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Lay Abstract 
The focus of the present work is the simulation of geomechanical behaviour 

at multiple scales. This ranges from simulating the interaction of grains of sand in 

a laboratory compression test to the seepage of water through and deformation of 

a large dam constructed of granular material. The simulations use a numerical tool 

called the Voronoi cell finite element method (VCFEM), which the present work 

extends to allow accurate analysis of the flow of fluid through a porous medium, 

deformation of a granular material under load and coupled analysis of these 

phenomena. The development and testing of this numerical tool for use in 

geomechanical analysis is itself a contribution. The present work also contains 

new insights into how localized stresses and strains in a granular material that are 

present well before the peak strength can have an important influence on the mode 

of failure. 
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Abstract 
The present work applies the hybrid Voronoi cell finite element method 

(VCFEM) within geomechanics. Coupled seepage and deformation analysis using 

the VCFEM incorporating body forces allows accurate analysis of earth dams. 

The development of a novel approach for simulating granular material behaviour 

using the combined finite-discrete element method (VCFEM-DEM) provides new 

insights into strain localization in granular materials. 

Chapter 1 provides background including summary literature reviews for all 

concepts in the title including seepage analysis, micromechanical and continuum 

mechanics theory, Voronoi diagrams, finite elements (FEM), discrete elements 

(DEM) and combined FEM-DEM. Chapter 1 concludes by detailing the 

contributions of the present work. 

Chapter 2 presents the VCFEM for seepage analysis. The numerical 

examples include an investigation of mesh sensitivity and a comparison of 

conforming shape functions. Polygonal elements with more than four nodes show 

a decrease in mesh sensitivity in free surface problems, compared with four-node 

quadrilateral elements. The choice of conforming shape function within the 

VCFEM analysis did not affect the results. 

Chapter 3 formulates and applies the VCFEM-DEM, showing that strain 

localization effects in granular materials are important at all scales. The VCFEM-

DEM captures shear banding in biaxial compression tests, demonstrating that 

global shear strains and inhomogeneities in the shear stress field present after 

consolidation are early precursors to the failure mode. At the field scale, strain 

localization can lead to significant non-uniformity in subsurface stress distribution 

owing to self-weight. 

Chapter 4 presents the coupled VCFEM for seepage and deformation. A 

practical example of the design of an earth dam demonstrates the application of 

general body forces within a hybrid formulation, notably lacking in the literature. 

Chapter 5 concludes by summarizing the key observations of the present 

work, and providing direction for future research. The Appendix provides 

additional details related to numerical integration within the VCFEM.  
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1 Introduction 

1.1 General Background and Literature Review 

As with all records of significant research, the title necessarily compresses 

much detail into as few words as possible – particularly with the short title, which 

must fit on the spine of the binding at a reasonable font size. Therefore, an 

excellent way to introduce the content of this thesis is by unpacking the title and 

defining the terms contained within it: 

MULTI-SCALE MODELLING OF GEOMECHANICAL 

BEHAVIOUR USING THE VORONOI CELL FINITE ELEMENT 

METHOD (VCFEM) AND THE FINITE-DISCRETE ELEMENT 

METHOD (VCFEM-DEM) 

1.1.1 Multi-scale modelling 

A primary interest of the present work is that the behaviour of geological 

materials such as soil and rock depends on phenomena at different length scales. 

Practical applications of mechanics in civil engineering are most often concerned 

with behaviour at the macro-scale. Examples include seepage of water through an 

earth dam, transport of a contaminant through an aquifer, forces on a retaining 

wall supporting a soil slope and the dynamic behaviour of a structure subjected to 

seismic excitation. In these examples, the length scale of interest is metres or even 

kilometres. However, in studying the behaviour of geological materials, the author 

has come to realize that to understand the fundamental reasons for the behaviour, 

consideration of small-scale features is important. For example, the rate at which 
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a porous material conducts a particular pore fluid under a specified hydraulic 

gradient depends on the permeability of the porous material – a geometric 

property of the pore structure – and the material properties of the pore fluid. For 

another example, the deformation of a material composed of discrete grains, such 

as sand or gravel, depends on the interactions between individual grains. In these 

examples, the length scale of interest is millimetres or even micrometres. 

Therefore, in modelling geological materials, capturing the physics means 

somehow accounting for behaviours at a broad range of length scales, which the 

present work refers to as multi-scale modelling. This approach to modelling is 

itself not novel, but recognizing this should help the reader to understand the 

motivation behind the present work. The literature on multi-scale modelling 

comprises a significant amount of research across multiple disciplines, and the 

body of the present work introduces related work where the context is appropriate. 

1.1.2 Geomechanical behaviour 

Geomechanical behaviour means phenomena observed in geological 

materials such as soil and rock that we can describe using mechanics, which is a 

branch of physics. This differs from other methods of describing phenomena 

related to geological materials including field mapping, dating techniques – 

relative or absolute – and descriptive geometry, although one cannot deny the 

importance of these methods in understanding the origin of geological materials. 

Part of understanding the mechanical behaviour of geological materials is 

knowing that such materials, as they exist in their natural state, are porous and 

therefore consist of a solid component and a (potentially multi-phase) fluid 
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component that resides in the pores [1- 4]. Common pore fluids of interest in 

geomechanical modelling are water, air and aqueous or non-aqueous phase 

contaminants [4-6]. The focus of this thesis has not been on unsaturated 

geomechanics (involving water and air as pore fluids) or on contaminant transport 

(involving water and contaminants as pore fluids), and as such the pore fluid is 

restricted to water in its liquid phase. Another aspect important in understanding 

the behaviour of geological materials is the physics behind the deformation of the 

solid phase, which consists of grains of solid material that move relative to one 

another, causing it to behave in a way that is distinct from the traditional 

definitions of solid, liquid or gas [7]. 

In addition to the phenomenological understanding of geological materials 

described above, geomechanics also includes the mathematical modelling of such 

phenomena and computing solutions using numerical analysis. Numerical analysis 

is a sub-discipline of applied mathematics wherein one simulates natural 

phenomena using mathematical models with the aims of understanding and 

making predictions regarding such phenomena. Sections 1.1.4-1.1.6 and the body 

chapters describe the numerical analysis techniques used in the present work. 

Prior to discussing numerical analysis techniques, this section introduces the 

governing equations used as mathematical models for the geomechanical 

phenomena of interest. The descriptions introduce the key solution variables, 

mathematical operators and material parameters along with their units enclosed in 

brackets [⋅], taking the fundamental units as L = length, M = mass and T = time, 

and for convenience the derived unit F = M⋅L⋅T-2 = force. Figure 1.1 shows a  
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Figure 1.1 Schematic of domain for analysis of geomechanical behaviour 

schematic of the analysis domain and a summary of key solution variables, 

governing equations and boundary conditions for the analysis of geomechanical 

behaviour of interest within the present work. 

The first phenomenon of interest in the present work is the seepage of a 

single-phase fluid through the pores of a geological material, described by the 

well-known transient groundwater equations for Darcian flow [4] in a volume 

V [L3], as Figure 1.1 shows, 

 0T
s qhhS + =L q   (1.1.1) 

 qhh=i L   (1.1.2) 

 = −q Ki   (1.1.3) 

The key solution variables in these equations are the hydraulic head h [L], 

hydraulic gradient i [-] and specific discharge q [L⋅T-1]. Superposed dots imply 

derivatives with respect to time t so ḣ = ∂h/∂t. The symbol 

Lqh = { ∂/∂x, ∂/∂y, ∂/∂z }T represents a linear differential operator and {⋅}T 
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represents the transpose operation. Thus, Lqhh means the gradient of h and LqhTq 

means the divergence of q. The hydraulic head h is a potential that includes 

contributions from pressure potential and gravitational potential through the 

relation h = p/ρfg + y where p [F⋅L-2] is the pressure, ρf [M⋅L-3] is the density of 

the pore fluid, g [L⋅T-2] is the gravitational acceleration and y [L] is the elevation 

relative to an arbitrary datum. The specific discharge q = { qx, qy, qz }T is a vector 

quantity representing the volumetric flow rate of the pore fluid per total unit area 

of porous material, resolved here in the Cartesian coordinate system with position 

vectors given by x = { x, y, z }T. The specific discharge is smaller in magnitude 

than the actual pore fluid velocity vf [L/T] since the pores only make up a portion 

of the total volume given by the porosity ϕ = Vϕ/V where subscript ϕ refers to the 

pores. We may relate the average pore fluid velocity to the specific discharge q by 

vf = ϕ-1q. Additional material parameters are the specific discharge Ss 

[L-1 = L3⋅L-3⋅L-1], whose peculiar units derive from its definition as the volume of 

fluid released from storage in a unit volume of porous material per unit decline in 

hydraulic head [4], and the hydraulic conductivity K [L⋅T-1], 

 
xx xy xz

yx yy yz

zx zy zz

K K K
K K K
K K K

 
 =  
  

K   (1.1.4) 

which is a second-order tensor relating the specific discharge q to the hydraulic 

gradient Lqhh [-] through equation (1.1.3), which the literature commonly refers to 

as Darcy’s law [4]. The latter is not truly a “law”, as it is often referred to, but a 

constitutive equation originally derived by Henry Darcy based on empirical 

evidence of water flowing through sand [8]. Whitaker [9] presents a 
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phenomenological derivation of Darcy’s Law based on the Navier-Stokes 

momentum balance equations for a fluid flowing through a porous medium using 

a volume averaging or homogenization process and neglecting the inertial and 

viscous forces in the fluid. We often presume that the hydraulic conductivity 

tensor K has all positive diagonal entries and vanishing non-diagonal entries when 

we align the coordinate axes with the principal directions of the material fabric, 

 
0 0

0 0
0 0

x

y

z

K
K

K

 
 =  
  

K   (1.1.5) 

which from the theory of eigenanalysis implies that K for an arbitrary orientation 

of the coordinate axes should be symmetric and positive definite, i.e. K = KT and 

xTKx > 0 ∀x. For partially saturated domains, note that K = K(p) when p < 0 

making equation (1.1.3) nonlinear – a fact that Chapters 2 and 4 exploit to solve 

problems of unconfined seepage wherein the free surface of the pore fluid within 

the porous medium must be located as part of the solution. A special case of 

equation (1.1.1) that applies on an internal surface Si where Ss = 0 is, 

 ( ) 0
T

q q
+ − =+nn q   (1.1.6) 

where nq+ = { nx+, ny+, nz+ }T = –nq- represent the unit normals to Si in opposite 

directions. This alternate form is useful in deriving certain approximate solution 

schemes, which Chapter 2 discusses in more detail. To close the seepage 

formulation, there are also the boundary conditions, 

 ( )ˆ ,  on hh th S= x   (1.1.7) 

 ( )ˆ ,  on T
q qq t S=n q x   (1.1.8) 
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where ĥ(x,t) and q̂(x,t) are the prescribed hydraulic head and prescribed flux 

(specific discharge) on their respective parts of the domain boundary Sh and Sq, 

the total domain boundary S = Sh ⋃ Sq and nq = { nx, ny, nz }T represents the 

outward pointing unit normal to S. Although the formulations presented herein 

extend readily to three dimensions, it often suffices for demonstrative examples 

and simplicity of presentation to perform two-dimensional analysis in the 

xy-plane, assuming qz ≈ 0 and ignoring all components involving z in q, Lqh, K 

and nq. For seepage analysis, the present work only considers cases of steady 

seepage wherein ḣ = 0, ĥ(x,t) = ĥ(x) and q̂(x,t) = q̂(x). Despite the simplifications, 

the formulations can adequately represent problems of importance in civil 

engineering such as the flow of water around a sheet pile into an excavation and 

the seepage of water through an earth dam, as Chapter 2 demonstrates. 

The second phenomenon of interest in the present work is the strength and 

deformation of solid geological materials composed of discrete grains when 

subjected to loading from boundary tractions and body forces. Prior to presenting 

the formulation and assumptions employed in the present work, it is worthwhile to 

begin with a summary of the literature on the behaviour of granular materials, to 

elucidate the important phenomena that a model of such material should aim to 

capture. The earliest definition of a strength criterion for granular materials comes 

from Coulomb [10], who in investigating retaining walls proposes a linear 

relationship between the shear strength of the material τf [F⋅L-2] and the normal 

stress (tension positive) applied on a plane of interest σn [F⋅L-2], 

 ( ), tan 0n n f cF τ σ τ σ ϕ −= + ≤   (1.1.9) 
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where φf [-] is the internal angle of friction, c [F⋅L-2] is the inherent shear strength 

or cohesion and τf corresponds to the case that F = 0. Despite its simplicity, the 

linear frictional law of Coulomb, with some modifications, remains useful in 

practical engineering applications to the present day. A key modification to the 

description of strength criteria in geomechanics is that of “effective” stress 

σ′ [F⋅L-2] related to the “total” stress σ [F⋅L-2] by, 

 pσ σ′ = +   (1.1.10) 

where p is the pore pressure, as defined previously. Note that tension is positive 

for σ′ and σ whereas compression is positive for p in this form. Terzaghi [1] lays 

the foundations of soil mechanics and geotechnical engineering in a seminal series 

of papers describing key phenomena related to soil mechanics, among which is 

the realization that the behaviour of soils depends on the effective stress, rather 

than the total stress. Note that this concept influences the normal components of 

stress only, leaving the shear stress components unchanged. Therefore, any 

criterion describing the failure of a geomaterial should use the effective stress 

when referring to normal stress components. Another modification to the 

Coulomb frictional law stems from the fact that it does not specify how to 

determine the plane on which failure occurs in a mass of geological material. For 

a granular material, one should consider a plane on which a critical combination 

of normal and shear stress maximizes F for a given state of stress. For this, it is 

best to re-write the criterion in terms of the principal effective stresses (tension 

positive) σ1′ > σ2′ > σ3′ in the well-known form, 

 ( ) ( ) ( ) ( ) ( )1 1
1 3 1 3 1 32 2, sin cos 0f fcF σ σ σ σ σ σ ϕ ϕ′ ′ ′ − ′ + ′ + ′ ′= ′ − ′ ≤   (1.1.11) 
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Although this form of the failure function accounts for orientation of principal 

stresses, it ignores the influence of the intermediate principal stress σ2′, and 

assumes that the material is homogeneous and isotropic. One may account for the 

influence of the intermediate principal stress using, for example, the modified 

form of Matsuoka and Nakai [11], although the present work ignores this aspect 

of geomechanical behaviour. For heterogeneous materials, such as jointed rock 

where the joints form planes that may have significantly different strength 

parameters to the matrix material, one should also examine failure through these 

joints [12,13]. This idea will be useful in Chapter 3 of the present work. An 

approach to accounting for anisotropic behaviour in geomaterials is to modify the 

failure criterion to include tensors describing the inherent and induced orientation 

of the principal directions of the material fabric. Oda [14] introduces this concept 

and incorporates the fabric tensors into an anisotropic plasticity formulation. 

Pietruszczak and Mróz [15,16] present a similar approach incorporating a 

microstructure tensor to describe the fabric. Duveau et al. [17] provide a review of 

other failure criteria for anisotropic materials, including geomaterials as a subset. 

These approaches have value in allowing the macroscopic analysis of anisotropic 

materials using a continuum-based formulation, but require a priori specification 

of a material fabric tensor describing how the fabric varies in the domain of 

interest. The difficulty in obtaining such a description in general for real 

geomaterials aside, this approach is restrictive in that it may be especially difficult 

to incorporate local variations in material fabric, which are important in 

understanding strain localization behaviour in geomaterials. 
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It is worth noting at this point that granular materials, which most 

geological materials are, are discontinuous in nature. They display anomalous 

behaviour relative to the traditional definitions of solid, fluid or gaseous 

materials [18] and defy definition of governing equations based on continuum 

mechanics starting from a differential basis without accounting for the geometric 

fabric of the granular structure and the so-called stress-geometry or stress-force-

fabric equation [19- 31]. 

Reynolds [32] first described the phenomenon of dilatancy, which is the 

tendency of a dense granular material to expand when loaded. Nearly a century 

later, Rowe [33] returns to this issue and finds that the strength and dilatancy of a 

granular assembly subjected to deviatoric loading depends on the friction between 

particles, the orientation of the granular fabric and the amount of energy 

dissipation during sample preparation. Matsuoka [34] describes the complex 

relationship between stress ratios and dilatancy in soils, finding that the dilatancy 

depends on the ratio of shear and effective normal stress on the mobilized failure 

plane, rather than the ratio of deviator and effective mean stress in the specimen. 

Capturing such behaviour is possible to an extent at the constitutive modelling 

level, but dilatancy at failure in granular materials occurs in a nonuniform 

manner, which requires careful treatment in modelling. Wan and Guo [35] 

propose a constitutive model accounting for the stress-dilatancy effect using a 

critical void ratio dependent factor, and later [36- 39] extend this approach to 

incorporate the evolution of microstructure fabric. They observe that failure 

associated with a loss of stability resulting from the buckling of force chains in 
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the granular structure can occur even for dense granular material when subjected 

to certain strain paths. 

Cosserat and Cosserat [40] advance the theory of micropolar elasticity, 

which includes rotations of material points into the formulation, in addition to the 

usual descriptions of deformation. This approach was the first real step toward a 

theoretical description of the mechanics of granular materials. Goodman and 

Cowin [41] propose a formulation for granular flow that accounts for the volume 

distribution of the material as a kinematic variable, thereby providing a 

description that allows static equilibrium under gradients of density and under 

shear stress, which is not possible in a fluid. A key observation of Goodman and 

Cowin [41] is that the principal axes of stress and deformation may not coincide 

for granular materials. Drescher and de Josselin de Jong [42] confirm this result 

experimentally using photoelastic discs as a proxy for granular materials. They 

also confirm other phenomena predicted by micropolar theory including sub-

division of the granular assembly into sliding elements and rotation of the grains 

during deformation. Although confirming these key phenomena, Ammi et al. [43] 

point out that polygons provide a better geometric representation of the grains 

when comparing the packing structures of regular polygons with disc packings. 

Chang and Ma [44] advance the micropolar theory of granular materials by 

deriving the constitutive coefficients in terms of the properties at the contacts or 

interfaces between grains, thereby allowing computation using numerical 

approximation with finite elements (see Section 1.1.4). Their results show good 

comparison with simulations using the discrete element method (see Section 

1.1.5) supporting the ability of continuum descriptions of granular materials using 



1. Introduction Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 12 

micropolar theory to solve boundary value problems of interest. De Borst [45] 

incorporates the micropolar description into a generalized plasticity flow theory 

and shows through numerical simulation the ability of the modelling framework 

to capture bands of strain localization of finite thickness in direct shear and biaxial 

compression simulations. Further review of approaches to modelling strain 

localization specifically is provided later in this section. 

Steinmann [46] provides a brief review of the developments in micropolar 

theory up to the mid-90s beginning from the Cosserats [40] and including key 

contributions from Günther [47], Koiter [48], Mindlin [49], Toupin [50], 

Neuber [51], Schaefer [52], Eringen [53], Lippmann [54], Besdo [55] and 

Reissner [56]. Steinmann [46] also notes the difficulty of mesh dependence in the 

numerical modelling of strain softening behaviour within a continuum description 

of granular materials, and notes the approach of regularization citing studies by 

Mühlhaus and Vardoulakis [57], Mühlhaus [58], de Borst [59,60], de Borst and 

Mühlhaus [61], Steinmann and Willam [62] and Dietsche et al. [63]. 

Steinmann [46] combines micropolar hyperelasticity with multiplicative 

elastoplasticity to enhance the configuration space of the solution, thereby 

describing the fabric of the granular medium within a finite deformation and finite 

rotation theory. 

The text of Cambou [64] compiles the important observations of granular 

behaviour from experimental evidence, and the main approaches to modelling this 

behaviour. Cambou [64] states that there are two main modelling approaches. The 

first is micromechanical analysis based on micropolar theory, homogenization 

techniques and DEM, which are useful in understanding the micro-scale 
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behaviour in granular materials. The second approach is continuum-based 

analysis incorporating the phenomenological descriptions of granular behaviour 

into a numerical analysis tool such as the finite element method. Cambou [64] 

points out that these approaches are not in opposition, but support each other in a 

mutually beneficial way. Micromechanical analysis reveals the details of the 

phenomena, and continuum-based analysis facilitates solution of practical 

boundary value problems. For example, Huntley [65] examines the force 

distribution in an irregular pile of grains and Kolb et al. [66] analyze the 

fluctuation of forces in a column of granular material, both using a 

micromechanical approach to understand the details of the phenomena. Sterpi 

[67], on the other hand, models strain softening effects using two different 

approaches to simulate the behaviour of granular material around a tunnel, an 

important application in geotechnical engineering. 

The 20th century saw much development of the theory of granular materials, 

but a comprehensive theoretical basis still proved elusive. Rothenburg [19] 

examines idealized granular assemblies consisting of discs and spheres, 

developing relationships between the interparticle forces and granular fabric at the 

micro-scale, and the macroscopic definition of stress through statistical 

homogenization. Bathurst and Rothenburg [20] provide further insight into these 

relationships. Rothenburg and Bathurst [21] and Ouadfel and Rothenburg [26] 

extend the stress-force-fabric relation for idealized assemblies of planar elliptical 

and ellipsoidal particles, respectively. Ball and Grinev [19] examine the stress 

transmission in periodic arrays of granular material and find that the geometric 

disorder of the grain contacts has an important influence. Edwards and Grinev 
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[24,25] seek to derive governing continuum equations for the transmission of 

stress in granular materials and find that there is a missing set of equations linking 

the geometry and the stress transmission through interparticle force and torque 

balance. They propose that a self-consistent continuum theory for granular 

materials should include the concept of compactivity, which describes the position 

of particles with respect to its nearest neighbours, into the volume averaging or 

homogenization process. A closely related concept is that of the coordination 

number, which is an integer value giving the number of neighbouring particles in 

contact with a given particle, which for 2-D assemblies of uniform particle size 

can range from 4 (loose) to 6 (dense), and the evolution of which provides a local 

measure of compactivity as an assembly approaches critical state [68]. Kruyt and 

Rothenburg [27] summarize the kinematic and static assumptions involved in the 

statistical homogenization process used to relate microscopic descriptions of a 

granular assembly to macroscopic definitions of stress and strain. Rycroft [29] 

accounts for multi-scale behaviour in granular flows using a spot model that 

relates particle rearrangement at the micro-scale to displacements of particle 

groups at the meso-scale leading to accurate and efficient large-scale simulations 

of dense granular flows using the discrete element method. Hill and Selvadurai 

[69], Cambou et al. [70] and Maugin and Metrinke [71] present texts 

summarizing the state-of-the-art for micromechanical modelling of granular 

materials and other generalized continuum theories at the end of the first decade 

of the 21st century. 

More recently, Miehe et al. [72] present a two-scale simulation approach 

considering elliptical shaped plane particles with frictional contact laws and 
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various boundary constraints. Pietruszczak and Guo [73] demonstrate a multi-

laminate approach for modelling inherently anisotropic granular media that 

accounts for the sliding and separation associated with softening by incorporating 

the shear band thickness into the model. De Giuli [30] derives the missing stress-

geometry equation mentioned previously by defining the stress tensor using a 

discrete potential function and introducing a fabric tensor describing the geometry 

of the granular structure, and uses statistical mechanics to model the fluctuations 

of contact forces in the granular network. Tordesillas et al. [74] examine vortices 

in granular media and support the evidence from triaxial experiments and discrete 

element simulations that strain localization at failure derives from grain motions 

present even at very early stages of the loading. Kang et al. [75] study the 

orientation of pores within shear bands at failure in biaxial compression 

simulations and find that whether the pores elongate parallel to the shear band, the 

minor principal stress or major principal stress depends on the shape of the 

particles, the size of the pores and the initial conditions of the granular packing. 

The literature specifically on strain localization or shear banding in granular 

materials itself is voluminous. This section presents only a brief summary 

sufficient to elucidate the key observations from experiments and simulations 

regarding the factors driving strain localization failure. Rudnicki and Rice [76] 

examine the conditions for strain localization in brittle rock as a bifurcation 

problem resulting from an instability in the homogeneous deformation field. 

Vardoulakis et al. [77] report on theoretical and experimental investigations to 

compare the solutions for orientation of shear band proposed by Coulomb [10] 

and by Roscoe [78]. The former involves a stress discontinuity at the shear band, 
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which separates two rigid bodies, whereas the latter maintains stress continuity 

and separates two deforming bodies. Vardoulakis et al. [77] show that both can be 

correct theoretically and experimentally depending on the material’s constitutive 

behaviour and the loading configuration. The Coulomb orientation follows from 

cases where the principal stress axes do not rotate during compression testing, 

thus the orientation of principal stress axes and principal strain rate axes are 

different. The Roscoe orientation follows from cases where the principal stress 

axes always coincide with the principal strain rate axes. Vardoulakis [79] 

completes the comparison, showing that the Coulomb and Roscoe orientations are 

theoretical upper and lower bounds. Mühlhaus and Vardoulakis [80] investigate 

the thickness of shear bands in granular materials comparing theoretical 

predictions with experimental results and find that the shear band thickness is on 

the order of 10 to 20 times the mean particle diameter. Shuttle and Smith [81] 

simulate the initiation of shear band formation in granular soils and find that they 

can be induced both by inhomogeneities in the granular structure and by imperfect 

boundary conditions. Bardet [82] and the references therein provide a detailed 

review of the developments in the experimental investigation, theoretical 

modelling and numerical simulation of strain localization up to the late 20th 

century. Bardet [82] notes that the strain localization theory of elastoplasticity up 

to that point does not properly account for the shear band orientation in all cases 

and notes discrepancies between theoretical predictions and experimental 

observations. The present author supposes that the discrepancies stem from the 

attempt to force a continuum-based description of a discontinuous material 

without properly accounting for the microstructure, noted in the literature on the 
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development of stress-geometry equations described earlier. Vermeer [83] 

continues the theoretical investigation of shear band orientation with the aim of 

explaining the particle size dependence observed experimentally. Vermeer [83] 

extends the theoretical analysis by allowing the material outside the shear band to 

unload elastically, thereby allowing post-peak analysis, and observes that the 

Coulomb orientation is the weakest failure mode in this regime, explaining why it 

occurs. However, the implied stress discontinuity of this mode makes its 

formation unstable, which is why Roscoe orientations can also occur. 

Lade [84] describes various modes of failure in granular materials, noting 

that large plastic strains under decreasing stresses may lead to unstable 

liquefaction under undrained conditions, but that localization of plastic strains 

under drained conditions leads to shear bands that are stable, but lead to 

decreasing load capacity. Noting the observation of Vardoulakis [79] that the out-

of-axes shear modulus of a granular medium plays an important role in the 

formation of shear bands, Desrues and Chambon [85] propose an approach to 

determine the value of such shear moduli, despite the inability of laboratory tests 

to obtain it directly. They propose an inverse analysis that calibrates the out-of-

axis shear modulus to experimental triaxial compression results. Gajo et al. [86] 

develop a small-strain constitutive model capable of capturing the effect of 

multiple shear band formation by accounting for the unloading of shear bands 

after formation. This leads to oscillation of the stress-strain curve in the post-peak 

regime prior to strong softening. 

Tordesillas et al. [87] present a continuum-based analysis framework for the 

formation of shear bands by returning to micropolar theory and deriving a 
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constitutive description whose parameters have direct physical interpretations, as 

opposed to fitting parameters that are not well understood. They conclude based 

on their observations that the shear band thickness can vary theoretically from 

zero to infinity, but only decreasing shear band thickness is consistent with the 

post-peak softening observed in experiments and that strain localization emerges 

from inhomogeneities in the granular structure coupled with a specific set of 

boundary conditions. Gudehus and Nübel [88] and Nübel and Huang [89] 

examine the formation of shear bands in sand and find that local inhomogeneities 

in the grain structure can lead to spontaneous formation of internal shear bands 

under isotropic global stress and kinematic boundary conditions. Such internal 

shear bands ultimately coalesce into global shear bands as loading progresses. 

Gajo et al. [90] examine the constitutive and kinematic parameters that influence 

the formation of shear bands in sands and find that parameters such as elastic 

anisotropy and membrane compliance, though they do not influence the pre-peak 

loading response of the material, may strongly influence the post-peak behaviour. 

Rechenmacher et al. [91] examine force chain evolution in shear bands formed in 

granular materials and observe through digital image based displacement analyses 

that force chain formation and collapse plays an important role in the kinematics 

of shear bands. Tordesillas et al. [92] show that the buckling of force chains in the 

region of shear bands provides an explanation for the stress-dilatancy effect 

described earlier, as there is significant local dilation associated with the collapse 

of force chains. 

Several studies [93- 99] investigate the evolution of void distribution, 

volumetric strain and fabric within shear bands and find that the development of 
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critical state is associated with inhomogeneities in the void distribution in the 

strain localization zone leading to a terminal void ratio, vanishing volumetric 

strain rate and elongation of so-called meso-domains of particles in contact. Borja 

et al. [100] demonstrate that, not only is the shear band characterized by local 

changes in the void distribution, but that initial spatial density variations in the 

granular structure can determine the location of the persistent shear band at 

failure. Gu et al. [101] simulate biaxial compression tests and find that lower 

initial density and higher confining pressure during the shearing phase can delay 

the formation of the global shear band. They also show that the laboratory 

apparatus has an influence on the shear band formation, modelling the membrane 

used to apply confinement to the specimen explicitly. Desrues and Andò [102] 

examine the formation of shear bands in granular material both at the continuum 

level and at the grain scale. They find that strain localization precursors exist well 

before the peak stress, and that particle shape plays an important role in the 

formation of shear bands since it influences the manner in which particles interact 

with and rotate relative to their neighbours. 

Guo [103] and Guo and Stolle [104] recently revisited the influence of pore 

pressure on the formation of shear bands in coupled analysis of saturated granular 

materials. They found that shear bands form in loose saturated sand during 

contraction as the deviator stress is increasing, in which case the dilatancy of the 

material governs the orientation of the band, which corresponds to the Roscoe 

angle. However, for low permeability densely compacted sand, shear banding 

occurs at or beyond the peak stress, and the orientation is consistent with the 

Coulomb angle. 
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The complex nature of granular materials and the phenomenon of strain 

localization continue to captivate researchers today, as in the 19th century. In fact, 

we still seek to understand the same fundamental phenomena that caught the 

interest of early investigators. Walker et al. [105] examine the evolution of shear 

bands in dense granular media, which is driven by local dilation in the region of 

the shear band. Chen et al. [106] simulate the formation of periodic patterns in 

granular material when subjected to pure shear, observing how the patterned local 

shear bands ultimately coalesce into a dominant global band owing to local 

variations in grain structure. These two studies demonstrate that the study of 

granular material behaviour still has the same fundamental focus as when 

Reynolds [32] investigated dilatancy in dense granular media and when Faraday 

[107] observed the formation of periodic patterns in grains subjected to acoustic 

excitation. The volume of recent work [cf. 108- 114] related to the multi-scale 

behaviour of granular materials demonstrates that this is still very much an active 

area of research across a broad range of disciplines. 

A single work cannot realistically hope to resolve all current outstanding 

questions related to granular materials. Chapter 3 of the present work focusses on 

the strain localization issue and presents a novel approach to accounting for the 

influence of such variations in material fabric by modelling the grain structure 

directly, while retaining a continuum based formulation. Sections 1.1.4-1.1.6 of 

the present chapter provide further background context for the analysis techniques 

developed in the present work, in particular related to the influences of 

microstructure on the behaviour of geomaterials. 
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For now, it is sufficient to present the governing equations from a 

continuum mechanics perspective, with the understanding that the present work 

does not seek a continuum basis for the entire domain. Rather, the present work 

develops a novel framework for analyzing granular materials accounting for the 

influence of the grain structure by subdividing the domain into different types of 

sub-domain wherein the continuum description suffices to describe the behaviour. 

The sub-domain types correspond to individual grains or representative volumes 

of grains with linear elastic constitutive behaviour and to the interface regions 

where the grains interact with nonlinear constitutive behaviour. The equations 

describing the dynamic equilibrium of a solid continuum saturated with a pore 

fluid in a domain of interest V, as Figure 1.1 shows, are, 

 T
u bσρ += fLu σ   (1.1.12) 

 uσ=ε L u   (1.1.13) 

 ′ =σ Dε    (1.1.14) 

The solution variables in this system are the displacement u = { ux, uy, uz }T [L], 

the strain ε [-], the total stress σ [F⋅L-2] and the effective stress σ′ [F⋅L-2]. The 

present work assumes, where applicable, that coupling of the solid deformation to 

the fluid phase is one way through the principle of effective stress [2, 115], 

 p pα′ = +σ σ δ   (1.1.15) 

and through the body forces fb where the pressure field p and the body force field 

– in particular, gravity forces and seepage forces – are known a priori and are not 

influenced by the solid deformation. Clearly this only applies when the 

deformations are small, which the present work also assumes. The strain ε and the 



1. Introduction Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 22 

stress σ (or σ′) are second-order tensors, which in three dimensions have nine 

components, 
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with extension positive for normal strains εii, tension positive for normal stresses 

σii and compression positive for pressure p. As the strain represents deformation 

of the material, the argument that rigid body rotations do not cause strains implies 

that ε is symmetric. Similarly, in the absence of point-wise applied moment 

couples, moment equilibrium implies that σ is symmetric. As the latter is always 

the case in the present work, both ε and σ have only six independent components. 

Therefore, the present work uses the compact vector notation to represent 

symmetric second- and fourth-order tensor quantities for convenience. Helnwein 

[116] comments on some of the mathematical details and implications of this 

representation, and the references therein provide examples from the literature on 

numerical and theoretical analysis making use of this notation. Within the present 

work, 

 { }T

xx yy zz xy yz zxε ε ε γ γ γ=ε   (1.1.18) 

 { }T

xx yy zz xy yz zxσ σ σ σ σ σ=σ   (1.1.19) 

 { }1 1 1 0 0 0 T=δ   (1.1.20) 
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where γij = 2εij for i ≠ j is the so-called engineering strain. Taking this into 

account, the differential operator Lσu is, 
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L   (1.1.21) 

The body forces fb = fg + fj of interest in the present work are the gravitational 

force fg = ρg [F⋅L-3] and the volumetric seepage force fj [F⋅L-3]. The magnitude of 

the gravitational force is ρ||g|| and the direction is g/||g|| where g [L⋅T-2] is the 

gravitational acceleration vector, often g = { 0, –g }T where g = ||g|| for a 

coordinate system with the y direction aligned with, but in the opposite direction 

of the gravitational acceleration field. The volumetric seepage force is [117], 

 1
j j f j fg gα ρ α ρ −= − = Kf i q   (1.1.22) 

where it is clear that it is oriented in the direction of flow q/||q|| with magnitude 

αjρfg||i|| where q and i are the specific discharge and hydraulic gradient vectors, 

respectively, as defined previously. The material parameters are the bulk density 

ρ [M⋅L-3] of the mixture of solid and pore fluid, the coefficients αp and αj 

representing the influence of the fluid phase on the stress field – both equal to 

unity for granular materials [2, 117] – and the constitutive operator D [F⋅L-2] 

relating stress rates to strain rates. If the solid obeys a linear elastic constitutive 

model, then D = De is constant and equation (1.1.14) reduces to Hooke’s law 

[118], 

 e′ =σ D ε   (1.1.23) 
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where strains result only from changes in effective stress and if the material is 

isotropic, De contains only two independent material parameters. The assumption 

of linear elasticity and isotropy are not adequate to describe the behaviour of large 

volumes of granular material, wherein the stress-strain relation is nonlinear owing 

to the development of unrecoverable strains and the fabric of the granular 

structure is inherently anisotropic. However, the linear elastic isotropic 

constitutive model remains useful in the present work where the sub-domain of 

interest is a single grain or a representative volume of grains undergoing small 

enough strains that the behaviour is approximately linear elastic and isotropic. For 

sub-domains where the behaviour is truly nonlinear, such as at the interfaces 

between grains, the present work uses either nonlinear elasticity where D = D(ε) 

or a form of flow plasticity where the rate form of equation (1.1.14) or an 

equivalent incremental form must be retained. The present work captures 

anisotropy through the discretization of the domain into convex polygonal regions 

using techniques described in Section 1.1.3, which directly captures the shape of 

the grains and the orientations of the interfaces on which they interact. Chapter 3 

introduces the details of the formulations for the polygonal and interface sub-

domains, as applicable. As with the seepage formulation, a special case of 

equation (1.1.12) on an internal surface Si of zero volume that is useful in some 

formulations is, 

 ( )T

σ σ
+ −+ =nn σ 0   (1.1.24) 

where nσ+ = -nσ- represent the unit normals to Si in opposite directions consistent 

with the vector representation of σ, 
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Again, to close the formulation, there are the boundary conditions, 

 ( )ˆ ,  on ut S=u u x   (1.1.26) 

 ( )ˆ ,  on T
tt Sσ == σ t xt n   (1.1.27) 

where û(x,t) and t̂(x,t) are the prescribed displacements and the prescribed 

tractions on Su and St and the total domain boundary S = Su ⋃ St. 

At this point, the reader may be experiencing a sense of déjà vu, and quite 

rightly, as the set of governing equations for seepage and solid deformation bear a 

striking resemblance. Tonti [119] presents a general framework for understanding 

mathematical models of physical phenomena. This framework recognizes that 

many such models include a primary variable (h or u), a flux variable (q or σ) and 

a kinematic variable (i or ε). The governing equations relating these variables in a 

volume of interest V consist of a balance equation (equation (1.1.1) or (1.1.12)), a 

kinematic equation (equation (1.1.2) or (1.1.13)) and a constitutive equation 

(equation (1.1.3) or (1.1.14)). To close the formulation, there are the 

kinematic/primary/Dirichlet boundary conditions (equation (1.1.7) or (1.1.26)) 

and the natural/flux/Neumann boundary conditions (equation (1.1.8) or (1.1.27)). 

There exist other special types of boundary conditions, but these are the classical 

forms. Tonti [119] also presents a method for mapping out how the governing 

equations relate the solution variables, which the author finds useful in 

understanding both the exact form of the equations and how approximate forms 
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derive from them. A description and presentation of this tool are outside of the 

scope of the present work, but the approach is worth acknowledging. 

1.1.3 Voronoi cell 

The term Voronoi cell derives from the concept of a Voronoi diagram, or 

Dirichlet tessellation, which is a structure that subdivides a domain V into a set of 

subdomains Ve based on their geometric distance to a set of cell points with 

coordinates xe ∀e ∈ { 1, 2, … Ne } where Ne is the number of cell points. When V 

is infinite, the set of all Ve may consist of some finite and some infinite cells. 

When V is itself finite, all Ve will also be finite, and the diagram is sometimes 

qualified as a constrained or clipped Voronoi diagram. The present work uses 

only the latter type. The present work refers to Voronoi cells alternatively as 

polygonal elements, body elements or grain elements at various points, so e stands 

for “element”. The names Dirichlet tessellation and Voronoi diagram derive from 

the mathematicians Dirichlet and Voronoi who pioneered their use within the 

context of proving the unique reducibility of quadratic forms [120,121]. The 

Voronoi diagram has found usefulness in a broad range of disciplines, attracting 

interest from mathematicians, computer scientists, natural scientists and engineers 

alike. The literature on this topic is vast, and a complete review is well beyond the 

scope of the present work. Aurenhammer [122] provides a comprehensive review 

of the origins of, applications of and literature on Voronoi diagrams up to 1991. 

This section presents only the components necessary to understand the application 

of the Voronoi diagram or Voronoi cells within the present work. In particular, 

although the concept of a Voronoi diagram extends to dimensions of arbitrary 
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order, the present discussion restricts itself only to planar Voronoi diagrams in 

two dimensions (2-D). 

Consider a set of Ne cell points xe ∀e ∈ { 1, 2, … Ne } within a finite domain 

V, as Figure 1.2(a) shows for a case where Ne = 17. For two cell points xi and xj 

where i ≠ j and i,j ∈ { 1, 2, … Ne }, the dominance Dij of xi over xj is the 

subdomain of V that is at least as close to xi as to xj, 

 { }:ij i jVD ∈ − ≤ −= x x x xx   (1.1.28) 

where ||x - xi|| represents the Euclidean distance between the points x and xi. The 

Voronoi cell Vi for cell point xi is the intersection of the dominance regions of xi 

relative to xj ∀j≠i ∈ { 1, 2, … Ne }, 

 { }: ,
j

i ij i j
i

V j iV D
≠

= ∈ − ≤ − ∀ ≠= x x x xx


  (1.1.29) 

The Voronoi diagram therefore has the following properties, 
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  (1.1.30) 

which is to say that the set of subdomains Ve ∀e ∈ { 1, 2, … Ne } subdivides the 

domain V with no gaps. As Figure 1.2(b) demonstrates, this construction 

guarantees that Voronoi cells are always convex polygons, provided that the 

domain boundary is a convex. An edge Bij between contiguous Voronoi cells Vi 

and Vj is, 

 { }: , ,ij i j lV l iB j∈ − = − < − ∀ ≠= x x x x xx x   (1.1.31) 

which is a segment of the bisector line perpendicular to the line segment connecting 



1. Introduction Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 28 

 

 
(a)       (b) 

Figure 1.2 Example of a constrained Voronoi diagram. (a) A finite domain V and a 
set of cell points xe. (b) Domain subdivided into Voronoi cells Ve. 

xi and xj. A vertex Vijk of three mutually contiguous Voronoi cells Vi, Vj and Vk is, 

 { }: , , ,ijk i j k lV l i jV k∈ − = − = − < − ∀ ≠= x x x x x x xx x   (1.1.32) 

which, by its equidistance from xi, xj and xk, implies that it is the centre of a circle 

having these three points on its circumference and no other cell points inside it.  

From the definitions above, one may conceive of several approaches to 

generating the Voronoi diagram. Green and Sibson [123] present a recursive 

algorithm making use of the definition Vijk to find nodes and contiguities by 

traversing clockwise around xi finding the vertices of the cell Vi by locating the 

centres of circles Vijk containing no other xl ∀l ≠ i,j,k. They note that degenerate 

vertices can occur if there exist circles with four cell points on their circumference 

and no other cell points inside, such as in a regular grid arrangement of cell 

points, which requires special treatment. Ghosh and Mukhopadhyay [124], using 

the algorithm of Green and Sibson [123] as a basis, discuss techniques for 

obtaining constrained Voronoi diagrams of concave domains by inserting cell 
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points mirrored about the bisector line through each concave vertex. This 

technique is also useful when one wishes to guarantee a node at a particular 

location on a boundary segment, for example, when the boundary conditions 

change at that point. Rycroft [125] presents a library for generating three-

dimensional (3-D) Voronoi cell diagrams. The basis of the mesh generation 

algorithm in this library is the use of the bisector line definition in equation 

(1.1.31), which are used to recursively slice parts of the total domain V from each 

cell. The author used the concepts from [123-125], along with the general 

definitions of a Voronoi cell diagram in 2-D described above, to implement a 

mesh generator for the present body of work. 

1.1.4 Finite element method 

The finite element method (FEM) is a branch of numerical analysis wherein 

one discretizes mathematical models for physical phenomena into finite 

subdomains and interpolates key variables in a manner that satisfies certain 

governing equations, continuity and/or compatibility requirements, often based on 

an energy stationarity principle or an expression of virtual work. As the present 

work involves application of different types of finite element formulation to 

geomechanical modelling, this section has two aims: i) to define some important 

types of finite element formulation along with their advantages and limitations, 

and ii) to provide a brief review of the literature on applications of finite elements 

to geomechanical analysis. This section does not provide the complete details of 

the formulations used in the present work, since the body chapters provide this. 
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Rather, this section provides the necessary background motivating the present 

work. 

Finite element formulations begin with a variational principle or an 

expression of virtual work. Washizu [126] provides one of the earliest, but still 

one of the most comprehensive views on variational methods for continuum-

based solid mechanics problems. For example, considering the set of equations 

describing the solid deformation in Section 1.1.2, the most general form of 

variational principle for a linear elastic solid under static unsaturated conditions 

where σ = Deε, ü = 0 and σ = σ′ is the Hu-Washizu principle, 
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The statement of the variational principle is that for all of the kinematically and 

statically admissible fields u, ε, σ and t, the actual solution is given by the set of 

fields that achieve stationarity of ΠHW, which is to say that the first variation δΠHW 

vanishes. It is important to use the term stationarity, since the solution when 

δΠHW = 0 could represent a minimum, maximum or saddle-point of the functional 

space. Applying the first variation gives, 
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  (1.1.34) 

from which it is clear that for arbitrary variations δu, δε, δσ and δt the governing 

equations give the conditions for stationarity of δΠHW. Such a general principle 

gives a firm mathematical basis for the theory of finite elements. However, its 
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generality is both its strength and its weakness. The introduction to this section 

stated that the other key component of the finite element method is the 

interpolation of the unknown fields satisfying the continuity, compatibility and/or 

equilibrium conditions implied by the variational principle or statement of virtual 

work on which it is based. The Hu-Washizu principle, with four independently 

varying fields, simply has too many such requirements to satisfy. Therefore, all 

finite element methods of practical importance select a subset of the governing 

equations to satisfy in the “strong” sense – that is, satisfying the governing 

equations directly – and only including a subset of the “weak” or integrated 

residual forms in the underlying principle. 

Perhaps the most popular example is the principle of minimum total 

potential energy, which assumes strong form satisfaction of all governing 

equations except for equilibrium – equation (1.1.12) – and the traction boundary 

conditions – equation (1.1.27) – giving the following form, 

 [ ] ( ) ( )1
2

ˆ
t

T

V S

T T
TPE e b dV dSΠ −= −∫ ∫ε ε u f tu D u   (1.1.35) 

where ones assumes satisfaction of the kinematic relation ε = Lσuu in the strong 

sense. An equivalent expression for seepage analysis is, 

 [ ] ( ) ( )1
2 ˆ

qV

T

S
h h dV hq dSΠ −= −∫ ∫i iK   (1.1.36) 

where again one assumes i = Lqhh. A large body of literature on the theory and 

application of finite elements based on such principles exists, and a complete 

bibliography is beyond the scope of the present work. Clough [127,128] discusses 

the early history of the development of the FEM. Melosh [129] discusses 
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techniques for assessing the convergence of FEM solutions to acceptable error 

tolerance, and Oden [130] discusses techniques for adaptive refinement of the 

mesh and the order of interpolation functions to obtain the “best” solution to a 

given problem. Examples of general texts on the FEM, focussed in large part on 

this approach, are that of Bathe [131], Cook et al. [132], Strang and Fix [133] and 

Zienkiewicz et al. [134]. This approach is the most popular because of its 

elegance – beauty arising from simplicity and effectiveness – since it has only a 

single solution variable u. It requires interpolation of u such that one can compute 

ε = Lσuu directly, continuity of u between elements and satisfaction of u = û on Su 

(or equivalent requirements for seepage analysis). For elements with simple 

shapes such as triangles and quadrilaterals in 2-D or tetrahedra and hexahedra in 

3-D, this is straightforward to accomplish. Methods based on ΠTPE are also easy to 

extend to account for nonlinear constitutive behaviour, which is important in 

geomechanics since linear elasticity certainly does not apply throughout the 

domain. The elegance of this approach has led to its adoption by the developers of 

most popular commercial finite element software packages. Owing to its 

popularity, the present work sometimes refers to this principle as the 

“conventional” approach. Of course, within the context of scientific and 

engineering research, the term conventional often implies to the reader that the 

author really means “outdated” and that their “new and improved” approach is 

somehow better. The author does not generally intend this alternate meaning, 

unless explicitly stated. Indeed, the ease with which this approach handles 

nonlinear behaviour makes it a good choice for representing the interactions 

between grains in geomaterials, as Chapter 3 of the present work demonstrates. 
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However, there are certain cases when alternate approaches provide advantages 

over the ΠTPE approach. For example, while the triangular/quadrilateral 

(tetradhedral/hexahedral in 3-D) shaped elements usually employed in analyses 

using this approach are well suited to discretizing continua, they do not provide 

adequate geometric representation of the grains in geomaterials. Polygons 

(polyhedra) provide a better geometric representation of such grains. While 

conforming shape functions for u or h satisfying continuity requirements 

exist [135- 143], they are not in closed form for polygonal elements with >4 

nodes. This means that direct computation of ε = Lσuu is not possible and one 

must resort to numerical approximations [144]. Therefore, to represent a 

polygonal subdomain using conventional triangular elements and standard 

interpolation functions, one must discretize the polygon into several triangular 

elements – a hexagon becomes six triangles. It would be more efficient to 

represent such a subdomain with a single element, if possible. Another 

consequence of the conventional ΠTPE formulation is that, since it uses a single 

primary solution variable (u or h), it computes the values of the secondary 

variables (ε and σ or i and q) through differentiation of the approximate 

interpolated values of the primary variable. Since differentiation is a subtractive 

process, the positive and negative errors in the approximate u or h fields tend to 

accumulate [145]. The consequence is that the values of the secondary variables 

can be quite inaccurate and equilibrium is generally not satisfied at an arbitrary 

point in the domain. 

Finite elements that use more than one primary solution variable – called 

mixed or hybrid finite element methods [146-148] – circumvent some of the 
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disadvantages of the ΠTPE approach. Again, the literature on mixed and hybrid 

finite elements is vast, and the author does not intend to present a complete review 

of this literature here. This paragraph summarizes the approach, advantages and 

limitations of a specific class of hybrid finite element method first presented by 

Pian [149], formalized by Tong and Pian [150,151] and extended for polygonal 

and polyhedral elements by Ghosh and co-workers [152- 157], all within the 

context of solid mechanics analysis. The hybrid principle begins with a modified 

statement of complementary energy, 

 ( ) ( ) ( )* 1 * *1
2

ˆ,
t

T T T T
MCE e

V S S

dV dS dSσ
− Π = − + −  ∫ ∫ ∫u σ σ σ u n σ u tD   (1.1.37) 

Chapter 2 shows that an equivalent principle for seepage analysis is, 
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Compared with the ΠTPE approach, the key differences with this approach are: 

i) there are two primary solution variables (u* and σ or h* and q), 

ii) one need only interpolate u* ⊂ u (or h* ⊂ h) on the boundaries of an 

element, and 

iii) the interpolation of σ or q must satisfy the equilibrium equations. 

The consequence of (i) and (ii) is that the kinematic variable (ε or i) need not be 

determined in the solution, though one could determine them through the 

constitutive relation, if desired. The flux variables σ and q need not be continuous 

between elements since the second term in ΠMCE satisfies equilibrium between 

elements in a weak sense. As such, constructing interpolations of the flux 

variables that satisfy the homogeneous equilibrium equations in the domain of a 
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polygonal element with an arbitrary number of nodes is straightforward using a 

potential function approach – Airy’s stress function [cf. 118] for solid mechanics, 

or a streamline function for seepage. Owing to the lack of continuity requirements 

for the flux field interpolation, one may eliminate the unknown coefficients of the 

potential function at the element level, which means that the global system of 

equations for a hybrid finite element mesh has the same number of equations as a 

conventional finite element mesh with the same number of nodes. The use of a 

potential function seems to restrict the hybrid approach to cases of linear 

constitutive behaviour. Ghosh and Moorthy [155] describe a method for 

incorporating elastoplastic constitutive behaviour into a hybrid finite element 

solution, though in later work Hu and Ghosh [158] move to a so-called “local 

enhancement” approach that actually replaces hybrid elements with conventional 

elements in regions where inelastic behaviour occurs. The present author found 

the implementation of elastoplasticity within a hybrid formulation to be awkward 

at best. Nonetheless, when the constitutive behaviour is linear, hybrid polygonal 

elements provide certain advantages in terms of representing the geometry of the 

microstructure of geomaterials. 

This section concludes with a brief review of some specialized finite 

elements used to model discontinuities in geomaterials and/or strain localization 

in granular materials, as this provides the necessary context for Chapter 3 of the 

present work. The focus is on two distinct approaches. The first is the use of 

special elements representing strong discontinuities in the material, such as rock 

joints or interfaces between grains, for which one may prescribe the geometry a 

priori. The second approach is the generation of localization zones within 
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continuum finite elements, which requires careful consideration of the criterion 

for the propagation of strain localization zones and the mesh sensitivity associated 

with the softening regime. 

The earliest example of a finite element for a strong discontinuity is the 

joint element developed by Goodman et al. [159], which uses an iterative 

correction procedure to account for the differing constitutive behaviour in jointed 

rock under compression and separation regimes. Zienkiewicz et al. [160] examine 

behaviour in jointed rock by formulating the interface element as an isoparametric 

finite element accounting for nonlinear behaviour. Katona [161] examines soil-

structure interaction around buried culverts using an interface element based on a 

constrained virtual work principle accounting for various deformation modes. 

Herrmann [162] improves the element of Goodman et al. [159] by introducing 

constraint conditions and accounting for sliding and debonding constitutive 

behaviour. Desai et al. [163] propose a thin-layer element that accounts for the 

finite thickness of the interface, rather than zero thickness as in earlier 

formulations, and also incorporates stick, slip, debonding and rebonding 

deformation modes into the analysis. Wang et al. [164] use special shear band 

elements to examine cases of shear band kinking – the intersection of multiple 

shear bands at the macro-scale. This approach requires a mesh updating procedure 

to avoid pathological behaviour owing to undesirable element aspect ratios. Wang 

et al. [164] prescribe the location of the shear band to demonstrate the technique, 

so it should be noted that the approach could not predict the generation of shear 

bands. Selvadurai and Yu [165] examine the behaviour at a discontinuity in a 

geomaterial, which one could interpret at the macro-scale as a rock joint, or at the 
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micro-scale as the contact between two grains. In particular, they noted the 

importance of considering the different behaviour in different deformation modes 

including frictional shear and dilation. They also examined the influence of 

surface topography on the behaviour at the interface, which can lead to failure of 

the parent material or incompatible movements of the contacting material. 

An example of embedding strain localization zones within continuum-based 

finite elements is the approach of Pietruszczak and Mróz [166], who capture 

softening behaviour in granular materials. They use an associated flow rule with a 

simple yield function based on the Coulomb criterion with variable cohesion. 

They prescribe the thickness of the shear band as a parameter, which controls the 

tangent stiffness of the element. They also determine the orientation of the shear 

band from the Coulomb orientation relative to the orientation of the principal 

stresses. Therefore, one should still regard such analysis as phenomenological 

since it cannot predict the orientation or thickness of the shear band from 

fundamental characteristics of the granular material such as the grain structure. 

Belytschko et al. [167] advance this approach using a three-field mixed 

formulation in which a bifurcation analysis on the element level determines the 

formation of the strain localization zone, though they note that the analysis still 

does not determine the thickness of the shear band. The condition for shear band 

formation in their analysis is a loss of ellipticity of the governing equations 

associated with the softening regime, and they show that there is little mesh 

sensitivity for sufficiently refined meshes. Wan et al. [168] generate embedded 

localization zones within continuum-based finite elements to capture strain 

localization leading to collapse of soil slopes. In their approach, they represent the 
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localization zone with a special element, and incorporate discontinuities into the 

interpolation functions for the parent continuum element. This allows generation 

of strain localization zones within elements along an orientation determined by a 

prescribed criterion – for example, Mohr-Coulomb – as the analysis progresses 

without having to regenerate the original mesh. Pietruszczak and Niu [169] 

examine the embedded localization zone approach further, incorporating a 

characteristic length scale determined by partitioning the element area, virtually 

eliminating mesh sensitivity in the results. Larsson et al. [170] apply the concept 

of regularization to supposedly eliminate mesh sensitivity in the formation of 

strain localization bands. However, it is worth noting that Larsson et al. [170] 

only demonstrate mesh insensitivity with regard to mesh density, and the 

orientation of the strain localization zone still seems to follow the orientation of 

the mesh of triangular elements. The present author points out that this is the more 

important form of mesh sensitivity for a mesh of continuum based finite elements 

not accounting for the microstructure of the material. Chen et al. [171] introduce 

an internal length scale and show that the regularization technique can be applied 

to obtain true mesh insensitivity using a meshfree approximation to simulate the 

generation of multiple strain localization bands propagating from an asymmetric 

imperfection. They demonstrate that the results are insensitive to the mesh when 

comparing different levels of mesh refinement and when comparing regular and 

irregular mesh configurations. Wang et al. [172] combine their earlier work on 

special shear band elements with regularization techniques and a Mohr-Coulomb 

strength model to generate shear band elements as part of the simulation. This 

overcomes the issues associated with prescribing the location of shear band 
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elements, allowing prediction of shear band formation while avoiding mesh 

sensitivity. However, the use of the Mohr-Coulomb criterion to prescribe the 

orientation of the shear band contradicts the evidence cited in Section 1.1.2 that 

shear bands may form at other orientations, theoretically bounded by the Roscoe 

and Coulomb orientations. Samaniego and Belytschko [173] also achieve mesh 

insensitivity analyzing similar examples as in [171] using the extended finite 

element method (XFEM) to incorporate shear band propagation. Within the 

XFEM, the shear bands may be inserted at arbitrary orientations within the mesh 

according to an appropriate fracture propagation criterion, resulting in 

insensitivity to the mesh configuration. Such mesh insensitivity is desirable for 

continuum-based models of damage in metals, which was the application area in 

[171] and [173]. However, the present author questions whether insensitivity to 

mesh configuration is truly desirable for granular materials where irregularities in 

the grain structure are important in the generation of shear bands. An alternative 

approach is to harness the “mesh sensitivity” by constructing the mesh in a 

manner that represents the physical grain structure, as in the present work. 

1.1.5 Discrete element method 

The discrete or distinct element method (DEM) is an alternative approach to 

numerical modelling of granular materials wherein the method represents 

individual grains and their interactions. Cundall [174] proposes the DEM as a 

method for analyzing blocky rock systems. Cundall and Strack [175] present the 

DEM as a general approach to modelling assemblies of grains, whether these 

represent blocks in a jointed rock system or grains in a granular material. The 
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earliest version represents the grains as disc-shaped particles [175], but 

Cundall [176] and Hart et al. [177] later extend the method for use with convex 

polyhedral blocks. Ting et al. [178], Ng [179] and Lin and Ng [180] present the 

modifications necessary to employ the DEM to elliptical and ellipsoidal shaped 

particles. Clearly, models using simpler grain shapes such as spheres or ellipsoids 

make detection of contact easier, but may not accurately reflect the grain shape of 

many granular materials that have angular or subangular grains. Polyhedral grains 

better represent granular materials, but require tracking of a larger number of 

interaction types (point-to-point, point-to-edge, point-to-face, edge-to-face, face-

to-face). Cundall [176] introduces the common plane approach to reduce the 

number of tests required by testing only for contact with a plane between two 

potentially contacting blocks. Most of the early approaches assume that the 

discrete elements are rigid since the deformation of particles is often small in 

comparison to their relative movements. Barbosa and Ghaboussi [181] extend the 

DEM to account for deformation of the discrete particles by sub-discretizing each 

particle with a FEM mesh. Boon [182] closely examines contact detection and 

block generation in DEM analyses of jointed rock masses involving polygonal or 

polyhedral elements, and develops novel and efficient algorithms for this purpose. 

Within the DEM, the normal force between contacting grains is proportional 

to their overlapping volume. The shear force transfer may be non-slip if frictional 

dissipation is not of interest, or may account for frictional sliding using Coulomb 

frictional resistance. Grains may be rigid or deformable with the former preferred 

when the deformation of the grains is small compared to the deformation caused 

by relative movement between grains. When deformable polyhedral blocks are 
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desirable, the blocks are typically discretized into an internal mesh of finite 

elements [177]. 

Cambou [64] cites DEM as one of the principal numerical approaches used 

to understand the micromechanics of granular materials. Indeed, several of the 

studies cited in Section 1.1.2 use the DEM to simulate strain localization in 

granular materials [29,72,74,75,93,96,97,101]. This is just a small sampling of the 

vast body of literature applying the DEM to numerical modelling of discontinua. 

The present work does not present the details of the formulation of the DEM, as it 

not the focus. Radjaï and Dubois [183] and Cambou et al. [70] compile works 

representing the state-of-the-art as of the end of the first decade the 21st century. 

The present author recognizes the advantages of the DEM with regard to 

modelling the details of the behaviour of granular material. Chapter 3 of the 

present work develops an alternative approach, with its own set of advantages and 

disadvantages, but the aim is not to diminish the advantages of the DEM 

approach. To paraphrase Cambou in the preface to [64] when describing the 

complementary nature of micromechanical, DEM and FEM analyses, the 

alternative technique presented herein is complementary to the foregoing 

approaches and seeks to contribute to a better understanding of the behaviour of 

granular materials. 

1.1.6 Combined finite-discrete element method 

The approaches of the finite element method and the discrete element 

method are extreme cases in which the formulation assumes a continuum and a 

collection of interacting grains, respectively. Another class of analysis techniques 
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used to model geological materials is the combined finite-discrete element method 

(FEM-DEM), which makes use of ideas from these two categories. The modelling 

framework presented in Chapter 3 of the present work fits best into this category. 

This section presents a brief summary of the literature on FEM-DEM modelling 

approaches. It is worth noting that the definition of FEM-DEM is somewhat 

vague. The present work takes a loose definition as any numerical analysis 

technique that uses some form of continuum formulation, but breaks the domain 

into sub-regions that interact in a manner different from that of the basic 

continuum elements. Therefore, some of the methods described in this section 

may not even call themselves FEM-DEM, though they combine ideas from both 

analysis frameworks. In all such methods, one must define the rules governing the 

contact between the sub-regions. For granular materials, these rules should 

capture the fact that grain interfaces have negligible resistance to separation, high 

stiffness in compression and nonlinear dissipative constitutive behaviour in shear. 

Material point method (MPM) models including a contact algorithm have 

been used to model a variety of micro-scale contact problems [184,185] and 

macro-scale problems involving multiple material phases [186]. The “material 

points” carry relevant calculation data – material properties, stresses, velocities – 

and move through a fixed calculation grid. The solution at each time step uses a 

three part explicit algorithm to account for interaction between contacting bodies: 

i) solution of velocities assuming all material points are a single body, ii) solution 

of velocities for each individual body ignoring the influence of surrounding 

bodies and iii) velocity correction based on the difference between the velocities 

determined in the first and second phases. The presumption is that the calculated 
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velocities from phases (i) and (ii) will differ only when bodies are interacting. 

This approach can handle grains of arbitrary shape and does not require pair-wise 

comparison to determine which specific grains are interacting. The MPM 

combines a formulation loosely based on a dynamic FEM formulation in phases 

(i) and (ii) with the idea of accounting for interaction between discrete particles 

from DEM in phase (iii). This approach is able to account for grain interactions, 

but apparently requires many material points to represent each grain and small 

numerical time steps. This leads to simulations that are computationally expensive 

even for a modest number of grains. 

Munjiza et al. [187] propose the combined finite-discrete element method 

(FEM-DEM) within the context of modelling the transient dynamics of fracturing 

solids such as rock and concrete. The text of Munjiza [188] provides the most 

complete description of the method and its applications to date. The FEM-DEM 

approach uses a combination of constant strain triangular body finite elements to 

represent volumes of material with linear elastic constitutive behaviour and joint 

elements to account for the nonlinear behaviour associated with fracture 

propagation [189]. This approach differs from the discrete finite element method 

described in reference [181] in that it accounts for grain interactions using 

interface finite elements rather than relying on contact detection algorithms based 

on overlapping element volumes. This has the advantage of reducing the 

complication involved in modelling grain interaction, but sacrifices the ability to 

model large strain behaviour wherein the contact relationships between grains 

may change during the simulations. Mahabadi et al. [189] describe the most 

recent version of the FEM-DEM model. This approach is sufficient for modelling 
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fracture propagation in materials such as concrete and rock, which was the focus 

of applications of this group. However, triangular elements may not accurately 

reflect the shape of the grains in granular materials, which plays an important role 

in the strain localization phenomena described in Section 1.1.2. 

Chapter 3 of the present work focusses on extending the FEM-DEM 

approach using convex polygonal Voronoi cell elements in an approach termed 

VCFEM-DEM. As the body of that chapter discusses in detail, this modification 

allows the VCFEM-DEM to capture many of the important phenomena associated 

with strain localization in granular materials. 

1.2 Summary of Contributions 

This section provides a summary of the key research contributions of the 

present work. The topic of this thesis is the modelling of geomaterials using the 

Voronoi cell finite element method (VCFEM), and where applicable, VCFEM 

combined with elements accounting for interactions between the VCFEM 

elements. Two of the most important phenomena of practical importance in the 

modelling of geomaterials are transport of fluid through the pores and their 

deformation response to applied loads. Since geological materials, whether in situ 

or when used as a construction material, are exposed to the natural environment, 

these two phenomena often occur simultaneously. Methods for analyzing certain 

aspects of these phenomena already exist, each with its own advantages and 

disadvantages, as Section 1.1 discussed. The present work adds to this body of 

knowledge by exploring techniques for analyzing geomaterials using VCFEM and 

VCFEM-DEM. This exploration revealed certain situations when this approach 
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has its own advantages, but it is important to note that the author does not purport 

it to be a solution for all numerical analysis issues or necessarily a replacement for 

existing techniques. The following lists the most important technical contributions 

of this work, with a brief description of each and references to the corresponding 

body sections that provide further details. 

Extension of VCFEM to seepage analysis, including location of free 
surface in unconfined seepage 

The key feature of this contribution is the application of the hybrid VCFEM 

functional to field problems described by the Laplace equation. Previous 

applications of hybrid FEM and hybrid VCFEM were in the context of solid 

mechanics, and the extension of the hybrid VCFEM to field problems is of 

academic interest. This part of the work also included an investigation of the 

sensitivity of the solution to mesh configuration and choice of conforming shape 

function, with particular focus on the solution of unconfined seepage problems, 

which require iteration to locate the free surface. With regard to mesh sensitivity, 

hybrid FEM analysis using four-node quadrilateral elements displayed sensitivity 

in terms of the location of the free surface, whereas hybrid VCFEM using 

polygonal elements having greater than four nodes – primarily six-node 

hexagonal elements – did not show significant mesh sensitivity. The choice of 

conforming shape function did not have a significant influence on the results. 

Section 2.1 presents the details of the formulation and a discussion of the results. 
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Simulation of strain localization in biaxial compression tests on 
granular material using static and dynamic VCFEM-DEM 

The phenomenon of strain localization is a behaviour observed in 

geomaterials at the macro-scale, but develops because of interactions at the grain-

scale. Examples of this include shear band failure in laboratory compression tests 

and slope failure where a distinct failure surface forms. Such strain localization in 

granular materials is akin to fracture propagation in metals and rock, but the 

modelling details differ owing to the lack of any tensile resistance between the 

grains. The literature on the various approaches to modelling this behaviour is 

extensive, as Section 1.1.2 discussed. The present work examines both static and 

dynamic VCFEM-DEM models for granular behaviour. The key feature of this 

modelling approach is that it employs two types of element: i) polygonal VCFEM 

body elements representing the grains or representative volumes of material 

where the constitutive behaviour is linear elastic and ii) interface elements that 

capture the interaction between grains with nonlinear constitutive behaviour 

owing to the frictional sliding that occurs. In the static model, the interface 

elements use a form of nonlinear elastic constitutive model with stress correction 

according to the Coulomb yield criterion. Consideration of rotation of coordinate 

axes is not necessary here since the interface defines the local failure plane. The 

dynamic model uses a form of isotropic combined volumetric-deviatoric 

hardening plasticity to capture the nonlinear interactions at the grain interfaces. 

Both types of model are capable of capturing the strain localization phenomenon 

in laboratory scale simulations. Although several modelling frameworks for strain 

localization exist, the most important contribution of this work and the VCFEM-
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DEM approach is that it allows for the development of strain localization owing to 

the material fabric, as opposed to stress concentrations at boundary conditions, 

prescribed variations in void ratio or arbitrary mesh orientations. It does this by 

discretizing the domain so that mesh sensitivity – a topic often discussed in the 

literature on numerical analysis of granular materials with the aim of its 

elimination [167,170-173] – becomes a representation of the actual material fabric 

rather than an artificial numerical artifact. In addition, scrutiny of the shear 

stresses in the grains during the simulations reveals strong inhomogeneities in the 

shear stress distribution, even after the initial consolidation phase, which form the 

“fingerprint” of the failure of the granular specimen. The author forwards that 

such inhomogeneities in the stress field are as important to understanding the 

strength of granular materials as dislocations and imperfections are in 

understanding the real strength of metals. Section 3.1 discusses the formulation of 

the static VCFEM-DEM model and some preliminary results, Section 3.2 

provides additional results and completes the discussion using the static model 

and Section 3.3 contains the formulation and discussion of results using the 

dynamic VCFEM-DEM model. 

Examination of deformation patterns in granular materials using 
dynamic VCFEM-DEM and tangent eigenanalysis 

In addition to capturing strain localization and stress inhomogeneity in 

laboratory simulations, the dynamic VCFEM-DEM modelling framework allows 

the examination of deformation modes in granular materials through 

eigenanalysis. This sort of analysis is not possible within DEM frameworks that 

do not necessarily construct global mass and stiffness matrices. Examination of 
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the deformation modes reveals two primary categories. The first category consists 

of “global” modes where the grains deform together as a structure. The second, 

and more interesting, category consists of “local” modes where there is significant 

relative movement between grains. Modes in the latter category correspond to 

various failure modes observed in laboratory testing of granular materials. The 

character and relative importance of the modes to the deformation of the specimen 

depend on the levels of stress and accumulated plastic strain in the interface 

elements, and change as the test progresses. The eigenanalysis of the deformation 

modes provides an additional technique for understanding the characteristic length 

scale of the failure of granular materials in laboratory tests. Sections 3.3.2.5 and 

3.3.3.2 present the details of the formulation and discussion of the results related 

to this contribution. 

Examination of influence of force chaining in granular materials on 
subsurface stress distribution owing to self-weight using VCFEM-DEM 

Estimations of the subsurface stress distribution for practical applications 

typically assume idealized conditions with stress increasing linearly with depth. 

The real subsurface stress distribution for granular materials may be more 

complex owing to heterogeneities in material properties and material fabric. The 

present work examines the statistical distribution of subsurface stress with the 

realization that the stress due to soil self-weight at a given point in the subsurface 

is not entirely due to the soil directly above it. Using the VCFEM-DEM 

modelling framework, with the implementation of body forces owing to gravity, 

the present work examines the influence of the material fabric on the distribution 

of subsurface vertical stress. The length scale over which non-uniformities in 
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subsurface stress exist – stress “fingers” –is similar to the length scale of shear 

banding in laboratory simulations. Since this is approximately 3-10 grains, such 

variations are not important for sands and fine gravels, but may be significant for 

granular materials such as blocky rock or glacial tills, which can have large 

variations in grain size. Section 3.4 discusses the details of this contribution. 

Coupled modelling of seepage through and deformation of 
geomaterials using VCFEM 

Analysis of coupled hydromechanical behaviour of porous materials is 

important in many geotechnical engineering problems. For example, the design of 

an earth dam requires prediction of the seepage through the dam including 

location of the free surface, as well as the deformation and effective stress 

distribution. The key solution variables are pore pressure, specific discharge, 

effective stress and displacement, with the accuracy of all four being important. 

The present work extends the implementation of body forces in the hybrid 

VCFEM to account for self-weight, pore fluid pressure and seepage forces. 

Assuming that the distribution of pore pressure and specific discharge influences 

the stress and deformation of the solid, but not vice versa, the calculation proceeds 

in two phases. The first phase determines the pore pressure and specific discharge 

distributions using the VCFEM formulation from Chapter 2. The second phase 

determines the deformation and stress in the solid phase using the pore pressure 

and volumetric seepage force – determined from the specific discharge field – 

distributions as known body force fields. The key contribution here is the 

successful implementation of body forces in a hybrid formulation, which the 

developers of hybrid finite elements proposed at an early stage, but for which 
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there is a notable lack of examples in the literature. Chapter 4 presents the 

formulation and demonstrates the performance on a problem of practical interest 

in geotechnical engineering. 
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2 Seepage Analysis using VCFEM 

2.1 Journal Paper #1: Investigation of a hybrid polygonal finite element 

formulation for confined and unconfined seepage1 

2.1.1 Introduction 

Our objective in this paper is to present the formulation and implementation 

of hybrid polygonal finite elements within the context of field problems described 

by Laplace’s equation, taking steady state seepage through porous media as the 

focus. The solution of such problems using analytical methods and numerical 

methods such as finite elements, finite differences and finite volumes comprises a 

large body of literature [190- 205] and these schemes are indeed capable of 

obtaining accurate solutions. Our motivation in investigating the hybrid polygonal 

element formulation is two-fold: (i) the attractiveness of the improvement in flux 

field accuracy obtained by satisfying equilibrium (mass balance), a priori 

[149,150,153] without significant additional complexity in the formulation; and 

(ii) an interest in extending the analysis to a discontinuous FEM also involving 

flow through pore or fracture networks for which polygonal elements better 

represent the micro-scale geometry of geomaterials. Toward the latter motivation, 

in the present work we examine the hybrid polygonal FEM for analysis of 

continua, in particular with regard to sensitivity to mesh configuration. The 

purpose is to build confidence for later studies of discontinua, that sensitivity to 

                                                 
1 Karchewski B, Pekinasova A, Stolle D, Guo P. Investigation of a hybrid polygonal finite element 

formulation for confined and unconfined seepage. Submitted 01/2015 to International 
Journal for Numerical and Analytical Methods in Geomechanics. 
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mesh configuration derives from real physical influences of the material fabric, 

rather than artificial influences from the mesh. For simplicity, in the present study 

we assume deterministic material properties, although one can extend the analysis 

to include stochastic analysis that takes into account the influence of material 

inhomogeneity. 

Conventional finite element formulations for field problems use a single 

primary variable – for steady state seepage typically hydraulic head or pressure – 

and determine the flux variable through gradients of the interpolation functions 

for the primary variable. Section 2.1.2 of this paper compares the conventional 

and hybrid formulations, to examine the consequences of determining the flux 

variable through gradients of the approximate solution for the primary variable. 

We also discuss the manner in which the hybrid formulation overcomes some of 

the unattractive features of the conventional approach with respect to flux field 

accuracy. Section 2.1.2 closes by presenting the hybrid formulation for polygonal 

elements and extending the hybrid formulation for cases of unconfined seepage. 

Section 2.1.3 presents a series of numerical examples including confined seepage 

beneath a dam with a sheet pile, unconfined seepage through a rectangular earth 

dam and unconfined seepage through an inhomogeneous earth dam with a clay 

core. Section 2.1.4 gives concluding remarks on the performance of the hybrid 

polygonal finite element and goals for the future development of this approach. 

2.1.2 Formulation 

We begin by defining the problem within the context of steady seepage of a 

single fluid phase through a saturated homogeneous porous medium. Without loss  
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Figure 2.1 Domain of steady seepage problem with classical boundary conditions 

of generality, consider Figure 2.1, which shows a convex polygonal domain V 

with outer surface S. The well-known Euler equations that must be satisfied in V 

are, 

 qhh=i L   (2.1.1) 

 = −q Ki   (2.1.2) 

 0T
qh s− =L q   (2.1.3) 

where h is the total hydraulic head, i represents the hydraulic gradient, q is the 

specific discharge, K is the second order tensor representing hydraulic 

conductivity, s is a source term (assumed zero herein), Lqh = { ∂/∂x, ∂/∂y }T is a 

linear differential operator, {⋅}T represents the transpose operation and italic and 

bold face represent scalar and tensor quantities, respectively. In unconfined 

seepage analysis, we must also determine the pressure p in the fluid phase, since 

this determines whether a point is above or below the phreatic surface; i.e. 

whether it is in the saturated or unsaturated zone. We calculate the pressure from 

the hydraulic head using the well-known relation p = (h – y)ρfg where y is the 
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elevation head relative to an arbitrary datum, ρf is the fluid density and g is 

gravitational acceleration. The classical boundary conditions for this problem are, 

 ˆ on hhh S=   (2.1.4) 

 ˆ on T
q qq S=n q   (2.1.5) 

where ĥ is a prescribed hydraulic head, q̂ is a prescribed flux, Sh and Sq are the 

corresponding boundaries on which these conditions are applied over the outer 

surface S = Sh ⋃ Sq, and nq = { nx, ny }T is the outward pointing unit normal vector 

to S. 

In the remainder of this section, we give two variational approximations for 

the above system, drawing on the generalized framework for parameterized 

variational principles that Felippa [206,207] presents, to make critical 

comparisons of the relative merits of each formulation. 

2.1.2.1 Conventional finite element formulation 

Zienkiewicz et al. [193] present the first FEM formulation of the seepage 

problem, which minimizes a potential energy functional in terms of h only, with q 

being determined through gradients of the approximate h field and Darcy’s law. 

We will refer to this as the “conventional” formulation, not in any derogatory 

sense, but simply meaning that it has become popular for its simplicity and 

widespread adoption by commercial FEM software. Although this formulation is 

not the focus of the present work, we digress with the aim of demonstrating the 

consequences of this approach with regard to accuracy of the flux field. We also 

aim to compare it with the hybrid formulation developed here for use with 

polygonal elements. The conventional formulation maintains strong links between 
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h and i through equation (2.1.1) and between i and q through equation (2.1.2). As 

such, i and q are secondary to the primary variable h. This formulation also 

enforces the kinematic boundary condition in equation (2.1.4) strongly. 

Derivation of the approximate solution begins by weakening equations (2.1.3) and 

(2.1.5) as follows, 

 ( ) ( )  0
q

T T
BE qh qh q qh

V S

h h dV h h dSδ δ δΠ = − + =∫ ∫L KL n KL   (2.1.6) 

 ( ) ˆ 0
q

T
FBC q qh

S

h h q dSδ δ  Π = − + = ∫ n KL   (2.1.7) 

where the application of the divergence theorem is implicit in equation (2.1.6) and 

the symbol δ indicates a variation. The weighting function is ±δh for both δΠBE 

and δΠFBC since it is the “work” conjugate of q and one adjusts the sign to obtain 

convenient cancellation of terms. Summing the weighted residuals and cancelling 

the nT(KLqhh) term leads to, 

 ( ) ˆ   0
q

T

h qh qh
V S

h h dV h q dSδ δ δΠ = − − =∫ ∫L KL   (2.1.8) 

One may view equation (2.1.8) as a virtual work expression that allows 

approximate solution of the problem defined by equations (2.1.1)-(2.1.3) given 

the boundary conditions in equations (2.1.4) and (2.1.5). In this case, equation 

(2.1.8) also leads to a variational principle corresponding to the minimization of, 

 ( )1
2 ˆ[ ]   

q

T

h qh qh
V S

h h h dV hq dSΠ = − −∫ ∫L KL   (2.1.9) 

which is analogous to the total potential energy functional in linear elastic solid 

mechanics [126,134,208]. The units of the functional given in equation (2.1.9) are 

not in terms of energy; however, multiplying all flux terms by the unit weight of 
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the fluid rectifies this. Since the governing equations assume incompressible flow, 

implying that the unit weight of the fluid is constant over the domain, one can 

factor it out without changing the nature of the variational principle. 

Implementation of this formulation within the FEM framework requires 

appropriate interpolation functions for h and q̂ over an element subvolume Ve and 

the flux boundary Sq, respectively. Such interpolation functions for triangular and 

quadrilateral elements are well-known in the FEM literature, and we refer the 

reader to, for example, Zienkiewicz and Taylor [134] for the details. For 

polygonal elements of higher order (i.e. n-gons where n > 4), the solution for such 

interpolation functions over an element domain Ve is not as well known in the 

FEM literature. Indeed, since the conditions for a “conforming” shape function – 

to wit, forming a partition of unity, being bounded by zero and unity, interpolating 

nodal data, possessing linear completeness and reducing to interpolation between 

adjacent nodes on an edge – are not sufficient to provide a unique solution, there 

are, in theory, infinite possibilities. Sukumar and co-workers [140,142] 

summarize the most commonly used shape functions for polygonal elements 

including Laplace [135,136], Wachspress [137], discrete harmonic [138] and 

metric coordinate [139] using a common notation. Sukumar [141] presents an 

additional approach to constructing polygonal interpolants based on a maximum 

entropy principle. These interpolating functions are usually not in explicit form, 

which increases the difficulty of computing the gradient Lqhh [144], which is 

necessary in equation (2.1.8). Section 2.1.2.2 shows that the hybrid formulation 

does not require interpolation of h over the element domain for the linear case of 

confined seepage. Section 2.1.2.5 demonstrates that the interpolation of h in the 
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element domain is necessary for unconfined seepage in which we must estimate 

the pressure to determine the local hydraulic conductivity. Nonetheless, 

computation of Lh is not necessary in the hybrid formulation. 

Prior to demonstrating the hybrid formulation, we discuss two potential 

sources of error in the conventional formulation, which the hybrid formulation 

attempts to alleviate. Namely, 

i. Amplification of error in the flux approximation. Differentiation is a 

subtractive process wherein positive and negative errors accumulate, 

rather than cancel as with integration [145]. Since the conventional 

formulation computes q from the gradient of the approximate h field, the 

order of error for q is one order lower than that for h. The magnitude of 

error decreases as the mesh is refined, but only at the rate determined by 

the order of error. Regardless, analysts using modern computers achieve 

acceptable tolerance for error in analysis of continua simply by using a 

very fine mesh or adaptive refinement in regions of high error. However, 

for our future work developing a discontinuous FEM for seepage 

analysis, where the elements may represent physical material regions that 

cannot be refined, we must be conscious of this source of error. 

ii. Mass balance is only satisfied locally at the nodes. Since the 

conventional formulation weakens equation (2.1.3), it only satisfies mass 

balance at the nodes. This implies that local error in mass balance is 

inherent to the approximation. It is unreasonable to expect that the 

interpolated values of q will satisfy the strong form mass balance 

equation at an arbitrary point in the domain. In other words, the 
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conventional formulation satisfies global equilibrium without ensuring 

that each element is in equilibrium. The consequence is that global error 

in the conventional formulation may be small even when local errors in 

mass balance and distribution of the flux are large. As the following 

section discusses, the hybrid formulation partially overcomes this issue 

by satisfying mass balance, a priori, in the domain of each element, while 

satisfying mass balance between elements in an integrated or average 

sense. 

2.1.2.2 Hybrid finite element formulation 

Finite element methods based on hybrid formulations have shown promise 

in alleviating issues analogous to the aforementioned in solid mechanics. Hybrid 

and mixed formulations are a general class of approximate solutions wherein one 

solves for more than one field variable directly [126,133,134,146-148]. Since the 

numerical analysis literature uses the word “hybrid” for a variety of purposes, we 

make a distinction here between hybrid formulations and hybrid methods that 

combine single field finite element formulations with boundary element methods 

[195,196,209,210] and methods using conventional finite element solutions with 

streamline and/or particle tracking methods for generating flow nets [197,198]. 

Pian [149] presents the earliest hybrid formulation for linear elastic solid 

mechanics. Tong and Pian [150,151] refine this formulation, in particular by 

showing the requirements for interpolation of stress to ensure that the element 

stiffness matrix has sufficient rank for inversion. Further development of hybrid 
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principles led to improved performance in plate and shell problems where 

continuity of the primary variable and its derivatives are difficult to satisfy [211]. 

Recent work in hybrid finite elements for the analysis of solids 

demonstrates its capability to handle the influence of heterogeneities in a natural 

way at the element level [152,154-157]. An interesting advantage of such hybrid 

constructions is that the element shape is not restricted to simple polygons such as 

triangles and quadrilaterals; indeed the method handles any convex polygon 

equally well. Ying and Henriquez [212] successfully apply a hybrid formulation 

within the context of electrical flux of biological cells, itself a phenomena 

partially described by the Poisson equation. Harder et al. [213] present a mixed-

hybrid formulation for the Darcy equation, although their work limits itself to 

triangular elements. A complete review of hybrid and mixed FEM formulations is 

outside of the scope of the present work, and we refer to [126,134,146-148,206-

208] for the theoretical details. 

We now present a hybrid formulation as an alternative approach to solving 

seepage problems. The hybrid formulation differs from the variational principle in 

the previous section in that it explicitly considers the subdivision of the domain V 

into subdomains Ve, which are the finite elements, as shown in Figure 2.2. 

Following the generalized notation of Felippa [206,207], the hybrid variational 

principle  is  the  summation  of  two  terms: an  interior  functional  and  an  

interface potential. In this formulation there are two primary variables in the 

solution, hydraulic head – denoted as h in Ve and as h* on Si – and specific 

discharge or flux q. The integration surface S is now Sh ⋃ Sq ⋃ Si where Si 

traverses the set of internal surfaces twice – once in each direction – as Figure 2.2 shows. 
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Figure 2.2 Subdivided domain of hybrid functional 

To derive the hybrid formulation, we consider two additional strong form 

equations, 

 ( )1 0  in h q
qh eh V−− − − ==i L K qi   (2.1.10) 

 ( ) 0  on T
q q iS+ − =+q nn   (2.1.11) 

where ih and iq are the hydraulic gradients computed through equations (2.1.1) and 

(2.1.2), respectively, and nq+ and nq- are the outward pointing unit normals for 

elements on opposite sides of an internal surface. Equation (2.1.10) is the strong 

link between hydraulic gradients derived through the kinematic relation of 

equation (2.1.1) and through the constitutive relation of equation (2.1.2). 

Equation (2.1.11) represents mass balance on the boundaries between elements. 

Following the approach of Felippa [206] for the hybrid formulation for solid 

mechanics problems, we weaken equations (2.1.4) and (2.1.10) to form the 

following weighted residuals, 

 ( )ˆ 0
h

T
PBC q

S

h h dSδ δΠ = − =∫ n q   (2.1.12) 
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 ( )1 0
eV

T
ii qh dVhδ δ −Π += =∫ qq L K   (2.1.13) 

where we choose the multipliers δq and nqTδq through work conjugate 

relationships. Next, we apply the divergence theorem to obtain, 

 ( )   
e e h

T T T
q

V V
q

S
h qhdV dVh Shh dδ δ δ= − +∫ ∫ ∫q L L q qn   (2.1.14) 

in which the strong enforcement of LqhTq = 0 in Ve and nqTq = q̂ over Sq cause 

their corresponding variations to vanish. 

We now examine the interface potential, which is the weakened form of 

equation (2.1.11), itself a statement of point wise continuity of flux from one 

element to another along an interface. That is, we weaken mass balance only at 

the interfaces between elements as follows, 

 ( )* * 0
i

T
q

S

T
int q h dShδ δ δΠ += =∫ n q n q   (2.1.15) 

We consider variations of both h* and q in δΠint since they are both primary 

variables. For convenience in developing element matrices and vectors, we use 

the following relation to rewrite the integrations over Si,  

 
i h qS S S S

f f fdS dS dS Sfd= − −∫ ∫ ∫ ∫   (2.1.16) 

where f is a scalar function. Summing δΠPBC, δΠii, and δΠint taking into account 

equations (2.1.14) and (2.1.16), along with the strong enforcement of h* = ĥ on Sh 

gives, 

 ( )1 * * * ˆ 0
q

T T T
qh q

V
q

SS

h h dSd h q dV Sδ δ δ δ δ− =+ −Π = + ∫∫ ∫q n nq K q q  (2.1.17) 
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The variational statement in equation (2.1.17) implies stationarity of the following 

hybrid functional, 

 * 1 * *1
2, ˆ  

q

T T
qh q

SV S

h h q dh dV dS S− Π = + −  ∫ ∫ ∫qq nq q K   (2.1.18) 

In combining equations (2.1.13), (2.1.14) and (2.1.15), we cancelled the 

terms containing the integrands nqTδqh and nqTδqh*, implying that their integrals 

are equal. Only equality of the integrands guarantees equality of these integrals, in 

general, which implies that the interpolation of h in Ve should satisfy h* ⊂ h on S. 

As discussed previously, interpolations satisfying this constraint on an arbitrary 

convex polygon – e.g. Laplace [135,136], Wachspress [137], discrete harmonic 

[138], metric coordinate [139] – are not unique. Notwithstanding, it is important 

to recognize that any conforming interpolant satisfies the assumptions of the 

hybrid formulation. We also observe that the h field in Ve is not consistent with 

the flux field q, since we weaken the link between these variables, which is a 

fundamental difference between the hybrid and conventional finite element 

formulations. Owing to this, the hybrid formulation eliminates the issue of 

decreased order of error in the approximation of q as it does not depend on Lqhh, 

but rather is itself a primary variable that we obtain directly. However, there are 

limits to the accuracy as the order of error in q is still constrained by the order of 

its interpolation, which Section 2.1.2.3 discusses further. The hybrid formulation 

does not weaken equation (2.1.3), thereby preserving mass balance in the domain 

of an element, if the interpolation of q satisfies mass balance, a priori. We also 

preserve mass balance or continuity at the nodal locations connecting elements 
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and satisfy mass balance is on the interelement boundaries in an average sense 

owing to the weak form δΠint, which vanishes in the exact solution. 

2.1.2.3 Interpolation of primary variables 

In this section, we detail the interpolation of h* and q to implement a finite 

element approximation based on the hybrid functional developed in the previous 

section. We also present the interpolation of h in the element domain, since this is 

necessary for the unconfined seepage case, as discussed further in Section 2.1.2.5. 

The interpolation of h* is straightforward as it only appears in surface 

integrals of Πqh[q,h*]. Examining the form of equation (2.1.17), the interpolation 

must guarantee (i) uniqueness of h* on Si (i.e. C0 continuity) and (ii) satisfaction 

of equation (2.1.4) on Sh. The simplest way to achieve this is by linear 

interpolation of h* between nodal values at adjacent nodes, which is the technique 

that we adopt herein, 

 [ ] 1* *

2

1 h
h h

h

a
h

a
ξ ξ

 
= = −  

 
N a   (2.1.19) 

where ah1 and ah2 are the values of hydraulic head at adjacent nodes 1 and 2, and ξ 

is a local coordinate running from ξ = 0 at x = x1 to ξ = 1 at x = x2. Interpolation 

of h in the domain is of the form, 

 ( )h hh = N x a   (2.1.20) 

where for a polygonal element with n nodes, Nh has n columns and ah contains the 

nodal values of h. Owing to the constraint that h* ⊂ h on Si, equation (2.1.20) 

should reduce to equation (2.1.19) on an edge. Sukumar and co-workers [140,142] 

summarize the constraints on conforming interpolating shape functions including 
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that NhTNh = 1 (partition of unity), 0 ≤ Nh ≤ 1 (bounded by zero and unity) and 

x = Nh(x)xh (linear completeness) where xh are the nodal coordinates. As Sukumar 

and co-workers present, these constraints are not sufficient to obtain a unique 

solution for Nh(x) for a polygonal domain, and there exist several shape functions 

satisfying these constraints. We refer the reader to references [140,142] for a 

detailed summary of the literature on shape functions for polygonal elements and 

their computation in a consistent notation. 

Following references [150,153], we assume the following form for 

interpolation of q in the domain, 

 q q=q P β   (2.1.21) 

where Pq is a matrix of basis functions and βq is a vector of unknown coefficients. 

The selection of the basis functions in Pq requires careful consideration as they 

must ensure (i) satisfaction of equation (2.1.3), (ii) insensitivity of the results to 

orientation of the coordinate system (i.e. spatial isotropy) and (iii) rank 

sufficiency of the volume integral of PqTK-1Pq with respect to inversion. Within 

the context of 2-D solid mechanics, one may achieve (i) by using Airy’s stress 

function [118,150] or consideration of independent stress modes [214]. Within the 

context of the potential flow involved in seepage problems, satisfaction of the 

homogeneous mass balance equation (i.e. when s = 0) is guaranteed for 2-D 

problems if we derive q from a potential function ψ(x), as follows, 

 x

y

q

x
q

y
ψ

ψ

∂
∂
∂

 
    = =   

  −
 ∂
 
 

q   (2.1.22) 
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Spatial isotropy necessitates that ψ(x) be symmetric with respect to the 

coordinates x. We assume polynomial form for ψ(x), which implies that ψ(x) 

should be a complete polynomial. For rank sufficiency, Tong and Pian [150] 

showed that finite elements interpolating the flux variable as in equation (2.1.21) 

require that the number of coefficients βq (or columns in Pq) satisfy the inequality, 

 m n r≥ −   (2.1.23) 

where m is the number of coefficients, n is the number of primary degrees of 

freedom per element, and r is the minimum number of kinematic (primary) 

boundary conditions necessary for a well-posed problem. Since h is a scalar field, 

n simply equals the number of nodes in the element. For steady 2-D seepage 

problems r is unity as it is only necessary to specify h at a single node [190,194]. 

For computational efficiency, we employ ψ(x) of minimum order to satisfy the 

above constraints for an element with a given number of nodes. Indeed, the 

limitation principle states that one cannot improve the convergence rate by 

arbitrarily increasing the order of interpolation for q without also increasing the 

order of interpolation for h* [215]. Comparing solutions obtained using the lowest 

allowable order Pq and higher order Pq in all elements verifies this. Using third 

order ψ(x) gives, 

 
2 2

2 2

1 0 0 2 0
0 1 0 0 2q

y x y xy x
y x y xy x

 
=  − − − − − 

P   (2.1.24) 

where for elements with n=3, 4≤n<7, and 7≤n≤10, we use the first two, five and 

nine columns, respectively. In practice, automatic mesh generation based on 

Dirichlet or Voronoi tessellation [122-124] rarely results in polygons exceeding 

ten nodes [153]. Observing that Pq gives constant q for a triangular element, the 
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hybrid formulation for a mesh constructed entirely of such elements gives the 

same solution as the conventional formulation using 3-noded triangular elements, 

as one would expect. 

To avoid dominance of higher order terms leading to numerical error [157], 

we compute Pq in terms of local coordinates, 

 s c= −x x x   (2.1.25) 

where xs are the local coordinates, x are the global coordinates, and xc are the 

coordinates of the element centroid. This form also has the advantage that the first 

order moments vanish when performing element level integrations. The 

implementation of this transformation is straightforward since the Jacobian of this 

transformation is unity, so we simply replace x = { x, y }T with xs = { xs, ys }T in Pq. 

2.1.2.4 Hybrid finite element hydraulic conductivity matrix and flux vector 

We now finalize the formulation by presenting the element hydraulic 

conductivity matrix Khh and applied flux vector Qq for the hybrid FEM 

approximation. Substituting equations (2.1.19) and (2.1.21) into equation (2.1.18) 

gives the hybrid functional for an element, 

 1
2, T T T

qh h q qq q q qh h h qqΠ    = − + −β β H aβ β G aa Q   (2.1.26) 

where βq and ah are the element flux coefficients and nodal hydraulic heads, 

respectively, and, 

 ( )

11
2

*

*

 

ˆ 

 

e

q

T
qq q q

TT
qh q q h

S

T
q h

S

V

dV

dS

q dS

−= −

=

=

∫

∫

∫

K

n N

Q

H P P

G P

N

  (2.1.27) 
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We could obtain exact integration of the polynomial basis functions over a 

polygonal domain using Green’s Theorem [cf. 216]. For computational efficiency, 

we opt instead for exact numerical integration of the polynomial basis functions 

over irregular convex polygonal elements using techniques for constructing 

quadrature rules proposed in [217] and over element boundaries using standard 

Gaussian quadrature rules. 

Taking the first variation of ΠMCE with respect to unknowns βq and ah gives 

the following pair of equations that must be satisfied simultaneously for arbitrary 

δβq and δah, 

 
T

qq qhq q
T
qh qh h

δ
δ

−       
− =               

H G 0β β
0

G 0 Qa a
  (2.1.28) 

One may achieve this directly, 

 qq qh q
T
qh qh

−    
=    

    

H
G

βG 0
0 Qa

  (2.1.29) 

and solve using penalty methods [152] or, following [150] by using, 

 1
q qq qh h

−= Gβ H a   (2.1.30) 

to condense βe out of equation (2.1.26) and rewrite Πe in terms of he* only, 

 [ ] 1
2

T T
qh h h hh h h qΠ = −Ka a a a Q   (2.1.31) 

where, 

 1T
hh qh qq qh

−= H GK G   (2.1.32) 

is the element hydraulic conductivity matrix. We opt for the latter approach herein 

to reduce the number of global equations. Letting the first variation of 

equation (2.1.31) vanish leads to a linear system of equations, 
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 hh h q=K a Q   (2.1.33) 

We construct the global hydraulic conductivity matrix and flux vector by 

summing Khh and Qq over all elements taking into account the C0 continuity of ah. 

We apply the kinematic boundary conditions by specifying the known nodal 

values for ĥ in Qq and setting the corresponding rows in Khh to zeros except for a 

one on the diagonal; in essence, replacing the corresponding equilibrium equation 

with the constraint equation. After solving for the global nodal ah values, we 

compute the seepage flux distribution using equations (2.1.21) and (2.1.30). 

2.1.2.5 Algorithm for solution of unconfined seepage 

The solution of the global system of equations for cases of confined seepage 

is a linear problem because the values of the constitutive parameters, i.e. the 

hydraulic conductivity coefficients, Kx and Ky, are known a priori. We now 

consider the solution algorithm for cases of unconfined seepage, such as that 

through an earth dam, as shown in Figure 2.3. In this case, the location of the 

“free surface” S4 separating the saturated part of the domain Ωw and the dry part of  

 

 
Figure 2.3 Schematic of domain for unconfined seepage analysis 
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the domain Ωd is unknown. Under these conditions, we know that nqTq = 0 and 

h = y on S4, implying that S4 is itself a streamline. For partially saturated 

conditions, we still define S4 as the phreatic surface where h = y holds, but nqTq ≠ 

0 in general, so S4 may no longer be a streamline. We only require the condition 

that h = y to solve for S4 in the present study. Past studies locate S4 using a variety 

of iterative approaches. France et al. [200] update the mesh such that they only 

analyze the saturated zone. Bathe and Khoshgoftaar [194] update the constitutive 

parameters to account for the negligible flux in the unsaturated zone. López-

Querol et al. [205] update the boundary conditions to account for the zero flux 

condition on the portion of the boundary above the free surface. Numerous studies 

have investigated these approaches and their relative merits. A detailed literature 

review and comparison of methods is out of the scope of the present work. We 

adopt the approach of updating the constitutive parameters in the present study 

owing to the inefficiency of the updated mesh approach and the need for a 

transient analysis in the updated boundary conditions approach. For simplicity, we 

assume a step function for hydraulic conductivity Ki, 

 ,

,

when 0
1 10 otherwise

i sat
i a

i sat

K
K p
K−

>
=  ×

  (2.1.34) 

where i ∈ {x, y}, Ki,sat is the maximum value of hydraulic conductivity in the i 

direction when the domain is saturated, p is the gauge pressure relative to 

atmospheric conditions and a is a positive integer chosen such that Ki in Ωd is 

small relative to Ki,sat, but non-zero for numerical stability. The present study 

adopts a modified Newton-Raphson scheme similar to that proposed by Bathe and 

Khoshgoftaar [194] within the context of conventional finite element analysis. We 
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first initialize the nodal values of hydraulic head to the magnitude of the highest 

expected value of prescribed head, except at nodes on Sh where we prescribe the 

values of h. At each iteration j, we compute the residual flux vector Ψq(j) as, 

 ( ) ( ) ( )j j j
q q hh h= −Ψ K aQ   (2.1.35) 

where Khh(j) is the global hydraulic conductivity matrix evaluated at step j using 

equations (2.1.32) and (2.1.34) and ah(j) are the estimated nodal values of 

hydraulic head. In forming Khh(j) we evaluate equation (2.1.34) at each integration 

point when integrating Hqq as in equation (2.1.27). The resolution of the free 

surface solution depends on the number of integration points in an element. After 

applying the prescribed head boundary conditions, we estimate the increments to 

nodal head Δah(j) by solving, 

 (0) ( ) ( )j j
hh h q∆ =K a Ψ   (2.1.36) 

where we use the initial global hydraulic conductivity matrix Khh(0) for efficiency. 

We accelerate convergence by updating the global nodal heads as follows, 

 ( 1) ( ) ( ) ( )j j j j
h h hδ+ ∆= +a a a   (2.1.37) 

where δ(j) is a step size determined at each iteration using a linear search as 

proposed by Borja [218] to ensure that ||Ψq(j+1)|| < ||Ψq(j)|| where ||⋅|| is the standard 

2-norm of a vector. The algorithm has converged when the approximate relative 

error εa = ||δ(j)Δah(j)|| / ||ah(j+1)|| becomes less than a stopping criterion εs taken in 

the present study as 1×10-3. Although this algorithm had not previously been 

applied within the context of hybrid polygonal finite elements, we found that its 

performance is similar to that when used in conjunction with conventional finite 

elements, with convergence typically occurring in fewer than ten iterations. 
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2.1.3 Numerical Examples 

To demonstrate the performance of the hybrid VCFEM for confined and 

unconfined seepage, we present three numerical examples along with 

comparisons to the results of past studies. The salient features that we examine 

include: (i) accuracy of the flux results in comparison to existing approaches as 

well as (ii) mesh sensitivity and (iii) sensitivity to choice of conforming 

interpolant for h in cases of unconfined seepage wherein we must locate the free 

surface. The first example involves confined seepage around a sheet pile 

supporting an excavation wherein we examine the predicted equipotential lines 

and the flux field compared with a conventional FEM solution, as well as the 

global mass balance error for the hybrid FEM formulation of the present study. 

The second example is unconfined seepage through a rectangular earth dam with 

homogeneous material properties wherein we examine the sensitivity of the 

solution to element aspect ratio for hybrid quad meshes and to orientation and 

irregularity for hybrid polygonal meshes. The third example is unconfined 

seepage through an inhomogeneous earth dam with a low hydraulic conductivity 

clay core wherein we investigate the sensitivity of the solution to the choice of 

interpolating shape functions for three irregular polygonal meshes. We performed 

the analysis using a computer program vcfem_seep written in Matlab [219], 

implementing the formulation presented in Sections 2.1.2.2 through 2.1.2.5. 

2.1.3.1 Example 1 – Sheet pile supporting excavation 

Figure 2.4 shows the mesh for Example 1, which is a 10 m high sheet pile 

wall supporting an excavation. The sheet pile has an embedment of 5 m and 
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maintains a head difference of 8 m. Owing to symmetry we only model half of the 

10 m wide excavation. The stratigraphy consists of a single layer of orthotropic 

sand with the bottom boundary being an impermeable bedrock layer 10 m below 

the base of the excavation. The quadrilateral mesh consists of 219 nodes and 182 

elements. We capture the singularity at the base of the sheet pile using duplicate 

node numbers – we assign a different node index to the node at the base of the 

sheet pile in each adjacent element, thereby allowing hydraulic head to have 

different values in each element. To make a direct comparison of results based on 

the conventional and hybrid formulations, we analysed this problem using the 

quadrilateral mesh shown in Figure 2.4 under isotropic conditions with 

Kx = Ky = 1.0×10-5 m/s using both formulations. To examine the quality of the 

solution in terms of global mass balance error, we also analysed the problem using 

 
Figure 2.4 Quadrilateral mesh for Example 1 (sheet pile wall) 
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the hybrid FEM for various degrees of anisotropy taking Kx = 1.0×10-5 m/s and 

Kx/Ky ∈ [1,16]. 

Figure 2.5 shows superimposed contours of total hydraulic head h from the 

conventional FEM and hybrid VCFEM solutions, respectively. The results from 

the two approaches show good agreement. Figure 2.6 through Figure 2.8 show the 

distributions of net pore water pressure on the sheet pile wall, nqTq along the 

water table and nqTq along the excavation, respectively. The results of the 

conventional and hybrid FEM compare well in terms of magnitude and 

distribution. Integrating nqTq gives a total seepage flux of 2.402 m3/day and 

2.237 m3/day based on the results of the conventional and hybrid FEM, 

respectively, which are in good agreement. When computing the global mass  

 
Figure 2.5 Plot of total hydraulic head h and seepage flux q for Example 1 using 

conventional FEM and hybrid VCFEM formulations with quadrilateral elements 
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Figure 2.6 Net pore water pressure distribution on sheet pile for Example 1 
comparing conventional FEM and hybrid FEM under isotropic conditions 

 
Figure 2.7 Seepage flux along water table (left of sheet pile wall) for Example 1 

comparing conventional FEM and hybrid FEM under isotropic conditions 

 
Figure 2.8 Seepage flux along base of excavation for Example 1 comparing 

conventional FEM and hybrid FEM under isotropic conditions 

balance error by summing the total seepage flux at the water table and excavation 

levels, we obtain errors of 4.298×10-5 m3/day and 3.752×10-8 m3/day, 

respectively, for  the  conventional  and hybrid FEM. This improvement in mass 

balance error is small in magnitude, but it is notable that there are three orders of 
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magnitude difference going from the conventional to the hybrid FEM. We ascribe 

this to the a priori satisfaction of the mass balance equation in the formulation. 

When refining the mesh, the difference in global mass balance error decreases. 

However, it is notable that the hybrid FEM solution converges in terms of this 

measure of performance more quickly than the conventional FEM results. Figure 

2.9 shows the total discharge around the sheet pile per unit width at the water 

table and excavation for various degrees of anisotropy computed using the hybrid 

FEM. The global mass balance error was negligible in all cases. 

 
Figure 2.9 Mass balance computed from hybrid FEM solution for Example 1 

2.1.3.2 Example 2 – Unconfined seepage through rectangular earth dam 

Figure 2.10 shows a schematic of Example 2, which is a 16’×16’ 

(4.9 m×4.9 m) earth dam composed of homogeneous isotropic material with 

Kx = Ky = 1 ft/hr (0.3048 m/hr), a constant head boundary condition of h = 16’ 

(4.9 m) on the right side, a zero pressure boundary condition, i.e. h = y, on the left 

side and zero flux boundary conditions on the top and bottom. The figure also 

shows a sample mesh of 800 hybrid quadrilateral elements with a width-to-height 

ratio of 0.5. Herbert [220] examines this problem using resistance network 

analogues, France et al. [200] using conventional FEM with updated mesh and 

Bathe and Khoshgoftaar [194] using conventional FEM without mesh iteration,  
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Figure 2.10 Schematic of Example 2 with a quad mesh of 800 elements and 

width-to-height ratio of 0.5 

similar to the algorithm presented in Section 2.1.2.5 of the present paper. We 

select this example for its simplicity and use it to examine mesh sensitivity by 

comparing the results of analysis using hybrid quadrilateral elements of varying 

aspect ratio and hybrid polygonal elements of varying orientation and irregularity, 

as Figure 2.11 depicts. 

Figure 2.12 shows the results for the location of the free surface using 

hybrid quadrilateral meshes of varying width-to-height ratios. We only present the 

results obtained using the metric coordinate shape function to interpolate h in the 

domain of an element here, but the results using other shape functions are 

essentially the same. The results show good agreement with the results of 

previous studies and the individual simulation results are consistent in an average  
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Figure 2.11 Several mesh types considered for Example 2. Hybrid quadrilateral 

meshes (left) with width-to-height ratios of 0.25 (top), 1.0 (middle) and 4 (bottom) 
and hybrid polygonal meshes (right) with regular hexagonal elements of varying 

orientation (top and middle) and irregular polygonal elements (bottom). 

 
Figure 2.12 Free surface results for Example 2 using hybrid quad meshes of varying 

width-to-height ratio α and metric coordinate shape function. Best-fit curve is a 
second-order polynomial obtained using least squares regression. 

45◦
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sense with each other as demonstrated by the best-fit curve. We observe, however, 

that in the neighbourhood of the downstream side of the free surface there is 

significant mesh sensitivity in the solution when using quadrilateral elements. 

Owing to the boundary conditions, i.e. two nodes in each element adjacent to this 

boundary are fixed to zero pressure, and the linear interpolation to which the 

shape functions reduce in a quadrilateral element, the free surface is forced to be 

horizontal in this region. As the mesh is refined, the differences in the solutions 

for various width-to-height ratios decrease, along with the size of the region 

influenced by the fixed boundary conditions, but the influence of element shape 

for coarse meshes is worth noting. 

Figure 2.13 shows the results of the same problem using hybrid polygonal 

meshes of varying orientation and irregularity. The polygonal meshes consist 

primarily (>85%) of hexagonal elements. We also show the results of a hybrid 

quadrilateral analysis using elements with width-to-height ratio of 1.0 for 

comparison. We obtained this set of results using the discrete harmonic shape 

function, with negligible difference in the results using other shape functions. We 

observe that the results are generally smoother with the polygonal meshes 

compared to those obtained with the quadrilateral meshes of similar density. We 

cannot ascribe this to higher order interpolation of the flux, since it is linear for 

both quadrilateral and hexagonal elements, as equation (2.1.24) shows. However, 

there is higher order interpolation of h in the domain of each element – regardless 

of the choice of conforming shape function – as the number of nodes increases. 

This is the most probable reason for the improved resolution of the free surface. In 

addition, there is significant reduction of the mesh sensitivity in the neighbourhood 
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Figure 2.13 Free surface results for Example 2 using hybrid polygonal meshes of 
varying orientation θ and irregularity using discrete harmonic shape function. 

Polygonal meshes consist primarily (>85%) of hexagonal elements. 

of the downstream side of the domain when using polygonal elements. We 

attribute this to the increased number of free nodes in a downstream polygonal 

element compared with a quadrilateral element, i.e. the boundary condition of two 

nodes with fixed head puts less constraint on the interpolation of h in an element 

as the number of nodes increases. 

2.1.3.3 Example 3 – Unconfined seepage through zoned earth dam with low 

hydraulic conductivity core and toe filter 

The final example that we examine is a more complex case involving a 

heterogeneous dam with a clay core and a toe filter, shown in Figure 2.14. The 

boundary conditions are fixed hydraulic head h of 60 m on the left boundary, zero 

pressure or h = y on the right boundary, zero flux on the left side of the bottom 

boundary and on the top boundary and fixed hydraulic head h of 0 m on the right  
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Figure 2.14 Schematic of Example 3 with an irregular polygonal mesh of 466 

elements and (inset) distribution of nodes per element for two similar irregular 
meshes 

side of the bottom boundary. The latter boundary condition represents a high 

hydraulic conductivity filter at the toe of the dam. We handle the mixed boundary 

condition at the meeting point of the impermeable and permeable parts of the 

bottom boundary by duplicating the node at that location. This example was 

examined previously by Lambe and Whitman [221] using flow nets, by Lacy and 

Prevost [204] using conventional FEM with a penalty function approach to 

integrating the element hydraulic conductivity matrix and by Bazyar and Graili 

[222] using scaled boundary FEM, among others. 

Our focus in this example is on comparing the results obtained using 

irregular polygonal meshes and the various shape functions for interpolating head 

in the domain of an element: Laplace [135,136], Wachspress [137], discrete 

harmonic [138] and metric coordinate [139]. Figure 2.14 shows a schematic of an 
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irregular polygonal mesh with 466 polygonal elements, of which most (>60%) are 

hexagonal elements. We also analysed the problem using two other irregular 

polygonal meshes with similar number and composition of elements, as shown in 

the inset of Figure 2.14. 

Figure 2.15 shows the results of the analysis for all three meshes and all 

four shape functions, a total of 12 analysis results. There is good agreement with 

the results of past studies by Lacy and Prevost [204] and Bazyar and Graili [222]. 

In particular, we note better agreement with the latter in in the clay core and with 

the former near the outflow at the filter. The solutions of the present study and of 

Lacy and Prevost [204] near the filter are in better agreement with the mechanics 

of potential flow described by the Laplace equation since the free surface, which 

is a streamline, is perpendicular to the constant head boundary at the filter, which 

is an equipotential line. It would appear that the updated mesh procedure 

employed in the scaled boundary FEM of reference [222] has difficulty achieving  

 
Figure 2.15 Free surface results for Example 3 using irregular polygonal meshes 

(n = 450, 454, 466) and various shape functions for interpolating h in the domain of 
the elements 
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this, insofar as the reported result implies. We observe excellent agreement 

between the results for the different irregular polygonal meshes, indicating 

negligible mesh sensitivity when using irregular polygonal meshes to solve 

continuous problems. There is no significant difference in the results when using 

the different shape functions, indicating that although the constraints specified for 

interpolating shape functions are not sufficient to provide a unique solution 

[140,142], they do constrain the form of the shape function enough that it does not 

significantly influence the location of the free surface within an element. 

2.1.4 Conclusions 

This study implemented a hybrid formulation and the consistent polygonal 

FEM approximation for steady potential flow through a saturated porous medium. 

A summary of key observations is as follows, 

• Interpolation of flux q inside polygonal elements satisfying mass balance 

a priori using interpolation based on a streamline function ψ(x) slightly 

improves global mass balance error. Having said that, the improvement 

in error is not very significant when compared with the error in the input 

data. 

• Analysis of unconfined seepage problems using hybrid quadrilateral 

elements may result in mesh sensitivity in terms of the shape of the free 

surface near constant pressure boundaries. Hybrid polygonal elements 

with more than four nodes alleviate this issue through increased 

flexibility of the interpolation of head inside the element. 
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• The free surface solution is not sensitive to the choice of conforming 

shape function for interpolation of head in the domain of hybrid 

polygonal elements. Any conforming shape function will provide an 

adequate solution, which reduces the choice to the relative computational 

efficiency of the shape functions, an analysis of which is outside the 

scope of the present study. 

The authors are presently engaged in extending the hybrid polygonal FEM for 

analysis of seepage through continua to the case of discontinua wherein the 

polygonal elements represent regions of intact material and significant seepage 

may occur in the pore or fracture networks between these regions. The results of 

the present study build confidence that sensitivities to mesh configuration in the 

discontinuous framework represent true physical behaviour and not artificial 

numerical influences produced by different configurations of polygonal elements 

or different interpolating shape function options. 
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3 Multi-scale Geomechanical Modelling using VCFEM-DEM 

3.1 Conference Paper #1: Simulation of lab scale tests on granular media 

using assumed stress polygonal finite elements and nonlinear joint 

elements2 

3.1.1 Introduction 

Granular materials such as sand and gravel are fundamentally different from 

continuous solids such as metals since they are composed of discrete solid grains 

that interact by sliding relative to one another [7]. Although one may approximate 

the macroscopic behaviour of granular materials through continuum models with 

volume-averaged properties, understanding the behaviour involving grain 

interactions at the micro-scale is fundamental to understanding the macroscopic 

behaviour. 

Equilibrium of contact forces between the grains governs their interaction 

with the stiffness associated with intergrain normal and shear deformation being 

 
Figure 3.1 Schematic of localized failure in granular material 

                                                 
2 Karchewski B, Guo P, Stolle D. Simulation of lab scale tests on granular media using assumed 

stress polygonal finite elements and nonlinear joint elements. Proceedings of the 67th 
Canadian Geotechnical Conference, Sep 28-Oct 1, Regina, SK, 2014. 

σ3

σ1
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significantly different from the stiffness of individual grain deformation. 

Modelling of inter-granular force equilibrium must adequately account for the 

details of grain interaction. Adjacent grains have negligible resistance to 

separation (tension), but high stiffness in compression. Shear deformation 

between grains may involve a recoverable elastic component as well as an 

unrecoverable sliding component if the applied shear exceeds the available 

frictional resistance. Existing models for this behaviour fit into three categories: 

micromechanical models [26,30,40,41,44,69,70,223,224], discrete element 

models with rigid or deformable grains [174-177,181,187-189] and material point 

models [184,185]. 

Micromechanical models examine the behaviour of granular materials by 

reducing the analysis to a small enough region that a continuum model explicitly 

accounting for individual grains through interface tracking becomes tractable. 

Such models use either Eulerian or arbitrary Lagrangian-Eulerian analysis 

tracking the particle behaviour in a volume of interest. Although this approach 

provides insight into the behaviour of granular materials at the micro-scale, they 

suffer from the inability to scale the region of interest even to the size of a 

laboratory test owing to the prohibitive computational cost. 

Discrete element (DEM) models typically assume the grains to be rigid 

bodies having simple shapes such as discs/spheres [175], ellipses/ellipsoids [178-

180,225] or polygons/polyhedra [174,176,177,181]. One determines if there is 

contact between these bodies through pair-wise comparison of overlapping 

volume. Models using spherical or ellipsoidal grains have the advantage of 

simplicity in detecting contact, but may not accurately reflect the grain shape of 
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many granular materials. Systems involving polyhedral grains or blocks more 

accurately represent the shape of geomaterials, but necessitate modelling of a 

greater number of interaction types: point-to-point, point-to-edge, point-to-face, 

edge-to-face and face-to-face. The common plane approach [176] reduces the 

number of tests required by testing two potentially contacting blocks for contact 

with a plane between them, rather than for direct contact with each other. Once 

DEM models determine which grains are in contact, they determine the normal 

contact force between grains in proportion to the overlapping volume of adjacent 

grains. Shear force transfer may be non-slip or may account for frictional 

resistance, which is proportional to the normal contact force and a material 

dependent friction coefficient. Grains may be rigid or deformable. The former is 

often preferred since the deformation of the grains is assumed small compared to 

the deformation caused by relative movement between grains and since methods 

for calculating deformation of particles having general polygonal shape are not as 

well established. When deformable polyhedral blocks are desirable, the blocks 

may be sub-discretized into an internal mesh of finite elements [181]. Recently 

developed DEM models involving deformable body elements, called combined 

FEM-DEM models, use a combination of body finite elements to represent linear 

elastic regions and interface finite elements to account for relative movement of 

these regions [187-189]. This approach has the advantage of reducing the 

complication involved in modelling many types of particle interaction, but models 

of this type have restricted the body element type to constant strain triangular 

finite elements, which do not provide accurate stress field approximation unless 

the mesh is greatly refined. In addition, the triangular shape of these elements 
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does not accurately reflect the shape of particles in granular media. This was 

sufficient for applications of the FEM-DEM to date, which were mostly related to 

modelling of fracture in rock and concrete. 

Models using the material point method (MPM) including a contact 

algorithm are a novel approach to modelling a variety of contact problems. 

Bardenhagen and co-workers [184,185] apply this approach to micro-scale 

analysis of granular materials and Jassim et al. [186] model macro-scale problems 

involving multiple material phases such as pile driving. In this approach, material 

points carrying information about material properties, stresses and velocities 

move through a fixed calculation grid. The solution at each time step uses an 

explicit algorithm involving three main parts: solution of velocities assuming all 

material points are a single body, solution of velocities for each individual body 

ignoring the influence of surrounding bodies and velocity correction based on the 

difference between the velocities determined in the first and second phases. The 

velocities from the first two phases will differ only when bodies are interacting. In 

the context of micromechanical modelling, this approach can handle grains of 

arbitrary shape and has the advantage of not requiring pair-wise comparison to 

determine which specific grains are interacting. The disadvantages of such models 

are that they may require many material points to represent each grain and that the 

explicit solution algorithm requires small time steps leading to simulations that 

are computationally expensive even for a modest number of grains. 

It is worth noting that all of the above methods have the advantage of being 

able to capture anisotropy in granular materials naturally through the initial 

topology of the set of grains. This is in contrast to continuum-based methods, 
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which analyze granular materials at the macro-scale and must resort to complex 

constitutive models to capture anisotropy [cf. 15,16]. Furthermore, since 

continuum-based models smear the effects of grain interactions at the micro-scale, 

they do not provide a means of examining the mechanism of failure in granular 

materials. 

The present work presents a form of FEM-DEM model in which the body 

elements are deformable, have convex polygonal shape and provide accurate 

internal stress field approximation. The model accomplishes this by using hybrid 

assumed stress polygonal elements to represent the grains or representative 

volumes of grains and joint elements with non-linear constitutive behaviour to 

represent the interaction between body elements. The unrecoverable component 

of deformation resulting from frictional sliding in the joint elements satisfies the 

Coulomb yield criterion. 

The remaining sections of this paper provide a brief overview of the model 

formulation, preliminary numerical results modelling biaxial tests on granular 

material, a discussion of observations from the numerical results and some 

concluding remarks including future steps in the model development and 

application. 

3.1.2 Formulation 

The FEM-DEM model presented here consists of two types of element: 

polygonal body elements representing grains or representative volumes of 

granular material and non-linear joint elements modelling the interaction between 

grains. This section presents an overview of the formulation of both element types 
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and a summary of the iterative solution algorithm for non-linear behaviour. The 

present work restricts itself to the case of static equilibrium for simplicity, 

although the non-linear solution algorithm is extendable to dynamic analysis and 

future work will examine this extension. The present work also assumes a priori 

knowledge of the pair-wise contiguity of body elements, which does not change 

during the course of the analysis. Future developments involving dynamic 

analysis including post-failure behaviour will necessitate additional steps to 

update this contiguity. 

3.1.2.1 Polygonal body elements 

The formulation of the polygonal body elements representing grain 

deformation follows a hybrid principle that Pian [149] proposes and Tong and 

Pian [150] formalize. The original developers noted that one might implement 

such a hybrid principle in polygonal elements with an arbitrary number of nodes 

[150], but practical implementation for polygons with 5 or more nodes was not 

presented until later by Ghosh and co-workers [152,153]. Ghosh and Moorthy 

[155] extend the formulation to allow for non-linear behaviour in hybrid 

polygonal elements. The present work assumes linear elastic behaviour in the 

polygonal body elements since the joint elements account for the non-linear 

response. 

Following Tong and Pian [150], the formulation of the body elements 

begins with a modified statement of total complementary energy that also includes 

an interface potential, which accounts for traction equilibrium between elements, 

 ( ) ( ) ( )* 11
2

ˆ,
e e t

TT T T
MCE e

V S S

dV dS dSσ
−  = −Π ′ ′ ′ + ′ − ∫ ∫ ∫* *σ u σ σ n σD u tu   (3.1.1) 
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Figure 3.2 Discretization in hybrid VCFEM 

where Ve is the volume of the polygonal element, Se is the outer surface of the 

element, St is a surface over which there is an applied traction, 

σ′ = { σxx′, σyy′, σxy′ }T represents the effective stress tensor, De-1 represents the 

elastic compliance tensor relating strain to stress, u* = { ux, uy }T is the 

displacement along the surface Se, nσ represents the outward pointing unit normal 

of the element, t̂ is an applied traction and {⋅}T represents the transpose operation. 

The formulation herein uses the compact Voigt notation to represent symmetric 

tensors as vectors and matrices. For plane strain analysis, 
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where E is the elastic modulus, ν is the Poisson ratio and subscripts {⋅}x and {⋅}y 

refer to the horizontal and vertical coordinate directions, respectively. 

Interpolation of stress in the element interior is of the form, 

 σ σ′ =σ P β   (3.1.4) 
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where Pσ contains a set of polynomial basis functions satisfying equilibrium 

(e.g. using Airy’s stress functions) and βσ is a vector of unknown coefficients. 

Interpolation of displacement on the element boundary is, 

 *
u u=*u N a   (3.1.5) 

where N contains linear shape functions interpolating between the adjacent nodal 

values of displacement a* along the boundary of an element. Substituting 

equations (3.1.4) and (3.1.5) into (3.1.1) gives, 
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The analysis herein performs the integration of equation (3.1.7) using the 

technique for construction of exact quadrature over a convex polygonal domain 

described by Mousavi and Sukumar [217] and the surface integrations in 

equations (3.1.8) and (3.1.9) using standard Gaussian quadrature rules. Allowing 

the first variations of equation (3.1.8) with respect to unknowns βσ and au to 

vanish and noting that the βσ coefficients need not be continuous between 

elements gives, 

 1
u uσ σσ σ

−=β H G a   (3.1.10) 
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where Tong and Pian [150] state the requirements for rank sufficiency and 

invertibility of Hσσ. Substituting equation (3.1.10) into equation (3.1.6) gives the 

functional ΠMCE in terms of unknown au only, 

 [ ] 1
ˆ2

T T
MCE u u uu u u tΠ = −a K a a Fa   (3.1.11) 

where Kuu is the element stiffness matrix, 

 1T
uu u uσ σσ σ

−= G H GK   (3.1.12) 

For a more detailed discussion of the origin, formulations and applications 

of hybrid finite elements, refer to [146-148]. Ghosh [157] provides further details 

within the context of polygonal hybrid elements. 

3.1.2.2 Non-linear joint elements 

The formulation herein accommodates the deformation component due to 

relative movement between grains (compression, separation and/or sliding) using 

a form of non-linear joint element proposed by Stolle and Guo [226] in the 

context of slope stability analysis. Evaluation of joint element stiffness begins by 

examining the strain energy increment for an element, 
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Figure 3.3 Schematic of nonlinear joint element 
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where Δε̃ = δe-1Δũ is the strain increment, δe is a small distance representing the 

thickness of the joint element, Δũ is the relative displacement increment between 

the “top” and “bottom” of the joint element, σ′̃ is the initial stress state, Δσ′̃ is the 

stress increment and superposed ~ indicates that a variable is in the local 

coordinate system of the joint element. The stress increment Δσ′̃ is related to the 

strain increment through the constitutive relation, 
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The tangent shear modulus G follows the non-linear relation, 

 r
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Aξ ξε
= −

+
  (3.1.15) 

where Gr is the residual shear modulus at high shear strain, we define the 

Coulomb yield function as F = |σξ| + σηtan(φ′) – c′ ≤ 0 and Aξ is a model parameter 

that prevents the denominator from vanishing when the shear displacement is zero 

and defines the shape of the shear stiffness degradation curve. The tangent 

constrained modulus M is constant in compression and diminishes rapidly in 

tension, 

 
0 0

0r

M
M

M
A

η

η
η

η η

ε
κ

ε
ε

 ≤

=
+ >

+






  (3.1.16) 

where M0 is the constrained modulus in compression, Mr is the residual 

constrained modulus in tension and κη and Aη = κη / (M0 – Mr) are model 

parameters defining the shape of the normal stiffness degradation curve. The 

relative displacement of the joint elements are linearly interpolated between nodes as, 
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 u u= Nu a



   (3.1.17) 

where Ñu contains interpolating shape functions and ãu is a column vector of 

nodal displacements in local coordinates. For a joint element with 4 nodes 

numbered locally in counter-clockwise order and linear interpolation of relative 

displacement, the interpolation matrix Ñ is, 

 1 2 2 1

1 2 2 1

0 0 0 0
0 0 0 0
N N N N

N N N N
− − 

=  − − 
N   (3.1.18) 

where N1 = 1-ξ, N2 = ξ, ξ = √[(x-x1)2 + (y-y1)2]/le, { xi, yi } are the global 

coordinates of node i and le is the length of the interface element. The nodal 

displacements are transformed from global to local coordinates using the familiar form, 

 u u=a Ta   (3.1.19) 

where T is, 
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  (3.1.20) 

and the matrix T0 rotates the coordinate system at a point, 

 
cos sin
sin cos
θ θ
θ θ

 
 −

=


0T   (3.1.21) 

where θ = tan-1[(y2-y1)/(x2-x1)] defines the orientation of the interface element. 

Substituting equations (3.1.14), (3.1.17) and (3.1.19) into (3.1.13) gives the strain 

energy increment as, 

 ( )1
(

1
)2

e

u
T T T T

e u e u u u i
V

udU Vδ −∆ = ∆ ′ ∆ ∆+∫a T N σ a K a

   (3.1.22) 

where Kuu(i) is the tangent stiffness matrix defined as, 
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 ( )2
( )

e

T T
uu i e u u

V

dVδ −= ∫ T N DN TK     (3.1.23) 

The analysis herein performs the integrations in equations (3.1.22) and (3.1.23) 

using standard Gauss quadrature rules. 

For a finite relative displacement increment Δũ at an integration point, 

equation (3.1.14) only provides an estimate of the stress increment Δσ̃′. To correct 

the stress state according to elastic perfectly plastic behaviour, the implementation 

herein uses a stable return mapping algorithm [227,228] wherein the estimated 

stress state σ̃′* is, 

 ′ = ′ + ∆ ′*σ σ σ     (3.1.24) 

If the failure function F*(σ̃′*) ≤ 0 then it is an elastic step. Otherwise, use a first 

order Taylor series expansion of the yield function about the estimated stress state, 

 * 0
TFF F ∂ + ∆ ′ ∂ ′

=


= *
* σ

σ




  (3.1.25) 

and write the stress correction Δσ̃′* using an associated flow rule, 

 Fµ ∂ ∆ ′ = −∆  ∂ ′ 
*

*σ D
σ





  (3.1.26) 

where Δμ is determined by substituting equation (3.1.26) into (3.1.25) to obtain, 

 
*

e

F
Hµ∆ =   (3.1.27) 

where, 

 
T

e
F FH ∂ ∂   =    ∂ ′ ∂ ′   * *σ σ

D
 

  (3.1.28) 

Finally, the stress state and yield function are updated iteratively according to, 
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 fλ ∂ = −  ∂ 
* *

*σ σ k
σ

  (3.1.29) 

 * *
eF HF µ= − ∆   (3.1.30) 

until F* ≤ 0. It is therefore necessary to incrementally increase the applied load, 

iteratively estimating displacement increments and correcting the stress state until 

the residual of the sum of external (applied) tractions and internal forces 

approaches zero. 

3.1.2.3 Average strain measure 

In examining the results of numerical examples simulating biaxial tests on 

granular material, it is of interest to calculate an average strain measure to 

determine the degree of induced anisotropy. Define the average strain as, 

 1
V

V

dV= ∫ε ε   (3.1.31) 

where for plane strain analysis ε = { εxx, εyy, γxy }T = { ∂ux/∂x, ∂uy/∂y, (∂ux/∂y + ∂uy/∂x) }T 

is the engineering strain and V is the total volume of the domain. Based on the 

application of Green’s theorem, which allows transformation of an area integral 

into a contour integral on a closed contour S, 

 ( ) ( )
A S

ddA S=∇ ⊗∫∫ ∫ u nu   (3.1.32) 

in which u is the displacement in the domain, n is the outward pointing unit 

normal to the domain and ⊗ represents an outer product between two vectors. 

Taking S as the outer surface of the analysis domain, as Figure 3.4 shows, the 

average strain contained by the contour is, 
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Figure 3.4 Schematic of contour used to compute average strain measures 
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One can then determine the average principal strains as, 

 ( ) ( )2 21
1,3 2 xx yy xx yy xyε ε ε ε ε γ±= + − +   (3.1.34) 

The remaining sections demonstrate the performance of the VCFEM-DEM 

formulation with deformable polygonal body elements and joint elements with 

nonlinear constitutive behaviour by simulating plane strain biaxial compression 

on granular materials. 

3.1.3 Numerical Examples 

Figure 3.5 shows representative meshes used to simulate biaxial compression on a 

granular material. The domain has a height of 0.15 m and a width of 0.05 m and 

the analysis assumes plane strain conditions. The coarse, medium and fine meshes 

have 75, 192 and 432 body elements and 186, 513 and 1201 joint elements, respectively. 
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Figure 3.5 Representative meshes with 75 (left), 192 (centre) and 432 (right) body 

elements 

Fixed vertical displacement along the bottom boundary and fully fixed conditions 

at the bottom left node define the kinematic boundary conditions. Simulation of 

biaxial compression consists of two analysis phases for the natural boundary 

conditions: uniform consolidation up to a confining pressure of 200 kPa followed 

by shear failure induced by increasing the vertical stress. 

The body elements have an elastic modulus E = 50.0×106 kPa and Poisson’s 

ratio ν = 0.3. Stolle and Guo [226] in examining slope stability using joint 

elements with the stiffness model described in Section 3.1.2.2 suggest that the 

ultimate load capacity predicted by the model is insensitive to the joint element 

stiffness parameters. These parameters should only influence the shape of the 

stress-strain curve with the strength parameters φ′ and c′ dictating the ultimate 

resistance. Shear deformation between particles of a granular material occurs 

more readily than shear deformation of the particles themselves and 

interpenetration of particles is not possible. Therefore, the shear stiffness of joint 
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elements should be significantly less than the shear stiffness of body elements and 

the normal stiffness of joint elements should be significantly higher than the 

constrained modulus of the body elements. For the analysis herein, we define the 

stiffness of joint elements as Gr = 1×103 kPa, Aξ = 1×10-5, M0 = 1×108 kPa, 

Mr = 1×106 kPa, κη = 1 kPa and Aη = 1.01×10-8. One may consider these as curve 

fitting parameters that one should calibrate to the shape of the stress-strain curve 

obtained from laboratory results. To simulate a cohesionless granular material, the 

analysis herein assumes the interface strength parameters as φ′ = 30° and 

c′ = 0 kPa. 

3.1.4 Results and Discussion 

The results of biaxial compression simulation demonstrate stress-strain 

curves that are representative of laboratory compression testing results. Figure 3.6 

shows representative stress-strain curves for the various levels of mesh 

coarseness. Note that as the number of elements increases, the initial stiffness of 

the system decreases owing to the greater flexibility of the system resulting from a 

greater number of joint elements. This implies that values of joint element 

stiffness calibrated to laboratory results depend on the level of mesh refinement 

used in calibration. Further examination of the relationship between joint element 

stiffness coefficients and level of mesh refinement is required. 

The maximum principal stress differences at failure (under confining 

pressure of 200 kPa) for the simulations shown in Figure 3.6 are 442 kPa, 

488 kPa, 541 kPa for the coarse, medium and fine meshes, respectively. These are 

consistent with bulk friction angles in the range 30° to 35° for joint element friction 



3. Multi-scale Geomechanical Modelling using VCFEM-DEM Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 100 

 
Figure 3.6 Representative stress-strain curves for meshes with different degrees of 

refinement 

angle of 30°. There is an apparent increase in peak load with number of elements 

for the curves shown. Note, however, that these are representative curves taken 

from single trials rather than average curves and some variation exists when 

holding the number of elements constant and varying the initial arrangement of 

body elements. This reinforces the observation that calibrated strength and 

stiffness properties in the proposed model depend on the mesh coarseness in the 

model. This is owing to the fact that large body elements do not represent 

individual grain properties, but rather volume averaged properties. As the body 

elements become smaller, the properties should approach that of grains of intact 

material. Understanding of how to calibrate the body and joint element properties 

for field scale analyses requires further investigation. 

Formation of classical “shear band” failure occurs at different levels of 

mesh coarseness, as Figure 3.7 illustrates. Depending on the initial topology of the 

elements representing the grains, it is also possible for localized failure modes to 

develop. Figure 3.8 shows examples of localized failures, partially attributable to 

the traction boundary conditions, which act directly on the body elements representing 
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Figure 3.7 Plot of failure mode for representative meshes with 75 (left) and 192 

(right) body elements (displacements magnified 23x for plotting) 

 
Figure 3.8 Examples of localized failure modes for meshes with 192 (left) and 432 

(right) elements 

the granular material. In a real laboratory experiment, a rigid loading cap exists to 

maintain a level surface at the top of the specimen. Further testing to determine 

whether the presence of elements representing the loading cap eliminates 

development of localized failure in simulations is necessary (see Sections 3.2 and 3.3). 
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Figure 3.9 shows a plot of principal strains at the end of the isotropic 

consolidation phase. The diagonal line is the isotropic strain line along which one 

would expect strains in an isotropic material to plot under isotropic stress 

conditions. Examination of the plot shows evidence that anisotropic strain 

conditions can develop under isotropic consolidation owing to the configuration 

of the grains (elements). Liu et al. [229], for example, observed this behaviour in 

tests on sand. The predicted principal strains after isotropic consolidation at 200 

kPa were found to increase with the number of elements owing to the increased 

flexibility of the system from an increased number of joint elements. In generating 

sample meshes, randomized packing of polygonal elements was achieved by 

shifting alternate rows or columns of element centroids in the horizontal or 

vertical directions, respectively, followed by randomized shifting of element centroids. 

 
Figure 3.9 Plot of principal strains (contraction positive) after isotropic 

consolidation at 200 kPa 
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The resulting meshes therefore were more likely to have many joint elements 

oriented close to the vertical or horizontal directions, respectively. One can see 

examples of the former in the 75 and 192 element meshes and of the latter in the 

432 element mesh in Figure 3.5. Examination of Figure 3.9 reveals that this 

anisotropy of joint element orientation has an influence on the degree of induced 

strain anisotropy, which may indicate a similar effect to that of “bedding planes” 

in real granular materials. Further investigation of the influence of joint element 

orientation on the degree of induced strain anisotropy is required to establish a 

clear relationship. 

3.1.5 Conclusions and Future Work 

This paper presented a formulation for a hybrid Voronoi cell finite-discrete 

element method (VCFEM-DEM) using polygonal body elements with linear 

elastic deformation and interface elements with nonlinear constitutive behaviour 

to represent interactions between body elements. Numerical examples 

demonstrated the capacity of this model to simulate the shear deformation of 

granular material at the laboratory test scale. Examination of the results showed 

that the ultimate load capacity of the system depends on the strength parameters 

of the joint elements, with influence from mesh coarseness and arrangement. 

Calibration of stiffness and strength parameters in the model from laboratory data 

is thus valid for a specified level of mesh coarseness. The initial topology of the 

mesh influences both the failure mode and the degree of induced strain 

anisotropy, as one would expect for real granular materials, owing to the influence 
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of particle shape and the orientation of the bedding plane during particle 

deposition. 

The present work limited the analysis to static equilibrium and small 

displacements in which the contiguity of neighbouring body elements remained 

constant throughout the analysis. In order to simulate post peak conditions and 

dynamic loading, future work will extend the present analysis to account for 

dynamic equilibrium and potential changes in body element contiguity in the 

course of the analysis. Future work should also include parametric studies on the 

influence of the body and joint element stiffness properties on the shape of the 

stress strain curve as well as the influence of joint element orientation on the 

degree of induced strain anisotropy. 
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3.2 Conference Presentation #1: Simulation of lab scale tests on granular 

media using assumed stress polygonal finite elements and nonlinear 

joint elements3 

3.2.1 Introduction 

We examine here the results of additional quasi-static simulations of biaxial 

compression of granular material using the model presented in Section 3.1. We 

are interested in the influence of the grain structure or “fabric” of the material – a 

grain-scale property of the material – on the development of the global failure 

mode and formation of localized failures. In other words, how does the 

microstructure of the material influence its macroscopic behaviour? The following 

section provides further discussion of the results in Section 3.1.4 and presents 

additional results of a simulation of biaxial compression of a uniform medium to 

coarse sand with a nominal grain diameter of approximately 1 mm. 

3.2.2 Results and Discussion 

Typically, in continuum-based modelling, one should ensure that the results 

are not sensitive to the mesh [cf. 166,167,170-173], as the mesh is a numerical 

abstraction not representing a real property of the material. Even in some hybrid 

FEM-DEM modelling approaches using representative volumes of discrete 

elements, mesh sensitivity is something to be eliminated since the orientation and 

division between these representative volumes is arbitrary. Such models capture 

                                                 
3 Karchewski B, Guo P, Stolle D. Simulation of lab scale tests on granular media using assumed 

stress polygonal finite elements and nonlinear joint elements. Presented at the 67th 
Canadian Geotechnical Conference, Sep 28-Oct 1, Regina, SK, 2014. 
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localized shear strains and shear banding developing as a result of stress 

concentrations at the boundaries [81,166], local variations in void ratio and 

density [100] or on prescribed orientations determined by the mesh [164,170]. 

Capturing shear banding on prescribed planes by preparing the mesh or fabric in 

such a manner only demonstrates that an obviously weaker zone will govern the 

failure, as one would expect. 

In Figure 3.7, we saw that the present modelling framework is capable of 

capturing strain localization in simulations of biaxial compression tests. Figure 

3.10 shows additional examples of this phenomenon. We emphasize that in these 

results, strain localization develops primarily because of local variations in grain 

structure. Another way of saying this is that the results of the simulation are 

sensitive to the mesh configuration, which is often viewed as a negative feature in 

the finite element literature. However, in this case the mesh is not an arbitrary 

numerical abstraction, but rather represents a physical property of the granular material: 

 
Figure 3.10 Additional examples of strain localization observed in biaxial 

compression simulations 
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the material’s fabric or structure. There was no need to introduce artificial local 

variations in void ratio (or joint strength, or joint stiffness). Stress concentrations 

near the boundaries were not necessarily the driving factor in the strain 

localization. Wang et al. [164,172] capture this with a kinematic remeshing 

technique using discrete finite elements in which they generate special shear band 

elements after detecting strain localization. However, this approach requires the a 

priori specification of shear band thickness as a material property, and ultimately 

remains continuum based in that it does not capture the influences of grain 

structure. Samaniego and Belytschko [173] capture shear banding using the 

extended finite element method in a method similar to fracture mechanics, and the 

criterion used to generate shear band propagation is the loss of hyberbolicity of 

the initial boundary value problem. Their approach is apparently capable of 

generating shear bands of arbitrary orientation, although their presented examples 

only show shear bands propagating from stress concentrations at boundary 

conditions or from imperfections specified a priori. The present results differ in 

that they harnesses mesh sensitivity in a manner that captures physical influences 

of grain structure, though we use a continuum-based FEM formulation for both 

the body elements and the joint elements. The primary advantages are that we 

obtain details about the stresses in the grains, we accurately model the constitutive 

behaviour of the frictional contacts and we obtain detailed information about the 

joint orientations, stresses and strains throughout the simulation. A disadvantage 

of the present modelling framework is that we model all particle contacts as edge-

edge contacts – or at best, we average the effect of point-edge and point-point 

contacts locally as an equivalent edge-edge contact. In the present form of the 
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model, we also assume that the contact relations between particles do not change 

throughout the simulation, which limits the analysis to small strains. We could 

overcome the latter by incorporating a contact detection step, such as that of 

Cundall [174,176], into the analysis, but careful consideration would need to be 

given to how the characteristic length and nonlinear joint stiffness coefficients 

should be initialized for new contacts. 

We observed in Figure 3.8 that localized failure develops near boundary 

tractions during load-controlled simulations not modelling the loading cap 

explicitly. This behaviour is not artificial, since if one loaded granular material in 

a laboratory directly, one would expect similar localized failures. In laboratory 

tests, one prevents this by using a stiff loading cap to ensure that the load spreads 

evenly to the top of the specimen. We alleviated this issue in subsequent 

simulations in the same manner, by modelling a loading cap and the frictional 

contacts between the loading cap and the granular material explicitly. 

Figure 3.11 shows the deformation pattern at failure of a simulation of a test 

on a uniform sand (d ≈ 1 mm), along with the material properties of the body and 

joint elements. For this grain size, the mesh consists of 9168 body elements and 

23 300 interface elements in the granular subdomain. The properties of the joint 

elements at the cap-granular boundary were taken as the same as those of the 

internal granular contacts. As the cap is not a granular material, the properties of 

the joint elements were set such that only linear elastic behaviour occurred. 

We observe in Figure 3.11 a deformation pattern that is typical of laboratory 

compression tests on granular material with greater lateral deformation in the 

middle of the specimen than near the boundaries. We carried out the simulation  
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Figure 3.11 Biaxial compression test on uniform sand under confining pressure of 

200 kPa and peak deviatoric stress of 398 kPa. Displacements magnified by 
approximately 350x for plotting. 

with a constant lateral confining pressure of 200 kPa, which gave a peak 

deviatoric stress of 398 kPa. These results imply an internal friction angle of 

29.8°, which is consistent with the joint contact friction angle of 30°. Therefore, 

the results are qualitatively and quantitatively similar to what one would observe 

in a typical laboratory test on such material. 

We now examine the additional information about the internal behaviour of 

the specimen provided by the simulation results. Figure 3.12 (inset) and Figure 

3.13 show the grain structure and the distribution of contact normal directions, 

respectively, being irregular hexagons with contact normals primarily at angles of 

60n° for n ∈ {1, 2, …, 5}. Figure 3.12 also shows the pattern of failed joint 

elements at the peak deviatoric stress. That is, joint elements that reached the 

Coulomb yield criterion and required stress correction in the final calculation step. 

We observe a distinct wedge shape formed below the loading cap, which we  

0.05 m

0.15 m

Loading cap:
Aluminum
E = 70 GPa

ν = 0.33

Grains (d ≈ 1 mm):
Granite/feldspar

E = 50 GPa
ν = 0.33

Joints:
ϕ = 30°

c = 1 kPa
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Figure 3.12 Failed joint elements in biaxial compression test on uniform sand under 

confining pressure of 200 kPa and peak deviatoric stress of 398 kPa and 
(inset) detailed image of grain shape and failure pattern. 

 
Figure 3.13 Histogram of joint element normal directions 

attribute to the frictional behaviour at the cap-granular interface. However, the 

width of the loading cap does not govern the side angles of the frictional wedge, 

but rather they make an angle of approximately 60° with the horizontal. This 

failure plane angle is consistent with that predicted by the well-known Mohr-

61.5°59.7°
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Coulomb failure criterion, which is 45° + φ′/2 where φ′ ≈ 30° in this case. This 

result also demonstrates why laboratory compression tests on granular material 

are not true material tests since the stress and strain conditions in the specimen are 

not uniform, a remark made by several others [cf. 230]. 

We also observe the shear stress distribution in the granular elements, as 

Figure 3.14 shows, for evidence of strain localization. The shear stress in the grain 

elements at a peak deviatoric stress of 398 kPa is between 400 kPa and 500 kPa. 

The range of shear stresses in the grains is consistent with the peak deviatoric 

stress level, but slightly higher in magnitude owing to the non-uniform stress 

distribution in the specimen. Since the granular elements have linear elastic 

constitutive behaviour, zones of high shear stress correspond directly to zones of 

shear strain localization. Examining a representative volume of grains in the inset  

 
Figure 3.14 Shear stress in the grains in biaxial compression test on uniform sand 

under confining pressure of 200 kPa and peak deviatoric stress of 398 kPa and 
(inset) a detailed view of patterns of high shear stress and strain localization 
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of Figure 3.14, we observe that the distance separating zones of high shear stress 

– that is, the size of the shear band – is approximately 3-20 grains, which is 

consistent with observations in the literature [80,88,89,93,94,101]. We observe in 

the present set of simulation results that the orientation of the bands of high shear 

stress is consistent with the orientation of the failure planes developed beneath the 

loading cap. We observe in the inset of Figure 3.14 that the orientation of these 

planes results from the grain structure rather than from any artificial influences at 

the boundaries. However, the formation of bands of high shear stress is chaotic in 

the sense that it is highly sensitive to local variations in particle orientation and 

angularity, making it difficult or impossible to know a priori where such a plane 

will form. 

3.2.3 Conclusions and Future Work 

We examined the results of laboratory scale simulations of granular material 

obtained using the modelling framework presented in Section 3.1. The simulation 

results show behaviour consistent with what one would observe in laboratory 

compression tests on granular material. Additionally, we observed in the 

simulation results detailed information about the internal response of the 

specimen to the loading conditions. We captured strain localization in the 

specimen that resulted from the granular structure of the specimen rather than 

artificial influences such as the boundary conditions or arbitrary variations in 

material properties or mesh configuration assigned a priori. 

Having successfully modelled laboratory scale results on dry granular 

material within this framework, we aim to extend this work in two directions. In 
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Sections 3.3, we examine the influence of grain structure on failure patterns in 

laboratory biaxial compression tests using a dynamic VCFEM-DEM formulation 

coupled with tangent eigenanalysis. In Section 3.4, we analyse subsurface stress 

distributions at the field scale to understand how grain structure affects the 

transfer of gravity loads. In future work, we aim to combine the VCFEM-DEM 

for the solid component of granular material with the modelling of flow through 

discrete pore or fracture networks using the model described in Section 2.1 to 

obtain a hydro-mechanical coupled model of granular material behaviour. Toward 

this goal, Section 4.1 first examines a coupled VCFEM model incorporating the 

seepage analysis of Section 2.1 with a continuous VCFEM model for solid 

mechanics, i.e. not modelling granular contacts. 
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3.3 Journal Paper #2 / Conference Paper #2: Multi-scale analysis of 

deformation modes in granular material using a dynamic hybrid 

polygonal finite element-discrete element formulation4 

3.3.1 Introduction 

To understand the behaviour of granular materials, it is important to realize 

that they differ fundamentally from solids such as metals. Whereas one may 

consider metals to be continuous solids even at the microscopic scale, granular 

materials consist of discrete solid grains – often visible to the naked eye – that 

interact by frictional sliding. This fundamental difference has captivated 

researchers from the age of enlightenment [10], through the 19th and early 20th 

centuries [2,32,107] up to the present day [7,231]. Indeed, the distinctly different 

manner in which granular materials behave compared with solids, liquids and 

gasses has led some to classify them as a distinct form of matter [18,232]. Many 

of the details of phenomena observed in granular material behaviour are not fully 

understood, and a complete review of the literature is outside of the scope of this 

article; we refer to Section 1.1.2 and references [7,18,26,64,69,70,108,110-

114,232] for further details. In engineering science and géotechnique, it often 

suffices to approximate the macroscopic behaviour of granular materials using 

continuum models with volume-averaged properties. However, we must contend 

that a true understanding of the behaviour of granular material necessitates a 

multi-scale analysis accounting for particle interactions and their influence on 

                                                 
4 Karchewski B, Guo P, Stolle D. Multi-scale analysis of deformation modes in granular material 

using a dynamic hybrid polygonal finite element-discrete element formulation. Submitted 
07/2015 to the 4th GeoChina International Conference, July 25-27, Shandong, China. 
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macro-scale behaviour. This is particularly true in cases where there is significant 

strain localization, which may occur at the laboratory scale in the form of shear 

banding and at the field scale when slopes fail. 

The key features that govern the dynamic behaviour of assemblies of grains 

are the equilibrium of normal and tangential contact forces between grains and the 

dissipative frictional sliding that occurs when grains interact. The grains 

themselves may be considered rigid or deformable. The former is certainly an 

attractive assumption when “grains” in the model correspond to individual 

physical grains since the deformation of a grain assembly is governed by relative 

motion of grains. Incorporating deformable “grains” into the model allows 

scalability from lab scale to field scale behaviour [cf. 233,234], where in the latter 

case grains in the model are representative volumes of the geomaterial. Modelling 

of the inter-grain force equilibrium must adequately account for the fact that 

grains have negligible resistance to separation, high stiffness in compression and 

nonlinear dissipative constitutive behaviour in shear. We divide models for strain 

localization in granular materials into four broad categories: i) micromechanical, 

ii) discrete or distinct element (DEM), iii) material point method and iv) finite 

element with element enrichment accounting for strain localization. We shall 

discuss each briefly to put the model presented herein in context. 

Micromechanical models reduce the analysis to a small enough region that a 

model explicitly accounting for individual grains and tracking their interactions 

with a high level of detail becomes tractable [26,30,40,41,44,69,70,223,224]. This 

form of model uses Eulerian, arbitrary Eulerian-Lagrangian or micropolar 

Cosserat continuum mechanics equilibrium equations with appropriate boundary 



3. Multi-scale Geomechanical Modelling using VCFEM-DEM Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 116 

conditions and interface tracking to track all particles and interfaces in a volume 

of interest. This approach certainly allows detailed analysis of the behaviour of 

granular materials at the micro-scale, but lacks the ability to up-scale the region of 

interest owing to the exponentially increasing computational cost of tracking 

many individual particles and interfaces. 

Discrete element (DEM) models reduce the complexity involved in 

micromechanical models by introducing grain elements having simple shapes 

such as discs/spheres [175], ellipses/ellipsoids [178-180,225] or 

polygons/polyhedra [174,176,177]. This approach simplifies the analysis of the 

behaviour at contacting interfaces, with the contact between grains determined 

through pair-wise comparison of overlapping volume. Clearly, models using 

simpler grain shapes such as spheres or ellipsoids make detection of contact 

easier, but may not accurately reflect the grain shape of many granular materials 

that have angular or subangular grains. Polyhedral grains better represent such 

granular materials, but require tracking of a larger number of interaction types 

(point-to-point, point-to-edge, point-to-face, edge-to-face, face-to-face). 

Cundall [176] introduces the common plane approach to reduce the number of 

tests required by testing only for contact with a plane between two potentially 

contacting blocks. The normal force between contacting grains is proportional to 

their overlapping volume. The shear force transfer may be non-slip if frictional 

dissipation is not of interest, or may account for frictional sliding using Coulomb 

frictional resistance. Grains may be rigid or deformable with the former preferred 

when the deformation of the grains is small compared to the deformation caused 

by relative movement between grains. When deformable polyhedral blocks are 
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desirable, the blocks are typically discretized into an internal mesh of finite 

elements [181]. A novel approach developed recently called FEM-DEM [187-

189] uses a combination of body finite elements to represent linear elastic regions 

and interface finite elements to account for the nonlinear behaviour associated 

with fracture propagation. This approach has the advantage of reducing the 

complication involved in modelling many types of grain interaction, but sacrifices 

the ability to model large strain behaviour wherein the contact relationships 

between grains may change. 

Material point method (MPM) models including a contact algorithm have 

been used to model a variety of micro-scale contact problems [184,185] and 

macro-scale problems involving multiple material phases [186]. The “material 

points” carry relevant calculation data – material properties, stresses, velocities – 

and move through a fixed calculation grid. The solution at each time step uses a 

three part explicit algorithm to account for interaction between contacting bodies. 

The first step solves for the material point velocities assuming all material points 

are part of a single body. The second step solves for the material point velocities 

for each individual body (grain) ignoring the influence of surrounding bodies. The 

third step corrects the velocities based on the difference between the velocities 

determined in the first and second phases, presuming that these will differ only 

when bodies are interacting. This approach can handle grains of arbitrary shape 

and does not require pair-wise comparison to determine which specific grains are 

interacting. The MPM approach is novel, but when modelling granular materials it 

suffers from similar disadvantages to micromechanical models, viz. requiring 

many material points to represent each grain and small numerical time steps, 
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leading to simulations that are computationally expensive even for a modest 

number of grains. 

The present work uses a type of FEM-DEM model to capture multi-scale 

behaviour in granular materials. The model uses polygonal Voronoi cell elements 

to represent the grains, hence we call the model VCFEM-DEM. Previous work by 

the present authors [233] demonstrated a form of this model based on static 

equilibrium. The present work extends this modelling framework to account for 

dynamic behaviour, which allows modelling of the post-failure response when 

strain softening occurs. We model the interactions between grains using a type of 

interface element accounting for nonlinear constitutive behaviour. Section 1.1.4 

provided a review of the literature on finite elements for modelling interfaces and 

strain localization, so we do not repeat it here. The interface elements in the 

present study use a combined volumetric deviatoric hardening flow plasticity 

formulation. Section 3.3.2 describes the formulation, Section 3.3.3 presents 

representative results of biaxial compression simulations and Section 3.3.4 

summarizes the important contributions of the present study. 

3.3.2 Formulation 

3.3.2.1 Governing Equations 

Figure 3.2 and Figure 3.3 schematically represent the discretization of a 

domain V into subdomains Ve representing grains and Vi representing interactions 

between grains. The equation governing the dynamic momentum balance for the 

overall grain structure in V is, 
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 T
uσρ ρ= +u L σ g   (3.3.1) 

where ρ is the material density, u = { ux, uy, uz }T represents the displacement 

field, σ = { σxx, σyy, σzz, σxy, σyz, σzx }T is the total stress tensor written in Voigt 

vector notation [cf. 116] and g is a vector representing the body acceleration field. 

We ignore body forces herein for simplicity since the focus is on biaxial 

compression test simulations, which is to say that g = 0 in the present work. 

Superposed dots represent derivatives with respect to time t and Lσu is a linear 

differential operator defined in matrix notation as, 

 

0 0 0

0 0 0

0 0 0

T

u

x y z

y x z

z y x

σ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂

 
 
 
 =  
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

 
 

L   (3.3.2) 

For plane strain analysis, we ignore the third row in u, the third, fifth and sixth 

rows in σ and Lσu and the third column in L. 

It is common in numerical analysis using continuum-based approaches such 

as the finite element method to discretize the domain such that the equation of 

motion becomes, 

 ( ) ( )u I Et t+ =a F FM   (3.3.3) 

where M is the mass matrix for the discretized system, FI(t) is a vector of internal 

forces at time t and FE(t) is a vector of external applied forces at time t. In the 

model developed for the present study, the internal force vector FI has a linear 

elastic component FI(g) coming from the internal stresses in the grain elements and 

a nonlinear component FI(i) coming from the stresses at the interfaces between 
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grains. Sections 3.3.2.2 and 3.3.2.3 describe how we form the mass matrix and 

internal force vector for the grain elements and the interface elements, 

respectively. Section 3.3.2.4 discusses the time stepping scheme used to integrate 

equation (3.3.3) in time. Section 3.3.2.5 presents the eigenanalysis formulation for 

the structure of grain elements and interface elements. 

3.3.2.2 Hybrid Polygonal Element (Grain Element) 

Here we briefly derive the element stiffness for the polygonal elements 

representing the solid grains. The derivation is based on the hybrid principle of 

Pian and co-workers [149,150]. The authors note in the original presentation that 

the formulation is appropriate for elements with an arbitrary number of nodes 

[150], although it was not until much later that Ghosh and Mallett [153] provide 

the details for the practical implementation for polygons with more than four 

nodes. Ghosh and co-workers also extended the formulation to account for 

nonlinear constitutive behaviour in polygonal elements [155], as well as 

inclusions inside the elements [152,154,155]. For the present work, we restrict 

ourselves to the linear elastic case for the polygonal elements, assuming that the 

material grains remain linear elastic, whereas the interface elements – 

representing interactions between the grains – account for nonlinear constitutive 

behaviour. 

Following the formulation of Tong and Pian [150], the stiffness of the 

polygonal elements derives from a modified complementary energy functional, 

 ( ) ( ) ( )* 1 * *1
2

ˆ,
e e t

T T T T
MCE eV S S

dV dS dSσ
− Π ′ = − ′ ′ + −  ∫ ∫ ∫σ u σ u σ u tDσ n  (3.3.4) 
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where Ve is the element volume, Se is the outer surface of the element, St is a 

surface over which there is an applied traction, De-1 is the elastic compliance 

tensor relating strain to stress, σ′ = { σxx′, σyy′, σxy′ }T represents the “effective” 

stress tensor – the part of the stress causing strain, σ represents the total stress 

tensor, u* = { ux, uy }T is the displacement on Se, nσ represents the outward 

pointing unit normal of the element and t̂ is an applied traction. Note that the 

“modifying” term in the complementary energy functional is the second term in 

equation (3.3.4) – called the interface potential – that accounts for traction 

equilibrium at the element boundaries. For plane strain analysis, 

 1

1 0
1 1 0

0 0 2
e E

ν ν
ν ν ν−

− − 
+  − − 

  

=D   (3.3.5) 
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 

n   (3.3.6) 

where E is the elastic modulus of the grain, ν is the Poisson ratio and nx and ny 

refer to the components of the outward pointing unit normal in Cartesian 

coordinates. We interpolate stress inside the grain elements using Airy’s stress 

functions with unknown coefficients. This satisfies equilibrium a priori, and is of 

the form, 

 0σ σ= +σ P β σ   (3.3.7) 

where Pσ contains a set of monomial basis functions and βσ is a vector of 

coefficients, whose values are to be determined in the finite element analysis. The 

Pσβσ term in the stress interpolation represents the effective stress field σ′ 

component owing to deformation of the grains and σ0 represents a background 
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initial stress field, which we assume to be constant herein. Interpolation of 

displacement on the element boundaries is of the form, 

 * *
u u=u N a   (3.3.8) 

where Nu* contains linear shape functions interpolating between the adjacent 

nodal values of displacement au. Substituting equations (3.3.7) and (3.3.8) into 

(3.3.4) gives the discretized form of the two parameter hybrid functional for 

polygonal elements, 

 [ ] 1
ˆ2 0, T T T

MCE u u u u tσ σ σσ σ σ σΠ = − + −β a β H β β G a a F   (3.3.9) 

where Ft̂0 = Ft̂ – F0 and, 
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T
e dVσσ σ σ
−= ∫ PH P D   (3.3.10) 

 ( ) *  
e

TT
u uS

dSσ σ σ= ∫G n P N    (3.3.11) 

 ( )*
ˆ

ˆ
t

T
ut S

dS= ∫ tF N   (3.3.12) 

 ( )*
0 0  

e

T T

S u dSσ= ∫F N n σ   (3.3.13) 

Recognizing that stationarity of equation (3.3.9) requires that the variations with 

respect to βσ and au vanish, and noting that the βσ coefficients need not be 

continuous between elements, leads to the following relation, 

 1
u uσ σσ σ

−=β H G a   (3.3.14) 

where Tong and Pian [150] present the requirements for rank sufficiency and 

invertibility of Hσσ. Substitution of equation (3.3.14) into (3.3.9) gives the hybrid 

functional in terms of au only, 

 [ ] ( )
1

02
T T

MCE u u u u tuu gΠ = −a a K a a F   (3.3.15) 
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where Kuu(g) is the element stiffness matrix for the polygonal grain elements, 

 ( )
1T

u uuu g σ σσ σ
−= G H GK   (3.3.16) 

We presented here only a brief overview of the hybrid polygonal element 

formulation. References [146-148] provide a more detailed literature review on 

the origin, formulation and application of hybrid finite elements and reference 

[157] provides further details regarding polygonal elements. 

In the present work, we perform volume integrals over the domain of 

polygonal elements using exact quadrature rules generated according to the 

approach of Mousavi and Sukumar [217] and surface integrals using standard 

Gauss quadrature rules (for details, see the Appendix). As the grain elements 

remain linear elastic, we assemble the global stiffness component owing to grain 

elements through summation accounting for connectivity of nodal degrees of 

freedom between elements. The global nodal displacement vector au is the union 

of the element nodal displacement vectors. The component of internal force FI(t) 

owing to body element deformation FI(g)(t) is then the product of Kuu(g) and au(t), 

 ( ) ( )( ) ( )uI g uu gt t=F K a   (3.3.17) 

We shall now examine the formation of the element mass matrix for the 

grain elements. We compute the consistent mass matrix M′ using the well-known 

[134] relation, 

 ( )
e

T
uV u dVρ′ = ∫ NM N   (3.3.18) 

where Nu is a matrix containing shape functions that interpolate between nodal 

values of displacement (or velocity, or acceleration) inside Ve. This is also 

possible for polygonal elements, though it is worth noting that the solution for 
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conforming shape functions over polygons with more than four nodes not unique 

[140,142] as it is for the well-known triangular or quadrilateral elements [134]. 

Whether the choice of conforming shape function used to construct such a 

consistent mass matrix for polygonal grain elements significantly influences the 

dynamic solution is outside of the scope of the present study. In the present study 

we opt for a lumped mass approach for computational efficiency, with the 

understanding that this may introduce a small amount of numerical damping into 

the solution and influence the critical time step [235]. We form the lumped mass 

matrix M by setting the diagonal entries to the row sums of the consistent mass 

matrix and the off diagonal values to zero, 

 (
( 1

, )
, )

for 

0 otherwise

dofN

i j
i j

j

i j
=


==

′




∑M
M   (3.3.19) 

where the subscripts (i,j) refer to the row and column indices in the matrix and 

Ndof is the number of degrees of freedom in the element. We then form the global 

mass matrix through summation accounting for the connectivity of degrees of 

freedom. We assume that all mass in the system comes from the grain elements, 

with the interfaces between the grains being massless. This concludes the basic 

formulation of the element stiffness and mass matrices for the polygonal grain 

elements. The following section outlines the formulation of the interface 

elements. 

3.3.2.3 Interface Element (Grain Interaction Element) 

We now examine the formulation of the interface element representing the 

interactions between grains. In past studies, the use of interface elements has 
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primarily been applied within the contexts of soil-structure interaction and jointed 

rock. Section 1.1.4 provided a review of the literature on special finite elements 

for modelling interfaces and strain localization, so it is not repeated here. 

In the present study, we define the constitutive behaviour of the interface 

element using an isotropic combined volumetric-deviatoric hardening 

elastoplastic formulation [cf. 236]. We base the interface element formulation on 

an incremental strain energy relation as follows, 

 [ ] ( ) ( )1
2,

ii

T T
i V V

dV dVU∆ ∆ ′ ∆ = ∆ ′ + ∆ ∆ ′∫ ∫σ ε ε σ ε σ        (3.3.20) 

where Δε̃ = { Δεξ, Δεη }T is the local strain increment, σ′̃ = { σξ′, ση′ }T is the 

previous effective stress state and Δσ̃′ is a finite effective stress increment. To wit, 

the strain energy increment in an interface element derives from the integration 

over the interface volume Vi of the strain energy density increment. For small 

finite increments to stress, the strain energy density increment has two 

components: (i) the work done by the strain increment at the current state of stress 

and (ii) the strain energy density increment owing to the product of the strain 

increment with the stress increment. The first and second terms in 

equation (3.3.20) capture (i) and (ii), respectively. 

The aim in the finite element formulation is to determine an equivalent 

incremental strain energy expression in terms of the discretized nodal 

displacements at the element level that looks like, 
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  (3.3.21) 
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where Δau is a vector of nodal displacement increments, B is a kinematic matrix 

relating global displacements to local strains and Dep is the tangent elastoplastic 

interface constitutive matrix. Examining the second line in equation (3.3.21), FI(i) 

is the internal force vector in an interface element and its summation over all 

interface elements accounting for connectivity of nodal degrees of freedom gives 

the component of FI(t) owing to interface element internal forces FI(i)(t). 

We derive the local strain increments Δε̃ from the local displacement 

increments Δũ on the “bottom” and “top” side of the interface in the local {ξ, η} 

coordinate system as follows, 
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where δe is a representative thickness for the interface and Liu is a difference 

operator that approximates a linear differential operator assuming linear 

interpolation of displacements in the η direction. We note that Δεξ and Δεη 

represent increments to shear strain and normal strain in the η direction, 

respectively. We assume that normal strains in the ξ direction are negligible. In 

this way, we maintain stress continuity over the interfaces [166]. We transform 

from global to local coordinates as, 
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  (3.3.23) 
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where ñ = { ñx, ñy }T is a unit normal vector pointing in the positive η direction. 

We assume linear interpolation of the displacement increments between the nodes 

of an interface element according to, 

 u u=∆ ∆Nu a   (3.3.24) 

where Ñu is a matrix containing interpolating shape functions in local coordinates 

and Δau is a column vector of nodal displacement increments in global 

coordinates. For an interface element with 4 nodes numbered locally in counter-

clockwise order, we define Ñu as, 
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where N1 = 1-ξ and N2 = ξ. Combining the notions in equations (3.3.20), (3.3.22), 

(3.3.23) and (3.3.24) and comparing with equation (3.3.21) leads to the definition 

of the kinematic matrix B as, 

 iu u=B L TN   (3.3.26) 

where we define T as, 

 0

0

 
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 

T 0
T

0 T
  (3.3.27) 

which rotates the displacements on both bottom and top surfaces of the interface. 

Following an isotropic combined volumetric-deviatoric elastoplastic strain 

hardening approach as in [236], we define the incremental stress-strain relation 

for an interface element as, 
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where De is the elastic constitutive matrix and Δε̃e is the elastic strain increment 

for the interface with G and M being the elastic shear and constrained moduli. Use 

of the constrained modulus M to derive the normal stress in the η direction is 

consistent with the assumption that normal strains in the ξ direction are negligible. 

In this case, Δεη also represents the volumetric strain increment for the interface. 

Examining the constitutive relation in equation (3.3.28), we assume additivity of 

elastic and plastic strain increments, Δε̃e = Δε̃ – Δε̃p. The stress state during active 

loading lies on an expanding loading surface f(σ̃′, ζ) = 0, which we define to be 

elliptical, following the modified critical state approach [237,238], 

 ( ) ( )
2

2 2, 0tan c
af aξ

η
σζ σ ϕ
 = + − 
 

′
′ ′ − =σ   (3.3.29) 

where ζ is a hardening parameter, φc is the critical state friction angle and a = a(ζ) 

is a hardening function that determines the centre of the loading surface. Within 

the critical state approach, we define a(ζ) as, 

 0 expa a ζ
λ κ
− 

 − 
=   (3.3.30) 

where a0 is the centre of the loading surface at the stress state corresponding to an 

initial void ratio e0, and λ and κ are the compression index and the swelling index, 

respectively. Following from this, the elastic constrained modulus M is actually 

proportional to the normal stress ση′ [236] according to the following relation, 

 01M e
ησκ

+
= ′   (3.3.31) 
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Active loading satisfies the consistency condition, 
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  (3.3.32) 

where the stress increment comes from the constitutive relation in equation 

(3.3.28) and the increment to the hardening parameter is, 

 ( )01p peξ ηζ ϑ ε ε∆ ∆ − + ∆=   (3.3.33) 

where the coefficient ϑ is a material parameter specifying the component of the 

increment to the hardening parameter ζ owing to plastic shear strain increments. 

We assume that at failure the interface stresses satisfy the Mohr-Coulomb failure 

criterion F(σ̃) = σξ′ – ση′tanφf = 0 where φf is the friction angle at failure. This 

assumption constrains the value of ϑ to be, 
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  (3.3.34) 

which vanishes for φc = φf reducing the model to purely isotropic volumetric 

hardening. To derive a symmetric positive definite tangent elastoplastic 

constitutive operator Dep, we assume an associated plastic flow rule as follows, 

 p
f µ∂

∆ = ∆
∂ ′

ε
σ





  (3.3.35) 

where Δμ is the plastic multiplier obtained for strain-controlled loading by 

substituting equations (3.3.28), (3.3.33) and (3.3.35) into equation (3.3.32) to 

obtain, 
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  (3.3.36) 

where H = He + Hp and, 
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∂ ∂

=
∂ ′ ∂ ′

D
σ σ 

  (3.3.37) 

 ( )01p
f f eH f

ξ η

ϑ
ζ σ σ
 ∂ ∂ ∂

= − − +  ∂ ∂ ′ ∂ ′ 
  (3.3.38) 

Finally, we substitute equations (3.3.35) and (3.3.36) into equation (3.3.28) to 

obtain the tangent elastoplastic constitutive operator as, 

 1 T

ep e e e
f f

H
∂ ∂

−
∂ ′

 =  
 ∂ ′

D D
σ σ

D D
 

  (3.3.39) 

We may now identify the internal force vector FI(i) and tangent stiffness matrix 

Kuu(i) of an interface element as, 

 ( ) ( )
ie

T
I i V

dV= ′∫ σF B    (3.3.40) 

 ( ) ( )
ie

T
epuu i V

dV= ∫K B D B   (3.3.41) 

This form is useful for the eigenanalysis to visualize the deformation modes and 

how they change over the course of the simulation owing to changes in the 

distribution of stress and strain within the domain, as explained in Section 3.3.2.5. 

We conclude this section by examining the stress correction procedure for 

the interface elements. For finite increments to nodal displacements Δau, we 

update the stress state to ensure that we always satisfy f(σ̃′, ζ) ≤ 0. First, we 

compute the total strain increment Δε̃ = BΔau and compute a trial stress state σ̃′* 

assuming an elastic step, 

 *
e′ ′= + ∆σ σ D ε     (3.3.42) 

 *ζ ζ=   (3.3.43) 
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If we have f*(σ̃′*, ζ*) ≤ 0, then the step was indeed elastic and we do not perform 

stress correction. Otherwise, we employ a stable return mapping algorithm based 

on a first order Taylor series expansion of the yield function about the trial stress 

state [228], 

 * * *
* * 0

Tf ff f ζ
ζ

∂ ∂ + ∆ ′ ∆ ∂ ′
+
∂ 

= =σ
σ





  (3.3.44) 

where we note that the derivatives are with respect to the uncorrected stress and 

hardening parameter states. Assuming a linear stress correction σ̃′* = σ̃′* + Δσ̃′*, 

we compute Δσ′* as, 

 *
*e

f µ∂
′ −∆ = ∆

∂ ′
σ D

σ
  (3.3.45) 

where we now determine the plastic multiplier Δμ by 

combining equations (3.3.33) (3.3.44) and (3.3.45) to obtain, 

 
*f

Hµ∆ =   (3.3.46) 

where H is as we defined it previously, except that we evaluate the derivatives in 

equations (3.3.37) and (3.3.38) with respect to the trial stress state. We perform 

the stress correction procedure iteratively until we have f*/||σ̃′*||2 < εs where εs is a 

stopping criterion for the relative error. 

We note that in the hardening plasticity model described above, the use of 

an elliptical loading surface implies that in some cases, the corrected stress state 

σ̃′* may lie outside of the Coulomb failure envelope. Since we assume such states 

of stress to be inadmissible, we also perform stress correction to ensure that we 

satisfy the yield criterion. We do this using an elastic-perfectly plastic flow 

plasticity formulation wherein the failure function F(σ̃′) is, 
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 ( ) ( )tan 0fF ξ ησ σ ϕ′ ′= − ′ ≤σ   (3.3.47) 

Using a similar stable return mapping approach as above, beginning from a trial 

stress state σ̃′*, if equation (3.3.47) is not satisfied, we write the first order Taylor 

series of F about σ′̃* as, 

 * *
* 0

TFF F  = + = 

∂

∆ ′
∂ ′ 

σ
σ





  (3.3.48) 

The stress correction Δσ̃′* is written as in equation (3.3.45), but now the plastic 

multiplier is, 

 
*

e

F
Hµ∆ =   (3.3.49) 

where He is as in equation (3.3.37), replacing the loading function f with the 

failure function F in the partial derivatives. As with the hardening plasticity 

formulation, we perform the stress correction procedure iteratively until we have 

F*/||σ̃′*|| < εs. 

 The following section puts the components of the formulation outlined in 

the previous and current sections into context, detailing the algorithm used to step 

the solution forward through time. 

3.3.2.4 Time Stepping Procedure 

We base our time stepping procedure on the implicit Crank-Nicolson 

scheme [cf. 235], which facilitates iterative solution for the displacements and 

internal forces for a given time step. We write the system of ordinary differential 

equations in time given by equation (3.3.3) for a time step [t, t+Δt] as, 
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  (3.3.50) 

where j is an iteration counter for the nonlinear stress correction. We assume the 

following linearizations, 

 
( ) ( ) ( )

( ) ( )
( )

( )

, 1 ,

, 1 ,
0

t t j t t j j
u u u

t t j t t j j
I I uuu

+∆ + +∆

+∆ + +∆

∆

≈ ∆

+

+

≈a a a

F F aK
  (3.3.51) 

where Kuu(0) is the global stiffness matrix accounting for grain and interface 

stiffness, and the subscript {⋅}(0) indicates that we use the initial (elastic) stiffness 

of the interfaces for efficiency. Rearranging equations (3.3.50) yields the 

following system of linear equations, 

 ( ) ( )ˆ j j
u σ∆ =K a Ψ   (3.3.52) 

where, 

 ( )02

2 1ˆ
2 uut

= +
∆

K M K   (3.3.53) 
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− +
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−

Ψ F F F F

M a Ma a






  (3.3.54) 

which we employ iteratively combined with the stress correction procedure 

outlined in Section 3.3.2.3 until ||Δau(j)||/||au(t+Δt,j+1)|| < εs where again εs is a 

stopping criterion for the approximate relative error. Once we obtain a converged 

estimate of au(t+Δt), we may compute the velocity ȧu at time t+Δt as, 

 ( ) ( ) ( )( ) ( )2t t t t t t
u u u ut
+∆ +∆= − −

∆
aa a a    (3.3.55) 
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Wood [235] provides a comprehensive discussion of the details regarding the 

stability and error when using the Crank-Nicolson time stepping scheme. 

3.3.2.5 Eigenanalysis of the Grain Structure 

The VCFEM-DEM formulation models discrete granular materials, which 

are discontinuous in nature, using two types of element: polygonal elements 

representing grains and interface elements representing interactions between 

grains. Both types of element use a continuum mechanics formulation, and as 

such, the analysis involves construction of a global mass matrix M and a global 

stiffness matrix Kuu. Although the overall response of the system involves 

nonlinear constitutive behaviour, for very small displacements we can assume 

linear elastic behaviour in the “tangent” sense. Thus, we may rewrite the 

homogeneous part of equation (3.3.3) as, 

 ( ) ( ) ( )t t t
u uu u+ =a a 0M K   (3.3.56) 

where Kuu(t) represents the global tangent stiffness matrix at time t. Recall that Kuu 

includes components from the grain stiffness, which is linear elastic and constant 

with time, and the interface element stiffness, which changes over time owing to 

the nonlinear constitutive behaviour. Following standard approaches from 

structural dynamics [cf. 239,240], we assume a decomposition of the 

displacement au(t) into a series of modes, 

 ( ) ( )t t
u u u= Φ αa   (3.3.57) 

where Φu is an orthogonal matrix whose columns represent the mode shapes and 

αu(t) is a vector of coefficients representing the magnitude of each mode at time t. 

We emphasize that the nonlinear nature of the granular deformation means that 
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such an assumption only applies in the brief time window [t-δt, t+δt] where δt is 

an infinitesimal increment of time, since it relies on the assumption of 

superposition of the deformation modes. Assuming harmonic form for αu(t) and 

substituting equation (3.3.57) into equation (3.3.56) leads to the standard 

eigenvalue problem, 

 ( )( ) ( )
2

uu k u kω− =M φK 0   (3.3.58) 

where ω(k) is the real-valued angular natural frequency of mode k at time t and 

φu(k) is the kth column of matrix Φu. 

3.3.3 Biaxial Compression Simulations 

3.3.3.1 Simulation setup and parameters 

We implemented the dynamic VCFEM-DEM formulation described in the 

previous section as a code vcfem_dyn using the software package Matlab [219]. 

To examine the capability of this framework, we ran a series of simulations of 

biaxial compression tests. This type of simulation is a common test of analysis 

frameworks for modelling strain localization in granular materials in the literature 

[45,72,74,75,77,79,81,86,88,89,91,93,97,100,101,164,166,172]. Our aim here is 

not to complete a detailed sensitivity analysis regarding the parameters of the 

model. We simply present representative results demonstrating its ability to 

capture multi-scale phenomena in granular materials. 

Figure 3.15 shows a sample mesh used in a biaxial compression simulation. 

The domain consists of a 0.05 m × 0.15 m region representing the granular 

material and a 0.05 m × 0.025 m region representing a loading cap. Although 
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numerical simulations do not typically model laboratory apparatus such as the 

loading cap explicitly, we found that including it reduced the influence of stress 

concentrations owing to the boundary conditions during strain-controlled loading, 

while not significantly increasing the simulation time. The sample mesh in Figure 

3.15 represents a coarse sand with a uniform particle size d of approximately 3.5 

mm. The mesh represents the grains as irregular convex polygons, which are 

mostly (>83%) hexagonal in shape. The granular part of the domain for this mesh  

 

                
Figure 3.15 Sample VCFEM-DEM mesh for biaxial compression simulations (left), 

distribution of contact normals (top right) and magnified view of grain and interface 
elements (bottom right) 
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has 640 grain elements and 1825 interface elements. Figure 3.15 also shows the 

distribution of contact normal directions for the sample mesh, which are mostly in 

the (n+0.5)×60° directions for n ∈ { 0, 1, …, 5 }. This mesh is characteristic of 

those employed in the present study. 

Table 3.1 and Table 3.2 show the material properties employed in the 

present study. For the granular material, we selected grain element properties 

representative of feldspar [cf. 241] and interface properties such that the elastic 

shear modulus isthe same as that of the grains, but the normal (constrained) 

modulus is much higher for the range of confining pressures applied in the 

simulations. The thickness δe of the granular interface elements was set such that 

the average porosity in the granular domain was approximately 0.25, which is a 

dense condition for a sand. The parameter e0 for the interface elements is a model 

Table 3.1 Material properties for grain elements 

Material Symbol Value Units 
 

Granular 
 

E 40.0 GPa 
ν 0.330 - 
ρ 2.65×103 kg/m3 

 
Cap 

E 70.0 GPa 
ν 0.330 - 
ρ 2.70×103 kg/m3 

  
Table 3.2 Material properties for interface elements 

Material Symbol Value Units 
 
 
 

Granular 

G 15.0 GPa 
λ 1.50×10-5 - 
κ 5.00×10-7 - 
φf 30.0 deg 
φc 25.0 deg 
e0 0.900 - 
δe 2.83×10-4 m 

 
Cap 

G 30.0 GPa 
M 105 GPa 
δe 2.83×10-4 m 
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parameter for the plasticity framework only, and does not correspond to the 

overall void ratio of the domain. For the cap material, we selected elastic 

properties representative of aluminum, a cap material commonly used in 

laboratory compression tests. For the cap “interfaces”, we used a linear elastic 

material model with values of G and M corresponding exactly to the elastic 

coefficients in the “grains”, so we actually model the cap as an intact region with 

homogeneous and isotropic material properties. Although we assign a value to δe 

in the cap, it has no influence on the simulation results. We let its value be the 

same as that for the granular interfaces for convenience in the mesh generation. 

The interface elements on the boundary between the granular and cap materials 

have the same properties as the granular interfaces. 

We apply the biaxial compression simulation in two phases, corresponding 

to the phases of a drained laboratory compression test. The first phase is a 

consolidation phase during which we first apply an initial seating pressure of 2 

kPa by setting the normal boundary tractions and the initial stresses in the grain 

elements – σ0 in the stress interpolation – and the interface elements all to this 

value. After stabilization at the seating load, we increase the confining pressure 

linearly to a maximum value of 200 kPa by increasing the normal tractions and 

hold this constant again until the specimen stabilizes. The second phase is the 

strain controlled shearing phase during which we hold the normal tractions on the 

vertical sides of the specimen constant and apply a vertical strain rate of 1.0 

mm/s. The kinematic boundary conditions are uy = 0 along y = 0, ux = 0 at x = { 0, 

0 }T and ux = 0 at x = { 0, 0.175 m }T. The latter condition simulates the constraint 

against lateral movement of the loading cap that a loading rod would apply. 
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3.3.3.2 Results and Discussion 

Figure 3.16 shows a plot of the mobilized shear in the specimen for three 

different grain elements during the strain-controlled portion of the simulation for 

the mesh shown in Figure 3.15. We define the mobilized shear as, 

 ( ) ( )
( )

1
1 32

1
1 32

sin
σ σ

ϕ
σ σ

−
+

=   (3.3.59) 

where σ1 and σ3 are the major and minor principal stresses in a grain element. 

Note that, although the constitutive behaviour within the grains is linear elastic, 

equilibrium with the surrounding interface elements governs the stress state in a 

grain. Analyzing the stress state within the grain elements provides a more 

convenient approach to determining the mobilized shear near a grain element. The 

stress-strain curves are characteristic of behaviour observed in laboratory 

compression tests on granular material. During the pre-peak regime, the curve 

 
Figure 3.16 Representative stress-strain curves during strain controlled shearing. 

Different curve numbers correspond to evaluations in different grain elements 
within the granular domain. 
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is nonlinear owing to the strain hardening plasticity model used for the interface 

elements. The peak mobilized friction angle φf for this simulation was 47.5°, 

which is substantially higher than the interface friction angle of 30°, but is 

consistent with the fact that this simulation represents a very dense granular 

material with a porosity of 0.25. Following the peak, there is softening until the 

stress level becomes constant – that is, reaches critical state – at a mobilized 

friction angle of approximately 33.0°. Again, this is higher than the critical state 

friction angle of the interface elements, which was 25°, but we attribute this to the 

density of the specimen. We note that the stress-strain curves for grain elements in 

different parts of the domain coincide in the pre-peak regime, but diverge in the 

post-peak regime owing to the rich bifurcation space for the post-peak behaviour. 

It is well known [164,166-169,172,173] that post-peak softening cannot be 

captured at the constitutive modelling level since it develops through macro scale 

inhomogeneities in stress and strain. Figure 3.17 demonstrates how this occurs in 

 
Figure 3.17 Number of plastic and failed interface elements during strain controlled 
shearing. nplas = # of plastic elements (active loading, but not failed), nperplas = # of 

elements failed in shear, ntens = # of elements failed in extension. 
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the VCFEM-DEM model by plotting the number of interface elements in an 

active loading, shear failure and extension failure state. Note that we count 

elements in an extension failure state also as being in a shear failure state, since 

the normal stress is zero. Comparing Figure 3.16 and Figure 3.17, we observe that 

there is a linear increase in interfaces at shear failure up to the peak, but few in 

extension failure. Failure occurs when enough failed interfaces exist to form a 

macroscopic shear failure mechanism – a shear band – leading to a rapid increase 

in interfaces failing in extension. The rapid increase in interfaces failed in 

extension corresponds to local dilations in the region near the shear band, which is 

consistent with observations of shear band failure and strain localization in 

granular materials. This observation is consistent with the evidence of Hadda et 

al. [242] for aggregation of so-called c- contacts in the formation of shear bands in 

biaxial compression tests. This demonstrates that the VCFEM-DEM modelling 

framework is capable of capturing the fundamental phenomena that occur during 

shear failure of a granular material. 

Having shown the behaviour during the shearing phase to be consistent with 

that of typical experimental observations and numerical simulations, we now 

examine the behaviour of the material during the consolidation phase. Figure 3.18 

shows a plot of the global average shear strain in the specimen, computed using 

Green’s Theorem as Section 3.1.2.3 described, during the consolidation phase. 

We first observe that the shear strain level is very small compared to the strain at 

failure. What is significant is that the average shear strain is non-zero during the 

consolidation phase, since one would expect alignment of the principal strain 

directions and the principal stress directions during isotropic consolidation for an  
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Figure 3.18 Plot of global average shear strain during consolidation phase 

isotropic material. We attribute the development of global shear strain, implying 

rotation of the principal strain directions away from the principal stress directions, 

to the inherent anisotropy of the grain structure, which the VCFEM-DEM 

modelling approach captures through the mesh. We also observe that the global 

shear strain increases to a peak value, but subsequently begins to decrease as the 

confinement increases. In the present study, we only conducted simulations with 

maximum confinements of 200 kPa, and such a peak shear strain was not reached 

in all simulations. Further investigation of this phenomenon is required to 

understand the implications. However, we propose from these results that 

geomaterials tested at higher confining pressures may be expected to have more 

isotropic strength since the high confinement will begin to dominate over the 

anisotropy of the material fabric. For granular materials at lower levels of 

confinement, such as near the surface of the Earth where most engineered 

structures exist, the strength will be anisotropic. 
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Figure 3.19 Development of inhomogeneous shear stress in specimen during 

consolidation 

The next phenomenon of interest during the consolidation phase is the 

distribution of shear stress in the specimen.  Figure 3.19  plots  the  average  shear 

stress in the grain elements as the confining pressure increases. The range of shear 

stresses is ±2 kPa, which is 1% of the maximum confining pressure for this 

simulation. Though the magnitude of the shear stresses is small, again their 

pattern is interesting. First, we observe that the top and bottom thirds of the 

granular region has high shear stress levels stemming from the boundary 

conditions. In particular, at the interface between the cap and the granular 

domains where we account for friction using interface elements, a region of high 

shear stress develops because of the differing compressibility of the feldspar 

grains and the aluminum cap. The inhomogeneities of shear stress near the cap 

(a) 
σc = 2 kPa 

(b) 
σc = 50 kPa 

(c) 
σc = 100 kPa 

(d) 
σc = 200 kPa 
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and the base reinforce the importance of using specimens with aspect ratios 

greater than unity in laboratory material tests. Boundary influences aside, the 

middle third of the specimen still has inhomogeneities in shear stress that are 

somewhat chaotic, and one cannot attribute to the boundary influences. One can 

observe small local bands of high shear stress, which will ultimately coalesce into 

the global shear failure mechanism. Such inhomogeneities in the stress field may 

be as important to understanding the strength of granular materials as dislocations 

and imperfections are in understanding the real strength of metals. 

We close by examining deformation modes obtained from tangent 

eigenanalysis of the granular structure. Figure 3.20 demonstrates the two types of 

deformation modes that we observed. The global modes result from the entire 

granular structure deforming in unison, and are reminiscent of the mode shapes 

commonly observed in analysis of multi-storey structures [cf. 240]. These modes 

result from the combined stiffness of the grain elements and the portion of the 

interface stiffness that is of the same magnitude. The local modes represent 

deformations owing to relative grain movement and rotation owing to the portion 

of the interface stiffness that is significantly different in magnitude compared with 

the grain element stiffness. The regions of high grain rotation subdivide the 

specimen into sub-regions, whose size represents a characteristic length scale for 

the material test, as shown in the two failure modes on the right side of Figure 

3.20(b), which correspond to shearing failure. For the 5.0 cm × 15 cm specimen in 

the present set of simulations, the characteristic length approximately 6.0 to 7.5 

cm – roughly one third to half of the specimen height. It is important to realize 

that the mode shapes and their corresponding eigenvalues change throughout the  
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(a) “Global” modes 

                                 
(b) “Local” modes 

Figure 3.20 Tangent eigenmodes in biaxial compression specimen at σc = 200 kPa 

test, owing to the stress dependency of the interface element stiffness. However, 

this set of  deformation  modes,  obtained  at  the  end  of  the  consolidation  

phase  under isotropic external loading, already shows deformation patterns 

similar to the failure modes observed in laboratory compression tests. This is 

consistent with observations in recent studies that there exists an entire bifurcation 

domain for the possible diffuse failure modes in a granular material [243- 246]. 

The mode that governs the failure depends on how closely the boundary 
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conditions correspond with the deformation pattern of each mode. In particular, 

we note that the local mode on the left of Figure 3.20(b) corresponds to axial 

splitting commonly observed in unconfined compression of concrete cylinders 

whereas the local modes on the right correspond to the shear failure commonly 

observed in axial compression of granular materials with confinement. 

3.3.4 Conclusions and Future Work 

We formulated and implemented a dynamic VCFEM-DEM model for 

granular materials that uses hybrid polygonal elements with linear elastic 

behaviour to represent the grains and interface elements with combined 

volumetric deviatoric strain hardening to represent the interactions between 

grains. The results demonstrate its ability to capture the phenomenological 

characteristics observed throughout a strain-controlled axial compression test on 

granular material: nonlinear stress strain relation leading to a peak shear strength, 

followed by softening behaviour governed by the development of a macroscopic 

shear band mechanism. We also observed interesting phenomena during the 

isotropic consolidation phase, which would be difficult or impossible to observe 

during laboratory tests. 

There is development of global shear strains under isotropic compression, 

which we attribute to the inherent anisotropy of the granular fabric. In some cases, 

the global shear strain increases to a peak and then decreases as the confinement 

continues to increase. This phenomenon requires further investigation to 

understand the range of magnitudes of such global shear strains that may occur for 

specimens of similar fabric orientation and irregularity. Future work should also 
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examine how such global shear strains vary with the peak confinement, and 

whether this really influences the peak strength of the granular specimen during 

the shearing phase. 

Also during the confinement phase, we observed inhomogeneities in the 

shear stress distribution within the specimen. Though small in magnitude 

compared to the confining stress (~1%), the patterns were indicative of the early 

stages of shear band development. This may be important in understanding the 

strength of granular specimens, much as understanding dislocations and 

imperfections is important to understanding the strength of metals, but it requires 

further investigation. 

Finally, through eigenanalysis of the granular structure, we observed local 

deformation patterns similar to typical failure modes in granular materials even at 

the end of the consolidation phase. This indicates the degree to which the granular 

structure may control the failure, since the “fingerprint” of the shear failure is 

present even under isotropic loading conditions. Again, the observations in the 

present study indicate the necessity for further investigation of how the 

deformation modes change throughout the simulation to understand how this 

influences the failure of the granular specimen. 

The present work examined only specimens with uniform particle size and 

similar orientations of granular fabric. Future work should also include detailed 

investigation of the influence of average particle size, particle size distribution, 

average contact normal direction and contact normal distribution on the results. 

The VCFEM-DEM modelling framework is capable of investigating such 

variations, and as such provides an attractive tool for future investigations.  
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3.4 Conference Presentation #2: Prediction of subsurface load 

distribution due to soil self-weight using VCFEM-DEM analysis5 

3.4.1 Introduction 

In Sections 3.1-3.3, we were concerned primarily with modelling strain 

localization resulting from the influence of fabric in granular materials at the 

laboratory scale. We now apply the VCFEM-DEM methodology to examine the 

influence of fabric on the distribution of subsurface stresses at the field scale. 

In the design and analysis of shallow foundations, engineers typically 

assume that stress distributes itself uniformly with depth. For a heterogeneous 

material – which all real granular materials are – the vertical component of 

subsurface stress σyy may vary nonlinearly as a function of depth owing to 

variations in the “fabric” of the material. One would only expect load to transfer 

uniformly for granular materials of regular shape and packing, as Figure 3.21 

shows for regular hexagonal grains. However, many studies show that granular 

materials do not distribute stress uniformly as one might expect in a homogeneous 

solid, but rather transfer load through “force chains”. A complete review of the 

literature on force chaining is outside of the scope of the present chapter. Jaeger et 

al. [18] provide an excellent summary of the peculiarities of the behaviour of 

granular materials, including the force chaining effect. Dantu [247], Wakabayashi 

[248] and Drescher and de Josselin de Jong [42] use photoelastic materials as a 

proxy for real granular materials to visualize the force chains and stress  

                                                 
5 Karchewski B, Stolle D, Guo P. Prediction of subsurface load distribution due to soil self-weight 

using Monte Carlo and VCFEM-DEM analyses. Presented at the Engineering Mechanics 
Institute Conference (EMI 2014), ASCE, Aug 5-8, Hamilton, ON, 2014. 
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Figure 3.21 Idealized plot of vertical stress distribution with depth for a granular 
soil, γ = 17.1 kN/m3 

distribution. Travers et al. [249] and Ammi et al. [43] examine the influence of 

packing disorder (using cylindrical grains) and grain shape (comparing regular 

polygonal grains with cylindrical grains), respectively, on the packing structure 

and stress distribution. Kolb et al. [66] experimentally characterize stick-slip 

instabilities observed when driving various types of granular material at slow 

velocities with a piston in a two-dimensional cell. They observed that the 

distribution and characterization of stick-slip events depends strongly on the type 

of granular material used. Owing to these influences, the effect of the grain 

structure on the distribution of load in the subsurface is difficult to characterize 

because of the complex manner in which load distributes through the grains. Harr 

[250] examines the statistical distribution of subsurface stresses in a granular 

material owing to surface loads. Several recent theoretical studies point out that 

the geometric arrangement and compactivity of the granular assembly inherently 

influences the interparticle force and torque balance – an influence that a so-called 
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self-consistent continuum theory should incorporate [19-25,65]. One of the aims 

of the present study is to examine the degree to which irregularity in the grain 

structure may influence the expected value and standard deviation of vertical 

stress in the subsurface, and the characteristic length scale over which the grain 

structure has an influence. 

The studies cited in the foregoing literature review were mostly interested in 

the development of force chains owing to point loads or applied tractions in 

uniaxial or biaxial compression. In the present study, we examine the influence of 

force chaining in granular materials on the subsurface distribution of stresses 

owing to the self-weight of the granular materials. We examine this phenomenon 

using the static VCFEM-DEM model that we presented the formulation for in 

Section 3.1.2. We describe only the extension to this model to account for body 

forces in Section 3.4.2 herein. The demonstrated results of the application of body 

forces within a hybrid FEM formulation also represent a contribution of academic 

interest to the hybrid FEM literature, which Chapter 4 expands on further. 

3.4.2 Formulation 

We present here the formulation of the Voronoi cell elements, focussing 

only the modifications needed to account for gravity forces. For the remainder of 

the formulation, we refer to Section 3.1.2.1. We do not present the formulation for 

the interface elements again here, but rather refer to the formulation presented in 

Section 3.1.2.2. 

We base the formulation for the Voronoi cell elements on the hybrid 

functional of equation (3.1.1). Tong and Pian [150] propose that one can account 
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for the influence of body forces by including into the stress interpolation a term 

that satisfies the particular solution to the equilibrium equations owing to body 

forces. Thus, we write the stress interpolation as, 

 g gσ σ= +σ P β P β   (3.4.1) 

where the Pgβg term represents the particular solution for body forces owing to 

gravity. Although Tong and Pian propose this, they do not present a 

demonstrative example. They go on to prove that the solution will be unique if the 

columns in Pg are a subset of the columns in Pσ. We note that since Pgβg 

represents a particular solution to the equilibrium equations corresponding to 

body forces, it is not important to resolve Pg and βg separately, though we retain 

the symbolic form Pgβg for consistency throughout the formulation. We let, 

 { }0 0 T
B B gyρ=P β   (3.4.2) 

where y is the vertical coordinate and ρg is the unit weight of the material where ρ 

is the density and g is the gravitational acceleration. This form corresponds to a 

gravitational vector oriented along the same line of action as the y coordinate axis, 

but in the negative direction. We refer to Section 4.1.2.3 for a more general form. 

This choice for Pgβg violates the requirement for uniqueness shown by Tong and 

Pian [150]. However, we note that choosing the columns of Pg as a subset of the 

columns of Pσ and satisfying the particular solution with the Pgβg term are 

incompatible goals since the columns of Pσ satisfy the homogeneous equilibrium 

equations, which prevents them from satisfying the particular solution. We 

discuss this further in Section 4.1.2.3 on the application of general body forces 

within the hybrid formulation. Nonetheless, the choice for Pgβg is apparently the 
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most sensible option for body forces owing to gravity since it uses only the σyy 

component of the stress tensor for gravitational force in the y direction. 

Interpolating displacements as in equation (3.1.5) and taking the first variation of 

the hybrid functional with respect to the unknown βσ coefficients, we solve for βσ 

in terms of the nodal displacements au as, 

 1 ( )u u g gσ σσ σ σ
−= −β a HH βG   (3.4.3) 

where Hσσ and Gσu are as defined in equations (3.1.7) and (3.1.8) and Hσg is, 

 ( )1

e

T
g e g

V

dVσ σ
−= ∫ PH DP   (3.4.4) 

Substituting equation (3.4.3) back into the functional leads to its expression in 

terms of au only, 

 [ ] 1
2

T T
MCE u u uu u u g= −Π a a K a a F   (3.4.5) 

where Kuu is the element stiffness matrix, 

 1T
uu u uσ σσ σ

−=K G H G   (3.4.6) 

and the element load vector owing to gravity forces is, 

 1T T
g u g g gu gσ σσ σ

−= −F G H H Gβ β   (3.4.7) 

It is worth noting that the addition of the Pgβg term to the stress interpolation has 

no effect on the element stiffness matrix, as one would expect. 

3.4.3 Results and Discussion 

We now apply this formulation to investigate the distribution of subsurface 

stress in granular materials owing to self-weight. Figure 3.22 shows three sample 

meshes of the same average fabric orientation, but varying fabric irregularity 
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Figure 3.22 Sample VCFEM-DEM meshes with increasing degrees of 
irregularity (left) and corresponding rose diagrams showing the distribution of 

contact normal directions in each mesh (right). 

characterized  by  the  spread  of  the  distribution  of  contact  normals  about  the 

directions n×60° for n ∈ { 0, 1, …, 5 }. We use the same elastic properties for the 

body elements and the same properties for the interface elements as for the 

simulations in Section 3.1.3. As with any model, these parameters require 

calibration with experimental or field evidence to model real materials, but our 



3. Multi-scale Geomechanical Modelling using VCFEM-DEM Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 154 

aim here is only a conceptual demonstration of the capability of the VCFEM-

DEM model to capture nonuniform subsurface stress distribution. We set the unit 

weight of the body elements as γ = ρg = 17.1 kN/m3. 

Figure 3.23 shows the average vertical stress component σyy in each body 

element for meshes corresponding to the degrees of irregularity shown above. It is 

clear that increasing irregularity leads to a decrease in uniformity of the 

subsurface stress distribution. Scrutiny of the regions where stresses are 

substantially higher or lower than the surrounding material reveals that the stress 

“fingers” tend to occur in sets of grains with aligned contact planes, causing them 

to displace in unison. Figure 3.24, Figure 3.25 and Figure 3.26 show plots of the 

average vertical stress in all grain elements for the low, medium and high 

irregularity meshes, respectively. Owing to the random nature of the irregular 

fabrics, we run three analyses for each degree of irregularity – low, medium, high 

– each having similar contact normal distributions to those shown in Figure 3.22. 

The slope of the average line, which we determined as the line with 50% of points 

above it, is consistent with the unit weight of the body elements of 17.1 kN/m3 in 

all cases. In addition, we determined the lines corresponding to one standard 

deviation above and below the mean as the lines passing through the origin and 

having 32% and 84% of points lying above them, respectively. It is clear that the 

spread of the distribution of subsurface stress increases with depth in all cases, 

and that the spread between the γμ and γ±σ increases rapidly even for modest 

increases in the spread of the distribution of contact normal directions. Figure 

3.27 shows the distribution of σyy at selected depths for the high irregularity mesh 

only, demonstrating that the distribution is normal. The mean stresses at depths of 
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5.0 m and 7.8 m are consistent with the expected values of 85.5 kPa and 133 kPa, 

respectively, but the spread about the mean is substantial. 

 
Figure 3.23 Sample plots of subsurface vertical stress generated by VCFEM-DEM 

analysis for low (top), medium (middle) and high (bottom) degrees of mesh 
irregularity. Increasing irregularity leads to greater force-chaining. Stress “fingers” 

correlate to collections of grains with aligned joints. 

 

0 

-40 

-80 

-120 

-160 

σyy 
[kPa] 

σyy 
[kPa] 

0 

-40 

-80 

-120 

-160 

-200 

-40 

-80 

-120 

-160 

-200 

0 σyy 
[kPa] 



3. Multi-scale Geomechanical Modelling using VCFEM-DEM Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 156 

 
Figure 3.24 Subsurface stress distribution for low degree of mesh irregularity and 

(inset) typical distribution of joint element normals 

 

 
Figure 3.25 Subsurface stress distribution for medium degree of mesh irregularity 

and (inset) typical distribution of joint element normals 
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Figure 3.26 Subsurface stress distribution for high degree of mesh irregularity and 

(inset) typical distribution of joint element normals 
 

 
Figure 3.27 Plot of stress distribution at depths of 5.0 m (left) and 7.8 m (right) for 

3 VCFEM-DEM trials with high irregularity, γ ≈ 17.1 kN/m3 
 

3.4.4 Conclusions and Future Work 

We conceptually demonstrated the capability of the VCFEM-DEM 

framework for granular materials to model the subsurface stress distribution at the 

field scale. The multi-scale nature of geological materials means that micro-scale 

interactions can influence the macro-scale behaviour. We showed that for 

materials with irregular grain structure, the variation from the expected value of 

vertical stress at a given depth could vary significantly. The length scale over 

VCFEM-DEM, y = -5.0 m VCFEM-DEM, y = -7.8 m
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which such variations are important is consistent with the length scale of strain 

localization in granular materials, which is approximately 3-10 grains. Obviously, 

this length scale is insignificant at the field scale for granular materials such as 

sands and gravels where the size of the grains is on the order of millimetres. 

However, for granular materials such as blocky rock or glacial till where there can 

be particles whose size is on the order of centimetres or decimetres, the variations 

in subsurface stress distribution are substantial enough to question whether the 

assumption that σyy increases linearly with depth is valid. 

In analyzing the subsurface stress distribution using VCFEM-DEM, we also 

demonstrated the application of body forces in a hybrid FEM formulation. 

Chapter 4 extends this concept to analysis coupled with seepage. 
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4 Semi-Coupled Hydro-Mechanical Modelling using VCFEM 

4.1 Journal Paper #3: Semi-coupled seepage and deformation analysis of 

earth dams using the hybrid Voronoi cell finite element method6 

4.1.1 Introduction 

Analysis of coupled hydromechanical behaviour of porous materials is 

important in many geotechnical engineering problems. For example, in the design 

of an earth dam with water seeping through it, one requires accurate estimates of 

the pressure p and specific discharge q of the pore fluid phase, as well as the 

stresses σ, strains ε and displacements u of the solid phase. In particular, the 

pressure and seepage forces are important in the analysis as they significantly 

influence the “effective” stresses σ′ in the solid phase, and the effective stress 

governs the deformation of the solid phase [1-3]. 

To put the formulation presented herein in context, we divide coupled 

hydromechanical analysis into three primary categories, as follows, 

i. Fully coupled dynamic analysis. This type of analysis applies in the 

short-term where dynamic terms in the governing equations are 

important. This typically necessitates solution of the complete dynamic 

equations of motion or a modified version thereof based on simplifying 

assumptions [cf. 115,251 -256]. Zienkiewicz et al. [257] discuss the 

conditions under which the various simplified versions apply – u-p 

                                                 
6 Karchewski B, Stolle D, Pekinasova A, Guo P. Semi-coupled seepage and deformation analysis 

of earth dams using the hybrid Voronoi cell finite element method. Submitted 07/2015 to 
Finite Elements in Analysis and Design. 
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formulation ignoring fluid acceleration terms (unsteady and convective) 

for problems involving low frequencies and u-U formulation ignoring 

only convective fluid acceleration for high frequency, very short-term 

analysis. Zienkiewicz and Shiomi [258] discuss several approaches to 

writing the u-p and u-U formulations along with the possibility and 

relative merit of using implicit or explicit time stepping schemes with 

each approach. 

ii. Quasi-static analysis. This form – often called consolidation 

analysis [3,115,257] – ignores all acceleration terms, but retains the 

velocity of the solid component. Such analysis is appropriate when one 

desires to determine the time-dependent dissipation of excess pore 

pressure owing to an increase in applied stress on a porous solid. This 

process occurs slowly enough to ignore acceleration when the hydraulic 

conductivity of the medium is small [115,257]. 

iii. Semi-coupled static analysis. This form of analysis applies for long-term 

steady state conditions when fluid pressure p and specific discharge q 

influence the effective stress σ′ in the solid phase, but motion of the solid 

has ceased thereby having no influence on the q or p fields [115]. One 

ignores all dynamic terms including acceleration of solid and fluid 

components as well as the velocity of the solid component, thereby 

partially uncoupling the equations governing the seepage and 

deformation analyses. We refer to such analysis as “semi-coupled” owing 

to the fact that the coupling is one-way only. 
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We focus in the present work is on the last of the three cases, implemented 

in a hybrid finite element formulation. We distinguish between primary 

formulation variables that one interpolates directly in the finite element solution, 

and secondary variables that one determines by differentiation or integration of 

the interpolated primary variables. Conventional finite element implementations 

of semi-coupled analysis select a single primary solution variable in each phase of 

the analysis – typically hydraulic head h for the seepage analysis and 

displacement u for the deformation analysis. This choice leads to a penalty in the 

accuracy of the flux variables q and σ′ because these variables are secondary in 

the analysis. Their computation involves differentiation of the interpolated 

primary variables h and u. Owing to the subtractive nature of the differentiation 

operation, amplification of error in the approximate values of the primary variable 

occurs for the flux variables [145]. The hybrid formulation avoids this by 

interpolating the flux variables in the domain of an element, satisfying the 

equilibrium equations a priori. Despite the added complexity of having four 

primary solution variables in the semi-coupled analysis instead of two, the final 

form of the equations governing the finite element analysis are no more complex 

than a conventional analysis in terms of the total number of degrees of freedom. 

In implementing a coupled hybrid finite element formulation, we also demonstrate 

the application of body forces owing to gravity, pore pressure and seepage forces. 

Although the developers of hybrid finite elements propose the implementation of 

body forces at an early stage [150], there is a notable lack of examples of this in 

the literature. 
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Mixed and hybrid finite element methods are an alternative approach to 

finite element analysis wherein one solves for more than one primary variable 

[cf. 126,133,134,146-148,208]. Pian [149] and Tong and Pian [150] introduce the 

concept of hybrid finite elements for stress analysis. Ghosh and co-workers later 

extend the concept for use with Voronoi cell (polygonal) elements (VCFEM), 

analysis of materials with local heterogeneities and elastic-plastic analysis [152-

155]. Harder et al. [213] examine a family of hybrid finite elements for seepage 

analysis, although they restrict their implementation to triangular elements. 

Karchewski et al. [259] extend the hybrid VCFEM to steady seepage analysis 

including location of a free surface demonstrating the advantages of this approach 

over conventional finite elements in terms of flux field approximation and global 

mass balance error. 

In the present work, we combine hybrid VCFEM analysis of steady seepage 

through and deformation of porous media taking into account the semi-coupled 

hydromechanical behaviour in long-term static analysis. The formulation takes 

hydraulic head h, specific discharge q, solid displacement u and effective stress σ′ 

as the four primary formulation variables. We achieve coupling of the two 

analyses by using the solution from the seepage analysis to develop the force 

vector component owing to the fluid pressure and seepage force fields in the 

deformation analysis. Section 4.1.2 outlines the governing equations for the semi-

coupled analysis, presents the hybrid formulation for the finite element 

approximation including the details of interpolation of each of the primary 

variables and shows the hybrid VCFEM implementation. Section 4.1.3 

demonstrates the performance of the semi-coupled hybrid VCFEM analysis by 
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analyzing a simple 1-D case with an analytical solution. To demonstrate practical 

application to engineering design, we apply the VCFEM analysis to the seepage 

and deformation of an earth dam, including location of the free surface. Section 

4.1.4 summarizes the key contributions and suggests future developments for this 

formulation. 

4.1.2 Formulation 

We now briefly define the governing equations for both portions of the 

semi-coupled analysis. For the constitutive behaviour, we assume a modified form 

of Darcy’s Law for the seepage analysis and linear elasticity for the deformation 

analysis for simplicity. One may also incorporate elastic-plastic behaviour into the 

deformation analysis by using approaches presented by Ghosh and 

co-workers [155,158], and future work with this formulation will include 

implementation in a hybrid finite element-discrete element approach to modelling 

geomaterials [cf. 233,234,260]. We assume deterministic material properties, 

again for simplicity, but there is nothing in the analysis that precludes the use of 

stochastic analysis where the material properties in an element are random 

variables generated according to a defined distribution [cf. 261]. Subsections 

4.1.2.1 and 4.1.2.2 briefly present the governing equations for the seepage and 

deformation components of the analysis, respectively, along with their 

corresponding hybrid VCFEM implementation. Section 4.1.2.3 describes the 

details of the interpolation of the effective stress field to satisfy equilibrium, 

including the influence of body forces owing to gravity, pore pressure and 

seepage forces. 
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4.1.2.1 Steady seepage analysis 

The first phase of the semi-coupled analysis is steady seepage analysis to 

determine the distribution of pore pressure and seepage flux. Karchewski et 

al. [259] (Section 2.1.2) present a hybrid VCFEM formulation for field problems 

in the context of seepage analysis, adapted from hybrid formulations in solid 

mechanics. The following gives a brief overview of the formulation for 

completeness of the present work, but for a detailed discussion please consult 

Section 2.1.2. 

First examining the steady seepage portion of the analysis, without loss of 

generality consider the polygonal domain V with outer surface S = Sh ⋃ Sq, as 

Figure 4.1 shows. Ignoring any source terms, the Euler equations for steady state 

seepage analysis in V are,  

 0T
qh =L q   (4.1.1) 

 qhh=i L   (4.1.2) 

 = −q Ki   (4.1.3) 

where Lqh is a linear differential operator, i is the hydraulic gradient, h is the total 

hydraulic head, q is the specific discharge, K is the hydraulic conductivity tensor 

and {⋅}T represents the transpose operation. We use the compact vector notation 

for representation of symmetric second and fourth order tensor quantities [cf. 116] 

herein for convenience. We compute the pore pressure p using the familiar 

relation p = (h – y)ρfg where y is the elevation head relative to an arbitrary datum 

and ρfg is the unit weight of the pore fluid. For plane seepage analysis, we define 

the linear differential operator as Lqh = ∂/∂x where x = { x, y }T represents the 
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Figure 4.1 Schematic of domain and formulation for coupled VCFEM analysis 

Cartesian coordinates of a point. Equations (4.1.1)-(4.1.3) apply both in the 

overall problem domain V and in any sub-domain Ve of a finite element. In 

addition to the mass balance in the domain of an element Ve, there is mass balance 

on internal boundaries Si between adjacent polygonal elements given by, 

 ( ) 0
T

q q
+ − =+nn q   (4.1.4) 

where nq+ and nq- are the outward pointing unit normals from the current element 

and the adjacent element, respectively, on their adjoining interface. Classical 

boundary conditions for seepage analysis are, 

 ( )ˆh h= x   (4.1.5) 

 ( )ˆT
q q=n q x   (4.1.6) 

where ĥ(x) is a prescribed hydraulic head on Sh and q̂(x) is a prescribed seepage 

flux on Sq. Within the context of plane seepage analysis, nq = { nx, ny }T where nx 

and ny are the components of nq in the x and y directions, respectively. 
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We base the VCFEM formulation for steady seepage analysis on the 

following hybrid functional, 

 ( ) ( ) ( )* 1 * *1
2 ˆ,

e e q

T T
qh q

SV S

dVh h h q dS Sd− Π = + −  ∫ ∫ ∫q nq K q q   (4.1.7) 

which is akin to the modified complementary energy functional for solid 

mechanics analysis of Tong and Pian [150]. We note that this functional implies 

weakening of the hydraulic gradient link between equations (4.1.2) and (4.1.3), 

the interface mass balance of equation (4.1.4) and the natural boundary condition 

of equation (4.1.6). With regard to the interpolation of h we require that h* ⊂ h 

where h* and h are the hydraulic head fields on Se and in Ve, respectively, and 

continuity of h* between elements. To accomplish this, we interpolate h* linearly 

between adjacent nodal values on Se as, 

 * * *
h hh = N a   (4.1.8) 

where ah* = { ah1, ah2 }T are values of hydraulic head at adjacent nodes on an edge, 

Nh* = { (1 – ξ), ξ }T is a shape function matrix interpolating between nodal values 

along an edge and ξ = ||x – x1||/||x2 – x1|| is a local coordinate. To interpolate h in 

Ve, we use one of several options for conforming shape functions for polygonal 

elements [cf. 142], 

 h hh = N a   (4.1.9) 

where we note that part of the definition of a “conforming” shape function is that 

it reduces to the form of equation (4.1.8) on an edge. 

The functional also requires satisfaction of equation (4.1.1) in the strong 

sense, so we interpolate q in the domain of an element according to, 
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 q q=q P β   (4.1.10) 

where Pq is a matrix of monomials interpolating q in the domain of an element – 

defined such that q = { ∂ψ/∂y, -∂ψ/∂x }T where ψ(x) is a potential or “streamline” 

function thereby satisfying equation (4.1.1), a priori – and βq is a vector of 

unknown coefficients of the function ψ(x). To wit, 

 
2 2

2 2

1 0 0 2 0
0 1 0 0 2q

y x y xy x
y x y xy x

 
=  − − − − − 

P   (4.1.11) 

which is valid for elements with up to 10 nodes. We have never encountered an 

element with >10 nodes for meshes with approximately uniform element size. 

Substituting the interpolations from equations (4.1.8) and (4.1.10) into the 

functional in equation (4.1.7) gives the discretized form of the functional, 

 1
ˆ2, T T

qh q h q qq q q qh h h q Π = + −  H G aa β β a fβ β   (4.1.12) 

where, 

 ( )1

e

T
qq q q

V

dV−= ∫ PH P K   (4.1.13) 

 ( ) *

e

T

S

T
qh q q hdS= ∫G n P N   (4.1.14) 

 ( )*
ˆ ˆ

q

T
q h

S

q dS= ∫f N   (4.1.15) 

Allowing the first variation of Πqh with respect to the unknown flux coefficients 

βq to vanish implies, 

 ( ) 0T
q qq q qh hδ + =β H β G a   (4.1.16) 
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We note that the flux interpolation need not be continuous between elements, 

since we satisfy mass balance on Se in an integrated sense through the second term 

in Πqh. Thus, for arbitrary δβq, we have, 

 1
q qq qh h

−= −β GH a   (4.1.17) 

which after substitution into equation (4.1.12) gives, 

 [ ] 1
2

T T
qh h h hh h h qΠ = −a a K a a Q   (4.1.18) 

where, 

 1T
hh qh qq qh

−= −G H GK   (4.1.19) 

Finally, taking the first variation of Πqh with respect to unknown ah gives, 

 hh h q=K a Q   (4.1.20) 

which defines the discretized equilibrium for the hybrid finite element.  

It is important to realize that the hydraulic conductivity tensor K = K(p) for 

unconfined seepage when p < 0. Karchewski et al. [259] (Section 2.1.2.5) present 

an iterative algorithm for solving equation (4.1.20) accounting for K = K(p), 

based on a similar algorithm that Bathe and Khoshgoftaar [194] propose within 

the context of a conventional finite element analysis for free surface seepage, so 

we do not repeat it here. For simplicity, we assume a step function for the K(p) 

relation, but one could just as easily use a more complex relation accounting for 

the soil pore fluid characteristic curve in unsaturated soils. 

We observe that although the intermediate manipulations in the hybrid 

formulation are somewhat more complex than a conventional formulation, the 

final element conductivity relations are of the same form and contain the same 

number of degrees of freedom. This implies that the number of global degrees of 
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freedom will be the same in a hybrid or conventional formulation (i.e. the global 

number of nodal ah values). Once we solve for the global ah values, we obtain the 

flux field in the domain of each element by combining equations (4.1.10) and 

(4.1.17), producing a smooth flux field that satisfies mass balance without the 

need for post-processing. With the results for ah and βq, we may now proceed to 

the deformation analysis of the solid phase. 

4.1.2.2 Deformation analysis 

As with the seepage analysis, we begin by examining the governing 

equations for the deformation analysis. Consider the polygonal domain V with 

outer surface S = Su ⋃ St, as Figure 4.1 shows. Assuming linear elastic behaviour 

for the solid phase for simplicity, the Euler equations for the deformation analysis 

in V are, 

 T
u bσ + =L σ f 0   (4.1.21) 

 uσ=ε L u   (4.1.22) 

 e′ =σ D ε   (4.1.23) 

where Lσu is a linear differential operator defined for plane analysis as,  

 
0

0

T

u

x y

y x
σ

 
 =  
  

∂ ∂
∂ ∂

∂ ∂
∂ ∂

L   (4.1.24) 

σ′ and σ = { σxx, σyy, σxy }T are the effective and total stresses (tension positive), 

respectively, ε = { εxx, εyy, γxy }T is strain (extension positive), u = { ux, uy }T is 

displacement, fb is the volumetric body force vector and De represents the 

constitutive tensor for the solid skeleton, where for plane strain analysis,  
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 1

1 0
1 1 0

0 0 2
e E

ν ν
ν ν ν−

− − 
+  − − 

  

=D   (4.1.25) 

where E and ν are the elastic Young’s modulus and Poisson’s ratio of the solid 

skeleton, respectively. The inverse of equation (4.1.23) implies that strains in the 

solid skeleton result only from changes in the effective stress since ε  = De-1σ′. We 

account for the influence of the pore fluid on the deformation and stress in the 

solid phase in two ways: through the effective stress principle [1,2,115], 

 p pα′ = +σ σ δ   (4.1.26) 

where p is the pore pressure (compression positive) and δ = { 1, 1, 0 }T represents 

the Kronecker delta, and through the body forces [117], 

 1
b g j j f gρ α ρ −= + = +f f g Kf q   (4.1.27) 

where ρ is the bulk density of the fluid-solid mixture, g represents the 

gravitational acceleration field with g = ||g|| giving its magnitude, ρf is the density 

of the pore fluid and i = –K-1q is the hydraulic gradient. The values of the αp and 

αj coefficients are typically unity for soils [3], and we follow this assumption 

herein, but we note that they may be less than unity for other geomaterials such as 

fractured rock. 

Substituting equations (4.1.26) and (4.1.27) into equation (4.1.21) gives, 

 ( )T T
u u p jpσ σ α ρ−′ = −L Lσ δ g f   (4.1.28) 

where we note that the effective stress definition acts as a constraint equation 

leading to an additional body force –LσuT(αppδ). The form of equilibrium defined 

by equation (4.1.28) is more useful than equation (4.1.21) in developing the 



Civil Engineering 4. Semi-Coupled Hydro-Mechanical Modelling using VCFEM 
McMaster University Ph.D. Thesis – B. Karchewski 

 171 

hybrid finite element formulation for coupled seepage and deformation analysis 

since we now have a homogeneous set of equations for σ′ and a set of particular 

forms for the body forces owing to pressure, gravity and seepage force. Similar to 

the interface mass balance of equation (4.1.4), we also define interface 

equilibrium on the boundary between polygonal elements as, 

 ( ) ( ) ( )T T

p pσ σ σ σ α+ − + −+ = + ′ − =n nn σ n σ δ 0   (4.1.29) 

where nσ+ and nσ- represent the outward pointing unit normals from the current 

element and the adjacent element, respectively, on their adjoining interface. 

Accounting for the vector notation for tensors, we represent the outward normal as, 

 
0

0

T
x y

y x

n n
n nσ

 
=  
 

n   (4.1.30) 

To close the formulation for the deformation analysis, the boundary conditions are, 

 ( )ˆ=u u x   (4.1.31) 

 ( )ˆT
σ =n σ t x   (4.1.32) 

where û(x) gives the prescribed displacements on Su and t̂(x) gives the applied 

tractions on St. 

Following Tong and Pian [150] and Ghosh and Mallett [153], we define the 

functional for the deformation analysis of hybrid polygonal finite elements 

according to a modified complementary energy principle as follows, 

 ( ) ( ) ( )11
2

ˆ,
e e tV

T T T T
MCE e

S S

SdV S ddσ
−Π ′ ′ ′ + ′ −  = −  ∫ ∫ ∫* * *σ u σ D σ u σ u tn   (4.1.33) 

We take the effective stress field σ′ as the flux variable, and assume that it 

satisfies equation (4.1.28), a priori. The second term, which is the interface 
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potential representing a weak form of equation (4.1.29), assumes equilibrium of 

pore pressure p on Se in the strong sense, which we satisfy through continuity of h, 

as discussed in the previous section. As with h* and h, we assume that u* ⊂ u 

where u* and u are the displacement fields on the boundary and in the domain of 

an element, respectively. We interpolate u* linearly on the element edges as, 

 * *
u u=u N a   (4.1.34) 

To satisfy equilibrium as defined by equation (4.1.28), a priori, we interpolate the 

effective stress σ′ in Ve as, 

 p p g g j jσ σ + +′ += P Pσ β β PP β β   (4.1.35) 

where Pσβσ represents the interpolation of σ′ satisfying the homogeneous 

equilibrium equations and Pkβk ∀k ∈ { p, g, j } represent the particular solutions 

for the body forces owing to pore fluid pressure, gravity force and volumetric 

seepage force, respectively. Following Tong and Pian [150], we construct the first 

term in equation (4.1.34) to satisfy the homogeneous part of equation (4.1.28) 

using the Airy’s stress function approach [cf. 118] wherein Pσ contains monomial 

basis functions as follows, 

 

2 2

2 2

2 2

1 0 0 0 0 2 0 0
0 1 0 0 0 0 0 2
0 0 1 0 0 0 2 0

y x y xy x
y x y xy x

y x y xy x
σ

 
 =  
 − − − − − 

P   (4.1.36) 

which is valid for Voronoi cell elements with up to 7 nodes. We add columns with 

cubic terms for elements with >7 nodes, but this is rare in practice for meshes 

with uniform element size. The coefficients in βσ are unknown and we determine 

their values through the finite element analysis, whereas we assume that we know 
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the remaining Pkβk terms, a priori, since the gravitational acceleration is constant 

and we know the p and q fields from the seepage analysis. 

Substituting equations (4.1.34) and (4.1.35) into the functional in 

equation (4.1.33) and allowing the first variation of the result with respect to the 

unknown stress coefficients βσ to vanish gives, 

 1
u u k k

k
σ σσ σ σ

− − =  
 

∑β H βG a H   (4.1.37) 

where, 

 ( )1

eV

T dVσσ σ σ
−= ∫ PH DP   (4.1.38) 

 ( ) *

e

TT
u u

S

dSσ σ σ= ∫G Nn P   (4.1.39) 

 ( )1

e

k
T

k
V

k k dVσ σ
−= ∫ P βH DPβ   (4.1.40) 

We now substitute equation (4.1.37) back into the functional to eliminate βσ and 

take the first variation with respect to unknown nodal displacements au to obtain, 

 uu u E=K a F   (4.1.41) 

where we define the element stiffness matrix Kuu and “external” load vector FE as, 

 1T
uu u uσ σσ σ

−= G H GK   (4.1.42)  

 ˆE kt
k

= +∑FF F   (4.1.43) 

where the element load vector is the summation of components arising from 

applied tractions Ft̂ and the various body forces Fk defined as, 

 ( )*
ˆ

ˆ
t

T
ut

S

dS= ∫ tF N   (4.1.44) 
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 1T T
k u k k ku kσ σσ σ

−= −G H H β G βF   (4.1.45) 

where, 

 ( ) ( )*

e

k k k

TT T
ku u

S

dSσ= ∫β n P βG N   (4.1.46) 

It is worth noting that the element stiffness matrix involves only the components 

Gσu and Hσσ, which derive solely from interpolation of effective stress σ′ to satisfy 

the homogeneous equilibrium equations, whereas the Hσkβk and GkuTβk 

components appear in the load vectors Fk, which represent the body forces. The 

following section presents the details of the interpolation of the body forces. 

4.1.2.3 Interpolation to satisfy particular solutions for body forces 

Tong and Pian [150] show that to guarantee a unique solution when 

incorporating body forces into the hybrid finite element formulation, the Pkβk 

terms should have Pk ⊂ Pσ – that is, the columns in Pk are a subset of the columns 

in Pσ. Although the proof is technically correct, we note that it does not prove 

useful for selecting appropriate interpolations for body forces. This seems clear 

when one recalls that in the hybrid formulation we construct Pσ to satisfy the 

homogeneous stress equilibrium equations, which means that each column 

individually in Pσ must satisfy the homogeneous equations. This inherently 

prevents selection of any column or linear combination of columns in Pσ to satisfy 

a particular solution to the stress equilibrium equations. We attribute the lack of 

recognition of this fact in the literature to the notable lack of applied examples 

incorporating body forces into hybrid finite element solutions, as body forces 

were not of interest in the problems being investigated. We describe next 
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appropriate interpolations for the body forces in the coupled seepage-deformation 

analysis including body forces owing to the pore fluid pressure p, weight of the 

material ρg, and volumetric seepage force fj. 

We obtain the pressure p from the results of the seepage analysis as, 

 h pp = N a   (4.1.47) 

where ap are the nodal values of pressure and Nh is as defined in Section 4.1.2.1. 

Comparing equations (4.1.28) and (4.1.35), we recognize the direct equivalence 

Ppβp = αppδ, which leads to the following relations, 

 ( )1

e

T
p p h p

V
p dVσ σ α−= ∫H D Nβ P δa   (4.1.48) 

 ( )* *

e

T T T
pu p u p h p

S

dSσα= ∫G n N δaβ N   (4.1.49) 

where we use the conforming shape functions Nh in Ve and, for convenience, the 

linear shape functions Nh* on Se, though they are equivalent by definition. 

Comparing equations (4.1.28) and (4.1.35), we have that LσuT(Pgβg) = –ρg. 

Thus, Pgβg is a gravity force potential, which we assume to have σxx/σyy in 

proportion according to the direction of the gravitational field and σxy = 0,  

 

0
0
0 0

g g

x
yρ

 
 
 
 

=



−P β g   (4.1.50) 

For the present study, g = { 0, –g }T so Pgβg = { 0, ρgy, 0 }T. This does not imply 

that there can be no shear stresses owing to variations in self-weight, but rather 

that the body force potential can equilibrate only normal stress components at a 
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point, with shear stress equilibrium coming through the effective stress field σ′ by 

generating shear strains. We compute the bulk density of the material as, 

 
( )

1
s f

w

G SG e
e

ρ ρ
+

=
+

  (4.1.51) 

where Gs and Gf are the specific gravities of the solid grains and the pore fluid, 

respectively, S is the degree of saturation, e is the void ratio and ρw is the density 

of water. In general, S = S(p) is the soil pore fluid characteristic curve with S ≈ 1 

when p > 0 and S ≤ 1 when p ≤ 0. Consistent with our use of a step function to 

represent the hydraulic conductivity tensor K = K(p), we also use a step function 

for S(p) with S = 1 when p > 0 and S = 0 when p ≤ 0. We acknowledge that this is 

an oversimplification for unsaturated soils, which we retain for simplicity of the 

presentation, but there is nothing in our formulation that precludes the use of a 

more sophisticated function for S(p). We substitute equation (4.1.50) into 

equations (4.1.40) and (4.1.46) to obtain the forms Hσgβg and GguTβg. 

Finally, we obtain the volumetric seepage force fj from the seepage results 

as,   

 1 1
j j f j f q qg gα ρ α ρ− −== Kf q PK β   (4.1.52) 

and note from comparison of equations (4.1.28) and (4.1.35) that LσuT(Pjβj) = –fj. 

As with the gravitational body force, Pjβj represents a body force potential owing 

to the volumetric seepage force. We again assume that this potential equilibrates 

normal stress components only and let, 

 1

0
0
0 0

j j j f q q

x
g yα ρ −

 
 = −  
  

KP β P β   (4.1.53) 
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which we substitute into equations (4.1.40) and (4.1.46) to obtain the forms Hσjβj 

and GjuTβj. 

4.1.3 Results and Discussion 

We implemented the formulation presented in the previous section as a code 

vcfem_coup using the software package Matlab [219]. We now demonstrate the 

performance of the coupled hybrid VCFEM formulation – in particular, the 

implementation of body forces. 

First, we solve a simple one-dimensional seepage case for which there is an 

analytical solution. Figure 4.2 shows a 0.05 m × 0.10 m domain representing a 

1-D constant head Darcy experiment. We assume that the domain consists of a 

uniform medium dense sand with water as the pore fluid. We assume isotropic 

hydraulic conductivity Kx = Ky = 1.0×10-3 m/s, grain specific gravity Gs = 2.65, 

fluid specific gravity Gf = 1, void ratio e = 0.4 and elastic coefficients 

E = 1.0×105 kPa and ν = 0.3. For the seepage analysis, we have boundary 

conditions of ĥ = h1 at y = 0 m, ĥ = h2 at y = 0.1 m and zero flux on the left and  

 
Figure 4.2 Plot of domain and mesh for 1-D coupled analysis 
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right boundaries. For the deformation analysis, we assume fully fixed 

displacements on the bottom boundary, fixed lateral displacement on the left and 

right boundaries and free displacements on the top boundary. The mesh consists 

of 60 polygonal elements with 10% quadrilaterals, 30% pentagons and 60% 

hexagons. Owing to the 1-D nature of this example, the solution is not sensitive to 

mesh density or element shape. 

Defining the hydraulic gradient as, 

 2 1i h h
H

=
−   (4.1.54) 

where h1 and h2 are the hydraulic head boundary conditions and H = 0.1 m is the 

height of the domain, we have the analytical solutions for pressure p, lateral and 

vertical effective stresses σxx′ and σyy′ and vertical displacement uy, 

 

 ( ) ( ) 11 f wyi gGhp y ρ+  = −   (4.1.55) 

 ( ) ( )
1xx yyy yνσ σ

ν
′ = ′

−
  (4.1.56) 

 ( ) ( )1 2 1
1
s f

yy w f

G G e ygH i G
e H

yσ ρ
+  ′ = − − − −  +   

  (4.1.57) 

( ) ( )
2 221 1 2 2

2 1 1
s fw

y f

G G eg H y yi Gu y
E e H H

ρ ν
ν

=
+     − − − −    − +    

−   (4.1.58) 

and we assume σxy = 0 owing to the vertical roller boundary conditions on the left 

and right sides of the problem. As such, all solutions variables are functions of y 

only. 
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We first solve the case where h1 = h2 = 1.5H and i = 0, which corresponds to 

hydrostatic conditions. This case isolates the body force components owing to 

pressure and gravity in the VCFEM analysis since the volumetric seepage forces 

vanish. Figure 4.3 shows a plot of the results of the VCFEM analysis compared 

with the analytical solution. We plot the values of p and uy at the polygonal 

element nodes and the values of σxx′ and σyy′ at the integration points (see 

Appendix for details on numerical integration for polygonal elements). There is 

negligible error in the VCFEM solution for all solution variables. We also solve 

the case where h1 = H, h2 = 1.5H and i = 0.5 to verify that the body force 

component owing to volumetric seepage force is correct in the VCFEM 

implementation. Figure 4.4 shows that the results obtained using the VCFEM 

agree with the analytical solution exactly. 

 

 
Figure 4.3 Results of 1-D coupled analysis for hydrostatic conditions (hydraulic 

gradient i = 0) 
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Figure 4.4 Results of 1-D coupled analysis for case with hydraulic gradient i = 0.5 

Now, we demonstrate the solution of a problem of practical interest in 

geotechnical engineering using the coupled hybrid VCFEM with body forces. To 

this end, we recall that the deformation analysis assumes an elastic constitutive 

model, which does not account for stress redistributions owing to inelastic 

deformations. To examine the potential for failure we compute the Mohr-

Coulomb failure function for cohesionless material from the effective stress state 

σ′ at each integration point, 

 ( ) ( ) ( )1 1
1 3 1 32 2 sinF σ σ σ σ ϕ′ ′ − ′ + ′ ′= + ′σ   (4.1.59) 

where σ1′ and σ3′ are the major and minor principal stresses (tension positive) 

obtained from an eigenanalysis of the effective stress state σ′ and φ′ is the 

effective internal angle of friction. Zones where F > 0 correspond to inadmissible 

stress states according to this failure criterion. 

Figure 4.5 shows a 200 m × 70 m rectangular cross section suitable for the 

preliminary design of an earth dam. We assume the same material properties as in 
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the 1-D example and an effective internal angle of friction φ′ = 30°. We have 

hydraulic boundary conditions of ĥ = 65 m from y = 0 m to y = 65 m on the 

upstream side, ĥ = 5 m from y = 0 m to y = 5 m on the downstream side, zero flux 

on the top and bottom boundaries and ĥ = y on all other boundaries. The latter 

boundary condition corresponds to zero gauge pressure, which prevails on 

boundaries exposed to the atmosphere and internally on the phreatic surface of the 

pore fluid. The hydraulic conditions correspond to an average horizontal hydraulic 

gradient ∂h/∂x = 60/200 = 0.3. For the deformation analysis, we assume fully 

fixed displacements on the bottom boundary and free displacements on all other 

boundaries. 

We refined the mesh until the analysis results converged, but present here 

only the results with the converged mesh, which has 754 polygonal elements with 

most (>88%) being hexagonal. Figure 4.6 shows the results of the seepage 

analysis to locate the free surface and determine the pressure p and specific 

discharge q. As Ghosh and Mallett [153] show for deformation analysis and 

Karchewski et al. [259] (Section 2.1) show for seepage analysis, there is no 

sensitivity to mesh orientation with the hybrid VCFEM. The pressure field and 

free surface results are smooth without requiring post-processing. 

Figure 4.7 shows a plot of the deformed mesh (displacements magnified for 

visualization purposes), which qualitatively demonstrates the potential for failure 

at the toe owing to the seepage forces. Figure 4.8 gives a clearer picture of the 

failure mechanism by plotting the total and effective stress fields inside the dam. 

These plots demonstrate the correct implementation of body forces within the 

hybrid VCFEM. In particular, the total and effective normal stress fields – σxx and 
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σyy vs. σxx′ and σyy′ – are different owing to the influence of pressure p whereas the 

“total” and “effective” shear stresses – σxy vs. σxy′ – are identical. There is a bulb 

of low effective lateral confinement σxx′ near the toe owing to the intensity of the 

seepage forces, as one would expect from the flow net in Figure 4.6. Figure 4.9 

completes the picture, demonstrating a zone of unstable material with F ≫ 0 near 

the toe. Obviously a rectangular cross section is an impractical design for an earth 

dam, but we can use the stress field results from the hybrid VCFEM accounting  

 
Figure 4.5 Plot of domain and mesh for coupled analysis of rectangular dam 

  

Figure 4.6 Plot of free surface, pressure and flow net for rectangular dam 
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Figure 4.7 Plot of deformed shape for rectangular dam 

 
Figure 4.8 Plot of total and effective stresses in rectangular dam 

 

 
Figure 4.9 Plot of Mohr-Coulomb failure function for rectangular dam 



4. Semi-Coupled Hydro-Mechanical Modelling using VCFEM Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 184 

for body forces to determine an efficient and practical side slope angle. Plotting a 

line through the apex of the zone of low σxx′, high σxy and high F suggests a slope 

of 1:1.25 or approximately 39°. We complete the demonstration by analyzing a 

dam with such a side angle. 

Figure 4.10 shows the converged mesh for the analysis of a sloped earth 

dam, which consists of 414 polygonal elements, which are again mostly (>84%) 

hexagonal. The mesh has similar element density to that of the rectangular cross 

section, but has proportionately fewer elements owing to the sloped sides. Figure 

4.11 shows the free surface, pressure field and flow net for the sloped dam. 

Evidently, this cross section leads to a flow field where the discharge on the 

downstream side spreads out over a larger region implying reduced intensity of 

the seepage forces within the domain of the dam. Figure 4.12 shows the deformed 

mesh, which is qualitatively consistent with this flow field. Figure 4.13 shows the 

results for total and effective stresses where, again, the pressure field affects the 

normal stresses, but not the shear stresses, as expected. The bulb of low lateral 

confinement is no longer present, and Figure 4.14 shows that there is now a zone  

 
Figure 4.10 Plot of domain and mesh for coupled analysis of sloped dam 
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of F > 0 on the downstream face, as opposed to an intense internal bulb near the 

toe. This still implies an unstable downstream face with potential for shallow 

slope failure owing to liquefaction, for which there exist practical engineering 

solutions such as high conductivity gabions placed on the downstream face. We 

do not pursue the design details further here, as it is not the focus of the present 

work and the presented results are sufficient to demonstrate the implementation of 

the coupled hybrid VCFEM incorporating body forces. 

 

 

 
Figure 4.11 Plot of free surface, pressure and flow net for sloped dam 

 

 
Figure 4.12 Plot of deformed shape for sloped dam 
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Figure 4.13 Plot of total and effective stresses in sloped dam 

 

 
Figure 4.14 Plot of Mohr-Coulomb failure function for sloped dam 

4.1.4 Conclusions and Future Work 

We presented a hybrid VCFEM formulation for coupled seepage and 

deformation analysis and demonstrated its performance on a practical 

geotechnical engineering problem. The key contribution of the present work is the 

implementation of body forces in a hybrid formulation, which is usable with 

irregular convex polygonal finite elements with an arbitrary number of nodes. 
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Although Tong and Pian [150] suggest the possibility of implementing body 

forces in the hybrid formulation essentially from the outset, and even prove the 

necessary conditions for the body force interpolation to guarantee a unique 

solution, there is a notable lack of examples actually doing this in the literature. In 

computing numerical examples, we discovered that the uniqueness conditions are 

too restrictive and prevent selection of an interpolation satisfying the particular 

solutions to the equilibrium equations corresponding to the body forces. Thus, we 

proposed body force interpolations appropriate for representing gravity forces, 

seepage forces and pore pressure. In particular, the interpolations for these types 

of body forces equilibrate normal stresses only, with shear stresses owing to 

variations in body forces leading to the generation of shear strains in the material. 

The analysis herein incorporated only a linear elastic constitutive model, 

which is inadequate to describe the behaviour of geomaterials, but nonetheless we 

used this approach to solve a practical problem in geotechnical engineering. The 

principal author’s doctoral thesis work includes the development of a novel 

approach for multi-scale analysis of geomaterials using a combined finite 

element-discrete element analysis (VCFEM-DEM) using hybrid polygonal 

elements to represent grains or volumes of linear elastic material and interface 

elements to represent the nonlinear constitutive behaviour at the interface between 

these regions [cf. 233,234,260]. Having implemented coupled seepage and 

deformation analysis using the hybrid VCFEM as demonstrated in the present 

work, the next stage of the work will be to incorporate the pressure and seepage 

forces into the VCFEM-DEM approach to allow multi-scale hydromechanical 

analysis of geomaterials. 



5. Concluding Remarks Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 188 

5 Concluding Remarks 

 Two of the most important phenomena of practical importance in the 

modelling of geomaterials are the transport of fluid through the pores and the 

deformation response of the solid component to applied loads. Geological 

materials are inevitably exposed to the natural environment, so these two 

phenomena often occur simultaneously. Methods for analyzing certain aspects of 

these phenomena already exist, each with its own advantages and disadvantages, 

as Chapter 1 discussed. The present work adds to this body of knowledge by 

exploring techniques for analyzing geomaterials using VCFEM and 

VCFEM-DEM. 

Coupled seepage and deformation analysis using the VCFEM incorporating 

body forces allows accurate analysis of earth dams. Chapter 2 demonstrated that 

the VCFEM for seepage is insensitive to mesh orientation or irregularity, or to the 

choice of conforming shape function, when using polygonal elements having 

more than four nodes. Chapter 4 couples the VCFEM seepage analysis with a 

solid deformation analysis incorporating body forces. The solution of a practical 

example of the design of an earth dam using the VCFEM required the application 

of general body forces within a hybrid formulation. Although Tong and Pian 

[150] proposed the application of body forces in the early stages of the 

development of hybrid FEM, there is a notable lack of examples in the literature. 

The present author attributes this to the fact that the developers of hybrid finite 

elements were mostly interested in problems involving plates and shells [211] 

where they provide advantages related to satisfying continuity requirements, and 
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body forces are not of interest. Since body forces such as gravity, pore pressure 

and volumetric seepage force are important in the analysis of geological materials, 

the present work developed this aspect, and provided the numerical examples that 

had been lacking. In doing so, the present author discovered that although the 

proof of the requirements for uniqueness of solution when applying body forces in 

the hybrid FEM [150] was technically correct, the requirements were too 

restrictive to allow an actual solution. Section 4.1.2.3 discussed the details. 

Chapter 3 formulated and applied the VCFEM-DEM, a novel approach for 

simulating granular material behaviour. The application of this method provided 

new insights into strain localization in granular materials, showing that strain 

localization is an important phenomenon at all scales. The VCFEM-DEM 

captured shear banding in biaxial compression tests, demonstrating that global 

shear strains and inhomogeneities in the shear stress field present after 

consolidation are early precursors to the failure mode. At the field scale, strain 

localization can lead to significant non-uniformity in subsurface stress distribution 

owing to self-weight. 

The results of the analyses performed in the present work raised several 

interesting questions for future research. The results of Chapter 3 revealed that the 

anisotropy of the grain structure in granular materials has an important influence 

on the orientation of the failure plane, the strength of the material and the 

distribution of subsurface stresses. Past studies [cf. 102] have also shown that the 

grain shape influences the behaviour of granular materials. The VCFEM-DEM 

has the capacity to model granular materials with complex shapes. The approach 

can also control the orientation of the fabric of the grain structure and the grain 
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size distribution carefully. The data structure provided by the interface elements 

provides a powerful tool for analyzing the development of detailed characteristics 

of the grain structure such as local changes in void ratio including the directional 

distribution of volumetric strains throughout the simulations. These advantages 

provide fertile ground for future investigations into the influences of grain 

structure and inherent anisotropy in granular materials using the VCFEM-DEM. 

Drawing on the success of the VCFEM-DEM for modelling granular 

materials in Chapter 3, the author is presently at work extending the VCFEM-

DEM approach to the analysis of seepage through discontinua such as pore or 

fracture networks. As with the VCFEM-DEM for granular materials, the mesh 

configuration is able to represent accurately the physical geometry of geological 

materials at a wide range of length scales. This will allow multi-scale analysis of 

the conductivity of fractured rock masses in a novel manner. 

Finally, the ultimate thrust of the research using the VCFEM-DEM is 

coupled simulation of flow through pore/fracture networks and deformation of the 

granular structure. Such coupled analysis will allow detailed numerical 

investigation of the behaviour of saturated and unsaturated granular materials, and 

the fracturing of geological materials owing to rapid changes in fluid pressure in 

the fractures. The present work demonstrated the capability of the VCFEM and 

VCFEM-DEM to analyze and provide insight into seepage through porous media, 

deformation of discrete granular materials and coupled analysis under certain 

assumptions. The development of a fully coupled model bringing these two 

aspects together has the author excited about the prospect for new insights into the 

behaviour of geological materials using the VCFEM-DEM. 
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6 Appendix 

6.1 Quadrature Generation for Voronoi Cell Elements 

6.1.1 Introduction 

The formulations for hybrid Voronoi cell finite elements in Sections 2.1.2, 

3.1.2.1, 3.3.2.2 and 4.1.2 all require formation of element matrices involving 

integrations of continuous functions – typically polynomials in { x, y } up to order 

6, but also conforming shape functions for polygonal elements and local shape 

functions on edges – over the element surface Se the element domain Ve. As 

performing such integrations in closed form would be impractical for numerical 

calculations owing to the infinite variety of polygonal element shapes, we perform 

the integrations using numerical integration quadrature rules. This section 

presents a brief summary of the numerical integration procedures used in the 

present work for integrals over Se and Ve. 

6.1.2 Formulation 

6.1.2.1 General form of integrals for Voronoi cell elements 

The Voronoi cell finite element formulations in the present work all require 

formation of an element “stiffness” matrix K – sometimes referred to as an 

element conductivity matrix in cases of seepage analysis, 

 1T −=K G H G   (6.1.1) 

where,  

 ( )
e

T

S

T dS= ∫ *P NG n   (6.1.2) 
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eV

T dV= ∫ CPH P   (6.1.3) 

Note that we drop the subscripts used for K, H and G and other matrices in the 

body of the present work for clarity of the current presentation. Within this 

section only, K refers to the element stiffness matrix and not the hydraulic 

conductivity tensor. In equations (6.1.2) and (6.1.3) there is the matrix n 

representing the outward normal to Se, the matrix P containing basis functions for 

flux field interpolation in Ve, the matrix N* containing shape functions that 

interpolate between nodal values on Se and the matrix C representing the 

constitutive material properties of the element. In the present work, n is piecewise 

constant on Se, P contains up to 3rd order monomial functions in ℝ2, N contains 1st 

order polynomial functions in ℝ and C is generally constant in Ve except for the 

case of unconfined seepage where it may be a piecewise constant step function in 

elements intersected by the free surface dividing the saturated and unsaturated 

parts of the domain. Tong and Pian [150] give the requirements for the minimum 

number of unknown flux coefficients m for rank sufficiency of H as, 

 m n r≥ −   (6.1.4) 

where n is the number of degrees of freedom in an element and r is the number of 

zero energy modes, or the number of kinematic constraints, necessary for a unique 

solution. In the hybrid formulation for linear problems, the P matrix derives from 

derivatives of a potential function. For seepage, there are first order derivatives of 

a streamline function whereas for solid deformation, there are second order 

derivatives of Airy’s stress function. We assume polynomial form for the 

potential functions. The requirement of isotropy with respect to the coordinate 
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system implies that the potential function from which the P matrix derives should 

be a complete polynomial. Combining these requirements, we can determine the 

maximum order of monomial basis function in P for an element with a given 

number of nodes in each type of formulation. Table 6.1 and Figure 6.1 summarize 

the results of this analysis, where we observe that for an element with a given 

number of nodes, the requirements for order of monomial in P for the solid 

deformation formulation are always greater than or equal to the requirements for 

the seepage formulation. As such, when evaluating the number of integration 

points required for a polygonal element for either formulation, the requirements 

for the solid deformation analysis will satisfy the exact integration requirement for 

both formulations. 

Table 6.1 Analysis of required order of monomial basis functions for flux field 
interpolation in seepage and solid deformation hybrid formulations 

Formulation 
Type 

# of 
kinematic 

constraints, 
r 

# of 
dofs/ 
node 

# of 
nodes/ 

element 

# of dofs/ 
element, 

n 

# of flux 
coefficients 

for rank 
sufficiency, 
mreq ≥ n – r 

# of flux 
coefficients 

using 
complete 

polynomial, 
mact 

Maximum 
order of 

monomial 
in P 

Seepage 
(Sec. 2.1.2.4, 

4.1.2.1) 
1 1 

3 3 2 2 0 
4 4 3 5 1 
5 5 4 5 1 
6 6 5 5 1 
7 7 6 9 2 
8 8 7 9 2 
9 9 8 9 2 

10 10 9 9 2 

Solid 
deformation 
(Sec. 3.1.2.1, 

3.3.2.2, 
4.1.2.2) 

3 2 

3 6 3 3 0 
4 8 5 7 1 
5 10 7 7 1 
6 12 9 12 2 
7 14 11 12 2 
8 16 13 18 3 
9 18 15 18 3 

10 20 17 18 3 
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Figure 6.1 Maximum order of monomial in flux interpolation matrix P 

In the dynamic VCFEM formulation, we also have an element mass matrix 

M of the form, 

 
eV

T dVρ= ∫ NM N   (6.1.5) 

where N is a matrix that contains conforming shape functions interpolating 

between nodal values over a polygonal domain [cf. 135-140,143] and ρ is the 

density of the material. There is not typically a closed form expression for the 

shape functions in N for polygons with more than four nodes, but they are smooth 

functions for which a polynomial of sufficient order provides an accurate 

approximation according to Taylor’s theorem. 

Owing to the order of the polynomials that we must integrate in 

equations (6.1.2) and (6.1.3), we should use numerical integration schemes 

capable of integrating functions of up to fourth order over Se and up to sixth order 

over Ve. The shape functions that we must integrate in equation (6.1.5) are not in 

closed polynomial form, so we will examine the order of integration scheme 

necessary to achieve accurate numerical integration for a polygon with a given 
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number of nodes. Section 6.1.2.2 outlines the procedure for numerical integration 

using standard Gauss quadrature over Se and Section 6.1.2.3 presents the 

formulation for generating quadratures to integrate polynomials over convex 

polygonal domains Ve. 

6.1.2.2 Surface integration using standard Gauss quadrature 

For the surface integration in equation (6.1.2), we use a numerical 

integration scheme as follows, 

 ( ) ( )
1 1

edg int

e

N NT TT T
j i

i j ijS

S w Ad
= =

 =   
≈∫ ∑∑* *G nP N Pn N   (6.1.6) 

where Nedg is the number of edges in the polygonal element, Nint is the number of 

integration points on an edge, wj is the weight assigned to integration point j on an 

edge and Ai is the area of edge i – for plane strain analysis, the edge length 

multiplied by a unit thickness. We note that ni is constant on an edge and 

P = P(x), but on an edge x = N*xi where xi = { xi1, xi2 }T and xik = { xik, yik } are 

the coordinates of node k ∈ {1, 2} on edge i. Using a local coordinate system 

running from ξ = 0 at xi1 to ξ = 1 at xi2 we have, 

 ( )
1 0 0

0 1 0
ξ ξ

ξ
ξ ξ

− 
=  − 

*N   (6.1.7) 

which implies that P = P(ξ) on an edge as well and since N*(ξ) contains only 1st 

order polynomials in ξ, we can say that the maximum order of polynomial in ξ 

contained in P(ξ) is equivalent to the maximum total order of monomial term in 

{ x, y } in P(x). For example, for a fourth order monomial term x2y2, we have, 
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( ) ( )

( ) ( ) ( ) ( )

( )

2 22 2
1 2 1 2

2 22 2 2 2 2 2
1 1 2 2 1 1 2 2

4 2 2 4 2 2
1 1 2 2

1 1

1

1

21 1 12

y x x y y

x x x x y y y y

x y x

x

y

ξ ξ ξ ξ
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ξ ξ

+ +

   = + + + +   

=

= − −      

− − − −

− + +

 

which is fourth order in ξ. Furthermore, since N*(ξ) contains only first order 

polynomials, the maximum order of the integrand for G is the maximum order of 

monomial basis function in P plus unity. Combining this with the results from 

Figure 6.1, Figure 6.2 shows the order of the integrand in G. Using standard 

Gauss quadrature rules, as shown in Table 6.2, we can integrate polynomials of  

 
Figure 6.2 Maximum order of integrand for flux balance matrix G 

 

Table 6.2 Standard Gauss-Legendre quadrature rules for use in integrating flux 
balance matrix G [cf. 145] 

# of integration 
points, 

Nint 

Local coordinates of 
integration points, 

ξj 

Integration point 
weights, 

wj 

1 1
2  1  

2 ( )1 1
2 31±  1

2  

3 

1
2  4

9  

( )31
2 51±  5

18  
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order 2Nint – 1 using an Nint point integration rule [145]. Figure 6.3 summarizes 

the number of integration points per edge required to integrate G plotted against 

the number of nodes in an element. 

 

 
Figure 6.3 Number of integration points used in integrating flux balance matrix G 

for seepage and solid deformation hybrid formulations 

6.1.2.3 Domain integration using generated quadrature for convex polygons 

We now examine the numerical integration of integrals over Ve such as in 

equations (6.1.3) and (6.1.5) of the form, 

 ( )
1

int

e

N
T T

i ei
iV

wdV V
=

≈= ∑∫ CP CPH P P   (6.1.8) 

 ( )
1

int

e

N
T T

i ei
iV

V wd Vρ ρ
=

= ≈∫ ∑ NN NM N   (6.1.9) 

where Nint is the number of integration points in an element, wi is the weight 

assigned to integration point i and Ve is the volume of the element – for plane 

strain analysis, the area of the element multiplied by a unit thickness. Although 

standard quadrature rules exist for triangular, quadrilateral [cf. 134,145] and 

regular symmetric hexagonal regions [262], standard quadrature rules do not exist 

0

1

2

3

4

3 4 5 6 7 8 9 10

# 
of

 in
te

gr
at

io
n 

po
in

ts
 / 

ed
ge

 fo
r 

in
te

gr
at

in
g 

G
 m

at
ri

x

# of nodes / element

seep
solid



6. Appendix Civil Engineering 
Ph.D. Thesis – B. Karchewski McMaster University 

 VIII 

for irregular convex polygons with five or more sides. Mousavi and Sukumar 

[217] present an efficient approach for generating sets of integration points and 

weights for such cases. The procedure involves three primary steps: 

i. Selection of basis functions ϕi(x) and evaluation of their exact integrals 

over the domain Ve. 

ii. Generation of candidate integration points xj and evaluation of the basis 

functions at each of these points ϕi(xj). 

iii. Solution of a moment fitting equation to determine the corresponding 

integration point weights wj. 

We briefly summarize the procedure here, but refer to [217] for a more detailed 

discussion of the derivation of the procedure. We also discuss details of the 

procedure that we modified, in particular owing to issues that arise from negative 

integration point weights that result from the procedure of Mousavi and 

Sukumar [217] in some cases. The goal is to solve a moment fitting equation 

ϕ = Φw of the form, 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1

1 1 1 2 1 3 1
2

2 2 12 2 2 2 3 2
3

1 2 3

e

e

e

V

V

V

n

n

m m m m n
nm m

dV
w
wdV
w

wdV

ω φ

φ φ φ φ
ω φ φ φ φ φ

φ φ φ φ
ω φ

 
   

    
        =                

  

∫

∫

∫

x x
x x x x

x x x x x x

x x x x
x x





    







  (6.1.10) 

where m is the number of basis functions, n is the number of candidate integration 

points and ωi(x) is the weight function associated with basis function ϕi(x). In the 

present work, we take ωi(x) as unity ∀i. 



Civil Engineering 6. Appendix 
McMaster University Ph.D. Thesis – B. Karchewski 

 IX 

To determine the set of basis functions ϕi(x) that we must integrate for a given 

element, we considering the maximum order of monomial in the integrand for the 

H matrix. We assume that the constitutive matrix C is constant for an element, 

thus the maximum order of monomial in the integrand will be twice the maximum 

order of monomial in P. Given the maximum order of monomials in P from Table 

6.1, Figure 6.4 summarizes the maximum order of monomial in the integrand for 

H. Knowing this, the basis functions ϕi(x) for a given element should include all 

monomials xiyj for i+j ≤ k where k is the maximum order of monomial in the 

integrand of H. Table 6.3 summarizes the number of monomial basis functions m 

required for elements with up to 10 nodes. Once we determine the required set of 

basis functions ϕi(x) we construct the column vector ϕ on the left-hand side of 

equation (6.1.10) by inserting the exact integrals, 

 ( ) ( )
e

i i i
V

dVω φ= ∫φ x x   (6.1.11) 

 

 
Figure 6.4 Maximum order of monomial in integrand for flux divergence matrix H 
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Table 6.3 Number of monomial basis functions required for generation of 
quadrature to integrate flux divergence matrix H 

Formulation 
Type 

# of nodes/ 
element 

Maximum 
order of 

monomial in H 

# of monomial 
basis functions, 

m 
 
 

Seepage 
(Sec. 2.1.2.4, 

4.1.2.1) 

3 0 1 
4 2 6 
5 2 6 
6 2 6 
7 4 15 
8 4 15 
9 4 15 

10 4 15 
 

Solid 
deformation 
(Sec. 3.1.2.1, 

3.3.2.2, 
4.1.2.2) 

3 0 1 
4 2 6 
5 2 6 
6 4 15 
7 4 15 
8 6 28 
9 6 28 

10 6 28 
 

at entry i. Lasserre [263,264] presents a scheme for computing integrals of 

homogeneous continuous and continuously differentiable functions over convex 

polytopes in Ndim dimensions by reduction to integrals over its outer surfaces in 

(Ndim – 1) dimensions. Within the context of the present work, this means 

reducing the volume integral of ωi(x)ϕi(x) over Ve to a surface integral over Se, 

which we may then compute using standard Gauss quadrature rules. Mousavi and 

Sukumar [217] summarize this integration scheme within the context of 

generating quadrature rules over convex polyhedra. We present a brief overview 

of the Lasserre integration scheme here for completeness of the present work. We 

describe the integration region of a convex polygon Ve as all points x such that Ax 

≤ b where A is an Nedg × Ndim matrix, b is an Nedg × 1 column vector, Ndim is the 

number of coordinate dimensions – two for a polygon. An edge Sk of Ve is then 

the part of the line that satisfies Akx = bk where Ak is the kth row in A, bk is the kth 

entry in b while still satisfying Ax ≤ b. The surface Se of Ve is then the set of 
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edges Sk ∀k ∈ { 1, 2, … Nedg }. Lasserre integration for integration of 

homogeneous functions then says that, 

 ( ) ( ) ( ) ( )
1

1 edg

e k

N
k

i i i i k
kdim ord kV S

d S
N

dbV
N

ω φ ω φ
=+

= ∫∑∫ x x x Ax
A

  (6.1.12) 

where Nord is the order of the homogeneous function ωi(x)ϕi(x). For ωi(x) = 1 and 

monomial ϕi(x), Nord is the total order of the monomial. We may now compute the 

surface integrals over the edges Sk using standard Gauss quadrature as follows, 

 ( ) ( ) ( ) ( )
1

int

k

N

i i k i j i j k j k
jS

dS w Aω φ ω φ
=

  ≈∑∫ x x x xA A   (6.1.13) 

where we interpolate xj = N*(ξj)xk, given the nodal coordinates xk and the area Ak 

of Sk, and we note that Ak ≠ ||Ak||. We select the quadrature rule from Table 6.2 to 

obtain the exact integration over Sk, which means that we should have 

Nord ≤ 2Nint – 1. 

Now suppose that we have a set of candidate integration points 

{ x1, x2, … xn } whose locations we assume a priori in a regular grid arrangement 

over the domain of the element. We construct the matrix Φ by evaluating ϕi(xj) ∀ 

i ∈ { 1, 2, … m }, j ∈ { 1, 2, … n } and inserting the values at Φij. Now we solve 

the linear system in equation (6.1.10). We note that in general m < n, so the 

solution of equation (6.1.10) is underdetermined implying that there is not a 

unique solution for the set of weights wj. This is not an issue on its own, but 

requires special consideration of the algorithm that we use to solve the equation. 

We use the minimum norm solution provided by the linear solver in Matlab [219], 

which is based on an orthogonal-triangular (QR) factorization of Φ. This solution 
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also has the benefit of resulting in many zero wj values, which means that we do 

not need to store their associated weights. 

As Mousavi and Sukumar [217] note, the solution sometimes produces 

negative weights. We found that this is undesirable for cases when we use 

lumping for the mass matrix M, as it may lead to negative nodal masses. Since the 

integration points with negative weights represent a small minority, and the 

solution often does not include negative weights, we can solve this by iterative 

deletion of candidate integration points. The procedure is as follows: 

1. Given a set of candidate integration points, construct matrix Φ by 

evaluating ϕi(xj) ∀i,j as described previously. 

2. Compute the solution w to the underdetermined system in 

equation (6.1.10) using the QR factorization solver. 

3. Find all j for which wj < -εtol where εtol is an error tolerance, necessary 

owing to the use of floating point numbers of finite precision. 

4. Eliminate the candidate points found in step 3. 

5. Repeat steps 1-4 until step 3 finds no points. 

6. Find all j for which |wj| < εtol and eliminate these points. 

Step 3 ensures that there are no integration points with significant negative 

weights, whereas step 6 deletes points with negligible weight, as these points will 

not significantly influence the numerical integration result. In practice, we find 

that this algorithm converges in a small number of iterations (<5) for irregular 

convex polygonal regions with up to 10 sides. The resulting set of integration 

points with non-zero weights has n ≤ m with cases of n < m resulting from 

symmetry of the integration region. 
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6.1.3 Example and Discussion 

To demonstrate the technique described in the previous section, consider the 

irregular hexagon shown in Figure 6.5. Table 6.4 shows the coordinates of the 

vertices and Table 6.5 shows the properties of the polygon useful for Lasserre 

integration of the monomial basis functions. Note that the polygon has its centroid 

at the origin. All numerical integration schemes on polygons in the present work 

use a local coordinate system such that the centroid is at the origin, to avoid 

dominance of high order monomial terms in the P matrix leading to ill 

conditioning of the H matrix. Throughout this example, the tabulated results show  

 
Figure 6.5 Sample irregular hexagon showing location of integration points on Se 

 

Table 6.4 Vertex coordinates of irregular hexagon 

Vertex Coordinates 
i xi yi 
1 2.751777 0.061217 
2 1.005377 2.503237 
3 -1.029423 2.458187 
4 -2.729623 -0.088803 
5 -1.549823 -2.220693 
6 1.349877 -2.336763 
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Table 6.5 Edge data for Lasserre integration over irregular hexagon 

Edge Length Constraint System, Ax ≤ b 
i Li Ai1 Ai2 ||Ai|| bi 
1 3.002228 1.398317 1 1.719095 3.909073 
2 2.035299 -0.022140 1 1.000245 2.480978 
3 3.062326 -1.498053 1 1.801156 4.000317 
4 2.436572 -1.806993 -1 2.065242 5.021212 
5 2.902022 -0.040028 -1 1.000801 2.282730 
6 2.777703 1.710521 -1 1.981384 4.645757 

 
values to six decimal points of precision, though the calculations were performed 

using full double precision arithmetic. 

To generate the set of quadrature points in the domain of the element and 

their corresponding weights, it is first necessary to obtain exact integrals of the 

monomial basis functions. As Table 6.3 shows, a hexagonal element for solid 

deformation analysis requires integration of monomials up to 4th order, a total of 

15 basis functions. Therefore, we require the three point Gauss integration rule 

from Table 6.2 on each edge. Table 6.6 shows the coordinates of the integration 

points and the corresponding weights, and Figure 6.5 superimposes their locations 

on the edges of the hexagon. Table 6.7 shows the results of the Lasserre 

integration of the monomial basis functions, according to equation (6.1.13). Note 

that the integral of the constant basis function gives the area of the element, and 

that the integrals of the first order basis functions vanish since the centroid is at 

the origin. Integrals of basis functions with even powers of x and y have large 

positive values, whereas the values are small and may be positive or negative for 

basis functions with odd powers of x or y. 

Next, we generate a grid of candidate integration points over the domain of 

the element, as Figure 6.6(a) shows. Of course, we only consider grid points that 

are inside the polygon as candidate integration points. We have the vector ϕ from  
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Table 6.6 Coordinates and weights of integration points on Se for irregular hexagon 

Point Coordinates Length Coefficient Weight 
i xi yi Li bi/||Ai|| wi 

1 2.554955 0.336437 
3.002228 2.273912 

0.277778 
2 1.878577 1.282227 0.444444 
3 1.202199 2.228017 0.277778 
4 0.776052 2.498160 

2.035299 2.480370 
0.277778 

5 -0.012023 2.480712 0.444444 
6 -0.800097 2.463264 0.277778 
7 -1.221038 2.171137 

3.062326 2.220972 
0.277778 

8 -1.879523 1.184692 0.444444 
9 -2.538007 0.198247 0.277778 

10 -2.596657 -0.329071 
2.436572 2.431295 

0.277778 
11 -2.139723 -1.154748 0.444444 
12 -1.682788 -1.980425 0.277778 
13 -1.223022 -2.233774 

2.902022 2.280903 
0.277778 

14 -0.099973 -2.278728 0.444444 
15 1.023076 -2.323682 0.277778 
16 1.507874 -2.066507 

2.777703 2.344703 
0.277778 

17 2.050827 -1.137773 0.444444 
18 2.593781 -0.209039 0.277778 

 
Table 6.7 Exact integrations of monomial basis functions over Ve for irregular 

hexagon using Lasserre integration 

Basis function Monomial integrand Integral over Ve 
i φi ∫Ve φi dV 
1 1 18.866291 
2 x 0.000000 
3 y 0.000000 
4 x2 28.551940 
5 xy 0.640381 
6 y2 28.745074 
7 x3 -0.105063 
8 x2y -2.575401 
9 xy2 0.026144 

10 y3 2.675919 
11 x4 89.286776 
12 x3y 2.698386 
13 x2y2 27.625113 
14 xy3 1.087535 
15 y4 90.112455 

 
the third column of Table 6.7 and we build the matrix Φ by evaluating the basis 

functions at all of the candidate integration points. We solve the underdetermined 

system in equation (6.1.10) using the Matlab solver as Section 6.1.2.3 described. 

We obtain 15 non-zero weights, consistent with the fact that there are 15 basis 

functions. On the first iteration, four of the weights are negative as Figure 6.6(b)  
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Figure 6.6 Graphical depiction of iterative generation of quadrature points and 

non-negative weights. Bold red + indicates polygon centroid. 

and Table 6.8 show. Negative weights are undesirable, so we delete these four 

points and repeat the process until we obtain a set of points with positive weights. 

After five iterations, we obtain a set of 15 integration points with all positive 

weights, as Figure 6.6(c) and Table 6.9 show. Integration points located closer to 

(a) Irregular hexagon tiled with 
candidate quadrature points.  
 
xmin = -2.674809   ymin = -2.288363 
xmax = 2.696963  ymax = 2.336257 
  Δx = 0.134294    Δy = 0.118580 

(b) Points with non-zero weights after 
one iteration. Points with a black X 
had positive weight. Points with a 
red O had negative weight. 

(c) Points with non-zero weights after 
five iterations. Size of X indicates the 
relative magnitude of the weights. 
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the centre of the element carry the most weight, whereas points near vertices carry 

the least weight, as one would expect. 

Table 6.8 Generated quadrature points and weights for irregular hexagon after one 
iteration 

Point Coordinates Weight 
i xi yi wi 
1 -2.003337 -0.983983 0.136709 
2 -1.869043 1.150457 0.079001 
3 -1.063277 2.336257 0.015764 
4 -0.794689 -1.576883 0.036663 
5 -0.391806 0.083237 0.218884 
6 0.011077 1.624777 0.127703 
7 0.145371 -2.288363 0.082778 
8 0.816843 -1.458303 0.113564 
9 1.085432 2.336257 0.036515 

10 1.622609 0.557557 0.141416 
11 2.159786 -0.865403 0.069516 
12 -2.674809 -0.153923 **  -0.015473  ** 
13 -1.466160 -2.169783 **  -0.016190  ** 
14 1.219726 -2.288363 **  -0.023397  ** 
15 2.562669 0.320397 **  -0.003453  ** 

 
Table 6.9 Converged quadrature points and weights for irregular hexagon after five 

iterations 

Point Coordinates Weight 
i xi yi wi 
1 -2.540515 -0.272503 0.017027 
2 -1.869043 1.150457 *   0.056086   * 
3 -1.600454 -0.628243 **   0.145677   ** 
4 -1.331866 -2.169783 *   0.025085   * 
5 -1.063277 2.336257 0.010260 
6 -0.123217 -1.458303 **   0.095526   ** 
7 -0.123217 0.083237 **   0.161623   ** 
8 -0.123217 1.743357 **   0.153657   ** 
9 0.145371 -2.288363 *   0.034558   * 

10 0.951137 2.336257 0.016667 
11 1.085432 1.031877 *   0.049097   * 
12 1.354020 -2.169783 0.014707 
13 1.622609 -0.746823 **   0.159708   ** 
14 2.025492 1.031877 *   0.058906   * 
15 2.562669 -0.035343 0.001418 

6.1.4 Conclusion 

The aim of this Appendaix was to clarify the procedure for generating the 

quadrature rules used to integrate the H, G and M matrices numerically. 
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Section 6.1.2 presented the theory behind the quadrature rules, including standard 

Gauss quadrature rules for surface integrations and the procedure for generating 

quadrature rules for irregular polygonal domains. Section 6.1.3 provided a 

demonstrative example to show the complete procedure for generating a set of 

quadrature points and weights for an irregular hexagon. With these details made 

clear, the present work is complete. 
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