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LAY ABSTRACT 

In this project, two experiments were conducted to study driver fatigue. A 

subjective driver fatigue score was specially developed and used as a driver fatigue 

indicator. This score was sensitive to driver fatigue changes, and showed a linear 

relationship with the standard deviation of lateral acceleration. Two popular driver 

fatigue countermeasures, caffeine and music, were examined to investigate the effects on 

subjective driver fatigue and driving performance.  The results showed that caffeine 

reduced subjective driver fatigue and helped driver maintain good driving performance; 

however, music only helped drivers reduce subjective driver fatigue. 
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Abstract 

Two experiments were conducted to study driver fatigue. The first investigated 

driver fatigue and driving performance. Thirty one Participants completed a questionnaire 

to obtain their Subjective Driver Fatigue Score (SDFS) quantifying fatigue levels. 

Driving performance was evaluated by measuring steering wheel, lateral position, etc. 

The results showed significant increases in the SDFS and driving performance 

impairment following simulated driving sessions. Further analysis suggested a linear 

relationship between the SDFS and the standard deviation of lateral acceleration.  

Subjective fatigue assessment and driving performance were plotted as radar diagrams to 

show the multidimensional characteristics. The second experiment examined effects of 

caffeine and music on the SDFS, driving performance, and 8 EEG signal parameters. 

Initially, there was no significant inter-sessional variation in the dependent variables, 

suggesting all sessions were started at similar states. The final SDFS for caffeine and 

music sessions were significantly lower than control sessions, suggesting both inhibited 

subjective fatigue increase. Driving performance deteriorated less significantly in 

caffeine sessions than in control and music sessions. The results suggested that caffeine 

was more effective than music.  EEG was not changed significantly. However, the 

amplitude of α wave increased significantly for an extremely fatigued individual, along 

with vehicle drifting and micro-sleep. In conclusion, the SDFS developed in this study 

successfully estimated subjective driver fatigue levels and showed a linear relationship 

with driving performance during driving tasks. Caffeine and music reduced driver fatigue 

subjectively similarly, but caffeine also helped subjects maintain driving performance.   
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Chapter 1 Introduction 

Nowadays, the global village is becoming the world on wheels. For more and more 

people, driving is a part of their daily life.  After the automobile was invented, it had a 

generally beneficial impact. For example, automobiles allow people to travel longer 

distances and to ship heavier cargo rapidly. However, heavy vehicles traveling at high 

speed are very destructive should an accident occur. Therefore, driving safety has long 

been an important social concern for drivers and road sharers.  During the last several 

decades, new technologies and advanced designs have made today’s automobiles 

different from those in the old days; however, safety has remained an important societal 

concern. The current research is intended to help drivers to improve road safety. More 

specifically, this research experimentally (1) studies driver fatigue and its influence on 

driving performance, and (2) investigates two fatigue countermeasures which are 

frequently employed by drivers.   

In this chapter, the background of the research is discussed in the next section, 

explaining why the interests in driver fatigue have been brought into the current study. 
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The second section states the objective of the study, followed by the challenges of the 

study in the third section. The contribution of this study is summarized in the fourth 

section. The last section of this chapter provides the outline of the thesis.  

1.1 Background 

Around the world, thousands of people die or are injured because of traffic 

accidents every year. For example, according to the reports from Transport Canada from 

2010 to 2012 , 3233 drivers, 1304 passengers, and 923 pedestrians lost their lives because 

of traffic accidents in Canada [1-3].  Accidents may also lead to loss of property, serious 

injuries, and psychological barriers in driving for someone. Therefore, drivers should do 

their best to avoid a traffic accident. Traffic accidents can be caused by operational errors 

such as running red lights, running stop signs, unsafe lane changes, wrong-way driving, 

improper turns, tailgating, etc., or unsafe driving behaviors including reckless driving, 

road rage, speeding, street racing, etc., or environmental difficulties such as heavy rain, 

fog, snow, etc., or bad road conditions such as icy road surface, deadly curves, 

unexpected potholes and/or animal crossings, etc., or influence of alcohol and/or drugs, 

or vehicle component defects such as tire blowouts.  Other factors can also cause traffic 

accidents, examples include conversation during driving, night driving, and drowsy 

driving.  Drivers can easily avoid accidents resulting from some of the causes listed 

above.  For instance, alcohol consumption can be detected by estimating blood alcohol 

content to prevent drunk driving; cell phone use can be stopped to prevent distraction 

from driving; warning signs can be installed well ahead to provide notice of entering 

animal crossing zones.  However, driver fatigue accumulates during driving tasks and is 
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difficult to detect, especially at its early stage.  If a driver is fatigued enough and falls 

asleep behind the wheel, it is usually too late!  Therefore, driver fatigue has attracted 

attention from many researchers [4-6] and government organizations [7]. Evidence shows 

that driver fatigue is one of the major causes of traffic accidents [8]. Research conducted 

in Australia revealed that 25~35% of fatal traffic accidents were related to driver fatigue 

[9].  Another study reported that 58% of all traffic accidents in the U.S. were caused by 

driver fatigue [10].  Better understanding the mechanism of driver fatigue can help 

drivers to (1) effectively manage fatigue induced during driving, (2) apply appropriate 

fatigue countermeasures to reduce fatigue level, and (3) make wise decisions to avoid 

driving with fatigue, and therefore, reduce fatigue related traffic accidents. The current 

study aims to experimentally examine (1) how driving performance is affected by driver 

fatigue and (2) how fatigue countermeasures affect fatigue levels and driving 

performance in prolonged driving tasks. The results of this study may be helpful in future 

development of a driver fatigue monitoring/warning system that assists the driver in 

maintaining road safety. 

1.2 Objective  

 The objective of this study was to better understand the mechanism of driver 

fatigue, its influence on driving performance, and effectiveness of fatigue 

countermeasures.  Two experiments have been conducted in this study. The first 

experiment investigated the relationship between subjective driver fatigue levels and 

driving performance in simulated driving tasks. The second experiment investigated the 

effectiveness of caffeine and music as fatigue countermeasures in simulated driving tasks. 
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To understand the mechanism of driver fatigue, it was necessary to choose an 

appropriate driver fatigue measuring method, or driver fatigue indicator, to identify 

various driver fatigue levels. Therefore, the first objective for the current study was to 

develop a Subjective Driver Fatigue Scale (SDFS) to quantify fatigue levels of the driver.  

In the first experiment, the SDFS was examined during simulated driving sessions 

to check its validation and sensitivity to driver status. The second objective was to 

investigate changes in the SDFS and driving performance throughout the prolonged 

simulated driving tasks. Then how variations in driver fatigue, which was estimated by 

the SDFS, affect driving performance was examined. 

Another objective was to examine effectiveness of caffeine and music as driver 

fatigue countermeasures in simulated driving tasks. Driver fatigue levels were examined 

under different driving conditions, in which the driver adapted to various fatigue 

countermeasures.  Driving performance was also examined to analyze the effectiveness 

of caffeine and music. Brain activities, reflected by the electroencephalograph (EEG), 

have been recognized as a reliable estimation of fatigue [8]. Therefore, EEG signals were 

examined to check whether EEG analysis was able to be employed as an online driver 

fatigue indicator to monitor driver status and detect driver fatigue in early stages.  

1.3 Challenges 

Although drivers commonly experience fatigue after prolonged driving tasks and 

researchers have studied fatigue for decades, there are difficulties in agreement on a 

generally accepted definition of fatigue [8, 11].  This is a challenge faced by researchers 
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studying fatigue and its related subjects, as well for the current study in driver fatigue.  A 

literature review has been conducted to look for an acceptable definition of driver fatigue 

for the content for the current study.  Although, this definition of driver fatigue may not 

be accepted by all researchers studying driver fatigue, it should properly describe and 

distinguish the characteristics of driver fatigue.   

The second challenge of this study is how to accurately quantify driver fatigue, 

especially during driving tasks. Previous studies have developed various fatigue 

indicators, which can be categorized into physiological measurements (such as EEG), 

psychomotor measurements (such as simple reaction time tests), and subjective 

assessments (such as the Stanford Sleepiness Scale) [8, 12, 13].  However, it remains 

undetermined which of these fatigue indicators can quantitatively estimate driver fatigue 

accumulating during driving tasks. For example, traditional EEG devices are usually 

inconvenient to implement and therefore are often used only in off-road studies.  

Psychomotor measurements usually require participants focusing only on the 

psychomotor task to obtain accurate estimation. Therefore, it is necessary to determine 

whether psychomotor tests, such as a simple reaction time test, can reflect real driver 

status while driving.  On the other hand, existing subjective assessment tools are designed 

for general or clinical purposes instead of estimation of driver fatigue.  Therefore, to 

better understand the mechanism of driver fatigue, finding a suitable indicator is a 

challenge for this study.  

The third challenge of this study is how to examine effectiveness of caffeine and 

music as driver fatigue countermeasures, and how to distinguish the differences between 
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the two countermeasures.  Drivers in a long journey often employ various 

countermeasures to fight fatigue. While subjectively feeling that countermeasures are 

useful, drivers seldom report to what degree the countermeasures help them keep awake 

or alert. It is necessary to examine the differences between the condition utilizing a 

countermeasure and the condition without utilizing the countermeasure. The parameters 

chosen for examining the effectiveness should have abilities to reflect variations in driver 

status. The parameters need to be able to identify the different degrees of the effect under 

conditions utilizing different countermeasures.  These parameters may include subjective 

assessment and objective assessment of driver status. The Stanford Sleepiness Scale is an 

example of a subjective assessment, and EEG analysis is an example of an objective 

assessment.   

The fourth challenge of this study is to control traffic conditions so that every 

subject can have the same experiences during driving tasks. This is essential because it is 

desirable to minimize the variation in driver status resulting from variations in traffic 

conditions. If subjects do not experience the same traffic condition, variation in driver 

fatigue may include two components: driver fatigue variation resulting from driving tasks 

(task component) and resulting from variation in traffic conditions (traffic component). 

However, to separate the task component from the traffic component is not easy.  With 

precisely controlled traffic conditions, which can be achieved by using a computerized 

driving simulator, the variation in driver fatigue is the result of the driving task. 
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1.4 Contributions 

The current study aims to better understand driver fatigue by investigating (1) 

subjective driver fatigue levels, (2) driving performance, and (3) effectiveness of caffeine 

and music as driver fatigue countermeasures.  To estimate subjective driver fatigue 

levels, a questionnaire has been developed, so that the Subjective Driver Fatigue Score 

can be obtained by summing scores of each item in the questionnaire.  Two experiments 

were then conducted. The first experiment examined how driver fatigue increased and 

how driving performance deteriorated with driving time. Each subject completed three 

45-minute driving sessions, with 3 to 5 minute breaks between driving sessions. The 

Subjective Driver Fatigue Score was used to quantify driver fatigue and 16 parameters 

were used to determine driving performance. A linear relationship between the Subjective 

Driver Fatigue Score and driving performance was found.  Multidimensional 

representation of the Subjective Driver Fatigue Score and driving performance help 

drivers better understand their status during driving tasks. 

The second experiment examined effectiveness of two fatigue countermeasures, 

caffeine and listening to music. Each subject completed three 120-minute control, 

caffeine, and music sessions. The SDFS and driving performance were used to 

investigate the effectiveness. The SDFS after the control session was higher than caffeine 

and music sessions, indicating caffeine and music helped the subject maintain low fatigue 

levels. Driving performance after the caffeine session deteriorated less than after the 

control and music sessions, indicating caffeine helped the subject to maintain good 

driving performance. After 120 minutes, caffeine helped the subject maintain low fatigue 
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levels and good driving performance. Similarly, music helped the subject maintain low 

fatigue levels; however, music did not help the subject to maintain good driving 

performance. The second experiment also provided the protocol to study other driver 

fatigue countermeasures.   

The successful development and application of the driver fatigue indicator have 

been validated in the experiments. The evidence showed that this fatigue indicator was 

more sensitive than the general subjective fatigue assessment tools, such as the Stanford 

Sleepiness Scale. To date, there has been no fatigue indicator that was specially 

developed for drivers. To the best of my knowledge, this was the first subjective 

assessment tool for evaluating fatigue of an individual performing a driving task. An 

important contribution of the first experiment was the linear relationship suggesting 

increases in standard deviation of lateral acceleration with increasing subjective driver 

fatigue scores. This finding was helpful in developing fatigue and performance 

detecting/predicting systems. On the other hand, the radar diagram demonstrated the five 

sub scores of the questionnaire and revealed the characteristics of fatigue that 

experienced by the driver. This finding contributed to the appropriate choice of the 

fatigue countermeasure needed for different types of fatigue; therefore, the driver would 

maintain sufficient alertness level to drive safely.  The second experiment provided 

quantitative comparison between the two fatigue countermeasures, caffeine and music. It 

was evident that both kept the subjective driver fatigue score at relatively low levels. 

However, while caffeine also helped the subjects to inhibit deterioration of driving 

performance, music introduced additional distraction and did not improve driving 

performance.  The findings of the second experiment provided a guideline to the driver to 
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choose a suitable fatigue countermeasure under different fatigue situations. It also 

provided a protocol to examine effectiveness of other fatigue countermeasures that were 

not examined in the current study.  

1.5 Thesis organization 

The thesis consists of seven chapters. The first chapter is the introduction.  The 

second chapter is the literature review. The third chapter describes the development of the 

SDFS and its calculation.  The fourth chapter gives details of the experimental design. 

The fifth and sixth chapters provide the data analysis of the experiments. The last seventh 

chapter discusses the findings of the project and concludes the study and possible future 

work. 
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Chapter 2 Literature Review 

In this chapter, some fatigue related research is reviewed. The purpose of this 

review is to better understand the previous research on driver fatigue. General fatigue and 

driver fatigue are to be considered first in section 2.1. Secondly, various fatigue 

indicators developed by previous researchers are discussed in section 2.2. Then, driving 

performance variables are discussed and summarized in a list in section 2.3. Finally, 

various driver fatigue countermeasures are taken into consideration in section 2.4.  

2.1 Fatigue and driver fatigue 

Fatigue is a common phenomenon and has an impact on performance of 

individuals. When performing risky tasks, fatigue can cause dangerous errors. Therefore, 

many researchers of different areas have made efforts to understand the mechanisms of 
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fatigue [14-25].  Some researchers focused on fatigue in industrial [12] and military [20] 

areas for healthy people. Some other experiments were conducted to investigate fatigue 

and its effects on people with illness [17, 26, 27]. Experiments were also conducted to 

examine the effects of fatigue on performance in athletes [21]. Many experiments have 

also been conducted to study fatigue related to driving tasks [18, 22, 24, 28-31].  

However, there is no absolute agreement on the definition of fatigue [8]. Although, this 

review on fatigue related research is not intended to draw a generally accepted definition, 

it is necessary to properly address the content of the current study of driver fatigue by a 

definition, which will be provided at the end of this section. 

2.1.1 Fatigue in general  

Fatigue symptoms are the most useful indicators in identifying fatigue. Fatigued 

people exhibit symptoms including: lapses of attention; operational errors and 

distractibility; reduced rate of information processing; more variable task performance; 

and reduced reserve capacity [32].   Fatigue is often classified into physical fatigue and 

mental fatigue. Physical fatigue is related to muscular fatigue, and mental fatigue is 

related to psychological phenomena such as impaired awareness and diminished 

motivation [8]. 

Muscular fatigue is usually reflected by reduced muscular power and slowed body 

movement [12].  Lactic acid and carbon dioxide accumulate while muscular fatigue 

occurs, and people usually find the muscular tissue becomes acidic, due to consumption 

of energy reserves (such as glucose and phosphorous) to supply energy needed for human 

activities.  Sufficient physical rest and energy intake are necessary for muscular fatigue 
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recovery, during which the muscular tissue regains a normal internal environment.  

People can usually notice muscular/physical fatigue by themselves, through physical 

fatigue symptoms such as slowed movement, reduced muscular capacity, muscle 

soreness, etc. Impairment in performance caused by physical fatigue, therefore, can be 

clearly identified. However, it is worth noting that the mechanism of some fatigue 

symptoms is not fully understood. For example, two groups of researchers, Lewis et al. 

and Cheung et al., mentioned six hypothesized theories explaining the mechanism of 

delayed muscle. Both of them suggested that a single theory was not sufficient to explain 

the causes of muscle soreness [33, 34].   It is interesting that, according to the report from 

Cheung et al., lactic acid, which has been believed to be the cause of muscle soreness, 

may be related to muscle soreness immediately after intense exercise, but is not the cause 

of the delayed onset of muscle soreness [34].   

Mental fatigue, on the other hand, is a complex psychological phenomenon. It is 

often exhibited by symptoms including (but not limited in) a disinclination for effort, and 

reduced efficiency and degraded alertness [12]. Mental fatigue increases gradually and 

can accumulate while performing a task continuously. Although mental fatigue can also 

be self-identified when it becomes severe, people usually have difficulty to self-recognize 

the onset of mental fatigue. In general, by the time an individual self-recognizes fatigue, 

this individual is already in a very serious fatigue condition. If he/she is performing a task 

involving any risks, such as driving a car, impaired performance may put him/her and 

others in a dangerous situation. In addition, physical fatigue and mental fatigue can affect 

each other, and an individual can also experience a combination of the two [8]. For 
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example, after driving for a long time period, the driver may get sleepy and experience 

sore feet; this driver then experiences physical fatigue and mental fatigue simultaneously.   

2.1.2 Driver fatigue 

Driving is a risky task involving both physical fatigue and mental fatigue if 

proceeding long enough. Therefore, symptoms developed during a continuous driving 

task include physical symptoms (such as sore feet, tired eyes, feeling drowsy, etc.) [18] 

and psychological symptoms (such as slow-downed reaction, being distractible, etc.) [8]. 

Severe fatigue does cause impairment in driving performance, which may directly lead to 

road accidents. Therefore, it is important to monitor driver fatigue and help drivers avoid 

accidents caused by driver fatigue.   

Numerous studies have been conducted to develop measurable parameters 

associated with driver fatigue. Fatigue indicators that have been developed may be 

categorized into physiological measurements (such as the electroencephalogram), 

psychomotor measurements (such as simple reaction time), body motions (such as head 

or eyelid movement), and subjective assessment based on self-reported fatigue symptoms 

[8, 12, 13].  Driving performance is impaired with increased driver fatigue; therefore, 

parameters used to estimate driving performance can also be used as fatigue indicators. 

Some frequently measured driving performance parameters include the mean and the 

standard deviations of vehicle velocity, lane position, steering wheel rate, lateral 

acceleration, etc. [35-38]. A thorough list of driving performance parameters is provided 

in section 2.3. 
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To reduce/avoid road accidents associated with driver fatigue, various fatigue 

countermeasures are often employed by drivers. For example, some drivers believe that 

opening the window while driving can help to reduce fatigue induced by prolonged 

driving. Automobile designers are interested in whether these fatigue countermeasures 

are effective and how long the effect can last [4, 39-41].  Detailed discussion on driver 

fatigue countermeasures is provided in section 2.4. 

Based on the characteristics of driver fatigue and its effects on driving 

performance, the modified definition given by Williamson will be adapted in this study: 

“[fatigue is] a state of reduced mental alertness [and muscular functions], which impairs 

performance of a range of cognitive and psychomotor tasks, including driving [35] ” 

2.2 Fatigue indicators 

Efforts have been made by researchers to develop variables associated with 

fatigue. Various commonly used fatigue indicators include performance, perceptual, 

electrophysiology, psychological and biochemical measurements, etc.  Fatigue indicators 

associated with industry are categorized into several groups [12]. These include quality 

and quantity of work performance, recording of subjective impressions of fatigue, 

electroencephalography, measuring subjective frequency of flicker-fusion of eyes (also 

called eye/eyelid movement), psychomotor tests and other mental tests, etc.  Fatigue 

indicators associated with driving were recently categorized into groups differently [13]. 

These include subjective assessment, psychomotor test, ocular parameters, physiological 

variables, and other methods such as steering grip pressure, skin conductance, blood 
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volume pulse, etc. Some frequently used fatigue indicators of these are reviewed in this 

section. 

2.2.1 Subjective fatigue assessment 

Subjective fatigue assessment is a traditional key measure in fatigue related 

studies [11, 27, 35, 42, 43].  While some researchers considered subjective assessment of 

driver fatigue based on questionnaires as important fatigue indicators [12, 18, 19, 38, 42-

45], other researchers pointed out that the questionnaire was usually completed before or 

after the driving experiment and on-task estimation was not available, and that subjective 

assessment alone was inadequate [8].  However, because subjective fatigue assessment is 

simple, direct, nonintrusive, and reasonably reliable, it has recently received more and 

more attention [10, 13, 18, 28, 36, 38, 44, 46, 47].  For example, some experiments have 

been conducted to investigate how the changes in subjective fatigue score are related to 

changes in performance (such as steering wheel movement, lane position deviation, etc.) 

[36, 39, 48, 49].  

Fatigue symptoms are important in identifying driver status. An experiment was 

conducted to investigate how fatigue symptoms (such as headache, backache, sore feet, 

eye strain, etc.) developed during simulated driving tasks [18]. In the experiment, 

subjects were asked to drive as long as possible, until they could not continue. A 

questionnaire was used to estimate the severity of physical fatigue symptoms.  Driving 

time that a driver could persist in was found different for individuals. Regardless of how 

long the driving time persisted, drivers stopped driving when a “critical fatigue level” 

was reached. A modified Pearson Fatigue Checklist was used, and a physical symptom 
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questionnaire for self-reported fatigue assessment was developed. The study concluded 

that (1) people stopped driving at similar fatigue levels, (2) but how quickly each 

individual reached the critical level of fatigue differed. It was also found that some 

physical symptoms did not increase, while others increased linearly with time during a 

simulated driving task. Backache, headache, stiff joints, and numbness showed 

significant increase while sore feet, tired eyes, and drowsiness developed most quickly 

with driving time elapsed. This study suggested that the Pearson Fatigue Checklist 

provided a valid measure of fatigue in the simulated driving task [42].  From this study, 

the symptoms that are useful as fatigue indicators are tired eyes, sore feet, drowsiness, 

backache, headache, stiff joints, and numbness, because these symptoms quickly 

developed during the driving tasks. While the current experiment investigated changes in 

fatigue symptoms with driving time, the experiment described in the next paragraph 

investigated effects of driving condition on driver fatigue [36]. 

Traffic situations, as a source of stimulation, have impacts on driver status. To 

investigate environmental effects, an experiment was conducted [36]. Subjects were 

asked to complete simulated driving tasks in monotonous/less monotonous traffic 

conditions. The study examined effects on fatigue in two types of traffic situations, rather 

than time effects. Subjective fatigue was measured using a seven point Likert-type scale. 

Driving performance was determined through steering wheel movement and lateral 

position. Increase in steering wheel movement and lateral positon (and its standard 

deviation) were used as signs of the deterioration of driving performance. The results 

showed that variance in driving performance deteriorated more in monotonous road 

conditions than in less monotonous road conditions. The seven point Likert-type 
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subjective fatigue scale was simple and direct. It was rapidly and briefly answered by the 

subjects, to avoid (or reduce) possible changes in current fatigue levels of the drivers. 

While some experiments examined fatigue changes through simulated driving tasks [18, 

36], the following experiment examined changes in fatigue levels through real road 

driving tasks. 

In a real road driving study [50], the results showed that verbal subjective 

assessment of driver state has impacts on the drivers. While the experiment was 

conducted on a real road, effects of verbal assessment of subjective fatigue were 

investigated, using objective indicators of vigilance states including EEG, eye-blink 

duration, and heart rate. The results showed that fatigue level was significantly reduced 

during verbal subjective fatigue assessment. Reaction times also decreased after verbal 

subjective assessment, indicating fatigue level was reduced. This fatigue reduction effect 

dissipated two minutes after the end of the verbal communication. The study confirmed 

reduction in driving fatigue induced by verbal communication. Therefore, when 

subjective fatigue is estimated verbally, this effect should be taken into consideration, 

although the effect only lasts about two minutes.  

2.2.2 Psychomotor and mental tests 

The second type of fatigue indicator employs psychomotor and/or mental tests 

such as a reaction time test and/or arithmetic test to estimate the cognitive aspect of 

driver fatigue [48, 51-57].  Deteriorated performance on psychomotor tests is assumed to 

be related to increased fatigue levels. For example, slower typing speed or increased 

typing error rate is a sign of fatigue increase.   
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Simple reaction time tests have been employed in a recent study in developing a 

mathematical model to describe the relationship between human sustained attention 

performance (reaction time) and fatigue induced by sleep deprivation [56].  This model 

has been used in an experiment to investigate the performance of the driver with sleep 

deprivation [57].  In the experiment, drivers were asked to complete a forty-minute 

driving session once a day for four consecutive days. The driver did not experience sleep 

deprivation on the first day. On the second day, the driver was restricted to four hours of 

sleep. Then the driver had no sleep for one day on the third day and no sleep for two days 

on the fourth day. The drivers completed the driving tasks between 2:00 pm and 4:00 pm. 

Driving performance such as deviation of lane position was recorded. The results showed 

that deviation of lane positon increased with sleep loss. The model developed based on 

sustained attention performance well predicted degradation in driving performance, but 

underestimated true driving performance. 

The arithmetic test is an example of a psychomotor test, which involves basic 

numerical calculation.  Arithmetic tasks were performed by subjects in an experiment, 

which was conducted to investigate the effects of traffic conditions on driver fatigue [48]. 

The arithmetic task included additions and subtractions, and the subjects provided the 

answer orally. During the experiment, the subjects experienced traffic conditions with 

different levels of complexity. Driver fatigue was measured by a questionnaire, a visual 

traffic sign distance estimation task, and the arithmetic task. Driving performance was 

measured in terms of mean and standard deviation of steering wheel movement, etc.  The 

results showed that after one hour of driving, subjective driver fatigue increased, 

accompanied with greater attention demand. Increase in driver fatigue was more 
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significant in the complex traffic condition than in the monotonous condition. The 

subjects tended to overestimate the distance between the vehicle and the road-side traffic 

signs. However, performance of visual distance estimation was better under the complex 

traffic condition than the monotonous condition. Performance on the arithmetic task was 

also better under the complex traffic condition.  The researcher also pointed out that the 

performance on the arithmetic task was better for fatigued subjects. This study indicated 

that driver fatigue increased when traffic conditions became monotonous, and decreased 

when traffic conditions became complex; because more complex traffic conditions 

require more attention [48]. 

2.2.3 Eye movement 

When people are fatigued, their eyes move in certain patterns, and this can be 

used as a fatigue indicator. The pattern of eye movements has been studied to develop 

fatigue indicators by some researchers [30, 58, 59].  Eye movements are usually fast at 

normal conditions for people with no fatigue, but become slow and small when people 

become fatigued. Sometimes fast rhythmic blinks can be observed with fatigue [8].  

Electrooculography (EOG) is used to monitor eye movements; therefore, changes in EOG 

can be used to identify fatigue. The percentage of eye closure (PERCLOS) is an 

alternative fatigue indicator. This method was employed by some researchers [51] as an 

independent fatigue indicator to verify the subjective fatigue estimates.  Other researchers 

[59-61] developed eye tracking systems to detect driver fatigue.  For example, a 

prototype including an eye tracking system has been developed to dynamically monitor 

the whole face of the driver, enabling real-time detection of driver fatigue [60].  
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Combining facial expression and characterized movements of eyelid, gaze, and head, the 

system was found to be more reliable than other fatigue monitoring systems in which 

only a single fatigue indicator was employed. Other researchers extended the eye tracking 

system to a face tracking system [62]. Therefore, eye tracking became a part of the 

overall fatigue monitoring system. Since the face tracking system monitored larger areas, 

the results might be more robust and more reliable; however, more complicated algorisms 

and more computing resources are required.  

2.2.4 Physiological indicators 

Physiological measurements, such as electroencephalography (EEG) and 

electrocardiography (ECG), reflect human status, and have been used as fatigue 

indicators.  Electroencephalography reflects brain activities, and electrocardiography 

represents heart activities. Both measurements reveal human physiological status, which 

may change as a response to external stimulation.   

2.2.4.1  EEG 

Among the psychophysiological parameters that have been used as fatigue 

indicators, electroencephalography (EEG) perhaps is the most promising method [8].  

The electroencephalograph is a recording of the electrical activity of the brain, usually 

obtained by means of electrodes placed on the scalp. The graphic recording obtained is 

called an electroencephalogram, which is used to study brain waves. Brain activity is 

graphically reflected by EEG; therefore, the EEG signal has been widely employed to 

study brain activity in the transition period from wakefulness to the onset of sleep [13, 

27, 63-66].  Many driver fatigue related studies used EEG to investigate fatigue levels of 
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the driver. One traditional method is to assess driver alertness/fatigue based on the EEG 

power spectrum analysis [63, 67-72]. A close and strong relationship between changes in 

driving performance and the EEG power spectrum was demonstrated [63], and only 

requires two channels of EEG signals. Estimation/prediction data from the EEG based 

model match well with each of the actual driving performance measures. This study 

suggested that it was feasible to accurately estimate driving errors based on multi-channel 

EEG power spectrum estimation and principal component analysis. While these studies 

only employed EEG as a fatigue indicator, some other studies combined EEG with 

additional fatigue estimators (such as heart rate variation, blood pressure, etc.) [66, 73-

76]. 

While EEG power spectrum analysis was popularly used to estimate driver 

fatigue, various entropy measures of the EEG signal were considered by other researchers 

as fatigue indicators [13]. These parameters were (1) relative α band energy, (2) Shannon 

Entropy, (3) Renyi Entropy of order 2 and order 3, (4) (α+β)/δ ratio. The results indicate 

Shannon Entropy and Renyi Entropy provide a good estimation of different fatigue 

levels. It was concluded that fatigue indicating parameters based on higher order entropy 

measures of EEG signal in the wavelet domain can be used to quantify the level of 

fatigue in human drivers or human operators in critical safety human-machine 

interactions [13].  

In another recent study, four ratios of slow wave to fast wave have been suggested 

as fatigue indicators [77]. These four ratios were calculated based on the power spectrum 

of delta, theta, alpha, and beta components. It was reported that all these ratios showed 
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increase over time and could be implicated for detecting fatigue changes.  These four 

measurements were (1) the ratio of the theta spectrum over beta spectrum, θ/β, (2) the 

ratio of the alpha spectrum over beta spectrum, α/β, (3) the ratio of the summation of 

theta and alpha spectrum over beta spectrum, (θ + α)/β , and (4) the ratio of the 

summation of theta and alpha spectrum over the summation of beta and alpha spectrum, 

(θ + α)/(β + α).   

2.2.4.2  ECG 

Another physiological variable, heart rate, also varies with different activities of 

people and can be graphically quantified by Electrocardiography (ECG) [78, 79]. ECG 

has been frequently used in clinical research, as well as in research associated with 

fatigue.  Heart rate decreases during prolonged night driving, accompanying driver 

fatigue. This was observed by some researchers who suggested that heart rate change had 

the potential for indicating driver fatigue [8].  Experiments were conducted to investigate 

effects of different vibration frequencies on heart rate variability and driving fatigue. The 

results showed significant differences in all indices of heart rate variability between any 

two groups during experiment periods, but no significant difference was observed during 

the pre-experiment period.  Subjective fatigue was lowest for the group who drove 

without vibration and highest for the group who drove with higher vibration frequency. 

Severity of fatigue symptoms was found to increase with high vibration frequency.  This 

result suggested that driver fatigue ratings were associated with higher vibration 

frequencies in simulated driving. It also showed that different vibration frequencies 

resulted in different autonomic nerve activities. Other researchers [78] investigated low 

frequency (LF) and high frequency (HF) components of heart rate variability (HRV) and 
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fatigue effects to assess HRV as an indicator of driver fatigue. It was shown that the 

LF/HF ratio was significantly lower during fatigue as compared to the alert state. It was 

also observed that the accuracy of the neural network, which was trained to predict driver 

fatigue level using HRV, was very high at 90% and the error reduced to minimum and 

the output converged to the desired results. This study confirmed that HRV can be used 

as an indicator of fatigue. The LF/HF ratio decreases as fatigue increases, while driving 

performance declined.  

In a recently developed driver fatigue recognition system, ECG and EEG were 

considered as important factors for inferring the online driver fatigue level [80]. To 

estimate the driver fatigue level, contextual variables (sleeping quality, circadian rhythm, 

and work environment), observable variables (eye movement, EEG, and ECG ), and 

hidden variables (driver fatigue/alertness level) were used to construct the Dynamic 

Bayesian network. By using multiple contextual and physiological features, the system 

was able to predict driver fatigue.  The researcher suggested that a more reliable and 

accurate driver fatigue prediction could be obtained by including more contact 

physiological features. It was also suggested that ECG and EEG were two important 

components in this fatigue predicting model. The study showed that the model lost 

accuracy significantly when the EEG and ECG were removed from the model.  

2.3 Driving performance 

Driving performance reflects the driver ability to control the vehicle, and is 

essential to road safety. Driving performance can be measured by different parameters.  
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These parameters can be categorized into three groups, which will be described in this 

section.  

The first group was related to steering wheel control, including steering wheel 

angle input (SA), steering wheel rate (SR), and vehicle yaw rate (YR). Steering wheel 

angle input recorded instantaneous angular position of the steering wheel. Steering wheel 

rate was the time derivative of the steering wheel angle. Vehicle yaw rate recorded the 

rate of change in heading angles of the vehicle. Steering wheel movement (steering wheel 

angle and frequency) has been examined in monotonous and complex road scenarios 

[81]. The result showed that more frequent large steering turns indicated greater 

decrements in driving performance and increased fatigue levels in the more monotonous 

road scenario. Another recent study investigating the relationship between steering wheel 

angle and driver fatigue, which is estimated by EEG, indicated that steering wheel angle 

was an effective indicator of driver fatigue [31].  

The second group was related to lateral position control, including lateral position 

(LP) and lateral velocity (LV).  A lane-keeping task has been used to estimate driving 

performance and identify driver state by some researchers [51, 81]. In this study, lateral 

position was defined as the distance between the center line of the vehicle and the center 

of the current lane. At the beginning of each driving session, the simulator initially set the 

lateral position to zero. Lateral velocity was the time derivative of lateral position. Lateral 

position is an important estimation of driving performance, because it measures the 

ability of the driver to maintain the safe distance to the road users on the conjugate lanes. 

In general, the smaller of the mean value and standard deviation of the lane position, the 
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better driving performance. When drivers are highly alert and able to concentrate, they 

can detect a very small deviation of the vehicle from the center of the lane, and can 

quickly respond to this deviation by adjusting the steering wheel to avoid propagation in 

this deviation. Trying to keep the vehicle at the center of the lane, the mean of the lane 

position is usually close to zero. Therefore, the mean and standard deviation of the lane 

position are both small when the driver is not fatigued. After prolonged driving tasks, 

drivers may get less alert and have difficulty concentrating; they may become less 

sensitive to deviations of the lane position. Due to slowed information processing speed 

at a high fatigue level, drivers cannot respond to the deviation as quickly as they do at the 

low fatigue level.  Although the mean of the lane position may remain close zero 

(suggesting the driver still can drive straight along the lane), the standard deviation may 

increase, resulting from degraded detecting and slowed responding abilities. At extreme 

high fatigue levels, the driver may experience micro sleep behind the wheel and lose the 

ability to control the vehicle.  This may result in undesired drifting of the vehicle from 

one lane to another, which is dangerous. In summary, lateral position is one of the most 

direct observations of driving performance, which can be affected by driver fatigue and 

affects road safety.  The third group was related to speed control, including longitudinal 

speed (VE) and acceleration (AC).  Speed control directly affects the longitudinal 

distance between vehicles, and maintaining safe distance is essential to avoid tailgating. 

These eight driving performances are listed in Table 1.  Detailed descriptions of 

the parameters are provided in the second column, and the units are also included in the 

third column. The means and standard deviations (SDs) of these driving performances  
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Table 1. Driving Performance Parameters 

Variables Description and/or Function Units 

Steering wheel control 

Steering wheel 

angle input 

Angular position of the steering wheel (SA) [degree] or 

[radians] 

Steering wheel 

rate 

Estimates driver ability to control the steering 

wheel (SR) 

[radians/second] or 

[degree/second] 

 

Yaw Rate Estimate the rate of change in heading angles of 

the vehicle (YR) 

[radians/second] or 

[degree/second] 

Lateral position control 

Lateral 

position 

Distance between center of the vehicle and the 

lane center, this parameter represents driver’s 

ability to keep vehicle at the center of the lane 

(LP) 

[feet] or  

[m] 

Lateral 

velocity 

Derivative of the lateral position, this parameter 

represents variance in driver’s ability to keep 

vehicle at the center of the lane (LV) 

[feet/second] or 

[m/second] 

Lateral 

acceleration 

2
nd

 derivative of the lateral position, also 

represents variance in driver’s ability to keep 

vehicle at the center of the lane (LA) 

[feet/second
2
] or 

[m/second
2
] 

Speed control 

Longitudinal 

velocity 

Time derivative of the longitudinal position, this 

represents how fast the vehicle is traveling (VE) 

[feet/second] or 

[km/hour] 

Longitudinal 

acceleration 

Time derivative of longitudinal velocity, this 

parameter represents driver’s ability to keep speed 

of the vehicle constant (AC) 

[feet/second
2
] or 

[m/second
2
] 
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can be obtained to examine the state of the driver. Therefore, sixteen parameters related 

to driving performance are available in driver fatigue assessment. Only data collected 

during the lane keeping tasks will be used for the analysis of driving performance.   

2.4 Driver fatigue countermeasures 

With better understanding of driver fatigue mechanisms, how to counter fatigue 

while driving should be taken into consideration. It is important for researchers to provide 

helpful advice for drivers on how to avoid/reduce accidents caused by accumulated 

fatigue. This has led to interest by researchers in studying various fatigue 

countermeasures.  However, the term “fatigue countermeasure” is not well/clearly 

defined, like the term “fatigue”, but in a different way.  Although, in the current study, 

“fatigue” is used to describe a state of people in which physical and/or mental efforts are 

not desired and operational performance is impaired, there is no common agreement of 

the definition of “fatigue” [8].  This is due to its complex symptoms, relatively wide 

range of transitional stages, various individual differences, and diverse causes. On the 

other hand, “fatigue countermeasure” has been used to describe either of the following 

two terms: 

(1) Any system or device which can help a driver to detect and react to fatigue 

symptoms [82], or 

(2) Any fatigue coping method which provides stimulation to people and 

invigorates the body and/or mind [37] 
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Some researchers adopted the first definition in their studies [41, 49, 78, 82-84].  

Brown suggested a “technological countermeasure system” monitoring driver steering 

behavior as an in vehicle fatigue detecting assistant system [82].  Lal developed an 

algorithm to analyze EEG signals, which could be integrated with a “driver fatigue 

countermeasure” device to monitor off-line/online driver states [83]. Tran et al. also 

investigated brain activity using EEG signal as a valid “fatigue countermeasure” in 

fatigue assessment [84].  Patel et al. suggested that heart rate variability could be 

implemented into “a fatigue countermeasure system” to assess driver fatigue [78].   

Some other researchers adopted the second definition in their studies [37, 85-88]. 

Åkerstedt et al. found that short sleep and a caffeinated drink were the favorite “fatigue 

countermeasures” during working hours, after a review of some possible fatigue coping 

methods [85]. Landstrom et al. studied the effectiveness of sound exposure as a “fatigue 

countermeasure” to wake fatigued drivers up, and obtained consistently positive results  

[86]. Brice and Smith revealed that caffeine as an effective “fatigue countermeasure” 

helped subjects improve steering accuracy [87].  Gershon et al. also studied effects of 

caffeine, but along with a self-paced manual-dexterity/mastication secondary task 

(shelling and eating sunflower seeds), and found that both “fatigue countermeasures” had 

positive effects on reducing fatigue [37]. In another experiment, Gershon et al. conducted 

a survey to investigate sixteen different “fatigue countermeasures” adopted by 

professional and nonprofessional drivers. It was found that professional drivers handled 

driving fatigue strategically but nonprofessional drivers only used tactical methods to 

pass the time and reduce feeling of boredom [88].   
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Haworth et al. summarized two functions of “fatigue countermeasures”: the first 

function is monitoring fatigue while driving, and the second function is helping the driver 

in maintaining alertness [89].  It is clear that the first function is associated with the first 

definition, and the second function is associated with the second definition.  To avoid 

confusing the two, the second definition given by Gershon et al. [37] is adopted in the 

current study with slight modification:  a driver fatigue countermeasure is any fatigue 

coping method that helps people to maintain alertness, which may include 

external/environmental and internal stimulation to invigorate the body and/or mind, and 

fatigue management strategies to avoid proceeding risky tasks at high level of fatigue. 

Åkerstedt et al. suggested that fatigue countermeasures would be classified into 

two groups [85]. The first group includes carefully developed scheduling and home sleep 

recommendations which affect fatigue levels outside work hours. The second group 

includes secondary activities (such as intake of caffeine, short break, exercises, etc.), or 

environmental factors (light, noise, etc.) which can be applied within work hours or 

during tasks.  Fatigue countermeasures in the first group are long term strategies 

managing overall fatigue level distribution strategically [85].   

One of the studies mentioned previously investigated the effectiveness of fatigue 

management training as fatigue countermeasure [40]. A comprehensive fatigue 

management training was given to the driver in driver education programs. The results 

suggested that driver education was useful for fatigue management. On the other hand, 

fatigue countermeasures in the second group immediately interfere with the current 

fatigue level, and the effectiveness varies from one method to another [85].   
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After a review of studies related to fatigue countermeasures being conducted 

before 1998, Åkerstedt et al. concluded that short break/sleep and caffeinated drinks were 

the most favorite, and waking noise was a promising method, whereas some other 

countermeasures  (such as light, temperature, food, and activity) might be useful, but 

further systematic investigation was needed to give conclusions [85].  In the previously 

mentioned survey, Gershon et al. investigated sixteen different fatigue countermeasures 

based on 100 professional and 90 nonprofessional drivers [88].  The results revealed that 

listening to radio and opening the window were the most effective methods that were the 

most frequently adopted by both groups. Talking to others was the top choice of the 

nonprofessional group. On the contrary, professional drivers more frequently adopted 

strategic methods including planning rest stops ahead, taking short breaks, and taking 

caffeinated drinks [88].   

Another study conducted by Gershon et al. compared the effectiveness of two 

fatigue countermeasures: caffeinated energy drink and a manual-dexterity activity 

(shelling and eating sunflower seeds) [37].  Caffeinated energy drink showed significant 

positive benefit in reducing subjective and physiological fatigue measures and driving 

performance.  The manual-dexterity activity helped drivers reduce subjective and 

physiological fatigue temporarily, but deteriorated driving performance.  

Landstrom et al. conducted an on-road experiment to examine effectiveness of 

waking sound with four different frequencies (2050, 3700, 5800, and 10750 Hz) [45].  

The results showed that with waking sound, the alertness of the driver was significantly 

increased. The waking sound also had positive impact on road safety.  Another simulated 
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driving study revealed that hitting a rumble strip increased driver alertness for a short 

time period [46]. This is because hitting a rumble strip provided a warning signal which 

combines sound and vibration stimulations.  Other than the monotonous auditory 

stimulation, music provides more variable auditory stimulation with various rhythms and 

mood effects. According to a recent study, physiological arousal was inhibited and 

driving performance was improved more effectively during high-demand driving tasks, 

when abrupt music changes were applied, compared to gradual music changes [90].  

 It is interesting that a type of vibrating seat has been available in the market, 

providing an alarming signal to wake a fatigued driver up.  However, whether vibration 

should be considered as an alarming device or fatigue countermeasure device is still 

questionable.  One researcher conducted an experiment to study the effect of different 

vibration frequencies on drivers [79]. The results revealed that both low frequency 

(1.8Hz) and high frequency (6Hz) vibration induced more fatigue after prolonged 

simulated driving, compared to the control driving group who completed the same 

driving task without vibration.  From results of this research, a vibrating seat may not be 

suitable as a fatigue countermeasure, because continuous vibration may make a driver 

more fatigued, instead of making them more alert.  On the other hand, a sudden activation 

of a vibrating seat may provide temporary alerting/warning effects, which is similar to 

that of hitting rumble strips on the road. If warning systems are to be examined, the 

vibrating seat can be introduced into the experiment. 

Some of the fatigue countermeasures that have been studied in the previously 

mentioned studies are listed in Table 2.  Some other fatigue countermeasures may be 
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adopted by drivers (for example, chewing gums, rubbing eyes, shaking head, etc.), but 

very few people reported these were effective. An individual may have his/her personal 

preference while choosing the fatigue countermeasure. However, it is important to notice  

 

Table 2. List of fatigue countermeasures  

1. Stop for short nap 

2. Opening the window 

3. Listening to the radio/music 

4. Drinking coffee 

5. Drinking energy drink 

6. Shelling and eating sunflower seeds 

7. Smoking 

8. Talking on the cellular phone 

9. Eating salty snacks 

10. Eating chocolate snacks 

11. Talking with passenger 

12.  Driving barefoot 

13.  Stopping for exercise 

14.  Change seating position 

15.  Watching the view 

16.  Thinking personal thoughts 

17.  Increased light stimulation 

18.  Waking sound 

19.  Hitting rumble strip 

 

that with different types of fatigue, different fatigue countermeasures should be adopted 

to effectively avoid operational errors. A recent study suggested that the causes of sleep-

related driver fatigue and task-related fatigue were different, therefore, different 

countermeasures were necessary [41].  In general, sleep-related fatigue can only be 

recovered by taking sufficient rest. For task-related fatigue, depending on mental 

overload or under-load, different technologies can be adopted. With mental overload 

task-related fatigue, automation technologies (such as the lane-keeping assistant system) 

can be activated to reduce mental workload; therefore, allowing the driver recover from 
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fatigue.  With mental under-load task-related fatigue, interactive technologies (such as 

the waking sound system) may help the driver maintain necessary level of activity and 

alertness.   

Although various fatigue countermeasures have been adopted, consuming 

caffeine and listening to music are two of the most frequently adopted, which are also 

believed to be the most effective. To date, there has been no study investigating the 

effects of and differences between these two.  One objective of this study is to compare 

the two fatigue countermeasures: consuming caffeine and listening to music. Variations 

in subjective fatigue levels and deterioration of driving performance are investigated to 

examine the effects of and differences between the two methods.   
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Chapter 3  Development of Subjective Driver 

Fatigue Score 

   

A Subjective Driver Fatigue Score (SDFS) will be described in this chapter. The 

SDFS has been specially developed to quantitatively estimate driver states. It is attempted 

to examine severity of various fatigue symptoms developed during driving, evaluate the 

reserve driver capacity, etc. Several existing questionnaires were first reviewed, and then 

some of the items (questions) from these questionnaires were carefully chosen for the 

SDFS. Finally, several additional items were created to form the completed 

questionnaire.  

3.1 Literature review  

3.1.1 Subjective assessment 

Subjective assessment has been widely employed in many areas as psychological 

parameters. For example, one famous questionnaire is the McGill Pain Questionnaire, 
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which has been developed to examine properties of clinical pain [91].  This sophisticated 

pain rating tool helps the patient in describing pain location, pain intensity, etc. at the 

present. Because the McGill Pain Questionnaire usually takes 5 – 10 minutes for the 

patient to complete, which is relatively long and inconvenient for some studies, a short 

version has been developed to replace the full questionnaire in certain circumstances 

[92]. This short version, developed based on the full version, takes only 2 – 5 minutes to 

administer. Another pain rating tool, the Wong-Baker Faces Rating Scale, combines 

cartoon faces, numbers, and words together to form a unique pain evaluating method 

[93].  These alternative pain assessment scales provide diagnostic tools allowing patients 

to explain the severity and quality of pain experienced to the clinic professional. 

Subjective assessment is also often used to estimate workload. The NASA – Task 

Load Index is one of the most widely used multi-dimensional rating scales to estimate 

workload, combining the magnitude and sources of six workload-related factors (mental 

demand, physical demand, temporal demand, performance, effort, and frustration) [94].  

For example, in a simulated driving experiment, the NASA – Task Load Index was 

employed to examine the diurnal pattern of subjective workload [29]. In another 

experiment, the NASA – Task Load Index was used to estimate differences in subjective 

workload between left-turn and straight driving. In the same experiment, the USAF 

subjective workload assessment technique was also used to examine variation in 

subjective workload [95].  Recently, some researchers attempted to objectively assess 

workload using eye tracking systems, but subjective workload was employed as an 

independent variable [59]. While mental workload was estimated subjectively in the 

previous experiments, physical workload was evaluated subjectively in another 
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experiment focusing on low back and trapezius muscle activity in bus drivers [74].  

Various questionnaires or scales have been developed and employed in different areas to 

observe mental/physical workload.  

Another important application area of subjective assessment is studies in 

sleepiness.  For example, the Epworth Sleepiness Scale (ESS) has been developed to 

measure the general level of daytime sleepiness of the patient [27]. It has been concluded 

that Epworth Sleepiness Scale scores were highly correlated with the results obtained 

from the multiple sleep latency test and overnight polysomnography, which is considered 

as a valid method providing assessment of sleepiness of the patient with a sleep disorder. 

While developing and examining the Epworth Sleepiness Scale, the other two subjective 

sleepiness scales, the Stanford Sleepiness Scale (SSS) and the Visual Analogue Scale 

(VAS) of sleepiness were used as references.  However, the SSS and VAS of sleepiness 

are not suitable for diagnosing the sleep disorder, because (1) both tests examine levels of 

sleepiness and symptoms/feelings at the moment when the test is taking, and (2) the 

results of the subjective assessment of both tests are not correlated with the result of the 

multiple sleep latency test and overnight polysomnography [27].  On the other hand, the 

SSS, in spite of its shortage in diagnosing sleep disorders, has been widely used in studies 

associated with attention, fatigue, etc. [13, 19, 28, 35].  In studies, the SSS was the only 

subjective assessment [28]; in some other studies, the SSS was used along with additional 

questionnaires, such as the Epworth Sleepiness Scale, the VAS, or the Piper Fatigue 

Scale [13, 19, 35].  In the studies discussed above, the subjective sleepiness scales have 

been frequently used as fatigue indicators, because fatigue is closely associated with 

sleepiness in many cases.   
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Subjective assessment is one of the most important fatigue indicators, as 

discussed in the previous chapter.  Although some subjective sleepiness scales discussed 

in the previous paragraph have been used to assess fatigue [13, 28, 35]; researchers have 

developed questionnaires to subjectively measure fatigue levels, examples including 

Pearson’s 13-item Fatigue Checklist developed in 1957 [42], Chalder’s 11-item fatigue 

scale developed in 1993 [11], and Michielsen’s 10-item Fatigue Assessment Scale 

developed in 2004 [96].  The thirteen items of Pearson’s Fatigue Checklist were carefully 

examined and selected from approximately five hundred items, attempting to determine 

fatigue levels in industrial studies, for example, in determining working hours, planning 

resting schedule, improving working conditions, etc. [42].  The fatigue scales of Chalder 

et al. and Michielsen et al. were developed for clinical studies, to diagnose disease, 

investigate effectiveness of medical treatments, etc. [11, 96].  However, studies in fatigue 

are not limited to industrial and clinical areas. For example, it is also important to 

understand and manage fatigue in athletics and in the military.   

In the following section 3.1.2, various subjective assessment tools are to be 

reviewed first. Then, some of previously developed subjective fatigue assessment 

questionnaires are examined. A summary literature review is given in section 3.1.3. In 

section 3.2, the details of the Subjective Driver Fatigue Scale are introduced. 

3.1.2. Subjective fatigue assessment 

Although, studies in fatigue can be traced back to at least 90 years ago [14], 

recent researchers still have difficulty in agreement into a generally accepted definition of 

fatigue [8, 11].  In an early study, it was thought that fatigue was caused by repeating an 
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activity and the capacity for repeating it was diminished [14].  Some researchers defined 

fatigue as states at which efficiencies were reduced and efforts were not desired [6, 12]. 

Some others defined fatigue as a subjective symptom felt by individuals accompanying 

interfered capacities to function normally [17]. There are also some researchers who 

believe that fatigue indicates the effects of being unable to maintain a desired level of 

performance on a task, because of working overtime or insufficient rest, and the term 

fatigue can be used interchangeably with the term sleepiness [16].  The variety of 

definitions of the term fatigue is primarily caused by various uses of the concept in 

different areas, including industry, clinic/medic, military, etc. in which subjects 

experience similar but different fatigue conditions.  Despite the variety in definition, most 

researchers agree that fatigue can be classified in physical fatigue and mental fatigue. 

Physical fatigue is also referred to as muscle fatigue, accompanied by increases in lactic 

acid and carbon dioxide in the muscular tissue and resulting acidic muscle, reduced 

power, slowed movement, etc..  Mental fatigue is a psychological phenomenon, 

accompanied by symptoms such as disinclination of effort and reduced 

efficiency/alertness.  While physical fatigue can be easily identified; mental fatigue can 

hardly be self-recognized on the onset.  Ignorance of the onset of mental fatigue could 

result in serious human errors while performing risky tasks. Therefore, various subjective 

and more objective fatigue indicators have been developed, as discussed in Chapter 2. In 

the rest of this section, subjective fatigue assessment will be further discussed in detail. 

3.1.2.1 Fatigue subjective assessment in clinical or medical practice 

Fatigue is a common symptom of many diseases and has important impacts on 

individuals in certain physical conditions (pregnancy, infections, etc.); and it may result 
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from the use of medication or medical treatment (chemotherapy, physical-therapy, 

radiotherapy, etc.) [96].  Various fatigue scales have been developed to identify severity 

of fatigue for the patient in the clinic. An early 14-item Fatigue Scale (FS) consists of 

physical and mental symptoms [11]. Each item was assigned to four descriptions: “better 

than usual”, “not more than usual”, “worse than usual”, and “much worse than usual,” 

which may also be replaced by a “Likert score” for weight calculation.  The fourteen 

items of the scale are listed in Table 3.  While this scale distinguishes fatigue into two 

parts, another 20-item Multidimensional Fatigue Inventory (MFI) covers five dimensions: 

general fatigue, physical fatigue, mental fatigue, reduced motivation, and reduced 

activity. Each of the twenty items was weighted using a 7-point scale, with higher scores 

indicating higher degree of fatigue [43]. A part of the MFI is listed in Table 4.  Another 

multidimensional fatigue scale is the Piper Fatigue Scale (PFS), which has been widely 

employed in medical practice. PFS includes twenty-two items which distinguishes into 

four dimensions: behavioral/severity, affective meaning, sensory, and cognitive/mood 

[97]. These items are listed in Table 5.  Each item is scored using a “Likert score” 

(ranging from 0 to 10, with 10 being the most severe). Four subscale scores are calculated 

by averaging the items under each of the subscales; a total fatigue score then can be 

calculated by taking the mean value of the four subscale scores.  A more recently 

developed subjective fatigue assessment tool, the Fatigue Assessment Scale (FAS), has 

been constructed by combining items selected from four existing fatigue scales: the 

Checklist Individual Strength—20 (CIS-20), the Emotional Exhaustion subscale from the 

Maslach Burnout Inventory (MBI), the Energy and Fatigue subscale from the World 

Health Organization Quality of Life assessment instrument (WHOQOL), and the Fatigue 
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Scale (FS).  This fatigue scale includes ten items and is unindimensional [96]. For each  

item, one of five answers (1=Never, 2=Sometimes, 3=Regularly, 4=Often, and 

5=Always) can be chosen to indicate the usual feeling.   

Table 3  14-item Fatigue Scale  

Physical symptoms 

1. Do you have problems with tiredness?  

2. Do you need to rest more? 

3. Do you feel sleepy or drowsy? 

4. Do you have problems starting things? 

5. Do you start things without difficulty but get weak as you go on? 

6. Are you lacking in energy? 

7. Do you have less strength in your muscles? 

8. Do you feel weak? 

Mental symptoms 

9. Do you have difficulty concentrating? 

10. Do you have problems thinking clearly? 

11. Do you make slips of the tongue when speaking? 

12. Do you find it more difficult to find the correct word? 

13. How is your memory? 

14. Have you lost interest I n the things you used to do? 

Four options were used “better than usual”, “not more than usual”, worse than usual”, 

“much worse than usual”[11]. 

 

Table 4  20-item Multidimensional Fatigue Inventory 
1. I feel fit 

 

2. Physically I feel only able to do a little 

 

3. I feel very active 

 

4. I am not up to much 

 

5. Thinking requires effort 

Yes, that is true  |1 |2 |3 |4 |5 |6 |7 | no, that is not true 

 

Yes, that is true  |1 |2 |3 |4 |5 |6 |7 | no, that is not true 

 

Yes, that is true  |1 |2 |3 |4 |5 |6 |7 | no, that is not true 

 

Yes, that is true  |1 |2 |3 |4 |5 |6 |7 | no, that is not true 

 

Yes, that is true  |1 |2 |3 |4 |5 |6 |7 | no, that is not true 

A part of the MFI form [43], 7-point Likert scale is used, with higher scores indicating 

higher degree of fatigue  
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Table 5  22-item Piper Fatigue Scale  

Behavioral/severity 

1. Fatigue distress 

2. Interference with daily activities 

3. Interference with socializing 

4. Interference with sexual activity 

5. Overall interference with enjoyable activities 

6. Fatigue intensity/severity 

Affective meaning 

7. Pleasant—unpleasant 

8. Agreeable—disagreeable 

9. Protective—destructive 

10. Positive—negative 

11. Normal—abnormal 

Sensory 

12. Strong—weak 

13. Awake—sleepy 

14. Lively—listless 

15. Refreshed—tired 

16. Energetic--unenergetic 

Cognitive/mood 

17. Patient—impatient 

18. Relaxed—tense 

19. Exhilarated—depressed 

20. Able to concentrate—unable to concentrate 

21. Able to remember—unable to remember 

22. Able to think clearly—unable to think clearly 

All items are coded on a 0-10 numeric scale. To calculate subscale scores, the scores on 

all items within the particular subscale are added, and this sum is then divided by the 

number of items within the particular subscale. This gives a mean subscale score for the 

subject form 0-10 (minimal-maximal fatigue). A total fatigue score can be calculated by 

adding the four subscale scores and dividing this sum by four [97]. 

 

The whole scale is listed in Table 6.  These four fatigue assessment tools have 

been developed for clinical or medical practice. Apparently, the 14-item FS and 10-item 
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FAS examine symptoms of the patient within a time period, while the MFI and PFS 

examine symptoms at the moment when examination is taken.   

Table 6  10-item Fatigue Assessment Scale (FAS)  

1. I am bothered by fatigue (WHOQOL) 

2. I get tired very quickly (CIS) 

3. I don’t do much during the day (CIS) 

4. I have enough energy for everyday life (WHOQOL) 

5. Physically, I feel exhausted (CIS) 

6. I have problems starting things (FS) 

7. I have problems thinking clearly (FS) 

8. I feel no desire to do anything (CIS) 

9. Mentally, I feel exhausted 

10. When I am doing something, I can concentrate quite well (CIS) 

 

The ten statements refer to how individuals usually feel, and one of the five answers 

provides corresponding score as follows: 1=Never, 2=Sometimes, 3=Regularly, 4=Often, 

and 5=Always [96]. 

 

3.1.2.2 Fatigue subjective assessment in military 

Another important application of subjective fatigue assessment is in military 

settings, because of high levels of workload and the extreme harsh environment 

experienced by operators, who usually are required to control complex machines such as 

aircrafts and tanks.  As early as 1957, two equivalent fatigue checklists were developed to 

measure fatigue levels of airmen [42]. Each of the items from the two equivalent fatigue 

checklists was   weighted by choosing one of three descriptive answers (“worse than”, 

“same as”, and “better than”), which were assigned numerical values (0,1,and 2) [42].  

The items of the checklists were carefully chosen from approximately 500 items, and 

each checklist was valid in providing a unidimensional fatigue indicator. This early 

subjective fatigue assessment tool helped managers in scheduling, studying working 
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environment/conditions, ergonomic equipment design, etc. to maintain desired output 

from operators.  The two equivalent fatigue checklists are listed in Table 7.  On the other 

hand, the developer of the checklists suggested that the results obtained from this 

subjective fatigue assessment tool should not be used to predict performance of the 

subjects being tested [42].  Although many fatigue related studies were conducted in 

medical practice and warfighting, fatigue was initially studied in industry [14, 17]. 

Table 7 Two equivalent13-item Fatigue Checklist  

A B 

1. Like I am busting with energy 

2. Extremely peppy 

3. Very lively 

4. Very refreshed 

5. Quite fresh 

6. Somewhat fresh 

7. Slightly tired 

8. Slightly pooped 

9. Fairly well pooped 

10. Petered out 

11. Very tired 

12. Extremely tired 

13. Ready to drop 

1. I never felt fresher 

2. Extremely lively 

3. Very fresh 

4. Very rested 

5. Quite fresh 

6. Somewhat refreshed 

7. A little tired 

8. A little pooped 

9. Fairly pooped 

10. Awfully tired 

11. Tuckered out 

12. Weary to the bone 

13. Dead tired 

Each item is weighted as follows: 0=worse than, 1=same as, and  2=better than [42]. 

 

3.1.2.3 Fatigue subjective assessment in industry 

Fatigue was initially studied during the First World War to investigate the 

relationship between fatigue and productivity efficiency of the workers in industry [17].  

Many fatigue tests have been proposed since then, but subjective fatigue assessment was 

not an option when researchers discussed whether fatigue can be measured or not [14].  
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However, questionnaires with various complexities have been developed and successfully 

used to measure fatigue levels in industrial environments.  One of these questionnaires is 

listed in Table 8. Each item includes two opposing and mutually exclusive words/phrases 

and a scalar bar, which nowadays is called the Visual Analog Scale, to quantify the 

subjective feeling at that particular moment [12].  This subjective fatigue assessment tool 

is simple and easy to use. It is usually administered at the beginning and end of an 

experiment and the differences between the measurements suggest the changes in fatigue 

levels of the subject.  

Table 8     Questionnaire with VAS For Industry Use 

1. Fresh                    |---------------------------------------------|      Weary 

2. Sleepy                  |---------------------------------------------|      Wide awake 

3. Vigorous              |---------------------------------------------|      Exhausted 

4. Weak                   |---------------------------------------------|       Strong 

5. Energetic             |---------------------------------------------|      Apathetic 

6. Dull, indifferent  |---------------------------------------------|       Ready for action 

7. Interested            |---------------------------------------------|       Bored 

8. Attentive             |---------------------------------------------|      Absent-minded 

VAS is used for each item to determine fatigue levels [12] 

 

Many similar questionnaires have been developed in industry for its own studies, 

but with various complexities for different purposes [12]. Some questionnaires were used 

for a quick check of the fatigue level at the moment in operating processes; some others 

were used for examining characteristics of fatigue experienced by the subject in certain 

industrial environments.  However, there were fatigue related studies that employed 

subjective assessment questionnaires from other areas (such as sleepiness scales).  For 

example, in a recent study focusing on the needs of the mining industry,   the Karolinska 

Sleepiness Scale (KSS) was used as a subjective fatigue measure [23].  Actually, in many 
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cases, the terms sleepiness and fatigue are used interchangeably, and in these cases it can 

be classified as sleep-related fatigue as described by May et al. [41]. Therefore, it is no 

surprise that sleepiness scales, such as the KSS and SSS, have been used as subjective 

fatigue assessment tools in these studies. 

3.1.2.4 Fatigue subjective assessment in driving 

Fatigue studies in the transportation industry have been pursued for decades, to 

investigate the impact of fatigue on operators such as pilots, train-operators, bus-drivers, 

heavy-truck-drivers, etc. [20, 69, 74, 89].  Although operators experience various 

working environments while controlling different transportation devices, they share 

similar operational characteristics. Basic operation requires (1) observation of traffic 

condition in front of and around the transportation devices, (2) manipulation of the device 

to control direction, speed, etc. according to traffic conditions (3) communication with 

others, and (4) preparation for any unanticipated events/incidents.  Therefore, the 

operator is under high stress levels and fatigue has important impacts on performance, 

which is essential to the safety of the people involved. In this study, road drivers are of 

interest and subjective assessment in driver fatigue is one of the focuses of this study. 

Some of the subjective assessment tools discussed in previous sections have been 

used in driver fatigue related studies. Among these, the SSS is probably one of the most 

widely used tools in driver fatigue measurement, although it has been designed to 

measure sleepiness.  Some researchers used the SSS as the only subjective fatigue 

measure [28], and some others used the SSS along with other tools.  A 3-item VAS was 

combined with the SSS to examine subjective fatigue level in a real road test [35]. In 
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another study, a set of items were selected from the SSS, PFS, and ESS to measure 

subjective fatigue levels [13]. The ESS is originally designed to examine sleepiness, 

which is similar to the SSS. The PFS, on the other hand, is usually used for medical 

practice, as described previously. Another fatigue indicator developed for medical 

practice, the 14-item FS listed in Table 3, has also been used in a driver fatigue study 

[68].  In a driver fatigue study, it is reasonable to use the subjective fatigue assessment 

tools developed in other areas, as described previously, because fatigued individuals 

share some common characteristics. These characteristics include severe tiredness, low 

motivation, etc. which are described in the definition of fatigue.  The sleepiness scales 

also showed good results in application to driver fatigue studies, because usually fatigued 

individuals feel sleepy and low motivation. Moreover, some researchers used the terms 

fatigue and sleepiness interchangeably [16].  

3.1.3 Summary of literature review 

While researchers have developed subjective assessment tools in many areas, 

including fatigue indicators for medical practice, industrial study, military application 

etc., to our best knowledge, very few researchers have developed a subjective fatigue 

indicator for drivers.  The literature review in the previous sections revealed that most 

studies related to driver fatigue have employed subjective assessment tools from other 

areas.  However, strictly speaking, none of the subjective assessment tools described in 

previous sections fully reflects the characteristics of driver fatigue. For example, 

sleepiness scales usually do not include physical/muscular fatigue symptoms (such as 

tired back, sore feet, etc.), but physical fatigue symptoms have an important impact on 
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drivers and their driving performance. Subjective fatigue scales for medical practices 

usually include some special items relating to particular diseases, but drivers who operate 

vehicles are usually healthy, and these disease-related items may not be able to apply to 

healthy drivers.  All other subjective assessment tools have been developed for certain 

professional applications, according to the required parameters and environment 

experienced by the subjects. Therefore, it is necessary to develop a subjective driver 

fatigue scale to measure fatigue levels of drivers.   

3.2  Development of SDFS 

In this section, the description is given of a questionnaire specially developed for 

driver fatigue. Then a scale is described to show how to quantitatively estimate driver 

fatigue using the questionnaire. 

3.2.1 Questionnaire for driver fatigue 

To estimate subjective fatigue levels of drivers, a questionnaire has been 

developed. The questionnaire should (1) be distinct from those subjective assessment 

tools used in other study areas (studies in sleepiness, for example), (2) be able to describe 

fatigue symptom development during driving tasks, (3) be easy to understand and 

administer, (4) be free of ambiguities, and (5) be not only “sufficient” but also “concise” 

(“sufficient” means the questionnaire contains enough items to estimate all aspects of 

driver fatigue; “concise” means the questionnaire is short enough to allow the subject to 

complete it within a limited time period). Since all fatigued individuals share some 

common characteristics, some items reflecting these common driver fatigue symptoms 
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can be selected from existing fatigue scales. For example, some items from existing 

sleepiness scales may also reflect driver fatigue characteristics, thus, can be included in 

the questionnaire. On the other hand, driver fatigue has its unique characteristics (changes 

in driving behavior, for example). These unique characteristics of driver fatigue (for 

example, desirability to pass a leading vehicle) need specially designed items to reflect 

their severity. A questionnaire has been developed, including twenty-six items. Twenty of 

the items were selected from sleepiness scales and fatigue scales discussed in the 

previous sections, and the other six were generated to reflect specific fatigue 

characteristics of drivers. The items are listed in Table 9.   

To obtain a quantitative assessment of driver fatigue, a Likert score is used to give 

a numerical answer to each item, except the last one. The answer to the last question is a 

reasonable positive number, indicating how many hours the driver can keep driving from 

the moment when the question being presented.   

A pilot study showed that all the five requirements (described at the beginning of 

the section) have been met, except that it took 5 to 10 minutes for the subject to complete 

the whole questionnaire.  It is not concise enough when the questionnaire is used during 

the driving task. The driver will be distracted while answering the questionnaire, 

therefore, it is necessary to minimize the time period of distraction. On the other hand, 

fatigue levels may change significantly after 10 minutes when the subject is severely 

fatigued. Therefore, modification should be made on the questionnaire listed in Table 9, 

to meet the fifth requirement (namely, sufficient and concise).  After a careful study, the 

final  questionnaire  has  been  reduced  to  twelve  items, some  of  which  were  slightly  
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Table 9     List of items for driver fatigue 

Items selected from existing sleepiness/fatigue scales: 

 

1. Are your feet sore  (not at all – extremely sore) 

2. To what degree your eyes are strained? (not at all – extremely) 

3. Are you feeling any backache  (not at all – a great deal) 

4. How much headaches are you feeling now?  (None – a great deal) 

5. Are you feeling chill? ( not at all – extremely) 

6. Are you feeling stiff muscles (not at all – extremely) 

7. Are you feeling any numbness? (not at all – extremely) 

8. Are you feeling any ear ringing? (not at all – extremely) 

9. Are you feeling upset stomach? (not at all – extremely)  

10. Are you feeling any dizziness? (not at all – extremely) 

11. To what degree are you feeling be able to concentrate ( able– unable) 

12. To what degree are you feeling be able to think clearly (able – unable) 

13. To what degree are you feeling be able to remember (able  -- unable)  

14. Overall, how much is the fatigue you are feeling now interfering with your ability 

to engage in the kind of activities you enjoy doing? (None – a great deal)  

15. To what degree are you feeling awake (extremely –  not at all) 

16. To what degree are you feeling drowsy (not at all – extremely) 

17. To what degree are you feeling energetic (energetic – unenergetic) 

18. To what degree are you feeling relaxed (relaxed – tense) 

19. To what degree would you describe the fatigue you are feeling now as being 

normal/abnormal  (normal – abnormal )  

20. How much effort do you want make to do a good job? (a great deal – none) 

Items specifically generated for driver fatigue 

 

21. To what degree are you going to pass the leading vehicle which is much slower 

(10km/h e.g.) than your current speed? (pass – not pass) 

22. To what degree you are willing to pull over and have a rest? (not at all – want to 

stop immediately) 

23. To what degree is the fatigue you are feeling now interfering with your ability to 

drive safely?  (None – a great deal)  

24. To what degree did you recognize your feeling (enjoyable/boring/unpleasant, etc.) 

about the view along the road during last 10 minutes? (strongly – not recognized) 

25. Are your joints stiff? (not at all – extreme) 

26. How many hours do you think you can keep driving from now on? 

 ( ________ hours) 

A Likert score is used to estimate severity of each item, except item No.26, the answer of 

which is a positive number 
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modified to better represent characteristics of fatigue experienced by drivers. The 

shortened questionnaire is listed in Table 10, which also includes the Likert score ranging 

from 1 to 10.  The 12-item questionnaire requires only 1 to 3 minutes to administer (in 

the following two experiments, most subjects can finish the questionnaire within 2 

minutes after practice.). The items in the questionnaire also reflect the most important 

and common aspects of driver fatigue. The feedback from the pilot study showed that the 

items are easy to understand and have no ambiguity. The Likert score makes the tool very 

easy to administer. Because some unique items have been developed only for drivers 

(items 1, 6, 7, and 12), the questionnaire is distinct from other subjective assessment tools 

(such as the SSS).  

Table 10  Driver Fatigue Questionnaire (DFQ) 
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3.2.2 Calculation of SDFS 

One of the major purposes of this study is to develop a subjective assessment tool 

that can quantitatively estimate fatigue levels of drivers. The numerical answers to the 

individual items in the Driver Fatigue Questionnaire (DFQ) presented in Table 10 makes 

it possible. For each item, the subject offers a numerical answer, ranging from 1 to 10. 

Therefore, for the first eleven items, eleven numerical answers are obtained. The 

summation of these eleven numerical answers represents the overall fatigue level of the 

driver at the moment when the questionnaire being administrated. This summation is  

defined as the Subjective Driver Fatigue Score (SDFS). In the current study, the SDFS of  

the 𝑚𝑡ℎ  subject at the time 𝑡  is denoted as  𝑡𝑆𝐷𝐹𝑆𝑚  and can be calculated using  

Equation 1. 

 𝑡𝑆𝐷𝐹𝑆𝑚 =   ∑  𝑡𝑄𝑛
𝑚11

𝑛=1   Equation 1 

where 

 tSDFSm = overall fatigue level of mth subject at the time 𝑡 

    tQn
m  = the score of the nth item in the questionnaire for mth subject at the time 𝑡, and      

                  1 ≤ n ≤ 11 

 

For example, the highlighted numbers in Table 10 are answers to the twelve items in the 

questionnaire administered by the 8
th

 subject at time 𝑡 = 0; then the overall fatigue level 

of this subject at the beginning of the driving session can be calculated using Equation 1, 

shown as follows: 

given:  

 0Q1
8 = 3;   0Q2

8 = 7;     0Q3
8 = 5;    0Q4

8 = 1; 

 0Q5
8 = 1;   0Q6

8 = 10;    0Q7
8 = 4;    0Q8

8 = 4; 
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 0Q9
8 = 4;   0Q10

8 = 1;    0Q11
8 = 1;    0Q12

8 = 3; 

then: 

 0𝑆𝐷𝐹𝑆8 =   ∑  0𝑄𝑛
8

11

𝑛=1

= 3 + 7 + ⋯ + 1 + 1 = 41 

 

The last item in the questionnaire, denoted as  tQ12
m  , represents residual driver capacity, 

which is expected to decrease with the increase in SDFS.  

It can be seen that for each item, the possible minimum value is 1 and maximum 

value is 10, thus, SDFS has a possible minimum value of 11 and a maximum value of 

110.  Larger values of SDFS represent higher levels of driver fatigue. Therefore, the 

subjective fatigue assessment tool includes two parts. The first part is the 12-item 

questionnaire; and the second part is the numeric subjective driver fatigue indicator 

including (1) the overall driver fatigue level denoted as  𝑡𝑆𝐷𝐹𝑆𝑚  and (2) residual driver 

capacity denoted as  tQ12
m .  

In the following experiments, this subjective fatigue assessment tool will be used 

and examined for its validity.  
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Chapter 4 Experiment Design 

This study is to investigate the influence of driver fatigue on driving performance 

and effectiveness of driver fatigue countermeasures (namely, taking a caffeinated drink 

and listening to music).  Two experiments have been conducted, in both of which a 

computerized driving simulator has been employed.  

The first experiment investigated variations in subjective driver fatigue and 

driving performance during prolonged driving tasks. Each subject completed three 45-

minute driving sessions. The subjective driver states were estimated using the 

questionnaire included in Table 10, and fatigue levels were quantified using the SDFS 

described in Chapter 3. The SSS was also obtained from the subjects to compare with the 

SDFS.  Sixteen parameters, including means and standard deviations of steering wheel 

angle input, lateral position, etc. which were listed in Table 1, were used to represent 

driving performance. Reaction times obtained from Divided Attention Tests were also 

recorded for comparison. A co-relationship between the SDFS and driving performance 

was also investigated.  
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The second experiment investigated the effects of two fatigue countermeasures, 

intake of caffeine and listening to music, during prolonged driving tasks. Each subject 

completed three 120-minute driving sessions. The three sessions were control session, 

caffeine session, and music session. Similar to the first experiment, the SDFS was used 

for subjective fatigue estimation and sixteen driving performance parameters listed in 

Table 1 were used for driving performance measurement.  Time variations and inter-

session variations in the SDFS and driving performance were investigated. In addition, 

EEG signals were recorded to examine the possibility of using EEG as a driver fatigue 

online monitoring indicator. 

The details of experiment designs and setups are described in the rest of this 

chapter. 

4.1 The 1
st
 experiment 

The first experiment investigated how subjective driver fatigue estimated by the 

SDFS changed with prolonged driving, and how this variation in driver fatigue affected 

driving performance. As mentioned in the previous literature review (section 3.2), 

although various questionnaires, such as the SSS and MFI, have been used in fatigue 

related studies, to date there has been no published questionnaire that has been 

specifically developed to quantify driver fatigue. Hence the questionnaire described in 

Chapter 3 and the SDFS calculated based on this questionnaire have been employed, 

attempting to quantify driver status in the prolonged driving task, during which increases 

in driver fatigue were expected. Driving performance was recorded and analyzed to 
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examine its possible relation to the SDFS. Reaction time was examined by performing 

Divided Attention Tasks. Details of the experiment setup are included in this section.  

4.1.1 Subjects 

To determine the number of subjects, a pilot study has been conducted, with 

fourteen subjects completing three 45-minute driving sessions (the full experimental 

procedure is described in section 4.1.2).  Power analysis has been used to determine the 

minimum number of subjects required [98, 99].  Based on the pilot experiment, the mean 

of the subjective driver fatigue score at the beginning of the experiment is 25.36, with 

standard deviation of 9.80; the mean of the subjective driver fatigue score at the end of 

the experiment is 52.93, with standard deviation of 26.16. The absolute mean difference 

is 27.57 ( |δ| = |𝜇1 − 𝜇2| = |25.36 − 52.93| = 27.57  ).  Using 𝜎 = 𝜎2 = 26.16 , the 

effect size is 0.527 (𝑑 = |𝛿|/ (2𝜎) = 27.57/(2 × 26.16) = 0.527  ).  For two-sided t-

test, with a level of significance of 0.05, and from the operating characteristic curves [99]  

attached in Appendix D, it can be determined that n
*
 =50. Finally, the required sample 

size is 26 ( n = (n
*
+1)/2 =(50+1)/2=25.5).   

The sample size obtained from the above method assumed that standard 

deviations were equal. However, it can be seen that the two standard deviations were not 

equal in this case. If we let 𝜎 = 𝜎1 = 9.80 and repeat the procedure, it can be obtained 

that the required sample size is 6.  The sample size calculated using the smaller standard 

deviation is also smaller.   
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If we us both standard deviations of subjective driver fatigue scores at the 

beginning and the end of the experiment, the calculation described by Prajapati, et al can 

be used [98]. The method is much more complicated and software such as GPower is 

needed to handle calculations.  The result indicates that the minimum number of subjects 

is fifteen. It can be seen that the required sample size obtained from both standard 

deviations is between the two results obtained using only one of the two standard 

deviations.  Recognizing that a larger number of subjects increases the chance of 

obtaining more statistically reliable results, a goal of recruiting 20 to 40 participating 

subjects was set for the first experiment. 

Thirty one subjects (26 male and 5 female) participated voluntarily in this 

experiment. Fourteen of these subjects were from the University of New Brunswick 

(UNB), and seventeen were from McMaster University.  Their ages range from 19 to 37 

years, with mean age of 28.6 years. Each subject was required to hold a valid driver’s 

license for at least one year. The driving experience ranges from 1 to 12 years, with mean 

experience of 6 years.  All subjects were required to sleep well during the night prior to 

the day coming to the experiment.  The subjects were also required to take no caffeine at 

least four hours before the experiment. During the experiment, the subjects were not 

allowed to take any caffeinated drink nor cigarette.  Each subject received an information 

letter to understand the background of the experiment and signed the consent form after 

arrival. The experiment design was approved by the Research Ethics Boards of UNB and 

McMaster University. 
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4.1.2 Procedure 

After arrival, the subject was provided with an information letter to understand 

the background of the experiment, and signed the consent form.  A sample of information 

letter and consent form is attached as Appendix C at the end of this thesis.    The subject 

then took a 10-minute practice simulated driving task to get familiar with the driving 

simulator.  During this practice session, the subject performed the Lane Keeping Task, 

Divided Attention Task, Normal Driving Task, and completed the Driver Fatigue 

Questionnaire.   

The subject took the 1
st
 subjective fatigue assessment by completing the SDFS in 

writing immediately before starting the experiment.  The subject then started the first 45-

minute simulated driving session, during which the 2
nd

 and 3
rd

 subjective fatigue 

assessments were completed orally after 15 minutes and 30 minutes.  The 4
th

 subjective 

fatigue assessment was completed in writing right after completing the first driving 

session. The subject took a short break (3-5 minutes) before starting the second 45-

minute driving session, during which the 5
th

 and 6
th

 subjective fatigue assessments were 

taken orally after 15 minutes and 30 minutes.  Immediately after completing the second 

session, the 7
th

 subjective fatigue assessment was taken in writing, followed by the other 

short break. Then the third 45-minute driving session was initiated. The last three 

subjective assessments were taken in this last driving session; the 8
th

 and 9
th

 assessments 

were completed orally after 15 and 30 minutes and the 10
th

 was completed in writing 

immediately after completing the third driving session. This ended the whole experiment. 

In addition to the SDFS, subjective fatigue was also evaluated by the SSS. The SSS was 
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completed by the subject four times along with the 1
st
, 4

th
, 7

th
, and 10

th
 SDFS in writing. 

Because of its format, the SSS is difficult for the subject to quickly provide an oral 

answer.  

Besides the subjective fatigue assessment, driving performance was recorded for 

the Lane Keeping Tasks (LKTs) during the three simulated driving sessions.  Each LKT 

required the subject to maintain their position at the center of the current lane and keep a 

constant speed of 40 miles/hour on a straight road segment for 5 minutes.  During each of 

three 45-minute driving sessions, the subject performed four LKTs.  

The subject started each of the driving sessions from a warm-up block, which was 

one minute long. This warm-up block allowed the subject to accelerate to the constant 

speed of 40 miles/hour and stabilize vehicle control for the rest of the driving session. 

Immediately after the warm-up block, the 1
st
 5-minute LKT was started. After the 5-

minute LKT, a Normal Driving Task block was followed. The 2
nd

 5-minte LKT was 

started at 15 minutes after initiating the driving session. Between the 2
nd

 and the 3
rd

 LKT 

was the second Normal Driving Task block.  After completing the 3
rd

 LKT, a short 

Normal Driving Task block was performed.  The 4
th

 LKT started at 40 minutes after the 

driving session was initiated.  The driving session was ended after the 4
th

 LKT was 

completed.  During each of the four LKT blocks, the three groups of driving performance 

measures were recorded by the simulator during the LKT for later analysis. The eight 

parameters recorded by the driving simulator include (1) steering wheel angle input, (2) 

steering wheel rate, (3) yaw rate, (4) lateral position, (5) lateral velocity, (6) lateral 

acceleration, (7) longitudinal velocity, and (8) longitudinal acceleration, which were 
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already described in detail in section 2.3. The sixteen driving performance parameters 

were calculated based on these recordings.  

A psychomotor test, the Divided Attention Test (DAT), was also introduced to 

observe driver states during the prolonged driving task.  The subject was asked to depress 

a button (one of the divided attention buttons as shown in Figure 3) as soon as possible 

when a signal was provided on the screen, which is used to display the road scenario, and 

the reaction times were recorded. The 1
st
 DAT was performed right after the 1

st
 SDFS, at 

the very beginning of the first driving session. The rest of the DATs were performed just 

before each of the SDFS during the driving sessions. Therefore, ten DATs were 

completed throughout the experiment; each test was close to the corresponding SDFS. 

Details of the DAT are provided in section 4.1.5. The time line of the experimental 

procedure is illustrated in Figure 1. 

 

Figure 1 Time line of the experiment 

4.1.3 Apparatus 

The driving simulation system consists of a desktop computer, a 24-inch 

widescreen LCD monitor, a Logitech G27 steering wheel, and driving simulation 
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software. The details of these components are as follows. The hardware of the simulation 

system includes a Dell™ OPTIPLX™ 780 desktop, a Dell™ 24-inch widescreen LCD 

monitor, a Logitech G27 Racing Wheel. The driving simulation system is running on a 

Dell™ OPTIPLX™ 780 desktop computer, with an Intel
®
 Core

™ 
2 Duo CPU E8400 

rated at 3.00GHz and 4 gigabyte of RAM. An NVIDIA GeForce 9300 graphics adaptor is 

used to obtain high quality display results. The Dell™ 24-inch widescreen LCD monitor 

is used to provide a visually realistic driver’s view of the roadway and surrounding 

environment. It provides about 90 degrees of driver’s front view and back view through a 

“rear mirror” near the right-upper corner. 

Another major component of the simulation system is the Logitech
™ 

 G27 Racing 

wheel, which allows the driver to control the vehicle and perform various cognition tests 

(such as divided attention tests).  Figure 2 shows an overview of the G27 Racing wheel. 

The major components of the controller include an 11-inch leather-wrapped rim (steering 

wheel), a 900
o
 force feedback wheel rotation, stainless steel gas / brake / clutch pedals, a 

six-speed gated shifter and a foldable seat.  The dual-motor force feedback mechanism 

allows high-fidelity force effects, mimicking the effects of real road curvatures and 

surface conditions on a steering wheel. The six-speed gated shifter, as shown in Figure 3, 

allows the driver to choose the proper gear for the turn, with indicator LEDs telling the 

driver the shift position. However, to minimize distraction of the driver, the shifter was 

disabled, and the “vehicle” was set as automatic, instead of standard. The driver did not 

need the shifter during the driving sessions, therefore, completely focused on the driving 

task. The foldable seat allowed drivers to adjust their driving position and comfortably 

operate the driving simulator as in a family car.  
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Figure 2.  Logitech G27 Racing Wheel 

 

Figure 3.  RPM/Shifter Indicator LEDs and buttons 

The operating system is Microsoft Windows® 7.  The simulation software is 

STISIM Drive® V2.0, which is a product of Systems Technology, Inc. (STI). It is a PC-

based driving simulator developed for vehicle dynamics and control and related 

human/machine interaction and human factors analysis. Customized road scenarios are 

designed for the three sessions. Data, including divided attention task records and driving 

performance records, are automatically collected by the system for later analysis.   

Left Turn Indicator 
Right Turn Indicator 

Left Divided 

Attention Button 

Right Divided 

Attention Button 

Vehicle Horn 
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4.1.4 Road scenario 

One of the advantages of using a driving simulator is that the traffic environment 

can be precisely controlled and repeated; therefore, each subject can experience the same 

traffic conditions during the experiment.  The simulation software, STISIM Drive® V2.0, 

provides a virtual environment and platform allowing users to design customized road 

scenarios. The road scenario used in this experiment appeared as a four lane highway, 

with lane width of 12 feet. Each driving session involved a 45-minute continuous driving 

task, comprising an LKT block and normal driving blocks. The LKT block contained a 

straight road segment with a few oncoming vehicles and no intersections. This type of 

road scenario ensured that drivers focused on the driving task. The normal driving block 

involved more complicated traffic conditions, including left and right curves and S-

bends, many oncoming vehicles and obstacles (stopped vehicles, crossing pedestrians, 

etc.).  These types of road scenarios mimic traffic conditions experienced in daily driving 

tasks, and increase the workload of the subjects, thus inducing driver fatigue rapidly. 

The basic settings of the driving scenarios are similar to each other. Each road 

scenario consists of a four-lane highway road: with a double yellow line at the center of 

the road. In each direction there are two lanes which are divided by a white dashed line. 

The width of each lane is 12 feet.  The color of the lane is gray, representing a regular 

concrete road surface. There is grass along each side of the road. Between the outer side 

lane and grass is a dark brown shoulder. 

The background of the road scenarios was set to be mountains, which is the 

default setting, providing a 360 degree mountain range on the horizon and including 
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some clouds in the sky. This background represents a sunny day, but without direct 

sunlight interfering with driver’s visibility.  The distance that the driver can see ahead of 

the vehicle, in this type of background, is approximate 2500 feet (762 meters).  A typical 

view of the road scenario with background is shown in Figure 4(a). Figure 4(b) shows the 

overview of the vehicle travelling on this road. 

  
                     (a)                                                             (b) 

Figure 4. A typical view of the road scenario (a) 4-lane road highway and  

mountain background, (b) overview of the road scenario 

Each driving session includes some vertical and horizontal curvatures. Several 

vertical curvatures are represented by the appearance of uphill or downhill events, 

randomly distributed along the journey. Horizontal curvatures represent right or left 

turns, with a right- or left-curve-ahead-traffic sign displayed on the right hand side of the 

road. The driver will initially see the curve sign when it is 300 feet from the vehicle. 

There are thirteen horizontal curvatures in total, approximately evenly distributed along 

the whole trip.  

The speed limits are set as 40 miles/ hour (mph). Twelve speed limit signs are 

evenly distributed along the whole journey to (1) remind the driver to keep within the 
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appropriate speed limit, and (2) allow the simulation system to determine whether the 

driver is driving under or over the speed limits.  Each speed limit sign is displayed 500 

feet in front of the driver when he/she is approaching the sign. If the vehicle travels at a 

speed exceeding that specified by the speed limit sign, it will be recorded and written into 

the data file. The total length of each scenario is 250000 feet (76.2 km). The traffic 

density and surrounding environment are different in each road segment to provide 

various complexities of traffic conditions.  Two types of road scenarios are used in this 

experiment.  

The first road scenario is monotonous and used in LKT blocks to minimize 

external stimulation to the subjects; therefore, driving performance recorded during these 

straight road segments represents the ability of the subject to control the vehicle, instead 

of ability to deal with emergency situations (such as avoid collision with pedestrians, 

etc.). This monotonous environment includes only some trees and buildings on each side 

of the road, which represents typical views encountered by Canadian drivers traveling 

between urban areas. No intersection or traffic light was included in this straight road 

segment, so the subject can keep a constant speed at 40 mph. There was no traffic in the 

same direction of the subject, but a few other vehicles were coming from the opposite 

direction. This low traffic rate makes the road scenario realistic, while also reducing 

external stimulation to the subject.  This monotonous road scenario is essential to the 

LKT and parameters recorded to represent driving performance. Driving performance not 

only can be influenced by driver fatigue, but also can be affected by traffic conditions, 

such as surrounding vehicles, traffic lights, road surface roughness (for example, potholes 

on the road), visibility, etc., which the effects are difficult to identify and separate from 
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the effects of driver fatigue. The road scenario has been designed to minimize influences 

from these factors.   

     According to previous research [41, 49], the most common form of task related 

fatigue is active fatigue, which is induced by mental overload tasks (or high demand 

driving conditions for drivers).  Therefore, the second type of road scenario was more 

complex and used in normal driving blocks to increase driver fatigue.  In one of these 

normal driving blocks, the driver will see some buildings along the road, with a few other 

vehicles coming from the opposite direction. Traffic lights at intersections may require 

the driver to stop; then the driver will drive on a four lane highway with trees along each 

side of the road.  Oncoming traffic appears occasionally from the opposite direction. 

Several stop signs require the driver to stop at intersections.  In another normal driving 

block, the driver travels through a city with many commercial buildings, more 

pedestrians, and vehicles, and more traffic lights. The driver encounters some obstacles 

(such as vehicle parked in the road and barrel objects), and streams of various vehicles 

from either the opposite direction or the driver’s own traveling direction. These complex 

road environment and traffic conditions not only make the road view more interesting 

and less monotonous, but also increase external stimulation to the driver. This requires 

more attention and concentration from the driver.   

4.1.5 Tasks 

During each driving session, two tasks are performed by the subjects. The first 

task is the Lane Keeping Task, during which driving performance is recorded for 
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individual subjects for later analysis. The second is the Divided Attention Task, the 

reaction time of which is recorded to reflect the status of the subject. 

The LKT is designed to estimate driving performance. To ensure that the changes 

in driving performance only resulted from variation in driver status, all the road scenarios 

are the same in the LKT blocks.  The road scenario has been described in section 4.1.4.  

At the beginning of the LKT block, an audio notification is provided to the subject to 

initiate the LKT.  During the task, the subjects are instructed to do their best to (1) keep 

the vehicle at the center of the lane, (2) drive as straight as possible, and (3) maintain the 

speed at 40 mph.  Each of the LKTs lasts for five minutes, and another audio notification 

is given at the end of the LKT.  

The second task is a psychomotor test, the Divided Attention Task. To estimate 

driver fatigue, DATs are performed during the driving sessions. A red diamond symbol 

displayed on the left or right hand side of the screen (similar to the right or left rear 

mirror positions) changes to a red triangle, prompting the subject to press the left or right 

attention button. The subject is required to respond as quickly as possible to these stimuli.  

Five reaction times of each set of DAT are recorded. If the subject misses any stimulus, 

these missing responses are also recorded. The following Figure 5 shows an example of 

the divided attention task. The red diamond symbol on the left hand side is replaced by a 

red triangle pointing to the left, while the red diamond symbol on the right hand side 

remains unchanged. This requires the subject to respond to the stimulus as quickly as 

possible by pressing the left attention button, to make the triangular symbol return to 

original diamond shape. 
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Figure 5 Divided Attention Task (DAT). 

4.1.6 Variables  

The independent variable is time. Dependent variables include subjective fatigue 

assessment, psychomotor assessment, and driving performance assessment.  Each of 

three driving sessions is 45 minutes long; therefore, the total driving time is 135 minutes. 

The dependent variables are measured throughout the experiment. The overall change of 

a variable indicates the difference of this variable between the initial and final 

measurements. The inter-session change estimates the difference between the 

measurements at the beginning and the end of a driving session. Each dependent variable 

is subjected to the overall change and inter-session change analysis. 

Subjective fatigue assessments.  Three variables are used for the subjective fatigue 

assessment: the SDFS, residual driver capacity, and the SSS. The first variable, SDFS, is 

obtained from the Driver Fatigue Questionnaire described in Table 10 and Equation 1. 

The second variable, residual driver capacity is also obtained from the questionnaire.  
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The questionnaire is administered every 15 minutes and 10 times in total throughout the 

experiment.  The third variable, SSS, is obtained at the beginning of the 1
st
 driving 

session and the end of each driving sessions; therefore, SSS is estimated only four times 

for subjects who complete the whole experiment.  

Psychomotor assessment. The psychomotor test, DAT, examines the reaction time 

of the subjects to determine their changing states.  After the 1
st
 DAT at the beginning of 

the experiment, DATs are taken every 15 minutes throughout the experiment; therefore, 

10 sets of DATs are taken by an individual subject who completes the whole experiment.  

Each set of DAT records reaction time five times. The average reaction time is calculated 

to reflect driver states. If any test is missed, the driving simulator will also record the 

number of tests being missed and corresponding time.  

Driving performance. Sixteen variables are used for driving performance 

assessment. Eight measurements listed in Table 1 are recorded by the simulating system 

during the LKT blocks, with a frequency of 20Hz.  The mean value of each measurement 

is calculated to represent the averaged performance, and the standard deviation (SD) is 

also calculated to represent the performance variance. Thus, sixteen variables are 

obtained to determine driving performance. Detailed calculation of these variables is 

given in section 5.13 to reflect the ability of the subject in steering wheel control, lateral 

position control, and speed control. 
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4.2 The 2
nd

 Experiment 

The second experiment investigates the effectiveness of the two fatigue 

countermeasures, consuming caffeine and listening to music.  These two methods have 

been reported to be two of the most frequently adopted and most effective [88]. However, 

to date, there has been no study investigating the effects of and difference between these 

two. The two countermeasures are to be compared in this experiment. Each individual 

subject completed three 120-minute driving sessions: control, caffeine, and music 

sessions on three different days. The effects on subjective fatigue, residual driver capacity, 

and driving performance are quantitatively observed. The brain activity of the subject is 

also investigated as an additional fatigue assessment.  Details of the experiment setup are 

included in this section. 

4.2.1 Subjects 

Based on the data obtained from the 1
st
 experiment, a minimum of 13 subjects are 

required, determined by the power analysis software Gpower [98] and following the 

procedure described in section 4.1.1.  To ensure adequate statistical reliability and 

significance, a goal of recruiting 15 to 25 participating subjects was set for the second 

experiment.   

Twenty healthy students (10 male and 10 female) from McMaster University 

participated in this experiment. Their ages range from 18 to 34 years, with mean age of 

22.5 years. As required in the first experiment, each subject is asked to hold a valid 

driver’s license for at least one year. The driving experience ranges from 1 to 7 years, 
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with mean experience of 3.1 years. Regardless being regular coffee drinkers or being 

non-regular coffee drinkers, all twenty subjects have no allergy to caffeinated drink.   

Again, each subject is required to sleep well during the night prior to each of three days 

coming to the driving simulation laboratory.  The subjects are also required to take no 

caffeine at least four hours before each driving session. During the driving sessions, the 

subjects are not allowed to take any caffeinated drink nor cigarette. Each subject received 

an information letter to understand the background of the experiment and signed the 

consent form after the first time arrival.  Every subject received $50 CAD compensation 

after completing the experiment. The experiment design was approved by the McMaster 

University Research Ethics Board. 

4.2.2 Procedure 

The second experiment consists of three 120-minute driving sessions: control, 

caffeine, and music sessions. Each subject needs to complete the three sessions on three 

different days. To minimize circadian rhythms in fatigue, the subject is asked to start each 

of the three driving sessions at the same time of each day. During the control session, 

subjects operate the steering wheel and gas/braking pedals to control the vehicle, 

presented with a carefully designed road scenario. The caffeine session is identical to the 

control session, except that each subject takes 405 ml Starbucks® Bottled Mocha 

Frappuccino® right before the driving session. This provides 108 mg caffeine to each 

subject. With the average weight being 66.7/kg for the twenty subjects, it means 161.9 

mg/100kg intake of caffeine on average. The music session is also identical to the control 

session, except the driver can listen to the music throughout the driving session. The 
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subject is allowed to choose his/her favorite music/songs for the music session.  

Electrodes are attached to collect EEG signal before starting each driving session.  

Control session. The control session is very similar to the 1
st
 experiment, except 

that (1) the overall driving time is 120 minutes instead of 135 minutes, and (2) the subject 

operates the driving simulator continuously throughout the whole session without any 

break. The subject took the 1
st
 subjective fatigue assessment by completing the DFQ in 

writing right before the driving session. During the control session, the DFQ is 

administered orally every 15 minutes until the end of the control session. After 

completing the control session, the last DFQ is administered in writing again. Therefore, 

the DFQ is administered 9 times in total, two in writing right prior and after the control 

session and seven orally during the control session.  Similar to the 1
st
 experiment, driving 

performance is recorded during the LKT blocks. The subject performs nine LKTs every 

15 minutes and eight parameters are recorded as in the 1
st
 experiment.  Each LKT block 

is followed by a 10-minute normal driving block.  During each LKT, the EEG signal is 

also recorded with a sampling frequency of 480 Hz for later analysis.  

Caffeine session. The caffeine session is identical to the control session, except 

that the subject is asked to take a bottle of 405 ml Starbucks® Bottled Mocha 

Frappuccino® prior to the driving task.  The caffeinated drink provides 108 mg caffeine 

to each subject. The average weight of the subjects is 66.68kg; therefore, it means 161.9 

g/100kg intake of caffeine in average.  Then the subject completes the driving session as 

in the control session. The SDFS and driving performance and EEG are recorded as in the 

control session as well.  
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Music session. The music session is also identical to the control session, except 

that subjects are asked to play their favorite music throughout the driving session.  The 

subject brings a music playing device (such as MP3 players or a smartphones), which is 

connected to a speaker. The subject adjusts the volume to a comfortable level, and then 

starts the driving task.  During the driving session, the subject can adjust the volume or 

change the music at any time, just like operating an in-vehicle music device.  While 

performing the driving task and listening to the music, the SDFS and driving performance 

and EEG are recorded as in the control session. 

4.2.3 Apparatus 

The same driving simulation system described in the 1
st
 experiment is also used in 

this experiment, except the 24-inch widescreen LCD monitor is replaced by a 40-inch 

widescreen LCD monitor. This 40-inch screen makes the road scenario much more 

realistic. The other hardware and software remain unchanged.  In addition to the driving 

simulation system, wireless EEG equipment, CleveMed (as shown in Figure 6), is used to 

collect EEG signal of the subject during driving sessions.   

During each session, two channels of EEG are recorded, both from the frontal 

regions, as shown in Figure 7. Four gold cup electrodes are used in the experiment. Two 

gold cup electrodes are placed at locations FP1 and FP2 to collect EEG signal, one gold 

cup electrode is placed at middle of the forehead (FpZ) for ground, and one gold cup 

electrode is placed on the right mastoid process (A1) as reference.  
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Figure 6 CleveMed wireless EEG equipment 

  

Figure 7.Two channels of EEG were recorded from the Frontal region, 

highlighted as FP1 and FP2,  

The gold cup electrode is first filled with conductive gel and attached at position FP1. A 

Life Brand® round sport bandage was applied over the gold cup electrode to secure it on 

the position. This procedure is repeated for the other gold cup electrodes at locations of 
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FP2, FpZ, and A1. The electrode placements are illustrated in Figure 7.  The sampling 

frequency is 480Hz, which is the default setting of the equipment.   

4.2.4 Road scenario 

The road scenarios in the 1
st
 experiment are used in the 2

nd
 experiment. The 

monotonous LKT block and the complex normal driving block are used alternatively 

throughout the driving session. Each LKT block is 5 minutes and each normal driving 

block is 10 minutes. Details of the road scenarios are included in section 4.1.4. 

4.2.5 Tasks 

LKTs are performed in each driving session, as subjects performed in the 1
st
 

experiment. Details are provided in section 4.1.5. 

4.2.6 Variables  

The independent variables are time and driving sessions. Dependent variables 

include subjective fatigue assessment, driving performance assessment, and EEG 

assessment. Each of the three driving sessions is 120 minutes long. The other 

independent variable is driving session: control, caffeine, and music sessions. The 

difference/changes of dependent variables against time and three driving sessions are to 

be examined.  The dependent variables are measured throughout the experiment. The 

overall change of a variable indicates the difference of this variable between the initial 

and final measurements of a driving session.  The inter-session change estimates the 

difference among the measurements of the three driving sessions (at the same time point). 
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Each dependent variable is subjected to the overall change and inter-session change 

analysis. 

Subjective fatigue assessments. Two variables are used for the subjective fatigue 

assessment: the SDFS and residual driver capacity.  The two variables are measured in 

the same way as in the 1
st
 experiment, using the questionnaire listed in Table 10. 

Driving performance. Sixteen variables used in the 1
st
 experiment are also 

measured and calculated in the same way in this experiment.  

EEG assessment.  Each subject performs three driving sessions (control, caffeine, 

and music sessions). In each driving session, the EEG signal is collected, and the data 

during the nine 5-minute LKT blocks are analyzed to examine brain activities of the 

subject, corresponding to the time periods when the SDFS is calculated.  Therefore, 9 sets 

of EEG data are collected during each driving session, and 27 sets are collected for the 

whole experiment for an individual subject who completed the whole experiment. Each 

set of EEG data includes recordings at FP1 and FP2, which are denoted as 𝑓𝑝1(𝑡) and 

𝑓𝑝2(𝑡).  Therefore, the EEG signal of the m
th

 subject recorded at the FP1 and FP2 

positions during the T
th 

 LKT in the one of three driving sessions  are denoted as 

𝑓𝑝1
𝑚(𝑡)𝑇

𝑠  and 𝑓𝑝2
𝑚(𝑡)𝑇

𝑠  respectively; where m ranges from 1 to 20, T ranges from 1 to 9, 

and s ranges from 1 to 3 (1 = control session, 2 = caffeine session, and 3 = music 

session). The unit is µv. For example, the EEG signal of the 8
th

 subject recorded at FP1 

during the 4
th

 LKT block in the caffeine session is denoted as 𝑓𝑝1
8(𝑡)4

2 , and the raw data 

recorded at FP2 is denoted as  𝑓𝑝2
8(𝑡)4

2 .  Averages of 𝑓𝑝1
𝑚(𝑡)𝑇

𝑠  and 𝑓𝑝2
𝑚(𝑡)𝑇

𝑠  are 
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calculated and denoted as 𝑓𝑝𝑚(𝑡)𝑇
𝑠 , which is mathematically represented by Equation   2.  

Data analysis on the averaged EEG is presented in the following section. 

𝑓𝑝𝑚(𝑡)𝑇
𝑠 =  

𝑓𝑝1
𝑚(𝑡)𝑇

𝑠 + 𝑓𝑝2
𝑚(𝑡)𝑇

𝑠

2
                         Equation   2 

The wave described by 𝑓𝑝𝑚(𝑡)𝑇
𝑠  was decomposed into four frequency components of 

EEG and noises. The four frequency components can be obtained from the recordings 

which are delta (δ, 0.5~4 Hz), theta (θ, 4~8 Hz), alpha (α, 8~13 Hz), and beta (β, 13~20 

Hz) waves. The four components are denoted as 𝛿1(𝑡)1
1 , 𝜃1(𝑡)1

1 , 𝛼1(𝑡)1
1 , and 𝛽1(𝑡)1

1  

respectively, again, 𝑡 = 0~300 seconds.  Based on the EEG signal, eight variables can 

be calculated to investigate the subject states. These variables are (1) power spectra of the 

four components and (2) four ratios of slow wave to fast wave that have been suggested 

as fatigue indicators by Jap et a.[77].  The details of these eight variables are given in 

Chapter 6. 

 At the end of this chapter, an overview of the setup of the 2
nd

 experiment is 

provided in  Figure 8. The road scenario is displayed on the 40-inch widescreen, at a 

comfortable distance between 0.8~ 1.3 meters in front of the subject. The subject is 

seated in the Playseat, which is adjustable and allows the subject to change positions of 

the steering wheel and the seat. The EEG signal collecting part of the CleveMed wireless 

EEG equipment is mounted at the back of the Playseat. 
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Figure 8. Overview of the setup of the 2
nd

 experiment, with 40-inch widescreen monitor 

and wireless EEG equipment 
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Chapter 5 The First Experiment (Data Analysis) 

The data analysis of the first experiment will be represented in this chapter, 

including changes in the SDFS, residual driver capacity, SSS, and various driving 

performance parameters. The independent variable was driving time (and driving sections 

completed). A series of paired student t-tests were performed to check whether changes 

in each parameter were significant after completing all three driving sessions. Then one-

way ANOVAs were used to examine whether changes in each parameter were significant 

with time. Multi-comparisons were performed using the Tukey test [100]. All analyses 

were conducted at the 0.05 significance level, unless otherwise noted. The results are 

presented in the following sections.  A part of the results in the first experiment was 

published in [101]. 



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 79  

5.1 Overall Changes 

It is of interest whether the value of each parameter at the end of the experiment is 

significantly different from the initial value, which is the overall change.  It is expected 

that after three driving sessions, the subject is more fatigued than at the beginning of the 

experiment. If the subjective driver fatigue assessment tool is a valid driver fatigue 

indicator, then the SDFS should increase significantly and residual driver fatigue should 

decline significantly after the experiment.  Meanwhile, driver performance is expected to 

change significantly. Therefore the parameters reflecting driving performance will be 

examined to check the overall changes. 

5.1.1 Items of DFQ 

To validate DFQ, the overall change in each item should be examined. For each 

item, the scores of the thirty-one subjects at the beginning and end of the experiment are 

compared using paired student t-tests.  For example, the 8
th

 item asks whether the 

subject’s feet are sore at that moment. The individual score ranges from 1 to 10, with 1 

being not sore at all and 10 being extremely sore.  The average score is 1.71 for the 

thirty-one subjects at the beginning of the experiment, meaning the subjects experience 

low soreness on their feet.  After finishing three driving sessions, the average score 

increases to 5.35, meaning the group, on average, experiences slightly more than 

moderately sore a feet. The overall change in the average score of the 8
th

 item is 3.64. 

The results of paired student t-test showed that the overall change in the score of the 8
th

 

item is significant [p= 9.916E-10, t=-8.45, CI = (-∞, -2.9129)].  This result is included in 

part A of Table 11, along with the results of the remaining eleven items. It can be seen 
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that all the items, except the 6
th

 item, have shown significant changes after the 

experiment. The 6
th

 item asks whether the subject will pass a leading vehicle which is 

much slower than the driver, assuming that the driver is currently on the highway.  The 

result of the student t-test has shown that p value is 0.072, which is greater than 0.05.  

Although the result suggests the overall change in the score of the 6
th

 item is not 

significant, the score shows a trend of an increase for the whole group. Recall that for the 

12
th

 item, the score (or answer) of residual driver capacity, has a different scale.  The 

numerical answer provided by the subject is the number of hours that he/she can safely 

control the vehicle; therefore, it has a unit of hour and can be any reasonable positive 

number. The result shows that the average driver capacity is 3.9 hours at the beginning of 

the experiment, and reduced to 1.05 hours after the experiment. Driver capacity has 

reduced 2.85 hours in average, after 2 hours of simulated driving. This may suggest that 

the experiment setup can induce driver fatigue more rapidly than normal daily real on-

road driving. This result agrees with the expectation of the road scenario design.  

Table 11 Change in Subjective assessment before and after simulated driving 

 Initial  

Score 

Final  

Score 

Difference t-test (p) ci standard 

deviation  

t-statistic 

A. Individual Scores 

Q1 3.4516 5.8710 2.4194 0.00 (-∞, -1.437) 3.223 -4.18 

Q2 3.9032 5.7742 1.8710 0.00 (-∞, -0.914) 3.138 -3.32 

Q3 3.4194 5.4516 2.0323 0.00 (-∞, -1.0445) 3.2402 -3.49 

Q4 1.4516 2.3871 0.9355 0.01 (-∞, -0.2726) 2.1746 -2.40 

Q5 2.7097 5.2258 2.5161 0.00 (-∞, -1.6616) 2.8032 -5.00 

Q6 2.9677 3.7742 0.8065 0.07 (-∞, 0.1061) 2.9935 -1.50 

Q7 2.9032 5.7419 2.8387 0.00 (-∞, -1.7854) 3.4554 -4.57 

Q8 1.7097 5.3548 3.6452 0.00 (-∞, -2.9129) 2.4021 -8.45 

Q9 1.9355 4.0000 2.0645 0.00 (-∞, -1.1848) 2.886 -3.98 

Q10 1.7419 4.5806 2.8387 0.00 (-∞, -1.9762) 2.8296 -5.59 

Q11 1.4839 5.1290 3.6452 0.00 (-∞, -2.8442) 2.2674 -7.72 

Q12 3.90 1.05 -2.85 0.00 (2.3259, ∞) 1.7192 -9.23 

B. SSS and SDFS 

SDFS 27.6774 53.2903 25.6129 0.00 (-∞, -18.51) 23.30 -6.12 

SSS 2.3871 4.1290 1.7419 0.00 (-∞, -1.33) 1.366 -7.10 
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It can be concluded that individual items in the questionnaire are valid to estimate 

subjective fatigue for the driver, since the overall changes in the scores of each item are 

significant, except the 6
th

 item.  Although the change in score of the 6
th

 item is not 

significant, a clear trend of increase can be observed.  This suggests that it also reflects 

driver states and can be included in the DFQ for subjective driver fatigue assessment. 

5.1.2 SDFS and SSS 

The SDFS can be calculated using Equation 1, and the SSS is obtained directly 

from the answer-sheet of the questionnaire. It is expected that both SDFS and SSS are 

increased after completing the prolonged driving task. The overall changes are examined 

using student t-tests. The result shows that the average SDFS of the thirty-one subjects 

was 27.7 at the beginning of the experiment. After the experiment, the SDFS increases by 

25.6 to 53.3, as expected.  The student t-test shows that the overall change in the SDFS is 

significant [p= 4.98E-07, t = -6.12, CI = (-∞, -18.51)].   

The average sleepiness estimated by the SSS is 2.387, suggesting the subjects on 

average are functioning at high levels but are a little bit relaxed.  After the prolonged 

driving task, the SSS increases by 1.742 to 4.129, suggesting the subjects are somewhat 

tired but still awake. The student t-test shows the overall change in the SSS is significant 

[p= 3.36E-07, t =-7.10, CI = (-∞, -1.33)]. This is as expected and reasonable, because the 

mental component of driver fatigue may lead a subject into sleep [8, 12].  However, 

driver fatigue is distinct from sleepiness; therefore, the increase in SDFS should be 

different from the increase in SSS. After calculating the percentage of increase, it shows 
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that the SDFS increases 26% and SSS increases 29%. It seems the SSS increases slightly 

more rapidly than the SDFS.   

The result may suggest that the driver fatigue indicator, the SDFS, is closely 

related to the sleepiness index, the SSS, but the SDFS is not identical to the SSS. Because 

the sleepiness is the only one of many symptoms of driver fatigue being assessed, and the 

SDFS includes all these factors. 

5.1.3 Driving performance 

The variables listed in Table 1 are used to estimate driving performance. The first 

group includes the means and standard deviations of steering wheel angle input (SA) and 

steering wheel rate (SR) and yaw rate (YR), representing driver ability to control the 

steering wheel. The simulator system has an accuracy of 0.01
o
 for the SA, 0.001 rad/s for 

the SR, and 0.001 rad/s for the YR.  

The second group includes the means and standard deviations of lateral position 

(LP) and velocity (LV) and acceleration (LA), measuring the driver ability to control 

lateral position.  The simulator system has an accuracy of 0.01 ft for the LP, 0.01 ft/s for 

LV, and 0.01 ft/s
 2

 for LA. 

The third group includes the means and standard deviations of longitudinal speed 

(VE) and acceleration (AC). The simulator system has an accuracy of 0.01 ft/s for the 

VE, and 0.01 ft/s
 2

 for the AC. In this section, each variable is examined to determine 

whether the overall change is significant after completing the 135 minute simulated 

driving task. 
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Steering wheel control. The variables in the first group include the means and 

standard deviations of SA, SR, and YR, reflecting driver abilities to control the direction 

of the vehicle by handling the steering wheel.  To illustrate how the analysis proceeded, 

details of analysis on SA are described as follows.  

The steering wheel angle, SA, is recorded at a frequency of 20Hz during each of 

the 5-minute LKTs. The SA for the m
th

 subject is denoted as  𝑡𝑠𝑎𝑛
𝑚 , where 𝑡 =

0,15, … ,120,135, which is driving time; 𝑚 = 1 ~ 31, which is the identity of the subject; 

𝑛 = 1 ~ 6000, which is the index of SA being recorded during the LKS started at 𝑡.  The 

mean SA of the m
th

 subject started at 𝑡, denoted as  𝑡 𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅̅ , is calculated using Equation 3. 

The related standard deviation of the steering wheel angle input, denoted as  𝑡𝜎𝑠𝑎
𝑚 , is 

calculated using Equation 4.  The group average of the mean SA at time t is then 

calculated for all thirty-one subjects using Equation 5, and denoted as  𝑡𝑆𝐴̅̅ ̅̅ ̅.  The group 

average of standard deviation of the SA is calculated using Equation 6, and denoted as 

 𝑡𝜎𝑠𝑎̅̅ ̅̅ ̅̅  .   

 𝑡𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅ =   (∑  𝑡𝑠𝑎𝑛
𝑚6000

𝑛=1 ) 6000⁄   Equation 3 

 𝑡𝜎𝑠𝑎
𝑚  

= √∑ ( 𝑡𝑠𝑎𝑛
𝑚 − 𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ) 2

6000

𝑛=1
/6000  Equation 4 

 𝑡𝑆𝐴̅̅ ̅̅ ̅ = ∑ (  𝑡𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅)
31

𝑚=1
/31  Equation 5 

 𝑡𝜎𝑠𝑎̅̅ ̅̅ ̅̅ = ∑ ( 𝑡𝜎𝑠𝑎
𝑚)31

𝑚=1 /31  Equation 6 

where 

 𝑡𝑠𝑎𝑛
𝑚 = the n

th
 steering wheel angel input (SA) during the LKT started at t for m

th
 subject 

 𝑡𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅ = mean of SA during the LKT started at t for m
th

 subject 

 𝑡𝜎𝑠𝑎
𝑚 =  the standard deviation of SA during the LKT started at t for m

th
 subject 
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 𝑡𝑆𝐴̅̅ ̅̅ ̅ = the group average of mean SA during the LKT started at t 

 𝑡𝜎𝑠𝑎̅̅ ̅̅ ̅̅ = the group average of the standard deviation of SA during the LKT started at t 

 

For each subject, the initial mean and standard deviations of SA,  0𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅̅  and  0𝜎𝑠𝑎
𝑚 , 

are calculated, and the final mean and SD,  135𝑠𝑎𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  135𝜎𝑠𝑎
𝑚 ,  are calculated.  The 

overall changes are examined using student t-tests. The result shows that the average 

mean of SA for the thirty-one subjects is -0.0007
o
 at the beginning of the experiment. 

After the experiment, the mean of SA is calculated to be 0.0063
o
, suggesting an increase 

of 0.007
o
.  It can be seen that both values are very close to zero.  Subjects keep the 

steering wheel at the neutral position while they try to drive straight, and keep turning the 

steering wheel back and forth. When summation is made, positive and negative records 

are canceled out, resulting the mean of SA approaching zero. It is expected the overall 

change in means of SA is not significant. The student t-test confirmed this expectation 

[p= 0.1149, t = -1.23, CI = (-∞, -0.0027)]. On the other hand, the standard deviation 

represents the variation in SA. The result shows that the group average of standard 

deviation of SA is 0.6279
o
 at the beginning of the experiment, and 0.8237

o 
at the end of 

the experiment. There is an increase of 0.1595
 o

 in variation of SA after 120-minute 

simulated driving task.   

It should be noticed that the accuracy of the SA measured by the system is 0.01
 o

, 

but the calculated mean and SD presented here include four decimal places, to avoid only 

showing zeros in the results. The digits beyond the accuracy of the system measurement 

only present mathematical analysis for the data collected. For each driving performance 

parameters, there is no actual physical meaning for the digit beyond the accuracy listed at 
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the beginning of this section. For example, the average group mean of SA is -0.0007
o 

at 

the beginning of the first session.  This does not mean that an individual subject can 

move the steering wheel by 0.0007
 o
. It only means the average input value of the steering 

wheel of the group is close to zero, but not equal to zero.  

The student t-test shows that the overall change in standard deviation is 

significant for SA [p= 0.007, t = -2.60, CI = (-∞, -0.0678)]. This significant increase in 

standard deviation of SA suggests that larger variations in angular input have occurred at 

the end of the experiment, indicating impaired ability to maintain the steering wheel at a 

neutral position.  The results of the student t-tests are included in Table 12, along with the 

results of the other driving performance parameters.  

Similarly, the means and standard deviations of other driving performance 

parameters can be calculated and analyzed in the same way shown above.   The other 

four variables in the first group are means and standard deviations of SR and YR.  

The overall change in the group mean is not significant for SR [p= 0.1094,            

t = -1.28, CI =  (-∞, 0.0007)], nor for YR [p= 0.2336, CI = (-∞, -0.00003)].  The overall 

change in the group average of standard deviation is not significant for SR [p= 0.0818,      

t = -1.43, CI = (-∞, 0.0036)], but significant for YR [p= 0.0002, t = -3.98, CI = (-∞,  

-0.0009)].  These results are listed in Table 12.  Therefore, none of the three group means 

(the means of SA, SR and YR) shows significant change after the 120-minute simulated 

driving task.  On the other hand, two of the three group averages of standard deviations 

(standard deviations of SA and YR) have shown significant increases after completing 

the experiment.   
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In conclusion, the group averages of the means in direction control parameters 

have shown no significant changes after 120-minute simulated driving task;  and two of 

the group averages of the standard deviations in direction control parameters have shown 

significant changes.  This result suggests that (1) the subjects are able to maintain the 

vehicle travel direction on a straight pass throughout the experiment, and (2) the 

amplitude of steering wheel movements increases significantly after the 120-minute 

simulated driving task, resulting in an increase in the variation of heading angles of the 

vehicle at near the end of the experiment.  The ability to control the steering wheel has 

been influenced by the prolonged driving task. 

Lateral position control. The variables in the second group include the means and 

standard deviations of LP, LV, and LA, reflecting driver abilities to maintain the vehicle 

at the center of the lane.  The overall change in the group mean is not significant for LP 

[p= 0.7938, t = 0.83, CI = (-∞, 0.5059)], is significant for LV [p= 0.0313, t = 1.93, CI = 

(0.00045, ∞)], and is not significant for LA [p= 0.1555, t = -1.03, CI = (-∞, 0.0014)].  

The overall change in the group averages of standard deviation is not significant for LP 

[p= 0.5322, t = 0.08,CI = (-∞, 0.2621)], is significant for LV [p= 0.0015, t = -3.23, CI = 

(-∞, -0.0346)], and is significant for LA [p= 1.99E-6, t = -5.62, CI = (-∞, -0.0944)].  The 

results are listed in Table 12.  Therefore, only one of three group means (the mean of LV) 

shows significant change after the 135-minute simulated driving task, and two of the 

three group averages of standard deviations (standard deviations of LV and LA) have 

shown significant increase after completing the experiment. 
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In conclusion, the group averages of the mean and standard deviation of LP show 

no significant changes after the 135-minute simulated driving task, indicating the subject 

consistently keeps the vehicle at the center of the lane throughout the experiment. The 

group averages of the mean and standard deviation of LV have shown significant 

increases after the prolonged driving task. For LA, the group mean shows no significant 

change but the group average of standard deviation shows significant increases. This 

result suggests that driving behaviors of the subjects have been influenced after the 

prolonged driving task, although the subjects still can maintain the vehicle at the center of 

the lane. 

Longitudinal speed control. The variables in the third group include the means 

and standard deviations of VE and AC, reflecting driver abilities to maintain the vehicle 

at a constant speed of 40 mph.  The overall change in the group mean is significant for 

VE [p= 5.0E-8, t = -6.99, CI = (-∞, -7.2051)], but not significant for AC [p= 0.0501, t = 

1.70, CI = (-0.45E-5, ∞)]. The overall change in the group average of standard deviation 

is significant for VE [p= 2.32E-5, t = -4.76, CI = (-∞, -1.2425)], but not significant for 

AC [p= 0.1628, t = -1.00, CI = (-∞, 0.056)].  The results are also listed in Table 12.  

Therefore, both group average of the mean and standard deviation of VE have shown 

significant changes after 135-minute simulated driving task, but the two variables related 

to AC have not shown significant change.  

In conclusion, the group mean of VE increases significantly, but the group mean 

of AC shows no significant change. Meanwhile, the group average of standard deviation 

is also significant for VE, but not significant for AC after the prolonged driving task.  
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This observation suggests that the subjects tend to speed up and are less stable in 

maintaining constant speed when approaching the end of the experiment.  

Table 12 Overall Change in Driving Performance 
 Initial  

value 

Final  

value 

Difference t-test (p) ci sd t-statistic  

A. mean 

SA 0.00 0.01 0.01 0.1149 (-∞, 0.0027) 0.03 -1.23 

SR 0.012 0.002 0.002 0.1049 (-∞, 0.0007) 0.009 -1.28 

YR 0.000 0.000 0.000 0.2336 (-∞, 0.00003) 0.000 -0.74 

LP 6.28 6.12 -0.16 0.7938 (-∞, 0.5059) 1.11 0.83 

LV 0.001 -0.002 0.003 0.0313 (0.00045, ∞) 0.010 1.93 

LA -0.0002 0.0019 0.0021 0.1555 (-∞, 0.0014) 0.0117 -1.03 

VE 59.29 68.80 9.51 5.00E-8 (-∞, -7.2051) 7.57 -6.99 

AC 0.00 -0.01 -0.01 0.0501 (-0.45e-5, ∞) 0.05 1.70 

B. SD 

SA 0.63 0.82 0.19 0.007 (-∞, -0.068) 0.42 -2.60 

SR 0.032 0.051 0.019 0.0818 (-∞, 0.0036) 0.074 -1.43 

YR 0.004 0.005 0.001 0.0002 (-∞, -0.0009) 0.002 -3.98 

LP 0.95 0.93 -0.02 0.5322 (-∞, 0.2621) 0.82 0.08 

LV 0.279 0.352 0.073 0.0015 (-∞, -0.0346) 0.126 -3.23 

LA 0.22 0.36 0.13 1.99E-6 (-∞,-0.0944 ) 0.13 -5.62 

VE 1.91 3.84 1.93 2.32E-5 (-∞, -1.2425) 2.26 -4.76 

AC 0.22 0.30 0.08 0.1628 (-∞, 0.056) 0.45 -1.00 

In summary, the overall changes in means of the variables have shown significant 

changes for only two variables (group means of LV and VE), and no significance for six 

variables (group means of SA, SR, YR, LP, LA, and AC); the overall changes in group 

averages of standard deviations have shown significance for five variables (SA, YR, LV, 

LA, and VE), and no significance for three variables (SR, LP, and AC).  The subjects 

have shown higher levels of fatigue at the end of the experiment, as stated in section 

5.1.2.   As a result, variables related to driver performance have been influenced by the 

increased fatigue, which is induced by the 135-minute simulated driving task.  Although 

6 out of 8 group means have not shown significant changes, 5 out of 8 standard 

deviations have shown significant changes.  This may suggest that, compared to mean 
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values, standard deviations are more sensitive to driving performance deterioration due to 

increased driver fatigue. 

5.2 Inter-sessional changes 

It is of interest whether subjective fatigue levels and driving performance change 

significantly after completing each 45-minute simulated driving session. Variables being 

examined include the SDFS, the SSS, driver capacity, and various driving performance 

parameters. Records at the beginning of the experiment and at the end of each driving 

session are compared, using one-way ANOVAs; then Multi-comparisons are performed 

using the Tukey test [100].   

5.2.1 Subjective Assessment 

In this section, inter-sessional changes in the SDFS, residual driver capacity, and 

the SSS are examined.  

SDFS.  To investigate inter-session effects on driver fatigue, a one-way ANOVA 

is used to examine SDFSs before starting the experiment and those at the end of each 

session. Significant inter-sessional variation is observed for the SDFS [F(3,123)=14.24, 

p=5.3E-8]. There is very strong evidence suggesting that changes in the SDFS after a 45-

minute driving session are quite significant.  Multi-comparison is performed using the 

Tukey test. The result showed that the initial SDFS is significantly lower than the SDFS 

obtained at the end of each driving session. Although, no significant difference has been 

identified among the scores after each driving session, a clear trend of increase in the 
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SDFS was observed, as shown in Figure 9 (A).  The plot showed an outlier, suggesting 

that this subject started the experiment at a much higher fatigue level (SDFS = 49) than 

the other subjects (the group average, SDFS = 26.7). However, after finishing the three 

driving sessions, the SDFS of this subject was 56, which was only slightly higher than the 

group average (SDFS =53.3).  

SSS.  Analysis on the SSS shows similar results, suggesting inter-sessional 

changes in the SSS are significant [F(3,123)=16.83, p=3.45E-9].  Multi-comparison was 

also performed and showed that only the initial score is significantly lower than the 

scores after completing each driving session. The result is plotted in Figure 9 (B). From 

the plot, it can be seen that there is very little variation in the average the SSS after the 1
st
 

driving session.  

Residual driver capacity.  To reduce effects of individual differences in residual 

driver capacities, the normalized residual driver capacity is used.  The normalizing factor 

is the maximum driver capacity being reported throughout the experiment.  To obtain 

normalized residual driver capacity, each score is divided by the normalizing factor of the 

individual subject. Therefore, the normalized driver capacities range from 1 to 0 (It can 

also be called the percentage of residual driver capacity).  While the SDFS and the SSS 

increases with the number of driving sessions completed, normalized driver capacity 

residua is decreased significantly [F(3,123)=94.7, p=0.17E-30].  Multi-comparison has 

shown that initial capacity is significantly higher than the residua examined after each 

driving session.  
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Figure 9 Inter-session variations in subjective fatigue assessment: (A) SDFS, (B) 
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The residua after the 1
st
 driving session are not significantly higher than the 2

nd
 

driving session, but significantly higher than the residua at the end of the 3
rd

  

driving session.  The residua do not decrease significantly after the 3
rd

 driving session.  In 

summary, residual driver capacity decreases significantly after the 1
st
 45-minute driving 

session, and then decreases significantly after two 45-minute driving sessions.  The result 

is plotted in Figure 9 (C).   

5.2.2 Driving performance 

Variations in driving performance across driving sessions are examined similarly. 

For example, the means and standard deviations of SA at the beginning of the experiment 

and at the ends of each 45-minute driving session are examined using one-way ANOVAs. 

The result shows that inter-sessional variation in means of SA is not significant [F(3,123) 

= 0.63,  p= 0.5855]. Multi-comparison is performed, and no significant variation in 

means of SA has been found between any two of the driving sessions. This is not 

surprising, because the overall change in means of SA has been found not significant. On 

the other hand, inter-sessional variation in standard deviations of SA is not significant 

[F(3,123) = 1.18, p = 0.322], although the overall change has been examined to be 

significant. The results of analysis on inter-sessional variation of all sixteen variables are 

listed in Table 13. Only three variables have shown significant inter-session variation: the 

means of LV, and the means and standard deviations of VE.   

Multi-comparison shows that (1) the means of LV have significantly changed 

after completing the first driving session. (2) Initial means of VE are significantly 

different after completing two driving session and three driving session; means of VE at 
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the end of 1
st
 driving session are significantly different from those at the end of 2

nd
 and 

3
rd

 driving sessions.  (3) Initial standard deviations of VE are significantly different from 

those at the end of 3
rd

 driving session, standard deviations at the ends of the 1
st
 session 

are significantly different from those of the 2
nd

 session, and standard deviations after 2
nd

 

session are significantly different from those of the 1
st
 and 3

rd
 sessions.   The plots of 

these three variables showing significant inter-sessional variation are also shown in 

Figure 10.  

Table 13 Inter-sessional Variation in Driving Performance 

 mean SD 

 F(3,123) p Tukey test F(3,123) p Tukey test 

SA 0.65 0.5855 none 1.18 0.322 none 

SR 1.48 0.2237 none 0.64 0.5882 none 

YR 0.94 0.4269 none 1.43 0.2377 none 

LP 0.52 0.6705 none 0.17 0.9133 none 

LV 3.41 0.0197 1-2 2.44 0.0676 none 

LA 1.02 0.3847 none 2.05 0.1099 none 

VE 30.24 1.243E-14 0-2,3; 1-2,3 9.49 1.125E-5 0-3; 1-2; 2-1,3 

AC 2.11 0.1031 none 1.69 0.172 none 

The results showed that driver fatigue accumulated rapidly first, and then showed 

a trend of gradual increase throughout the rest of the experiment.  Increases in driver 

fatigue had negative impact on driving performance. The negative impact was indicated 

by changes in driving performance parameters (such as means of LV, means of VE, and 

standard deviations of VE). Since less driver fatigue was accumulated in a 45-minute 

driving session, less impact of driver fatigue on driving performance was expected. 

Therefore, it is reasonable to see less significant changes in driving performance 

parameters, as shown in Table 13.   
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Figure 10 Inter-session variations of (A) means of LV, (B) means of VE, and (C) 
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5.3 Additional analysis 

Significant overall changes and inter-sessional variations have been observed for 

the SDFS, residual driver capacity, the SSS, and three driving performance variables. In 

this section, variations within 15-minute interval are examined. Then the co-relationship 

between subjective fatigue levels and driving performance are examined. 

5.3.1 15-minute variation 

To better understand the mechanism of development of subjective driver fatigue, 

variations of the SDFS and normalized residua driver capacity have been examined with 

a 15-minute time interval.  

SDFS.  DFQ has been administered ten times throughout the experiment, and ten 

SDFS have been obtained for each subject. The group average of SDFS is plotted against 

driving time in in Figure 11(A).  An overall trend of increase in the SDFS with time can 

be clearly observed from the plot.  A one-way ANOVA has been used, and multi-

comparison has been performed. The result shows that SDFS increased significantly with 

time [F(3,123) = 10.62, p = 2.6956E-14].  

Although no significance has been found within any 15-minute time interval, 

significances have been observed on variations of the SDFS within some 30-minute time 

intervals. For example, the group means of SDFS are 26.8 at t=15 min, and 43.7 at 

t=45 min, suggesting a significant increase of 16.9 after the 30-minute simulated driving 

task.  
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Figure 11  (A) SDFS against driving time, (B) normalized residual  

driver capacity against driving time 
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gradually.  On the other hand, the group means of SDFS also decrease at 45 – 60 and 90 

– 105 minute intervals, which include the two short breaks (less than 5 minutes) between 

the driving sessions.  These two decreases in the SDFS suggest the recovery resulted 

from the two short breaks after each driving session. 

Residual driver capacities.  Normalized residual driver capacities have also been 

obtained ten times for each subject. A similar analysis has been performed for the 

normalized residua driver capacity. The group averages are plotted in Figure 11.  The 

result of One-way ANOVA shows that normalized residual driver capacity decreases 

significantly with time [F(3,123) = 34.67, p = 1.2959E-41]. A recovery effect is also 

indicated by the increase in normalized residual driver capacity after the short break 

between the 1
st
 and the 2

nd
 driving sessions. 

5.3.2 Co-relationship 

It is of interest in finding out how driver fatigue levels indicated by the SDFS are 

related to the driving performance.  From previous investigations, it has been found that 

both the SDFS and driving performance change with time, and some variables of driving 

performance had similar trends as the SDFS. Therefore, each of 16 driving performance 

variables were plotted against the SDFS values. For example, the plot of SD of LA 

against the SDFS was given in Figure 12 (A).  However, due to large individual 

differences, scattered points were observed.  It was difficult to conclude a relationship 

between the SDFS and each of the driving performance parameters, although some of the 

curve fits, such as the one shown in Figure 12 (A), showed trends of increase with the 

increased SDFS.  For the current experiment, we are more interested in the group change; 
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the group mean of SDFS was compared with the group mean of each of the 16 driving 

performance parameters. These group means were helpful in reducing individual 

differences.  After investigating all the 16 driving performance variables against the 

SDFS, one variable – normalized standard deviation of lateral acceleration (LA) has 

shown a linear co-relationship with the SDFS. This mathematical co-relationship between 

the normalized standard deviation of LA and the SDFS are described using a curve fit as 

shown in Figure 12 (B), plotting the group averages of standard deviation of LA against 

the SDFS. 

  The two variables have been used in the curve fit.  The first variable is the SDFS 

(labeled as x in the plot). The second variable is the normalized standard deviation of LA 

(labeled as y in the plot).  Due to the individual difference in driving skills, the standard 

deviations of LA are quite different among individual subjects.  Therefore, the 

normalized standard deviations are used to reduce individual difference.  This has been 

done by dividing an individual subject’s standard deviations of LA by the maximum 

value of these standard deviations. After this performance, the normalized standard 

deviations of LA then become values between 0 and 1. The standard deviation of LA can 

reflect both the driver ability to maintain required lateral position and fatigue 

information. An increase in the standard deviation of LA indicates a larger variation of 

LA. In other words, the lateral acceleration becomes less stable because of a degradation 

of driving performance.  As shown in Figure 12, a straight line indicates that the standard 

deviations of LA increase with the increases of SDFS. It is reasonable to expect that 

driving performance would be impaired with increased subjective fatigue level. 
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(A) 

  
(B) 

Figure 12.  Curve fit for standard deviation of lateral acceleration (A)individual, and  (B) 

normalized group mean vs. subjective scores 
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5.3.3 Multi-dimensional subjective fatigue and driving performance 

To avoid driver fatigue related accidents, drivers should be able to identify fatigue 

levels early.  This requires a driver fatigue monitoring system that can numerically 

estimate driver states. Although, many researchers have suggested various methods to 

qualitatively identify driver fatigue, currently there is no effective system that can 

quantitatively measure driver fatigue. This explains why driver fatigue detecting/warning 

devices have not been implemented popularly in modern vehicles. In the computerized 

driving simulation lab, subjective driver fatigue was quantified using a questionnaire. 

Driving performance was also recorded to measure variations of speed, steering wheel 

rate, etc. 

In the previous sections, the results show that the SDFS increases gradually with 

driving time, indicating driver fatigue becomes more severe with prolonged driving. 

Meanwhile, driving performance deteriorated, indicated by the increase in variation of 

speed, steering wheel rate, lane position and heading angles. More importantly, a linear 

relationship has been observed between the SDFS and standard deviation of LA (as 

shown in Figure 12). This mathematical relationship suggests that it is possible to predict 

driving performance, if the SDFS is known, and vice versa. That is, by monitoring the 

SDFS and/or driving performance, it is possible to determine whether the driver’s state is 

suitable to continue the driving task.  

However, it is not enough to make a decision just based on these two parameters, 

the SDFS and the standard deviation of LA. Since driver fatigue assessment can be 

considered as a multi-dimensional measure [11, 43, 97], sub scores can be calculated to 
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reflect the multi aspects of driver fatigue in detail. Five sub scores have been calculated 

from the twelve items listed in Table 10. These sub scores are (1) physical fatigue 

symptoms, (2) driving behaviors, (3) perception, (4) tiredness, and (5) capacity 

consumption.   

The sub score, physical fatigue symptom, includes items No.4, No.8~11 listed in 

Table 10, which evaluate severity of headache, sore feet, backache, joint stiffness, and 

numbness.  This sub score is denoted as  𝑡𝑝𝑓𝑠𝑚, and is calculated using Equation 7.   The 

sub score, driving behaviors, include items No. 6 and No.7, which describes the 

subjective tendencies to pass a leading vehicle and pull over for a rest. This sub score is 

denoted as   𝑡𝑑𝑏ℎ𝑚 , and is calculated using Equation 8.  The sub score, perception, 

includes items No.1 and No.5, which report feelings of driver fatigue interfering with safe 

driving, and feelings of eye strain. This sub score is denoted as  𝑡𝑝𝑒𝑟𝑚 and is calculated 

using Equation 9. The sub score, tiredness, include items No.2 and No.3, which reflect 

sleepiness and ability to concentrate.  This sub score is denoted as  𝑡𝑡𝑖𝑟𝑚  and is 

calculated using Equation 10. The last sub score, capacity consumption, is obtained from 

the item No.12, which reports driver capacity. This sub score is denoted as  𝑡𝑐𝑎𝑝𝑚; it is 

the ratio of the difference between the maximum capacity and the current driver capacity 

to the maximum capacity. The maximum capacity is the maximum value of all the ten 

values reported by an individual subject for the item No.12. Equation 11 is used to 

calculate capacity consumption.  All sub scores range from 0 to 1, and a larger value of 

the sub score indicates the higher level of driver fatigue.  

 𝑡𝑝𝑓𝑠𝑚 =  ( 𝑡𝑄4
𝑚 +  𝑡𝑄8

𝑚 +  𝑡𝑄9
𝑚 +  𝑡𝑄10

𝑚 +  𝑡𝑄11
𝑚    ) 50⁄  Equation 7 
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 𝑡𝑑𝑏ℎ𝑚 =  ( 𝑡𝑄6
𝑚 +  𝑡𝑄7

𝑚   ) 20⁄  Equation 8 

 𝑡𝑝𝑒𝑟𝑚 =  ( 𝑡𝑄1
𝑚 +  𝑡𝑄5

𝑚   ) 20⁄  Equation 9 

 𝑡𝑡𝑖𝑟𝑚 =  ( 𝑡𝑄2
𝑚 +  𝑡𝑄3

𝑚   ) 20⁄  Equation 10 

 𝑡𝑐𝑎𝑝𝑚 =  ( ∗𝑄12
𝑚 −  𝑡𝑄12

𝑚    )  𝑚𝑎𝑥𝑄12
𝑚⁄  Equation 11 

where 

 t𝑄n
m  = the score of the 𝑛𝑡ℎ item in the questionnaire for 𝑚𝑡ℎ subject at the time 𝑡, and      

                  1 ≤ n ≤ 12 

 t𝑝𝑓𝑠m = the sub score of physical fatigue symptom 

  t𝑑𝑏ℎm = the sub score of driving behaviors 

 t𝑝𝑒𝑟m = the sub score of perception 

 t𝑡𝑖𝑟m = the sub score of tiredness 

 t𝑐𝑎𝑝m = the sub score of capacity consumption 

 𝑚𝑎𝑥𝑄12
𝑚  = the maximum value of  𝑡𝑄12

𝑚  (with t = [0, 15,30, … , 135] 

The five sub scores are plotted in a radar diagram, shown as the purple pentagons 

in Figure 13. This radar diagram of subjective score shows several characteristics of 

driver fatigue.  It can help the driver to identify the type of fatigue. Generally speaking, 

fatigue caused by sleep debt is different from fatigue caused by mental overload (or 

underload). For example, high sleepiness and low alertness are usually related to fatigue 

caused by sleep debt. Low sleepiness, low alertness, and significant change in fatigue 

symptom are usually associated with fatigue caused by mental overload [41].  

Driving performance also has multiple variables reflecting different driver 

abilities, such as steering wheel control, lateral position control, etc.  From the previous 

analysis on driving performance variables, it can be seen that the overall changes are 

significant for the standard deviations of (1) steering wheel angel input, (2) yaw rate, (3) 

lateral velocity, (4) lateral acceleration, and (5) longitudinal velocity.  More importantly, 



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 103  

the normalized standard deviation of LA linearly increases with increases in the SDFS.  

Each of the other variables can also be normalized by using the corresponding maximal 

values of each variable as a normalizing factor. These normalized variables are obtained 

from Equation 12 ~  Equation 16.   

These normalized variables can also be plotted as a radar diagram, shown as the 

orange-red pentagon in Figure 14. It shows the characteristics of driving performance in 

multi dimensions. It can be seen from the plot that the initial driving performance does 

not approach zero, indicating each driving performance variable has non-zero variance 

even at very low fatigue levels.  It is worth to notice that the maximum value of each 

variable is the value at the end of the experiment, and a full pentagon has been obtained 

for the final driving performance as shown in Figure 14 (B). From these two 

multidimensional plots for subjective fatigue and driving performance, it is possible to 

develop devices to numerically measure driver fatigue and performance simultaneously 

and determine whether driving performance is deteriorated by increased driver fatigue.  

 𝑡�̂�𝑠𝑎
𝑚 =   𝑡𝜎𝑠𝑎

𝑚  𝑚𝑎𝑥𝜎𝑠𝑎
𝑚⁄  Equation 12 

 𝑡�̂�𝑦𝑟
𝑚 =   𝑡𝜎𝑦𝑟

𝑚   𝑚𝑎𝑥𝜎𝑦𝑟
𝑚⁄  Equation 13 

 𝑡�̂�𝑙𝑣
𝑚 =   𝑡𝜎𝑙𝑣

𝑚  𝑚𝑎𝑥𝜎𝑙𝑣
𝑚⁄  Equation 14 

 𝑡�̂�𝑙𝑎
𝑚 =   𝑡𝜎𝑙𝑎

𝑚  𝑚𝑎𝑥𝜎𝑙𝑎
𝑚⁄  Equation 15 

 𝑡�̂�𝑣𝑒
𝑚 =   𝑡𝜎𝑣𝑒

𝑚   𝑚𝑎𝑥𝜎𝑣𝑒
𝑚⁄  Equation 16 

where 

 𝑡�̂�𝑠𝑎
𝑚  = the normalized standard deviation of SA for 𝑚𝑡ℎ subject at the time 𝑡 

 𝑚𝑎𝑥𝜎𝑠𝑎
𝑚 = the maximum value of  𝑡𝜎𝑠𝑎

𝑚 , (with t = [0, 15,30, … , 135])  
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 𝑡�̂�𝑦𝑟
𝑚 = the normalized standard deviation of YR 

 𝑚𝑎𝑥𝜎𝑦𝑟
𝑚 = the maximum value of  𝑡𝜎𝑦𝑟

𝑚  

 𝑡�̂�𝑙𝑣
𝑚 = the normalized standard deviation of LV 

 𝑚𝑎𝑥𝜎𝑙𝑣
𝑚 = the maximum value of  𝑡𝜎𝑙𝑣

𝑚 

 𝑡�̂�𝑙𝑎
𝑚 = the normalized standard deviation of LA 

 𝑚𝑎𝑥𝜎𝑙𝑎
𝑚 = the maximum value of  𝑡𝜎𝑙𝑎

𝑚 

 𝑡�̂�𝑣𝑒
𝑚 = the normalized standard deviation of VE 

 𝑚𝑎𝑥𝜎𝑣𝑒
𝑚 =  the maximum value of  𝑡𝜎𝑣𝑒

𝑚 

It also helps us to distinguish the type of fatigue and make correct suggestions to 

the driver. If fatigue is related to sleep debt, the driver should stop driving and sleep well 

to get recovered.  If fatigue is related to mental overload, the driver may activate some 

advanced driving assistance system (such as lane keeping function, collision avoidance 

function, etc.) to reduce mental workload, or take a short break to recover from driver 

fatigue. In our experiment, it was also found that after prolonged simulated driving, a 3-

minutes short break helped the driver to recover. Driving performance improved 

significantly and subjective fatigue score decreased.          

  Combined with other existing advanced driving assistance systems, it is believed 

that monitoring the parameters introduced here can help drivers notice increased fatigue 

level and deteriorated driving performance. These multidimensional indicators for 

subjective driver fatigue and driving performance may help drivers make wise actions 

during driving tasks and drive safely without fatigue. For example, the driver can choose 

an effective fatigue countermeasure to reduce fatigue levels. Many fatigue 

countermeasures have been applied by drivers who work for prolonged work shifts. The 

next experiment will examine the effectiveness of two of most frequently applied fatigue 

countermeasures. 
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(A)                                                              (B) 

Figure 13. A typical multidimensional fatigue change of an individual driver.   

pfs: physical fatigue symptom; dbh: driving behaviors; per: perception;  tir: tiredness; 

cap: capacity consumption  

      
(A)                                                              (B) 

Figure 14 A typical multidimensional driving performance change of an individual 

driver. σsa: standard deviation of SA; σyr: standard deviation of YR; σlv: standard 

deviation of LV; σla: standard deviation of LA; σve: standard deviation of VE 

5.4 Divided attention test 

Reaction time was recorded for the divided attention test. It was expected that 

reaction time would increase with increased fatigue levels. However, when the reaction 

time was plotted against driving time, as shown in Figure 15, reaction time almost was 

decreasing all the way from beginning to the half way of the experiment, and then 

remained constant until the end of the experiment.    
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This result is very different from the expectation and the observation from other 

researchers [102].  The reduction of reaction time at the first half part of the experiment 

may reflect the learning effects. One of the possible reasons for this unexpected result 

was that the divided attention test was taken during the driving task. The reaction time 

test was often taken separately by drivers in other experiments and was only influenced 

by fatigue levels, not other factors such as mental workload.  However, in the current 

experiment, the reaction time was influenced by many factors, including fatigue levels, 

mental workload, complexity of road scenarios, etc. On the other hand, there was no 

visual or auditory cue signaling reaction test onset, and the subject had no clue when the 

test would start. This also made the subjects take more time to response to the triggering 

signal. Therefore, the divided attention test without a signaling cue, such as the one used 

in the current experiment, is not a good indicator of fatigue levels, if taken while driving. 

 

Figure 15 Reaction times against driving time 
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Chapter 6 The Second Experiment (Data Analysis) 

The second experiment results are presented in this chapter. One-way ANOVAs 

were used to examine whether the SDFS and driving performance were different at the 

beginnings of the control, caffeine, and music sessions. The independent variables were 

types of driving session (control, caffeine, and music) and driving time. Dependent 

variables were the SDFS, driving performance measurements, and brain activity 

represented by EGG signals.  Multi-comparisons were performed using the Tukey test 

[100]. Then, a series of paired student t-tests were performed to check whether (1) 

changes in SDFS and driving performance and brain activities were significant after 120-

minute driving sessions, and (2) differences in increments of the SDFS and driving 

performance and brain activities were significant between any two of the driving 

sessions. All analyses were conducted at the .05 significance level unless otherwise 

noted. A part of the results in the second experiment was published in [103]. 
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6.1 Subjective Assessment (SDFS)  

In the current experiment, the questionnaire has been administered to estimate 

driver fatigue levels for three driving sessions. The variations of the SDFS with time 

were examined for each driving session. Then the differences among the driving sessions 

were also examined to check the effectiveness of each fatigue countermeasures. 

Each subject completed three driving sessions: control, caffeine, and music 

sessions. Right before starting each of the sessions, the subject answered the 

questionnaire in writing; during the driving session, the subject verbally answered the 

questionnaire after driving for every fifteen minutes; then at the end of the experiment 

(after driving for 120 minute) the subject answered the last questionnaire in writing again. 

The subject administered the questionnaire nine times for each driving session, two in 

writing (before and after driving session) and seven verbally (during the driving session). 

In total, a subject who completed all three driving sessions completed the questionnaire 

twenty-seven times.  

The variation in subjective driver fatigue scores of a typical subject is shown in 

Figure 16(A). The initial states of the subject at the beginnings of the three driving 

sessions were similar. This was indicated by the similar low the SDFS at the beginnings 

of three driving sessions: 14 for control session, 11 for caffeine session, and 12 for music 

session. Since the subjects were asked to start the three driving sessions at the same time 

of the day and with the similar states, small variations in the SDFS at the beginnings of 

three driving sessions were not surprising.  Indeed, when one-way ANOVAs were used 

to examine variations in the initial the SDFS of all twenty subjects, no significant 
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difference has been found among the control, caffeine, and music sessions [F(2,57,59) = 

0.6, p = 0.5526]. The results are shown in Figure 17.  This indicates that each subject 

started all the driving sessions at similar fatigue levels. This is also shown in Figure 16 

(B), a plot of the average SDFS vs. driving time.   

 
(A) 

 

 
     (B) 

Figure 16 SDFS increases with driving time (A) SDFS for an individual subject; (B) 

average SDFS for all subjects 
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Figure 17 one-way ANOVA results for initial SDFS of three driving sessions 

Although the subjects started driving sessions at similar low fatigue levels, their 

SDFS were different after completing three sessions, all of which consisted of 120 

minutes of simulated driving.  From Figure 16, it can be seen that after 120 minutes 

simulated driving, the SDFS was increased from initial low levels. The scores at the 

beginning and the end of each driving session were compared using paired student t-tests. 

It was observed that the SDFS increased significantly after completing (1) the control 

session [p= 7.76E-6, t = -5.74, CI=(-∞, -16.6)] , (2) the caffeine session [p=3.87E-5,  

t = -5.01, CI=(-∞, -8.78)], and (3) the music session [p=1.46E-5, t = -5.45, CI = (-∞, -

10.5)].  A one-way ANOVA was used to examine whether these overall increases in the 

SDFS were significant among control, caffeine, and music sessions or not. The results, as 

shown in Figure 18, suggested that inter-session differences among three driving sessions 

were not significant for the SDFS increases [F(2,57,59)=2.81, p=0.0688]. A multi-

comparison was performed using the Tukey test, also suggesting no significant 

differences between any two driving sessions.  However, paired student t-tests revealed 
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that (1) the increase in the SDFS in control sessions were significantly larger than in 

caffeine sessions [p=0.0192, t = 2.56, CI=(1.89, 18.8)], (2) the increase in SDFS in 

control sessions were significantly larger than in music sessions [p=0.0257, t = 2.4204, 

CI=(1.13, 15.6)], and (3) the increase in SDFS were not significantly different between 

caffeine and music sessions [p=0.535, t = -0.6313, CI=(-8.63, 4.63)].  The different 

results of the one-way ANOVA and repeated student t-tests were probably caused by 

losing the power of repeated measure of the multiple comparisons.   

 

Figure 18 one-way ANOVA results for the SDFS increase in three driving 

sessions 

In general, each driver started the driving sessions at relatively low but similar 

SDFS. After each of the sessions, the SDFS increased significantly. On the other hand, 

the increment was largest for control sessions, medium for music sessions, and smallest 

for caffeine sessions. The increments of the SDFS after caffeine and music sessions were 

significantly less than after control sessions. The increments were not significantly 
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different between the caffeine and music sessions. The results suggested that the two 

fatigue countermeasures, consuming caffeine and listening to music, had similar positive 

effects on reducing subjective fatigue levels. However, it is also important to examine 

whether these two fatigue countermeasures can help drivers maintain driving 

performance. 

6.2 Driving Performance 

Driving performance was estimated through 16 parameters, as in the 1
st
 

experiment. These parameters were examined to determine (1) whether initial driving 

performance was significantly different among three driving sessions, (2) whether driving 

performance deteriorated after each session, and (3) whether the variation in driving 

performance was significantly different between any two of three sessions. 

6.2.1 Initial difference 

The steering wheel angle input (SA) was recorded at a frequency of 20Hz. The 

initial SA for the m
th

 participant was denoted as  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑎𝑛
𝑚 (m=1~20, n=1~6000), 

recorded in the first 5-minute LKT. The mean initial SA of the m
th

 participant, denoted as 

𝑠𝑎𝑚̅̅ ̅̅ ̅̅ , was calculated using Equation 3. The standard deviation of the initial SA, denoted 

as 𝜎𝑠𝑎
𝑚, was calculated using Equation 4. The mean of the SA was then calculated for all 

twenty drivers using Equation 5, and denoted as 𝑆𝐴̅̅̅̅ . The mean standard deviation of the 

SA was calculated using Equation 6, and denoted as 𝜎𝑠𝑎̅̅ ̅̅ .  Similarly, values of 𝑆𝐴̅̅̅̅  and 𝜎𝑠𝑎̅̅ ̅̅  

were calculated for the last 5-minute LKT for each driving session. The results of initial 

and final 𝑆𝐴̅̅̅̅  were plotted for the control, caffeine, and music sessions in Figure 19 on the 
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left-hand side, and and 𝜎𝑠𝑎̅̅ ̅̅  was plotted on the right hand side. Twenty drivers’ 𝑠𝑎𝑚̅̅ ̅̅ ̅ were 

calculated for each session for the first LKT. A one-way ANOVA was used to examine 

whether 𝑠𝑎𝑚̅̅ ̅̅ ̅ were different among three driving sessions. The result showed that the 

means of SA were not significantly different among control, caffeine, and music sessions 

[F(2,57,59)=0.44, p=0.65]. Multi-comparison was performed using the Tukey test, also 

suggesting no significant differences between any two of the three driving sessions.   

Twenty 𝜎𝑠𝑎
𝑚 were calculated for each session for the first LKT and analyzed using 

a one-way ANOVA. The result showed that the standard deviation of initial SA was not 

significantly different among three sessions [F(2,57,59)=0.2, p=0.82]. Multi-comparison 

indicated that there were no significant differences between any two of the control, 

caffeine, and driving sessions. 

 
Figure 19 mean values and standard deviations of SA at beginnings and ends of three 

sessions 
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Similar statistical analyses were performed for the other 14 parameters (means 

and standard deviations of SR, etc.). The results for these parameters are shown in Figure 

23 – Figure 29 . The p values of one-way ANOVAs were summarized in Table 14. 

Combined with multi-comparison, the results revealed that none of the parameters 

showed significant differences between any two of three sessions. This suggests that, for 

each driver, there was virtually no difference in driving performance at the beginnings of 

control, caffeine, and music sessions. This was not surprising, because for each subject, 

there was no significant difference in the SDFS at the beginnings of the three sessions. 

Table 14. p values of one-way ANOVA for initial driving 

performance parameters 

 Steering wheel  

control 
Lateral position 

 control 
Speed  

control 

 SA SR YR LP LV LA VE AC 

mean 0.65 0.63 0.57 0.69 0.57 0.55 0.53 0.15 

SD 0.82 0.53 0.73 0.25 0.74 0.66 0.40 0.22 
 

6.2.2 Deterioration of driving performance 

Although driving performance was virtually identical at the beginnings of three 

sessions, both means and standard deviations of SA increased after completing each 

session, as shown in Figure 19. The results of the paired student t-test showed that the 

increase in mean of SA was (1) significant after the control session [p=0.00005, t = -5.19, 

CI=(-0.35, -0.15)], (2) not significant after the caffeine session [p=0.09, t = -1.76, CI = (-

0.17, 0.01)], and (3) significant after music session [p=0.01, t =  -2.77, CI = (-0.33, -

0.05,]. The results of the paired student t-tests on the standard deviation of SA showed 

that variance of steering wheel angle input increased significantly after control session 

[p=0.0009, t = -3.95 , CI = (-0.53, -0.16)], not significantly after caffeine session 
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[p=0.091, t = -1.78 , (-0.29, 0.02)], and significantly after music session [p=0.038, t = -

2.23 , (-0.57, -0.018)].  Similar statistical analyses were performed for other 14 driving 

performance parameters, and the p values of the paired student t-test were summarized in 

Table 15, with parameters showing significant change highlighted. The results showed 

that 13 of the 16 parameters showed significant change after completing control sessions, 

9 parameters showed significant change after completing music sessions, and only 6 

parameters showed significant change after completing caffeine sessions.  

Table 15. p values of paired student t-test for deterioration 

 Steering wheel  

control 
Lateral position 

 control 
Speed  

control 

 SA SR YR LP LV LA VE AC 

 Control Session 

mean .000 .002 .000 .159 .007 .000 .078 0.03 

SD .000 .000 .000 .039 .009 .001 .111 .030 

 Music session 

mean .012 .086 .017 .197 .011 .024 .450 .054 

SD .038 .067 .047 .013 .022 .054 .536 .037 

 Caffeine session  

mean .093 .752 .131 .299 .025 .222 .719 .008 
SD .091 .204 .115 .009 .026 .184 .012 .006 

 

Further observation revealed that increments in mean SA, denoted as δsa
m ,were 

greatest for the control session (0.25 degrees), medium for the music session 

(0.19 degrees), and smallest for the caffeine session (0.08 degrees). Furthermore, the 

increment in standard deviation of SA, denoted as  ∆sa
m   was greatest for the control 

session (0.3457 degrees), medium for music sessions (0.296 degrees), and smallest for 

the caffeine session (0.1339 degrees). The increments of all 16 parameters were listed in 

Table 16. The results showed that 112 increments were greatest for control session, 

medium for music session, and smallest for caffeine session. Only 5 parameters showed a 
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different trend (increments in the means of lateral velocity and longitudinal acceleration, 

standard deviations of lateral position, standard deviation of velocity, and the standard 

deviation of acceleration).   

Table 16. increment of driving performance parameters  
 Steering wheel  

control 
Lateral position 

 control 
Speed  

control 

 SA SR YR LP LV LA VE AC 

 Increment in mean 

control 0.25 0.005 0.002 0.89 0.11 0.11 1.73 0.18 

music 0.19 0.003 0.001 0.81 0.13 0.09 0.78 0.09 

caffeine 0.07 0.000 0.000 0.17 0.08 0.03 0.42 0.21 

 Increment in SD 
control 0.35 0.015 0.002 0.39 0.17 0.16 1.21 0.28 

music 0.30 0.010 0.002 0.43 0.17 0.15 0.31 0.21 

caffeine 0.13 0.004 0.001 0.44 0.10 0.05 2.39 0.31 

To better illustrate the result, the relative increments of each parameter were calculated. 

For example, to obtain the relative increment of the steering wheel angle, the group mean 

of the control session was set as a reference, and the group means of δsa
m  in the three 

driving sessions were divided by the reference and the relative increments were presented 

as percentages: 100% for the control session, 76% for the music session, and 28% for the 

caffeine session. In other words, the increment of the mean steering wheel angle input 

was greatest for the control session. The increment in the music session was medium, 

which was 76% of the increment in the control session. The increment was smallest in the 

caffeine session, only 28% of that in the control session.  For the standard deviation of 

steering wheel angle input, also setting the group mean of the control session as the 

reference, the group means of ∆sa
m  in the three driving session were divided by the 

reference to obtain the relative increments. The relative increment was 100% for the 

control session, 86% for the music session, and 37% for the music session.  The 

increments in the music and caffeine sessions were 86% and 37% of that in control 
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session respectively. This also indicated that the increment of standard deviation of the 

steering wheel angle input was largest in the control session, medium in the music 

session, and smallest in the caffeine session. These are summarized in Table 17, along 

with the other 14 relative increments of driving performance parameters.   

Table 17. Relative increment of driving performance parameters (%) 

 

Steering wheel  

control 

Lateral position 

 control 

Speed  

control 

 SA SR YR LP LV LA VE AC 

 (A) Relative increment in mean 

control 100 100 100 100 100 100 100 100 

music 76 60 81 91 118 82 45 50 

caffeine 28 8 31 19 73 27 24 117 
 (B) Relative increment in SD 

Control 100 100 100 100 100 100 100 100 

Music 86 67 95 110 100 94 26 75 

caffeine 37 27 36 113 59 31 198 111 

 

The first three columns contain the relative increments of the first group of 

parameters: means and standard deviations of steering wheel angle input, steering wheel 

rate, and yaw rate, which  reflect steering wheel control ability. These relative increments 

of the means were plotted in Figure 20(a) and standard deviations were plotted in Figure 

20(b).  It clearly showed that steering wheel control ability deterierated the most in the 

control session, medium in the music session, and the least in the caffeine session. 

The next three columns contain the relative increments of the second group of 

variables: means and standard deviations of lateral position, lateral velocity, and lateral 

acceleration, which reflect lateral position control ability.  These relative increments of 

the means were plotted in Figure 21(a) and the standard deviations were plotted in Figure 
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21(b). It can be seen that 4 of the lateral position control variables showed a similar trend 

as the steering wheel control variables: increments in the means and standard deviations 

of lateral position and lateral acceleration were the greatest in the control session, 

medium in the music session, and the least in the caffeine session.  The increments of the 

mean and standard deviatin of lateral velocity were greatest in the music session, medium 

in the control session, and least in the caffeine session. 

The last two columns contain the relative increments of the third group of 

variables: means and standard deviations of longitudinal velocity and longitudinal 

acceleration, which reflect speed control ability.  These relative increments of means 

were plotted in Figure 22 (a) and the standard deviations were plotted in Figure 22 (b). 

The increment of the mean of longitudinal velocity was the greatest in the control 

session, medium in the music session, and smallest in the caffeine session. This is the 

same trend shown in the steering wheel control variables.  The increment of other three 

variables (mean of the acceleration, standard deviations of velocity and acceleration) 

were greatest in the caffeine session, medium in the control session, and smallest in the 

music session.   

This results suggested that driving performance deteriorated mostly after 

completing control sessions, moderately deteriorated after completing music sessions, 

and least deteriorated after completing caffeine sessions. The result implies that both 

consuming caffeine and listening to music have positive effects on maintaining driving 

performance, but consuming caffeine is more effective than listening to music. 
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(a)                                                   (b) 

Figure 20  relative increment for steering wheel control parameters: (a) the means and (b) 

standard deviations (SD) of steering wheel angle input (SA), steering wheel rate (SR), 

and yaw rate (YR) 

 
(a)                                                    (b) 

Figure 21  relative increment for lateral position control variables: (a) the means and (b) 

SDs  of lateral position (LP), lateral velocity (LV), and lateral acceleration (LA)  

 
 

(a)                                                    (b) 

Figure 22  relative increment for speed control variables: (a) the means and (b) SDs of 

longitudinal velocity (VE) and longitudinal acceleration (AC) 
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6.2.3 Inter-session variation 

Although both countermeasures showed positive effects on driving performance, 

the above results suggested that the effects were different. It is of interest in whether 

these differences are significant or not.  A paired student t-test was used to compare the 

increments of mean SA between any two of three sessions. The results showed that the 

increments in mean SA were (1) significantly different between the control and caffeine 

sessions [p=0.005, t = 3.20, CI=(0.06, 0.29)], (2) significantly different between the 

music and caffeine sessions [p=0.03, t = 2.35, CI = (0.013, 0.22)], and (3) not 

significantly different between the control and music sessions [p=0.417, t = 0.83, CI = (-

0.088, 0.202)]. Furthermore, the increments in the standard deviation of SA were (1) not 

significantly different between the control and caffeine sessions [p=0.055, t = 2.04, CI = 

(-0.0051, 0.43)], (2) not significantly different between the music and caffeine sessions 

[p=0.160, t = 1.46, CI = (-0.070, 0.39)], and (3) not significantly different between the 

control and music sessions [p=0.748, t = 0.325, CI = (-0.2701, 0.3695)]. Similar analysis 

was performed for the other 14 parameters, the results were shown in Figure 23 – Figure 

29, and the p values of paired student t-test were summarized in Table 18.  

Table 18. comparison of increments between sessions  

 

Steering wheel  

control 
Lateral position 

 control 
Speed  

control 

 SA SR YR LP LV LA VE AC 

 Control VS. Caffeine 

mean .005 .003 .002 .251 .424 .004 .392 .717 
SD .055 .005 .033 .776 .282 .036  .201  .823  

 Music VS. Caffeine 

mean .03 .057 .034 .232 .209 .043 .769 .033 

SD .160 .131 .123 .970 .276  .100  .012 .151 

 Control VS. Music 

mean .417 .416 .469 .928 .722 .496 .422 .285 

SD .748 .455 .889 .790 .996 .944 .314 .621 
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The results revealed that the increments of 7 parameters showed significant 

differences between the control and caffeine sessions, the increments of 5 parameters 

showed significant difference between the music and caffeine sessions, however, no 

increment of 16 parameters showed significant difference between the control and music 

sessions. This confirmed that effects of the two fatigue countermeasures on driving 

performance were different: consuming caffeine was more effective than listening to 

music. Although increments of 15 driving performance parameters after the music 

session were less than those after the control session, none of these differences was 

significant; suggesting that, for each driver, deterioration in driving performance was 

virtually not different between the control and music sessions.  

 
Figure 23 means and standard deviations of SR at beginnings and ends of three sessions 
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Figure 24 means and standard deviations of YR at beginnings and ends of three sessions 

 

 
Figure 25 means and standard deviations of LP at beginnings and ends of three sessions 
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Figure 26 means and standard deviations of LV at beginnings and ends of three sessions 

 

 

 
Figure 27 means and standard deviations of LA at beginnings and ends of three sessions 
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Figure 28 means and standard deviations of VE at beginnings and ends of three sessions 

 

 
Figure 29 means and standard deviations of AC at beginnings and ends of three sessions 
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6.3 EEG 

6.3.1 EEG activities  

In section 4.2.6, Error! Reference source not found. has been introduced to 

obtain the averaged EEG.  An averaged EEG was plotted for the 1
st
 subject, at the 1

st
 

Lane Keeping Task in the control session, as shown in Figure 30 (A).  This section of 

wave was denoted as 𝑓𝑝1(𝑡)1
1 , where 𝑡 = 0~300 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The wave was decomposed 

into four frequency components of EEG and noises. The four frequency components 

were obtained from this recording, which were delta (δ, 0.5~4 Hz), theta (θ, 4~8 Hz), 

alpha (α, 8~13 Hz), and beta (β, 13~20 Hz) waves.  Delta and theta waves are relatively 

low frequency components of an EEG, compared to alpha and beta waves.  Delta 

components are the lowest of the four and usually associated with deep sleep or certain 

brain diseases. Theta waves are also low frequency components and are often observed in 

a normal person who is involving a cognitive task or in a person who is in degenerative 

brain states.  Alpha and beta waves are relatively faster EEG components.  Alpha waves 

are observed in a person who is in onset of sleep, often with eyes closed; but when the 

person falling asleep, alpha waves disappear.   Beta components represent an active brain 

state, for example, experiencing an external stimulus [76, 104]. The four components 

were also plotted in Figure 30 (B), (C), (D), and (E) respectively.  The four components 

were denoted as 𝛿1(𝑡)1
1 , 𝜃1(𝑡)1

1 , 𝛼1(𝑡)1
1 , and 𝛽1(𝑡)1

1  respectively, again, 𝑡 =

0~300 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.   

Each section of averaged EEG was divided into 150 2-second subsections and 

denoted as 𝑓𝑝𝑛
1(𝑡)1

1 , where 𝑛 = 1~150. Each subsection contained averaged EEG of 2 
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seconds, therefore, the 1
st
 subsection was represented as 𝑓𝑝1

1(𝑡) =  𝑓𝑝1(𝑡)|𝑡=0~21
1

1
1 , the 

2
nd

 was 𝑓𝑝2
1(𝑡) =  𝑓𝑝1(𝑡)|𝑡=2~41

1
1
1 , and so on.   

 
Figure 30 EEG signal in time domain, (only plotted the waves in the first 5 seconds) 
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Each subsection was subjected to a Fast Fourier Transform (FFT). The FFT 

analysis generated spectral magnitude which was denoted as 𝐹𝑃𝑚(𝑓) 𝑇
𝑠 , with the same 

unit of 𝑓𝑝𝑚(𝑡) 𝑇
𝑠 . This relationship was mathematically expressed by Equation 6-1.           

𝐹𝑇𝑛
𝑚(𝑓) 𝑇

𝑠 = ∫ 𝑓𝑝𝑛
𝑚(𝑡) 𝑇

𝑠  𝑒−𝑗𝑓𝑡𝑑𝑡
∞

−∞

 =  𝐹𝐹𝑇( 𝑓𝑝𝑛
𝑚(𝑡) 𝑇

𝑠 ) Equation 6-1 

where: 

𝐹𝐹𝑇 = 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑀𝐴𝑇𝐿𝐴𝐵     

𝑓      = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦   

 

A typical subsection of averaged EEG was plotted in Figure 31 (A), and its FFT 

was plotted in Figure 31 (B). It showed that the Direct Current (DC) component of the 

averaged EEG was 48.01 µv, when   𝑓 =  0.  It also showed a peak at  𝑓 =  60, which 

indicated the noise generated by surrounding 60 Hz electromagnetic sources.  The 

relevant frequency bands (δ, θ, α, and β) in frequency domain were also obtained, as 

shown in Figure 31 (C).  These calculations were handled by an algorithm developed in 

MATLAB environment. 

Delta components. The area under the curve 𝐹𝑇𝑛
𝑚(𝑓) 𝑇

𝑠  between 0.5 and 4 Hz 

represented the power spectrum of the δ component, and denoted as 𝐴δn
𝑚

𝑇
𝑠 , which can 

be calculated using Equation 6-2 (A). The power spectrum, 𝐴δn
𝑚

𝑇
𝑠 , reflected the current 

delta activity of  the m
th

 subject at the n
th

 subsection (within 2 seconds) during the T
th

 

Lane Keeping Task in the s
th

 driving session (1
st
 = control session, 2

nd
 =caffeine session, 
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Figure 31 FFT analysis of an EEG signal subsection (2 seconds) 

and 3
rd

 = music session).  The average delta activity of this m
th

 subject during the s
th

  

Lane Keeping Task (5 minutes) in the s
th

 driving session was denoted as 𝐴δ𝑚
𝑇
𝑠 , and was 

calculated using Equation 6-3 (A).  Therefore, for each of three 2-hour driving sessions, 

an individual subject had the delta activity estimated 9 times: 𝐴δ𝑚
1
𝑠  ~ 𝐴δ𝑚

9
𝑠 . For 

example, the delta activities of an individual subject in the control section, 

𝐴δ𝑚
1
1  ~ 𝐴δ𝑚

9
1 , were plotted as red circles in Figure 32 (A).  The delta activities of this 

δ                  θ                    α                        β 
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subject in the caffeine and music sessions were also plotted as blue stars and black 

triangles in Figure 32 (A).   

𝐴δn
𝑚

𝑇
𝑠 =  ∫ 𝐹𝑇𝑛

𝑚(𝑓) 𝑇
𝑠  𝑑𝑓

4

𝑓=0.5

 Equation 6-2  (A) 

𝐴δ𝑚
𝑇
𝑠 =  

1

150
 ∑ 𝐴δn

𝑚
𝑇
𝑠  

150

𝑛=1
  Equation 6-3  (A) 

n = 1~150 , the number of 2-second subsection of EEG in T
th

 Lane Keeping Task 

The mean of delta activities during each Lane Keeping Task was calculated for all 

twenty subjects using Equation 6-4 (A), and denoted as 𝐴δ𝑇
�̅̅� ̅̅ ̅.  The mean of delta activities 

of the group was plotted against driving time in Figure 32 (B): red circles for the control 

session, blue stars for the caffeine session, and black triangles for the music session.  

Although some scatter was shown in the plots, a trend of increase in delta activity was 

observed in each driving session.   

The delta activities at the beginnings of the three sessions were similarly low: 

96.2 for control session, 94.4 for caffeine session, and 98 for music session.   

𝐴δ𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ 𝐴δ𝑚

𝑇
𝑠  

20

𝑚=1
  Equation 6-4 (A) 

∆𝐴δ𝑚
𝑇
𝑠 =  𝐴δ𝑚

9
𝑠 − 𝐴δ𝑚

1
𝑠   Equation 6-5  (A) 
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Figure 32 Delta Activity VS. time 

Since the subjects were required to start each session at the same time of the day 

and with the similar states, small variations were expected.  One-way ANOVA was used 

to examine variations in the initial delta activities of all 20 subjects and no significant 

differences were observed [F(2,57,59)=0.06, p=0.9455], as shown in Figure 33 (A). 

Multi-comparison was performed using the Tukey test. The result showed that there was 

no significant difference between any two of the three driving sessions at the beginning. 

This indicated that each driver started all the three sessions at the same fatigue levels.  

This was also shown in Figure 32 (A) and (B).  Although, each driver started the three 

sessions with similar delta activities, the means of the group were different at the ends of 

three sessions, as shown in Figure 32: the mean delta activities at the end of caffeine 

session was higher than control and music sessions.   
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        (A)                                               (B) 

Figure 33   Variations in Delta activity  

A series of paired student t-tests were performed to check whether changes in 

delta activities were significant after 120-minute driving sessions. The results showed 

that significant changes were not found in any of three sessions [p=0.1007, t = -1.72, 

CI=(-22.1,  2.12)] for control session; p=0.1741, t = -1.41, CI=(-94.3, 18.31) for caffeine 

session; p=0.0649, t = -1.95, CI=(-23.8, 0.78) for music session].   The increments of 

delta activities after completing each driving session, ∆Aδm
T
s , were calculated using 

Equation 6-5 (A).  Group average increments of delta activities were (1) largest for 

caffeine session, 37.98, (2) medium for music session, 11.50, and (3) smallest for control 

session, 9.99.  Further analysis, using one-way ANOVA, revealed that the increment was 

not significantly different between any two of the three driving sessions 

[F(2,57,59)=0.94, p=0.3968].  The results were also shown in Figure 33(B). 

In general, delta activities were relatively low but similar when each driver started 

the driving sessions. After each of the driving sessions, delta activities shown a trend of 

increase, but no evidence indicated the increase was significant. The group average 

showed that the overall increments in delta activities were smallest in control session, 

Control Caffeine Music

50

100

150

200

Driving Sessions

D
e
lt
a
 A

c
ti
v
it
y

Initial Delta Activities

+ outlier

Control Caffeine Music

-50

0

50

100

150

Driving Sessions

Overall Change in Delta Activity

D
e
lt
a
 A

c
ti
v
it
y
 I

n
c
re

m
e
n
t

+ outlier



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 132  

largest in caffeine session, and medium in music session. However, the increments were 

not significantly different between any two of three driving sessions.   

It was also worth to notice that delta activities increased during the early stage of 

control session and reached the peak value at 40 minutes; then a trend of decrease were 

shown in the rest of the control session.  A similar pattern of changes in delta activity was 

also observed by other researchers   [77].   

 However, changes in delta activities showed different patterns in caffeine and 

music session.  In the caffeine session, delta activities rapidly increased in the first half 

session and reached a local peak value, then gradually stabilized toward the end of 

driving session.  In the music session, delta activities increased in the first 30 minutes, 

similarly as in control and caffeine session. After that delta activities decreased for about 

15 minutes, then continuously increased towards the end of the driving session.   

Theta components Similarly, the power spectrum was calculated to reflect the 

current theta activity of the m
th

 subject at the n
th

 subsection (within 2 seconds) during the 

T
th

 Lane Keeping Task in the sth driving session, and was denoted as Aθn
m

T
s , which can 

be calculated by using Equation 6-2 (B).  The average theta activity of the five-minute 

Lane Keeping Task,  Aθm
T
s , was calculated using Equation 6-3  (B) for individual 

subjects.   

𝐴θn
𝑚

𝑇
𝑠 =  ∫ 𝐹𝑇𝑛

𝑚(𝑓) 𝑇
𝑠  𝑑𝑓

8

𝑓=4

 Equation 6-2  (B) 
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Aθm
T
s =  

1

150
 ∑ Aθn

m
T
s  

150

n=1
  Equation 6-3  (B) 

𝐴θ𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ 𝐴θ𝑚

𝑇
𝑠  

20

𝑚=1
  Equation 6-4 (B) 

∆𝐴θ𝑚
𝑇
𝑠 =  𝐴δ𝑚

9
𝑠 − 𝐴θ𝑚

1
𝑠   Equation 6-5 (B) 

 

Figure 34 Theta Activity VS. Time 

The theta activities of an individual subject were plotted against driving time in 

Figure 34 (A): red circles for control session, blue stars for caffeine session, and black 

triangles for music sessions.   The mean of theta activities were calculated using Equation 

6-4 (B), and plotted in Figure 34 (B).  The results showed that the group mean of the 

theta activity only increased after finishing the caffeine session.  A one way ANOVA was 

used to examine variations in the initial theta activities at the beginning of the three 

sessions of all 20 subjects. The results showed that the theta activities were similar (22.1 
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for control session, 19.4 for caffeine session, and 19.4 for music session) and no 

significant difference were found [F(2,57,59)=1.08, p=0.3457], as shown in Figure 

35(A).  Multi-comparison was performed using Tukey test, indicating no significant 

difference between any two of the three driving sessions at the beginnings.   

  
                  (A)                                                       (B) 

Figure 35 Variations in Theta Activity 

A series of paired student t-test were performed to check whether changes in theta 

activities were significant after each 120-minute driving session. The results showed that 

the theta activity were (1) not significantly changed after the control session [p=0.5265, t 
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[p=0.3028, t = -1.06, CI=(-23.3058, 7.6446)], and (3) not significantly changed after the 

music session [p=0.7107, t = -0.38, CI=(-2.3758, 1.6515)].  The increments of theta 
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𝑇
𝑠 , were calculated using Equation 6-5 (B).  Group average increment of 

theta activities were decreased after control session (-0.9961), increased after caffeine 

session (7.8306) and music session (3.622).  However, one-way ANOVA analysis 

showed that the increment was not significantly different between any two of the three 

driving sessions [F(2,57,59)=1.17, p=0.318].  The results were also shown in Figure 

35(B).   
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In general, theta activities were similar when each subject started the three driving 

sessions. After the caffeine session, the theta activity was increased, but the change was 

not significant. Variations of the theta activities were not noticeable after control and 

music sessions.   

Alpha component. The power spectrum of the alpha activity calculated the area 

under the curve between 8Hz and 13Hz shown in Figure 31, using Equation 6-2  (C).  

Then the average alpha activity for the five-minute Lane Keeping Task, Aαm
T
s , was 

calculated using Equation 6-3  (C) for individual subjects. The alpha activities of an 

individual subject were plotted against time in Figure 36 (A).  

𝐴αn
𝑚

𝑇
𝑠 =  ∫ 𝐹𝑇𝑛

𝑚(𝑓) 𝑇
𝑠  𝑑𝑓

13

𝑓=8

 Equation 6-2  (C) 

Aαm
T
s =  

1

150
 ∑ Aαn

m
T
s  

150

n=1
  Equation 6-3  (C) 

𝐴α𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ 𝐴α𝑚

𝑇
𝑠  

20

𝑚=1
  Equation 6-4 (C) 

∆𝐴α𝑚
𝑇
𝑠 =  𝐴δ𝑚

9
𝑠 − 𝐴α𝑚

1
𝑠   Equation 6-5 (C) 

The group mean of alpha activities for the 20 subjects, AαT
s̅̅ ̅̅ ̅, were calculated using 

Equation 6-4 (C) and plotted in Figure 36(B). The plot showed that the group mean of the 

alpha activity increased after the caffeine session only. A one-way ANOVA indicated 
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                           (A)                                                            (B) 

Figure 36 Alpha Activity VS. time 

that the alpha activities were similar at the beginnings of the three driving sessions (47.5 

for the control session, 43.4 for the caffeine session, and 46.5 for the music session), and 

not significantly different [F(2,57,59)=0.2426, p=0.7854], as shown in Figure 37(A). 

Multi-comparison was also performed, indicating no significant difference between any 

two of the three driving sessions at the beginnings; this result was also shown in Figure 

37(A).   

  
                               (A)                                                        (B) 

Figure 37 Variation in Alpha Activity 
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[p=0.5674, t = -0.58, CI=(-7.2825,4.1133)].  The increments of alpha activities, ∆𝐴α𝑚
𝑇
𝑠 , 

were calculated using Equation 6-5 (C). Group average increment of alpha activities were 

decreased after the control session (-0.8625), increased after caffeine session (13.9242), 

and increased after music session (1.5846). However, one-way ANOVA analysis showed 

that the increment was not significantly different between any two of the three driving 

sessions [F(2,57,59)=1.3062 , p=0.2788]. The results were also shown in Figure 37(B). 

In general, alpha activities were similar at the beginnings of the three driving 

sessions. After the caffeine session, the alpha activity was increased, but the change was 

not significant.  Variations of the alpha activities were not noticeable after control and 

music sessions. 

Beta components. The power spectrum of the beta activity calculated the area 

under the curve between 13Hz and 20Hz shown in Figure 31, using Equation 6-2  (D).  

Then the average beta activity for the five-minute Lane Keeping Task, Aβm
T
s , was 

calculated using Equation 6-3  (D) for individual subjects. The beta activities of an 

individual subject were plotted against time in Figure 38 (A).  

𝐴βn
𝑚

𝑇
𝑠 =  ∫ 𝐹𝑇𝑛

𝑚(𝑓) 𝑇
𝑠  𝑑𝑓

20

𝑓=13

 

 

Equation 6-2  (D) 

Aβm
T
s =  

1

150
 ∑ Aβn

m
T
s  

150

n=1
  

 

Equation 6-3  (D) 

 

𝐴β𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ Aβ𝑚

𝑇
𝑠  

20

𝑚=1
  

 

Equation 6-4 (D) 

 

∆𝐴β𝑚
𝑇
𝑠 =  𝐴δ𝑚

9
𝑠 − 𝐴β𝑚

1
𝑠   Equation 6-5 (D) 
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                               (A)                                                        (B) 

Figure 38 Beta Activity VS. time 

 

The group mean of beta activities, 𝐴β𝑇
�̅̅� ̅̅ ̅, were calculated using Equation 6-4 (D) 

and plotted in Figure 38 (A).  The plot showed that the average beta activity increased 

after the caffeine session only.  A one-way ANOVA indicated that the beta activities 

were similar at the beginnings of three driving sessions (23.2481 for the control session, 

19.3444 for the caffeine session, and 19.3396 for the music session), and not significantly 

different [F(2,57,59)=2.2571, p=0.1139], as shown in Figure 39(A). Multi-comparison 

was performed, indicating that no significant difference between any two of the three 

driving sessions at the beginnings.   

The results of a series of paired student t-tests showed that changes in the beta 

activity was (1) not significant after control session [p=0.5073, t = 0.68, CI=(-3.0571, 

0 20 40 60 80 100 120
15

20

25

30
Beta Activity  VS. Driving Time

Time [minutes]

P
o
w

e
r 

[1
E

-6
 V

2
]

 

 

control session

cafe session

music session

0 20 40 60 80 100 120
10

12

14

16

18

20

22

24

26

28

30

32

Time [minutes]

P
o
w

e
r 

[1
E

-6
 V

2
]

 

 

control session

cafe session

music session



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 139  

5.9722)], (2) not significant after the caffeine session [p=0.3016, t = -1.06 CI=(-22.2024, 

7.2565)], and (3) not 

    
                                        (A)                                                              (B) 

Figure 39  Variation in Beta Activity 
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delta, theta, alpha, and beta components given by Equation 6-2 (A) ~ (D).  It was reported 

that all these ratios showed increase over time and could be implicated for detecting 

fatigue.   

R1 – theta/beta. The first indicator was denoted as 𝑅1n
𝑚

𝑇
𝑠  and obtained using 

Equation 6-2  (E), representing the ratio of the current theta spectrum over beta spectrum.  

The value reflected the current status of the m
th

 subject at the n
th

 subsection (within 2 

seconds) during the T
th

 Lane Keeping Task in the s
th

 driving session (1
st
 = control session, 

2
nd

 =caffeine session, and 3
rd

 = music session).  The average fatigue levels during the s
th

  

Lane Keeping Task (5 minutes) in the s
th

 driving session was denoted as 𝑅1m
T
s  and 

calculated using Equation 6-3  (E).  Therefore, nine estimations, 𝑅1m
1
s ~ 𝑅1m

9
s , were 

obtained during each driving session for an individual subject. For example, 𝑅1m
1
1 ~ 

𝑅1m
9
1  of an individual subject in the control session were plotted as red circles in Figure 

40 (A). The estimations in the caffeine and music sessions were also plotted as blue starts 

and black triangles.   

The mean of R1 during each Lane Keeping Task was calculated for all twenty 

subjects using Equation 6-4 (E), and denoted as 𝑅1𝑇
�̅̅� ̅̅ ̅.  The group means of R1 were 

plotted in Figure 40 (B): red circles for the control session, blue starts for the caffeine 

session, and black triangles for the music session.  From the plot, no absolute change was 

observed in each driving session.  

𝑅1n
𝑚

𝑇
𝑠 =     

𝐴θn
𝑚

𝑇
𝑠

𝐴βn
𝑚

𝑇
𝑠⁄  Equation 6-2  (E) 
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𝑅1m
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s =  

1

150
 ∑ 𝑅1n

m
T
s  

150

n=1
  

Equation 6-3  (E) 

𝑅1𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ 𝑅1𝑚

𝑇
𝑠  

20

𝑚=1
  Equation 6-4 (E) 

 

∆𝑅1𝑚
𝑇
𝑠 =  R1𝑚

9
𝑠 − 𝑅1𝑚

1
𝑠   

Equation 6-5 (E) 

 

                             (A)                                                                (B) 

Figure 40  R1 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 
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significant changes in any of three sessions [p=0.5977, t = -0.54, CI=(-0.0961, 0.0569) 

for the control session; p=0.6341, t = -0.48,  CI=(-0.0733, 0.0458) for the caffeine 

session; p=0.2481, t = 1.19, CI=(-0.0207, 0.0756) for the music session]. The increments 

of R1 after completing each driving session, ∆𝑅1𝑚
𝑇
𝑠 , were calculated using Equation 6-5 

(E).  Group average increments of R1 were 0.0196 for the control session, 0.0138 for the 

caffeine session, and -0.0274 for the music session.  Further analysis, using a one-Way 

ANOVA, revealed that the increment was not significantly different among the three 

driving sessions [F(2, 57,59)=0.7371, p=0.4830].  Performance of multi-comparison 

using the Tukey test revealed that there was no significant difference of the increment in 

R1 between any two of the three driving sessions.  The results were also shown in Figure 

41(B).  

        
              (A)                                                      (B) 

Figure 41  R1 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 

In summary, the ratio of the theta spectrum over beta spectrum, R1, were initially 

similar and showed no significant difference at the beginnings of the three driving 

sessions. After each 120-minute driving session, R1 was not significantly changed. The 

increments (or overall changes) of R1 after the driving session were not significantly 

different among the three driving sessions. 
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R2 – alpha/beta. The second indicator was denoted as,  𝑅2n
𝑚

𝑇
𝑠 , and calculated 

using Equation 6-2  (F), representing the ratio of the current alpha spectrum over beta 

spectrum. The value reflected the current status of the subject. The average status during 

the Lane Keeping Task was denoted as  𝑅2m
T
s  and calculated using Equation 6-3  (F). 

The average R2 of an individual subject were plotted in Figure 42(A): red circles for the 

control session, blue stars for the caffeine session, and black triangles for the music 

session.   The group means of R2 during each Lane Keeping Task, 𝑅2𝑇
�̅̅� ̅̅ ̅, were calculated 

using Equation 6-4 (F) and were plotted in Figure 42 (B).  The initial group means of R2 

were 2.108 for the control session, 2.2982 for the caffeine session, and 2.4689 for the 

music session. A one-way ANOVA analysis suggested that R2 were not significantly 

different at the beginnings of the three driving sessions.  Multi-comparison was 

performed using the Tukey test, showing that there was no significant difference in R1 

between any two of the three sessions at the beginning. This was also shown in Figure 

43(A).   

𝑅2n
𝑚

𝑇
𝑠 =     

𝐴αn
𝑚

𝑇
𝑠
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Equation 6-2  (F) 

𝑅2m
T
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1

150
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m
T
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150

n=1
  

Equation 6-3  (F) 

𝑅2𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ 𝑅2𝑚

𝑇
𝑠  

20

𝑚=1
  

Equation 6-4 (F) 

∆𝑅2𝑚
𝑇
𝑠 =  𝑅2𝑚

9
𝑠 − 𝑅2𝑚

1
𝑠   Equation 6-5 (F) 

A series of paired student t-tests were performed to examine whether R2 was 

significantly changed after each 120-minute driving session. The results showed no 

significant changes in any of three sessions [p=0.2626, t = -1.15, CI=(-0.4651, 0.1344) 
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after the control session; p=0.418, t = -0.83, CI=(-0.3945, 0.1709) after the caffeine 

session; p=0.9187, t = -0.10, CI=(-0.2525, 0.2288) after the music session].   The 

increments of R2 after completing each driving session, ∆𝑅2𝑚
𝑇
𝑠 , were calculated using 

Equation 6-5 (F).  Group average increments of R2 were 0.1653 for the control session, 

0.1118 for the caffeine session, and 0.0119 for the music session.  

 

                             (A)                                                                (B) 

Figure 42  R2 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 

  

                             (A)                                                                (B) 

Figure 43  R2 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 
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Further analysis using a one-way ANOVA revealed that the increment of R2 was 

not significantly different among the three driving sessions [F(92,57,59)=0.3502, 

p=0.7061].  Performance of multi-comparison using the Tukey test revealed that there 

was no significant difference in R1 increments between any two of the three driving 

sessions. The results were also shown in Figure 43(B).   

In summary, the ratio of the alpha spectrum over beta spectrum, R2, were initially 

similar and showed no significant difference at the beginnings of the three driving 

sessions. After each 120-minute driving session, R2 was not significantly changed. The 

increments (overall changes) of R2 after the driving session were not significantly 

different among the three driving sessions.  

 R3 – (theta + alpha)/beta. The third indicator was denoted as  𝑅3n
𝑚

𝑇
𝑠 , and 

calculated using Equation 6-2 (G), representing the ratio of the summation of theta and 

alpha spectrum over beta spectrum. The value reflected the current status of the subject. 

The average status during the Lane Keeping Task was reflected by 𝑅3m
T
s , which was 

calculated using Equation 6-3  (G). The average R3 of an individual subject were plotted 

in Figure 44(A): red circles for the control session, blue starts for the caffeine session, 

and black triangles for the music session.  The group means of R3 during each Lane 

Keeping Task, 𝑅3𝑇
�̅̅� ̅̅ ̅, were calculated using Equation 6-4 (G) and plotted in Figure 44(B). 

𝑅3n
𝑚

𝑇
𝑠 =     

( 𝐴αn
𝑚 +  𝐴θn

𝑚
𝑇
𝑠

𝑇
𝑠 )

𝐴βn
𝑚

𝑇
𝑠⁄  Equation 6-2  (G) 

𝑅3m
T
s =  

1

150
 ∑ 𝑅3n

m
T
s  

150

n=1
  Equation 6-3  (G) 
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Equation 6-4 (G) 

∆𝑅3𝑚
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𝑠 =  𝑅3𝑚

9
𝑠 − 𝑅3𝑚

1
𝑠   Equation 6-5 (G) 

 

 

                                 (A)                                                                (B) 

Figure 44  R2 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 
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p=0.9069, t = 0.12, CI=(-0.2588, 0.2899) for the music session].  The increments of R3 

after completing each driving session, ∆𝑅3𝑚
𝑇
𝑠 , were calculated using Equation 6-5 (G). 

Group average increments of R3 were 0.185 for the control session, 0.1256 for the 

caffeine session, and 0.0155 for the music session.  Further analysis, using One way 

ANOVA, revealed that the increment was not significantly different among the three 

driving session [F(2, 57,59)= 0.4343, p=0. 6499].  Multi-comparison using the Tukey test 

revealed that there was no significant difference in R3 increments between any two of the 

driving session. The results were also shown in Figure 45(B). 

                                                                         
(A)                                                (B) 

Figure 45  R3 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 

In summary, the ratio of the summation of theta and alpha spectrum over beta 

spectrum, R3, were initially similar at the beginnings of the three driving sessions. After 

each 120-minute driving session, R3 was not significantly changed. The increments 

(overall changes) of R3 after the driving session were not significantly different among 

the three driving sessions. 
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theta and alpha spectrum over the summation of beta and alpha spectrum.  The value 

reflected the current status of the m
th

 subject at the n
th

 subsection (within 2 seconds) 

during the T
th

 Lane Keeping Task in the s
th

 driving session (1
st
 = control session, 2

nd
 

=caffeine session, and 3
rd

 = music session).  The average fatigue levels during the s
th

  

Lane Keeping Task (5 minutes) in the s
th

 driving session was denoted as 𝑅4m
T
s  and 

calculated using Equation 6-3  (H).  The average status during the Lane Keeping tasks of 

an individual subject was plotted in Figure 46(A): red circles for the control session, blue 

starts for the caffeine session, and black triangles for the music session.  From the plot, 

no absolute change was observed in each driving session..  

𝑅4n
𝑚

𝑇
𝑠 =     

𝐴θn
𝑚

𝑇
𝑠

𝐴βn
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𝑇
𝑠⁄  

Equation 6-2  (H) 
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T
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1

150
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T
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Equation 6-3  (H) 

𝑅4𝑇
�̅̅� ̅̅ ̅ =  

1

20
 ∑ R4𝑚

𝑇
𝑠  

20

𝑚=1
  

Equation 6-4 (H) 

∆𝑅4𝑚
𝑇
𝑠 =  R4𝑚

9
𝑠 − 𝑅4𝑚

1
𝑠   

Equation 6-5 (H) 

The group mean of R4 during each Lane Keeping Task was calculated for all 

twenty subjects using Equation 6-4 (H), and denoted as 𝑅4𝑇
�̅̅� ̅̅ ̅.   The group means of R4 

were plotted in Figure 46(B), again, red circles for the control session, blue starts for the 

caffeine session, and black triangles for the music session.  From the plot, no absolute 

change was observed in each driving session. The initial group means of R4 were 0.9698 

for the control session, 0.9811 for the caffeine session, and 0.9787 for the music session. 

A one-way ANOVA was performed and the result showed that R4 at the beginning of the 

three driving sessions were not significantly different [F(2,57,59)=0.3331, p=0.7181], the 
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result was also shown in Figure 47(A). Multi-comparison was performed using the Tukey 

test, showing that there was no significant difference of R4 between any two of the three 

driving sessions at the beginnings.   

 

                             (A)                                                        (B) 

Figure 46  R4 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 
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Performance of multi-comparison using the Tukey test revealed that there was no 

significant difference of the increment in R4 between any two of the three driving 

sessions.  The results were also shown in Figure 47(B).  

       

         (A)                                                         (B) 

Figure 47  R4 as a fatigue indicator against driving time for (A) an individual 

subject, and (B) for the whole group. 

In summary, the ratio of the summation of theta and alpha spectrum over the 

summation of beta and alpha spectrum, R4, were initially similar and showed no 

significant difference at the beginnings of the three driving sessions. After each 120-

minute driving session, R4 were not significantly changed. The increment (overall 

changes) or R4 after the driving sessions were not significantly different among the three 

driving sessions. 

Previous analysis on the SDFS and driving performance suggests that subjective 

fatigue levels are increased and driving performance is deteriorated after prolonged 

driving.   It is expected that EEG also changes significantly with increased fatigue levels 

after 120-minute driving tasks. However, the results obtained from the second experiment 

indicate that none of the four EEG component activities (power spectrum) nor the four 

ratios of slow wave to fast wave suggested by Jap, et al. [77] have changed significantly 
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after completing the driving sessions.  This is a surprising result, as some other 

researchers [13, 63, 77] have suggested that EEG power spectrum analysis and ratios of 

these spectrum are useful indicators for driver fatigue.   

When the plot of the SDFS against driving time in Figure 16(B) is reexamined, it 

can be seen that the average SDFS is highest at the end of the control session, but less 

than 45. Considering the minimum and maximum possible SDFS are 11 and 110 

respectively, this is really a relatively low score, not even close to 50% of maximum 

score, which is 60.5.  Keeping this in mind, it is understood that although the subjects 

have reported significant subjective fatigue increase, on average their fatigue levels are 

still low at the end of the experiment. The driving performance is also degraded 

gradually. However, the subjects can still drive safely by the end of the experiment. The 

moderate SDFS and non-seriously deteriorated driving performance suggests that the 

average driver fatigue has not reached a very high level at which driving safety can 

absolutely be interfered with.  The EEG based variables cannot reflect these degrees of 

changes in driver states. One possible reason is that driver fatigue has not increased 

enough to be estimated by these EEG based variables.  This is similar to those driving 

performance variables (such as means and standard deviation of lateral position) that 

have not shown significant changes after 120-minute driving task.  

6.3.3 EEG for a very fatigued subject 

On the other hand, when the EEG signal was examined for individuals, obvious 

changes have been observed for subjects who showed a very large fatigue increase. A 
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large number of 𝛼 waves have been observed when the SDFS reached around 80.  The 

difference between initial and final EEG signal are displayed in Figure 48.  

The initial SDFS of the individual subject is 25. The α wave showed amplitude of 

4 mv and intermittence of 0.1 ms, as shown in Figure 48(A). After completing the two 

hour control driving session, the final SDFS increased to 83.  The average amplitude of 

the 𝛼 wave increased to 15 mv (with maximum of 20 mv), and this increase in 𝛼 wave 

continued for 2 ms, as shown in Figure 48(B).  During the control session, the 𝛼 wave 

shown in Figure 48(B) was often accompanied with a drift of the vehicle from center of 

the lane to the edge of the lane. At the end of the experiment, the subject reported micro-

sleep near the end of the control session.  However, only two subjects showed the 𝛼 wave 

with such pattern, the other subject had a SDFS of 74 at the end of the control session.  

All the other subjects showed normal EEG signals throughout the driving sessions. 

Therefore, the observation is not conclusive. However, it provides a research direction for 

the future. 

 
                             (A)                                                                  (B) 

Figure 48  EEG:  3 milliseconds of 𝛼 waves for an individual subject (A) at the beginning 

of the control session (SDFS = 25), (B) at the end of the control session (SDFS = 83) 
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6.4 Summary of the 2
nd

 experiment 

The 2
nd

 experiment has examined the effectiveness of two popularly used fatigue 

countermeasures: caffeine and music.  The data analysis on the SDFS shows that the two 

methods are equivalently effective in reducing feelings of fatigue in the 120-minute 

simulated driving task.  On the other hand, driving performance deteriorated similarly in 

the music and control sessions; while caffeine helps the subjects inhibit deterioration of 

driving performance.  This is probably due to the factor that caffeine stimulates the 

central nervous system to maintain alertness throughout the caffeine session. The music 

probably also has distracted the subjects from the driving task while providing 

stimulation to keep them alert, therefore, driving performance is deteriorated. However, it 

must be noticed that the subjects have maintained sufficiently good driving performance 

to drive safely. This suggests that both methods are helpful to counter with driver fatigue 

but in different ways: caffeine helps to reduce subjective fatigue and maintain good 

driving performance, and music helps to reduce subjective fatigue only.  In addition, the 

EEG signal analysis does not show significant changes in the four bandwidth components 

and the four ratios of slow wave to fast wave. This probably is due to relatively low 

levels of the average fatigue of the group.  When the EEG signal of an individual subject 

with high level of fatigue is examined, the amplitude of the alpha component increases 

significantly and a special pattern has been observed. Therefore, the EEG signal should 

be further examined in the future work, in which the subject experiences more severe 

driver fatigue. 
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Chapter 7 Conclusion  

The aim of this project is to experimentally investigate variations of driver 

fatigue, driving performance, and effectiveness of fatigue countermeasures, therefore to 

better understand the mechanism of driver fatigue.  Two experiments have been 

conducted. The first experiment employed a specially designed driver fatigue 

questionnaire to quantitatively estimate the subjective fatigue levels of the subjects. 

Driving performance was estimated by sixteen parameters related to steering wheel 

control, lateral position control, and speed control abilities. A co-relationship between 

this new fatigue indicator and driving performance has been observed. This linear 

relationship may be helpful in predicting driver fatigue levels when driving performance 

is known, and vice versa.  Another subjective assessment tool (Stanford Sleepiness Scale) 

and the psychomotor test ( Divided Attention Test) were used in the first experiment to 

reflect driver states.  The second experiment examined two of the most frequently used 

fatigue countermeasures, by comparing with the control driving session without any 
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countermeasure. The new subjective driver fatigue indicator and the sixteen driving 

performance parameters were also used to estimate the driver states. EEG signals were 

employed to reflect brain activity as an additional fatigue assessment. The result of the 

second experiment revealed the effectiveness of and the differences between these two 

methods. 

In the first part of the project, a questionnaire, the Driver Fatigue Questionnaire 

has been developed particularly for the driver. The questionnaire includes 12 items which 

represent physical symptoms, driving behaviors, perception, tiredness, and driver 

capacity. The driver fatigue levels were quantitatively estimated by the SDFS obtained 

from the questionnaire.  Thirty three subjects completed the experiment. Their subjective 

fatigue levels were estimated using the SDFS and the SSS, the residues of driver capacity 

and reaction time of Divided Attention Tests were also collected. 

The results showed that the SDFS increased rapidly after completing the 1st 

driving session and also increased gradually during the 2nd and 3rd driving sessions. 

Interestingly, trend of decreases in the SDFS were observed after short breaks between 

driving sessions, indicating fatigue recovery, although the break was only about 3 

minutes long. SDFS obtained by the questionnaire were similar to the sleepiness ratings 

estimated by the SSS, but somewhat different. Both measurements increased with driving 

time. However, the results of the SSS remained almost constant during the last two 

sessions, while the SDFS increased gradually and continuously during the last two 

sessions. This difference between the two subjective assessment tools may suggest that 

the SSS alone is not sufficient to reflect changes in the fatigue level of drivers, because 
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the SSS only reflects the sleepiness of the subject. However, driver fatigue is much more 

complex, and involves physical symptoms, driving behaviors, perception, tiredness, and 

driver capacity. A more sophisticated indicator (such as the SDFS) reflecting all aspects 

of driver fatigue may be able to quantify subjective fatigue levels in multiple dimensions. 

The questionnaire also suggested that the residual driving capacity decreased with 

prolonged driving task. This result also agreed with expectation. 

Driving performance was measured in three groups of parameters, examining 

ability in steering wheel control, lateral position control, and speed control.  Evidence 

showed impairment in driving performance with prolonged driving tasks. Overall 

impairment was indicated by significant increases in two group means (means of lateral 

velocity and longitudinal velocity) and five standard deviations (standard deviations of 

steering wheel angle, yaw rate, lateral velocity, lateral acceleration, and longitudinal 

velocity).  This may suggest that standard deviations are more sensitive to changes in 

driver fatigue than the means. For example, the group means of steering wheel angle and 

yaw rate did not show significant change after three driving sessions.  However, the 

standard deviations of steering wheel angle and yaw rate showed significant increase 

after three driving sessions. The result suggested that after completing three driving 

sessions the subjects were still able to maintain the steering wheel in the natural positon 

on average; however, variance of the steering wheel angular position became greater after 

the prolonged driving task. The result also suggested that the subjects were able to keep 

the vehicle traveling on a straight line; however, the subjects changed the direction more 

rapidly. With higher level of driver fatigue, the abilities of handling the steering wheel 

and maintaining the vehicle direction were degraded. This might have resulted from a 
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slowed information processing rate, which directly related to fatigue levels.  On the other 

hand, inter-sessional impairment was observed only on three parameters (the mean of 

lateral velocity, and mean and standard deviation of longitudinal velocity). This may 

suggest these three parameters were very sensitive to variation in driver fatigue levels; 

therefore, the changes were significant even after 45-minute driving tasks.   

Reaction time on the divided attention task decreased throughout the experiment, 

which was different from expectation and the observation from other researchers [102]. 

Learning effects might be one of the major causes of this reduction of reaction time. 

Distraction from the driving task might be another major cause of this change in reaction 

time.  This might suggest that reaction time from the divided attention test was not a good 

measure of driver fatigue.   

Changes in driving performance were also compared with the changes in driver 

fatigue level. The curve fit showed in Figure 12 suggested that general degradation in 

driving performance might be mathematically expressed by the SDFS, and vice versa. 

Radar diagrams were created to present driver fatigue and driving performance in 

multi aspects.  The five sub scores of driver fatigue plotted in the radar diagram not only 

reflected the severity of each fatigue aspect, but also revealed characteristics of driver 

fatigue the subject experienced. Therefore, the appropriate fatigue countermeasures can 

be employed by the fatigued driver to avoid fatigue related accidents.  The radar plot of 

driving performance reflected degradation of each vehicle controlling ability. Therefore, 

an appropriate driving assistant device/system (such as lane position maintaining system 
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and adaptive cruise control system) can be activated to help the operator to avoid 

accident. 

From the first experiment, it can be concluded that (1) the SDFS is a good driver 

fatigue indicator, because it quantitatively reflects multiple aspects of driver fatigue, (2) 

sixteen parameters chosen for driving performance estimation are sensitive to variation in 

driver fatigue, (3) a mathematical model can be used to represent the relationship 

between driver fatigue levels and driving performance, (4) reaction time examined on the 

divided attention test during the driving task may not be a good estimation of driver 

fatigue, because reaction time can be influenced by fatigue levels, mental workload, and 

other factors, (5) multi-dimensional representation of driver fatigue and driving 

performance can help the driver to choose appropriate fatigue countermeasures and 

activate an appropriate driving assistant system to avoid fatigue related accidents.  

The second experiment investigated the effectiveness and differences of two 

frequently adopted driver fatigue countermeasures.  Each of 20 drivers completed three 

120-minute driving sessions (control, caffeine, and music). Driver fatigue was quantified 

in a 15-minute interval using the SDFS developed in the first experiment, and driving 

performance was evaluated using 16 driving performance parameters. The results showed 

that initial driver fatigue and driving performance were not significantly different among 

the three sessions. Therefore, any differences in changes in the SDFS and deterioration of 

driving performance were caused by the different fatigue countermeasures adopted by the 

driver. Although the SDFS increased significantly after each driving session, the 

increment was greatest after the control session, medium after the music session, and 
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smallest after the caffeine session. The increment of the SDFS in the control session was 

significantly greater than the other two sessions, and not significantly different between 

the music and caffeine sessions, indicating the two methods were almost equally effective 

in reducing subjective fatigue levels. On the other hand, deterioration of driving 

performance was also greatest for the control session, medium for the music session, and 

least for the caffeine session. However, the increment of deterioration of driving during 

the caffeine session was significantly less than both control and music sessions, and the 

increment of deterioration was not significantly different between control and music 

sessions.  This may suggest that although listening to music effectively inhibits the 

increase in subjective fatigue, it may not be able to effectively inhibit deterioration of 

driving performance. On the other hand, consuming caffeine effectively inhibits both 

increase in subjective fatigue and deterioration of driving performance. This may be 

because caffeine stimulates the central nervous system by blocking adenosine receptors 

and increasing the neurotransmitter dopamine.  However, music probably only provides 

external stimulation that reduces boredom of the driving task, and may also introduce 

distraction to drivers. 

The results of the second experiment suggest that both consuming caffeine and 

listening to music can help the driver reduce subjective fatigue levels, but consuming 

caffeine is more effective than listening to music in maintaining driving performance. It 

is necessary to study the cause of the difference between the two fatigue counter-

measures. The study also provides a useful protocol to quantitatively study the effects of 

fatigue countermeasures. From the results of this study, we also have found the 16 

driving performance parameters are able to accurately and sensitively reflect driver 
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fatigue levels. A driving performance monitoring system based on these parameters may 

be promising. On the other hand, the EEG signal, which has been proposed to be a good 

indicator of fatigue, did not show any significant variation on average. Examination on 

initial EEG indicators suggested that the subject started each of three sessions at similar 

states. Examination of changes in EEG indicators within each driving session also 

showed no significance. This indicates that on average the EEG indicators are not as 

sensitive to state changes of the drivers as the SDFS and driving performance parameters.  

However, a large increase in amplitude of α wave and changes in its pattern have been 

observed for individuals who reported a very high SDFS and micro-sleep. This suggests a 

new direction of study related to driver fatigue: investigation of EEG signal changes in 

high fatigue levels for drivers. 

From this project, we have found that (1) the SDFS obtained from DFQ can 

quantitatively estimate driver fatigue levels in various conditions, including prolonged 

driving tasks with breaks or without breaks, with fatigue countermeasures adopted or not, 

etc.; (2) sixteen driving performance parameters can reflect driver abilities to control the 

vehicle; (3) the mathematic relationship between the SDFS and driving performance 

enable drivers to predict driving performance when the SDFS is known, and vice versa; 

(4) radar diagrams of driver fatigue and driving performance estimation may help drivers 

better understand their conditions to employ appropriate countermeasures and a driver 

assistant system to avoid accidents; (5) two fatigue countermeasures – caffeine and 

listening to music – are effective in maintaining low fatigue level during prolonged 

driving task; (6) caffeine can reduce feelings of tiredness while improve driving 

performance, because caffeine stimulates the central nervous system; (7) listening to 



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 161  

music only reduce feelings of tiredness while does not improve driving performance, 

maybe due to additional distraction to drivers.   

However, it must be noticed that there are some limitations of the current study. 

The first limitation is that the experiments are conducted in a simulated driving 

environment, and it involves only highly simplified road scenarios. The eliminated 

factors, such as traffic jams and bad road surface conditions have potential effects on 

driving performance and mental workload, and have various impacts on driver fatigue 

levels. To validate the result on the real traffic condition, an on-road experiment may be 

conducted in the future.  

Another limitation of the current study is that the subjects are not particularly 

districted into regular coffee consumers and non-regular coffee consumers during the 

second experiment. It is unknown whether four hour inhibiting from caffeine would have 

significant impacts on regular coffee consumers or not.  However, in the current study, 

none of the subjects reported negative impacts on either fatigue levels or driving 

performance.  The current study focuses on the effects of countermeasures on the subjects 

in general. To investigate the difference between the regular coffee consumers and non-

regular coffee consumers, another experiment must be conducted.  However, regardless 

the subject is a regular coffee consumer or non-regular consumer, after four hour 

inhibiting from caffeinated drink, the intake of caffeine at the beginning of the caffeine 

driving session have stimulating effects on most subjects, as observed in the second 

experiment. The significant difference in driving performance between the caffeine 

sessions and control sessions confirmed this stimulating effect.  The study also asked the 



PhD Thesis – LIU, SHIXU McMaster University – Mechanical Engineering 

 162  

subject to restrain from cigarette for four hours, and the subject could not smoke during 

the experiment.  The subjects were not districted into smokers and non-smokers. The 

impact of restrain from cigarette on the regular smokers should be investigated in the 

future.   

In the study, the data were assumed to be normally distributed. However, from the 

plots such as the initial and first data set for Figure 9 (B), the data showed a possible 

skewness. To check the skewness, a method described in [105] was used. The results 

suggested that the data were normally distributed, as shown in Figure 49.  However, the 

method also suggested that the skewness was not reliable with small sample size. To 

determine whether the data is skewed, a very large sample is necessary. 

 

Figure 49 Skewness of the SSS, Regions in the β1, β2 plane for various distributions, 

regenerated from [105] page 350. 
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Based on the current study, we may suggest that the DFQ and the SDFS can be 

used in other driver fatigue related studies, such as in on-road experiments, to examine 

whether this subjective assessment tool can be used in real driving conditions. Regarding 

fatigue countermeasures, the protocol developed in the second experiment may be 

applied to examine other methods adopted by drivers to quantitatively estimate the 

effectiveness.  The sixteen driving parameters used in this project have shown sensitivity 

to the fatigue levels and fatigue countermeasures.  A driving performance monitoring 

system might be useful in assisting drivers to keep road safety, if these sixteen driving 

parameters can be recorded and analysis in real time. For example, an algorithm or an 

android application can be developed, which can collect the data from sensors installed 

on the steering wheel and other parts of the vehicle, then online driving performance can 

be displayed on a screen as a radar plot. This will remind the driver how good his/her 

driving performance is and what action he/she needs to take to drive safely. The history 

of driving performance, if recorded, may be also very useful. By analyzing the driving 

performance history of an individual, a driver school may help the driver improve his/her 

driving skills by providing a personal training program. The insurance company might be 

even more interested in looking at the driving performance history of drivers. Based on 

the driving performance history, the insurance can be determined for individuals. An 

individual can also argue with the insurance company to reduce his/her insurance by 

providing a good driving performance history.   
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Appendix A: Survey Form 

Survey Form 
Thank you for taking part in this research project. This survey form will help us better 

analyze the experiment data. The subject number is arranged in the sequence of 

experimental date. Your name will never be used in the presentation or publication of the 

results unless you specifically hope so. Any information related with this research get 

from you is confidential and will only be accessed by the members of the research team. 
 

Part I – Demographic Information  
File No:  Date / Time  

Gender: M   /  F   Age :  
 

Do you have a valid driver’s license?                         Yes   /  No   

How many years have you held your valid driver’s license:               _______ years 

 

Part II - Sleep History 
1. How much sleep did you get last night? _______________hours 

2. When did you go to bed last time? ___:___ am/pm 

3. When did you get up today? ___:___ am/pm 

4. Do you have difficulty falling asleep?  

 
Not at all         A little    Quite a bit   Almost always             

5. When did you last eat? 

 
Breakfast            Lunch             Dinner                    Snack                ___:___ am/pm 

6. How did you feel today compared to your usual state? 

 

Worse Better 

1 2 3 4 5 6 7 8 9 10 

7. Did you do physical work/exercise today, and how 

much? 

None A great deal 

1 2 3 4 5 6 7 8 9 10 

8. How tired do you feel now? 

 

Very Alert Very Tired 

1 2 3 4 5 6 7 8 9 10 

9. What time do you feel most alert during the day? ___:___ am/pm  to  ___:___ am/pm 

10. What time do you feel most drowsy during the day? ___:___ am/pm  to  ___:___ am/pm 

11. Did you take any coffee/tea/energy drink today? 

 

    If yes, please specify  

Yes   /  No   

Coffee/Tea/Other ________ 

______cups;      ___:___ am/pm 

12. Do you smoke?  

13. Do you drink alcoholic beverages? Yes   /  No   

     If yes, how much did you drink today? ______cups;      ___:___ am/pm 
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Appendix B:  Questionnaire 

 Fatigue Assessment 
A 

 Questionnaire for Driver Fatigue Check a number between 1 to 10 

1. To what degree is the fatigue you are feeling now 

interfering with your ability to drive safely? 

None A great deal 

1 2 3 4 5 6 7 8 9 10 

2. To what degree are you feeling …… Awake Sleepy 

1 2 3 4 5 6 7 8 9 10 

3. To what degree are you feeling …… Able to 

concentrate 

Unable to 

concentrate 

1 2 3 4 5 6 7 8 9 10 

4. If you have a headache now, rate its severity None A great deal 

1 2 3 4 5 6 7 8 9 10 

5. To what degree are your eyes strained? None Very Strained 

1 2 3 4 5 6 7 8 9 10 

6. How likely are you to pass a leading vehicle which is 

much slower than your current speed? 

Pass Not pass 

1 2 3 4 5 6 7 8 9 10 

7. To what degree are you willing to pull over and have a 

rest? 

Not at all Very willing 

1 2 3 4 5 6 7 8 9 10 

8. Are your feet sore? Not at all Extremely sore 

1 2 3 4 5 6 7 8 9 10 

9. Are you feeling any backache? None A great deal 

1 2 3 4 5 6 7 8 9 10 

10. Are your joints stiff? Not at all Extremely stiff 

1 2 3 4 5 6 7 8 9 10 

11. Are you feeling any numbness? None A great deal 

1 2 3 4 5 6 7 8 9 10 

12. How many more hours do you think you can keep 

driving? 

 

_______________ hours 

B 

 Standard Sleepiness Scale (SSS) Circle one of the following 

13. Feeling active, vital, alert, or wide awake 1 

Functioning at high levels, but not at peak; able to 

concentrate 

2 

Awake, but relaxed; responsive but not fully alert 3 

Somewhat foggy, let down 4 

Foggy; losing interest in remaining awake; slowed 

down 

5 

Sleepy, woozy, fighting sleep; prefer to lie down 6 

No longer fighting sleep, sleep onset soon; having 

dream-like thoughts 

7 

Asleep X 
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Appendix C:  Letter of information / Consent 
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Appendix D: Operating Characteristic Curves 

 

Operating Characteristic Curves adopted from [99] Page 41 
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