short life time which prevents
us from obtaining useful results beyond a certain time: tlife. For the TFIM and the anisotropic
Heisenberg model, we found a bare application of the PPR to have tlifeJ/h̄ ∼ 0.45–0.65. We
suspect that this is due to drift instability terms present in the SDEs that cause trajectories to
diverge within this time scale.

We also attempted to explore finite size effects which were more significant for the
anisotropic AFM Hamiltonian beginning in the classical Néel state. For the FM case, no finite
size effects were observed even for a lattice size of 100 spins within its lifetime. We find that
the more negative the anisotropy parameter in the AFM Hamiltonian, the sooner finite size
effects are observed, i.e. tfinite decreases. However, this has the adverse effect of decreasing
tlife such that tlife < tfinite for the simulations that we have carried out.

Finally, we would like to point that in cases where the underlying Hamiltonian has
conserved properties, such as the models addressed in this paper, then it could be advantageous
to use projection methods instead [44, 45]. This ensures the use of a more efficient basis set
which will lead to improved simulation performances. In particular, there exists the PPR
approach which uses the SU(n) spin coherent states [46] as a basis set instead.

An obvious future direction of our research involves applying the gauge-P representation
in a bid to extend simulation life times and to examine the efficient of the other methods
suggested above. Also the study of systems in higher dimensions with and without couplings
to the environment would be of considerable interest.
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Appendix A. The positive-P representation

In this section, we will review the PPR [24] that has been applied to both quantum optics
[28–30] and exact many-body simulations of Bose gases [33, 47–49] successfully. The PPR
is already well established and our aim for including this review is simply to provide a
self-contained paper for readers who are not as familiar with it.

In short, the PPR is an expansion of the density operator in terms of an off-diagonal
coherent state basis:

ρ̂ =
∫

P(α, α+)�̂(α, α+) d2α d2α+ =
∫

P(α, α+)
|α〉〈α+∗|
〈α+∗|α〉 d2α d2α+ (A.1)

where |α〉 = e− 1
2 |α|2 ∑∞

n=0
αn

n! |n〉 is the standard bosonic coherent state [50] that are eigenstates
of the annihilation operator â. P(α, α+) plays the role of a distribution function in the phase
space spanned by {α, α+} and can be chosen such that it remains real and positive. In addition,
due to the normalization factor in the denominator of equation (A.1) and using the fact that
Tr[ρ̂] = 1, we see that∫

P(α, α+) d2α d2α+ = 1 (A.2)

i.e. the distribution is normalized over the entire complex phase space. Simply put, we can
interpret P(α, α+) as a probability distribution function for the variables α and α+, hence the
name positive-P.

15

Ph.D. Thesis Ray Ng; McMaster University Condensed Matter Physics

64



J. Phys. A: Math. Theor. 44 (2011) 065305 R Ng and E S Sørensen

A hallmark of the PPR is that the off-diagonal projection operators, �̂(α, α+) satisfies the
following correspondence relations:

â�̂ = α�̂

â†�̂ =
(

α+ +
∂

∂α

)
�̂ (A.3)

�̂â† = α+�̂

�̂â =
(

α +
∂

∂α+

)
�̂,

which allows us to map complicated operator equations consisting of bosonic annihilation
and creation operators onto differential equations of phase space variables α, α+. The
correspondence relation is typically used in an equation of motion for ρ̂, which after integration
by parts and ignoring of boundary terms allows us to obtain a FPE:

∂P (�x)

∂t
=
{
− ∂

∂xμ
Aμ(�x) +

1

2

∂

∂xμ

∂

∂xν
Dμν(�x)

}
P(�x), μ, ν = 0 . . . N − 1, (A.4)

where �x = {�α, �α+}, Aμ is called the drift vector and Dμν is called the diffusion matrix (which
is symmetric and positive semi-definite by definition). Due to the doubling of phase space,
the diffusion matrix is guaranteed to be positive semi-definite [24]. This then allows one to
convert the FPE to a set of Ito SDEs proportional to the number of bosonic modes of the
system, i.e.

dxμ = Aμdt + BμνdWν, μ = 0 . . . N − 1, ν = 0 . . . Nw, (A.5)

where dWν is a vector of Wiener increments with Nw components and Bμν is a noise matrix
that must satisfy the factorization

D = BBT . (A.6)

This factorization is not unique and any noise matrix that satisfies equation (A.6) will produce
the same stochastic averages in the limit of an infinite number of trajectories. This ambiguity
in the choice of B may affect the performance of stochastic simulations [36, 38].

Since D = DT , an obvious factorization to use would be the square root of the diffusion
matrix, i.e. B = √

D, which is easily accomplished by using common mathematical software
such as Matlab or Maple. While this is the most convenient procedure, it does not necessarily
produce the most elegant noise matrix. On the other hand, it is possible to decompose a single
diffusion matrix into different diffusion processes [38]: D = D1 + D2 + D3 + · · · that may be
more easily factorized, i.e. the factorization Di = BiBT

i is trivial. Using this procedure, an
equivalent noise matrix that also results in D is given by

B = [B1 B2 B3 . . .] . (A.7)

Despite possibly taking on a more elegant form, equation (A.7) introduces Nw(> N) Wiener
increments and with that the possibility of larger sampling errors. So we see that there are
advantages and disadvantages of the two factorization methods.

The convenience in using the PPR is in calculating the expectation values of normal-
ordered operators as they can be replaced by simple stochastic averages over their
corresponding phase space functions. The equivalence is as follows:

〈(â)†)m(â)n〉 = 〈〈(α+)m(α)n〉〉 (A.8)

where 〈·〉 is the usual quantum mechanical expectation value and 〈〈·〉〉 represents an average
over stochastic trajectories. In the limit that the number of trajectories goes to infinity, we get
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an exact correspondence, although an average over 104–106 trajectories usually gives good
agreement7 before sampling errors cause divergences [35].

The main downside of the PPR is its notoriously short simulation life times. This is
typically caused by instabilities in the drift or diffusion term [25] that cause trajectories to
diverge in a finite time, when a finite number of trajectories are used to calculate expectation
values. That being said, the PPR is best used for systems where the interesting physics occur at
short timescales. Nonetheless, this does not deter us from our our current aim of demonstrating
the possibility of simulating real-time spin dynamics using SDEs, even if only for short times.

Appendix B. Initial distribution

An important point in simulating SDEs would be using the right initial values for the phase
space variables, α, α+. For any density matrix, a particular form of the positive-P distribution
function [24] that always exists is given by

P(α, α+) = 1

4π2
〈(α + (α+)∗)/2|ρ̂|(α + (α+)∗)/2〉 e−|α−(α+)∗|2/4. (B.1)

It has been shown in [51] that using equation (B.1), it is possible to initialize the phase space
variables for a variety of initial states such as: coherent states, Fock states or crescent states
to name a few. Of interest to us is the initial positive P-distribution for number states: |n〉〈n|
which takes the form

P(μ, γ ) = e−|γ |2

π

(|μ|2, n + 1)

π
, (B.2)

where

(x, n) = e−xxn−1

(n − 1)!
(B.3)

is the Gamma distribution. Our phase space variables are related to γ and μ via the relation
α = μ + γ and α+ = μ∗ − γ ∗ and so by sampling γ and μ using the appropriate distribution
functions in equation (B.2) (i.e. gamma distribution for μ and Gaussian distribution for γ ),
we can invert them to find the numerical values for α and α+ that represents the Fock state
|n〉〈n|. Although, we have only outlined the steps for initializing the distribution of a Fock
state, more explicit details can be found in the useful article in [51].

While in this paper, we initialize the system in either the FM ground state or the AFM, it
is in principle possible to initialize the system in a general entangled state, which is described
by the following density operator:

ρ̂ = 1

N
(w1| ↑〉 + w0| ↓〉) (〈↑ |w1 + 〈↓ |w0) , (B.4)

where N = w2
0 + w2

1 and w0 and w1 represent the probabilities of the entangled state being
spin down and spin up state, respectively. Or in the language of â and b̂ bosons:

ρ̂ = 1

N
(w1|1, 0〉 + w0|0, 1〉) (〈1, 0|w1 + 〈0, 1|w0) . (B.5)

The general entangled state is of interest as it is the ground state of the random field Ising
model (RFIM), which our formalism is also able to address. Substituting equation (B.5) into

7 This is just a general observation of the number of trajectories used in different articles when applying the PPR.
See [28, 29, 33] for example.
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equation (B.1), the coherent state basis results in the following expression for the probability
distribution:

P(μ�α, γ�α, μ�β, γ�β) = 1

N

[
w2

0(|μ�α|2, 2)
e−|γ�α |2

π
δ(μ�β) + w2

1δ(μ�α)(|μ�β |2, 2)
e−|γ�β |2

π

w0w1

(
e−|μα |2 |μ�α|

π

e−|γ�α |2

π

)(
e−|μβ |2 |μ�β |

π

e−|γ�β |2

π

)
2 cos(2η)

]
, (B.6)

where μ�α = |μ�α| ei(η+ξ) = |μ�α| ei(ξ+η) and μ�β = |μ�β | ei(η+ξ) = |μ�β | ei(ξ−η). Note that we
have made a similar change of variables as above, i.e.

μ�α = α + (α+)∗

2
, γ�α = α − (α+)∗

2

μ�β = β + (β+)∗

2
, γ�β = β − (β+)∗

2
. (B.7)

The PPR based on the SU-(n) coherent states [46] seems more tailored to dealing with
superposition states, as they can be more easily initialized with delta functions.

Appendix C. Fokker–Planck equation for Heisenberg Hamiltonian

If we were to apply formalism outlined in appendix A, we obtain the following FPE for the
TFIM in equation (3):

∂P (�α, �α+, �β, �β+)

dt
=
∑

i

(
− ∂

∂αi

{
iJ

4h̄
αi

[
(nα

i+1 − n
β

i+1) + (nα
i−1 − n

β

i−1)
]

+
ih(t)

2h̄
βi

}

− ∂

∂α+
i

{
iJ

4h̄
α+

i

[(
n

β

i+1 − nα
i+1

)
+
(
n

β

i−1 − nα
i−1

)]− ih(t)

2h̄
β+

i

}

− ∂

∂βi

{
iJ

4h̄
βi

[(
n

β

i+1 − nα
i+1

)
+
(
n

β

i−1 − nα
i−1

)]
+

ih(t)

2h̄
αi

}

− ∂

∂β+
i

{
iJ

4h̄
β+

i

[(
nα

i+1 − n
β

i+1

)
+
(
nα

i−1 − n
β

i−1

)]− ih(t)

2h̄
α+

i

}

+
1

2

(
iJ

4h̄

)[
∂2

∂αi∂αi+1
αiαi+1 +

∂2

∂αi+1∂αi

αiαi+1 − ∂2

∂α+
i ∂α+

i+1

α+
i α+

i+1

− ∂2

∂α+
i+1∂α+

i

α+
i α+

i+1
∂2

∂βi∂βi+1
βiβi+1 +

∂2

∂βi+1∂βi

βiβi+1 − ∂2

∂β+
i ∂β+

i+1

β+
i β+

i+1

− ∂2

∂β+
i+1∂β

+
i

β+
i β+

i+1
∂2

∂α+
i ∂β+

i+1

α+
i β+

i+1 +
∂2

∂β+
i+1∂α+

i

α+
i β+

i+1 +
∂2

∂α+
i+1∂β

+
i

α+
i+1β

+
i

+
∂2

∂β+
i ∂α+

i+1

α+
i+1β

+
i − ∂2

∂αi∂βi+1
αiβi+1 − ∂2

∂βi+1∂αi

αiβi+1

− ∂2

∂αi+1∂βi

αi+1βi − ∂2

∂βi∂αi+1
αi+1βi

])
P(�α, �α+, �β, �β+), (C.1)

where we have already carried out an integration by parts and assumed that boundary terms
vanish. By inspecting equation (C.1), the diffusion matrix (which is a 4N × 4N matrix) has
matrix elements that are specified by the functions associated with their derivatives.

Obviously, calculating the noise matrix is not a trivial task and comprises the bulk of
the analytical work. Instead of simply taking the straightforward B = √

D choice, we used
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the trick mentioned in appendix A and decomposed our diffusion matrix into eight different
constituents, i.e.

D = Dα + Dβ + Dα+
+ Dβ+

+ Dβα + Dαβ + Dβ+α+
+ Dα+β+

(C.2)

where the obvious choice for these constituents would be

(Dα)i,i+1 = (Dα)i+1,i = iJ

4h̄
αiαi+1

(Dβ)i,i+1 = (Dβ)i+1,i = iJ

4h̄
βiβi+1

(Dα+
)i,i+1 = (Dα+

)i+1,i = − iJ

4h̄
α+

i α+
i+1

(Dβ+
)i,i+1 = (Dβ+

)i+1,i = − iJ

4h̄
β+

i β+
i+1

(Dβα)i,i+1 = (Dβα)i+1,i = − iJ

4h̄
αiβi+1

(Dαβ)i,i+1 = (Dαβ)i+1,i = − iJ

4h̄
βiαi+1

(Dβ+α+
)i,i+1 = (Dβ+α+

)i+1,i = iJ

4h̄
α+

i β+
i+1

(Dα+β+
)i,i+1 = (Dα+β+

)i+1,i = iJ

4h̄
β+

i α+
i+1.

The idea is that instead of factorizing one complicated diffusion matrix, D, we can instead
factorize eight relatively simpler looking noise matrices, i.e. solving Bx (Bx)T = Dx. To make
things slightly more transparent we will write out the general form for the first constituent, i.e.
x = α:

Dα = iJ

4h̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 α0α1 0 · · · tα0αN−1

α1α0 0 α1α2 · · · 0

0 α2α1 0
. . . 0

... 0
. . . · · · 0

αN−1α0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.3)

where 0 represents an N × N null matrix. If it were possible to find Bx for all x, then the total
noise matrix takes the form of equation (A.7).

Unfortunately, using the obvious choice
√

Bx would still be messy and it would appear
that we have not made things any easier. However, we can apply the same trick once more
and decompose each Dx into N subconstituents: {Dx

j , j = 0 . . . N − 1}. Once again taking
the x = α matrix as an example, the intuitive way of choosing the subconstituents is

Dα = Dα
0 + Dα

1 + · · · + Dα
N−1 (C.4)

19

Ph.D. Thesis Ray Ng; McMaster University Condensed Matter Physics

68



J. Phys. A: Math. Theor. 44 (2011) 065305 R Ng and E S Sørensen

= iJ

4h̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 α0α1 . . . . . . 0
α1α0 0 · · · · · ·

...
...

. . . · · · ...

...
...

. . . · · · ...

0 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
iJ

4h̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0
0 0 α1α2 . . .

0 α2α1
. . . · · ·

...
... · · · . . .

...

0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ · · ·

+
iJ

4h̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · α0αN−1

0 · · · ... · · ·
... · · · . . . · · ·
...

... · · · . . .
...

αN−1α · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C.5)

where the only non-trivial matrix elements of Dα
j are given by

(Dα
j )i,i+1 = (Dα

j )i+1,i = iJ

4h̄
αjαj+1. (C.6)

Each subconstituent diffusion matrix Dα
i can then be individually factorized. This reduces the

original problem to the much more trivial problem of factorizing matrices of the following
form:

D′ =
[

0 X

X 0

]
(C.7)

for which we can easily show that either

B′ =
[ −√

X/2 −i
√

X/2
−√

X/2 i
√

X/2

]
(C.8)

or

B′′ =
[ −√

X/2 i
√

X/2
−√

X/2 −i
√

X/2

]
(C.9)

satisfies the necessary relation in equation (A.6). Now, granted that the decomposition for
each Dα

i exists, we can write equation (C.4) as

Dα = Bα
0

(
Bα

0

)T
+ Bα

1

(
Bα

1

)T
+ · · · + Bα

N−1

(
Bα

N−1

)T
(C.10)

so that according to equation (A.7), the total noise matrix for Dα takes the obvious form:

Bα =
⎡
⎣ Bα

0 Bα
1 . . . Bα

j . . . Bα
N−1

⎤
⎦ (C.11)

obviously satisfying equation (A.6), with the only non-zero elements being:

(
Bα

j

)
j,2j

= −1

2

√
iJ

4h̄
√

αjαj+1

(
Bα

j

)
j,2j+1

= − i

2

√
iJ

4h̄
√

αjαj+1

(
Bα

j

)
j+1,2j

= −1

2

√
iJ

4h̄
√

αjαj+1

(
Bα

j

)
j+1,2j+1

= i

2

√
iJ

4h̄
√

αjαj+1,
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where j = 0 . . . N − 1. As an explicit example, the N = 4 case of equation (C.11) is shown
below:

Bα = 1
2

√
iJ
4h̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−√
α0α1 −i

√
α0α1

−√
α0α1 +i

√
α0α1

0 0
0 0
...

...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−√

α1α2 −i
√

α1α2

−√
α1α2 i

√
α1α2

0 0
...

...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

−√
α2α3 −i

√
α2α3

−√
α2α3 i

√
α2α3

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.12)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−√
α0α3 −i

√
α0α3

0 0
0 0

−√
α0α3 +i

√
α0α3

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.13)

which is an 4N × 2N matrix with most elements being trivial. This noise matrix would
therefore introduce 2N independent Wiener increments (see equation (A.5)) can be stored as
the components of the Wiener increment vector: d �Wα . In this fashion, the noise terms for the
SDEs in equations (10) to (13) can be derived. If we label d �Wα in the conventional way8 then

d �Wα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dWα
0

dWα
1

...

...

dWα
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (C.14)

and the resulting stochastic terms only contribute to d�α, i.e.:

dαi ∝ −√
αiαi+1 (dW2i + i dW2i+1) − √

αiαi−1(dW2i−2 + i dW2i−1), (C.15)

where we assumed ‘periodic boundary conditions’ for the Wiener increment vectors in the
sense that dW−i = dWN−i where i ∈ [0, N − 1].
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[16] Daley A J, Kollath C, Schollwöck U and Vidal G 2004 Time-dependent density-matrix renormalization-group

using adaptive effective Hilbert spaces J. Stat. Mech. P04005
[17] White S R and Feiguin A E 2004 Real-time evolution using the density matrix renormalization group Phys. Rev.

Lett. 93 76401
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CHAPTER 3

SPIN COHERENT STATES

3.1 Motivation

A central requirement when using the PPR is an overcomplete basis. In our first look at simulating
spin dynamics, we utilized a bosonic coherent state basis that was made possible by implementing
a Schwinger Boson transformation (Sakurai, 1993). This choice was primarily used for historic
reasons and while successful, produced relatively short simulation lifetimes. In addition, introducing
two independent Schwinger bosons per spin resulted in a phase space with 4N complex degrees of
freedom instead of the usual 2N. An obvious extension and possible improvement for this technique
was to investigate the use of SU(2) spin coherent states (SCS) basis (Radcliffe, 1971) instead which
is a more intuitive choice for spin systems. Furthermore, since it is parametrized by a single complex
variable, it immediately reduces the complex degrees of freedom to 2N as desired. This new basis
was previously used to simulate the imaginary time dynamics of the 2D classical Ising model (Barry
and Drummond, 2008) and has recently been used to simulate the real time dynamics of a Dicke
Network (Mandt et al., 2014) - an N interacting large spin system coupled to a single mode cavity.
The effects of dissipation of both the spin and bosonic degrees of freedom were also considered in
the latter work. At the time that this research was carried out, we were unaware of any other PP
real time simulations that utilized a SCS basis.

A straightforward application of the PPR (even with this new basis) while interesting, would in-
evitably inherit the usual limitations of short simulation life times as discussed in section 2.9. Be-
yond this time scale, no meaningful results are obtainable and some optimization procedure is clearly
essential. In 2012, Deuar (Deuar et al., 2009) once again made headway in optimizing the PP by
utilizing an extrapolation scheme to calculate the quantum dynamics (QD) of colliding BECs. The
results obtained were not only exact but also had a simulation life time that was significantly longer
than the bare tPP

life. The Implementation of this novel technique, which we will outline in section 3.7
constitutes the premise of our second publication (Ng et al., 2013). In what follows, we will provide
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the derivation of the formalism using SU(2) coherent states and derive the SDEs for the transverse
Ising model as a test system.

3.2 SU(2) Coherent states

While the bosonic coherent state is defined by α ∈C such that |α〉 ∼ eαŜ+ |0〉, where |0〉 is the vacuum
state, we can analogously define an SU(2) coherent state as |w〉 ∼ eŜ+w|s,−s〉, where |s,−s〉 has the
minimum spin projection. We will however follow the parametrization of (Barry and Drummond,
2008) such that our unnormalized SU(2) SCS for a spin-1/2 system takes the form:

|z〉 = e−SzeŜ+ez |0〉 =
[

ez/2

e−z/2

]
, (3.2.1)

where we obtain the second expression by expanding the exponential operator to first order: eŜ+ez
=

(1 + Ŝ+ez). The SU(2) coherent state can be equivalently visualised as point on the surface of the
unit Bloch sphere and there exists a one to one mapping of the complex plane on to the surface of
the Bloch sphere. If we imagine the Bloch sphere located right above the complex plane, with its
south pole located at the origin, the mapping is achieved by wrapping the complex plane over the
sphere. Mathematically, this can be effected by the change of variables:

ez = eiφ tan(θ/2), (3.2.2)

where θ ∈ [0,π] is the azimuthal angle extending from the south-pole and φ ∈ [0,π] is the polar one.
Using this variable change, there is only one problematic point that is located at the north pole (i.e.
θ = π/2), which corresponds to the infinite regions of the complex plane. Physically, the south pole
represent the spin down state while the north pole represents the spin up state. We will further
address how to deal with this improper map in section 3.6. An additional important property of the
SCS is their non-orthogonality with a non-zero overlap that can be evaluated to be:

N ≡ 〈z′∗|z〉 = 2cosh(R), (3.2.3)

where R = z+z′
2 .

3.3 Correspondence relations

It is now essential to derive new correspondence relations. The kernel, Λ̂(z,z′) that we will use in
the PP expansion:

ρ̂ =
∫

P(z,z′)Λ̂(z,z′)dzd2z′ (3.3.1)

is analogously defined as:

Λ̂(z,z′) ≡ Λ̂o

N
=
|z〉〈z′∗|

N
, (3.3.2)
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where Λ̂o is the unnormalised kernel and our choice of N = 〈z′∗|z〉 ensures that Tr(Λ̂) = 1. Before
we derive the correspondence relations for the full kernel Λ̂, it would be useful to perform the same
steps for Λ̂o. It is trivial to show that Λ̂o obeys the following correspondence relations:

ŜzΛ̂o =
∂

∂z
Λ̂o (3.3.3)

Ŝ+Λ̂o = e−z
[

1
2
+

∂

∂z

]
Λ̂o (3.3.4)

Ŝ−Λ̂o = ez
[

1
2
− ∂

∂z

]
Λ̂o. (3.3.5)

Using the standard definition for the transverse spin operators, i.e.

Ŝx =
1
2
(
Ŝ+ + Ŝ−

)
(3.3.6)

Ŝy =
1
2i
(
Ŝ+ − Ŝ−

)
, (3.3.7)

we can use eq. 3.3.4 and eq. 3.3.5 to obtain:

ŜxΛ̂o =

[
1
2

cosh(z)− sinh(z)
∂

∂z

]
Λ̂o (3.3.8)

ŜyΛ̂o =

[
i
2

sinh(z)− i cosh(z)
∂

∂z

]
Λ̂o. (3.3.9)

In the PP formalism, one can implement an adhoc mathematical operation to expedite derivations.
For instance, in order to obtain the left ordering of the correspondence relations, i.e. Λ̂Ô from its
right ordering ÔΛ̂(or vice versa), we simply take the hermitian conjugate of the operator on the LHS
and carry out a modified complex conjugate operation on the differential operator, denoted as c.c.′

on the RHS. The essence of c.c′ is that complex constants are conjugated and complex stochastic
variables are replaced by their primed counterparts, i.e. z↔ z′. The kernel itself is non-hermitian
and to be left alone. As an example, under this operation, eq. 3.3.5 becomes:

[
Ŝ−Λ̂o

]†
=

[
ez
[

1
2
− ∂

∂z

]
Λ̂o

]
|c.c′ (3.3.10)

Λ̂oŜ+ = ez′
[

1
2
− ∂

∂z′

]
Λ̂o. (3.3.11)

Similarly we can derive the left ordering operators for eq. 3.3.3 and eq. 3.3.4.

Another important relation we need is the derivative of the inverse norm: N −1. For an N-site
(as mentioned in section 2.8) spin system, the kernel generalizes to its direct product: ˆΛo(z,z′) =

∏N
j=1

Λ̂(zj ,z′j)
Ni
⊗ , where we have now restored site indices so that

N ≡ 〈z′∗|z〉 =
N

∏
j=1

2cosh
(

Rj
)

(3.3.12)
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Note that zj and z′j appear in a symmetric fashion and so its derivative (which will be used later on)
is given by:

∂

∂zi

(
〈z′∗|z〉

)−1
= ∂

∂zi
N −1 =

(
∏
j 6=i

2−1sech(Rj)

)(
−2−1sech(Ri) tanh(Ri)

1
2

)

= −1
2

tanh(Ri)N
−1 (3.3.13)

since d
dz sech(z) = −sech(z) tanh(z). We are now ready to derive the correspondence relations. As a

starting example, we will fill in the details for the derivations for the Ŝz correspondence relation by
taking a derivative of Λ̂ and further using eq. 3.3.3 and eq. 3.3.13. This yields

∂

∂zi
Λ̂ = N −1 ∂

∂zi
Λ̂o + Λ̂o

∂

∂zi
N −1

= N −1Ŝz
i Λ̂o + Λ̂o(−N −1 1

2
tanh(Ri))

= Ŝz
i Λ̂− 1

2
tanh(Ri)Λ̂ (3.3.14)

or
Ŝz

i Λ̂ =
∂

∂zi
Λ̂ +

1
2

tanh(Ri)Λ̂, (3.3.15)

thereby completing our derivation for our new correspondence relation for Ŝz. Note that eq 3.3.15
also tells us that it is possible to replace derivatives of the unweighted kernel, Λ̂o in terms of the
new normalized ones, Λ̂, i.e. either

N −1 ∂

∂zi
Λ̂o =

∂

∂zi
Λ̂ +

1
2

tanh(Ri)Λ̂. (3.3.16)

or
N −1 ∂

∂z′i
Λ̂o =

∂

∂z′i
Λ̂ +

1
2

tanh(Ri)Λ̂, (3.3.17)

where we have made use of c.c′ to obtain eq. 3.3.17. The last two identities will allow us to derive
the correspondence relations for the less trivial case of Ŝ+Λ̂ for example where some algebraic
manipulation is in order. To begin, we simply multiply eq. 3.3.4 on both sides by N −1 and replace
derivatives of the unnormalized kernel with derivatives of the full kernel by substituting eq. 3.3.16
where necessary, i.e.:

N −1Ŝ+
i Λ̂o = N −1e−zi

[
1
2
+

∂

∂zi

]
Λ̂o (3.3.18)

so that

Ŝ+
i Λ̂ =

[
e−zi

2
Λ̂ + e−ziN −1 ∂

∂zi
Λ̂o

]

=

[
e−zi

2
Λ̂ + e−zi

(
∂

∂zi
Λ̂ +

1
2

tanh(Ri)Λ̂
)]

(3.3.19)

=

[
e−zi

2
Λ̂ + e−zi

∂

∂zi
Λ̂ +

e−zi

2
tanh(Ri)Λ̂

]
. (3.3.20)
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Applying the c.c′ operation then immediately yields the left ordering for Ŝ−i :

Λ̂Ŝ−i =
e−z′i

2
Λ̂ + e−z′i

∂

∂z′
Λ̂ +

e−z′

2
Λ̂ tanh(Ri). (3.3.21)

Note that complex functions where z and z′ appear symmetrically as in tanh(Ri) are unchanged
under c.c′. The remaining correspondence relations can be derived in a similar fashion and we will
skip further derivations for brevity. A summary of the important relations however are listed below.
The right ordering gives:

ŜzΛ̂ =

[
∂

∂zi
+

1
2

tanh(Ri)

]
Λ̂ (3.3.22)

Ŝ+Λ̂ =

[
e−z

2
+ e−z ∂

∂z
+

e−z

4
tanh(R)

]
Λ̂. (3.3.23)

Ŝ−Λ̂ =

[
ez

2
− ez ∂

∂z
− ez

4
tanh(Ri)

]
Λ̂ (3.3.24)

ŜxΛ̂ =

[
−sinh(z)

∂

∂z
+

1
2

cosh(z)− 1
2

sinh(z) tanh(R)
]

Λ̂ (3.3.25)

ŜyΛ̂ =

[
−i cosh(z)

∂

∂z
+

i
2

sinh(z)− i
2

cosh(z) tanh(R)
]

Λ̂ (3.3.26)

while the left ordering gives

Λ̂Ŝz =

[
∂

∂z′i
+

1
2

tanh(Ri)

]
Λ̂ (3.3.27)

Λ̂Ŝ+ =

[
ez′

2
− ez′ ∂

∂z′i
− ez′

2
tanh(Ri)

]
Λ̂ (3.3.28)

Λ̂Ŝ− =

[
e−z′

2
+ e−z′ ∂

∂z′
+

e−z′

2
tanh(Ri)

]
Λ̂ (3.3.29)

Λ̂Ŝx =

[
−sinh(z′)

∂

∂z′
+

1
2

cosh(z′)− 1
2

sinh(z′) tanh(R)
]

Λ̂ (3.3.30)

Λ̂Ŝy =

[
i cosh(z′)

∂

∂z′
− i

2
sinh(z) +

i
2

cosh(z′) tanh(R)
]

Λ̂ (3.3.31)

3.3.1 Observables

For spin systems, the observables that are typically of interest are the spin components and the
correlation functions. It is possible to once again use the correspondence relations to derive the
equivalent phase space functions for the expectation values. For instance, the expectation value for
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the Sz spin component is given by the following expression:

〈Ŝz
i 〉 = Tr

(
Ŝz

i ρ̂
)

= Tr
(∫ ∫

P(z,z′)Ŝz
i Λ̂d2zd2z′

)
use correspondence relations

= Tr
(∫

P(z)
(

∂i +
1
2

tanh(Ri)

)
Λ̂d2z

)

=
∫

P(z)
(

∂i +
1
2

tanh(Ri)

)
tr(Λ̂)d2z recall that the kernel is normalized

=
∫

P(z)
(

1
2

tanh(Ri)

)
d2z

= 〈〈1
2

tanh(Ri)〉〉 (3.3.32)

= 〈〈Sz
i 〉〉 (3.3.33)

where we have introduced the notation Sz
i =

1
2 tanh(Ri) and 〈〈. . .〉〉 denotes a stochastic averaging.

Note that single derivative terms acting on Λ̂ present in the correspondence relations will vanish in
the stochastic estimator. Adopting the abbreviation: {ci, si, Ti} = {cosh(zi), sinh(zi), tanh(Ri)} and{

c′i, s
′
i
}
=
{

cosh(z′i), sinh(z′i)
}
, one can trivially to show that:

〈Ŝy
i 〉 = tr

(
Ŝy

i ρ̂
)

(3.3.34)

= 〈〈 i
2
(si − ciTi)〉〉 (3.3.35)

= 〈〈Sy
i 〉〉 (3.3.36)

and

〈Ŝx
i 〉 = tr

(
Ŝx

i ρ̂
)

(3.3.37)

= 〈〈1
2
(ci − siTi)〉〉 (3.3.38)

= 〈〈Sx
i 〉〉 (3.3.39)

where we have further introduced the aptly named expressions

Sy
i =

1
2
(cosh(zi)− sinh(zi) tanh(Ri)) (3.3.40)

and
Sx

i =
i
2
(sinh(zi)− cosh(zi) tanh(Ri)) . (3.3.41)

And so we see that the expectation value of the operators:
{

Ŝα
i
}
map directly on to the phase space

functions:
{

Sα
i
}
where α = x,y,z and are therefore aptly named. The correlation functions can be

also calculated analogously more attention has to be paid to the extra derivatives which now appear.
Calculating the Sy-correlations between sites i and j for example and using the cyclic property of
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the trace, we can write:

〈Ŝy
i Ŝy

j 〉 = Tr
(

Ŝy
j ρ̂Ŝy

i

)

= Tr
(∫

P(z)
(
−Sy′

i + ic′i∂
′
i

)(
Sy

j − icj∂j

)
Λ̂d2z

)

= Tr
(∫

P(z)
(
−Sy′

i Sy
j + ic′i∂

′
iS

y
j + iSy′

i cj∂j + c′icj∂
′
i∂j

)
Λ̂d2zd2z′

)

= 〈〈−Sy′
i Sy

j 〉〉+ i〈〈c′i∂′iS
y
i 〉〉δij

= 〈〈−Sy′
i Sy

j 〉〉+
iδij

4
〈〈 c
′
ici

C2
i
〉〉, (3.3.42)

where Ci = cosh(Ri) and the second term is only included for on-site correlations. Similarly we can
show that:

〈Ŝx
i Ŝx

j 〉 = 〈〈Sx′
i Sx

j 〉〉+
δij

4
〈〈 s
′
isi

C2
i
〉〉 (3.3.43)

and
〈Ŝz

i Ŝz
j 〉 =

1
4
〈〈Sz

i Sz
j 〉〉+

δij

4
〈〈 1

C2
i
〉〉. (3.3.44)

Following the above steps, it is easy to derive general expressions for other non-diagonal correlators:
〈ŜαŜβ〉|α 6=β where α, β = x,y,z can be derived as well.

3.4 Deriving SDEs for the transverse Ising model

The correspondence relations for the normalized kernel, Λ̂ in eq. 3.3.22-eq. 3.3.31 in the master
equation:

d
dt

ρ̂ = − i
h̄
[
Ĥ, ρ̂

]
(3.4.1)

can now be used to derive SDEs as was done for the 1D BH model in section 2.11. We derive the
results for a transverse Ising spin-1/2 model given by the usual Hamiltonian:

Ĥ = −J ∑
〈i,j〉

Ŝz
i Ŝz

j − h∑
i

Ŝx, (3.4.2)

where J > 0 is the strength of the Ising interaction and h is the external field along the transverse
x-axis. Let us sketch out the derivations term by term. First let us treat the Ising term:

d
dt

ρ̂ ∼ i J
h̄

[
Ŝz

i Ŝz
j Λ̂− Λ̂Ŝz

i Ŝz
j

]

=
i J
h̄

[(
∂

∂zj
+ Sz

j

)(
∂

∂zi
+ Sz

j )

)
−
(

∂

∂z′j
+ Sz

j

)(
∂

∂z′i
+ Sz

i )

)]
Λ̂

=
i J
h̄

[
∂i∂j + Sz

j ∂i + Sz
j ∂i − ∂′i∂

′
j − Sz

j ∂′i − Sz
j ∂′i
]

Λ̂,

(3.4.3)
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where we have made the substitution Sz
i = tanh(Ri) and taken advantage of the fact that it is

insensitive to the c.c.′ operation, and formally speaking: Sz
i = Sz′

i . The drift terms arising from the
Ising interactions can be immediately read off, i.e.

dzi ∼
i J
h̄ ∑

j∈n(i)
Sz

j . (3.4.4)

where n(i) is the list of sites connected to i. For a 1D system with NN bonds for example, n(i) =
{i− 1, i + 1}. Similarly, the diffusion matrix can be further decomposed so that every bond b(i, j)
connecting site i and j corresponds to a unique matrix:

site i site j

Db(i,j) = i J




0 1

1 0




site i

site j
, (3.4.5)

with the following noise decomposition:

site i site j

Bb(i,j) =

√
i J
2




1 −i

1 i




site i

site j
, (3.4.6)

as well as its own noise terms ηr
b,ηim

b ∈N(0,1/dt). This results in the following stochastic contribution
to the SDEs:

d
dt




zi

zj


 ∼

√
i J
2




1 i

1 −i






ηr
b

ηim
b


 =

√
i J
2




η̃b

η̃∗b


 , (3.4.7)

where η̃b = ηr
b + iηr

im. This can be further simplified by noting that
√

i
2 = 1

2 (1 + i) and expanding
out the noise terms so that:

√
i J
2
(ηr

b ± iηim
b ) =

√
J

2
(1 + i)(ηr

b ± iηim
b ) (3.4.8)

=

√
J

2
([ηr

b ∓ ηim
b ] + i[ηr

b ± ηim
b ]) (3.4.9)

=
√

J(η∓b + iη∓b ) (3.4.10)

where
(
η−b ,η+

b
)
=
(

1
2 (η

r
b − ηim

b ), 1
2 (η

r
b + ηim

b )
)
are statistically distributed such that η±b ∈ N(0, 1

2dt ).
If we further define the complex noise:

ηb = η−b + iη+
b , (3.4.11)
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Noise termsDrift terms

Figure 3.1: Schematic representation of the drift and diffusion terms for a 2D Ising interaction. For the noise
terms, there is a directionality indicated by the arrow that depends on how the operators are ordered in the
Hamiltonian. The base of the arrow indicates the index of the first operator while the tip of the arrow represents
the second operator.

the Ising noise terms in eq. 3.4.7 simplify to:

√
i J
2




η̃b

η̃∗b


 =

√
J




ηb

iη∗b


 . (3.4.12)

It is important to further note that the order in which the indices appear matter and a schematic
diagram representing the SDEs associated with a NN Ising system in 2D is shown in Fig. 3.1. If the
index i precedes j, e.g. Ŝz

i Ŝz
j , then it will result in zi variable adopting the noise ηb while its matching

pair zj takes on its complex conjugate multiplied by i, iη∗b(i,j). This noise term is unique to bond pair
b(i, j). However, it is also possible for the opposite ordering from a different bond, b(k, i) to arise,
for example in the term Sz

kSz
i . In this case, zi will further take on an independent noise term, ηb(k,i)

with the same statistical properties as eq. 3.4.11 but that is complex conjugated (and multiplied by
i), i.e. i

√
Jη∗b(k,i) instead, while zk will yield the non-conjugated pair:

√
Jηb(k,i).

Putting all this together the pure Ising terms produce the following SDES:

dzi
dt

=
i J
h̄ ∑

j∈n(i)
Sz

j +
√

J

[
∑

j
ηb(i,j) + i∑

k
η∗b(k,i)

]
, (3.4.13)

where there exist as many complex noise terms: {ηb} as there are bonds, b and there are two different
noise contributions depending on the position of site i in the Ising interaction. As such, this formula
be easily extended to long range interactions beyond NN. The SDEs for the primed variables follow
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immediately by applying the operation c.c′:

dz′i
dt

= − i J
h̄ ∑

j∈n(i)
Sz

j +
√

J

[
∑

j
η′b(i,j) − i∑

k
η′∗b(k,i)

]
, (3.4.14)

where η′b are independent of ηb despite having the same statistical properties. Lastly, we derive the
transverse field contributions to the SDEs starting from the master equation:

dρ̂

dt
∼ ih

h̄
[
Ŝx

i Λ̂− Λ̂Ŝx
i
]

(3.4.15)

∼ ih
h̄

[
−si

∂

∂zi
+ Sx

i + s′i
∂

∂z′i
− Sx′

i

]
(3.4.16)

∼ ih
h̄

[
−si

∂

∂zi
+ s′i

∂

∂z′i

]
, (3.4.17)

which only contribute to the drift via:

dzi ∼ −ihsidt (3.4.18)
dz′i ∼ ihs′idt. (3.4.19)

Note that the constant terms Sx
i − Sx′

i do indeed eliminate each other although some tedious algebra
is required to show this. The final equations are summarized as:

dzi
dt

= − i J
h̄ ∑

j∈n(i)
Sz

j +
√

J

[
∑

j
ηb(i,j) + i∑

k
η∗b(k,i)

]
− ih∑

i
sinh(zi) (3.4.20)

dz′i
dt

=
i J
h̄ ∑

j∈n(i)
Sz

j +
√

J

[
∑

j
η′b(i,j) − i∑

k
η′∗b(k,i)

]
+ ih∑

i
sinh(z′i). (3.4.21)

The steps detailed in thus far provide all the necessary ingredients to carry out the derivation of
SDEs for a more generalized spin model, such as the spin-1/2 XXZ chain. This is a straightforward
exercise and the final SDEs can be found in our work in section 3.8.

3.5 Bloch sphere parametrization

Recall in section 3.2 that the | ↑〉 state of the Bloch sphere corresponds to the infinite regions of
complex phase space and as such cannot be properly mapped. To get around this, we will use
a toggling procedure. To begin, let us parametrize the SU(2) states by writing y = ez∗ and so

|y〉=
[

y
1/y

]
. The mapping onto the Bloch sphere is given by: y = e−iφ tan(θ/2), where φ ∈ [0,2π]

and θ ∈ [0,π] are the azimuthal and polar angles respectively and that θ is measured from the south
pole. To obtain the equivalent point corresponding to (θ,φ) on the complex plane, we extend a
line from the sphere’s origin to the complex plane, oriented at an angle θ/2 from the south pole.
The point of intersection with the complex plane is the mapping of the Bloch sphere point. This
is illustrated as the lower left red point in fig. 3.2(a). Both the point on the Bloch sphere and the
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1

1

1 1

toggle cutoff

(a) Projection of sphere as viewed down its x-axis. We
superimpose the different φ-planes where the y and ỹ
can belong to. This is similar to the slice φ = 0.

(b) General case when φ 6= 0: Pro-
jection of sphere looking down its
z-axis / North pole

Figure 3.2: SU(2) sphere

point on the complex plane point share the same azimuthal angle φ.

Alternatively, if we use the variable ỹ = e−z, so that: |ỹ〉 =
[

1/ỹ
ỹ

]
, the location of the ỹ-complex

plane is instead on top the North pole of the Bloch sphere with their origins aligned. The corre-
sponding point on the ỹ complex plane is the line that intersects it, and that originates from the
center of the Bloch sphere at an angle (π− θ)/2 from the North pole instead. One can visualize this
mapping by physically wrapping the complex ỹ-plane over the North pole. In the ỹ parametrization
it is the South pole that cannot be properly mapped as it corresponds to the edges of phase space.
The corresponding point lies in the same azimuthal plane as the Bloch sphere point as well. This
physical interpretation agrees with the expected expression: ỹ = 1/tan(θ/2)e−iφ

In figure. 3.2(a), if one looks down the z-axis for any φ 6= 0, the blue point on the Bloch sphere
is mapped on to the red and green points on the y and ỹ planes respectively, depending on our
parametrization choice. Note that because we defined y through the complex conjugate, y = ez∗ we
see that the same y and ỹ points lie on the same azimuthal planes.

3.6 Toggling procedure

The SU(2)-SDEs even for the TIM case, are highly non-linear and can be unstable to numeric
integration as they approach the boundaries of phase space(±∞). In this region, the SDEs become
stiff and numerical overflow typically arises. This is attributed to an improper mapping of a proper
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point on the Bloch sphere as mentioned above. To circumvent this, we devise a toggling procedure
that alternates between y and ỹ variables wherever it suits our cause so as to avoid such onerous
regions. We set a cut off radius |ycuto f f | = |ỹcuto f f | = 1, which corresponds to the exact location of
the hemispheres on the Bloch, i.e. when θ/2 = π/2 as an indication for when we are too close to the
pole. This is equivalently represented by the unit circle about the origin in the complex plane. The
cutoff procedure therefore prevents the stochastic variables from getting too close to the poles i.e.
values |y|> ycuto f f , by controlling its magnitude. Although the cutoff criteria in the y or ỹ variables
are the same, they represent different conditions in terms of the original z variables, i.e.

|ỹ| ≤ 1⇒ z̃r ≥ 0, (3.6.1)

whereas
|y| < 1⇒ zr < 0. (3.6.2)

In fig. 3.2(a), the accepted regions are denoted by shaded green and red regions for ỹ and y re-
spectively. The outline of the toggling procedure is as follows. Consider the dynamics of a single
spin, which would entail keeping track of the two points corresponding to z and z′ on independent
Bloch spheres. Let us initialize it in the spin down state so that they are relatively close to the
south pole. We shall concentrate on the z variable since the same argument applies z′ as well. For
this initial condition, we assign it a sign: S = −1 and use the parametrization y = ez∗. After some
time however, the point on the Bloch sphere may evolve so as to cross the hemisphere towards the
North pole, which is onerous. This occurs when <[z] > 0, in which case, we perform a "toggle" by
changing variables to ỹ = e−z instead and updating the sign to S = 1. The sign therefore tells us
which hemisphere we are in, +1 for the northern hemisphere and −1 for the southern hemisphere.
This step is repeated when necessary to ensure that the point on the Bloch sphere never approaches
the onerous pole that is characteristic of the mapping chosen.

3.6.1 New expressions for hyperbolic functions

Note that the toggling procedure has to be carried out for all 2N variables and as a result new
expressions for the stochastic functions that appear in the SDES (see eq. 3.4.13 and eq. 3.4.14) have
to be calculated. First let us consider local hyperbolic functions. If S = +1, then we choose the
parametrization y = e−z

sinh(z) =
ez − e−z

2
(3.6.3)

=
1− e−2z

2e−z (3.6.4)

=
1− y2

2y
(3.6.5)

and
cosh(z) =

1 + y2

2y
(3.6.6)
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On the other hand, if S = −1, we instead choose y = ez∗ so that

sinh(z) =
ez − e−z

2
(3.6.7)

=
e2z − 1

2ez (3.6.8)

=
y∗2 − 1

2y∗
(3.6.9)

and
cosh(z) =

1 + y∗2

2y∗
. (3.6.10)

For multivariable functions such as tanh(Ri), slightly more algebra is required since it depends on
both z and z′ which can switch sign independently. This therefore gives us four possible forms for this
term. Note as well the useful identity: tanh(ln(xc)) = x2c−1

x2c+1 and that: S = +1 =⇒ [z = − lny] and
S =−1 =⇒ [z = lny∗] The four cases are defined by the signs (S,S′) so that when S =+1,S′ =+1,
then

tanh
z + z′

2
= tanh(

− lny− lny′∗

2
) (3.6.11)

= tanh(ln[yy′]−
1
2 ) (3.6.12)

=
(yy′)−1 − 1
(yy′)−1 + 1

(3.6.13)

=
1− yy′

1 + yy′
, (3.6.14)

and when S = +1,S′ = −1 then,

tanh
z + z′

2
= tanh(

− lny + lny′∗

2
) (3.6.15)

= tanh(ln[
y′∗

y
]

1
2 ) (3.6.16)

=
(y′∗/y)− 1
(y′∗/y) + 1

(3.6.17)

=
y′∗ − y
y′∗ + y

, (3.6.18)
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and when S = −1,S′ = +1, then

tanh
z + z′

2
= tanh(

lny∗ − lny′

2
) (3.6.19)

= tanh(ln[
y∗

y′
]

1
2 ) (3.6.20)

=
(y∗/y′)− 1
(y∗/y′) + 1

(3.6.21)

=
y∗ − y′

y∗ + y′
, (3.6.22)

and lastly if S = −1,S′ = −1, then

tanh
z + z′

2
= tanh(

lny∗ + lny′∗

2
) (3.6.23)

= tanh(ln[y∗y′∗]
1
2 ) (3.6.24)

=
(y∗y′∗)− 1
(y∗y′∗) + 1

. (3.6.25)

It is then more convenient to define the function: ζi(Si,S′i), which combines these four cases depending
on the sign of (S,S′) and that is now equivalent to the stochastic estimator Sz

i :

ζi(Si,S′i) =





if [+,+] : 1
2

1−yiy′i
1+yiy′i

if [+,−] : 1
2

y′∗i −yi
y′∗i +yi

if [−,+] : 1
2

y∗i −y′

y∗i +y′i

if [−,−] : 1
2

y∗i y′∗i −1
y∗i y′∗i +1

(3.6.26)

The Stratanovich SDEs transforms as: żi =−ẏi/yi if S =+1 and żi = ẏ∗i /y∗i if Si =−1 and a simple
change of variables gives us the new expressions:

dyi
dt

=





−iyi ∑j∈n(i) ζ j(Si,S′i) +
ih̄
2
(
1− y2

i
)
− yi

(
∑j ηb(i,j) + i ∑k η∗b(k,i)

)
if Si = 1

−iyi ∑j∈n(i) ζ j(Si,S′i)
∗ − ih̄

2
(
1− y2

i
)
+ yi

(
∑j η∗b(i,j) − i ∑k ηb(k,i)

)
if Si = 1

(3.6.27)

and

dy′i
dt

=





iy′i ∑j∈n(i) ζ∗j (Si,S′i)− ih̄
2
(
1− y′2i

)
− y′i

(
∑j η′b(i,j) + i ∑k η

′∗
b(k,i)

)
if S′i = 1

iy′i ∑j∈n(i) ζ∗j (Si,S′i) +
ih̄
2

(
1− y

′2
i

)
+ y′i

(
∑j η

′∗
b(i,j) − i ∑k η′b(k,i)

)
if S′i = 1

(3.6.28)
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Thus in this way, we are able to prevent numerical overflow. It does not however remove systematic
bias and spiking. To deal with these issues, we used a noise extrapolation scheme which will be
explained in section 3.7 and detailed in section 3.8.

3.6.2 Numerical integration with toggling

Some care has to be exercised when numerically integrating the SDEs in eq. 3.6.27 and eq. 3.6.28.
The numerical integration of the SDEs can be broken down into a few steps:

1. First, we need to check the sign: Si and S′i which is determined from zr
i and zr′

i .

2. Evolve {yi} and
{

y′i
}
using the SDEs depending on the sign S′i ,Si

3. Since we are using Stratonovich calculus, we self-consistently determine a midpoint solution,
{yi+1/2} and

{
y′i+1/2

}
.

4. Iterate for {yi+1} and
{

y′i+1
}
using {yi+1/2} and

{
y′i+1/2

}
.

5. At the end of each time step, check for the values of Si and S′i. If |yi|> 1. then we update the
sign: Si = −Si make the transformation: yi = 1/y∗i . The same update scheme applies to the
primed variables as well.

6. Observables are calculated by transforming back to
{

zi,z′i
}
variables for convenience.

3.6.3 Initial conditions

An interesting point to note that is that with the y,y′ variables, we are now able to access the full
spin up or spin down state. This is simply given by setting y = y′ = 0. and choosing either a S = 1 or
S′ =−1 parametrization. Previously, we could only approximate the fully polarized state by setting
z,z′ to be a large number. The range z,z′ ∈ [5,10] proved to be adequate for spin up or the range
[−10,−5] for the spin down state.

3.7 Extrapolation scheme

The extrapolation scheme (Deuar et al., 2009) is a clever technique that can be used to obtain longer
simulation lifetimes. It is carried out in two key steps, which we will now qualitatively describe.
The first step necessitates the construction of a blended formalism, which is the hybridization of an
exact formalism labelled HQ and an approximate formalism labelled: HA. The PPR was used as
the exact formalism and therefore limited by short simulation lifetimes, whereas the approximate
formalism despite having no limitations on its simulation times, has the characteristic of producing
only qualitatively correct results. A blended formalism is then formally constructed by writing:

Hblend = λHQ + (1− λ)HA, (3.7.1)
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where a single parameter: λ ∈ [0,1] measures the contribution from each formalism. Setting λ = 1
corresponds to the exact quantum dynamics while setting λ = 0 corresponds to the approximate
scheme. One would therefore expect the simulation lifetime to be a monotonically decreasing function
of λ as HQ is approached. An illustration of this can be found in fig. 3.3 which are results taken
from (Deuar et al., 2009). The evolution of the number of scattered atoms as well as the halo density,
after the BEC collision were calculated. Two different blends were constructed using a (i) mean-field
Gross-Pitaevskii (GP) description and a (ii) semi-classical Truncated Wigner Approximation (TWA)
as the approximate formalism.

Figure 3.3: (Figure taken from (Deuar et al., 2009)). Demonstration of extrapolation scheme from λ = 0 to
λ = 1. The two approximate schemes for the BEC collision are the mean-field Gross-Pitaevskii equation and
the semi-classical Truncated Wigner Approximation (TWA). The full quantum dynamics (QD) is carried out
using the PPR and has an expected short simulation lifetime compared to the approximate methods.

Since the dynamics generated from the series: {λ} 6= 1 do not produce exact results, we instead use
the λ-series to extrapolate towards λ = 1 at a fixed time: t′. This entails the second step of the
extrapolation scheme. Considering a generic observable: O(λ, t′), one assumes a series expansion in
λ of arbitrary power n, i.e.

O(λ, t) =
n

∑
i=0

ai(t)λi(t). (3.7.2)

It is worth mentioning that the order of the expansion is not universal and systematically chosen
so as to minimize the root mean square (rms) deviations, although typically, a quadratic or cubic
fit is sufficient. Using an adequate number of λ values then, the coefficients {ai(t)} can be reliably
determined and the desired exact result at λ = 1 obtained. This procedure can be carried out for a
range of times: t > tPP

sim depending on the number of λ-values available at a given time. The results
of the full implementation of the toggling procedure and the specifics of the extrapolation scheme
can be found in our publication (Ng et al., 2013) included in the next section.
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3.8 Paper 2: Simulation of the dynamics of many-body quan-
tum spin systems using phase-space techniques

Simulation of the dynamics of many-body quantum spin systems using phase-space
techniques
– Ray Ng, Erik S. Sørensen, and Piotr Deuar

Phys. Rev. B 88, 14430 (Editor’s suggestion)

DOI: 10.1103/PhysRevB.88.144304

c©American Physical Society (2013)

Calculations: I performed all stochastic simulations and produced half of the figures. Piotr Deuar
carried out the extrapolation calculations and produced the figures that resulted from that numerical
effort.

Manuscript: I wrote approximately 50% the manuscript and 50% of the figures. Erik S. Sørensen
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In this publication, we set out to answer the following questions:

• Can the PP be reformulated using a spin coherent state basis?
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– How much of an improvement can we achieve?
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Simulation of the dynamics of many-body quantum spin systems using phase-space techniques

Ray Ng* and Erik S. Sørensen
Department of Physics and Astronomy, McMaster University 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1

Piotr Deuar
Institute of Physics, Polish Academy of Sciences (PAN), Al. Lotnikw 32/46 02-668 Warszawa, Poland

(Received 17 July 2013; published 4 October 2013)

We reformulate the full quantum dynamics of spin systems using a phase-space representation based on SU(2)
coherent states which generates an exact mapping of the dynamics of any spin system onto a set of stochastic
differential equations. This representation is superior in practice to an earlier phase-space approach based on
Schwinger bosons, with the numerical effort scaling only linearly with system size. By also implementing
extrapolation techniques from quasiclassical equations to the full quantum limit, we are able to extend useful
simulation times severalfold. This approach is applicable in any dimension including cases where frustration
is present in the spin system. The method is demonstrated by simulating quenches in the transverse-field Ising
model in one and two dimensions.

DOI: 10.1103/PhysRevB.88.144304 PACS number(s): 75.10.Dg, 78.55.−m, 75.40.Gb

I. INTRODUCTION

With the development of cold-atom experiments, the
nonequilibrium dynamics of closed quantum systems has
become a focus of attention.1 In these experiments, it has
become feasible to prepare a model system in a specific
eigenstate of Hi and study the ensuing real-time dynamics
when the system evolves under a controllable Hamiltonian Hf .
This can be viewed as a realization of a quantum quench.2–9

Here, we focus on how these effects occur in closed quan-
tum spin systems10–22 neglecting couplings to the environment.
The dynamics of quantum spin systems is of particular interest
for two reasons. First, it forms a cornerstone of condensed
matter physics with many open problems, in particular for
models with frustration, where even the equilibrium state is
a matter of debate and little is known about the dynamics.
Second, using cold-atom systems it has become conceiv-
able to implement quantum simulators23–29 using atomic
degrees of freedom to mimic the quantum spin and their
interactions. Recent experiments30–39 have shown significant
progress towards realizing such a quantum simulator capable
of simulating quantum spin systems. Following the initial
proposal24 to implement such a simulator using trapped ions,
it was experimentally realized with two spins,30 three spins,31

and up to nine spins.34,36 Recently, a system of ∼300 spins
with Ising interactions was realized with trapped ions38 and
similar system sizes have been reached using neutral atoms
in optical lattices.35,40 As a model system, several of these
experiments30,32,34,38 model the transverse-field Ising model
(TFIM) (Ref. 41):

Ĥ = −J
∑
〈i,j〉

Ŝz
i Ŝ

z
j − h(t)

∑
i

Ŝx
i , (1)

which is the model that we focus on here.
Calculating the quantum dynamics of condensed matter

spin systems is a notoriously difficult problem due to the
macroscopic number of degrees of freedom. In this limit,
the size of the Hilbert space scales exponentially, deeming
it intractable in most cases. While some models can be
solved analytically, they are often not generalizable to higher

dimension and the solution is often model specific. For
instance, the TFIM (Ref. 41) can be solved exactly in one
dimension using the Jordan-Wigner transformation, but this is
not possible in higher dimensions.

From a numerical perspective, the standard condensed
matter computational toolbox is remarkably successful but
not completely general. For instance, the direct “brute force”
approach by way of exact diagonalization (ED), while always
applicable, can only accommodate relatively small system
sizes of N ∼ 48 (for a spin- 1

2 system). Quantum Monte Carlo
(QMC) methods42 are extremely useful for calculating ground-
state properties, but only in the absence of any frustration.
However, for the study of dynamics, QMC techniques are
usually limited to imaginary times or, equivalently, imaginary
frequencies. Other methods, such as those rooted in the density
matrix renormalization group (DMRG),43–45 are the dominant
techniques for one-dimensional systems43 but are much harder
to apply in two dimensions due to scaling issues associated
with the area law.46 Currently, DMRG techniques are restricted
to one-dimensional systems and quasi-two-dimensional strips.
Nonetheless, time-dependent DMRG (tDMRG) (Refs. 47
and 48) has been very successful for one-dimensional systems
where the real-time dynamics of quantum spin systems can be
treated out to tJ/h̄ ∼ 100.10 Using time-evolving block deci-
mation (TEBD),49 the infinite-size TEBD (iTEBD) (Ref. 50)
has yielded results out to tJ/h̄ ∼ 6–10 (Ref. 51) for the TFIM
and tJ/h̄ ∼ 20 (Refs. 11 and 12) for the XXZ spin chain
and related models. It would therefore be quite worthwhile to
explore techniques for calculating real-time dynamics that are
generally applicable to quantum spin systems in any dimension
even in the presence of frustration.

Another branch of numerical techniques falls under the
category of quantum phase-space methods.52–57 They can
be summarized by the following expression for the density
operator:

ρ̂ =
∫

P (�λ)�̂(�λ)d�λ, (2)

where �λ are parameters, P (�λ) plays the role of a distribution,
and �̂(�λ) is the operator kernel. Quantum phase-space methods
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have recently begun to gain exposure in condensed matter
systems. For instance, Polkovnikov et al.57 have applied the
path-integral formalism of the truncated Wigner representation
to simulate quantum quenches. Aimi et al.58 extended the
work by Corney et al.53 by successfully calculating the
imaginary-time dynamics of the Hubbard Hamiltonian in
the high-interaction limit using fermionic Gaussian phase-
space methods.59 This was done by implementing symmetry
projection techniques60 as well as Monte Carlo methods. The
high-interaction limit was previously unattainable by QMC
techniques.

We focus specifically on the positive-P representa-
tion (PPR) which was developed by Drummond and co-
workers61–63 and originally tailored to solve problems in
quantum optics, where it has been applied with considerable
success, as well as in ultracold bosonic gases. For instance,
Deuar et al.64 have successfully implemented the PPR for the
purpose of simulating multidimensional Bose gases.64–66

The general idea is that the PPR provides an exact
mapping of the quantum dynamics onto a set of Langevin-type
differential equations as long as boundary terms do not
arise.62,67 This mapping is made possible by the existence of
correspondence relations, which are characteristic of different
phase-space methods. In principle, the PPR can be applied to
both real and imaginary times56 and since the computational
effort is proportional to the system size, it is possible to
simulate macroscopically large systems. In addition, it is also
possible to simulate frustrated systems which makes the PPR
particularly appealing. Finally, the PPR can be readily applied
in any dimension. The main drawback of the PPR, however, is
the possible appearance of short simulation lifetimes signaled
by the onset of a divergence in the stochastic averages.
Modified formalisms of the PPR based on the gauge-P
representation59,62,68,69 have proven useful in this respect by
allowing one to introduce gauge functions that systematically
remove unstable terms in the stochastic differential equations
(SDEs), and with it the source of divergences. This is typically
done at the expense of introducing an extra degree of freedom
that plays the role of a complex weight �.

We implemented the PPR formalism to the dynamics of
many-body spin systems in our earlier work70 by treating
the equivalent Schwinger boson representation of spin chains
with the canonical PPR method. It was applied to the real-time
dynamics of one-dimensional spin chains under a quantum
quench. A conclusion of that work was that the coherent-state
basis used in other studies where the PPR has been successful
is not very suitable for systems composed of S = 1

2 quantum
spins. It led to both early noise onset, and the need for a
broad initial distribution to describe the number state that
corresponds to S = 1

2 spin. The latter issue is particularly
onerous as it turns out to preclude efficient sampling of the
distribution for large numbers of spins [O(100)], the regime
where phase-space methods are particularly advantageous.

In this paper, we choose a different route and describe
the system using the SU(2) basis.71–73 This allows us to
develop a PPR-like distribution, which is then used to obtain
stochastic differential equations that do not suffer from the
broad distribution and sampling issues encountered with PPR
in Schwinger bosons. A related approach has been used in
the past on an imaginary-time evolution of the Ising model

by Barry et al.73 using an unnormalized kernel for the density
operator. We will, however, use a normalized kernel, which is
more appropriate for simulating dynamics.54

The outline of the paper is as follows. The SU(2) coherent
state phase-space representation and related formalism is
derived in Sec. II. Its basic application to the TFIM is discussed
in Sec. III. Even though this approach leads to significantly
longer simulation times, limitations are clearly present and we
also discuss these later in the section. It is possible to extend
the simulation time even further by extrapolating from regimes
with reduced quantum fluctuations into the full quantum
regime. This entanglement scaling technique is described in
Sec. IV. This allows us to obtain longer simulation times,
similar to typical time scales of the problem. We then conclude
in Sec. V and discuss the future direction of this work. Some
more technical aspects are relegated to Appendices.

II. FORMALISM

A. SU(2) basis

Traditionally, the PPR formalism is based upon bosonic
coherent states,74 and hence the most natural generaliza-
tion to spin systems would be the use of SU(2) coherent
states.71,72,75,76 The bosonic coherent states and SU(2) coherent
states are analogous and have similar properties such as
that of overcompleteness, and in the large-S limit the SU(2)
coherent states approach the bosonic coherent states. While
the spin versions of other kinds of phase-space representations
(the Q representation,77–79 P representation,80 and Wigner
representation81) have been introduced in the past, the ad-
vantage of the PPR approach is that the kernel can be made
analytic in the phase-space variables, which in turn guarantees
that standard stochastic diffusion equations can be obtained
for the evolution.61

Labeling the spin quantization direction as �z, with operator
Ŝz, we define the SU(2) coherent states for a spin S as71,72,75,76

|z〉 = e−zSeezŜ† |S,−S〉, (3)

where S† is the raising operator and |S,Sz〉 is the state with
Sz spin projection onto the quantization direction. The state
is parametrized by a single complex variable z (not to be
confused with the quantization direction �z). Our interest lies
in the spin- 1

2 case for which (3) reduces to the SU(2) case:

|z〉 = e− z
2 eezŜ+|↓〉 =

[
ez/2

e−z/2

]
(4)

with |↓〉 = [ 0
1 ], and S+ = [ 0 1

0 0 ]. In this case, |z〉 has the

physical interpretation of being a unit vector pointing to
the position (θ,φ) on the surface of the Bloch sphere.
The transformation that relates the z coordinate to (θ,φ) is
ez = eiφ tan(θ/2) where θ ∈ [0,π/2] is the polar angle and
φ ∈ [0,2π ] is the azimuthal one.

B. SU(2) phase-space representation

To obtain stochastic evolution equations with positive
diffusion, we follow standard PPR procedure.52,61,82 For
brevity, we will only highlight key aspects of the formalism
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and refer interested readers to70 where a spin system is worked
out in detail.

First, we represent the density matrix (2) using an off-
diagonal kernel with unit trace constructed from SU(2)
coherent states:

�̂ = |z〉〈z′∗|
〈z′∗|z〉 . (5)

For an N -site system, one uses a tensor product of independent
kernels for each site i:

�̂ =
N⊗

i=1

�̂i(zi,z
′∗
i ). (6)

It is parametrized by the set �λ = {z1, . . . ,zN ,z′
1, . . . ,z

′
N } of 2N

independent complex variables.
The dynamics of any system is obtained by evolving the

equation of motion for the density operator

dρ̂

dt
= − i

h̄
[Ĥ ,ρ̂]. (7)

To counteract the exponential complexity of the Hilbert space
with large system sizes, there exists an equivalent description
of (7) in terms of a Fokker-Planck equation (FPE) for the
distribution function P (�λ) [cf. Eq. (2)] in the continuous space
of the phase-space variables �λ. This in turn can be mapped
onto stochastic equations for the variables, which is the final
result of the formalism. These can be sampled with a chosen
ensemble whose size N controls the numerical effort, trading
it off for statistical precision.

The FPE is obtained by using correspondence relations that
establish a duality between the action of spin operators and
differential operators on the kernel �̂. It is possible to show
that spin operators acting from the left of the kernel satisfy the
following identities (site index i implied):

Ŝx�̂ =
[
− sinh z

∂

∂z
+ Sx

]
�̂, (8)

Ŝy�̂ =
[
−i cosh z

∂

∂z
+ Sy

]
�̂, (9)

Ŝz�̂ =
[

∂

∂z
+ Sz

]
�̂, (10)

while spin operators acting from the right satisfy

�̂Ŝx =
[
− sinh z′ ∂

∂z′ + Sx′
]

�̂, (11)

�̂Ŝy =
[
i cosh z′ ∂

∂z′ + Sy′
]

�̂, (12)

�̂Ŝz =
[

∂

∂z′ + Sz

]
�̂, (13)

where

Sx = 1

2
(cosh z − sinh z tanh R), (14)

Sy = i

2
(sinh z − cosh z tanh R) , (15)

Sz = 1

2
tanh(R), (16)

and

R = (z + z′)/2. (17)

The primed counterparts of (14) and (15) are easily obtained by
making the substitutions z → z′,i → −i, so that (Sy)∗ = Sy′
when z = z′∗.

To derive estimators for expectation values 〈Ô〉 of general
observables Ô, we start from the usual expression

〈Ô〉 = Tr[Ôρ̂]

Tr[ρ̂]
= 〈〈Tr[Ô�̂]〉〉

〈〈Tr[�̂]〉〉 , (18)

where the right term follows from (2), with 〈〈· · ·〉〉 denoting
an average over the ensemble that samples P (�λ), i.e., 〈〈· · ·〉〉 =∫

P (λ̂)(· · ·)d�λ. Noting that Tr[�̂] = 1 and using (8)–(10), one
obtains, e.g.,

〈Ŝα〉 = 〈〈Sα〉〉 (19)

for α = x,y,z. This explains the choice of notation Sx,y,z

in (8)–(16). Using the cyclic property of the trace in (18)
and (11)–(13), one could have just as well have derived
the equivalent estimators for the spin components using
primed coordinates instead: 〈Ŝα〉 = 〈〈Sα′〉〉. Either estimator
is valid, but in our calculations we chose to use (19)
simply as a matter of preference. Notably, since the ker-
nel is normalized the expectation value of its derivative
is zero and one can obtain estimators for more complex
observables by taking the expectation value of appropriate
correspondence relations. Once the FPE is obtained, its
mapping onto Ito SDEs is well known,52 and in doing so, we
effectively map the dynamics of N spins onto ∼N complex
variables: {�λ}.

An ensemble of N realizations {�λ(i)}, with i = 1, . . . ,N ,
becomes equivalent to the full quantum mechanical descrip-
tion of the system as the ensemble size becomes large
(N → ∞). In practice, 103–106 trajectories are typically
sufficient for good convergence, depending on the desired
precision.

C. Stochastic equations for quantum dynamics

Even though the numerical results that we present later
are only for the transverse-field Ising model (1), it is instruc-
tive to consider the stochastic equations for slightly more
general models. For generality, we therefore consider the
Heisenberg Hamiltonian in a transverse field h(t) along the �x
direction:

Ĥ = −J
∑
〈i,j〉

[
Ŝz

i Ŝ
z
j + �

(
Ŝ

y

i Ŝ
y

j + Ŝx
i Ŝx

j

)]− h(t)
∑

i

Ŝx
i ,

(20)

with each connected-neighbor pair 〈i,j 〉 counted once. Here, J
is the hopping strength (J > 0 for the ferromagnetic system),
� governs in-plane anisotropy, h(t) is the transverse-field
strength, and we choose units such that h̄ = 1. Following
Sec. II B, we derive Ito stochastic equations to describe the
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dynamics of the system:
dzi

dt
= iJ

2

∑
j∈n(i)

tanh Rj − ih(t) sinh zi +
√

J

⎡⎣ ∑
j∈nL(i)

η〈i,j〉 + i
∑

j∈nR(i)

η∗
〈i,j〉

⎤⎦
− i

�J

2

∑
j∈n(i)

(Sij + Cij tanh Rj ) +
√

J�

⎡⎣ ∑
j∈nL(i)

√
Cij ξ〈i,j〉 − i

∑
j∈nR(i)

√
Cij ξ ∗

〈i,j〉

⎤⎦ , (21)

dz′
i

dt
= − iJ

2

∑
j∈n(i)

tanh Rj + ih(t) sinh z′
i +

√
J

⎡⎣ ∑
j∈nL(i)

η′
〈i,j〉 − i

∑
j∈nR(i)

η′∗
〈i,j〉

⎤⎦
+ i

�J

2

∑
j∈n(i)

(S ′
ij + C ′

ij tanh Rj ) +
√

J�

⎡⎣ ∑
j∈nL(i)

√
C ′

ij ξ ′
〈i,j〉 + i

∑
j∈nR(i)

√
C ′

ij ξ ′∗
〈i,j〉

⎤⎦ . (22)

The R, C, and S functions are

Ri = zi + z′
i

2
, (23)

Cij = cosh(zi − zj ), Sij = sinh(zi − zj ), (24)

C ′
ij = cosh(z′

i − z′
j ), S ′

ij = sinh(z′
i − z′

j ). (25)

The noise η, ξ, η′, ξ ′ takes the form of complex Wiener
increments of zero mean, one of each per connected pair
〈i,j 〉. They are all independent of each other, and delta time
correlated. That is, the only nonzero second-order moments are

〈〈x〈i,j〉(t)x∗
〈i,j〉(t

′)〉〉 = δ(t − t ′), (26)

where x can stand for any symbol in {η,ξ,η′,ξ ′}. Individual
complex noises are easily constructed in practice from two
real Gaussian random variables of variance 1

2�t
at each time

step of length �t (one for the real, one for the imaginary part).
Some notation is also required to keep track of the

connectivity: n(i) indicates the set of connected neighbors for
site i. For example, a one-dimensional (1D) chain with nearest-
neighbor coupling has n(i) = {i − 1,i + 1}. The noises couple
connected sites in such a way that when one member of the
pair gets the complex noise η, the other gets iη∗ or −iη∗
depending on the details. Hence, if we assign to each such
bond 〈i,j 〉 an arbitrary labeling directionality i → j , then the
“left” site i gets η〈i,j〉 noise while the “right” site j gets the
conjugate one. The neighbors that are labeled as “left” sites for
the 〈i,j 〉 bond are in the set nL(i), while those that are labeled
as “right” sites are in the set nR(i). For the 1D example, one can
have nL(i) = {i − 1} and nR(i) = {i + 1}. With this notation,
the expressions (21) and (22) allow for arbitrary connectivity
between the sites, including frustrated systems.

Equations (21) and (22) are equivalent to the Schwinger
boson phase-space stochastic equations developed in Ref. 70,
but their statistical properties at finite but large ensemble size
N are very different. Importantly, in the present representation,
any product state ⊗i |z0

i 〉 can be described as a delta-function
distribution

P (�λ) =
∏

i

δ(2)
(
zi − z0

i

)
δ(2)(zi − z′∗

i ). (27)

This can be used to initialize the t = 0 ensemble in a
simple fashion. More importantly, since this is a zero-width
distribution, the initial state remains well sampled and compact
even for very large systems.

A technical hurdle is encountered for the exact |↑〉 and |↓〉
states, which correspond to the limit z → ±∞, respectively.
Some cut is always required when mapping the surface of a
sphere (such as the Bloch sphere for the spin- 1

2 case) onto
a plane, and the in-plane evolution at a cut is singular. In
our z mapping, there are two cuts like in a cylindrical map
projection. We deal with this issue by reprojection onto a polar
coordinate plus a Boolean variable that keeps track of which
pole is being used to define the coordinates. This is explained in
Appendix A.

D. Thermal calculations

An imaginary-time evolution in the temperature variable
β = 1/kBT can also be formulated in principle using the
anticommutator56 dρ̂/dβ = − 1

2 [Ĥ ρ̂ + ρ̂Ĥ ]. For the simple
ferromagnetic 1D Ising model (J = 1,h = 0) considered
previously in this context,73 we obtain, for comparison,

dzi

d(β/2)
= 1

2
[tanh Ri−1 + tanh Ri+1] + ηi + η∗

i−1, (28)

dz′
i

d(β/2)
= 1

2
[tanh Ri−1 + tanh Ri+1] + η′

i + η′∗
i−1, (29)

dW

d(β/2)
= 1

2
W
∑

i

{tanh Ri tanh Ri+1} (30)

with noise variances 〈〈ηi(β)η∗
j (β ′)〉〉 = δ(β − β ′)δij . The vari-

able W is a trajectory-dependent weight and has to be taken
into consideration in Eq. (18). For a general observable Ô,
〈Ô〉 is now given by

〈Ô〉 = 〈〈WO(�λ)〉〉
〈〈W 〉〉 , (31)

where O(�λ) represents the stochastic estimator that is a
function of phase-space variables �λ. Note that the energy
units we choose here are a factor of 2 smaller than in
Ref. 73, so that β/2 is the imaginary time used there. In
comparison, the noise terms are the same, but the normalized
kernel we use introduces the tanh R drift terms and evolving
weights.
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A T = ∞ initial condition ρ̂ = I/N can be obtained in a
number of ways. One can have, e.g., a uniform distribution of
zi on the imaginary axis on [−π,π ] as in Ref. 73, or an even
random mix of z = ±z0 with z0 → ∞. In both cases, z′

i = z∗
i .

Such freedom is typical for overcomplete representations, and
may lead to different statistical properties depending on the
initial distribution chosen.

III. DEMONSTRATION OF THE BASIC METHOD

A. Transverse-field quench

We now apply our formalism to the dynamics of a
transverse-field quench of the ferromagnetic Ising model
(J = 1, � = 0) [Eq. (1)]. This model is a realistic description
of many physical phenomena,41 and with recent advances in
ultracold atoms and the high degree of parameter control, it
is now possible to reproduce quenches in isolated quantum
systems and to study the ensuing unitary dynamics. In this
context, the TFIM is of considerable interest as a model system.
There has been much recent work done on this system both
theoretically13,17,18 and experimentally.30,32,34,38,83

The quench occurs at t = 0 with a time-dependent field
given by

h(t) =
{

0, t � 0
h, t > 0.

(32)

We choose to start from the h = 0 spin-up ground state
|↑↑ · · · ↑〉 and quench a 1D spin chain to a value of

h = hc = 0.5. (33)

This is the well-known critical point of the spin model, where
the correlation length in equilibrium diverges,84 separating the
ferromagnetic and paramagnetic phases.

Rewriting Eqs. (21) and (22), we find that for the 1D TFIM
the equations to simulate are

dzi

dt
= i

[
Sz

i−1 + Sz
i+1

]− ih sinh zi + ηi + iη∗
i−1, (34)

dz′
i

dt
= −i

[
Sz

i−1 + Sz
i+1

]+ ih sinh z′
i + η′

i − iη′∗
i−1 (35)

with estimators (16). We calculate the dynamics of the
expectation values of spins 〈Ŝα〉 and nearest-neighbor spin
correlations 〈Ŝα

i Ŝα
i+1〉 in the three orthogonal axis directions:

α = {x,y,z}. Our initial results are shown in Figs. 1 and 2
for an N = 10 site chain that is small enough that exact
results by way of diagonalization are available for comparison.
The stochastic averages are in excellent agreement with the
exact results. We use N = 104 trajectories distributed among
B = 100 equal-sized bins. The statistical uncertainty in the
estimators for observables can then be determined with the
help of the central limit theorem, i.e., the error bars in the final
estimates are obtained by averaging over all bins is 1/

√
B

times the standard deviation of the B single-bin-averaged
estimators.

We observe the onset of spiking after a certain time tsim,
which is a known feature of some PPR-like calculations when
the equations are nonlinear. This is also often a sign of the onset
of sampling difficulties.67 Simulations are stopped at tsim which
we determine by the criterion (A6) (see Appendix A 2 for

FIG. 1. (Color online) Spin components: 〈Ŝx〉,〈Ŝy〉,〈Ŝz〉 vs time
for the 10-site 1D Ising spin chain with transverse quench from h = 0
to hc = 0.5. Red dashed lines show exact diagonalization results. Our
calculations including error bars are indicated by the cyan region.

details). This time compares favorably to the simulation time of
tsim ≈ 0.6 seen in our earlier Schwinger boson calculations.70

Figure 3 shows a calculation for a two-dimensional (2D)
system on a 3 × 3 square lattice. Again, we use a small system
size of 3 × 3 to allow comparison with exact diagonalization.
Much larger systems can be treated, as will be demonstrated
in Fig. 8 in Sec. IV.

B. Limitations on simulation time

While real-time simulations now last longer than in Ref. 70
and scale well with system size even in higher dimensions
(see Fig. 8), it would be very desirable to obtain much longer
simulation times.

FIG. 2. (Color online) Nearest-neighbor correlation functions
〈Ŝx

i Ŝx
i+1〉,〈Ŝy

i Ŝ
y

i+1〉,〈Ŝz
i Ŝ

z
i+1〉 vs time for a 1D 10-site Ising spin chain

with transverse quench from h = 0 to hc = 0.5. Red dashed lines
show exact diagonalization results. Our calculations including error
bars are indicated by the cyan region.
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FIG. 3. (Color online) Spin components: 〈Ŝx〉,〈Ŝy〉,〈Ŝz〉 vs time
for the 2D Ising spin model on a 3 × 3 square lattice with
transverse quench from h = 0 to 0.1. Red dashed lines show exact
diagonalization results.

A major stumbling block is that at the points in phase space
where Ri = ±iπ/2, the factor tanh(Ri) = 2Sz

i diverges. This
is a problem as it appears both in observable calculations
(14)–(16) and in the evolution equations (34) and (35). In
observables, spiking appears when a trajectory passes close to a
pole, which obscures the mean result when it happens often. In
the evolution equations, this causes a poorly integrated sudden
jump, and in fact can be a symptom of the onset of systematic
errors.67 In the present case, these poles are at the root of the
limitations on simulation time.

It is helpful to look at the equations for R and a comple-
mentary independent variable

Qi = zi − z′
i

2i
. (36)

Consider for now what happens if the transverse field h is
turned completely off, the equations are

dRi

dt
= 1

2
[ηi + iη∗

i−1 + η′
i − iη′∗

i−1], (37)

dQi

dt
= 1

2
[tanh Ri−1 + tanh Ri+1]

− i

2
[ηi + iη∗

i−1 − η′
i + iη′∗

i−1]. (38)

The evolution of Qi becomes singular when either of the
Ri+1 or Ri−1 = ±iπ/2. For a small deviation δi+1 or δi−1 from
such a pole, as in, e.g., Ri+1 = ±iπ/2 + δi+1, we have

dQi

dt
≈ 1

2δi+1
+ noise. (39)

The evolution of R, on the other hand, is purely complex
diffusion, with variances var(|R|) = t . Thus, even if there is
no transverse field h, some trajectories will eventually diffuse
from z0 onto the ±iπ/2 poles in a time ∝(z2

0 + π2/4). We see
that in the ground-state limit of z0 → ∞, this time becomes
ever longer. For finite-h values, there is also a more rapid
deterministic drift away from the h = 0 ground state due to

t s
im

h

0

1

2

3

4

5

6

7

10-3 10-2 10-1 100 101 102 103

FIG. 4. (Color online) The dependence of simulation time tsim on
the quench strength h (blue) for the 1D transverse quench Ising model
(� = 0). The trends at low h [Eq. (40)] (green line) and at large h

[Eq. (41)] (red line) are also shown.

precession induced by the transverse field. An analysis of tsim

that takes into account finite-h values is given in Appendix C.
While a fundamental resolution or alleviation of these issues

for spin states is beyond our scope here, there is a fairly
straightforward procedure that one can use to extract physical
information for appreciably longer times than those seen in
Figs. 1–4. It is described and demonstrated in the following
Sec. IV.

C. Simulation time in the SU(2) basis

Figure 4 shows the dependence of the simulation time tsim

on the quench strength h. The trends are logarithmic at small h,

tsim ∼ 2

C
ln

c0

√
C

h
, (40)

and approximately constant

tsim ≈ c1
1

C
+ c2

h
(41)

for large h. C is the number of connections per site (C = 2
here), and the constants are c0 ≈ 0.5, c1 ≈ 0.8, and c2 ≈ 0.3.
These trends are derived in Appendix C. The simulation time
in both regimes is inversely proportional to C, hence also to
the dimensionality d.

D. Origin of the poles

For future work in the field, it is instructive to understand
why such poles appear in phase space in the first place.
Consider the matrix representation of �̂:

�̂ = 1

2 cosh R

[
eR eiQ

e−iQ e−R

]
. (42)

Projectors onto pure states |z〉〈z| correspond to z′ = z∗, and
thus to real values of R and Q. This is the set of all Hermitian
kernels, and all such kernels are well behaved. However,
non-Hermitian kernels that contain complex R can be singular
if the denominator in the normalization approaches zero. The
worst case occurs when cosh R = 1

2 〈z|z′∗〉 = 0, i.e., when the
kernel causes a transition between orthogonal states. This
is the exact location of the unwanted poles in the equations
mentioned in the previous section, i.e., when Ri = ±in′ π

2 and
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n′ ∈ odd. Such unwelcome behavior occurs for these states
because the present kernel �̂ was explicitly normalized to have
unit trace, while such coherences between orthogonal states
have zero trace. They are unnormalizable, and pathological
behavior ensues.

We have also attempted the obvious idea to use an
unnormalized kernel |z〉〈z′∗| which never divides by a zero
trace. However, despite having equations of motion with
no divergent terms (tanh R or otherwise), this representation
produces a simulation in which systematic errors grow linearly
right from t = 0. The cause are “type-II” boundary term errors
of the kind described in Ref. 54: observable calculations (18)
now involve ensemble averages of complex weight factors
Tr[�̂] = W = 2 cosh R, e.g., 〈Ŝz〉 = 〈〈WSz〉〉/〈〈W 〉〉, as in (31).
The exponential nature of the weight factors leads them to be
poorly sampled. This is because the distribution of W (z,z′)
has very different behavior than the actual Gaussian sample
distribution that generates the noise in the evolution equations
for z and z′. In particular, trajectories with Re[R] several
standard deviations above the mean are never generated,
while their contribution to weights W (R) included may be
significant.

The dynamical and normalization behavior described above
bears resemblance to similar afflictions seen in PPR simu-
lations of the bosonic anharmonic oscillator Ĥ = â†2â2.54,63

There, a variable n whose real part is averaged to obtain the
occupation number 〈â†â〉 = 〈〈n〉〉 takes on complex values
in the course of the evolution. Unstable regions of phase
space are accessed through diffusion into the imaginary part
of n, much as here diffusion into the imaginary part of R

sets off an instability. Similarly, an unnormalized kernel for
the anharmonic oscillator alleviates instability, but makes
observable calculations suffer again from type-II boundary
terms right from t = 0.

This, and past work on Bose systems treated with the
original positive-P representation, allow us to speculate that
such effects are generic features of PPR-like phase-space
methods with analytic kernels constructed from off-diagonal
basis states:

(1) Complex parts of variables whose real parts correspond
to physical observables mediate instability.

(2) Systematic errors, or at least huge noise, tend to ensue
when phase-space evolution accesses regions corresponding
to kernels with zero trace.

(3) The use of an unnormalized kernel is not effective, as
type-II boundary term errors in the observable calculations
tend to result.

IV. EXTENDED SIMULATION TIME
BY ENTANGLEMENT SCALING

A. Entanglement scaling

We will apply a technique developed for many-body
simulations of Bose gases in tandem with the PPR (Ref. 65)
that uses the trend of results from calculations with reduced
noise terms to pinpoint the full quantum values. Such a
trend can be useful because reduced noise leads to longer
simulation times before the onset of spiking. We will call this
approach “entanglement scaling” because it is the noise that

is responsible for generating new entanglement between the
sites. Recall that the kernel is separable, so all entanglement in
the system is described by the distribution. Noiseless equations
produce no entanglement.

To use the technique, we need several families of stochastic
simulations (labeled m = A,B, . . .), parametrized by variables
λm ∈ [0,1], that interpolate smoothly between long-lasting,
reduced-noise equations at λm = 0 and the full quantum
description at λm = 1. At least two independent families
are required to assess the accuracy of trends extrapolated to
λm = 1. Technical details are summarized in Appendix B. The
philosophy of this approach is similar to comparing trends
of results obtained with different summation techniques in
diagrammatic Monte Carlo.85

The first family of equations A will be the SU(2) equations
(34) and (35) with noise terms multiplied by

√
λA, so that λA =

0 gives completely noiseless equations with no entanglement.
Scaling noise variance linearly with λA here tends to give
observable estimates that are also nearly linear in λA. This
aids in making the extrapolation of the trend to λA = 1 well
conditioned since few fitting parameters are needed.

The second family B will use the same noise ηi for both
zi and z′∗

i variables at λB = 0. The difference in stochastic
equations between λB = 0 and λB = 1 in this family is
analogous to that between equations for a boson field under
a Glauber-Sudarshan P representation86,87 and a positive-P
representation, respectively. At λB = 0 one now has stable,
albeit stochastic, equations, but they do not correspond to full
quantum mechanics. The following choice of λB dependence
gives approximately linear scaling of observable estimates
with λB :

η′
i =

√
λB(2 − λB) η̃i + (1 − λB) η∗

i , (43)

where η̃i is now an independent Gaussian complex noise with
the same properties (26) as the old η′

i .

B. Entanglement scaling performance

Some predictions obtained with the fully deployed entan-
glement scaling approach are shown in Figs. 5–7. The first
of these figures shows some detail of the procedure for the
nearest-neighbor correlation 〈Ŝz

i Ŝ
z
i+1〉 (see also Appendix B

and Fig. 10 for more).
One can see that, at longer times, the predictions of both

families (green and yellow regions) are much closer to the true
value than any of the magenta or cyan lines that were directly
simulated. An obvious feature is that the family A prediction
gives a much smaller statistical uncertainty than the family B

prediction. This is related to the longer range of data in λA than
in λB that is available at a given time (see also Fig. 10). Hence,
for the mean final estimate (blue, central line) we use the family
A estimate. The uncertainty in our final prediction is taken to
be the maximum of three values: the statistical uncertainty
from the family A and family B predictions, as well as the
absolute difference between the mean family A and family B

predictions. The last value takes into account any systematics
due to the extrapolations in λm without needing to refer to any
exact calculations, so that a reasonable uncertainty estimate
can be obtained for large systems when no exact result is
available.
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FIG. 5. (Color online) Detail of entanglement scaling shown
for the example of the nearest-neighbor correlation 〈Ŝy

i Ŝz
i+1〉 for

the h = 0.5 Ising quench on N = 10 sites of a 1D Ising chain.
Cyan/magenta sets of lines show the predictions obtained for different
λm values with family A and family B equations, respectively. Green
and yellow zones show the extrapolation to the full quantum values
λm = 1 obtained by each of the two methods, respectively. Vertical
width gives the statistical uncertainty. The blue triple lines give
the final combined estimate and uncertainty. For comparison, the
black markers show the predictions available with λA = 1 direct
calculations, while the black line shows the exact value.

Figure 6 further compares the predictions and their uncer-
tainty with the true values, which can still be calculated for
N = 10. It shows that we obtain useful results until t ≈ 2.8,
which is about three times longer than the plain approach
of Sec. III A. This is long enough to access the particularly
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FIG. 6. (Color online) Predictions of the nearest-neighbor corre-
lations involving Sz for the h = 0.5 Ising quench on N = 10 sites of
a 1D Ising chain, as obtained using the entanglement scaling method
(triple colored lines), and compared with known exact values (black
lines). Black markers show the predictions available with λA = 1
direct calculations.
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FIG. 7. (Color online) Correlation between Ŝy and Ŝz spin
components as a function of site-to-site distance d for a N = 10
site 1D lattice at the critical quench value h = 0.5, as calculated
using family A equations. Statistical uncertainty is shown as width of
the color bars, while black lines show the exact results.

important intermediate-time regime of the problem17 that
occurs when vmaxt ∼ d for correlations between dth neigh-
bors, where vmax = 2|J |min[h,1] is the maximum propagation
velocity. For our examples here, vmax = 1. This is also a
characteristic time scale for single-site decoherence in the
system such that |〈Ŝ〉| decays to its typical long-time value
over this time.

We see that the match in Fig. 6 is well within the uncertainty
reported, and in fact the uncertainty given is quite conservative.
The limiting factor is the relatively poor performance of
family B in comparison with family A. For this system, the
Glauber-Sudarshan–type equations give results further from
the full quantum value than the noiseless ones. To reduce the
final uncertainty, one needs a substitute, “family C,” that gives
results that deviate less while retaining a simple dependence
on λC .

For example, Fig. 7 shows the buildup of correlations at a
range as time progresses, when calculated using family A data.
One can follow the propagation of the disturbance created by
the quench by observing the times at which the correlation
values diverge from each other with subsequent d. It would
be highly advantageous to have a second family with similar
statistical uncertainty, so as to be able to continue to resolve
the difference between d = 2 and 3 in the final predictions.

C. Large systems

In Fig. 8, we show predictions for two very large systems
(a spin chain with N = 104 sites, and a 2D square lattice with
100 × 100 sites, inaccessible with direct calculation). Indeed,
the full quantum dynamics of a 2D case of the size shown
in Fig. 8(b) is presently numerically intractable by any other
currently available methods.

Importantly, the lifetime for the 1D spin chain calculations
shown in Fig. 6 for N = 10 is the same as for N = 10 000 in
Fig. 8. This confirms that with these methods the simulation
performance need not depend intractably on the system size.
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FIG. 8. (Color online) Dynamics of large spin systems after a
quench, showing nearest-neighbor correlations between orthogonal
spin directions. (a) A N = 10 000 1D Ising spin chain quenched to
h = 0.5; (b) a 100 × 100 spin lattice quenched to h = 0.1. Triple
lines show prediction and uncertainty obtained via the entanglement
scaling method. Black markers show the predictions available with
λ = 1 direct calculations.

Naturally, being able to simulate 104 spins would become
especially useful for such cases as nonuniform systems or
quenches, rather than the uniform test cases shown here.

V. COMMENTS AND CONCLUSIONS

A. Summary

We have implemented a phase-space representation for spin
systems based on the SU(2) coherent states and demonstrated
that it can be used to simulate the full quantum real-time
dynamics of large systems of interacting spins, giving correct
results.

A direct application of the representation allowed us to
simulate the dynamics for significantly longer times than previ-
ous attempts using Schwinger bosons,70 e.g., an improvement
from ∼0.6h̄/J (in Ref. 70) to 1.1h̄/J for Ising chains after

a transverse field quench to the critical value of h = 0.5. By
using the entanglement scaling technique, we have been able
to extend simulated times further, to times of up to 2.8h̄/J ,
which is long enough to observe the main decoherence effects
and the propagation of correlations. Furthermore, initial states
are compact so that these representations now exhibit good
scaling with system size; the times achievable do not depend
on the number of spins in the system, apart from computer
resource limitations which scale only linearly with the number
of interspin coupling terms. This allows one to access really
large systems that are not directly accessible by other methods,
such as the 104 spins calculations in one and two dimensions
demonstrated here.

B. Outlook

This work is a first application of the entanglement
scaling approach65 beyond BEC collisions. Avenues for
further improvement of simulated times tsim include diffusion
stochastic gauges68 to reduce diffusion of trajectories into
badly normalized regions of phase space such as Im[R],
or a combination of drift and diffusion gauges of the kind
presented by Dowling et al.88 with Metropolis sampling of
the resulting real weights. For application of entanglement
scaling, stabilization of the equations may be useful by the use
of just drift gauges56,62 or the methods presented in Perret
et al.89 Finding a third family of equations, “family C,”
which more closely matches the full evolution at λm = 0 than
family B, would strongly improve the precision of the final
estimates.

Perhaps the most promising avenue to consider is to build a
different kind of kernel that is more closely suited to the natural
states of the Hamiltonian (20), especially some variety that
builds nearest-neighbor correlations into the basis. To this end,
the conjectures at the end of Sec. III D are points to remember
when formulating new kinds of phase-space descriptions.

Within the existing time limitations, there is a range of
problems for which short-time spin dynamics can tell us a
lot. This includes quantum quenches in general, the study of
critical behavior, and the pinpointing of phase transitions by
analysis of the Loschmidt echo.90 The coherence properties of
a system can be investigated with echo sequences of external
forcing parameters,91–94 something that is especially useful for
lossy systems because it alleviates the need for evolution over
long times. The representations developed here can be used
to simulate such situations without imposing approximations
or projections onto the Hamiltonian, especially in 2D and 3D
systems, something for which efficient methods have been
lacking.
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APPENDIX A: REMAPPING THE VARIABLES
ONTO A SEAMLESS SPACE

1. Polar and Boolean variables

To allow the representation of the |↑〉, |↓〉 states polarized
in the �z direction, and avoid the stiffness of the equations near
these points in phase space, we make a change of variables
that prevents such infinite values. While the surface of the
Bloch sphere can not be seamlessly mapped onto a plane,
hemispheres are easily treated. We make a transformation
similar to a polar projection centered on the nearest pole, and
introduce a Boolean variable s that keeps track of which pole
is being used for a given trajectory.

For a state |z〉 we implement the following transformation
to a complex variable y:

y =
{

e−z, and s = +1 if R[z] > 0

ez∗
, and s = −1 if R[z] � 0,

(A1)

where the variable s = sign (R[z]) tells us which Bloch
hemisphere we are in. Under this parametrization, the variable
y never leaves the unit circle |y| � 1. The extreme spin values
of Sz = ± 1

2 are now at the well-behaved y = 0 point, with
s = ±1.

Since the branch cut in this parametrization lies on the far
pole, the trajectories can never go near this singular region so
long as we make sure to change the parametrization whenever
the trajectory crosses the “equator.” This is implemented by
checking at the end of each time step whether |y| has crossed
outside the unit circle. If it has, we carry out

y → 1

y∗ and s → −s. (A2)

When time steps are small, there is then no risk of approaching
the far, pathological, pole. The evolution near the equator
of the Bloch sphere is gradual, although swapping between
projections occurs.

For the many-mode system, we need separate variables yi ,
y ′

i , si , and s ′
i for each spin. The SDEs (21) and (22) take on

slightly different forms depending on which hemispheres the
bra and ket components of the kernel lie. In terms of only the
new variables, they are

dyi

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−iyi

{
Sz

i−1 + Sz
i+1

}+ ih
2

(
1 − y2

i

)
− yi[ηi + iη∗

i−1]
if si = +1,

−iyi

{
Sz∗

i−1 + Sz∗
i+1

}− ih
2

(
1 − y2

i

)
+ yi[η∗

i − iηi−1]
if si = −1

(A3)

and

dy ′
i

dt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iy ′
i

{
Sz

i−1 + Sz
i+1

}− ih
2

(
1 − y ′2

i

)
− y ′

i[η
′
i − iη′∗

i−1]
if s ′

i = +1,

iy ′
i

{
Sz∗

i−1 + Sz∗
i+1

}+ ih
2

(
1 − y ′2

i

)
+y ′

i[η
′∗
i + iη′

i−1]
if s ′

i = −1,

(A4)

where the Sz estimator in terms of the new variables is

2Sz
i = tanh R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1−yiy
′
i

1+yiy
′
i

if si = +1,s ′
i = +1,

y ′∗
i −yi

y ′∗
i +yi

if si = +1,s ′
i = −1,

y∗
i −y ′

i

y∗
i +y ′ if si = −1,s ′

i = +1,

y∗
i y ′∗

i −1
1+y∗

i y ′∗
i

if si = −1,s ′
i = −1.

(A5)

2. Simulation termination

At times t � tsim, as shown in Fig. 4, a pronounced
spiking behavior is seen in observable means. It is caused by
approaches to the R = ±iπ/2 poles described in Sec. III B.
Spikes are a warning sign that poor sampling of the dis-
tribution may be occurring67 so one should disregard the
simulation for times after its onset. With the original z,z′
variable equations that have stiff behavior, spikes also lead
immediately to numerical inaccuracy and overflow, so that
ensemble averages of the estimators also overflow and any
actual spiking/systematic error is hidden from view. A sim-
ilar behavior was seen in positive-P simulations of boson
fields.63 The seamless variables y,y ′ are less stiff so that
overflow does not occur and the bare spiking behavior can
in principle be seen. An example is shown in Fig. 9. The
results shown in other figures disregard evolution after the
appearance of the first spike. We detect spikes by checking
whether

|Sz| = 1
2 | tanh Ri | > 1/ε (A6)

for any trajectory at any site i, where we choose ε = 0.04.

FIG. 9. (Color online) Spin components: 〈Ŝx〉,〈Ŝy〉,〈Ŝz〉 (bottom
to top) vs time for the 10-site Ising spin chain with transverse quench
from h = 0 to 0.5. Results of simulations using the seamless equations
with y,s variables. Here, we do not use the criterion (A6) to stop the
simulation, so as to show the bare behavior. N = 104 trajectories,
B = 100 bins. Error bars and exact results are shown. The criterion
(A6) to stop the evolution is achieved at tsim ≈ 1.1.
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FIG. 10. (Color online) Extrapolation details for the nearest-
neighbor correlation 〈Ŝy

i Ŝz
i+1〉 for the data of Fig. 5 at t = 1.8.

The black circles show observable estimates Om(λm) obtained with
family A and B equations. The green and yellow lines show the
j = 1, . . .S = 100 ensemble of quadratic fits f (j )

m (λm) obtained for
family A and B, respectively, with the synthetic data sets O (j )

m (λm).
The black square is the exact quantum value obtained through exact
diagonalization.

APPENDIX B: ENTANGLEMENT SCALING PROCEDURE

The technique is described in detail in Ref. 65. We proceed
as follows:

(1) For an observable of interest Ô, we generate observable
estimates Om(t,λm) ± �Om(t,λm) for a sequence of λm

values, for each method m. Here, m = {A,B}. We expect that
at long times t > tmsim(λm), the data are missing (here, due
to rejection because of the onset of spiking) (seen in Figs. 5
and 10).

(2) We use the available λm ranges of data to extrapolate to
the full quantum predictions Qm(t) at λm = 1.

(3) We estimate the statistical uncertainty of these extrapo-
lations �Qm(t).

(4) The final best estimate Q(t) is taken to be the prediction
Qm(t) with the smallest uncertainty among the �Qm(t).

(5) The final uncertainty �Q(t) is taken to be the maximum
among all statistical uncertainties �Qm(t) and discrepancies
|Qm(t) − Q(t)|. The latter takes into account systematics due
to poor fits without needing to refer to any exact calculations.

Two or more families m are used to provide a check on each
other’s accuracy. For this to work, they must make independent
estimates of Qm(t). Since we are in principle free to choose the
functional form by which λm enters the evolution equations,
estimates will only be independent when the λ = 0 starting
points differ to a statistically significant degree.

There is also the matter of choosing fitting functions in
the λm. In principle, they are unknown a priori. In practice,
complicated dependencies on λm are unacceptable because
the extrapolation would become ill conditioned due to poorly
constrained fitting parameters. Scaling the noise variance with
λm tends to give near-linear dependence, when the result at
λm = 0 is a noiseless set of equations. We try polynomials
up to third order as our fitting functions fm(t,λm) in λm. In

almost all cases, quadratic fits give the best results; linear fits
tend to disagree between methods m by more than statistical
uncertainty because the dependence is too simple, while cubic
fits are usually ill conditioned and give huge uncertainties.

Uncertainty estimates for extrapolations can be found by
various means.95 One relatively straightforward method is to
generate a set of synthetic data sets where deviations from the
fit are randomized. To do this, we calculate the rms deviation
from the fit Rm(t)2 = 1

Nm(t)

∑
λm

[Om(t,λm) − fm(t,λm)]2, and
add random Gaussian noise having this standard deviation to
the original data. Nm(t) is the number of λm values used. This
gives an ensemble of data sets labeled by j = 1, . . . ,S, with
values

O(j )
m (t,λm) = Om(t,λm) + Rcap

m (t,λm)ξ (j )
m (t,λm), (B1)

where the ξ
(j )
m (t,λm) are independent Gaussian random vari-

ables with mean zero and variance unity. In practice, we
use a deviation that is capped from below Rcap

m (t,λm) =
max[�Om(t,λm),Rm(t)] to not be smaller than the statistical
uncertainty in the data points.

Having these sets, an extrapolation Q
(j )
m (t) is made with

each one. The uncertainty in our final estimates �Qm(t) is
based on the distribution of Q

(j )
m (t). This need not be Gaussian,

so instead of using standard deviations we consider percentiles
(68.3% in the figures). We use S = 100 such synthetic data
sets in each case.

APPENDIX C: SIMULATION TIME FOR NONZERO h

Consider the equations (A3) for the “seamless” y variables,
and let us stay now generally in the s = s ′ = +1 projection,
since what follows is very approximate and this simplification
is sufficient to obtain the observed scaling (40) and (41). The
poles correspond to the denominator in (A5) going to zero,
i.e., for the s = s ′ case, when yy ′ = −1. Since |y| � 1, this
means

y ′ = −y and |y| = |y ′| = 1 (C1)

is the location of the poles, i.e., y and y ′ lie opposite each other
on the unit circle.

To estimate when this can occur, consider that y and y ′∗ start
out equal, and have a similar evolution that differs by some
random noise. Hence, the variance of the distance |y − y ′| is
of the same order as the variance of |y|. Poles can occur only
when |y − y ′| = 2, so we expect approaches to the poles to
begin when the variance of y is of the order of half (then ±2σ

outliers are separated by a distance of ≈2). We will estimate
tsim by looking for the time when

var[|y|] = 〈|y|2〉 − |〈y〉|2 = �2
y, (C2)

where �y is a constant O(1/2).
Let us look at the evolution of y. Initially, all the Sz

i−1 and
Sz

i+1 contributions are negligible because they are multiplied
by y ≈ 0. If we ignore them, the sites decouple, and one has
some hope of a simple analysis, so let us proceed in that way.
The noises η〈i,j〉 can be collected together into one larger noise,
and the approximate equation is

dy

dt
= ih

2
(1 − y2) + y

√
Cη(t), (C3)
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where C is the number of connections per site. For example,
C = 2d in d-dimensional square lattices. η has the same
statistical properties (26) as one of the ηi .

Initially, y ≈ 0, and (C3) leads to

y(t) ≈ i
ht

2
(C4)

so that the trajectories move upwards towards y → i, while
starting to acquire fluctuations. There are two extreme possibil-
ities: either the trajectories all move up towards the unit circle
without acquiring much noise along the way (large h), or their
average stays small while the outliers approach the unit circle
(small h). Let us, for now, ignore also the nonlinearity that
occurs when y ∼ O(1), and consider the early-time equation

dy

dt
= ih

2
+ y

√
Cη(t) (C5)

which can be solved. For y(0) = 0, it is

y(t) = ih

2
e−√

Cf (t)
∫ t

0
e
√

Cf (s)ds, (C6)

where the function

f (t) =
∫ t

0
η(s)ds = fR(t) + ifI (t) (C7)

is an integrated noise that has the following properties:

〈f (t)〉 = 0, 〈f (t)f (t ′)〉 = 0, 〈f ∗(t)f (t ′)〉 = |t − t ′|
(C8)

and fR and fI are the real and imaginary parts, respectively.
These are independent and have equal variances of |t − t ′|/2.

To proceed, we will need the following results,54 valid for
real Gaussian random variables ξ of variance 1 and zero mean:

〈eσξ 〉 = eσ 2/2, 〈eiσξ 〉 = e−σ 2/2. (C9)

Let us now evaluate the variance of |y|. The expression
(C6) for y can be grouped according to independent noises in
the exponential, such that

y = ih

2

∫ t

0
ds e

√
C[fR(t)−fR (s)] ei

√
C[fI (t)−fI (s)]. (C10)

Each factor with independent noises can be evaluated inde-
pendently, so

〈y〉 = ih

2

∫ t

0
ds〈e

√
C[fR (t)−fR (s)]〉〈ei

√
C[fI (t)−fI (s)]〉. (C11)

The noise difference is f (t) − f (s) = ∫ t

s
η(s ′)ds ′ and its real

and imaginary parts have a variance of |t − s|/2. Then, using
(C9) we obtain

〈y〉 = iht

2
. (C12)

A similar but slightly more lengthy procedure using the
substitution (C10) gives 〈|y|2〉 = h2t

4C
(eCt − 1) so that

var[|y|] = h2t

4C
[eCt − 1 − Ct], (C13)

to be compared with our variance criterion (C2).
The approximate deterministic evolution (C4) is valid

as long as 〈y〉 remains small, i.e., for times �t0 = 2/h.

When h is small, t0 � 1, and the variance at this time is
≈e2C/h(h/2C) � 1. Hence, our variance criterion (C2) for tsim

is exceeded while our assumptions hold. Under the 2/h � 1
assumption, var[|y|] ≈ h2t

4C
eCt , so that for small h (C2) gives

tsim ≈ 2

C
ln

(
2�y

√
C

h

)
− 1

C
ln tsim ≈ 2

C
ln

(
2�y

√
C

h

)
.

(C14)

The ln t term is negligible for small enough h, so the observed
scaling behavior (40) is recovered. A comparison with the data
of Fig. 4 gives a match for �y ≈ 1/4.

Different behavior occurs when h is large. In this case, by
the “large-y” time of t0, (C13) gives

var[|y|(t0)] ≈ C

h
� 1 (C15)

so that by the time the linear drift approximation (C4) used to
obtain (C13) breaks down, the variance is still small and the
yy ′ = −1 poles have not been approached.

At later times, if we continue to ignore the Ising drift terms
∼ySz, then upon reaching y ≈ i, we make the coordinate
change (A2) to obtain s → −1, and y → ≈ −i, soon followed
by also a complementary flip in s ′ and y ′ since the variance of
the trajectories is small. The evolution then continues to drift
upwards according to ẏ ≈ ihy/2 until we again reach y ≈ +i,
and so on. This basically corresponds to precession invoked by
the strong transverse field along the �x axis. For large h, many
such periods will occur before tsim is reached. Let us make a
gross approximation that on average the value of |y| is y in
the time period t0 < t < tsim, expecting y to be O(1). Then, an
approximate equation of motion is

dy

dt
= deterministic terms + y

√
Cη(t). (C16)

The equation of motion for the variance, on the other hand, is
(via the Ito calculus)

d

dt
var[|y|] = C|y|2

2
+
(〈

y∗ dy

dt

〉
−
〈
dy

dt

〉
〈y∗〉

)
+ c.c.

(C17)

The covariances on the right-hand side can have a complicated
dependence on y, but in the spirit of simplifying down to the
bare essentials, let us omit them. With that, we find

var[|y(t)|] ≈ var[|y(t0)|] + C|y|2
2

(t − t0) (C18)

≈ C

[
1

h
+ |y|2

2

(
t − 2

h

)]
, (C19)

using also (C15). Applying the criterion (C2), we obtain the
following estimate at large h:

tsim ≈ 2�2
y

C|y|2 + 2

h

(
1 − 1

|y|2
)

, (C20)

the general behavior being (41). A comparison with the data
of Fig. 4 gives a match for c1 ≈ 0.8 and c2 ≈ 0.3, i.e., y ≈ 1.1
and �y ≈ 0.7.
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Part II: Universality Class of the
dirty-boson transition in 2d



CHAPTER 4

THE DIRTY-BOSON PROBLEM

4.1 Introduction

Disorder is ubiquitous in condensed matter systems, particularly in real materials and can give rise to
non-trivial effects; a classical example of this is the phenomena of Anderson localization (Anderson,
1959) of non-interacting electronic systems in disordered media. Suffice it to say, the interplay be-
tween the strength of disorder and interactions adds an extra layer of complexity and is an extremely
challenging problem. This is especially due to the shortage of well-controlled approximations for an-
alytical treatments, save for a few exceptions such as weak disorder in 1d. In light of such inherent
difficulties, it is only natural to gain insight on the physics of disordered system using numerical
tools, such as its quantum critical properties.

There are two common ways of studying disorder physics that are often encountered. One way is
to quench a system by incorporating a fixed amount of disorder, followed by tuning an external
parameter, (say λ) that is known to induce a quantum phase transition in the disorder-free system.
The second way is to instead fix the parameters of the ’clean’ system and increase the disorder
strength (say ∆). In the latter scenario, one can treat ∆ as another dimension of exploration for
new quantum critical phenomena. As well, a novel ∆− λ phase diagram can be mapped out. Some
novel disorder-induced phenomena include the smearing of a sharp transition (Vojta, 2010), new
critical exponents as dictated by the Harris criterion (Harris, 1974) (see section 4.5.1) and of course
the manifestation of novel quantum phases such as the spin glass (SG) phase in random bond Ising
models (Cho and Fisher, 1997) and the Bose glass phase (BG) in disordered Bosonic models (Fisher
et al., 1989).

Of interest to us is the effects of uncorrelated disorder in the 2d Bose-Hubbard (BH) model, dubbed
the ’dirty-boson’ problem, which was studied in detail in the seminal work of (Fisher et al., 1989) and
has since been established as a central reference. It is interesting to note that the interest in disordered
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boson physics has been spurred on by several natural experimental platforms, examples of which
include 4He in random media such as Vycor (Crowell et al., 1997) or Aerogel (Finotello et al., 1988)
and most recently transition metal halogenides (Zheludev and Roscilde, 2013) in place of traditional
metal oxide quantum magnets. It has further been successfully emulated using ultra-cold atoms in
optical lattices (Sanchez-Palencia and Lewenstein, 2010) using bichromatic potentials (Damski et al.,
2003, D’Errico et al., 2014, Roux et al., 2008), speckle potentials (White et al., 2009) or different
atomic species to mimic random impurities (Ospelkaus et al., 2006) as well.

Surprisingly to this day, the universality class of the ’dirty-boson’ problem, is filled with conflicting
results in the literature. In particular the dynamic critical exponent, z, has been proven to be par-
ticularly difficult to pin down. In (Fisher et al., 1989), Fisher predicted that z = d in all dimensions,
an exact longstanding result that invalidated the existence of an upper critical dimension and has
been used as a major assumption in most numerical studies (Runge, 1992, Yu et al., 2008, 2012b,
Zhang et al., 1995) since its inception. Oddly enough a series of numerical results demonstrated that
an alternate scenario z < d (Álvarez Zúñiga et al., 2014, Priyadarshee et al., 2006, Meier and Wallin,
2012, Kim and Stroud, 2008, Marković et al., 1999) was possible and was further lent credence by
the theoretical work of Weichman et al (Weichman, 2008).

Our work in this thesis, details our numerical efforts to determine unequivocally the universality
class of the ’dirty-boson’ problem, paying special attention to z. To this end, we engage in large-
scale QMC simulations making no prior assumptions to the value of z, which traditional simulations
heavily relied on (cf. section 4.6.1). For the remainder of this chapter, we aim to elucidate and
review the features of the ’clean’ and ’dirty’ BH model and provide insight on the controversy with
regards to the ’dirty-boson’ problem, to which our research is targeted at.

4.2 The Insulator-conductor transition in bosonic systems

4.2.1 The Bose-Hubbard model

The Bose-Hubbard model (Fisher et al., 1989) is an approximate description of interacting bosons
in a lattice that manifests a conductor-insulator type transition arising from a competition between
kinetic energy and potential energy terms. Its Hamiltonian takes the simple form:

Ĥ = −t ∑
〈i,j〉

(b̂†
i b̂j + b̂†

j b̂i)−∑
i

µn̂i +
U
2 ∑

i
n̂i(n̂i − 1), (4.2.1)

where t represents the tunneling amplitude, µ sets the chemical potential and U is the on-site
potential energy that penalizes occupancies greater than one. The bosonic operators, b̂i, b̂† satisfy
the usual commutation relations: [b̂i, b̂†

i ] = δij and [b̂i, b̂†] = 0 where δij is the kronecker delta function.
n̂i = b̂†

i b̂i is the number operator for a given site. It also has a global U(1) symmetry such that
H
({

b̂i→ b̂ie−iθ , b̂†
i → b̂†

i eiθ
})

= H
({

b̂i, b̂†
i

})
. We will now discuss its zero temperature properties.

The BH model admits a Mott insulator (MI) and a Superfluid (SF) conducting phase and a phase
diagram in the t/U-µ/U plane that is uniquely distinguished by the existence of asymmetric Mott
lobes surrounded by a SF phase as shown in the schematic phase diagram in fig. 4.1(a).
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Generic MF transition

Special (d+1) XY-model
 transition

(a) Phase diagram of the clean BH
model

(b) Phase diagram of the BH model
with disorder, δµi/U = δ.

Figure 4.1: Schematic phase diagrams of the BH model adapted from (Weichman, 2008) with and without
disorder. The multicritical point is indicated by the red dots. The transition through the latter at fixed
µ/V lies in the (d+1) XY universality class. The generic transition can be described by its mean-field values.
Experiments involving 4He in random media such as Vycor is an excellent emulator of BH with disorder (Zimanyi
et al., 1994) and may be a viable option to probe the transition indicated by the brown dashed arrow.

The Mott insulator (MI) is a gapped phase and characterized by a vanishing compressibility, κ = ∂ρ
∂µ ,

where ρ is the density of particles. Based on this definition of the compressibility then, in the Mott
phase, the density of the system is stuck at commensurate integer filling albeit only for a certain
range of values of the chemical potential. One can imagine that a sufficiently large chemical potential
will inevitably overcome the energy gap and allow the addition of particles or holes. To visualize
how a Mott phase can arise, it is instructive to first study the BH Hamiltonian without tunnelling,
i.e. the t = 0 limit, which is given by the on-site interaction Hamiltonian

Ĥ = −∑
i

µn̂i +
U
2 ∑

i
n̂i(n̂i − 1) (4.2.2)

that is diagonal in the Fock basis with eigenstate: |ψ〉 = ∏i
(
â†)n |0〉 where |0〉 is the vacuum state.

The energy per site of the system as a function of µ/U and at different integer fillings are then given
by:

If ni = 0 : Ei = 0

If ni = 1 : Ei = −µ

If ni = 2 : Ei = U − 2µ

If ni = 3 : Ei = 3U − 3µ

...

(4.2.3)

and depicted in fig. 4.2. We see that in order to minimize the energy of the system, it is preferred to
have n bosons per site for the range of chemical potentials: µ/U ∈ (n− 1,n). This region represents
the aforementioned Mott insulator with a density that is insensitive to changes in µ/U. A crossover
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Figure 4.2: Energy per site of the BH model in the absence of hopping. The system is in a Mott phase in
commensurate filling with n bosons per site for µ/U ∈ [n,n− 1]. A crossover from density n to n + 1 occurs at
values µ′/U = n labeled by red diamonds.

to Mott phases of different densities occurs at µ/U = n precisely when E(n− 1) = E(n), implying
an energy gap of nU. For finite t however, the system can gain energy by hopping between sites and
use it to overcome the energy gap which is of order U. For t�U, the on-site interaction dominates
and the MI phase still persists. On the other hand, for t�U, the gain in kinetic energy dwarfs the
gap and particles/holes can now be added easily. The system is essentially in a gapless superfluid
phase. We therefore expect that for intermediate values of t/U, extent of the Mott lobes in the
µ-direction which represents the excitation gap, must decrease accordingly, eventually vanishing at
a unique point, tc/U that demarcates the location of the tip of the Mott Lobe.

In the regions between the Mott Lobes, the system is a SF and particles can be added to the system at
no energy cost, thereby realizing a gapless phase with finite compressibility. In contrast to the Mott
phase, the density increases continuously as the chemical potential is increased. In effect, the on-site
interaction strength is completely offset by the gain in kinetic energy. The T = 0 wavefunction for the
SF state is given by the state with all its bosons in the zero momentum state: |ψSF〉= 1√

N!

(
b̂†
)N
|0〉.

Additionally it exhibits long-range off-diagonal long-range order and is characterized by a non-zero
complex order parameter 〈b̂〉.
Fascinatingly, the SF-MI transition through the tip of the lobes, induced by varying t/U (and
indicated by the red dashed arrow in fig. 4.1(a)), is a special multicritical point at which a "hidden"
particle-hole symmetry1 is restored and belongs to the universality class of the (d + 1) classical
XY model (Campostrini et al., 2001, Fisher et al., 1989), where ν = νXY

d+1,z = 1. This particle-hole
symmetry implies that particle and hole excitations occur in equal numbers. Meanwhile, the generic
transition crossing of the Mott lobe either at constant t/U or constant µ/U (that does not cross the
tip) however, is mean field in nature (Fisher et al., 1989) and traversing an upper (lower) branch of
a given Mott Lobe, results in only particle (hole) excitations.

1We say that this symmetry is "hidden" since it is not explicit in the Hamiltonian in eq. 4.2.1
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ni E(µ,δµi = −∆,ni) E(µ,δµi = ∆,ni)
0 0 0
1 −µ + ∆ −µ− ∆
2 −2µ + U + 2∆ −2µ + U − 2∆

Table 4.1: Energy per site at the extreme values of disorder strength, ∆ with no hopping terms.

4.2.2 The effect of disorder

Now let us consider the effects of bounded uncorrelated disorder in the form of a random on-site
chemical potential which amounts to the modification:

µ→ µ + δµi (4.2.4)

in eq. 4.2.1, where δµi is uniformly distributed in the interval [−∆,∆]. Once again, we turn to the
t = 0 limit for insight. The Hamiltonian in this case now reduces to:

Ĥi = −(µ + δµi)n̂i +
U
2

n̂i (n̂i − 1) (4.2.5)

and at different values of ni for a given site i, there exists a range of possible energy curves E(µ,δµi,ni)

that are bounded above and below by δµi = ±∆ respectively that can give rise to a new phase in
the region:

µ ∈ [nU − ∆,nU + ∆]. (4.2.6)

To elucidate this, one simply has to explicitly write out the possible values of E(µ,δµi,ni) for the
different fillings and the bounds of disorder strength as summarised in table. 4.1 and illustrated in
Fig. 4.3. Considering the two extreme cases, δµi =±∆, we see the boundaries of eq. 4.2.6 are obtained
by solving the equation: E(µ,n,±∆) = E(µ,n− 1,±∆). For general disorder strengths, δµi ∈ [−∆,∆]
however, we can solve for the crossover point µ′ at which a transition from an occupancy of n to
n + 1 occurs, by equating:

E(µ′,δµi,ni) = E(µ′,δµi,ni + 1), (4.2.7)

to yield:
µ′ = niU − δµi. (4.2.8)

Once µ is tuned past µ′ the site occupancy increases from n to n + 1. The special region of eq. 4.2.6
represents a novel BG phase, which is evidently compressible; the density of the system increases
continuously from n to n + 1 as µ is tuned from nV − ∆ to nV + ∆. In the complementary region:

µMott ∈ [(n− 1) + ∆,n− ∆] (4.2.9)

however, we see that a Mott insulator state persists and so the net effect of disorder on the phase
diagram is to shrink the Mott regions uniformly by exactly ∆. As in the clean system, introducing
a tunnelling into the system via a nonzero t means that the kinetic energy gained can be used to
overcome the energy gap, resulting once again in the tapering of the Mott lobes, till it eventually
vanishes at a multi-critical point. Naively, one might expect that the regions originally occupied by
the MI, would be replaced by a SF but we now know that this scenario is incorrect and instead a
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Figure 4.3: Energy for site i of the BH model without hopping but with disorder δµi/U ∈ [−∆,∆], where
∆ = 0.2 as a specific case. This represents the BG phase (yellow region) which exists between the n = 1 and
n = 2 Mott lobes (grey region) (cf. Fig. 4.1(b)). The red (blue) lines correspond energy profile for maximum
(minimum) disorder strength. The dashed line is an example of the energy profile for a general value of δµi
within the bounds. Depending on the strength of the disorder δµi/U, site i is either occupied by 1 or 2 bosons
at a depending if µ/U is lesser or greater than µ′i/U indicated by the red circle.

Bose-glass (BG) phase emerges (cf section 4.3).

To obtain a qualitative understanding of the BG phase, we consider the effects of exiting the upper
branch of a Mott lobe by increasing the chemical potential at fixed t/U. Fisher (Fisher et al.,
1989) argued that when µ/U in eq. 4.2.4 is tuned larger than the upper (lower) branch of the Mott
Lobe (see fig. 4.1(b)), excess particles (holes) that are added to the system (on top of the existing
Mott Background) must be Anderson localized by the random potential of the disorder: {δµi}. As
such, the phase of the system just outside the Mott Lobe cannot be a SF instead we have a peculiar
compressible insulator with localized quasiparticles. For sufficiently large µ/U however, the irregular
potential is eventually smoothed out as more particles enter the system, eventually admitting a SF
phase. A comprehensive summary of the 2d BH phase diagram from stochastic series expansion
(SSE) (cf. chp 5) simulations can be found in Fig. 4.4.

4.3 Absence of direct MI-SF transition: Theorem of inclu-
sions

A highly debated issue surrounding the ’dirty-boson’ system was if a direct MI-SF transition was
possible. Although, Fisher put forth a convincing case that SF cannot generically arise upon exiting
a Mott lobe, it did not definitively rule out the possibility of a direct MI-SF transition through the
multi-critical points, where the excitation gap exactly vanishes. Curiously, a large number of direct
numerical simulations (Krauth et al., 1991, Makivić et al., 1993, Wallin et al., 1994, Pázmándi and
Zimányi, 1998, Lee et al., 2001) and some approximate approaches (Zhang and Ma, 1992, Wu and
Phillips, 2008, Bissbort and Hofstetter, 2009) observed this unlikely scenario. It was only in 2009
that Pollet et al resolved this controversy by proving the ’Theorem of Inclusions’ in all dimensions,
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Figure 4.4: The phase diagram of the 2D BH model taken from (Lin et al., 2011). Shaded areas are the Mott
insulating phases for zero disorder as determined from strong-coupling expansions in (Elstner and Monien, 1999)
and (Niemeyer et al., 1999). The mean-field phase boundaries and constant density profiles for zero disorder
are shown as red dotted lines. The dashed line indicates the constant chemical potential µ/U = 0.375. The
solid triangle indicates the location of the transition to the Mott phase in the absence of disorder as determined
by QMC simulations along the dashed line from (Niemeyer et al., 1999). The three solid squares from bottom
up are for the locations of superfluid to Bose-glass transitions with on-site disorder of strength ∆/U = 1 at
µ/U = 0,0.375,1, respectively, are the results of the QMC simulations of (Lin et al., 2011)

and verified by QMC simulations (Pollet et al., 2009, Söyler et al., 2011).

The theorem of inclusions states that in the presence of generic bounded disorder there exist rare, but
arbitrarily large, regions of the competing phase across the transition line. By generic disorder we
mean that any particular realization has a non-zero probability density to occur in a finite volume.
This theorem immediately implies the absence of a direct SF-MI quantum phase transition. In (Pollet
et al., 2009), Pollet et al proved the following two theorems, named theorem I and II. Theorem I
states that if the bound on the disorder strength ∆ was larger than half the Mott-gap, Eg/2, then
the system must be compressible. In short, if

∆c > Eg/2 (4.3.1)

then the transition is to the BG phase and not the MI. Meanwhile, theorem II states that the system
must have non-zero compressibility on the SF-I critical line and in its neighborhood in the presence
of on-site disorder potentials. Together, theorem I and II proved that a direct SF-MI transition was
not possible, putting an end to nearly two decades of controversy.

4.4 General results from scaling theory

Before pressing on, we turn to scaling theory to derive some general results for the insulator-conductor
transition of the BH model. Scaling theory (Continentino, 2011, Stanley, 1999, 1987) is a powerful
tool that predicts universal scaling relations as a function of proximity to a QCP (of a continuous
phase transition) which we denote by δ ∼ |λ− λc|, where λ is a generic tuning parameter and λc is
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the critical point. Remarkably, the heart of it lies in the simple assumption of two diverging length
scales (for quantum systems),

ξ ∼ δ−ν

ξτ ∼ δ−νz,
(4.4.1)

which defines the critical exponents ν and z. A feature of this is that dimensionful observables of a
system near a continuous QCP then exhibits scale invariance. Consider the free energy density of
the system defined in the T = 0 thermodynamic limit:

f (µ, J) ≡ − lim
β→∞

lim
L→∞

1
βLd ln Z, (4.4.2)

where Z = Tr(e−βĤ) is the partition function and N is the spatial dimension of the system, is a
homogeneous function. Using a path integral representation, it is trivial to see that β≡ Lτ = 1/kBT
plays the role of an extra imaginary time dimension. Upon inspection of eq. 4.4.1, we see that there
exists an anisotropy in the scaling between space and time. Consequently, under an arbitrary length
scale transformation of b such that L→ L′ = bL and Lτ → L′τ = bzL′τ, the singular part of the free
energy, fs is a homogeneous function that satisfies the following relation (Fisher et al., 1989):

fs(δ) ∼ b−(d+z) fs(b1/νδ), (4.4.3)

which for the standard choice b1/νδ = 1 implies that:

fs(δ) ∼ δν(d+z). (4.4.4)

By convention, α defines the critical exponent for the free energy such that fs ∼ δ2−α and reconcili-
ation with eq. 4.4.4 reproduces the quantum hyper-scaling relation:

2− α = ν(d + z), (4.4.5)

in comparison to the classical hyper-scaling relation:

2− α = νd. (4.4.6)

In quantum systems then, the quantity de f f = (d + z) plays the role of an effective dimensionality.

4.4.1 Compressibility and Superfluid condensate density

Scaling forms for other physical observables can be derived directly from eq. 4.4.4. For instance,
choosing the chemical potential as the tuning parameter such that δ = µ− µc, is is easy to show by
simple differentiation that the singular part of the compressibility: κs ≡ ∂ρ/∂µ = −∂2 f /∂µ2 scales
as:

κs ∼ δv(d+z)−2. (4.4.7)
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Moreover at criticality, the disorder averaged unequal time green’s function defined by:

G(r,τ) ≡ 〈âr(τ)â†
0(0)〉, (4.4.8)

obeys a power law decay which introduces the anomalous critical exponent, η through the expression:

G(r,τ) ∼ 1
rd+z−2+η

g(r/ξ,τ/ξz). (4.4.9)

Noting that lengths scale as δ−ν and that the order parameter 〈â〉 by definition scales as δβ, where
β is its critical index, we expect that G(r,τ) ∼ δ2β. And so ensuring that the dimensionality of the
LHS and RHS of eq. 4.4.9 remains consistent, yields the following scaling relation:

2β = ν(d + z− 2 + η). (4.4.10)

Additionally, one can also define a Superfluid density, ρs to further distinguish the insulating and
SF phase. It is a global quantity that is not accessible by trivial derivatives of the singular free
energy. Instead, it is formally related to the change in free energy, ∆ fx arising from a spatial phase
twist (Fisher et al., 1973) and measures the spatial stiffness of the phase of the SF order parameter:
〈â〉. As such, it can be treated as a rescaled helicity modulus Y through the definition: ρs =

m2

h̄2 Y.
Following Weichman (Weichman, 2008), this energy correction works out to be

∆ fx =
(Y)
2βV

∫ β

0
dτ
∫

ddx|∇φ(x,τ)|2, (4.4.11)

where β = 1/kBT, V is the volume and τ represent imaginary time. φ(x,τ) is the phase of the order
parameter. ∆ fx ∼ δν(d+z) (cf eq. 4.4.4) and assuming that the spatial twist is a relevant perturbation
then it generates a singular correction so that we can write ∇φ ∼ δν. Simple dimensional analysis
then tells us that

ρs ∼ δν(d+z−2). (4.4.12)

Analogously, one can also compute the change in free energy associated with a twist in imaginary
time (Fisher et al., 1989), ∆ fτ. The helicity modulus associated with this energy change translates
directly to the total compressibility, κt, of the system. Following (Weichman and Mukhopadhyay,
2007) once more, we can write this as

∆ fτ =
κ

2βV

∫ β

0
dτ
∫

ddx(∂τφ)2, (4.4.13)

but in this case once again assuming that imaginary time twist is a relevant perturbation, then
∂τφ ∼ δ−zν which means that the compressibility scales as:

κt ∼ δν(d−z) (4.4.14)

so as to ensure that eq. 4.4.13 remains dimensionally consistent with eq. 4.4.4.
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4.5 Universality class of the SF-BG transition

Determining the universality class of a continuous QPT in general requires knowledge of at least
three critical exponents, which can then be used to obtain the remaining exponents using scaling
relations such as eq. 4.4.10 and eq. 4.4.5. For disordered systems, obtaining exact values for the
critical exponents are especially challenging, however several bounds for the exponents: ν,η and z
for the dirty-boson system exist and the derivations of these relations can be found below.

4.5.1 The Harris criterion: lower bound on ν

The Harris criterion (Harris, 1974), a long-standing result in disorder physics is represented by the
inequality:

ν ≥ 2
d

, (4.5.1)

where d is the dimensionality of the system, which when satisfied dictates that the effect of disorder
is an irrelevant perturbation (in the renormalization group (RG) sense) and the critical properties of
the clean system persists. When violated however disorder is now relevant and new disorder-induced
physics can arise . One possible scenario is that under a coarse graining procedure, the RG flow of
the disorder strength approaches a new fixed point that yields new critical exponents that satisfies
the Harris criterion. An example of this is the classical 3D Ising model with site diultion (Ballesteros
et al., 1998). Alternatively, the RG fixed points can be characterized by infinite disorder strength
resulting in exotic exponential (activated) scaling (Fisher, 1992) instead of the usual power law
scaling relations of thermodynamic observables. In the latter case, a smearing of an otherwise sharp
phase transition (Vojta, 2006) can result, an example being the heat capacity of the McCoy and Wu
model (McCoy and Wu, 1968), a special variation of 2d random-bond Ising model that surprisingly
has an exact solution.

The derivation of the Harris criterion (Cohen, 1985) starts with the assumption that in a material
(at finite temperature) with uncorrelated bond disorder, there exists a unique critical point, Tc at
which a diverging correlation length: ξ ∼ (T − Tc)−ν can be defined. At any temperature, T the
system can be broken up into independent regions of size ξ comprising of ∼ ξd bonds in d-dimensions.
Furthermore, each block is expected to yield a unique critical temperatures Tc and so the statistical
fluctuations of the distribution of the mean of Tc is inversely proportional to the square root of the
number of bonds, i.e.:

δTc ∼ ξ−d/2. (4.5.2)

Writing the distance to the unique critical point as:

∆T ≡ T − Tc ∼ ξ−1/ν, (4.5.3)

Harris argued that a sharp transition can only occur if the fluctuations shrink more rapidly than ∆T
as ξ approaches infinity, i.e.

δTc/∆T = ξ1/ν−d/2 (4.5.4)

as ξ → ∞. To this end, we require the exponent in eq. 4.5.4 has to be negative. This yields the
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Harris criterion of eq. 4.5.1 which establishes a a lower bound on the critical exponent, ν

ν ≥ 2/d. (4.5.5)

Note that while we have seemingly derived a criteria for sharp transitions with the same clean critical
exponents, the Harris criterion actually bears deeper implications. When violated it tells us that the
critical properties must change in some way, i.e. either smearing or new critical exponents perhaps.
Although the Harris criterion was originally formulated for uncorrelated disorder, this result was
generalized to correlated disorder as well. It was further extended by Chayes et al (Chayes et al.,
1986) and was shown to be applicable to systems without a "pure" analogue such as in percolation
and Anderson location phase transitions, as long as a correlation length: ξ ∼ |λ− λc|−ν could be
defined. λ in this case, quantifies the strength of the disorder and λc is the critical point beyond
which a disorder-induced phase arises.

4.5.2 An upper bound on: η

The equal space green’s function can be related to the single-particle density of states, ρ1(ε) via the
formula (Bruus and Flensberg, 2004):

Ḡ(r = 0,τ) =
∫ ∞

0
dεe−ε|τ|ρ1(±ε), (4.5.6)

where the sign of ε depends on the sign of τ. In what follows, we will derive the scaling behaviour
of ρ1(ε) by considering its asymptotic properties at large τ. First of all, since the excitations in BG
phase are localized, the density of states is a constant at low energy. This means that upon evaluating
the integral in eq. 4.5.6 in the ε = 0 limit yields the following asymptotic long time behaviour:

lim
τ→∞

Ḡ(r = 0,τ) ∼ 1
τ

ρ1,BG(0), (4.5.7)

having dimensions of 1/τ. Moreover, at the transition and noting that τ scales like rz, we can deduce
from eq. 4.4.9 that

Ḡ(r = 0,τ) ∼ τ−(d+z−2+η)/z g̃(τ/ξz)

=
1
τ

τ−(d−2+η)/z g̃(τ/ξz).
(4.5.8)

As highlighted in eq. 4.5.7, the long time behaviour of Ḡ has to scale as 1/τ and in order for this
to be consistent with eq. 4.5.8, we require that the long time behaviour of the scaling function, i.e.
limx→∞ ˜g(x) scales as x+(d−2+η)/z so that the extra τ dependencies cancel out exactly, leaving us
with the expression:

Ḡ(r = 0,τ) ∼ 1
τ

ξ2−d−η . (4.5.9)

A quick comparison with eq. 4.5.7 leads us to concludes that:

ρ1(0)BG ∼ ξ2−d−η . (4.5.10)
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This further tells us that generally at the transition, and at finite energy, ε then we have:

ρ1(ε)BG ∼ ε(d−2+η)/z, (4.5.11)

since ξ ∼ ε−1/z.

Now, in the SF phase, we expect that limτ→∞ Ḡ(r = 0,τ) = M2, where M = 〈â〉 is the order param-
eter. Comparing this with eq. 4.5.6 requires that right at the transition, the SF density of states
must be proportional to a delta function in energy δ(ε), i.e.:

ρ1(ε)SF = M2δ(ε), (4.5.12)

due to enhanced fluctuations of the condensate. Physically speaking then, one expects that as the
SF-BG transition is approached from the BG phase, that ρ1(ε)BG ought to diverge at ε = 0 to match
ρ1(ε)SF. In order for this to hold, we must at least have

η ≤ 2− d (4.5.13)

thereby establishing an upper bound for η.

4.5.3 The dynamic critical exponent z

One of the central long-standing results from Fisher et al’s seminal work (Fisher et al., 1989) is the
exact relation z = d in any dimension, d, for the SF-BG transition. To understand this, one only
needs to recall the scaling relation for the total compressibility in eq. 4.4.14, κt ∼ |µ− µc|ν(d−z) and
the fact that both the SF and BG phases must have a matching finite non-zero compressibility right
at the transition. This constrains z = d. For completeness however, we shall rule out the other
possibilities as well. Suppose we made the assumption z > d, implying a diverging compressibility
so that κt ∼ κs. Comparing eq. 4.4.14 and eq. 4.4.7 then yields the scaling relation:

νz = 1, (4.5.14)

which in combination with our original assumption (z > d) implies that:

ν <
1
d

. (4.5.15)

However this immediately violates the inequality of Chayes et al that ν ≥ 2/d which was earlier
mentioned in section 4.5.1. In light of this contradiction, the assumption z > d must be false. On
the other hand, the scenario z < d would require a vanishing compressibility precisely at δ = 0,
corresponding to a finite energy gap. Bearing in mind that the SF and BG phase both have finite
compressibility at both sides of the critical point, one would expect that this sudden opening of a
gap is physically implausible. This then leaves us with the the most likely conclusion z = d which for
many decades has been left unchallenged until recently, where the scenario z 6= d has been numerically
observed.

To understand how the scenario z 6= d can arise, we have to point out possible flaws in the earlier
arguments. A subtle point is that Fisher’s argument makes the assumption that the twisted boundary
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conditions in both spatial and imaginary time directions generate relevant perturbations and as such,
the twists result in singular corrections, i.e. ∇φ(x,τ) ∼ ξ−1 ∼ δν and ∂τφ(x,τ) ∼ ξ−νz ∼ δνz. Upon
closer inspection, Weichman (Weichman and Mukhopadhyay, 2007) found this to be the case only
for spatial twists because it generates relevant symmetry breaking terms in the Lagrangian. This
validates the usual scaling relations for the condensate density. On the other hand, imposing a twist
in imaginary time twist: ω0 only results in a trivial shift of the chemical potential: µ→ µ− iω0. This
is considered an irrelevant perturbation and does not justify the inclusion of singular corrections.
As a result, the relation ∂τφ(x,τ)∼ δνz no longer holds and the relation κ ∼ δν(d−z) breaks down as
well. Instead of eq. 4.4.13, the change in free energy resulting from an imaginary time twist is given
by:

δ fτ ∼ f 0(J,µ− iω0)− f 0(J,µ0), (4.5.16)

where f 0(J,µ) is the free energy with periodic boundary conditions. All contributions to κ therefore
come from f 0 which has a singular, f 0

s and analytic contribution, f 0
a . The singular term results in a

contribution to the compressibility: κ0
sing ∼ δ−α, where quantum hyperscaling (see eq. 4.4.5) dictates

that α = 2− (d + z)ν. This vanishes under the condition that α < 0 or ν > 2
d+z which is guaranteed

by the inequality of eq. 4.5.1, ν ≥ 2
d . We therefore see that the compressibility is dominated by a

remaining analytic contribution instead. This conclusion makes no statements about z and therefore
leaving it unconstrained, providing an explanation for the unconventional values of z observed in the
literature.

4.6 Numerical studies of z

4.6.1 Apriori assumptions of z

Let us highlight the inherent difficulties in extract critical properties from simulations numerical
simulations and the importance of apriori knowledge of z, which emphasizes the importance of the
exact relation z = d. As an example, let us consider the finite-size scaling form for the superfluid
density:

ρs(δ, L, β) ∼ L−(d+z−2)ρ̃(L1/νδ, β/Lz), (4.6.1)

where ρ̃ is a scaling function and δ = µ− µc. The quantity ατ ≡ β/Lz is referred to as the aspect
ratio of the simulation, which can be set in simulations via the temperature β, i.e. the size of the
(d + 1)− th dimension of the equivalent classical model. Once z is known, it is possible to fix ατ

apriori for all simulation sizes L. Now since the numerical effort increases with ατ, it is beneficial
to pick a smaller aspect ratio. However this has to be balanced by a sufficiently large β so as to
minimize finite temperature effects. Typically, we find in the literature: ατ ∈ [0.2,1] is used.

Upon picking an aspect ratio, the scaling function immediately reduces to a univariate function.
In this situation, a series of plots of the quantity: Ld+z−2ρs(δ, L)|ατ for different system sizes L,
versus µ should cross exactly at the true thermodynamic critical point, µ=µc. This point is sys-
tem size independent and at which the scaling function evaluates to: ρ̃(0,ατ). Alternatively, one
could also observe data collapse for an appropriate value of the critical exponent ν, when plotting
L−(d+z−2)ρs(δ, L)|ατ versus L1/νδ for different L’s.

Most simulations for the SF-BG transition have adopted either strategies and assumed z = d when
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determining the critical properties of the system and are essentially self-consistent checks for the
scaling z = d. It becomes clear that if z is instead treated as undetermined as suggested by We-
ichmann (Weichman and Mukhopadhyay, 2007), then the above analysis no longer holds and much
more complicated. For instance, we now have a function of two variables and even locating the
critical point is no longer trivial. This therefore brings into question a plethora of earlier results in
the literature and emphasizes the need for unbiased analysis that make no assumptions on z.

4.6.2 Recent estimates of z

The study of Priyadarshee et al (Priyadarshee et al., 2006), which used path-integral Monte-Carlo
(PIMC) to simulate the two-dimensional disordered hardcore boson model (Priyadarshee et al.,
2006) produced the numerical estimate: z∼ 1.4(5). The simulations however were fixed at relatively
high temperatures of: β = 1/T = L so that impressively large system sizes of up to L = 96 could
be simulated. Since the aspect ratio was not fixed, finite temperature effects may have not been
properly accounted for. Furthermore, very few disorder realizations (∼ 50− 100) were used, which
leads one to wonder if the average effects of disorder were amply taken into consideration. It is entirely
likely that statistically less probable disorder configurations were unsampled, thereby resulting in
systematic errors. Most recently, an independent calculation of the critical properties of this exact
system were performed using the stochastic series expansion (SSE) and found a different estimate
of z = 1.8(5) instead (Álvarez Zúñiga et al., 2014). An analysis of the distribution of the superfluid
stiffness showed signs of self-averaging as well.

In 2012, a state-of-the-art PIMC 2d calculation by Meir et al (Meier and Wallin, 2012) produced
the first unbiased estimate of z = 1.80(5) for the SF-BG transition. The simulations were performed
on an effective (d+1)-dimensional classical equivalent of a link-cluster model that can be derived
from quantum rotors via the Villian transformation (Villain, J., 1975). No assumptions were made
on the value of z in the simulations. To this end, they constructed a time scale: Lτ, which was the
location of the maximum of the quantity: 〈W2〉/Lτ2 where 〈W2〉 is the squared winding number of
the system and determined z by assuming: L∗τ ∼ L−z. This approach was inspired by an earlier work
where a similar argument was used to determine the classical critical exponent of the 3D XY model
with columnar disorder (Vestergren et al., 2004).

Recent 3d QMC results for a silte-diluted anisotropic spin-1 heisenberg model (Yu et al., 2012b,a)
however have found: z = 3.01, in agreement with fisher’s z = d result. A natural physical realization
of this quantum model was found in the quantum magnet Br-DTN (Yu et al., 2012b, 2010), with dis-
order introduced via doping of magnetic Ni2+ sites with non-magnetic Br ions. The simulations were
carried out at low enough temperatures so as to allow unbiased estimate for z. Interestingly, a similar
simulation protocol on the field induced transition in site-diluted spin-gapped antiferromagnets (Yu
et al., 2008) in 2d found z = 2.0(1).

4.7 This thesis

In light of the conflicting results highlighted in section 4.1 and section 4.6.2, our work presents results
from state of the art large-scale QMC simulations on two different quantum models in 2d making
no assumptions on z. In contrast to previous work in the literature, we perform simulation on the
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unadulterated quantum mechanical Hamiltonian instead of mapping it on to an effective classical
problem. The first model consists of the QR model in the strong disorder scenario, i.e. ∆/U = 1/2 at
µ/U = 0. In this regime, the Mott Lobes completely disappear without the complication of special
symmetries at multi critical points, and only the generic BG-SF transition remains. The phase
diagram then greatly simplified as schematically shown in fig. 5.7. The quantum parameter in this
case is given by the tunnelling term in the Hamiltonian. The second model is a 2D hardcore boson
model as treated in (Priyadarshee et al., 2006) with disorder modelled as random on-site chemical
potential. This can be equivalently expressed as a 2D XY-model with random transverse field and
is capable of reproducing the SF-BG transition. The strength of the disorder is used as a tuning
parameter in this case. Both of these models and their properties are discussed in Appendix 5.A.
Since I was responsible for the simulations on the hardcore version of this model, a brief exposition
of the QMC technique used will be outlined in chapter 5, before reverting to our article.
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CHAPTER 5

QUANTUM MONTE CARLO
TECHNIQUE

In this chapter, we present a brief exposition of the stochastic series expansion (SSE) which was
used to obtain results for the disordered quantum XY model. A comprehensive review including
pseudo-code of the base method for the Heisenberg model can be found in (Sandvik, 2010).

5.1 The Stochastic Series Expansion

The stochastic series expansion (Sandvik and Kurkijärvi, 1991) is a quantum Monte Carlo method
that samples the partition function:

Z = Tr
[
e−βĤ

]
, (5.1.1)

where β = 1/(kBT) sets the temperature of the system. Assuming that the Hamiltonian can be
decomposed into M terms, i.e.

Ĥ =
M

∑
i=1
−Ĥi, (5.1.2)

and expressing the exponential as an infinite series, eq. 5.1.1 can be rewritten using an appropriate
basis {|α〉}as:

Z = ∑
α

〈α|
∞

∑
n=0

(β)n

n!

(
M

∑
i=1

Ĥi

)n

|α〉. (5.1.3)

Note that the Hamilton is decomposed such that its constituents,
{

Ĥi
}

can only bring about a
transformation among the basis states, i.e. Ĥi|α〉= |β〉,∀i where supposing |α〉 is a basis state, then
|β〉 can only be a basis state and not a superposition of basis states.
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0 1 2 3 4 5

Figure 5.1: Visual representation of a possible configuration of a six-site s = 1/2 spin chain with parameters:
n = 5, L = 8. Filled and unfilled circles represent spin up and down basis states respectively. Filled and unfilled
rectangular boxed represent possible HlI operators that are off-diagonal and diagonal in the basis respectively.
The vertical dimension is the expansion order of the operator string with fixed-length L, while the horizontal
dimension represents the spatial degrees of freedom.

One may also obtain an equivalent expression for eq. 5.1.3, by rewriting it as a summation over all
possible permutations of possible operator strings: Sn comprising terms from

{
Ĥli

}
, where li ∈ [1, M]

and varying lengths n:

Z = ∑
α

∞

∑
n=0

∑
Sn

(β)n

n!
〈α|

n

∏
i=1

Ĥli |α〉 = ∑
α

∞

∑
n=0

∑
Sn

W(α,Sn) (5.1.4)

where the replacement W(α,Sn) =
(−β)n

n! 〈α|∏n
i=1 Ĥli |α〉 has been made and represents the weight of

the configuration (α,Sn). Since we are calculating the trace, only operator strings that leave the
bra: |α〉 in eq. 5.1.4 unchanged contribute to the partition function. In practice, it is numerically
convenient to work with non-fluctuating strings. This is done by fixing the length of the operator
string at some sufficient large value: L and augmenting strings of order n(< L) with L− n identity
operators. A schematic graphical representation of the SSE configuration in the fixed string length
representation is shown in fig. 5.1. While this may seem like an approximation, it is important
to note that during the equilibration phase of the simulations, L is enforced to be larger than
n by a sufficient margin such that n < L. Empirically, n eventually plateaus and the stochastic
series expansion remains numerically exact. Taking into account equivalent permutations of a given
operator string of length n, i.e. L!

(L−n)!n! , the final expression for the partition function takes the form

Z = ∑
SL

∑
α

βn(L− n)!
L!

〈α|
L−1

∏
i=0

Hli |α〉 = ∑
SL

∑
α

W(α,SL), (5.1.5)

where W(α,SL) represents the weight of the configuration. By inserting L− 1 closure relations using
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the α-basis, eq. 5.2.3 for the partition function can be expressed in an analogous path integral form:

Z = ∑
SL

∑
n

βn(L− n)!
L!

L

∏
i=1

{
∑
αi

〈αi|Ĥli |αi−1〉
}

= ∑
SL

∑
n

∑
{α(i)}

βn(L− n)!
L!

L

∏
i=1

W̃(αi), (5.1.6)

where periodicity of the trace enforces: |αL〉 = |α0〉 and W̃(αi) = 〈αi|Hli |αi−1〉 is the vertex weight
depending on the operator Hli , and the states at consecutive propagation level i − 1 and i. For
operators acting on a particular bond, a vertex comprises of a single operator and four spin states,
called the legs of the vertex, as shown in fig. 5.3.

It is important to note however the extra dimension in the SSE represents the expansion order of the
series and is not to be confused with that of imaginary time: β, when using a path integral approach.
This also raises another salient point, i.e. that the SSE does not suffer from any discretization errors.

5.1.1 Derivation of weights

As an instructive example, let us derive the weights for the spin-1/2 disordered 2D quantum XY
model, defined by the Hamiltonian:

Ĥ = −1
2 ∑
〈i,j〉

(
Ŝ+

i Ŝ−j + Ŝ−j Ŝ+
j

)
−∑

i
hiŜz

i , (5.1.7)

where hi ∈ [−h, h] is a uniformly distributed random field1, Ŝ+, Ŝ− are the spin ladder operators
and Ŝz is the usual z- spin component such that [Ŝ+

i , Ŝ−j ] = 2Ŝzδij. The standard notation that 〈i, j〉
refers to nearest neighbour sites applies here as well. Note that it is the strength of the disorder,
h that serves as our tuning parameter and that the system of eq. 5.1.7 is at half filling on average.
We choose the Sz-basis and the usual bond decomposition of the Hamiltonian and further categorize
them according to whether they are diagonal or non-diagonal in the chosen basis, i.e. in place of
eq. 5.1.7, we write

Ĥ = ∑
b
−H1,b − H2,b, (5.1.8)

such that:

H1,b = Cb + h′i(b)S
z
i(b) + h′j(b)S

z
i(b) (5.1.9)

H2,b =
1
2

(
S+

i(b)S
−
j(b) + S−i(b)S

+
j(b)

)
. (5.1.10)

The first index in Hp,b indicates if we have a diagonal or off-diagonal operator in the chosen basis.
p = 1 =⇒ diagonal and p = 2 =⇒ off-diagonal. (i(b), j(b)) denotes the nearest neighbour sites
belonging to bond b and the field: h′(i(b)) = hi(b)/(2d) is renormalized due to an over-counting in the
bond representation. Cb is an arbitrary positive constant that can be added with impunity to ensure
a semi positive-definite weight for diagonal operators.

For a spin-1/2 system, there are a total of eight possible vertices: W̃(αi) ∈
{

Wb,v
}
, although only

1Note that operationally, we enforce the average value of the field to be precisely zero by calculating the average:
hav =

1
N ∑i hi and then subtracting it explicitly from the field at each site, i.e. hi → hi − hav.
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six of which (for a given bond, b) will yield non-vanishing weights for the 2d quantum XY model:

Wb,1 = 〈◦ × |H2,b| × ◦〉 =
1
2

(5.1.11)

Wb,2 = 〈◦ × |H1,b| ◦ ×〉 =
h

2d
+ εb −

1
2

(
hi(b) − hj(b)

)
(5.1.12)

Wb,3 = 〈× × |H2,b| ◦ ◦〉 = 0 (5.1.13)

Wb,4 = 〈◦ ◦ |H1,b| ◦ ◦〉 =
h

2d
+ εb −

1
2

(
hi(b) + hj(b)

)
(5.1.14)

and

Wb,5 = 〈× ◦ |H2,b| ◦ ×〉 =
1
2

(5.1.15)

Wb,6 = 〈× ◦ |H1,b| × ◦〉 =
h

2d
+ εb +

1
2

(
hi(b) − hj(b)

)
(5.1.16)

Wb,7 = 〈◦ ◦ |H2,b| × ×〉 = 0 (5.1.17)

Wb,8 = 〈× × |H1,b| × ×〉 =
h

2d
+ εb +

1
2

(
hi(b) + hj(b)

)
, (5.1.18)

where we have set Cb = hb + εb, | εb ≥ 0, hb = h/(2d) and × and ◦ represent up and down spins
respectively. The reason behind the deliberate inclusion of εb will be explained in section 5.4.2. Due
to the presence of disorder, the weights derived above are bond specific as indicated by the subscript
b.

5.2 Observables

Of course, sampling the partition function itself is not useful if we are unable to calculate physical
observables. The usual expression for expectation value for a general observable, Ô:

〈Ô〉 =
Tr
[
e−βĤÔ

]

Tr
[
e−βĤ

] (5.2.1)

is accessible within the SSE formalism if an estimator of Ô: O(α,Sn) can be found such that:

〈Ô〉 = 〈O〉W ≡
∑α ∑SL

O(α,SL)W(α,SL)

∑α ∑SL
W(α,SL)

. (5.2.2)

The SSE formalism has been shown to be amenable in calculating a wide variety of observables both
diagonal and off-diagonal in the underlying basis and to date, many useful estimators have been
derived. For a general understanding, we will only derive a few expressions to give the reader a
general idea and simply provide a non-exhauastive list in table 5.1 of other estimators. We refer the
interested reader to (Sandvik, 1992, 2010) for details.
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5.2.1 Diagonal observables

Diagonal observables are perhaps the easiest to calculate. By direct substitution, the observable
expression given by eq. 5.2.1 can be written as:

〈O〉 = 1
Z ∑

SL

∑
α

βn(L− n)!
L!

〈α|
L−1

∏
i=0

HliÔ|α〉 (5.2.3)

Now assuming that the operator: O = Od is diagonal in the basis such that: Od|α〉 = o(α)|α〉, we
obtain the required form in eq. 5.2.2 immediately:

〈O〉 =
1
Z ∑

SL

∑
α

βn(L− n)!
L!

〈α|
L−1

∏
i=0

Hli |α〉o(α) (5.2.4)

=
1
Z ∑

SL

∑
α

W(α,SL)o(α), (5.2.5)

making it clear that the estimator for Ô is simply o(α). We can further derive an improved estimator
for diagonal expectation values. First let use denote the m-th propagated state as:

|α(m)〉 =
m

∏
i=1

Hli |α(0)〉 (5.2.6)

Due to the periodicity of the trace however, there is nothing special about the very first state
|α〉 = |α0〉 and taking into account all L cyclic permutations of the operator string SL, we can use
the following expression

〈Ô〉 = 1
L
〈

L−1

∑
p=0

o(α(p))〉W (5.2.7)

instead.

5.2.2 Off-diagonal observables

Obtaining estimators for off-diagonal observables is often a more involved process. As an example,
we derive the estimator for the energy and refer the reader to table 5.1 for other examples. We begin
by stating the end result, i.e. that the energy of the system: 〈E〉 = 1

ZTr
[
e−βH H

]
can be calculated

using the estimator:

〈E〉 = −〈n〉W
β

, (5.2.8)

which is the average number of non-trivial operators in the operator string. To derive this estimator,
we simply perform a series expansion on the exponential: e−βH in the trace and manipulate it
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Description Observable Estimator

Energy 〈E〉 − 〈n〉Wβ

Specific heat 〈Cv〉 = ∂〈E〉
∂T 〈n2〉W − 〈n〉2W − 〈n〉W

Hk = single term in{Hi} 〈Hk〉 − 〈N(k)〉W
β

String of ordered terms in {Hi} 〈∏m
i=1 Hki

〉 1
(−β)m

(n−1)!
(n−m)! 〈N(k1, . . . ,km)〉W

Imaginary time-dependent
∫ β

0 dτ〈O1d(τ)O2d(0)〉 〈∑n−1
p=0 ∑n

m=0
1
n

β
n+1 o1(α(p))

product of diagonal operators o2(α(p + m))〉W
Table 5.1: Summary of observables and estimators that can be calculated within the SSE. This is a non-
exhaustive list of what can be calculated.

appropriately:

〈E〉 = ∑
α

∑
n

(−β)n

n!
〈α|Hn+1|α〉 × −(n + 1)/β

−(n + 1)/β
(5.2.9)

= ∑
α

∞

∑
n=0

n + 1
−β

(−β)n+1

(n + 1)!
〈α|Hn+1|α〉. (5.2.10)

Letting n′ = n + 1, we obtain:

〈E〉 = ∑
α

∞

∑
n′=1

n′

−β

(−β)n′

n′!
〈α|Hn′ |α〉 (5.2.11)

= ∑
α

∞

∑
n′=0

n′

−β

(−β)n′

n′!
〈α|Hn′ |α〉, (5.2.12)

where we have reindexed n′ to start from 0. Because of the n′ factor in the front of eq. 5.2.12, letting
n′ = 0 does not contribute to the summation, thereby allowing a reindexing and giving us the desired
result of eq. 5.2.8: 〈E〉 = −〈n/β〉W2.

The specific heat can now be easily calculated by taking a single derivative of 〈E〉 with respect to
temperature. This yields the expression:

Cv =
∂〈E〉
∂T

= 〈n2〉W − 〈n〉2W − 〈n〉W , (5.2.13)

2Note that the form of the estimator is insensitive to the fluctuating or fixed-length representation. We have just
used the fluctuating length representation out of convenience.
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almost similar to the fluctuation of the average number of non-trivial operators with the exception of
the subtraction of an extra linear term 〈n〉W . If the observable of interest happens to be a term in the
decomposition in eq. 5.2.3, i.e. that Ô = Ĥk,∀k ∈ [1, M], then its estimator can be shown (Sandvik,
1992) to be:

〈Ĥk〉 = −
1
β
〈N(k)〉W , (5.2.14)

where N(k) is the number of occurrences of Hk in the operator string.

5.3 Other observables

Other nontrivial observables that can be calculated include the superfluid stiffness and the fidelity
susceptibility to name a few. The superfluid stiffness is related to the winding number of the system
which can be easily calculated by keeping track of the net particle current along a particular axis as
described in (Sandvik, 2010). Detailed instructions for calculating the fidelity susceptibility within
the SSE formalism can be found in (Albuquerque et al., 2010), where the critical properties of the
2D transverse ising model were successfully reproduced. The fidelity approach was further used to
determine the critical points of a spin-1/2 Heisenberg magnet with one-fifth depletion, a model for
the CaVO lattice (Schwandt et al., 2009). Other exotic quantities like the Renyi-entropy (Humeniuk
and Roscilde, 2012, Hastings et al., 2010) can also be calculated.

5.4 Configuration sampling

To sample the (α,SL) configuration space with excellent acceptance rates, we use two types of
updates, 1. diagonal and 2. directed loop updates. Diagonal updates insert diagonal operators at
different levels of p ∈ [0, L− 1] in the operator string and is the only means to increase the number of
non-trivial diagonal operators in the operator string. In order to introduce off-diagonal operators, an
obvious option is to introduce pairs of off-diagonal operators located at the same bond but different
propagation time slices, to preserve the initial and final states. This algorithm is however somewhat
antiquated and a more efficient and extensive update scheme can be achieved using directed loops.
In our simulations a single MC step consists of one diagonal update followed by Nl directed loops,
where Nl is determined self-consistently during the equilibration phase so that on average ∼ 2〈n〉
vertices are visited. We now elucidate what diagonal and directed loop updates entail.

5.4.1 Diagonal updates

Diagonal updates (Sandvik, 2002) can be achieved at each propagation level: p depending if it is
occupied by a non-identity operator or not. If the occupying operator is off-diagonal, we immediately
move on to the next propagation level. On the other hand, if it is occupied by a diagonal operator,
then we attempt to remove it with probability:

Pb,remove(Hb→ Ib) =
L− n + 1

βNb
Wb,v, (5.4.1)
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where Wb(v) is the weight at bond b of vertex type: v. If we encounter an identity operator however,
we pick a bond at random and attempt an insertion of a diagonal operator with probability:

Pb,insert(Ib→ Hb) =
βNb

L− n
Wb,v. (5.4.2)

These are the metropolis solutions (Chib and Greenberg, 1995) chosen to satisfy detailed balance:
W(C)P(C→ C′) = W(C′)P(C′→ C) where C,C′ are different configurations which have a difference
of ±1 non-trivial operators.

5.4.2 Directed loop updates

To sample strings with off-diagonal operators, we instead make use of the directed loop algo-
rithm (Syljuåsen and Sandvik, 2002), analogous to worm algorithms (Boninsegni et al., 2006).
Fig. 5.2 summarises the procedure we are about to describe. In the original directed loop scheme (Syljuåsen
and Sandvik, 2002), a loop is constructed by first uniformly choosing at random, any leg, e belonging
to a non-trivial vertex as a starting point.

0 1 2 3 4 5
bond b

v'

bond b'

e'

x'

x

v

e

0 1 2 3 4 5
bond b

v'

bond b'

v

v'

Figure 5.2: (Left) Graphical representation of the path of a directed loop in yellow. (Right) The resulting
configuration after implementing changes along path of the loop. While not demonstrated here, one can imagine
how directed loops traversing the vertical boundaries can result in a change to |α0〉.

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

(i) bounce (ii) turn (iii) straight (iv) switch-and-continue

Figure 5.3: The four possible paths of a loop can take during an intra-vertex move. Vertex legs are numbered
0 to 4 accordingly.

We then pick another leg belonging to the same vertex, at random in accordance to a pre-calculated
probability table: pb(v, e, x). This quantity represents the probability of exiting at leg x, assuming
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an entrance leg e and that bond b is a vertex of type v. Details on how to calculate pb(v, e, x) will be
provided in section: 5.5 for a Hamiltonian comprising nearest-neighbour bond interactions. Once an
exit leg, x is chosen, the loop progresses to the closest vertex, v′ that shares a common leg, denoted
e′, on the same site. A new exit leg,: e′ is then chosen according to probability pb′(v′, e′, x′) just
like before. This pair of intra- and inter-vertex moves are repeated till the very first leg of the loop
is reached. The spins encountered along the path of the loop are then immediately flipped and the
vertex type updated accordingly. Typical loops can span the entire extent of the system thereby
bringing about a global change in the configuration space. While the operator string length is kept
constant during the loop update, it effects change in the configuration space through vertex-type
updates as well as modifications of the initial state |α(0)〉.

5.5 Probability tables

The probability tables can be constructed by ensuring that the fundamental requirement of detailed
balance is satisfied (Syljuåsen and Sandvik, 2002), i.e.

P(s→ s′)W(s) = P(s′→ s)W(s′), (5.5.1)

where P(s→ s′) is the probability of the transition from configuration s to configuration s′ and W(s)
is the weight of configuration s. For the procedure outlined in section 5.4.2, one can show that
detailed balance is satisfied as long as the following condition is satisfied on each bond b:

wb,v(e, x) = wb,v′(x, e). (5.5.2)

This states that the weight of the transition, wb,v(e, x), that is brought about by changing states
at legs e and x and changes the vertex from v to v′ is equal to the weight of the reverse process,
wb,v′(x, e), which changes the vertex from v′ to v.

In order to ensure that a transition through a vertex always occurs, it is necessary that the sum over
all the possible exits legs is equal to the weight of the vertex itself, i.e.:

∑
x

wb,v(e, x) = Wb,v. (5.5.3)

Eq. 5.5.3 can be neatly expressed in graphical form as seen in fig. 5.4. These weights are also related
to the probability table mentioned in section 5.4.2 through the relation:

pb,v(e, x) =
wb,v(e, x)

Wb,v
. (5.5.4)

In total, there are Nd = Nv×Nb× 4× 4 possible weights to solve for subjected to Nc = 4×Nv×Nb
constraints, where Nv ≡ number of vertices and Nb ≡ number of bonds. This is therefore an over-
specified problem with multiple solutions available (Sandvik, 2002).

To proceed, it is generally accepted though not always true (see (Alet et al., 2005)) that a solution
that minimizes the bounce weights is the most efficient choice. This is because bouncing worm
trajectories in general cause back-tracking and result in the undoing of earlier changes made to the
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Figure 5.4: Visual representation of a set of related vertices that obey eq. 5.5.3. Detailed balance (see eq. 5.5.2)
constrains the vertex matrix to be symmetric. Note that this is one such set out of a total of Nd diagrams, that
was generated by picking v = 6 and e = 0.

SSE configuration. This is counterproductive to the purpose of the directed loop, i.e. to make global
changes in the configuration space. To this end, finding a solution of the weights reduces to a linear
optimization problem (Alet et al., 2005), where the function we chose to minimize is a superposition
of bounce weights over all bonds and vertices,

wbounce =
Nb

∑
b=0

7

∑
v=0

3

∑
e=0

wb,v(e, e). (5.5.5)

subject to the constraints of eq. 5.5.3 and eq. 5.5.2. The set of free constants {εb} are unconstrained
degrees of freedom that can be used during the minimization process. Typically, it is advantageous to
further constrain {εb} to be a small positive number (Sandvik, 2002). The minimization procedure
can be carried out very efficiently with the simplex algorithm (Press et al., 2007).

5.6 Equal time Greens functions

For a spin systems, we define the equal time greens function to be:

C(r,τ = 0) = 〈S+
0 S−r 〉, (5.6.1)

which measures the correlation between spins a distance r apart. This quantity can be calculated
on-the-fly during the construction of a directed loop with the caveat of single modification (Dorneich
and Troyer, 2001). In the standard directed loop (Sandvik, 2002), the start of the loop is chosen to be
a random leg on any non-trivial vertex. When calculating greens function however, loops are allowed
to start at any point with coordinate (io, po) in the configuration space, where io ∈ [0 . . . N − 1] and
po ∈ [0, L− 1]. This starting point serves as the reference point. Note that upon insertion, the loop
propagates either upwards or downwards with equal probability until the next vertex leg is reached.
Even if the reference point belongs to an existing vertex, a direction still has to be sampled.

Specifically for a spin-1/2 system, a measurement of C(r) is obtained by calculating the average
number of times the loop crosses the reference level: po a distance r away from io. For s>1/2
systems, other non-trivial weight factors have to be taken into account (Dorneich and Troyer, 2001).
We further note that the calculation of unequal time correlation functions: 〈S+

0 (0)S−r (τ)〉 are also
accessible within the SSE but is much more involved. Details on two equivalent methods can be
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Figure 5.5: Directed loop procedure measuring: C(r). In the loop, a single measurement of C(r = 1) is made.
The insertion/ reference point: (io , po) is indicated by the yellow square. Yellow arrows represent intra-vertex
moves while green arrows represent inter-vertex move. The red arrow represents the initial direction of the loop,
which was chosen with probability half after insertion.

found in (Dorneich and Troyer, 2001) and (Pippan et al., 2009).
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5.7 Paper 3: Quantum Critical Scaling of Dirty Bosons in
Two Dimensions

Paper 3

Quantum critical scaling of dirty bosons in two dimensions
– Ray Ng and Erik S. Sørensen

Phys. Rev. Lett. 114, 255701

DOI: 10.1103/PhysRevLett.114.255701

c©American Physical Society (2015)

Calculations: I performed all simulations for the hardcore boson model and produced all the figures.

Manuscript: I wrote approximately 50% the manuscript and produced all the figures. The numer-
ical simulations and results pertaining to the disordered quantum XY model were produced from an
original SSE code that I had written myself. Erik S. Sørensen performed all simulations of the quan-
tum rotor model. As such, we were each responsible for the portions of the manuscript addressing
the results of our respective models.

In this publication, we set out to answer the following questions pertaining to the quantum rotor
model and the hardcore boson model, in the presence of on-site disorder (without apriori assumptions
on z in the simulations):

• Where are the exact locations of their critical points ?
• What values of z, ν and η do the models yield?
• Do both the critical exponents obtained from both models agree within errorbars?
• Do both independent models produce a value for ν that satisfies the (quantum) Harris criterion?
• Is Fisher’s z = d relation observed?
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Quantum Critical Scaling of Dirty Bosons in Two Dimensions

Ray Ng* and Erik S. Sørensen†

Department of Physics and Astronomy, McMaster University, 1280 Main Street West L8S 4M1 Hamilton, Ontario, Canada
(Received 23 January 2015; published 23 June 2015)

We determine the dynamical critical exponent z appearing at the Bose glass to superfluid transition in
two dimensions by performing large scale numerical studies of two microscopically different quantum
models within the universality class: The hard-core boson model and the quantum rotor (soft core) model,
both subject to strong on-site disorder. By performing many simulations at different system size L and
inverse temperature β close to the quantum critical point, the position of the critical point and the critical
exponents, z, ν, and η can be determined independently of any implicit assumptions of the numerical value
of z, in contrast to most prior studies. This is done by a careful scaling analysis close to the critical point
with a particular focus on the temperature dependence of the scaling functions. For the hard-core boson
model we find z ¼ 1.88ð8Þ, ν ¼ 0.99ð3Þ, and η ¼ −0.16ð8Þ with a critical field of hc ¼ 4.79ð3Þ, while
for the quantum rotor model we find z ¼ 1.99ð5Þ, ν ¼ 1.00ð2Þ, and η ¼ −0.3ð1Þ with a critical hopping
parameter of tc ¼ 0.0760ð5Þ. In both cases do we find a correlation length exponent consistent with ν ¼ 1,
saturating the bound ν ≥ 2=d as well as a value of z significantly larger than previous studies, and for the
quantum rotor model consistent with z ¼ d.

DOI: 10.1103/PhysRevLett.114.255701 PACS numbers: 67.25.D-, 05.30.Jp, 05.30.Rt, 71.55.Jv

Most familiar quantum critical points (QCPs) are char-
acterized by Lorentz invariance implying a symmetry
between correlations in space and time and consequently
between the respective correlation lengths ξ ∼ ξτ [1].
In turn, the dynamical critical exponent, defined through
ξτ ∼ ξz, is simply z ¼ 1, such as in the crossing of the
special multicritical point of the Bose-Hubbard model [1].
Anisotropic systems where z ≠ 1, implying different scal-
ing of ξ and ξτ, are comparatively less common [1,2].
This quantum critical scaling is particularly intriguing if
disorder is present, in which case nonintegral values of z
have been proposed [3,4]. One model for which it is
generally believed that z ≠ 1 is the Bose glass to superfluid
(BG-SF) transition describing interacting bosons subject
to disorder, the so-called dirty-boson problem, modeled by
the Hamiltonian

Hbh ¼−t
X

r;e

ðb†rbrþeþH:c:Þ−
X

r

μr ~nrþ
U
2

X

r

~nrð ~nr− 1Þ:

ð1Þ

Here e ¼ x; y, and b†r ; br are the boson creation and ann-
ihilation operators at site r with ~nr the corresponding
number operator. The parameters of the model are the hop-
ping constant t, Hubbard repulsion U, and site-dependent
chemical potential μr, inducing the disorder.
Experimental setups emulating dirty boson physics

include optical lattices [5] adsorbed helium in random
media [6], Josephson-junction arrays [7], thin-film super-
conductors [8], and quantum magnets such as doped
dichloro-tetrakis-thiourea-nickel(II) (DTN) [9]. For recent
reviews, see Refs. [10,11].

The dynamical critical exponent z appearing at the BG-
SF transition has proven exceedingly hard to determine.
Assuming the validity of the (quantum) Harris criterion for
disordered systems ν ≥ 2=d [12], initial theoretical work
[13] argued that z ¼ d in any dimension. This has in-
triguing implications since it implies the absence of an
upper critical dimension. Although many initial numerical
studies [14–19] were consistent with z ¼ d ¼ 2, most were
biased by implicit assumptions about z, using it to fix the
simulation aspect ratio Lz=β. The exponent z was therefore
not truly independently determined. However, recent theo-
retical work by Weichman and collaborators [11,20] has
challenged the arguments leading to z ¼ d leaving the
value of z an open question. A subsequent numerical study
[3] of the hard-core version of Eq. (1) found z ¼ 1.40ð2Þ,
ν ¼ 1.10ð4Þ while a recent unbiased state-of-the-art study
[4] using an effective classical model of Eq. (1) determined
a significantly larger value of z ¼ 1.75ð5Þ and ν ¼ 1.15ð3Þ.
Both results violate z ¼ d. Intriguingly, in three dimensions
both numerical [9,19,21] and experimental [22], studies
yield evidence for z ¼ d ¼ 3, although these numerical
estimates cannot be seen as fully unbiased.
At present, the value of z at the dirty-boson QCP along

with many of the other exponents most notably ν can
therefore best be regarded as ill determined, at least for the
fully quantum mechanical model. It is not known to what
extent, if any, the relation z ¼ d is violated or if the relation
ν ≥ 2=d [12] is satisfied. Here we try to answer some of
these questions by performing large-scale simulations on
two fully quantum mechanical models in two dimensions
within the dirty-boson universality class: A hard-core
boson model (HCB) modeled as a transverse field XY
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model and a soft-core quantum rotor model (QR), both
subject to strong on-site disorder. In all cases do we find it
necessary to use 104–105 disorder realizations over a large
range of temperatures extending down to β ¼ 1024 for
system sizes L ¼ 12–32. In contrast to Ref. [3] these
dramatically improved statistics allow for a significantly
better determination of the critical point of the HCB model.
We also note that the use of fully quantum models presents
significant advantages over the effective classical model
used in Ref. [4]. Finally, through a fully unbiased analysis,
without implicit assumptions on z, we find for the first time
strong evidence that z ¼ d ¼ 2 and that ν ≥ 2=d is satisfied
as an equality.
We now briefly summarize some of the theoretical

discussion. The arguments leading to the equality z ¼ d start
with hyperscaling [23] which states that the singular part of
the free energy inside a correlation volume is a universal
dimensionless number, ðfs=ℏÞξdξτ ¼ A. With ξ ∼ δ−ν it
follows that fs ∼ δνðdþzÞ with a finite-size form [1]:

fsðδ; L; βÞ ∼ δνðdþzÞFðξ=L; ξτ=βÞ: ð2Þ
Imposing a phase gradient ∂ϕ along one of the spatial
directions will then give rise to a free energy difference
Δfs=ℏ ¼ 1

2
ρð∂ϕÞ2 where ρ is the stiffness (superfluid

density). Since Δfs must obey a form similar to Eq. (2)
and since ∂ϕ has dimension of inverse length implying
∂ϕ ∼ 1=ξ, it follows that ρ ∼ ξ2δνðdþzÞ ∼ δνðd−2þzÞ, with a
finite-size scaling form of

ρ ¼ L2−d−zRðδL1=ν; β=LzÞ: ð3Þ
If an analogous argument is usedwith a twist in the temporal
direction scaling as ∂τϕ ∼ 1=ξτ, Fisher et al. [1] argued
that the compressibility scales as κ ∼ δνðd−zÞ which they
then used to argue that z ¼ d. In contrast, Weichman and
collaborators [11,20] argue that in the presence of disorder
∂τϕ ∼ 1=ξτ should not apply, invalidating the relation
κ ∼ δνðd−zÞ, leaving z unconstrained. Interestingly, a differ-
ent theoretical argument [9] favoring z ¼ d has also been
put forward.
Models.—The first model we study, closely related to

Eq. (1), is the QR model. It is defined in terms of conjugate
phase and number operators θr, nr satisfying ½θr; nr0 � ¼ δr;r0
on a L × L lattice:

Hqr ¼ −
X

r;rþe

t cosðθr − θrþeÞ −
X

r

μrnr þ
U
2

X

r

n2r ; ð4Þ

where U is the on-site repulsion, t is the nearest neighbor
tunneling amplitude, and μr ∈ ½−Δ;Δ� represents the uni-
formly distributed on-site disorder in the chemical poten-
tial. As before, e ¼ x; y. We fix Δ ¼ 1

2
, U ¼ 1, and cross

the BG-SF transition by varying t. In contrast to Eq. (1) nr
can take negative as well as positive values and can be
interpreted as deviations from the average filling n0.

For convenience we study Eq. (4) using a link-current
representation [24] for which directed worm algorithms
are available [25]. We use lattices ranging from L ¼ 12
to L ¼ 32, with 5 × 104 disorder realizations for
L ¼ 12;…; 28 and 104 disorder realizations for L ¼ 32.
In all cases we average over 6 × 104 Monte-Carlo steps
(MCS) per disorder realization. For the simulations of the
QR model a temporal discretization of Δτ ¼ 0.1 was used,
sufficiently small that remaining discretization errors could
be neglected.
The second model we consider is the U → ∞ HCB limit

of Eq. (1) equivalent to the S ¼ 1=2 XY model on an L × L
lattice in a random transverse field:

Hxy ¼ −
1

2

X

r;e

ðSþr S−rþe þ S−r S
þ
rþeÞ þ

X

r

hrSzr; ð5Þ

with hr ∈ ½−h; h� uniformly. In this case we traverse the
transition by tuning the disorder strength h. We use a
directed loop version of the stochastic series expansion
(SSE) [26] to simulate this model. This technique is free
of discretization errors and efficient directed algorithms
[26,27] are available. We further use a beta-doubling
scheme [28] that allows for rapid equilibration at large β
values. In contrast to the QR model, we employ a micro-
canonical ensemble for the disorder by constraining
each disorder realization to have exactly

P
rhr ¼ 0. This

facilitates the analysis without affecting the results [29].
We use at least ∼105 disorder realizations per data point, a
large improvement over [3]. In the following ½…� denotes
the disorder average and h…i the thermal average.
Observables.—Our main focus is the scaling behavior of

the superfluid stiffness ρ for which the finite-size scaling
form Eq. (3) was derived. For both models we measure ρ as

ρ ¼ ½hW2
x þW2

yi�
2β

; ð6Þ

where Wx and Wy are the winding numbers in the spatial
directions. [For the HCB model Eq. (6) is multiplied by π
to yield ρ.] From Eq (6), it follows that βρ ¼ W2 has a
particularly attractive scaling form when d ¼ 2, which we
may write

W2 ¼ β

Lz WðδL1=ν; L=β1=zÞ; ð7Þ

where we define δ ¼ ðt − tcÞ (QR model) and δ ¼ ðh − hcÞ
(HCB model). We also make extensive use of the
correlation functions, defined as Cðr − r0; τ − τ0Þ ¼
½hexpfiðθrðτÞ − θr0 ðτ0ÞÞgi� for the QR model and as
Cðr − r0; τ − τ0Þ ¼ ½hSþr ðτÞ S−r0 ðτ0Þi� for the HCB model.
Results, QR.—A large number of independent simula-

tions of Eq. (4) were carried out at many different L; β close
to the QCP. Since we expect ρ to approach zero in an
exponential manner as L is increased at fixed β and since ρ
is likely exponentially suppressed in the insulating phase it
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seems reasonable to approximate the function Wðx; yÞ in
Eq. (7) as a exp½fðx; yÞ� with x ¼ δL1=ν, y ¼ L=β1=z. If the
temperature dependence is carefully mapped out [30]
one indeed sees thatWðx; yÞ has a clear exponential depend-
ence. As a first step, we then assume fðx; yÞ ¼
bx − cy − dy2. We can then fit all 142 data points to
this form determining the coefficients a; b; c; d along with
tc ¼ 0.0760ð5Þ ν ¼ 1.00ð2Þ and z ¼ 1.99ð5Þ. The results are
shown in Fig. 1 with a scaling plot using the scaling variable
X ¼ lnðaβ=LzÞ þ bðt − tcÞL1=ν − cL=β1=z − dðL=β1=zÞ2.
A more refined analysis [30] shows that the temperature
dependence likely involves a correction term W2 ¼
ayz expðbx−cyÞþdy−w expðbx−c0yÞ. The correction term
is here proportional toTw and disappears asT tends to zero. It
is straightforward to fit all our data to this form which yields
identical estimates for tc, ν, z along with w ¼ 0.6ð2Þ.
Estimating the AIC (Akaike information criterion) for the
two forms heavily favors the latter. We note that our results
appear to satisfy z ¼ d andν ≥ 2=d as equalities in contrast to
[4] which finds z ¼ 1.75ð5Þ, ν ¼ 1.15ð3Þ.
With a reliable estimate of z we can now fix the scaling

argument Lz=β. If we then study the Binder cumulant
BW2 ¼ ½hW4i�=½hW2i�2 we see that at fixed Lz=β it should
follow a simplified form of Eq. (7), BW2 ¼ BðδL1=νÞ. As
shown in Fig. 2, lines for different L will then cross at tc,
thereby confirming our previous estimates.
Our results for the correlation functions for the QR

models are shown in Fig. 3 for a L ¼ 20 lattice at tc for a
range of temperatures. Asymptotically, one expects [1]
CðτÞ ∼ τ−ðd−2þzþηÞ=z and CðrÞ ∼ r−ðd−2þzþηÞ. Clearly, CðrÞ
drops off much faster than CðτÞ confirming that z ≠ 1.
However, pronounced finite temperature effects are visible
in CðrÞ arising because the limit β ≫ Lz has not yet been
reached which prevents us from reliably determining the

power law for CðrÞ. However, from CðτÞ we determine
ðzþ ηÞ=z ¼ yτ ¼ 0.85ð2Þ and hence η ¼ −0.3ð1Þ using
our previous estimate z ¼ 1.99ð5Þ. This estimate satisfies
the rigorous inequality 2 − ðdþ zÞ < η ≤ 2 − d [1] and
agrees with the prior result η ¼ −0.3ð1Þ [4].
For the QR model we have also verified that the comp-

ressibility κ remains finite and independent of L throughout
the transition, consistent with z ≤ d. Furthermore, a direct
evaluation of ∂W2=∂t directly at tc for fixed Lz=β, expected
from Eq. (7) to scale as ∼L1=ν, yields ν ¼ 0.98ð4Þ con-
sistent with our previous results.

(a) (b)

FIG. 2 (color online). The Binder cumulant BW2 for the QR
model versus t with β ¼ L2=4. (a) Unscaled data showing a
crossing close to the critical point tc ¼ 0.0760ð5Þ. (b) Scaling
plot versus ðt − tcÞL1=ν obtained by fitting the data in (a) to the
form aþ bðt − tcÞL1=ν þ cðt − tcÞ2L2=ν yielding tc ¼ 0.758ð5Þ
and ν ¼ 0.98ð3Þ.

(a) (b)

FIG. 1 (color online). Scaling collapse of 142 independent
simulations of W2 ¼ βρ for the QR model. (a) Unscaled data
of W2 versus t. (b) Scaling collapse of the data of panel (a).
The data are plotted against the scaling variable X ¼
lnðaβ=LzÞ þ bðt − tcÞL1=ν − cL=β1=z − dðL=β1=zÞ2.

FIG. 3 (color online). The correlation functions CðτÞ and CðrÞ
as a function of τ, r for a system sizeL ¼ 20. Results are shown for
the QR model at the critical point and a range of β ¼ 55;…; 800.
The solid red line is a fit to β ¼ 800 results forCðτÞ using the form
a½τ−yτ þ ðβ − τÞ−yτ � with pi ðzþ ηÞ=z ¼ yτ ¼ 0.85ð2Þ.
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Results, HCB.—Because of the hard-core constraint
number, fluctuations are dramatically suppressed in the
HCB model. Combined with the very effective beta-
doubling scheme we can reach much lower temperatures
compared to the QR model. Hence, we use a simplified
form of Eq. (3),

ρ ¼ L2−d−z ~RðδL1=νÞ; ð8Þ

suppressing the temperature dependence. We have exten-
sively verified that this is permissible for the system sizes
used [30] and that our data appear independent of temper-
ature at β ¼ 512 to within numerical precision. We then
fit our data for ρ at β ¼ 512 to an expansion of ~R in Eq. (8)
to second order ~R ¼ aþ bδL1=ν þ cðδL1=νÞ2, obtaining
the estimates hc ¼ 4.79ð3Þ, z ¼ 1.88ð8Þ, ν ¼ 0.99ð3Þ to be
contrasted with the values hc ¼ 4.42ð2Þ, z ¼ 1.40ð5Þ, and
ν ¼ 1.10ð4Þ determined in Ref. [3] with significantly less
statistics. The result of this fit is shown in Fig. 4. In panel
b of Fig. 4, we show the crossing of the scaling function ~ρ,
at hc ¼ 4.79ð3Þ as carried out for the QR model in Fig. 1
to yield similar results for z, ν, and hc.
The correlation functions show a pronounced temper-

ature dependence as shown in Fig. 5(a) for CðrÞ. However,
as we lower the temperature, CðrÞ reaches a stable power-
law form at β ¼ 512 for all L studied, showing that the
regime β ≫ Lz is reached, confirming that the temperature
dependence can be neglected in Eq. (8). To determine the
anomalous dimension η we then fit the results in Fig. 5(a)
for L ¼ 20, β ¼ 512 and hc ¼ 4.79ð3Þ to a power-law form
with zþ η ¼ yr ¼ 1.718ð1Þ as shown in Fig. 5(b). Using
our earlier estimate of z, we obtain η ¼ −0.16ð8Þ in reaso-
nable agreement with the QR results. For the HCB model
we have also calculated the compressibility κ. It remains

roughly constant and independent of L through the tran-
sition. We note that our results significantly improve on
previous conflicting calculations for the exponents of
the HCB model which include z ¼ 2.0ð4Þ, ν ¼ 0.90ð13Þ
in [16], z ¼ 0.5ð1Þ, ν ¼ 2.2ð2Þ in [31], and z ¼ 1.40ð2Þ,
ν ¼ 1.10ð4Þ in [3].
Conclusion.—Our results for ν for both models studied

indicate clearly that ν ≥ 2=d is satisfied as an equality.
For the dynamical critical exponent z, describing the
BG-SF transition, we find a value that is significantly
larger than previous estimates. While there is a slight
disagreement in the estimate of z for the two models we
studied it seems possible that indeed z ¼ d. During the final
stages of writing this manuscript we became aware of
Ref. [32] which for the HCB model reached conclusions
similar to ours.
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Supplementary material

HCB SIMULATION DETAILS

A central assumption made in our analysis of the HCB
results was that a simplified scaling function, Eq.(8), for
ρ. In the main text, we showed the convergence of the
equal-time spatial correlation function: C(r) in Fig.(5)
at the critical point using data from the beta-doubling
procedure. For completeness, we show the convergence
of the stiffness in the 20×20 system, we need to go up to
β = 512 before finite temperature effects are eliminated.
The data indicates that for the simulation of even larger
system sizes, one may need to go up to β = 1024 to
validate the use of the simplified scaling form. Note that
for each temperature in the beta-doubling scheme, we
average over 48 Monte Carlo sweeps (MCS), with each
sweep consisting of one diagonal update and Nl directed
loop updates. Nl is set during the equilibration phase so
that on average 2〈nH〉 vertices are visited, where nH is
the number of non-trivial operators in the SSE string.
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FIG. 1. Demonstration of the convergence of the spin stiff-
ness: ρ versus β using the beta-doubling procedure, for a
32× 32 lattice. As β increases, thermal effects can be clearly
seen to disappear, thereby justifying the use of the simplified
scaling form in Eq.(8).

Another important point that is often overlooked, is
the convergence of observable data with the number of
disorder realizations, Nr used. For the SSE parameters
chosen, we find that it was necessary to use at least
∼ 5 × 104 disorder samples before disorder fluctuations
are reasonably small. This is demonstrated in Fig. 2 for
the largest lattice size: 32 × 32. For reliable data with
controlled errorbars, all the HCB data points were av-
eraged over least 105 independent disorder realizations.
This is contrast to earlier studies [1] most relevant to
our work, where only 102−103 disorder realizations were

102 103 104 105 106

Nr

0.0015

0.0020

0.0025

0.0030

0.0035

ρ

h=4.75

h=4.775

h=4.8

h=4.825

h=4.85

FIG. 2. Convergence of spin stiffness: ρ with number of dis-
order realizations, Nr, for h values used. The shaded region
indicates the errorbars of points which decrease as more sam-
ples are used. Note that for the equilibration step size chosen
in our simulations, ∼ 105 disorder realizations are necessary
to obtain true convergence.

used. We note that it is quite unlikely that self-averaging
applies in this model and increasing the lattice size does
therefore not decrease the number of disorder realizations
needed.

Since different disorder realizations are statistically in-
dependent we estimate errorbars using standard binning
techniques on the data for different disorder realizations.
We have verified that boot-strap methods yield essen-
tially indentical errorbars.

TEMPERATURE DEPENDENCE OF W 2 = βρ

Insight into the temperature dependence of W 2 can
be gained by first studying ρ for the QR model without
disorder. A model for which it is know that z = 1. Re-
sults for ρ for a 40 × 40 lattice are shown in Fig. 3 for
β = 9, . . . 400. For β � L we expect ρ to go to zero in an
exponential manner while for β � L it should approach
a constant. The simplest ansatz is therefore:

ρ =
a

L
e−c

L
β , (1)

where we have tentatively included an L dependence.
However, as is clearly evident in Fig. 3, ρ has a maxi-
mum close to L/β = 0.4. The presence of this maximum
signals that there are likely two contributions to ρ de-
scribing the β � L and β � L regimes. (Although we
note that the existence of two terms does not imply a
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2

maximum.) We therefore assume the presence of a cor-
rection term proportional to T y with y > 0. Such a term
will therefore disappear in the zero temperature limit.
For our final ansatz we therefore take:

ρ =
a

L
e−c

L
β + b

(
L

β

)y
e−d

L
β . (2)

This is the form used in Fig. 3 and it gives an essentially
perfect fit over the entire range of the figure. We can
immediately generalize to a scaling form for W 2 = βρ:

W 2 = a
β

L
e−c

L
β + b

(
Lz

β

)w
e−d

L
β . (3)

A fit to this form yields ω = 0.97(9) in relative good
agreement with similar correction terms used in Ref. [2]
and estimates for the 3D XY universality class [? ].

We now turn to the QR model in the presence of dis-
order. In this case we assume that the scaling variable
L/β generalizes to L/β1/z. We therefore expect to find:

W 2 = a
β

Lz
e−cL/β

1/z

+ b

(
Lz

β

)w
e−dL/β

1/z

. (4)

In Fig. 4 results are shown for W 2 for two different lat-
tice sizes L = 12, 20 Assuming z = 2 in this case we plot
the results against L/

√
β demonstrating that the results

fall on a single curve with only slight deviations from a
straight line. It is perhaps surprising that it is the vari-
able L/β1/z that appears as opposed to Lz/β but this can
very clearly be verified from the simulations. Perform-
ing a fit to the ansatz we find exceedingly good agree-
ment with the expected form with a correction exponent
w = 0.92(7), close to the value for the model without
disorder. An inspection of our results for ρ for this sys-
tem size shows that in this case there is no maximum in
ρ versus β.

We have performed a similar analysis of W 2 as a func-
tion of β for the QR model again clearly confirming the
overall exponential dependence and the presence of the
two terms.

CROSSING OF βρ FOR THE QR MODEL.

With the z and tc determined from the fit in Fig.1, βρ
plotted for different L at a fixed aspect ratio β = Lz/4
should also cross at the critical point tc = 0.0760(5). This
is indeed the case and is shown Fig. 5. Since this data is
essentially already shown in Fig.1(a) we have in the main
text opted to show the crossing using the related quantity
BW 2 = [

〈
W 4
〉
]/[
〈
W 2
〉
]2 shown in Fig.2. Note that in

simulations of both models two independent replicas α, β
of each disorder realization are simulated in parallel to
correctly estimate averages like[〈. . .〉2] as [〈. . .〉α 〈. . .〉β ].
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FIG. 3. (Color online) ρ as a function of L/β for the QR
model without disorder. Results are shown for L = 40. The
solid black line indicates a fit to the L = 40 data of the form
a
L
e
−cL

β + b
(
L
β

)y
e
−dL

β yielding y = 1.97(9). The dotted line
indicates the first part of this fit while the dashed line shows
the second part.
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FIG. 5. (Color online) βρ as a function of t for the QR
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APPENDIX

Appendix 5.A Other models

The BH model can be mapped onto a quantum rotor (QR) model, which has a natural physical
realization in Josephson junction (JJ) arrays (Bruder et al., 2005). It is described by the Hamiltonian:

HJ J = −t̃ ∑
〈i,j〉

cos(θ̂i − θ̂j)−∑
i

µ̃δn̂i +
1
2

Ũ ∑
i

δn2
i , (5.A.1)

where the phase and number fluctuations given by: θ̂i and δn̂i form conjugate variables satisfying
the commutation relations:

[
θ̂i,δn̂i

]
= iδij. Eq. 5.A.1 can be easily derived by invoking the transfor-

mations

b̂† =
√

no + δn̂ieiθ̂i (5.A.2)

b̂ = e−iθ̂i
√

no + δn̂i, (5.A.3)

in eq. 4.2.1. Together with the asymptomatic limit of large occupancies, i.e. no�〈δn̂i〉, quantitative
agreement is reached between the BH and quantum rotor (QR) model. Note however that δn̂i
represent fluctuations that can take both positive and negative integer values, unlike, ni in eq. 4.2.1
which is confined to only positive integer values. The parameters of the QR model are related to
but not identical to the BH parameters. Following (Weichman and Mukhopadhyay, 2007), their
equivalence is given by:

{
t̃,Ũ, µ̃

}
=

{
not,U,µ− noU +

U
2

}
(5.A.4)
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(a) Phase diagram of the
clean JJ model

(b) Phase diagram of the
JJ model with disorder

Figure 5.6: Phase diagrams of the JJ model adapted from (Weichman, 2008) with and without disorder. The
multicritical point is indicated by the red dots. The transition through the latter at fixed µ̃/Ũ lies in the (d+1)
XY universality class. Note the translational symmetry in the µ̃/Ũ direction.

Phase diagram

The phase diagram in Fig. 5.6 exhibits the same qualitative features of the BH model, most notably
the existence of the MI and SF phases as in the clean BH model and the characteristic Mott Lobes.
However, two symmetries are now explicitly present in the Hamiltonian of eq. 5.A.1. For instance,
a translational symmetry defined by: δni→ δni + no, transforms the free energy as: f J(µ̃) = f J(µ̃−
noŨ) + εo, where εo is a constant, and is reflected in the periodic structure of the phase diagram
along the µ̃/Ũ axis and the symmetry of the Mott lobes. The extra constant has no effect on the
phase diagram.

In addition, the "hidden" particle-hole symmetry of the BH model is now explicitly present in the
phase diagram at the tips of their corresponding Mott lobes. Defining this symmetry by the trans-
formation: δni→−δni,θi→−θi, we see that at the special multicritical points µ̃i = kni/2 (red dots
in fig. 5.6), where k is any integer, and together with the translational symmetry, the free energy
remains invariant such that f J(µ̃) = f J(−µ̃).

These symmetries are identical to those present in the classical XY-model defined by the Hamiltonian

H = −J ∑
〈i,j〉

cos(θi − θj), (5.A.5)

where {θi} represent the orientation of the spins in spin space. Note that the transformations:
θi→ θi + θo and θi→−θi leave the Hamiltonian invariant. This translational and inversion symmetry
in the classical XY model corresponds to the translational and particle-hole symmetry present at the
multicritical points in the quantum rotor model. Using the Villain transformation (Villain, J., 1975,
José et al., 1977), the QR model can also be mapped on to a link-current model (Sørensen et al.,
1992) which is amenable to numerical simulations.
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(a) Schematic phase diagram for
the BH model in the presence
of strong disorder: ∆/U > 1/2.
Adapted from (Fisher et al., 1989)

BG SF

(b) Schematic phase diagram for
the QR model in the presence of
strong disorder: ∆̃/Ũ > 1/2.

Figure 5.7: The schematic phase diagrams of the BH and QR model. Note the disappearance of the Mott
Phase altogether.

Disorder effects

Just as in the BH model, we model uniform disorder by making the substitution:

µ̃→ µ̃ + δµ̃i, (5.A.6)

where δµ̃i ∈ [−∆̃, ∆̃] in eq. 5.A.1. Both the shrinking of the Mott lobes by ∆ and the appearance
of a surrounding BG phase appears as well. The invariance of the free energy under particle-hole
combined with translational symmetry now implies f J(µ̃,{δµ̃i}) = f J(−µ̃,{−δµ̃i}). Note that for
both the disordered BH and QR model, we can classify them in terms of strong (∆/U ≥ 1/2) and
weak (∆/U < 1/2) disorder. As one would expect, in the strong disorder scenario, the Mott lobes
completely vanish and we are only left with the SF and BG phase. Due to the translational symmetry
of the QR model, the phase boundary is a vertical line at t̃c/Ũ, while for the BH model, the phase
boundary decreases monotonically as µ/U increases. Their phase diagrams are schematically shown
in fig. 5.7.

5.A.1 Hardcore-boson model

An even simpler model that is also capable of recapturing the generic BH physics is that of the
uniform hardcore boson model governed by the Hamiltonian:

H = − t
2 ∑
〈i,j〉

(
â†

i âj + â†
j âi

)
+ ∑

i
µ(ni −

1
2
), (5.A.7)

where âi, â†
i are hardcore bosonic operators that forbid multiple occupancies for each site, i.e. â2

i =

â†2 = 0, in addition to abiding the the same commutation relations as their softcore counterpart.
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(a) (main) Path Integral Monte-Carlo
(PIMC) results for the compressibility: κ for
a series of system sizes, L and temperatures:
β = 1/T (see legend). (inset) A closer view
of the κ close to the transition µc/t = 2

MISF

(b) PIMC results for the Superfluid density: ρs
(circles), inverse spatial correlation length ξ−1

(diamonds) and superfluid susceptibility: Σ2

(squares) as a function of transverse field, h. Re-
sults shown are derived using a combination of
system sizes.

Figure 5.8: PIMC (QMC) results adapted (Priyadarshee et al., 2006) that clearly locate the critical point that
demarcates the SF-MI transition of eq. 5.A.8 in 2d.

They can therefore be equivalently represented by the transverse-field quantum XY model:

H = − t
2 ∑
〈i,j〉

[
Ŝ+

i Ŝ−j + Ŝ+
j Ŝ−i

]
+ ∑

i
hSz

i , (5.A.8)

where Ŝ−i and Ŝ+
i are the spin-1/2 ladder operators satisfying the commutation relation:

[
Ŝ−i , Ŝ+

i
]
=

2δijŜz
i and Ŝz measures the transverse spin component, coupled to an external field, h. Clearly, the

equivalence between hardcore bosons and quantum spins is obtained via the mapping:
{

b̂+i , b̂i, n̂i − 1
2 ,µ
}
=

{
Ŝ+

i , Ŝ−i , Ŝz
i , h
}
.

Phase diagram

With only a single parameter to tune, the zero temperature phase diagram can be represented on
a straight line that manifests two phases at known critical points: hc/t = 2 (Priyadarshee et al.,
2006) with in-plane XY order when h/t < hc/t and when h/t > hc/t, an Sz polarized phase. These
phases can be identified by keeping track of κ and ρs as a function of h/t as in fig 5.8 and mimic
the SF and MI phases respectively. The insulator-conductor transition yields mean-field critical
exponents (Priyadarshee et al., 2006).
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CHAPTER 6

QMC-SDE TECHNIQUE: A HYBRID

6.1 Motivation

We have thus far discussed two distinct numerical methods, the SSE and the PPR, both of which
have their advantages and disadvantages. The SSE along with most QMC variants are primarily
used for simulating imaginary time dynamics but is limited by the sign problem when applied to real
time simulations. Generally speaking, this amounts to the appearance of negative weights, which
are unphysical. On the other hand, while the PPR is in principle able to compute imaginary time
dynamics, it requires the use of drift gauges which then necessitates the introduction of a weight term:
Ω, in the formalism (cf. section 2.6.1). More often than not, the distribution of the weight is far
from Gaussian and systematic errors arise (Dowling et al., 2007). The PPR has therefore primarily
been used for simulating real time dynamics. Interestingly despite its extensive use and with the
exception of a few cases (Olsen and Bradley, 2009), initializing the density operator within the PP
formalism, beyond a pure state, remains a challenging issue that has not been thoroughly addressed.
For instance, how does one initialize the density operator to reflect the quantum correlations of a
strongly correlated system in its ground state.

For the TIM simulated in chapters 2 and 3, the initial state was taken to be either polarized up or
down, corresponding to the ground state of the system with vanishing transverse field, h. In this
limit, the distribution of the stochastic variables are trivial delta functions. How one should initialize
the stochastic variables when h 6= 0 however, is unclear. To this end, we propose a hybrid formalism
that allows us to take advantage of the best features of both algorithms. We are currently in the
development stages of this novel formalism which we will document in this chapter.
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6.2 Sampling the density operator

The standard SSE formalism only samples the diagonal elements of the density operator via the
partition function, in a given orthogonal basis {|α〉}, i.e.

Z = ∑
α

〈α|ρ|α〉, (6.2.1)

and non-zero configurations that are sampled are indicative of the diagonal elements of the density
operator: |α〉〈α|. A full description of the density operator however requires calculation of its off-
diagonal elements as well. To this end, we construct an analogous albeit unphysical quantity:

Z′ = ∑
α

∑
β

〈α|ρ|β〉, (6.2.2)

where the states |β〉 and 〈α| are unconstrained to be equal to each other. In this case, contributing
configurations allow us to sample off-diagonal density operators: |α〉〈β|. Strictly speaking, this
quantity will also sample the diagonal elements as well. However for an N-site, m-state system,
there is an overwhelming number of off-diagonal elements compared to the diagonal elements, i.e. a
ratio of m2N − 1 : 1. It is therefore preferable to split up the sampling into diagonal and off-diagonal
components of the density operator. These initial diagonal and off-diagonal density operators can
then be easily initialized in the SU(2) coherent state basis, and subsequently propagated in time
using stochastic equations. A schematic description of algorithm is illustrated in fig. 6.1, where the
imaginary time evolution is depicted on a hyper-plane, while the real time evolution occurs on the
surface of the Bloch sphere. The exact quantum mechanical evolution of the average of the system
can then be calculated from a simple stochastic average over all Bloch spheres trajectories.

6.3 SSE sampling of configurations

With periodic boundary conditions in the trace relaxed, both insertion of single diagonal and single
off-diagonal operators are now allowed. This gives rise to increased flexibility of possible local
updates, unlike the conventional SSE formalism. For instance, one may consider updates of the
form:

• Îb←→ Ĥdiagonal,b

• Îb←→ Ĥoff-diagonal,b

• Ĥoff-diagonal,b←→ Ĥdiagonal,b,

where the subscript b indicates bond index, Îb is the identity operator, Ĥdiagonal is a diagonal
operator in the chosen basis and Ĥoff-diagonal is off-diagonal. The last two updates are specific to
the samplings of Z′. The directed loop updates still hold in this formalism as they depend only on
the vertex weights and their respective probability tables, which are unaltered when calculating Z′.
Since the directed loop is a much more efficient way of sampling off-diagonal operators, one can just
rely on the same procedure as the original SSE, namely a combination of diagonal and directed loop
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Figure 6.1: Schematic representation of the sse-sde algorithm. The horizontal plane represents the discrete
operator basis which will be sampled according to the Boltzmann weight using the modified SSE. This is
represented by the gray path with the red dots representing independent samples. Each point on the discrete
basis: {|α〉〈β|} can be mapped on to an equivalent point on the Bloch sphere (for spin-1/2 systems), which is
subsequently evolved using the stochastic differential equations derived from the PPR. We have drawn three
example Bloch spheres and a possible evolution of the stochastic variables, which can be represented by a path
on the surface. The blue arrows demarcates the Bloch spin.

updates. However unlike the original SSE, we now have to keep track of two unique spin states at the
boundaries: |β〉(= α0〉) and |α〉(= |αL)〉 in eq. 6.2.2. Another crucial modification to the formalism
is that the directed loops terminate right away should they hit the propagation boundaries.

6.4 Stochastic evolution.

To reiterate, Z′ does not allow us to calculate anything meaningful unlike Z, it only provides us the
means to sample the off-diagonal matrix elements of the density operator, to be subsequently used
to seed the SDEs. There are however some intricacies that need to be carefully dealt with when
initializing the density operator in an off-diagonal kernel, which we will discuss in this section.

First, let us consider the explicit form of the normalized kernel: Λ = |z〉〈z′∗ |
|z′∗〉〈z| in the Sz-basis:

Λ =

[
eR eQ

e−Q e−R

]
1

2cosh(R)
(6.4.1)

where R = 1
2 (z+ z′) and Q = 1

2 (z− z′). With this representation, initializing the density operator in a
pure state is a fairly straightforward procedure. This corresponds to the limit: (z,z′)→ (±∞,±∞)≡
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(R, Q)→ (±∞,0) and is well defined because of the normalization of cosh(R), i.e.:

lim
(R,Q)→(+∞,0)

Λ =

[
1 0
0 0

]
(6.4.2)

and
lim

(R,Q)→(−∞,0)
Λ =

[
0 0
0 1

]
. (6.4.3)

Off-diagonal states, corresponding to the limits: (z,z′)→ (±∞,∓∞) ≡ (R, Q)→ (0,±∞) however
cannot be properly controlled with the normalization: 1/cosh(R) and instead we get:

lim
(R,Q)→(0,+∞)

Λ =

[
0 +∞
0 0

]
(6.4.4)

and
lim

(R,Q)→(0,−∞)
Λ =

[
0 0

+∞ 0

]
. (6.4.5)

This is further demonstrated if one considers the estimator of 〈Sx〉= 1
2 (cosh(R + Q)− sinh(R + Q) tanh(R)).

One immediately realises that lim(R,Q)→(0,±∞)〈Sx〉 → ∞. This unphysical result is simply a patho-
logical effect of the normalized kernel chosen.

6.5 Specialised kernel for off-diagonal elements.

To circumvent the issue with off-diagonal elements, we instead introduce the unnormalized kernel.

Λ′ =
|z〉〈z′∗|

cosh(z) + cosh(z′)
, (6.5.1)

such that:
Tr(Λ′) = 2cosh(R)

cosh(z) + cosh(z′)
. (6.5.2)

One can easily show that evaluating Λ′ at the relevant limits now allow both diagonal and off-
diagonal elements to be initialized in a well-defined fashion. With the new kernel choice, it is now
necessary to rederive new correspondence relations, SDEs and observable estimates which we will
detail in the remaining in this chapter.

6.6 Correspondence relations

Before we begin, let us highlight the use of the following abbreviation for notational convenience:
(c, s, c′, s′) = (cosh(z), sinh(z), cosh(z′), sinh(z′)). Their upper case equivalents correspond to func-
tions of R = (z + z′)/2 instead so that (C,S) = (cosh(R), sinh(R)). Note that the latter functions
have no primed counter parts because it is symmetric under the transformation: c.c.′ (recall sec-
tion 3.3, where we introduced the operation c.c′ which implies the transformation z↔ z′ and complex
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numbers are complex conjugated).

Correspondence relations generally require the explicit calculation of the following identity:

∂Λ
∂z

=
1
N

∂Λo

∂z
− 1

N2
∂N
∂z

Λo (6.6.1)

=
1
N

∂Λo

∂z
− 1

N
∂N
∂z

Λ, (6.6.2)

which upon rearranging gives:
1
N

∂Λo

∂z
=

∂Λ
∂z

+
1
N

∂N
∂z

Λ (6.6.3)

where N is an arbitrary function of z,z′. In the generic PPR formalism, it is chosen to be the trace
of Λo. For the new kernel, Λ′, we make the choice N = cosh(z) + cosh(z′) instead in addition to the
usual base kernel: Λo = |z〉〈z′∗|

1
N

∂Λo

∂z
=

∂Λ
∂z

+
sinh(z)

cosh(z) + cosh(z′)
Λ (6.6.4)

=
∂Λ
∂z

+
s

c + c′
Λ, (6.6.5)

The key identities that we will use to derive correspondence relations are the identities for the basis
vectors:

[
1
0

]
= e−z/2

(
∂

∂z
+

1
2

)
|z〉 (6.6.6)

[
0
1

]
= ez/2

(
− ∂

∂z
+

1
2

)
|z〉 (6.6.7)

as well as the correspondence relations for an unnormalized off-diagonal kernel:

SxΛo =

(
1
2

c− s
∂

∂z

)
Λo (6.6.8)

SyΛo = −i
(

1
2

s + c
∂

∂z

)
Λo (6.6.9)

SzΛo =
∂

∂z
Λo. (6.6.10)

A sample derivation for SxΛ′ is shown below. First, noting that: Sx|z〉 =
[

e−z/2

ez/2

]
, we can use
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eq. 6.6.6 and eq. 6.6.7 to rewrite this as:

Sx|z〉 =
1
2

[
e−z/2

[
e−z/2

(
∂

∂z
+

1
2

)
|z〉
]
+ ez/2

[
ez/2

(
− ∂

∂z
+

1
2

)
|z〉
]]

(6.6.11)

=
1
2

[
(e−z − ez)

∂

∂z
+

1
2
(e−z + ez)

]
|z〉 (6.6.12)

=

(
−s

∂

∂z
+

1
2

c
)
|z〉. (6.6.13)

To obtain the correspondence relation for the desired kernel Λ′, we multiply the equation from the
left by the bra: 〈z

′ |
N to get

SxΛ =

(
−s

1
N

∂

∂z
Λo +

1
2

cΛ
)

. (6.6.14)

Putting eq. 6.6.5 to use gives us the desired result:

SxΛ = −s
(

∂Λ
∂z

+
s

c + c′

)
Λ +

1
2

cΛ (6.6.15)

=

(
−s

∂

∂z
− s2

c + c′
+

c
2

)
Λ (6.6.16)

The left correspondence relations are easily derived by taking z→ z′ and the complex conjugate of
any complex variables, which we will denote as the operation: c.c.′. The remaining identities can be
obtained in a similar fashion:

ŜzΛ =

(
∂

∂z
+

s
c + c′

)
Λ (6.6.17)

ŜxΛ =

(
−s

∂

∂z
− s2

c + c′
+

1
2

c
)

Λ (6.6.18)

ŜyΛ = −i
(

c
∂

∂z
+

sc
c + c′

− 1
2

s
)

Λ. (6.6.19)

and under the operation c.c.′, we immediately obtain the complementary ordering:

ΛŜz =

(
∂

∂z′
+

s′

c + c′

)
Λ (6.6.20)

ΛŜx =

(
−s′

∂

∂z′
− s

′2

c + c′
+

1
2

c′
)

Λ (6.6.21)

ΛŜy = i
(

c′
∂

∂z′
+

s′c′

c + c′
− 1

2
s′
)

Λ. (6.6.22)
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6.7 Gauge-P representation and stochastic evolution equa-
tions

A point of concern when using an unnormalized kernel is that a direct implementation of the usual
steps to derive the FPE will generate constant terms, thereby requiring the use of the gauge-P
representation (Deuar and Drummond, 2002) (see section 2.6.1). As an example of how this arises,
we consider the TIM again and the contribution of the transverse field term to the FPE:

SxΛ−ΛSx = −s
∂

∂z
− s2

c + c′
+

c
2
+ s′

∂

∂z′
+

s′2

c + c′
+

c′

2
. (6.7.1)

Paying attention to the constant terms and after some algebraic manipulation, we see that

− s2

c + c′
+

c
2
+

s′2

c + c′
− c′

2
=
−s2 − s2 + c2 + cc′ + s′2 + s′2 − c′2 − cc′

2(c + c′)
(6.7.2)

=
(s′2 − s2) + (cc′ − c′c) + (c2 − s2)− (c′2 − s′2)

2(c + c′)
(6.7.3)

=
1− c2 − 1 + c′2

2(c + c′)
(6.7.4)

=
(c′ − c)(c′ + c)

2(c + c′)
(6.7.5)

=
c− c′

2
. (6.7.6)

Constant terms as discussed in section 2.6.1, do contribute to the evolution of Ω and therefore cannot
simply be discarded. Carrying on, if we map the Ising term in the TIM onto an FPE, we get the
following expression:

Sz
i Sz

j Λ−ΛSz
i Sz

j =

[(
∂

∂zj
+

sj

cj + c′j

)(
∂

∂zi
+

si
ci + c′i

)
− c.c.′

]
Λ′ (6.7.7)

=

[(
∂2

∂zi∂zj
+

si
ci + c′i

∂

∂zj
+

sj

cj + c′j

∂

∂zi
+

sisj

(ci + c′i)(cj + c′j)

)
− c.c.

]
Λ′

(6.7.8)

This implies a diffusion matrix that can segmented according to the range of the interactions (nearest
neighbor for the TIM):

D〈ij〉 = i
[

0 1
1 0

]
(6.7.9)

to yield the noise matrix:

B〈ij〉 =

√
i
2

[
1 −i
1 i

]
(6.7.10)
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which is in fact the same noise terms obtained when using a normalized kernel. The only change
takes place in the ising drift terms of the final SDEs:

dzi
dt

= i

(
si+1

ci+1 + c′i+1
+

si−1

ci−1 + c′i−1

)
− ihsi + ηi + iη∗i−1 (6.7.11)

dz′i
dt

= −i

(
s′i+1

ci+1 + c′i+1
+

s′i−1
ci−1 + c′i−1

)
+ ihs′i + η′i − iη′∗i−1 (6.7.12)

dω

dt
= i


∑
〈i,j〉

sisj − s′is
′
j

(ci + c′i)(cj + c′j)
+

1
2 ∑

i
h
(
ci − c′i

)

 (6.7.13)

where 〈〈ηi(t)η∗j (t
′)〉〉= δ(t− t′)δij are complex Wiener increments and we have introduced the new

logarithmic weight variable: ω = lnΩ.

6.7.1 Switching to y-variables

In order to circumvent the ill-defined mapping at the poles of the Bloch sphere, we will implement
the same transformation and define y-variables such that:

y =





e−z if zr > 0

ez if zr < 0
=⇒ z =





− ln(y) if zr > 0 : S = +1

ln(y) if zr < 0 : S = −1
(6.7.14)

Table 6.2 and table 6.3 below summarizes the transformation of several important complex functions
of the variables y and y′ depending on the sector, S which they belong to.

6.7.2 Calculating observables

Observables will now have to be modified because Λ′ is unnormalized. We will need to evaluate the
following the derivative of the trace, using eq. 6.5.2

∂Tr(Λ′)
∂z

=
S

c + c′
− 2sC

(c + c′)2 =
Sc + Sc′ − 2sC

(c + c′)2 . (6.7.15)

To compute the expectation value for the y spin component for example, we evaluate:

〈Sy〉 = <〈〈Tr(ΩSyΛ)〉〉
<〈〈Tr(ΛΩ)〉〉 , (6.7.16)
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(z,z′)→ (+,+) (+,-) (-,+) (-,-)

R −1
2 ln(yy′) 1

2 ln( y
y′ )

1
2 ln(y′

y )
1
2 ln(yy′)

sinh(R) 1
2

1−yy′√
yy′

1
2

y′−y√
yy′

1
2

y−y′√
yy′

1
2

yy′−1√
yy′

cosh(R) 1
2

1+yy′√
yy′

1
2

y′+y√
yy′

1
2

y+y′√
yy′

1
2

yy′+1√
yy′

tanh(R) 1−yy′
1+yy′

y′−y
y′+y

y−y′
y′+y

yy′−1
yy′+1

Figure 6.2: Transformation table between z and y variables for multivariate complex functions, depending on
the sector, S.

(z or z′)→ + -

cosh(z) = 1
2

1+y2

y
1
2

1+y2

y

sinh(z) 1
2

1−y2

y
1
2

y2−1
y

Figure 6.3: Transformation table between z and y variables of univariate complex functions depending on the
sector, S.
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where < denotes the real part of the complex function. Using eq. 6.6.22 the numerator yields:

ΩTr(SyΛ′) = −i
(

c
∂

∂z
TrΛ′ + sc

c + c′
Tr(Λ′)− s

2
Tr(Λ′)

)
(6.7.17)

= −iΩ
(

Sc2 + Scc′ − 2scC
(c + c′)2 +

2scC
(c + c′)2 −

2sC
2(c + c′)

)
(6.7.18)

= i
sC− cS
c + c′

(6.7.19)

and so:
〈Sy〉 = <〈〈i Ω(sC− cS)

c + c′
〉〉
/
<〈〈i 2ΩC

c + c′
〉〉 (6.7.20)

The estimators for the other components can be derived in a similar fashion:

〈Sz〉 = <〈i ΩS
c + c′

〉
/
<〈 2ΩC

c + c′
〉 (6.7.21)

〈Sx〉 = <〈Ω(cC− sS)
c + c′

〉
/
<〈 2ΩC

c + c′
〉. (6.7.22)

It is important to note that the expectation value is given by the independent stochastic averaging
of the real parts of the numerator and denominator and not of the whole fraction.

6.8 Status

Unfortunately, we have not been able to produce any concrete simulations for the hybrid scheme.
This chapter was written with the purpose of laying the foundation and blueprint for future nu-
merical implementation. A preliminary investigation however does seem to suggest that additional
optimization may be necessary to preserve the normalization of the stochastic average of the weight
term and prevent it from decaying exponentially.
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CHAPTER 7

CONCLUSION

In the first half of this thesis, we performed a detailed investigation of the quantum phase-space
method called the positive-P representation and its effectiveness at simulating the real time dynam-
ics of quantum spin systems. In this formalism, the quantum degrees of freedom are mapped on
to stochastic variables that evolve according to Ito stochastic differential equations. The positive-P
representation was originally designed to handle few mode problems and has only recently been ex-
tended to multi-mode systems, particularly for use in the simulation of colliding weakly interacting
BECs. However, an application to strongly correlated spin systems had not been explored. Further-
more, in light of the recent advances in optical lattices, the study of non-equilibrium dynamics using
different quenching protocols can now be experimentally realized and is fast becoming an increas-
ingly fashionable avenue of research. This strongly motivated our first publication where we used the
Schwinger boson representation of quantum spins in order to apply the positive-P, and successfully
simulated the ensuing dynamics of the anisotropic quantum XXZ spin-1/2 model (and its deriva-
tives) in a transverse field, after an instantaneous quench of a parameter of the system. While exact
results can indeed be obtained, they were only available for relatively short simulation lifetimes of up
to 0.5− 1.0J/h̄, where J is the strength of the exchange interactions. Beyond this time scale, spiking
occurs which results in either systematic errors or numerical overflow. This spiking behaviour is
a notorious feature of the positive-P technique and can be essentially attributed to ill-defined re-
gions of phase space where the kernel is unnormalizable but where trajectories unfortunately tend
to gravitate towards to compensate for this.

Our attempt to significantly improve simulation lifetimes formed the premise of our second publica-
tion. In this work, we focused our efforts on the quench dynamics of the transverse-field Ising model.
Instead, we switched the underlying basis of the positive-P representation to that of SU(2) coherent
states, which seemed more aligned with the physical nature of the system. The phase space can now
be mapped onto the surface of the unit Bloch sphere with the exception of a single ill-defined point
at either of its poles (depending on the definition chosen). Using an elaborate change of variables
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toggling mechanism, we were able to carefully avoid these poles, which when combined with a novel
extrapolation scheme culminated in a significant improvement of simulation life times. Depending on
the observable calculated, we were able to achieve an extension of a two to three-fold improvement in
simulation lifetime ∼ 2.− 3.J/h̄, versus a bare application of the positive-P (in our first publication).

In our third publication that constitutes the second half of the thesis, we present our results on the
universality class of the superfluid-Bose glass transition in a 2d dirty-boson system. To this end,
we performed large scale quantum Monte-Carlo simulations on two independent quantum models,
i.e. a 2d quantum rotor model and the 2d hardcore boson model with on-site disorder introduced
through a random chemical potential. Most importantly, we obtain a highly accurate estimate for
the elusive dynamic critical exponent, z, using up to 5× 104 − 105 disorder realizations for each
data point. Unlike a majority of prior simulations in the literature, we make no biasing assump-
tions on z in determining the critical exponents of the transition. Our final independent estimates
of the exponents: {ν,η,z} are {0.99(3),−0.16(8),1.88(8)}HC for the hardcore boson model and
{1.00(2),−0.3(1),1.99(5)}QR for the quantum rotor model, both agreeing within error bars. This
presents compelling evidence that Fisher’s long-standing result: z = d for the dirty-boson Superfluid-
Bose glass transition still holds in 2d, contrary to the plethora of recent numerical and analytical
contradictory results. Additionally we verify that the quantum Harris criterion is satisfied as an
equality while the bound on the anomalous dimensions: η ≤ 2− d is met.

The natural future direction of this work is outlined in Chapter 6. We present a novel algorithm that
is in principle able to hybridize the strongest features of quantum Monte-Carlo and the positive-P
representation. The general idea is to sample the initial states from the Monte-Carlo algorithm and
subsequently evolve it using the stochastic equations of the positive-P. Of course, it may seem more
intuitive to obtain the ground state by using the gauge-P representation to evolve the system in
imaginary time and subsequently carrying out the evolution using the positive-P. However, the in-
herent barrier to this strategy is the typically short simulation life times of the formalism (especially
in the regime of strong correlations), which would preclude reaching the ground state at large imag-
inary time (or inverse temperature) values. The best demonstration to-date of such ground state
simulations using a phase space technique, is the post- and pre-projected Gaussian basis Monte-
Carlo technique for Fermionic systems (Corney and Drummond, 2004), although extra care has to
be taken to deal with potential sign problems (Rombouts, 2006) and to preserve the symmetry of
the system (Aimi and Imada, 2007, Assaad et al., 2005). Curiously, its real time evolution has not
been explored, presumably due to unfavorable simulation life times (especially in strongly correlated
systems). What differentiates our approach from the latter is that we now wish to generate strongly
correlated initial states using a stable algorithm (QMC) which can then be evolved via the positive-P
built from the SU(2) basis with a potentially simpler Hamiltonian, so as to obtain as long as possible
simulation lifetimes. Currently, we have only outlined the theoretical framework for this approach
and have yet to produce any concrete numerical results. Interestingly, an algorithm with the same
premise but using the Wigner representation has recently been proposed as well (Schachenmayer
et al., 2015).

A different avenue of research that I would be most interested in exploring is the application of the
positive-P to large spin systems, which was brought to my attention through a recent work on a
Dicke Network (Mandt et al., 2014) in the presence of dissipation and pumping. It is my opinion
that the positive-P might be better suited for large spin systems as opposed to the pure quantum
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case. For sufficiently large spins, it is my conjecture that the effects of quantum fluctuations may be
linearized as in a Bogoliubov approximation (Deuar et al., 2011), potentially resulting in well-behaved
stochastic differential equations and a significant extension of simulation lifetimes.

We are highly optimistic of the future direction of our research and it is our opinion that phase space
methods such as the positive-P representation still has room for further optimization and can one
day be developed into a state-of-the-art numerical tool for condensed matter system simulations,
particular in real time.
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