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Abstract

SPECT (Single Photon Emission Computed Tomography) is the modality of choice for my-
ocardial perfusion imaging due to the high sensitivity and specificity, and the lower cost
of equipment and radiotracers compared to PET. Dynamic SPECT imaging provides new
possibilities for myocardial perfusion imaging by encoding more information in the recon-
structed images in the form of time-activity functions. The recent introduction of small
solid-state SPECT cameras using multiple pinhole collimators, such as the GE Discov-
ery NM 530c, offers the ability to obtain accurate myocardial perfusion information with
markedly decreased acquisition times and offers the possibility to obtain quantitative dy-
namic perfusion information.

This research targets two aspects of dynamic SPECT imaging with the intent of con-
tributing to the improvement of projection and reconstruction methods. First, we propose
an adaptation of distance-driven projection to SPECT imaging systems using single-pinhole
collimator detectors. The proposed distance-driven projection approach accounts for the fi-
nite size of the pinhole, the possibly coarse discretization of the detector and object spaces,
and the tilt of the detector surface. We evaluate the projection method in terms of resolution
and signal to noise ratio (SNR).

We also propose two maximum a posteriori (MAP) iterative image reconstruction
methods employing kernel density estimators. The proposed reconstruction methods cluster
time-activity functions (or intensity values) by their spatial proximity and similarity, each
of which is determined by spatial and range scaling parameters respectively. The results of
our experiments support our belief that the proposed reconstruction methods are especially
effective when performing reconstructions from low-count measurements.
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Chapter 1

Dynamic Cardiac SPECT Imaging Using Single-Pinhole
Collimators: Challenges and Proposed Improvements

The quantification of myocardial damage due to ischemia or infarction is an active field of
clinical research. The reasons for the interest in this field lie in providing better diagnoses
after ischemic episodes or infarction as well as enabling preventive care by detecting ischemia
and fibrosis in cardiac tissues at an early stage.

Current nuclear imaging technology employing the use of radiotracers for the quan-
tification of myocardial damage include modalities such as PET (Positron Emission To-
mography) and SPECT (Single Photon Emission Computed Tomography). Both imaging
modalities are used in a clinical setting, but SPECT is currently more widely used [56, 73]
due to its lower purchasing and maintenance costs.

The introduction of solid-state organ-specific SPECT imaging systems, such as the
GE Discovery NM 530c [7], have enabled dynamic SPECT imaging of the heart through
arrays of small pinhole collimator cameras. Such imaging systems offer some advantages in
terms of imaging speed and sensitivity, however, low signal-to-noise ratio (SNR) remains a
challenge due to its dependence on a combination of factors including the rapid washout
of radioactive tracers, the relatively short length of acquisition per time-frame, and gated
imaging.

In our research we have attempted to mitigate the aforementioned challenges by
targeting two key areas of research, namely, projection operator modelling and image re-
construction. We propose

• a distance-driven forward- and back-projection method targeted for imaging systems
using single pinhole collimators (Chapter 2), and

• two image reconstruction methods stemming from a maximum a posteriori formula-
tion that try to address the challenge of reconstructing images from low counts by
performing clustering during the reconstruction process (Chapter 3).

In addition to the above, research has also been conducted toward finding sampling condi-
tions for pinhole collimator imaging systems. The aim is to build a theoretical methodology
to constructing organ specific imaging systems, where the resolution required for the study
(i.e. the size of the smallest structures required to appear in the reconstructed images) de-
termines a theoretical minimum of the discretization of the detector surface, and the number
of the detectors required for the study. Since this is ongoing research, we only provide the
details of our findings so far in Chapter 4 and discuss future prospects.

Even though the theory and experiments presented in the following chapters are
geared toward SPECT imaging using pinhole collimators, the same methods can be applied
to other imaging modalities. For instance, the proposed projection method can be applied
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to cone-beam CT (Computed Tomography), where the X-ray source cannot be modelled
by a point. Additionally, our research on the topic of sampling using pinhole collimators is
directly applicable to linear fan-beam imaging [55].

Before exploring the details of each of the aforementioned areas of research, some
background on the pathophysiology of myocardial ischemia, and the basic principles of
emission tomography for both PET and SPECT is provided in order to create a more
complete picture of the imaging modalities and their aims. A high-level description of the
methods proposed for image acquisition, projection, and reconstruction follows.

1.1 Myocardial Ischemia and Principles of SPECT and PET Imaging

Pathophysiology of Myocardial Ischemia Myocardial ischemia is marked by the mis-
match between the demand and supply of oxygen to the myocytes (myocardial muscle
cells) [56]. Myocardial demand is determined by both the strength of the muscular contrac-
tions and the heart rate. During physical exercise the heart rate increases, and the force
of myocardium increases to raise the stroke volume of the left ventricular systolic pressure.
In healthy subjects, the arterioles can dilate during exercise, which leads to increased my-
ocardial perfusion. In subjects suffering from coronary artery disease (otherwise known as
ischemic heart disease) myocardial perfusion is limited due to coronary artery stenoses that
increase the resistance of the larger arteries. The heart compensates for the added resis-
tance by dilating the arterioles at rest, however, this means that at stress (i.e. exercise) the
arteriolar dilation is limited thereby creating a limited blood flow [56]. This explains why
most patients exhibit stress-induced ischemia.

Extended periods of stress-induced ischemia, if left untreated, can cause myocardial
infarction which results from the interruption of the blood supply to myocardial cells causing
myocyte apoptosis which causes permanent damage to the heart, and exposes the subject
to life-threatening arrhythmia [46].

Emission tomography imaging, such as PET and SPECT, can be used to detect
anomalies in the perfusion of the heart by injecting radiotracers that bind to healthy my-
ocardial tissues in a predictable way. The variation of said tracers from the predicted models
can aid in determining the damage to the myocardial tissues.

Basic Principles of PET Imaging The goal of PET imaging is to generate images of
the distribution of positron emitting radiotracers in vivo. PET systems rely on the detection
of annihilation gamma rays emitted through the process of positron decay. The gamma rays
(photons) emitted from positron annihilation have an energy of 511 keV, as dictated by the
mass of the positron and the formula E = mc2, and travel in nearly opposite directions.
The emission of these photons creates a line of response (LOR) which is the line connecting
the locations of incidence. Figure 1.1 shows a schematic cross-section and top-view of a
PET detector ring, along with an LOR dictated by the photon coincidence on the detector.

A collimator is a structure that is typically added to imaging systems in emission
tomography to limit the the angle of incidence of photons emitted by the radiotracer. While
a collimator can be used in PET imaging, it is preferable to rely on the LOR to narrow down
the possible directions from which detected photons were emitted, to increase sensitivity (i.e.
counted events). When a collimator is not used, PET has typically higher sensitivity than

3
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(b) Cross-sectional view of PET detector ring.

Figure 1.1: PET detector ring in top-level and cross-sectional view. The emitted photons from the
point of positron annihilation (red dot) coincide at different bins on the detector.

SPECT. Figure 1.1b shows an example of PET detector rings that are not separated by
collimator septa, and therefore oblique LORs are detected.

When a collimator is added, as is done in 2D PET imaging, septa separate the
PET detector rings in such a way that LORs lie on the same ring, and therefore random
events and scatter events arising from activity outside the axial field of view (FOV) are
not recorded, leading to greatly decreased background counts. However, the addition of the
septa also greatly reduces the sensitivity of the scanner [13].

Because in PET the subject is surrounded by a ring of detectors, all projection angles
are sampled simultaneously. This means that a reconstruction can be performed from data
acquired in a single time-frame, and therefore physiological processes that change tracer
distribution over time can be monitored and evaluated to provide quantitative estimates of
blood flow, for example.

Typical radiotracers used in myocardial perfusion imaging in PET include 82RbCl,
13NH3, and 18F-FDG which is used in myocardial metabolic imaging. The half-life of PET
tracers is typically shorter compared to SPECT tracers, and generally a nuclear reactor or
cyclotron must be available on-site with the PET scanner to carry out an imaging study. The
high costs of purchase and maintenance associated with PET imaging sometimes outweigh
the benefits, and limit the availability of PET in clinical practice.

Basic Principles of SPECT Imaging The goal of SPECT imaging is to generate images
of the distribution of photon-emitting radiotracers in vivo. Unlike PET tracers, SPECT
tracers emit a single photon from radioactive decay and therefore a collimator is required
to limit the directions from which photons are collected.

A multitude of collimators have been developed for SPECT imaging over the years,
each with a specific purpose.

• Parallel-hole collimators aim to produce orthogonal projections of the object being
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imaged.

• Fan-beam collimators were developed to produce projections which are magnified in
one direction.1

• Single- and multi-pinhole collimators were introduced to produce projections which
are magnified (or reduced) in all directions.

Figure 1.2 shows a schematic view of some of the aforementioned geometries.

Detector Plane Detector Plane
Detector Surface

Figure 1.2: Schematic view of typical collimators used in SPECT imaging: single-pinhole collimator
(left), parallel-hole collimator (centre), fan-beam collimator (right). The provenance of measured
photons (red lines) emitted from the radiotracer (green) in the subject (gray) is limited by the shape
of the collimator.

In SPECT, unlike PET, the detector head revolves around the subject, or in the
case of fixed systems (where detector heads do not move) there is a limited number of heads
surrounding the subject. It follows, that imaging dynamic processes in SPECT is not as
straightforward as in PET since, depending on how quickly the tracer distribution changes
over time, one may not have enough measurements to perform a reconstruction from a single
acquisition time-frame. Typically, one must rely on kinetic models of tracer distribution (or
some form of temporal modelling) to perform dynamic reconstructions in SPECT.

Currently, SPECT imaging is the modality of choice for clinicians performing cardiac
studies, due to the lower cost of SPECT scanners (compared to PET), and higher availability
and lower cost of production associated with the radiotracers [73]. Typical perfusion tracers
used in cardiac SPECT imaging include Thallium (201Tl), and Technetium-based tracers
(99mTc-sestamibi, 99mTc-tetrofosmin, 99mTc-teboroxime) among others [23,24,31,69,74].

In general, PET has technical advantages over SPECT since spatial resolution is
typically higher, the acquisitions are shorter, and motion artifacts present less of a prob-
lem [56]. Furthermore, PET imaging in a clinical setting is used for absolute quantification
of perfusion, while SPECT imaging (even though it presents the same potential) is used to
measure relative uptake [13,56].

The main disadvantage of measuring relative tracer uptake is that one can only
perform a differential diagnosis based on the comparison of healthy and unhealthy tissues.

1The PET detector ring is a special-case of the fan-beam collimator.
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However, systemic under-perfusion (e.g. multi-vessel disease where the whole heart is under-
perfused) can go undetected. In contrast, PET imaging can provide parametric images that
show absolute measures of perfusion, which enables the clinician to identify systemic damage.

In our research, we pursue the improvement of SPECT imaging due to its potential
to applications in preventive care, where the early detection of perfusion anomalies in the
myocardium would greatly benefit patients, its cost-effectiveness in terms of purchase and
maintainability, and its greater availability.

1.2 A High-level View of the Areas of Research and The Proposed Solu-
tions

We have attempted to address three key areas in dynamic SPECT imaging employing pin-
hole collimators, namely, optimization of data acquisition, projection operator modelling,
and design of a dynamic image reconstruction algorithm targeted for reconstructions from
low-count measurements. This section provides a methodological view of each of the pro-
posed approaches and arguments to justify the chosen course of research. It must be noted
that our research in the optimization of the acquisition is still ongoing, however, we present
our current findings here in order to provide a more complete picture of our goals.

Optimizing the Acquisition Protocol

The acquisition protocol must be optimized so as to obtain the desired degree of spatial
resolution based on the structures of interest in the heart (i.e. thickness of the myocardial
wall), while at the same time minimizing the cost of the scanning device by finding the
coarsest discretization of the detector surface and the smallest number of projections or
heads needed to accomplish this. The proposed methodology approaches this problem from
an analytical perspective; that is, asymptotic properties of integral transforms in Fourier
space are analyzed to determine an efficient sampling scheme.

In past research, we constructed a single-pinhole integral transform [40] and at-
tempted to analyze the asymptotic properties of said transform in Fourier space [5,6,53–55].
While exact results were obtained for a curved-detector single-pinhole transform (effectively
leading to a reparametrization of the standard fan-beam transform), great difficulty was
encountered when analyzing the flat-detector single-pinhole transform, which is of greater
interest in our application.

As an alternative, the transform of interest (flat-detector single-pinhole transform,
or linear fan-beam) was approximated as a perturbation of a known transform (angular fan-
beam) so that an efficient sampling scheme for the first can be determined by the latter. Two
analytic approaches were employed to address the problem of efficient sampling, namely, the
coarse-grid approach [22,25] and the non-uniform sampling approach [32,78].

The principal reason for choosing an analytic approach to finding an efficient sam-
pling scheme is to simplify the problem of finding the optimal radius of rotation, and choosing
the minimum number of detector heads along with the coarsest resolution of the detector
surface. The result of our approach can then be used as a starting guess in numerical simu-
lations that account for additional factors that are more directly related to the properties of
the imaging system or study. If the same problem was approached using strictly numerical
methods, we believe the complexity of the problem would quickly increase.

6



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

In the current approach, we do not address a number of problems such as truncated
(or incomplete) projections and noise, however, it may be possible that this modelling
effort can be transferred to later stages in the imaging chain by, for instance, letting the
projection method mitigate data truncation, and letting the image reconstruction method
mitigate noisy measurements by employing a denoising strategy during reconstruction.

Modelling the Projection Operator for a Single-Pinhole Imaging System

The projection operator is an integral part of the imaging chain since it determines the
spatial distribution of activity across the object and detector space. We propose an exten-
sion of the distance-driven forward and back-projection method [18, 19] that is targeted to
emission tomography imaging using pinhole collimators. The proposed approach accounts
for the finite size of the pinhole, and samples the pinhole along its circumference resulting
in a piece-wise linear approximation of the kernel function which augments object cells (i.e.
voxels) projected through a point. The fraction of activity attributed to a certain detector
bin is then estimated from the overlap of the detector bin and projected object cell.

We evaluate the proposed distance-driven projection method by comparing it to a
ray-driven projection method. Experimental results show that the proposed method pre-
serves the structure of reconstructed objects better in the presence of noise, albeit it is more
computationally intensive than the ray-driven approach due to the large number of polygon
intersection calculations.

An important physical effect in emission tomography is the spatially-dependent re-
duction of measured photon counts due to the radiotracer being obscured by a relatively
dense material (e.g. bone, metallic implants) which “traps” emitted photons. This effect, if
not accounted for, will affect the distribution of the radiotracer during image reconstruction
since the algorithm may inherently assume that the lower counts in some projections are
due to the distance of the radiotracer to the detector head, rather than due to an obstruc-
tion. The proposed projection operator does not account for such physical effects, however,
one can include attenuation correction in the proposed projector if the attenuation map is
estimated separately.

Designing an Image Reconstruction Method

To mitigate the challenge of reconstructing images in the presence of noise, we propose
two maximum a posteriori iterative methods of dynamic image reconstruction, one which
employs a kernel density estimator-based prior (MAPKDE) [30], and one which employs a
Gaussian prior to constrain the behaviour of the time-activity functions (TAF) to “mean
TAFs” that are estimated from mean-shift filtering at each iteration [15,17].

A disadvantage of the proposed iterative schemes is that they do not explicitly deal
with the interior problem, where images must be reconstructed from truncated data. How-
ever, due to the nature of the organ-specific imaging system (which is the focus of our study)
it is assumed that activity coming from sources other than the organ of interest does not
affect the reconstructed image. We also argue, based on existing literature (see [29,50,81]),
that one can mitigate the artifacts introduced from truncated data by modelling the projec-
tion operator accordingly, and without changing the iterative reconstruction method itself.

7
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1.3 Summary

This chapter has presented our motivation, and the three key areas of our research. In the
following two chapters we discuss the details of the distance-driven projection approach,
and the kernel density estimator based MAP image reconstruction approaches. The last
chapter describes the theory related to our ongoing research in efficient sampling for the
linear fan-beam transform (i.e. flat-detector single-pinhole transform).
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Chapter 2

An Adaptation of the Distance Driven Projection Method
for Single Pinhole Collimators in SPECT Imaging

In emission tomography, the aim is to reconstruct multi-dimensional activity images from
projection measurements of an injected radioactive tracer. These projections represent
detected events (i.e. detected photons) emitted from various locations within the field of
view (FOV) of the scanning system. Determining the locations of the originating emission
is a challenging task and different approaches are taken for different imaging modalities to
“narrow down” the direction of a detected event (or photon count).

In Single Photon Emission Computed Tomography (SPECT) the possible lines of
detection are limited through the use of a physical collimator. The geometry of the collima-
tor limits the region within the FOV from where a detected photon is assumed to originate.
While in clinical practice there exist many collimator geometries (i.e. parallel, fanbeam,
etc), this material will focus on the single pinhole collimator geometry. We present an al-
gebraic projector (and subsequent back-projector) which accounts for factors such as the
finite size of the pinhole, possible tilting of the detector surface, and geometric sensitivity
[2,41,52]. The aim is to provide an adequate algebraic approximation of the physical system
(or acquisition process) to improve reconstruction accuracy.

Currently, there exist several methods for projection and back-projection that can
be extended to pinhole SPECT imaging. For instance, ray-driven methods are excellent
candidates to perform forward and back-projection, if one wants to include such factors as
penetrative sensitivity [52]. Ray driven methods work by tracing rays through an object onto
the detector surface thereby discretizing the integral line and approximating each integral
line as the cumulative weighted sum of image voxels intersecting the ideal line. Several
techniques have been used to weight the contribution of each voxel to the idealized integral
line (see [77,79,82] and the references therein for a detailed overview). Ray-driven methods
also have a transpose operator that performs the backprojection operation.

Some drawbacks of ray-driven methods include the introduction of artifacts in the
form of Moiré patterns in the backprojection, and non-sequential memory access patterns,
which may significantly affect performance [19]. In pinhole SPECT imaging, due to the
coarse discretization of the object (i.e, 643-1233 voxels) and detector space (i.e. 642-1282

bins), memory may not be a limiting factor, but there are additional considerations such
as the finite size of the pinhole that may present problems for ray-driven methods. One
obvious approach to adapt ray-driven projection to pinhole SPECT would be to sample the
pinhole at L locations which would result in performing the forward or back-projection L
times (that is, from L different ideal pinholes). This problem is further complicated by the
question of the pinhole surface sampling pattern to be used in order to minimize sampling
artifacts.

10
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A fundamentally different approach to ray-driven projection is pixel-driven projec-
tion, where intersection calculations are performed between backprojected detector pixels
and object voxels in the case of backprojection, and projected object voxels and detec-
tor pixels during projection [43, 62, 82]. The drawbacks of pixel-driven projection include
the introduction of high frequency artifacts, and high computational cost due to polygon
intersection calculations.

A further category of projection methods are distance-driven methods introduced
in [18, 19]. These methods are known for their lower arithmetic complexity, sequential
memory access patterns, and the avoidance of artifacts commonly observed in ray-driven
and pixel-driven projection approaches. The distance-driven projection method maps the
object voxel and detector pixel onto a common plane or axis (for 3D and 2D imaging
respectively) and applies a one-dimensional kernel operation to map data from one set of
boundaries to the other.

In this chapter, we present a projection method which combines the distance-driven
and the pixel-driven approaches. On the one hand, the similarity to the distance-driven
approach comes from the fact that the weights used to determine the contribution of a
detector pixel to an object cell and vice versa are determined from the overlap of these
elements when projected onto a common plane. On the other hand, the similarities shared
between our approach and the pixel-driven approach come from the fact that intersection
calculations between projected object cells and detector pixels need to be performed in order
to determine the weights for distance-driven projection. Furthermore, the regularity of the
detector surface is exploited in order to reduce the number of computations.

2.1 The Proposed Distance-Driven Projection Method for Pinhole SPECT
Imaging

This section provides a brief presentation of the distance-driven projection method in one,
two and three dimensions, and then extends the concept to SPECT imaging using a finite-
size pinhole and slanted detector surface.

2.1.1 Distance-Driven Projection

Let the source signal be defined by a set of values f0, f1, . . . , fN−1 at locations x0 < x1 <
. . . < xN−1 and the destination signal g0, g1, . . . , gM−1 at locations y0 < y1 < . . . < yM−1.
Re-sampling is then performed by a process known as the kernel operation where the des-
tination values {gj} are determined by the source values {fi}, source locations {xi}, and
destination locations {yj}. Specifically, the destination value is calculated as

gj =

N∑
i=0

ωj,ifi (2.1)

where ωj,i is the degree of overlap between source and destination cells and is defined as

ωj,i =

∫ yj+1

yj

1xi≤x<xi+1dx (2.2)

= |[yj , yj+1] ∩ [xi, xi+1]|
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fi+2

xi+2

gj

yj

gj+1

yj+1

ωj,i ωj,i+1

Figure 2.1: Schematic view of the distance-driven kernel where the length of the overlap between
source and destination cells is used as a weight to map the contribution of the source value to the
destination value. Shown in the figure: source cells {fi} starting at locations {xi}, destination cells
{gj} at locations {yj} and overlaps ωj,i and ωj,i+1 which occur between destination cell gj and source
cells fi and fi+1 respectively.

where the absolute value denotes the measure of the set, and 1xi≤x<xi+1 is an indicator
function for the set [xi, xi+1].

For example, for the 1D source and destination cells shown in Figure 2.1, the source
and destination intensities are related by

gj = ωj,ifi + ωj,i+1fi+1 (2.3)

where

ωj,i = |[yj , yj+1] ∩ [xi, xi+1]| = xi+1 − yj ,
ωj,i+1 = |[yj , yj+1] ∩ [xi+1, xi+2]| = yj+1 − xi+1.

One may choose kernel weights that are normalized by the source or destination intervals.
For instance, taking the example of Figure 2.1 the weights would become

ωj,i =
xi+1 − yj
yj+1 − yj

, ωj,i+1 =
yj+1 − xi+1

yj+1 − yj
,

when normalized by the destination intervals.

The aforementioned kernel operation can be extended to 2D/3D tomography by
letting the detector pixels be the source cells and the object voxels be the destination cells,
as is the case in backprojection. Figure 2.2 provides a schematic view of how the distance-
driven approach is applied in the context of cone-beam computed tomography (CT), where
the X-ray source and detector plane are typically on opposite sides of the object space (or
field of view). This figure depicts the projection of a single object voxel and a corresponding
incidental detector bin onto the (common) xz-plane.

Denoting the overlap of the detector pixel to the projected object voxel by ω1 and ω2

in the in- and out-of-plane directions respectively as shown in Figure 2.2c, and the projection
of the detector pixel in these directions by λ1 and λ2, the contribution to the j-detector
pixel from the object is then given by

gj =
t

cosβ cos γ

N∑
i=1

ω1,j,i

λ1,j

ω2,j,i

λ2,j
fi (2.4)
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Figure 2.2: Schematic outline of the distance-driven approach in cone-beam CT shown when looking
from the positive z-axis in (a) and from the negative x-axis in (b). The object voxels (red) and
detector pixels (blue) are projected along the y-axis (the main projection direction) onto the xz-plane
as dictated by the source point. The dashed lines in blue and red respectively show the projection of
the corners of the detector bin and mid-plane of the object voxel onto the xz-plane through the source
point. Figure (c) shows projected object voxels in red along with the projected detector bins in blue
onto the common xz-plane. The area of overlap of a detector pixel to an object voxel is approximated
by the gray shaded area: ω1, ω2 correspond to the dimensions of the approximated overlap area and
λ1, λ2 to the approximate dimensions of the projected detector pixel.

where t is the isotropic voxel size, β and γ are the in- and out-of-plane angles with respect
to the y-axis.

In the next section, a projection approach for single pinhole SPECT imaging that
shares many similarities to the distance-driven projection method described above is pre-
sented. The main difference between the proposed distance-driven approach and the afore-
mentioned is that the X-ray source (which corresponds to the pinhole in SPECT imaging)
is assumed to have finite size.
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2.1.2 Adapting Distance-Driven Projection to SPECT Imaging

It is apparent that the distance-driven projection method assumes that projections are taken
through a point source. This assumption, however, is not valid in pinhole SPECT since the
pinhole has finite size, which affects the quality of image dramatically depending on the focal
distance (i.e. perpendicular distance of the pinhole to the detector plane). Specifically, with
a larger pinhole radius, there is increased blurring due to the increased number of sources
that are detected in the same detector pixel. Conversely, if one does not model the physical
effects caused by the finite size of the pinhole by, for instance, assuming the pinhole is
infinitely small, then the backprojection operation will not update the values of the object
voxels in an adequate manner since the detected counts will be distributed to a different
region than the one from which it was originally emitted.

Furthermore, in pinhole SPECT imaging, a projected object voxel may occupy a
large region of the detector space due to its proximity to the pinhole, its possibly large size,
and the tilt of the detector plane. This problem may be exacerbated when the detector
surface is tilted as the projected object voxels are deformed and possibly enlarged along the
direction of the tilt.

To address the aforementioned problems, we introduce a sampling strategy for the
shape of the pinhole and compute the shape of the projected object cell1 more accurately.
Specifically, we sample the perimeter of the pinhole thereby approximating the shape of the
pinhole by a polygon. For example, in Figure 2.3 the pinhole has been sampled at 4 locations
making the pinhole shape effectively rhombic. As our results will show, choosing 4 sampling
points provides a good balance between computational cost and reconstruction accuracy. In
this case, it is apparent that rhombus and square pinholes are described exactly, and shapes
such as circles are approximated well since at least 64% of the area of the projected voxel
is covered (i.e. when the voxel is a point). As can be seen from Figure 2.3b, the choice of
the pinhole shape approximation kernel expands (or grows) the ideal projected object cell
(IPOC) accordingly. In summary, our approach only limits the approximation of the pinhole
to polygons so the user may choose to sample the circumference of the pinhole in a manner
appropriate to the application (see Figure 2.4a).

It is important to note that the expansion of the projected object cell is dependent
on the ratio of the collimator focal distance to the distance of the object cell vertex from
the collimator. Notice, for example, that in Figure 2.3, the vertices of the object cell that
are closest to the pinhole are expanded more than those further away. This detail is added
so as to create a better approximation of the projection of the spatial basis function (e.g.
voxel) on the detector space, especially in the case where the detector surface is tilted.

A fundamental difference between our approach and the distance driven approach [19]
is that the object cells are projected onto the detector space, therefore the detector plane
itself corresponds to the common plane in the distance driven approach. The reason for
this relates to both the finite size of the pinhole and the computational complexity of the
projection of the object cells. Intuitively, both the detector pixels and projected object
voxels must be expanded according to the shape of the pinhole after being projected onto
a common plane in order to estimate the overlap accurately. However, this increases the

1The term “object cell” is used instead of “object voxel” since the proposed projection method does not
restrict object space discretization to cubic voxels, but rather any convex shape.
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b

(a)

(b)

Figure 2.3: Schematic outline of the proposed distance-driven approach for SPECT imaging. Com-
ponents in Figure (a): (near-left) object cell, (far-right) the detector plane showing the projected
object cell and (in between) the finite-sized pinhole approximated by the points on the cross. Fig-
ure (b): a close up of the projected cell shown in Figure (a). The red shape is obtained from the
projection of the object cell through an idealized pinhole of infinitely small radius while the blue shape
surrounding it shows the approximated “expansion” of the projected object cell (EPOC) through the
finite-sized pinhole which is represented by the blue cross at the joining point of the projection lines.
Note that the cross approximating the pinhole changes in size depending on the distance of the object
cell vertex to the pinhole (i.e. the further away the vertex from the pinhole the smaller the cross and
resulting expansion).

number of elements that need to be projected (i.e. N voxels and M pixels must be pro-
jected), and increases the computational cost since more elements need to be expanded.
Furthermore, if our approach were to use an intermediate (or common) plane, the cost of
estimating intersections between expanded projected object cells (EPOC) and detector pixels
increases since the regularity of the the bins in the detector plane may not be preserved (e.g.
in the cases the detector plane is tilted). For the aforementioned reasons, we exploit the
regularity of the detector surface to narrow down the number of candidate detector pixels
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that may intersect with a given EPOC. In Figure 2.3a, the detector pixels involved in the
polygon intersection and overlap ratio computations for the shown EPOC are highlighted
in purple.

It is worth noting that the distance-driven approach proposed here does not address
the issue of aperture penetration (see [52] and the references therein for existing approaches),
however, the aim is to address this issue in the near future. A short explanation of one
possible strategy to implement aperture penetration is provided in Section 2.3.2.

Projecting the Object Cells

To simplify the projection of the object cells, we consider a detector surface-centric coor-
dinate system, where the origin of the detector surface becomes the origin of the whole
projection system (as opposed to the origin of the FOV).

Let {p` ∈ R3}`=1,...,L denote the sampling points along the pinhole perimeter (see
Figure 2.4) where a rhombic approximation admits L = 4, and let |p| denote the distance
of the ideal pinhole p0 from the origin. Then given the detector surface tilting angles α, β,
and γ, we obtain the pinhole coordinates as seen from the centre of the tilted detector

p` = Rtilt(−α,−β,−γ)

 r cos(2π`/L)
|p|

r sin(2π`/L)



p0 = Rtilt(−α,−β,−γ)

 0
|p|
0

 .

Here, Rtilt is the rotation matrix for the tilting of the detector surface, and r is the radius
of the pinhole.

Let the object space be discretized into N cells, and let the intensities of the object
voxels be denoted by {fi}i=1,...,N with {xki ∈ R3}i=1,...,N denoting the k corners of object
cell i (in the case of cubic voxels k = 1, . . . , 8). The object cell corners as seen from the
detector surface origin are computed as

Ωk
i = Rtilt(−α,−β,−γ)(Rhead(−θ,−φ)xki − p)

where p = (0, |p|, 0)>, and Rhead is the rotation matrix for the detector head (i.e. in-plane
and out-of-plane angles).

From here one may compute the vertices of the EPOC (blue region in Figure 2.3)

denoted by {wk,`i ∈ R2}i=1,...,N as

(
wk,`i,1
wk,`i,2

)
= κ

 −Ωk
i,1 + (p`1 − Ωk

i,1)
Ωki,2

p`2−Ωki,2

−Ωk
i,1 + (p`3 − Ωk

i,3)
Ωki,2

p`2−Ωki,2

 (2.5)

where

κ =

{
−1 ,

Ωki,2
p`2−Ωki,2

> 0

1 , otherwise

16



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

L = 4 L = 10

(a) (b)

Figure 2.4: Schematic outline of a circular pinhole shape (blue) sampled using the (a) proposed
method and (b) the ray-driven method. In the proposed approach, the perimeter of the pinhole is
sampled in order to create a polygonal covering of the pinhole surface. In contrast, in the ray-driven
approach the pinhole must be sampled throughout the surface: the sampling shown corresponds to a
8× 8 concentric map between a square and a circle.

makes sure the point is projected is the correct orientation even when Rtilt rotates the
detector in a direction where the image is projected on the back of the detector surface.

One may also choose κ = 0 when
Ωki,2

p`2−Ωki,2
> 0 so that no image is projected on the back of

the detector.

While the number of computations required for the projection of the object cells
increases depending on the number of pinhole sampling points, L, and number of cell ver-
tices, this remains a parallelizable process, since given the pinhole position and its sampling
points all operations are component-wise, and therefore does not constitute a performance
bottleneck.

Finding the Convex Hull in Detector Space

The aforementioned method projects the object cell vertices using the polygonal pinhole
kernel. With this method, the points calculated are not the points on the convex hull,
but rather all the points of the object cell projected from all the pinhole sampling points
(see the endpoints on the crosses shown in Figure 2.3). To estimate the overlap ratio, the
intersection of the convex hull (e.g. using [4, 14, 42]) of the projected object cell vertices

with the detector pixels must be determined. In this step, only the vertices wk,`i,d which are
on the convex hull are maintained, denoted by ντi,d, where τ indexes the τ -th vertex of the
convex hull.

Computing the Intersection of Polygons and Overlap Ratio

The most computationally expensive step in the proposed projection process is the compu-
tation of the intersection of the convex hulls of projected object cells and detector pixels.
Here we have exploited the typical regularity in location and size of the detector pixels to
reduce the number of polygons needed to intersect by predicting possible collisions.

Let the convex hull of an EPOC be denoted by Pi. If the detector cell spacing in
each direction d is denoted by hd then the set of possible intersection pixel indices in each
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direction d is within

smin,d =

⌊
minτ ν

τ
i,d −mdhd

hd
+ 0.5

⌋
,

smax,d =

⌊
maxτ ν

τ
i,d −mdhd

hd
+ 0.5

⌋
where ντi,d is the τ -th vertex of Pi in the d-th direction, md is the number of detector pixels
in direction d = 1, 2.

The intersection of the EPOC convex hulls, Pi, to the detector pixel, Qj , polygon
can be obtained by using a clipping algorithm [70,72] and the area of the intersection polygon
I(j,i) can be computed using the signed trapezoidal area of each edge to the abscissa as

Area(Ij,i) =

U−1∑
u=0

(v
[u+1]U
(j,i),1 − v

u
(j,i),1)

v
[u+1]U
(j,i),2 + vu(j,i),2

2
(2.6)

where vu(j,i),d is the u-th vertex of the intersection polygon Ij,i in direction d, and [ · ]U is the
modulo U operator.

Finally, the overlap ratio can be computed as

ωj,i =
Area(Ij,i)
Area(Qj)

, (2.7)

where the ratio is normalized by the area of the detector pixel. One may also choose to
normalize by the size of the convex hull of the EPOC, namely Area(Pi), or choose not
to use normalization (depending on the application-specific model). However, one must
make sure that the overlap ratio is computed using the same scaling during projection and
backprojection.

Finally, the contribution of activity from the object to a detector pixel gj is described
by

gj =
∑

k∈χ(Qj)

tk(θ, φ)ωj,kγkfk (2.8)

where χ(Qj) = {k|Pk ∩Qj 6= ∅}, ωj,k is computed using equation (2.7), tk(θ, φ) is the av-
erage object cell “thickness” as seen from the detector head rotation angles θ and φ, and
γk is the geometric factor which determines the sensitivity due to the pinhole aperture and
the distance of the source to the pinhole (see [2,41]) computed from either the centre of the
object cell (fk) to the pinhole, or as an average of the geometric factor computed on the
vertices of the object cell.

Assuming the object cells are cubic voxels then (2.8) is simplified to

gj =
t

cos θ cosφ

∑
k∈χ(Qj)

ωj,kγkfk (2.9)

where t is the isotropic voxel size. Similarly, the backprojection operator can be computed
using the same geometric factor and overlap ratios as described above from

fi =
t

cos θ cosφ
γi

∑
k∈ϑ(Pi)

ωk,igk, (2.10)

18



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

where ϑ(Pi) = {k|Pi ∩Qk 6= ∅}.
It is apparent from equations (2.9) and (2.10) that the forward and back-projection

operations are the transposes of each other and therefore the weights ωj,i that are computed
from the forward projections can be used for the back-projection (and vice versa). Specif-
ically, let W = [wj,k] ∈ RM×N be the matrix of overlap weights, and Γ ∈ RN×N be the
geometric sensitivity matrix, then with f ∈ RN and g ∈ RM as vector representations of
the object space and detector space respectively we see that

g =
t

cos θ cosφ
WΓf and f =

t

cos θ cosφ
Γ>W>g

are transpose operations.

In summary, this section has presented an algebraic approximation to perform for-
ward and backprojection in pinhole SPECT imaging by modifying the distance-driven
method so as to determine the contribution of activity from an object cell to a detector
pixel and vice versa. The proposed approach samples the surface of the pinhole using a
polygon in order to account for the blurring caused by the shape and size of the pinhole.
This approach, due to the fewer approximations performed at an element-level (i.e. object
cell), is more computationally intensive, and therefore better suited for reconstructions at
coarser object-space discretization which are typical of SPECT imaging (i.e. 643 to 1283 vox-
els). It is apparent from [19] that further approximations can be made at finer object-space
discretizations.

2.2 Validating the Proposed Model

The proposed model is compared against a ray-driven method in order to gain some insight
to the advantages and disadvantages in terms of artifacts introduced in the context of image
reconstruction. The ray-driven method used for the comparison uses a slice-interpolated
strategy [44,77] whereby the pinhole has been sampled using a concentric mapping of points
from a square [68] as shown in Figure 2.4b.

The main difficulty with using a ray-driven approach to sample a finite-sized pinhole,
is determining the weighting the overlap of rays in the object space. If we were to take the
mean activity of all the rays, we would be assuming that the rays completely overlap (or in
other words, measure the same exact region) in the object space, which is exact only for an
infinitely small pinhole. The exact weighting would account for the overlapping regions of
rays in different sampling points of the pinhole by averaging the activity in the regions that
overlap and adding the activity in the regions that do not. This last approach increases the
complexity of the forward and backprojection in the ray-driven approach. For the purposes
of the experiments presented below, it is assumed that the pinhole is small enough so that
the weighting of the rays reduces to averaging.

2.2.1 Experiment Setting

Two phantoms are used in order to compare the quality of images in the presence of noise
and the resolution of the reconstructed images.
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Point-Source Simulation

Projections of a three dimensional point-source phantom, composed of three point sources
with effectively 300 kBq of activity due to multiple acquisitions each with 140 keV energy and
a half-life of 6.022 hours, were generated using GATE [3,11]. The projections were acquired
at every 3◦ for a total of 120 projections on a great circle with a radius of rotation of 27.79 cm
around the y-axis with focal length of 21.72 cm, detector discretization of 256× 256 pixels,
detector bin size of 0.112 cm2, detector bin material CZT (Cadmium Zinc Telluride), and a
Tungsten pinhole with radius 0.24 cm. The focal length and radius of rotation were chosen to
be relatively large so that the blurring caused by the large pinhole radius would be somewhat
diminished. The point sources were positioned at 0, 3.14 and 6.28 centimetres along the
x-axis in both a cold background and a warm background with 300 KBq of activity. The
reconstructed image has a discretization of 128× 128× 16 voxels, each with size 0.223 cm3

where the FOV is truncated along the y-axis since no activity exists outside the selected
region. In the ray-driven approach, the pinhole was sampled using 8×8 points concentrically
mapped between a square and a circle [68], while in the distance-driven approach the pinhole
circumference was sampled at 4 points. The objective of this phantom is to compare the
FWHM of the reconstructed point sources with each projection method and at varying
detector resolutions

Mini-Deluxe PhantomTMExperiment (Data Spectrum Corp., Durham, North
Carolina)

The Mini-Deluxe PhantomTM was filled with Tc-99m at a concentration of 7.4 MBq/ml with
total activity 175 MBq and scanned in a Gamma Medica X-SPECTTM system over a 10 hour
period to obtain high-count projections with an average of 11,000 counts per projection after
decay correction (top left image in Figure 2.5). The projections were acquired using a single
pinhole geometry (diameter = 1 mm, 60◦ acceptance angle) in 128 projections over 360◦.
The radius of rotation was 8 cm, focal length of 9 cm, detector resolution of 82× 82 pixels
at (1.5× 1.5) mm2/pixel. The energy window for the detector was set to 140 keV ± 10%
(126-154 keV). The reconstructed image has a matrix size of 82× 82× 42 voxels covering
a (10× 10× 5) cm3 FOV. In the ray-driven approach the pinhole was sampled using both
4× 4 and 8× 8 points concentrically mapped from a square to a circle in order to determine
how the quality of reconstructed images is affected by the number of sampling points on the
pinhole. In the distance driven approach the circumference of the pinhole was sampled at 4
points.

The Mini-Deluxe PhantomTM phantom is used to show the relation between the
quality of the reconstructed images and the total counts in the measured projections from an
SNR perspective to find if the proposed distance-driven approach presents any advantages.
While the high-count projection set was obtained as described above, lower-count projections
were simulated by dividing the measured projection values by a factor k ∈ {2, 5, 10, 20, 30}.
In each simulated projection, Poisson noise was added to the result by assuming the counts
in the projections are the expected values to be used in the noise generation algorithm.

The software used to implement the ray-driven approach is based on OpenRTK [66].
The images are reconstructed by performing OSEM iterations [37] where groups of 8 equian-
gularly spaced projections are used at each iteration. The algorithm was terminated after
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Table 2.1: The isotropic full width at half maximum values of each of the activity points in the
point source phantoms (in cold and warm background) with coarse and fine detector resolutions. In
the ray-driven approach 8× 8 sampling points were used while in the distance-driven approach only
4 sampling points were used.

x-axis Distance Driven Ray Driven

position Detector Discretization Detector Discretization

(cm) 64× 64 256× 256 64× 64 256× 256

C
ol

d
B

g
. 0 0.33 cm 0.31 cm 0.44 cm 0.31 cm

3.14 0.38 cm 0.32 cm 0.48 cm 0.31 cm

6.29 0.33 cm 0.29 cm 0.45 cm 0.28 cm

W
ar

m
B

g. 0 0.33 cm 0.28 cm 0.44 cm 0.31 cm

3.14 0.37 cm 0.29 cm 0.64 cm 0.48 cm

6.28 0.34 cm 0.27 cm 0.60 cm 0.45 cm

two complete OSEM iterations. The number of iterations was chosen arbitrarily (i.e. based
on what is typically used in clinical practice).

2.2.2 Results of Reconstructions and Quality Metrics

Point-Source Simulation

The point source phantom was reconstructed using both projection methods at different
detector discretizations. The lower-resolution projections are generated by increasing the
size of the detector pixel by a power of two and accumulating the counts of the pixels in the
original projection. Table 2.1 shows the full width at half maximum values obtained from
registering a Gaussian function to each reconstructed point source.

Mini-Deluxe PhantomTM

3D images were reconstructed at varying projection count levels as shown in Figure 2.5. At-
tenuation was not modelled in the reconstruction of this phantom because it was considered
to be negligible. The SNR in object space was estimated from SNR = µFG/σBG, where
µFG denotes the mean of the foreground and σBG denotes the standard deviation of the
background. It is apparent that possible value correlations between the voxels are ignored
using this formulation of the SNR, but the metric is still valid from a comparative stand-
point. Two different foreground signals were chosen to estimate two different SNR values,
namely the largest rods in the phantom (4.8 mm diameter) and the region with uniform
activity at the bottom of the phantom. The empty space between the rods was chosen as
the background signal. The SNR of the reconstructed images is shown in Figure 2.6 as a
function of the total counts per projection.

21



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

D
ecreasin

g
P

ro
jection

C
ou

n
ts

DD Ray (8× 8) Ray (4× 4)

Figure 2.5: Central axial slices of reconstructed Mini-Deluxe PhantomTM employing distance and
ray-driven projection methods: the left column shows example projections with decreasing counts from
top to bottom, the second column shows the a cross-sectional slice of images reconstructed using the
proposed distance-driven approach, while the rightmost two columns show the reconstructed slices
obtained using the ray-driven approach with 8 × 8 and 4 × 4 pinhole sampling points. The color
indicates intensity ranging from blue (low) to red (high).

22



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

S
N

R
of

R
ec

o
n

st
ru

ct
ed

Im
ag

e

Total Counts per Projection

Figure 2.6: The signal-to-noise ratio (SNR) of the reconstructed Mini-Deluxe PhantomTM plotted
against the total photon count per projection averaged over the set of projections. The plots show
two SNR curves estimated from the variance of one background signal (empty space between rods)
and the mean of two foreground signals (rods and uniform region). The solid lines show the SNR
estimated from the mean of the largest rods (diameter = 4.8 mm), while the dashed lines show the
SNR estimated from the uniform region at the bottom of the phantom.

2.3 A Discussion of the Presented Results

2.3.1 Numerical and Visual Observations

The results obtained from the reconstructed phantoms show that the proposed distance-
driven approach retains resolution and signal in the presence of noise better than a ray-
driven approach of the same detector resolution at 8× 8 or 4× 4 pinhole sampling points.

The results listed in Table 2.1 indicate the following.

• The ratio of the FWHM between columns 2 and 3 of the cold-background point phan-
tom, averaging a factor of 1.12, is smaller than the ratio between columns 4 and 5,
averaging a factor of 1.53. This indicates that the distance-driven projection provides
a better and more consistent estimate of the true FWHM at lower detector resolutions,
where the true FWHM can be chosen (for instance) from the results of the ray-driven
method listed in column 5.

• In the warm-background point source phantom, the effects of the background activity
significantly alter the FWHM of the point sources in the ray-driven approach. The
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FWHM obtained for the non-central point sources using the ray-driven approach are
approximately 1.7 times larger in both coarse and fine discretizations of the detector
than the ones obtained using the proposed distance-driven approach.

• Similarly, from columns 2 and 4 one can deduce that the distance-driven method is
better suited for reconstructions at coarser detector discretizations. Let the relative
error in the cold-background point source phantom be measured as

εi =
FWHMi − FWHM5

FWHM5
(2.11)

where i is the column number in Table 2.1, then ε2 = 0.157 and ε4 = 0.529 when
averaged over the FWHM of the three point sources. In other words, the relative
error of the distance-driven approach is much closer to the ray-driven approach at fine
detector discretization than the ray-driven approach at coarse discretization.

• As expected, the FWHM values are similar for both projection methods when using a
finely discretized detector surface (columns 3 and 5 in Table 2.1) in the case of the cold
background point source phantom, however, the proposed distance-driven approach
outperforms ray-driven when background activity is present.

The Mini-Deluxe PhantomTM experiment shows that reconstructed SNR is higher
in the images obtained using the proposed distance-driven approach (see Figure 2.6). Fig-
ure 2.5, shows a more complete picture.

• Following the images from top to bottom, it is apparent that the proposed distance-
driven approach preserves structure better in the presence of noise. This is due to its
apparent “low-pass filtering” property which introduces more blurring in the images
than the ray-driven method. The disadvantage of introducing blurring, however, is
apparent in the left-most images since the rods in the sector at 11 o’clock appear
more faded than those in the ray-driven cases. Figure 2.7, shows two profile lines of
the Jaszczak-like phantom that emphasize two rows in the region at 11 o’clock. It is
apparent that the blurring introduced by the distance-driven method can sometimes
cause some loss of detail, however, it is also apparent that in cold regions the spatial
variations are reduced.

• Following the images from left to right, it can be seen that the ray-driven method
consistently provides seemingly sharper images in high-count regimes. In fact, the
4 × 4 ray-driven sampling is even sharper than the 8 × 8 ray-driven or the distance-
driven. This is because when using a smaller sample of back-projection rays the
activity is back-projected to fewer object voxels. However, there is a disadvantage to
fewer pinhole samples since, as Figure 2.5 shows, the 4×4 ray-driven method exhibits
greater loss of structural information in the presence of noise.

As a final remark we would like to state that one can “tweak” the proposed distance-
driven approach to yield sharper images by sampling the pinhole at a radius smaller than
that of the actual pinhole. In fact one can set a pinhole radius of zero for the proposed
approach, thereby yielding an infinitely small pinhole, and computations would reduce to
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intersections of polygons projected through a point. We have avoided presenting these
scenarios since we wanted to approximate the physical system as best as we could, and
without appealing to previous experience.

Spatial domain (cm)

(a)

Spatial domain (cm)

(b)

(c)

Figure 2.7: Normalized profile lines of the reconstructed Mini-Deluxe PhantomTM passing through
the sections at 7 o’clock and 11 o’clock at two different slices. The lines are chosen to pass through the
peaks of the section at 11 o’clock. The left and right slices (highlighted in green) shown in Figure (c)
correspond to the profile plots in (a) and (b) respectively.

The proposed method has a higher computational cost than the ray-driven approach
since K (where K � N) polygon intersection calculations (which constitute the majority
of the performance bottleneck) must be performed for each of the N object cells. However,
because in the proposed method the backprojection operation is the transpose of the forward
projection operation, the polygonal intersection calculations can be performed once for
each detector head position and retained for later use. The main difference between the
aforementioned approaches is that while the proposed distance-driven method is largely
dependent on the number of object cells, the ray-driven approach is mostly dependent on the
number of detector pixels. In the instance of the Mini-Deluxe PhantomTM reconstructions,
the distance driven approach takes an average of 30 seconds to forward project (back-project)
the object on (or from) 8 detector heads. In comparison, the ray-driven approach takes on

25



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

average 4 seconds to forward project and 19 seconds to backproject based on an 8×8 pinhole
surface samples.

Provided that in SPECT imaging the discretization the detector surface is coarse
(e.g. 64 × 64 or 128 × 128) then the discretization of the object space can also be coarse;
typically about the same order of voxels in the plane of rotation if we consider a magni-
fication factor of one since finer discretizations may not show any additional information.
An argument commonly used in favour of ray-driven projection is that one can greatly
increase the number of bins in the detector in order to obtain better quality images at a
relatively small computational cost. However, in SPECT imaging, the detector discretiza-
tion is typically coarse, and the acquired projections always contain noise making the task
of interpolating the acquired data onto a finely discretized detector non-trivial. Using the
proposed approach, one need not artificially increase the number of detector bins during
reconstructions.

As a final remark, we would like to acknowledge that attenuation correction has
not been treated in this research. We maintain, however, that with the proposed method,
the attenuation factors can be estimated separately as a pre-processing step since these are
not directly tied to the estimation of the overlapping factors, and multiplied to the overlap
factors for each projected cell.

2.3.2 Future Work and Possible Improvements

Incorporating Aperture Penetration An important aspect of the single-pinhole geom-
etry that has not been addressed in this work is aperture penetration. While exact formulae
for aperture penetration would be difficult to implement in the proposed distance-driven
approach without venturing into projection methods using separable footprint, a simpler
method using a weighted distance-driven approach may still be suitable. Specifically, we
propose to sample the pinhole at multiple radii (above the pinhole radius) and weigh the
contribution to detector bins by the probability of penetrating the collimator material at
the sampled radius.

For example, let us sample a circular pinhole at the pinhole radius and the effective
pinhole radius [1, 51, 57] as shown in Figure 2.8. Let us assume that the probability of
penetrating the pinhole is p = 1, while the probability of penetrating the collimator between
the pinhole radius, r, and effective radius, reff , can be approximated by a uniform probability
peff , then the intensity contribution from object cell fi to bin j is computed as

gj = ωi,jfi(1− peff) + ωeff
i,jfipeff .

where ωi,j and ωeff
i,j are the overlapping ratios computed from the pinhole radius and effective

pinhole radius respectively.

The computational cost of sampling the pinhole at multiple radii is equivalent to
performing multiple projections at the same geometric configuration since the overlap ratios
must be estimated for each of the sampled radii.

Improving Execution Time In the current form, the proposed distance-driven approach
relies on polygon intersection algorithms to estimate the overlap ratio between projected
object cells and detector bins. While this approach may be suitable for coarse discretizations
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r

reff

(a) (b)

Figure 2.8: Cross-sectional (a) and top-view (b) of pinhole showing the pinhole radius, r, and
effective radius, reff . The green and red arrows in the cross-sectional view correspond by color to the
inner and outer circles in the top-view figure. Figure (b) shows the sampling of the pinhole at the
radius and effective radius using a regular octagon.

of the object and detectors (e.g ≈ 803 voxels and 802 bins as used in the experiment) as
it provides an exact estimation of the overlap ratio for the geometric entities provided, it
becomes computationally infeasible at finer discretizations (e.g. 2563 voxels and 10242 bins)
which may be used to provide better approximations of coarser grids. However, there are
reasonable approximations that can be made at finer discretizations which can dramatically
improve computation time.

One natural approximation is to move away from the concept of polygon intersection
and instead exploit the regularity of the detector bins by using the concept of rasterization.
Specifically, given a polygon representing a projected object cell we assign an overlap ratio
of 1 or 0 by deciding whether a bin is inside or outside the polygon. Of course, there will
be bins which will only partially fall inside the polygon, but one can pick a point in the bin
(e.g. the bin centre) and use it to decide whether the bin is inside or outside the polygon
(see Figure 2.9).

Figure 2.9: The proposed rasterization considers the central points of each detector bin (blue) and
assigns an overlap ratio of 1 or 0 based on whether these points are inside the polygon or not. In this
figure, the bins highlighted in red are considered to fall within the polygon and are therefore assigned
an overlap ratio of 1.

While this strategy reduces the complexity of the computations by removing de-
pendency from the detector bin edges, it also has the added advantage of being highly
parallelizable (i.e. easily implementable in graphical processing units) since only one ele-
ment in the bin (the central point) is considered.
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2.3.3 Summary

This chapter described a distance-driven approach for pinhole SPECT imaging accounting
for a finite pinhole size and possibly tilted detector surface. The proposed method restricts
the shape of the object cells used to discretize the object space to convex polyhedrons,
which comes at a higher computational cost due to numerous polygon intersection calcula-
tions. Our experiments show that the FWHM resulting from the reconstructed point-source
phantom are consistently smaller in the distance-driven approach. Additionally, there is a
smaller difference in FWHM at different detector discretizations in the proposed method.
The proposed distance-driven approach also shows better preservation of structure in low-
count regimes.
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Chapter 3

Image Reconstruction Methods Employing Kernel Density
Estimators for Denoising

Recent years have seen an increase and expansion in the use of dynamic single-photon
emission computed tomography (SPECT) for the diagnosis of various cardiac conditions.
Significant advances have been made in the past decade in terms of the advancement of
the imaging devices and the mathematical modelling relating to the image reconstruction
algorithms and data representation (see [35] for a review). The introduction of solid-state
organ-specific SPECT imaging systems, such as the GE Discovery NM 530c [7], have enabled
dynamic SPECT imaging of the heart through arrays of small pinhole collimator cameras.
Such imaging systems offer some advantages in terms of imaging speed and sensitivity,
however, low signal-to-noise ratio (SNR) remains a challenge due to its dependence on
a combination of factors including washout rapidity of radioactive tracers, the length of
acquisition per time-frame, and gated imaging.

The problem of dynamic image reconstruction from noisy data has been addressed
in a number of ways in literature which can be categorized into

• object model based reconstruction, where the object data representation model
includes the correlation of activities between time-frames (either by using temporal ba-
sis functions [64], or by assuming a compartmental model or basis for a compartmental
model [36,38]), while the image reconstruction method itself performs no penalization,
and

• penalty based reconstruction, where the object model does not model the correla-
tion of activities between time-frames, and instead the image reconstruction method
penalizes “undesired” behaviour in the time-activity functions [27,28,33,47],

• or a combination of the two.

In this chapter, we present two novel dynamic maximum a posteriori (MAP) image
reconstruction methods for emission tomography: one which uses a kernel density estimator
(KDE) [30,61,67] to model the prior distribution, and one that employs a Gaussian prior in
which the mean is determined from mean-shift filtering [15,16] at each MAP iteration. The
aim is to regularize the behaviour of the time-activity functions in each voxel by clustering
similar time-activity functions (TAF) during the process of reconstruction.

We employ temporal basis functions [64] for object representation to both compress
the temporal object from a possibly large number of acquisition time-frames to a relatively
small number of temporal spline coefficients, and to regularize the behaviour of the TAFs by
correlating the activity in adjacent time-frames as dictated by the chosen temporal spline
basis.
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3.1 Kernel Density Estimators and Mean-shift Filtering

In this section, an overview of the kernel density estimators and its application to image
denoising is first presented. A detailed explanation of the proposed dynamic MAP image
reconstruction and how the KDE is embedded in the prior follows.

Kernel density estimators were initially introduced to find a solution to the problem
of estimating the probability density function and mode of a sequence of independent identi-
cally distributed random variables in a non-parametric way [61]. Specifically, the probability
density function of a sequence of observations X1, . . . , Xn is represented by the weighted
sum of kernel functions

pn(x) =
1

nh

n∑
j=1

K
(
x−Xj

h

)
where h is a positive scalar, known as a scaling parameter.

Kernel density estimators have also been applied to pattern recognition, where the
gradients of the distribution are used to perform data clustering and filtering [16,30] giving
rise to mean-shift filtering as a method of image denoising. Mean-shift filtering, as the name
describes, clusters data locally using the gradient of the kernel density estimator to shift
points toward a local mean, dictated by the scaling parameter h, thereby maximizing the
distribution and effectively reducing dimensionality.

Let us now, provide a short overview of mean-shift filtering applied to a multidi-
mensional image, in order to obtain a better understanding of how image data is denoised
in object space.

Let each time-activity curve in the object space be represented by a fixed number
of temporal splines S, (cf. [64]) and let us denote the unknown coefficients of the temporal
splines in each voxel by c[j] ∈ RS , j = 1, . . . , N . Furthermore, let the locations of the

temporal spline coefficients be denoted by x[j] ∈ Rd. Then, the probability density measured

from some point (y[i], µ[i]) ∈ RS+d, where µ[i] ∈ RS is situated at location y[i] ∈ Rd, can be
represented by a multivariate kernel density estimator [30, 61] with kernel K as

p(y[i], µ[i]) =
1

NhSµ,ih
d
y,i

N∑
j=1

K
(
µ[i] − c[j]

hµ,i

)
K
(
y[i] − x[j]

hy,i

)
(3.1)

where hµ,i is a positive scalar representing the range scaling parameter, and hy,i is a positive
scalar representing the spatial scaling parameter.

While one may choose from a multitude of kernels fulfilling certain conditions
(see [12,30]), for this example we have chosen a Gaussian function as the kernel,

K(v) = (2π)−d/2 exp

(
−1

2
‖v‖22

)
. (3.2)

Therefore equation (3.1) can be written as

p(y[i], µ[i]) =
(2π)−

S+d
2

NhSµ,ih
d
y,i

N∑
j=1

exp

(
−1

2

∥∥∥∥µ[i] − c[j]

hµ,i

∥∥∥∥2
)

exp

(
−1

2

∥∥∥∥y[i] − x[j]

hy,i

∥∥∥∥2
)
. (3.3)
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Figure 3.1: A schematic example of mean shift filtering on a one-dimensional image where
the intensity values c[i] are situated at points x[i]: (a) in the original image the initial guess is

(y
(0)
[i] , µ

(0)
[i] ) = (x[i], c[i]), (b) the “net-force” as dictated by the scaling parameters in the kernel wants

to shift the points toward nearby points, (c) the point shifts until the “net-force” is zero, (d) the new
(mean-shifted) value replaces the initial one at the original spatial location. The procedure is repeated
for each of the points in the original image.

Taking the derivatives with respect to y[i] and µ[i] of equation (3.3), an iterative

scheme known as “mean-shift filtering” that shifts the respective initial values y
(0)
[i] and µ

(0)
[i]

toward a local mean is obtained. As shown in Algorithm 3.1, if the initial values are set at

the measured points, that is y
(0)
[i] = x[i], µ

(0)
[i] = c[i], and the iterative procedure is applied to

each voxel i = 1, . . . , N , then one effectively obtains an image denoising method. Figure 3.1
provides a schematic view of Algorithm 3.1 for a one-dimensional image.

It is apparent that mean-shift filtering, when applied in the object space, will shift
each temporal spline coefficients in each voxel toward a local mean determined by the spatial
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Algorithm 3.1 Mean-shift Filtering (MSF).

1: Let the input temporal spline coefficients c[i] ∈ RS be located at x[i] ∈ Rd, i = 1, . . . , N .
2: for i=1,. . . ,N do
3: k ← 0
4: µ

(k)
[i] ← c[i], y

(k)
[i] ← x[i]

5: repeat

6: µ
(k+1)
[i] =

N∑
j=1

c[j] exp

−1

2

∥∥∥∥∥∥
µ

(k)
[i] − c[j]

hµ,i

∥∥∥∥∥∥
2 exp

−1

2

∥∥∥∥∥∥
y

(k)
[i] − x[j]

hy,i

∥∥∥∥∥∥
2

N∑
j=1

exp

−1

2

∥∥∥∥∥∥
µ

(k)
[i] − c[j]

hµ,i

∥∥∥∥∥∥
2 exp

−1

2

∥∥∥∥∥∥
y

(k)
[i] − x[j]

hy,i

∥∥∥∥∥∥
2

7: y
(k+1)
[i] =

N∑
j=1

x[j] exp

−1

2

∥∥∥∥∥∥
µ

(k)
[i] − c[j]

hµ,i

∥∥∥∥∥∥
2 exp

−1

2

∥∥∥∥∥∥
y

(k)
[i] − x[j]

hy,i

∥∥∥∥∥∥
2

N∑
j=1

exp

−1

2

∥∥∥∥∥∥
µ

(k)
[i] − c[j]

hµ,i

∥∥∥∥∥∥
2 exp

−1

2

∥∥∥∥∥∥
y

(k)
[i] − x[j]

hy,i

∥∥∥∥∥∥
2

8: k ← k + 1
9: until convergence or stopping criteria are met

10: end for
11: Place values µ

(k)
[i] in original locations x[i], and output µ

(k)
[i] .

and range scaling parameters hµ,i and hy,i.
Let us now explain the details of formulating a MAP image reconstruction method

that clusters intensity values (or time-activity functions) during the reconstruction process.
In the next section, the details of constructing an optimization problem based on a maximum
a posteriori formulation are presented. This is followed by the details of the priors for each
of the proposed reconstruction methods and the resulting iterative algorithms.

3.2 Constructing an Image Reconstruction from a Maximum A Posteriori
Formulation

Let us “stack” the aforementioned temporal spline coefficients c[i] ∈ RS such that c ∈ RNS .
Given an imaging system with K (static) heads, each discretized into M bins, with T
acquisition time-frames, one obtains ideal measurements g ∈ RMKT through a projection
matrix F ∈ RMKT×NS as g = Fc, where F models both the physical imaging system and
the temporal splines.1

To formulate the image reconstruction problem in a maximum a posteriori frame-
work we measure the posterior probability as

p(g|c) ∝ p(c|g)p(c)

1A detailed explanation of the operator F is provided in Section 3.4.2.
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where p(c|g) is the likelihood, and p(c) is the prior probability. The image reconstruction
method can then be obtained by solving

max
c

log p(g|c) + log p(c) (3.4)

s.t. c � 0

where p(g|c) is justifiably assumed for emission tomography to be the Poisson likelihood.
If one considers the unmeasurable quantities (i.e. complete data), zij , of photons

emitted from voxel i and detected in bin j then problem (3.4) can be modified to

c(k+1) ∈ arg max
c
Ez[log p(z|c)|c(k), g] + log p(c), (3.5)

where Ez[·|c(k), g] is the conditional expectation over z given the estimate at the previous
iteration c(k) and the measurements g, and the Poisson log-likelihood takes the form

log p(z|c) =

NT∑
i=1

MKT∑
j=1

(−Fjici + zij log (Fjici)) (3.6)

with ci as the i-th element of the vector c. It is worth noting that problem (3.5) is a proximal
algorithm [60] formulation of (3.4), as it relies on a previous estimate c(k), that is derived
by minorizing the log-likelihood log p(g|c) [21,39].

Looking more closely at the first term in equation (3.5), we have

Ez

[
log p(c|z)|c(k), g

]
=

NS∑
i=1

MKT∑
j=1

(
gjFjic

(k)
i∑NS

i′=1 Fji′c
(k)
i′

log(Fjici)− Fjici

)
, (3.7)

which is obtained by realizing that the conditional expectation of the complete (unmeasur-
able) data zij given the measurements g and the image c(k) is

Ez

[
zij |g, c(k)

]
=

gjFjic
(k)
i∑NS

i′=1 Fji′c
(k)
i′

(3.8)

since the zij are multinomially distributed given the measurements g. Specifically, in (3.8),
gj represents the number of trials and

Fjic
(k)
i∑NS

i′=1 Fji′c
(k)
i′

is the probability of an event from object voxel i being measured in bin j. The reader may
refer to [45,49] for the complete details of the derivation described above.

In light of the above, let us write the optimization problem in (3.5) in a more detailed
fashion for future reference,

c(k+1) ∈ arg max
c

NS∑
i=1

MKT∑
j=1

(
gjFjic

(k)
i∑NS

i′=1 Fji′c
(k)
i′

log(Fjici)− Fjici

)
+ log p(c). (3.9)

The prior probability in this last equation will be explored in detail the next two sections
where we propose a Gaussian prior and a KDE-based prior, both of which measure proximity
to an iterate c(k), but take different approaches.
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3.3 A Detailed Explanation of the Proposed Prior Probabilities

3.3.1 An Image Reconstruction Algorithm Employing Mean-Shift Filtering for
Denoising

In order to penalize spatio-temporal variation introduced by noise, we would like to incor-
porate the results of the mean-shift algorithm in the prior and formulate the reconstruction
problem as a proximal algorithm.

A well-known form of a proximal algorithm is the disappearing Tikhonov regulariza-
tion [60, Section 4.1.1] which takes the form

min
x

{
f(x) +

1

2λ

∥∥∥x− x(k)
∥∥∥2
}
, (3.10)

where the first term is an objective function and the second term is a quadratic Tikhonov
penalty around the previous iterate x(k).

Following the disappearing Tikhonov regularization, we introduce a prior that takes
the form

p(c) = p(c;µ(k)) = exp

−1

2

∥∥∥∥∥c− µ(k)

σ2

∥∥∥∥∥
2
 (3.11)

where µ(k) = MSF(c(k)) is a mean-shift denoised version of c(k) obtained from Algorithm 3.1,
c represents the unknown temporal spline coefficient image, and σ is a scalar.

In light of the chosen prior, the maximization problem shown in (3.9) takes the form

c(k+1) ∈ arg max
c

NS∑
i=1

MKT∑
j=1

(
gjFjic

(k)
i∑NS

i′=1 Fji′c
(k)
i′

log(Fjici)− Fjici

)
− 1

2

∥∥∥∥∥c− µ(k)

σ2

∥∥∥∥∥
2

(3.12)

From here, we find the first order conditions for optimization with respect to c,(
c− µ
σ2

: c

)
+
(
F>~1MKT : c

)
−
(
c(k) : F>

( g

Fc(k)

))
= 0 (3.13)

where the operator “:” denotes component-wise multiplication, and ~1MKT ∈ RMKT is a
vector of ones.

Because equation (3.13) is a quadratic equation and all operations are component-
wise, the system can be solved using

c(k+1) =
1

2

(
−σ2F>~1MKT + µ(k) +

√
(σ2F>~1MKT − µ(k))2 + 4σ2c(k) : F>

( g

Fc(k)

))
(3.14)

where again the operator “:” denotes component-wise multiplication, and ~1MKT ∈ RMKT

is a vector of ones. Notice that the solution proposed here greatly resembles that proposed
in [45], with the main difference appearing in the prior whereby the proposed method makes
no assumptions about an underlying compartmental model.

Equipped with equation (3.14) and Algorithm 3.1, we propose an iterative solution
to the proposed dynamic image reconstruction problem as shown in Algorithm 3.2. For
simplicity in the rest of this paper we will address the MAP method proposed here as
MAPMS.
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Algorithm 3.2 Proposed MAP Iterative Scheme (MAPMS).

1: Set k ← 0.
2: Obtain an initial guess c(k) by performing one or more EM iterations, or set manually.
3: Let x ∈ RNd represent the locations of the temporal spline coefficients of image
c(k) ∈ RNS .

4: repeat

5: µ(k) ←MSF(c(k), x) [as per Algorithm 3.1].

6: c(k+1) =
1

2

(
−σ2F>~1MKT + µ(k) +

√
(σ2F>~1MKT − µ(k))2 + 4σ2c(k) : F>

( g

Fc(k)

))
.

7: k ← k + 1
8: until convergence or stopping criteria are met
9: Output: c(k).

Convergence Analysis

A thorough theoretical convergence analysis of MAPMS remains to be performed. Al-
gorithm 3.2 exhibits apparent convergence since for all parameters σ in our simulations∥∥c(k+1) − c(k)

∥∥ ≤ ∥∥c(k) − c(k−1)
∥∥, where k is the iteration number (see Figure 3.2 for an

example).

Iteration Number

∥ ∥ c(k+
1
)
−
c(
k
)∥ ∥

Figure 3.2: An example of the distance between consecutive iterates in MAPMS as a function of
the iteration number measured by the l2-norm.

Experimentally, we have found that the constraint c � 0 holds for all tested values
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of σ. This was expected since, if we analyze Line 6 of Algorithm 3.2, we find that

(−σ2F>~1MKT + µ(k))2 � (σ2F>~1MKT − µ(k))2 + 4σ2c(k) : F>
( g

Fc(k)

)
(3.15)

always holds due to the fact that µ(k) � 0 since mean-shift denoising shifts the values c(k)

to local means within the range of c(k), and the term

4σ2c(k) : F>
( g

Fc(k)

)
� 0 ∀c(k) � 0.

We conjecture that MAPMS should converge for all σ. If σ is very small each iterate
c(k) will strongly tend toward µ(k) and therefore mean-shift will “dominate” the algorithm.
Since mean shift is a robust method for image denoising [16] and will always converge given
a valid kernel, then the iterates c(k) will also converge. In the extreme case, σ = 0 yields
c(k) = µ(k).

On the other hand, for very large σ the term µ(k) will become comparatively in-
significant and the iterations will appear as

c(k+1) =
1

2

(
−σ2F>~1MKT +

√
(σ2F>~1MKT )2 + 4σ2c(k) : F>

( g

Fc(k)

))
(3.16)

which is the solution to the quadratic equation

(c(k+1))2 + σ2c(k+1) : F>~1MKT − σ2c(k) : F>
( g

Fc(k)

)
= 0. (3.17)

Assuming that the first term in (3.17) can be dropped for very large σ then we would obtain

c(k+1) =
c(k)

F>~1MKT

: F>
( g

Fc(k)

)
,

which effectively reduces MAPMS to expectation maximization (EM).

Mean-shift Filtering: Scaling Parameters and Computation

An important aspect of the proposed image reconstruction method is choosing the scaling
parameters for mean-shift filtering (hy,i, hµ,i). One may choose these parameters manually,
however, through experiments we found that there are alternatives to choosing the scaling
parameters.

Full-width at Half Maximum (FWHM) Strategy Let us set hy,i = hy, where hy is
defined by the user, and define

χi = {j :
∥∥x[i] − x[j]

∥∥ ≤ 2
√

2 ln 2hy}.

Also, let the distance between two time-activity curves be defined by the distance of the
temporal spline coefficients (since the two are related by a scaling factor) as

di,j =
∥∥c[i] − c[j]

∥∥ for j ∈ χi
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with mean

mi =
1

|χi|
∑
j∈χi

di,j ,

then the range scaling parameter is set to

hµ,i =

√
1

|χi|
∑
j∈χi

(di,j −mi)2. (3.18)

k-nearest Neighbours (kNN) Strategy Let us introduce a positive integer k (set by
the user) such that χi is the set of size k of the indices of points x[j] closest to x[i] in an `2
sense. Let us also define the distance measures

dx,i,j =
∥∥x[i] − x[j]

∥∥ , dc,i,j =
∥∥c[i] − c[j]

∥∥
with means

mx,i =
1

k

∑
j∈χi

dx,i,j , mc,i =
1

k

∑
j∈χi

dc,i,j ,

then the spatial and range scaling parameters can be computed from

hx,i =

√
1

k

∑
j∈χi

(dx,i,j −mx,i)2,

hc,i =

√
1

k

∑
j∈χi

(dc,i,j −mc,i)2.

(3.19)

All MAPMS reconstructions presented in Section 3.4.2 have been obtained using the
aforementioned FWHM strategy.

3.3.2 An Image Reconstruction Algorithm with a Kernel Density Estimator
Based Prior

Let us now model the prior probability, p(c), in (3.9) by the kernel density estimator shown
in (3.3) in the form of a proximal algorithm [60]. That is, we measure the probability
density of the unknown temporal spline coefficients, c[i] ∈ RS , spatially located at y[i] ∈ Rd

to neighbouring components of a previous estimate, c
(k)
[j] , an their corresponding locations

by

p(y[i], c[i]; y
(k)
[i] , c

(k)
[i] ) =

(2π)−
S+d
2

NhSc,ih
d
y,i

N∑
j=1

G(c[i], c
(k)
[j] )G(y[i], y

(k)
[j] ) (3.20)

where

G(xi, xj) = exp

(
−1

2

∥∥∥∥xi − xjhx,i

∥∥∥∥2
)
. (3.21)

Then the prior takes the form

p(y, c; c(k), y(k)) =
N∏
i=1

p(y[i], c[i]), (3.22)
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and the log-prior, in turn, becomes

log p(y, c; c(k), y(k)) =
N∑
i=1

log

(
(2π)−S/2

NhSc,ih
d
y,i

)
+

N∑
i=1

log

 N∑
j=1

G(c[i], c
(k)
[j] )G(y[i], y

(k)
[j] )

 . (3.23)

Since we also want to solve for the spatial locations y ∈ RNd of the coefficients
c ∈ RNS then problem (3.5) becomes

(c(k+1), y(k+1)) ∈ arg max
c,y

Ez[log p(z|c)|c(k), g] + log p(y, c; c(k), y(k)). (3.24)

To find a solution to (3.24) the first order conditions for optimization must be
satisfied, that is

∂c[i]Ez

[
log p(c|z)|c(k), g

]
+ ∂c[i] log p(y, c) = 0, (3.25)

∂y[i] log p(y, c) = 0. (3.26)

The solution to (3.26) results in mean-shift iterations, while the solution to (3.25)
is obtained from

c2
[i] + c[i] :

(F>~1MKT

)
[i]
−
∑N

j=1 c
(k)
[j] G(c

(k)
[i] , c

(k)
[j] )G(y

(k)
[i] , y

(k)
[j] )∑N

j=1G(c
(k)
[i] , c

(k)
[j] )G(y

(k)
[i] , y

(k)
[j] )

− c(k)
[i] :

(
F>

g

Fc(k)

)
[i]

= 0

(3.27)
for i = 1, . . . , N . Here, the operator “:” denotes component-wise multiplication, division
is performed component-wise, and the operator (·)[i] extracts the temporal spline vector

of size RS at voxel i given a vector in RNS . Since all operations in (3.27) are performed
component-wise, the quadratic formula can be used to solve for c[i]. Algorithm 3.3 illustrates
the proposed iterative MAP scheme employing KDE (MAPKDE).

It is worth noting that in (3.27), we have made a simplification which allows us to

solve a quadratic system. Specifically, the terms G(c
(k)
[i] , c

(k)
[j] ) are computed “late”, that is,

we made the substitution c[i] ← c
(k)
[i] in the term G(c[i], c

(k)
[j] ). This type of substitution in the

prior probability was first proposed in [33,34], and is known as the “one step late” approach.

Convergence Analysis

A thorough theoretical analysis for the convergence of MAPKDE remains to be carried
out, however, our experiments show that MAPKDE appears to converge since the series of
iterates {c(k)} contracts, that is

||c(k+1) − c(k)||2 ≤ ||c(k) − c(k−1)||2.

Figure 3.3 an example of the `2 difference between consecutive iterates during a reconstruc-
tion.

The non-negativity constraint, c � 0, of MAPKDE holds for all tested scaling param-
eters. Upon closer inspection of Line 7 in Algorithm 3.3, it is apparent that the constraint

(h2
c,i(F

>1MKT )[i]−MSF(c
(k)
[i] ))2 � (h2

c,i(F
>1MKT )[i]−MSF(c

(k)
[i] ))2 +4h2

c,ic
(k)
[i]

(
F>

g

Fc(k)

)
[i]

(3.28)
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Algorithm 3.3 4D Maximum a Posteriori Image Reconstruction Algorithm Employing
Kernel Density Estimators (MAPKDE).

1: Let 1MKT ∈ RMKT be a vector of ones.
2: Set k ← 0.
3: Perform one or more EM iterations to obtain initial estimate c(k) ∈ RNS , or set manually.

4: Set y
(k)
[i] ∈ Rd to be the spatial locations of the temporal spline coefficients c

(k)
[i] ∈ RS .

5: repeat
6: for i = 1, . . . , N do

7: c
(k+1)
[i] = 1

2

{
−
(
h2
c,i

(
F>1MKT

)
[i]
−

∑N
j=1 c

(k)
[j]
G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)∑N
j=1G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)

)

+

√(
h2
c,i (F>1MKT )[i] −

∑N
j=1 c

(k)
[j]
G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)∑N
j=1G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)

)2

+ 4h2
c,ic

(k)
[i]

(
F> g

Fc(k)

)
[i]

}
8: y

(k+1)
[i] =

∑N
j=1 y

(k)
[j]
G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)∑N
j=1G(c

(k)
[i]
,c

(k)
[j]

)G(y
(k)
[i]
,y

(k)
[j]

)

9: end for
10: k ← k + 1
11: until convergence or stopping criteria are met

Iteration Number

∥ ∥ c(k+
1
)
−
c(
k
)∥ ∥

Figure 3.3: An example of the distance between consecutive iterates as a function of the iteration
number measured by the l2-norm using MAPKDE.

where

MSF(c
(k)
[i] ) =

∑N
j=1 c

(k)
[j] G(c

(k)
[i] , c

(k)
[j] )G(y

(k)
[i] , y

(k)
[j] )∑N

j=1G(c
(k)
[i] , c

(k)
[j] )G(y

(k)
[i] , y

(k)
[j] )

40



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

is always satisfied since the term

4h2
c,ic

(k)
[i]

(
F>

g

Fc(k)

)
[i]
� 0 ∀c(k)

[i] � 0.

We conjecture that the proposed method converges for all scaling parameter values
hc,i > 0. Let us assume for simplicity (but without loss of generality) that hc,i = hc. Then
for very small values hc the iterative step in Line 7 of Algorithm 3.3 will be dominated by

the term, MSF(c
(k)
[i] ), which in fact is a single step of the mean-shift algorithm. Since the

positivity constraint cannot be broken, as shown above, then the values c(k) will strongly

tend toward MSF(c
(k)
[i] ). In fact, if hc = 0, then Algorithm 3.3 reduces in principle to

Algorithm 3.1, which again is a robust algorithm for image denoising and is shown to
always converge [16]. Setting hc = 0 is, of course, not possible since the function MSF itself
does not admit this value for the scaling parameters.

On the other hand, if one picks a very large hc then the term MSF(c
(k)
[i] ) is compar-

atively insignificant and the iteration shown in Line 7 of Algorithm 3.3 effectively becomes

c(k+1) =
1

2

(
−h2

cF
>~1MKT +

√
(h2
cF
>~1MKT )2 + 4h2

cc
(k) : F>

( g

Fc(k)

))
(3.29)

which is the solution to

(c(k+1))2

h2
c

+ c(k+1) : F>~1MKT − c(k) : F>
( g

Fc(k)

)
= 0.

Assuming hc is large enough for the first term to be ignored then the iterations reduce to
expectation maximization, or

c(k+1) =
c(k)

F>~1MKT

: F>
( g

Fc(k)

)
.

Our experiments support the aforementioned mathematical approximations.

Choosing the Scaling Parameters

In the presented work, the scaling parameters were chosen manually and uniformly, that is
hy,i = hy and hc,i = hc for all i = 1, . . . , N . Whether these parameters can be extracted from
the data during the reconstruction will be shown in future work. There is an advantage,
however, to using hy and hc in MAPKDE instead of the free parameter σ in Gaussian
prior (as done for MAPMS). The scaling parameters represent physical quantities, namely
the scale of the domain and the scale of the range, while the relationship between the
parameter σ and the underlying data is not as straightforward.

In our experiments, the parameter hy was always chosen to be approximately the
isotropic size of the object voxel, while the parameter hc was chosen based on the expected
intensity in the time-activity curve. On the other hand, choosing σ needed more guesswork
even when the expected range of the TAFs was known.

In real life experiments the expected activity may not be known, however, it is
conceivable that one may be able to infer the expected range of activity based on the
number of counts in the projections and the sensitivity of the system.
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Practical Aspects and Implementation

It is apparent that Algorithm 3.3 can be very computationally intensive. For instance, if the
object is discretized to N voxels with S temporal splines in each voxel then the complexity
of our algorithm is O((NS)2). In practice, performing all these computations is infeasible
and extremely time consuming even for an object with a coarse discretization of 643 voxels
with 16 temporal splines.

To speed up our algorithm the number of computations was reduced by spatially
truncating the kernel. That is, computations were performed only on the set

Qi = {(y[j], c[j]) :
∥∥y[i] − y[j]

∥∥
∞ ≤ 3hy,i} (3.30)

thereby reducing the complexity to O(NLS2) where L is the average cardinality of the sets
Qi. It is expected that L� N since one is expected to choose hy,i to be about the value of
the desired spatial resolution (e.g. isotropic voxel size) of the reconstructed object.

While truncation dramatically reduced execution time, it was not sufficient for dis-
cretizations above 323× 16, therefore the truncated prior was implemented on a GPU using
CUDA with very satisfactory results as an object of size 643 × 16 is computed in approxi-
mately 12 seconds.

Our choice of using GPUs to speed up computation was one among many. In litera-
ture computational optimization of mean-shift is an active field of research and alternatives
to a GPU implementation exist (cf. [71, 76]).

3.4 Experiments on Dynamic Simulated Phantoms

Two phantoms were used to evaluate the quality of the images obtained from the proposed
methods, namely, the XCAT heart phantom, and a Jaszczak-like phantom. The XCAT
heart phantom was used to observe the effects of the large blood-pool (BP) signal on the
comparatively thin abutting left ventricular myocardium (LVM). The Jaszczak-like phantom
was used with the intent of observing the effects of mean-shift filtering on the resolution of
the reconstructed images. The signal-to-noise ratio (SNR) and bias were used as measures
of quality to compare the proposed method to EM, and a MAP method employing a Gibbs
prior as described in the following section.

3.4.1 A Short Description of the Gibbs Prior

A Gibbs MAP reconstruction method was used to compare the quality and properties of
the proposed MAP methods, namely MAPMS and MAPKDE. The Gibbs prior takes the
same form as the prior proposed for MAPMS in (3.11), however, µ(k) is computed as

µ
(k)
[i] =

1∣∣∣Nr(c(k)
[i] )
∣∣∣

∑
j∈Nr(c(k)[i]

)

c
(k)
[i] − c

(k)
[j] (3.31)

for i = 1, . . . , N , where

Nr(c[i]) =
{
j :
∥∥c[i] − c[j]

∥∥
2
≤ r
}

(3.32)

is the neighbourhood of component c[i] ∈ RS in a ball of radius r, and
∣∣Nr(c[i])

∣∣ is the
cardinality of the set.
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Table 3.1: Arterial input function parameters chosen to simulate low- and high-count regimes.

Parameter (unit)
Low-activity Low-activity High-activity

XCAT Heart Jaszczak XCAT/Jaszczak

a1 1.0e4 1.0e5 1.0e7

a2 1.0e3 1.0e4 1.0e6

b1 (min−1) 6.0e-1 6.0e-1 6.0e-1

b2 (min−1) 6.0e-2 6.0e-2 6.0e-2

We compare against this Gibbs prior with the expectation that the proposed meth-
ods will yield better sharpness of the images since values are shifted toward the mean of
a spatial neighbourhood with similar intensity values (or time-activity curves), while the
Gibbs prior computes the mean of the spatial neighbourhood indiscriminately.

3.4.2 Experiment Setting

Geometry of Scanner Each acquisition was performed using 19 fixed detector heads in
an attempt to approximate (but not replicate) the GE Discovery NM 530c cardiac SPECT
camera:

• 9 detector heads are located in a great circle (equator) equiangularly distributed be-
tween 0◦ and 180◦,

• 5 detector heads are located in a great circle tilted 30◦ from the equator between 0◦

and 180◦,

• 5 detector heads are located in a great circle tilted −30◦ from the equator between 0◦

and 180◦.

Simulated TAF Parameters A reversible one-tissue model was used to simulate the
kinetics of the radioactive tracer in each object voxel. The arterial input function (repre-
senting the activity at a point in time) is described by the sum of two exponentials as

qB(t) = a1e
−b1t + a2e

−b2t (3.33)

where b1 and b2 are washout rates, and a1 and a2 indicate activity (in arbitrary units). The
parameters were set to simulate low and high activity regimes as shown in Table 3.1.

The time-activity function of the simulated measured myocardial activity is modelled
as

qm(t) = (1− φv)qB(t) ∗ (k21e
−k12t) + φvqB(t) (3.34)

where ∗ is the convolution operator, k21 and k12 represent the forward and reverse kinetic
parameters respectively, and φv represents the fractional blood volume (cf. [75, 80]). The
values of the kinetic parameters for each tissue region have been taken from [75] and are
listed in Table 3.2. The time-activity functions by region are shown in Figure 3.4.
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Table 3.2: Kinetic parameters used to simulate tissue kinetics: k1 and k2 represent the kinetic
parameters of a reversible single-compartment model, and φv is the fractional volume; values taken
from [75].

Region
Kinetic Parameters Fractional Volume

k21 (min−1) k12 (min−1) φv

LVM 0.590 0.229 0.166

RVM 1.109 0.295 0.606

LAM 0.482 0.236 0.184

RAM 0.760 0.255 0.276

Dynamic Acquisition The simulated projection data was acquired over 720 seconds
in 72 time-frames, starting with 5 s acquisitions in the first 180 seconds, followed by 15 s
acquisitions.

XCAT Heart Phantom Parameters Focal length 3.75 cm, radius of rotation 15 cm,
pinhole radius 0.11 cm, detector discretization 64× 64, detector bin size 0.125× 0.125 cm2,
object voxel size 0.2343 cm3 discretized at 643 voxels.
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Figure 3.4: Simulated time-activity functions for different regions in the XCAT heart phantom
and the Jaszczak-like phantom. The simulated tissue activities are not representative of an actual
physiological process.

Jaszczak Phantom Parameters Focal length 8 cm, radius of rotation 15 cm, pinhole
radius 0.06 cm, detector discretization 64 × 64, detector bin size 0.125 × 0.125 cm2, object
voxel size 0.4423 cm3 discretized at 643 voxels. The time-activity curves simulated in the
Jaszczak-like phantom match the regions Blood Pool, LVM (left ventricular myocardium),
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RVM (right ventricular myocardium), LAM (left atrial myocardium), and RAM (right atrial
myocardium) starting in the sector at 7 o’clock in Figure 3.5 and moving clockwise.

Figure 3.5: A cross-sectional slice of the simulated Jaszczak-like phantom. The black background
is a cold region, while the rods contain activity.

Object Representation Each voxel in the field of view is represented using 16 geometrically-
spaced temporal splines (see Figure 3.6). The spline coefficient representation is used to both
“compress” the data to be reconstructed (i.e. reconstruct 16 temporal coefficients as op-
posed to 72 time-frames), and correlate the time-frames in the object space by the chosen
spline basis.

We chose the basis so that it could capture the fastest variations in the TAFs, which
happen at the beginning of the acquisition. Since the smallest time-frame of the acquisitions
is 5 seconds, we chose the first spline to cover 2.5 seconds, then geometrically spaced 16
splines to cover the entire time of simulated acquisition (720 seconds) as shown in Figure 3.6.

In literature, the number of splines used to represent each voxel is typically much
smaller (between 4 and 6 depending on the application), however, we intentionally use large
number of splines so as to focus on the effect of the proposed prior rather than the chosen
basis. The choice of the temporal spline basis is outside the scope of this research so we
refer the reader to [64,65] and the references therein for the complete details on what types
of splines can be used and how they are chosen, the effects of noise in the reconstructed
coefficients, and artifacts introduced by insufficient sampling.

In addition to compressing the data to be reconstructed, the temporal splines allow
us to reconstruct the instantaneous activity in the object space, as opposed to the cumulative
activity in a time-frame. Specifically, if an acquisition time-frame τ starts at time ts,τ and
ends at te,τ , then the cumulative activity object f ∈ RNT at a voxel v = 1, . . . , N at frame
τ = 0, . . . , T − 1 can be described by a spline basis {ηs(t)}s=0,...,S−1 as shown in Figure 3.6
by

fv+Nτ =

S−1∑
s=0

cv+Ns

∫ te,τ

ts,τ

ηs(t)dt (3.35)

=

S−1∑
s=0

cv+Nsβs,τ

45



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

where S is the total number of splines, cv+Ns is the spline coefficient of the s-th spline, ηs(t),
at voxel v and βs,τ =

∫ te,τ
ts,τ

ηs(t)dt. If we organize β as a matrix of RT×S and B = IN ⊗ β
where ⊗ represents the Kronecker product, and IN is a N ×N identity matrix then

f = Bc (3.36)

where B ∈ RNT×NS and c ∈ RNS . Forward projections can then be obtained from

g = Hf = HBc = Fc (3.37)

where H ∈ RMKT×NT is the forward projection matrix that models the physical system
(scanner), and F = HB ∈ RMKT×NS incorporates both the modelling of the physical
system and the temporal spline interpolation.

Reconstruction Parameters The proposed image reconstruction methods were com-
pared against EM, and the MAP method with a Gibbs prior described above. All results
shown were obtained after 120 iterations. The number of iterations was deliberately chosen
to be relatively large in order to observe the resulting reconstruction “near convergence”,
and thereby avoiding pragmatic decisions such as terminating the algorithm early in order
to obtain “better” reconstructions (as is often done with EM in practice).

Time (seconds)

Figure 3.6: Temporal spline basis used to represent time-activity functions in each object voxel.

3.4.3 Reconstruction Results and Quality Measures

Coefficient images for both low-count and high-count regimes, averaging 250 counts and 300 K
counts per projection respectively, were reconstructed using expectation maximization (EM),
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Original XCAT Heart Phantom

Reconstructions from Low-Count Measurements
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Figure 3.7: Axial slices of reconstructed temporal spline coefficient images of the XCAT heart
phantom at low and high count regimes with MAPMS (labelled MS), MAPKDE (labelled KDE),
using a Gibbs prior (labelled Gibbs), and EM.

MAP employing the aforementioned Gibbs prior, MAPMS, and MAPKDE. Temporal spline
coefficient images for reconstructed phantoms are shown in Figures 3.7 and 3.8.

Figures 3.9 and 3.10 show the time-activity functions by voxel in low- and high-
activity regimes respectively, where voxels in each regions are grouped by colour (blue for
LVM and red for blood pool). The simulated activity for each corresponding region is also
shown in the same figures by thick black lines.

Table 3.3 shows the signal to noise ratio (computed only for the Jaszczak phantom)
and the bias (for both phantoms) using EM, the aforementioned Gibbs prior, MAPMS, and
MAPKDE. The bias is computed using

Bias =

∑NS
i=1(fi − f∗i )∑NS

i=1 fi
(3.38)

where f represents the original phantom (ground truth), and f∗ is the reconstructed image.
The SNR is computed only for the Jaszczak phantom as the ratio of the mean intensity
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Figure 3.8: Axial slices of reconstructed temporal spline coefficient images of a Jaszczak-like phan-
tom at low and high count regimes with MAPMS (labelled MS), MAPKDE (labelled KDE), using a
Gibbs prior (labelled Gibbs), and EM.

value of the thickest rods to the variance of the cold region between the rods or “background
signal”. The SNR cannot be computed for the XCAT heart phantom fairly since the cold
region is outside the phantom. For reference, based on (3.38) a positive bias indicates that
the total activity in the reconstructed phantom is lower than in the original phantom.

3.5 A Discussion on the Obtained Results and Future Work

The proposed MAP reconstruction methods were designed with the intent of regularizing the
behaviour of the time-activity functions (TAFs) over space and time by clustering similar
TAFs where the similarity is determined by the scaling parameters. As expected, in high-
count regimes it was observed that the proposed methods clusters similar TAFs together,
effectively segmenting regions. Figure 3.10 shows high-count reconstructions of the XCAT
heart phantom; the TAFs obtained using EM and Gibbs prior are more “spread out” than
those obtained using the proposed methods.
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Figure 3.10: High-count time-activity functions of the blood pool (red) and left ventricular my-
ocardium (blue) of individual voxels from the reconstructed images of the XCAT heart phantom shown
over simulated curves for the blood pool (thick black) and LVM (thick dashed). The time-activity
functions obtained using the proposed MAP methods (bottom row) are more “tightly bundled” when
compared to those obtained using EM (top left) and Gibbs (top right).

In low-count regimes the proposed method outperforms EM when it comes to pre-
serving image structure and visual salience (see Figures 3.7 and 3.8), with TAFs which
better resemble the ground truth (see Figure 3.9). On the other hand, the Gibbs prior is
also able to preserve structure and greatly reduce the variation on the TAFs, but it does
so while reducing the sharpness across regions with different activity. Finally, TAFs appear
more visibly clustered from MAPMS and MAPKDE than the Gibbs prior (see bottom row
of Figure 3.9).

Loss of detail is possible with the proposed methods as can be seen from the low-
count reconstructions in Figure 3.8. In the case of MAPMS the parameter σ was chosen so
that the effect of mean-shift would be predominant. If one chooses a larger σ more detail
appears, but with a loss of sharpness and more noise-related variation in the TAFs. The
analogy holds for MAPKDE also, based on the range scaling parameter hc.

As shown in Table 3.3, the proposed method has a comparable bias to EM in low
and high count regimes, however, the SNR for low-count regimes is higher for MAPMS and
MAPKDE than EM. When comparing against the Gibbs prior, it is apparent that the bias
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Table 3.3: The bias and SNR for reconstructed phantoms using EM and the proposed MAP. Bias
and SNR are averaged over the time-frames.

Regime Phantom Method Avg. SNR Avg. Bias

XCAT
EM – 1.1856e-02

Low Heart
Gibbs (σ:2e3) – 1.3921e-01

MS (σ:8e2) – 9.5844e-02

KDE (hy:2.34e-1, hc:8.00e2) – 6.9849e-02

Count
Jaszczak

EM 7.9918e-01 1.8578e-01

Gibbs (σ:2e4) 1.0910e+00 9.4715e-02

MS (σ:5e3) 1.0785e+00 8.8426e-02

KDE (hy:2.34e-1, hc:4.00e3) 1.0791e+00 1.6472e-01

XCAT
EM – 6.1623e-03

High Heart
Gibbs (σ:8e5) – 6.5763e-02

MS (σ:8e5) – 7.1924e-02

KDE (hy:2.34e-1, hc:4.00e6) – 1.7790e-02

Count
Jaszczak

EM 9.7556e-01 1.8076e-01

Gibbs (σ:8e5) 9.5975e-01 7.8171e-02

MS (σ:8e5) 9.1961e-01 8.1756e-02

KDE (hy:2.34e-1, hc:4.00e6) 9.0453e-01 1.3936e-01

and SNR are very similar, but this is because these measures do not capture sharpness.
Finally, it is apparent (especially from the images reconstructed from low-counts)

that both MAPMS and MAPKDE exhibit some loss of intensity. We believe there are two
main reasons for this.

• The initial guess used in our experiments is always as a flat image of ones, which is of
lower intensity than the true image. This means that for the experiments presented
we are always approaching the solution from “below”, and due to the nature of the
proximal algorithm, a new iterate is “attracted” toward the previous iterate which is
of lower intensity.

• Due to the regularization that the prior introduces, the activity which would otherwise
be “clumped” together (as it happens in the images reconstructed using EM from low-
counts) is spread out more uniformly in the original activity region.

Both statements are supported by the positive bias of the reconstructed images (Table 3.3).

Differences Between MAPMS and MAPKDE There are two main differences be-
tween MAPMS and MAPKDE in terms of design. While both are proximal algorithms that
essentially measure the distance to the previous iterate, MAPKDE effectively measures
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the distance after a single mean-shift iteration whereas MAPMS measures the distance to
a mean-shift denoised image. That is, in MAPMS the mean-shift algorithm is run until
convergence, while in MAPKDE the update is performed simultaneously from both the
likelihood and prior terms. (based on the chosen scaling parameters) “holds together” time-
activity functions which are close and similar in previous iterations. In either case, this
implies that the initial guess should affect the result (i.e. provide a different solution).

The other major difference between MAPMS and MAPKDE is the free (or penalty)
parameter σ. In MAPMS, one can change the σ in the Gaussian prior and can therefore
control how much the previous mean-shifted iterate µ(k) can affect the next c(k+1). In fact,
one can effectively convert MAPMS to EM by setting σ = 0. The same cannot be done
with MAPKDE, where one can never nullify the effect of the KDE-based prior due to the
fact that there is no free parameter.

There is an advantage, however, to using MAPKDE. The free (penalty) parameters
have typically no physical meaning and therefore their relationship with the data is not
straightforward, while the scaling parameters are more clearly related to the spatial and
intensity values to be reconstructed. As explained above, in our experiments the parameter
hy was always chosen to be approximately the isotropic size of the object voxel, while the
parameter hc was chosen based on the expected variation of intensity in the time-activity
functions, and, while one may not always know the expected intensity, it is likely that one
can estimate it from the sensitivity of the imaging system and the number of counts in the
measured projections.

Future Work: Anisotropic Scaling Parameters The design of MAPKDE and MAPMS
in this chapter assumes that the scaling parameters hy,i and hc,i are isotropic in time. That
is, they may vary by voxel (as the index indicates), but the kernel size used for clustering is
the same for all spline coefficients, c[i] = (ci, ci+N , . . . , ci+(S−1)N )> in a voxel. While the spa-
tial scaling parameter may not need to vary over time, the consequences of an isotropic range
scaling parameter are much more apparent. For instance in Figure 3.10, the time-activity
functions are more clustered at the highest intensities (at the beginning of the acquisition),
while at lower intensities (toward the end of the acquisition) less clustering is visible. We
believe that this phenomenon is due to the isotropic scaling parameter, because the chosen
hc were targeted toward the variation of the highest intensities thereby making the kernel
too wide for the lower intensities at later times.

Summary

This chapter has presented two iterative methods of dynamic image reconstruction, namely,
MAPMS and MAPKDE. While there are a number of alternatives to solving problems (3.9)
and (3.24), the iterative schemes shown in Algorithms 3.2 and 3.3 were chosen to avoid
(costly) line-searches, as one needs to perform projections on failed line-searches, or the
addition of other parameters related to the solver itself. Of course, alternatives exist to the
proposed solvers that may show faster convergence (cf. [9,20]). The convergence properties
of the proposed algorithms are a subject for future study.
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Chapter 4

On Sampling in Fan Beam Tomography with a Linear
Detector as a Perturbation of an Equiangular Scheme

An integral part of the imaging chain is constructing a data acquisition scheme which not
only meets sampling conditions (i.e. the data is sufficiently sampled), but does so in an
efficient way such that the cost and time of sampling is minimized. Because our research
revolves around myocardial imaging with multiple single-pinhole detector heads, we explore
the sampling conditions for a flat-detector single-pinhole transform in 2D. We assume that
there is no truncation and no noise in the measured projections.

We propose finding an efficient sampling scheme for the flat-detector single-pinhole
transform (aka. linear fan-beam) by analyzing the asymptotic properties of the standard
fan-beam transform and using the efficient sampling scheme of the latter to approximate
the first. Specifically, we find conditions for which the approximation becomes exact, so
that the same reconstruction scheme can be used for both.

We explore two main approaches of finding equivalence criteria between the fan-
beam and single-pinhole transforms, namely, the coarse grid approach which uses unions
of coarse sampling lattices to approximate irregular sampling lattices, and the non-uniform
sampling approach that provides bounds which are indicative of the equivalence between a
perturbed and a uniform sampling lattice.

4.1 Introduction to Sampling in Tomography

When using a single pinhole collimator in tomography, a sampling scheme is defined by
a number of parameters including the radius of rotation, focal length, detector resolution,
and number of detector heads. The number of parameters quickly increases if the physical
system has multiple detector heads that do not lie in a great circle (i.e. there is not a single
radius of rotation) with each detector head having a different resolution.

In the research presented here the parameters are narrowed down to the “classical”
configurations where we consider only the radius of rotation, detector resolution (all detec-
tors have the same resolution), and number of angular sampling points (detector heads lie
in a great circle). Since we aim to find conditions for which the flat-detector single-pinhole
transform, is equivalent to the angular fan-beam transform, an explanation of these integral
transforms is in order.

4.1.1 The Angular Fan-beam and Flat-detector Single-pinhole Integral Trans-
forms

Let an object to be reconstructed from measured projections be denoted by f : R2 → R.
Furthermore, let an X-ray source be denoted by ~v, then the measurements can be described
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by

(Pf)(~v, ~ζ) =

∫ ∞
−∞

f(~v + `~ζ)d` (4.1)

where ~ζ is the unit direction of the integral line.

In the case of the angular fan-beam transform equation (4.1) becomes

(Df)(β, α) =

∫ ∞
−∞

f(~v(β) + `~ζ(β, α))d` (4.2)

where
~v(β) = (r cosβ, r sinβ)>

~ζ(β, α) = (− sin(β + α+ π/2), cos(β + α+ π/2))>
(4.3)

where β is the projection position, α is the incidence angle of the integral line, and r is the
radius of rotation as shown in Figure 4.1. Since the object has finite support with radius
ρ = 1 then the incidence angle α ∈ [−αM , αM ] where αM = arcsin(1/r).

x2

x1

~v(β)

βr

−αM

ρ = 1

~ζ(β, α)

αde
te

ct
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an
gu
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r
w
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th
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)

Figure 4.1: Schematic view of the fan-beam transform: the object being imaged has support of
radius ρ = 1, the angle β defines the location of the x-ray source ~v(β) with radius of rotation r, the

detector has angular support αM , and α defines the direction ~ζ(α) of the integral line.
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In a similar fashion, the flat-detector pinhole transform (aka. linear fan-beam) can
be described by

(T f)(β, s) =

∫ ∞
∞

f(~v(β) + `~ζ(β, s))d` (4.4)

where

~v(β) = (r cosβ, r sinβ)>

~ζ(β, s) = (− sin(β + arctan(s/r) + π/2), cos(β + arctan(s/r) + π/2))>
(4.5)

where s ∈ [−sM , sM ] is the incidence point of the integral line on the virtual detector surface
and sM ≥ r tan(arcsin(1/r)). A schematic view of this transform is shown in Figure 4.2.
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Figure 4.2: Schematic view of the flat-detector single-pinhole transform: the object being imaged
has support of radius ρ = 1, the angle β defines the location of the x-ray source ~v(β) with radius of
rotation r̂, the virtual detector has support sM , and s is the point of incidence of the integral line
on the virtual detector surface. The angles α̂ and α̂M are the fan-beam equivalent angles of s and
sM respectively.

The reader will notice that the transform shown in Figure 4.2 is not immediately
representative of the single-pinhole transform, however, it is equivalent to it. Without loss
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of generality, we make use of a virtual detector to reduce the number of variables that we
must optimize.

While the transforms in equations (4.2) and (4.4) are only different parametrizations
of one another in a continuous framework, in a discrete framework the two differ greatly
since the first admits sampling points which are equiangular, while the latter admits points
which are equidistant (and are therefore non-linear in angular space).

The theory we want to develop relies on the assumption that the object being imaged
(i.e. the function to be sampled) has both finite support and is bandlimited, therefore, in
the next section we provide the background theory for sampling bandlimited functions in
one and many dimensions.

4.1.2 Sampling of Essentially Bandlimited Functions

Given an integral transform, we would like to know how to sample a bandlimited (or essen-
tially bandlimited) function f in order to recover it from projective measurements. Specifi-
cally, we would like to know the the radius of rotation, number of projections, and detector
resolution when given the essential bandwidth Ω of the function f and its support. For
simplicity we assume that f(x) = 0 for ‖x‖2 > 1.

Definition 4.1.1. A function f is essentially bandlimited with bandlimit Ω if the Fourier
transform f̂ of this function has the property that f̂(ξ) = 0 for |ξ| > Ω.

In one dimension, an Ω-bandlimited function f can be reconstructed exactly from
its samples if the sampling scheme abides by the conditions set in the Whittaker-Shannon-
Kotel’nikov (WSK) sampling theorem.

Theorem 4.1.1 (WSK Sampling Theorem [10]). Every signal function f(x) defined on R
that is bandlimited to an interval [−Ω,Ω] for some Ω > 0, can be completely reconstructed
for x ∈ R from its sampled values f(kπ/Ω), taken at the nodal points kπ/Ω, k ∈ Z, equally
spaced apart on the real axis R, in terms of

f(x) =

∞∑
k=−∞

f

(
kπ

Ω

)
sin(Ωt− kπ)

Ωt− kπ
= sin(Ωt)

∞∑
k=−∞

f

(
kπ

Ω

)
(−1)k

Ωt− kπ
.

Example 4.1.1 (Sampling a Bandlimited Function in 1D). Let a function f : R → R be
Ω-bandlimited such that f̂(ξ) = 0 for |ξ| > Ω, where ξ ∈ R. Since the Fourier transform of
this function is compactly supported in the segment [−Ω,Ω], then according to the WSK
theorem the signal can be exactly recovered if it is sampled at the points x = πn/Ω, for
n ∈ Z as shown in Figure 4.3.

Theorem 4.1.1 is generalized and extended to bandlimited functions in multiple
dimensions by the Petersen-Middleton sampling theorem [63].

Theorem 4.1.2 (Petersen-Middleton Sampling Theorem). A function f(x) in Rn, whose
Fourier transform f̂(ξ) vanishes over all but a finite portion of the wave-number space, can
be everywhere reproduced from its sample values taken over a lattice of points defined by
{l1v1, l2v2, . . . , lnvn}, li = 0,±1,±2, . . ., i = 1, . . . , n, provided that the vectors vi are small
enough to ensure non-overlapping of the spectrum f̂(ξ) with its images on a periodic lattice
defined by the vectors {uk}, with 〈vi,uk〉 = 2πδik.
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(a) The Fourier transform of an Ω-
bandlimited function, f(x).
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π
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(b) Sampling rate in direct space.
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|(Ŝf)(ξ)|

. . . . . .

2Ω

Ω−Ω−3Ω 3Ω

(c) The Fourier transform of the sampled Ω-bandlimited function, (Sf)(x).

Figure 4.3: Example of a 1D Ω-bandlimited function sampled at the Nyquist rate.

Example 4.1.2 (Sampling a Bandlimited Function in 2D). Let a function f : R2 → R be
Ω-bandlimited such that f̂(ξ) = 0 for ||ξ||2 > Ω, where ξ ∈ R2. The support of the function
f in Fourier space is shown in Figure 4.4a. Since the Fourier transform of this function
is compactly supported in a ball of radius Ω, then according to the Petersen-Middleton
theorem [63] the signal can be exactly reconstructed from sampling schemes which admit
no overlapping of their Fourier support sets (i.e. there is no aliasing). One such sampling
scheme, known as the standard sampling scheme, is shown in Figure 4.4.

4.1.3 Sampling in Fan-beam Tomography

Theorem 4.1.2 can be extended to fan-beam tomography by analyzing the properties of the
integral transform of interest in Fourier space. Let an essentially Ω-bandlimited function
f(x) in R2 with supp(f) = {x ∈ R2| ||x||2 ≤ 1} be projected according to the fan-beam
geometry as shown in Figure 4.1, then the support of the sinogram, (Df), of such a function
in Fourier space also has essentially finite support and takes the form [54,55,58]

K = {(k,m) ∈ Z2 | |k −m| < Ωr, |k|r < |k −m|} (4.6)

shown in Figure 4.5a. Here, k and m are the corresponding variables of β and α in Fourier
space.

Now, let us introduce the idea of a sampling lattice, and how it is used to represent
the sampling of bandlimited or periodic functions.
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(a) The support set of Fourier
transform of an Ω-bandlimited
function, f(x).
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(b) A sampling of the function f in R2.
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(c) The support of the Fourier transform of the
sampled function, (Sf)(x), at regular intervals
along each direction.

Figure 4.4: Example of a 2D function whose Fourier transform is compactly supported in a ball of
radius Ω.

Definition 4.1.2. Let a lattice of points in Rn be denoted by LW , and let a non-singular
matrix W = [v1, . . . ,vn] where vi ∈ Rn, then

LW = WZn.

The angular fan-beam integral transform, (Df), is periodic in both the rotation
angle β and the incidence angle α with period 2π and π respectively (see Figure 4.1), then
this function is P -periodic with period

P =

[
2π 0
0 π

]
. (4.7)

To sample a P -periodic function with a sampling lattice LW , one must assume that LP ⊆ LW ,
which is the case only if P = WM , with M as an integer matrix.
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(a) Essential support set K of the fan-beam
transform of an Ω-bandlimited function f
with support radius ρ = 1. The coordinates
k and m correspond to the projection angle
β and line-integral incidence angle α respec-
tively.
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β

π
rΩ
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(b) An efficient standard sampling scheme in
direct space.
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2rΩ
r+1
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(c) The tiling of the essential set K in Fourier
space when using an efficient standard sampling
scheme.

Figure 4.5: Essential support set K of the fan-beam transform of an Ω-bandlimited function f with
support radius ρ = 1 and its efficient standard fan-beam sampling scheme.

Example 4.1.3 (Sampling a Periodic Function in One Dimension [55]). Let p1 = 2π such
that P = [p1] = 2π, then a suitable sampling lattice is LW generated by W = 2π/M ,
where M > 0 in Z, and therefore P = WM . The sampling points become apparent in the
canonical quotient set LW /LP = {0, 2π

M , . . . , 2π
M (M − 1)}.

Let us now define the reciprocal lattice of a lattice LW , which is its representation
in Fourier space, and provide the details of sampling in fan-beam tomography.
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Definition 4.1.3. The reciprocal lattice, L⊥W of a lattice LW = WZn is L⊥W = 2πW−>Zn.

Theorem 4.1.3 (Sampling in Fan-beam Tomography [26,53]). Let g(z) = (Df)(β, α), such
that g ∈ C∞([0, 2π)× [−π, π)), LW a sampling lattice, and K be a finite subset of Z2 such
that its translates K + ξ, ξ ∈ L⊥W , are disjoint. Let χK denote the indicator function of the
essential support set K, with

SW g(z) =
(2π)−1

PQ

∑
y∈LW

χ̃K(z− y)g(y) (4.8)

where

χ̃K(x) =

√
2

π
Ωsinc(Ωx)

and the sinogram has been sampled at P projection angles, each with resolution Q, then

|g(z)− SW g(z)| ≤ 2(2π)−1

∫
Z2\K

|ĝ(ζ)|dζ. (4.9)

Theorem 4.1.3 indicates that if ĝ vanishes outside of the essential set K (i.e. ĝ(ξ) = 0
for ξ /∈ K) then the sinogram can be recovered exactly from its samples on the lattice LW ,
or SW g = g.

Let the function f(x) in R2 be sampled through a fan-beam geometry at angles
{βi}i=0,...,P−1 spaced regularly over a great circle, and let the resolution of the detector be
dictated by {αj}j=0,...,Q−1 equiangularly spaced points, then the generating matrix for the
lattice of sampling angles can be

W =

[ 2π
P 0
0 2π

Q

]
.

Based on the essential set K stated in (4.6) and Theorem 4.1.3 an efficient standard sampling
scheme can be generated from

W =

[
π
Ω
r+1
r 0

0 π
rΩ

]
, W⊥ = 2πW−> =

[
2rΩ
r+1 0

0 2rΩ

]
(4.10)

where the sampling lattice LW yields

βi = i∆β = i
π

rΩ
,

αj = j∆α = j
π

Ω

r + 1

r
.

This means P ≥ 2rΩ and Q ≥ 1
2

(
2rΩ
r+1 − 1

)
. The efficient standard sampling scheme is

shown in Figure 4.5.
With these sampling conditions, one may use a reconstruction algorithm to obtain

the original object f sampled through a fan-beam geometry (see [55, Algorithm 5.3] for an
example).
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4.1.4 Summary

This section presented the sampling schemes which, based on the Petersen-Middleton the-
orem [63], yield exact reconstructions of bandlimited functions from tomographic measure-
ments at regular intervals in the angular fan-beam (AFB) transform context. However, the
flat-detector single-pinhole transform (aka. linear fan-beam or LFB) irregularly samples
the object space from an angular perspective, and therefore its asymptotic properties in
Fourier space are more complex. Specifically, we do not know the essential support set of
LFB, therefore we try to find conditions under which LFB is exactly the same as AFB, and
therefore their essential support set is the same. Knowing the essential support set allows
us to construct an efficient sampling scheme from which the original signal can be recovered
exactly.

4.2 Non-uniform Sampling, Unions of Sampling Lattices and Applications
to Linear Fan-Beam Tomography

This section provides background on methods of sampling on irregular lattices. There are
two main approaches to reconstructing functions which have been irregularly sampled. The
first approach, explained in Section 4.2.1, constructs a periodic irregular sampling lattice
from the union of multiple regular sampling lattices, while the second approach, explained
in Section 4.2.2, treats an irregular sampling lattice as a perturbation of a regular sampling
lattice.

4.2.1 Sampling on Unions of Coarse Lattices and Their Application to Linear
Fan-beam Tomography

Section 4.1 explained the sampling theory related to the standard (angular) fan-beam trans-
form. In summary, it provides us with an interpolation scheme that exactly recovers the
original function from its samples, given the proper sampling conditions that allow the for
the shifted versions of the essential sets K in (4.6) not to overlap. In this section, we present
another interpolation scheme that allows us to reconstruct the original function from the
union of multiple sampling schemes (or lattices) each of which undersamples the signal
thereby allowing for translates of K to overlap.

Specifically, let a sampling lattice LW be too coarse to satisfy the conditions of
Theorem 4.1.3, that is, the sets

K + 2πW−>k, k ∈ Zn, (4.11)

are not mutually disjoint. This means that the set K will be partitioned into L sets where
K =

⋃L
`=1K`. More precisely, if we let

Mξ = L⊥W ∩ (K − ξ), for ξ ∈ K

then Mξ will assume finitely many different values M1, . . . ,M` as ξ travels through K, and
each tile K` can be described by

K` = {ξ ∈ K|Mξ = M`}.
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Example 4.2.1. Let a one dimensional function with essential set K = [−1, 1] in R be
sampled from a coarse sampling lattice L⊥W = L2πW−> = Z (i.e. 2πW−> = 1), then we have

Mξ = L⊥W ∩ (K − ξ) =


{1, 2} ξ ∈ {−1}
{0, 1} ξ ∈ (−1, 0)
{−1, 0, 1} ξ = {0}
{−1, 0} ξ ∈ (0, 1)
{−1,−2} ξ = {1}

The set K is then effectively partitioned into the set K1 = (−1, 0) and K2 = (0, 1) (the sets
K3 = {−1}, K4 = {0}, and K5 = {1}, are ignored because they have measure zero). This
means L = 2, and M1 = {0, 1}, M2 = {−1, 0}. Focusing on the partition K1, we see that

K1 = {ξ ∈ K | (L⊥W ∩ (K − ξ)) = M1} = (−1, 0).

One can nevertheless achieve a correct sampling from LW by combining m copies of
the shifted coarse sampling lattices, LζW , ζ = 1, . . . ,m, of LW where

LζW = {τζ +Wk, k ∈ Zn}. (4.12)

Specifically,

∀` ∈ {1, . . . , L},∃M` = {k`,0, . . . , k`,m`−1} ⊂ Zn, 1 ≤ m` <∞

such that

∀ξ ∈ K`, k ∈ Zn :
(
ξ − 2πW−>k

)
∈ K ⇐⇒ k ∈M` (4.13)

where m` is the number of overlappings of set K` from the sets K + 2πW−>k, k ∈
{k`,0, . . . , k`,m`−1}. It turns out that the number m̄ of lattices required for a correct sampling
is m = maxL`=1m`.

The shifts τζ ∈ Rn are chosen so that ∀` = 1, . . . , L the linear system

M−1∑
ζ=0

β`ζ = 1 (4.14)

M−1∑
ζ=0

β`ζ exp
(
−2π

〈
(W−1τζ), k`,j

〉
R2

)
= 0, for j = 1, . . . ,m` − 1 (4.15)

can be solved for the coefficients β`ζ ∈ C, ζ = 0, . . . , m̄ − 1. The interpolation formula is
then defined by

SW f(x) =

M−1∑
ζ=0

∑
k∈Zn

f(τζ +Wk)gζ(x− τζ −Wk) (4.16)

where

gζ(y) = (2π)−n/2 |detW |
L∑
`=1

β`ζ χ̂K`(−y),
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and χ̂K`(−y) is the indicator function of the set K` in Fourier space.

In [25] this theory was applied to the Radon transform of an essentially bandlimited
function, where the coarse lattice is chosen to sample at half the sufficient rate so that each
tile would be overlapped twice. It was found that a function can exactly be reconstructed
from the union of coarse sampling lattices (i.e. system (4.15) is solvable) as long as shifted
lattices do not correspond. This intuitively makes sense since the original signal can only
be recovered from the union of undersampled signals that are not exactly the same (i.e. the
undersampled signals must complement each other’s information). The details of this study
are not directly relevant to our research so we refer the reader to [22,25] and the references
therein for more details. For our purposes, it suffices that there is an interpolation formula
which we can use “out of the box” to recover a function from the union of coarse sampling
lattices.

Let us now construct LFB as a union of coarse AFP as shown in Figure 4.6.

Source point

Detector Plane

Figure 4.6: The original integral lines (solid purple) of the coarse angular fan-beam transform
are shifted symmetrically from the initial configuration to the points of incidence of linear fan-beam
(black dots) on the detector plane. The lines of each of the shifted versions of the coarse angular
fan-beam transform correspond by color.

We know that the standard sampling scheme for the angular fan-beam transform in
Fourier space is generated from (4.10), namely

W⊥ = 2πW−> =

[
2rΩ
r+1 0

0 2rΩ

]
.

To simplify our problem, we oversample the data in the angular direction β (see Figure 4.1)
so as to avoid overlaps arising from angular sampling, thereby obtaining the matrix

W⊥S = 2πW−> =

[
Ω 0
0 2rΩ

]
, WS =

[
2π
Ω 0
0 π

rΩ

]
. (4.17)

leading to the tiling of the Fourier space shown in Figure 4.7.
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k

m

Figure 4.7: The β-oversampled standard sampling lattice of the angular fan-beam scheme in Fourier
space.

Now we can generate a coarse sampling lattice using

WCS =

[
hβ 0
0 (2Q+ 1)hα

]
where hβ =

2π

Ω
, hα =

π

rΩ
(4.18)

where 2Q + 1 is the number of sampling points in the detector of the linear fan-beam
transform. That is, WCS undersamples the signal by a factor of 2Q + 1 in the angle of
incidence α. The original lattice is obtained by the union of 2Q + 1 coarse lattices, or
conversely, in Fourier space the coarse lattice is obtained as the shifted union of standard
lattices, or

W−>CS Z2 =
⋃
k∈Z2

(
k1

hβ
,

k2

2Q+ 1

1

hα

)

=

Q⋃
t=−Q

⋃
k∈Z2

(
k1

hβ
,
k2

hα

)
+

(
0,

t

(2Q+ 1)hα

)

=

Q⋃
t=−Q

W−>S Z2 +

(
0,

t

(2Q+ 1)hα

)

=

Q⋃
t=−Q

W−>S Z2 +

(
0,

τt
2Q+ 1

)

where τt =
(

0, t
hα

)>
is the shift vector the generates the shifted lattice as shown in (4.12).

What we would like to find is the following relationship. Given an LFB scheme with
a radius of rotation r̂ sampled at 2Q+ 1 angular points, we want to find the smallest radius
of rotation r of the AFB scheme (also sampled at 2Q+ 1 points) for which the sampling is
equivalent and therefore a reconstruction algorithm that exactly recovers the function from
one should do the same for the other.

Assuming that we have 2Q + 1 sampling points on our angular fan-beam detector
and that the function has compact support ρ = 1, then it follows that we need sample only

65



Ph.D. Thesis - A. Ihsani; McMaster University - Computational Science and Engineering

the space α ∈ [−αM , αM ], αM = arcsin(1/r) (see Figure 4.1). In light of this, let us write
hα as a function of the maximum angle αM as hα = αM/Q, and therefore

WCS =

[
hβ 0

0 Q
αM (2Q+1)

]
, (4.19)

and

τt =

(
0,
t

Q
αM

)>
. (4.20)

In order to be able to find equivalence criteria between the linear and angular fan-
beam transforms, we need to ensure that the perturbation between the two schemes is small
enough and the system of equations in (4.14) is still solvable. For this we use a theorem
from [22].

Theorem 4.2.1. Let {ui}i=1,...,N be orthonormal vectors such that 〈ui, uj〉 = δij. If {vi}i=1,...,N

are normal vectors such that
N∑
i=1

〈vi, ui〉2 > N − 1

then the vectors {vi}i=1,...,N are linearly independent.

In the case of the coarse equiangular basis, the vectors in (4.15) become

(ωn2Q)t = exp

(
−2πi

〈[
hβ 0

0 Q
αM (2Q+1)

](
0

t
QαM

)
,

(
k1,`,n

k2,`,n

)〉)

= exp

(
−2πi

〈[
hβ 0

0 Q
αM (2Q+1)

](
0

t
QαM

)
,

(
k1

k2(2Q+ 1) + n

)〉)

= exp

(
−2πi

t

2Q+ 1
(k2(2Q+ 1) + n)

)
= exp

(
−2πi

tn

2Q+ 1

)
(4.21)

where k1,`,n = k1 since no overlaps are caused from the angular direction, and k2,`,n =
k2(2Q+ 1) + n where the overlaps are indexed by n.

Now we need an expression for the basis of the linear fan-beam transform. The
perturbed shift vector, that is, the shift vector that corresponds to the linear fan-beam
scheme is

ϑt =

(
0

arctan
(
t
Q tan(α̂M )

) ) (4.22)

where α̂M is the maximum angle of incidence assumed for the linear fan-beam scheme. The
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vector basis in this case is

(ω
k`,n
2Q )t = exp

(
−2πi

〈[
hβ 0

0 Q
αM (2Q+1)

](
0

arctan
(
t
Q tan(α̂M )

) ) ,( k1,`,n

k2,`,n

)〉)
(4.23)

= exp

(
−2πi

Q

αM (2Q+ 1)
arctan

(
t

Q
tan α̂M

)
(k2,`(2Q+ 1) + n)

)
= exp

(
−2πi

nQ

αM (2Q+ 1)
arctan

(
t

Q
tan α̂M

))
exp

(
−2πi

k`,2Q

αM
arctan

(
t

Q
tan α̂M

))
,

and, the inner product of the two bases, that is, the coarse equiangular basis and the coarse
linear basis, is

〈
ωn2Q, ω

k`,n
2Q

〉
=

Q∑
t=−Q

exp

(
−2πi

Qk`,n
αM

arctan

(
t

Q
tan α̂M

))

× exp

(
−2πi

n

2Q+ 1

(
t− Q

αM
arctan

(
t

Q
tan α̂M

)))
.

Ultimately, we would like to find α̂M given αM = arcsin(1/r) for which the condition

min
k`,n

∑Q
n=−Q

∣∣∣〈ωn2Q, ωk`,n2Q

〉∣∣∣2
(2Q+ 1)2

> 2Q (4.24)

holds.

It is obvious that (4.24) will not hold for all combinations of Q, αM , and α̂M . We
solved ∑Q

n=−Q

∣∣∣〈ωn2Q, ωk`,n2Q

〉∣∣∣2
(2Q+ 1)2

− 2Q = 0.

for k`,n = 0, which is expected to cause the least perturbation to the system1, in order to
get an idea of what is the minimum linear fan-beam radius, r̂ = sin(α̂M )−1, based on the
discretization Q that be approximated to an angular fan-beam using this approach. The
results are shown in Figure 4.8 and listed in Table 4.1 along with the corresponding angular
fan-beam system.

It is apparent from Figure 4.8 that as the number of samplesQ increases, the smallest
radius of rotation for which this approximation is valid quickly increases. For instance, one
must have a radius of rotation of about 11.5 units when imaging an object of radius 1 unit
with 201 samples (i.e. Q = 100) on the virtual detector surface to still be able to analyze the
linear fan-beam system through the properties of angular fan-beam. In some applications a
factor of about 11 between the radius of rotation and the support of the subject may not be
feasible. This factor becomes even larger as the discretization increases. Let us then explore
an alternative (and somewhat simpler) approach to finding this same equivalence.

1This was found numerically and was expected due to Proposition 4 in [22].
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Figure 4.8: The minimum radius of rotation of the linear fan-beam scheme as a function of the
discretization Q for which the coarse sampling lattice approximation is applicable. If a linear fan-
beam radius of rotation r̂ falls below the line at the given discretization Q, it cannot be approximated
by an angular fan-beam system using the proposed method.

4.2.2 Non-uniform Sampling and Its Possible Application to Fan-beam Tomog-
raphy

As established earlier in this chapter, the flat-detector single-pinhole transform irregularly
samples the object space from an angular perspective (i.e. the samples are not equiangular,
though they are equidistant). Non-uniform sampling theory allows us to view equidistant
samples as a perturbation of equiangular samples. In this section we present the Paley-
Wiener-Levinson theorem which is pertinent to our objective, and explore how it applies to
our work.

Given a function f(t) in R with spectral support [−Ω,Ω], and a sampling set {tk}k∈Z
of sampling points where t−k = −tk, we would like to know the interpolation formula that
recovers the signal f(t) exactly from its samples f(tk). This problem was first treated
in [48,59] and the result is summarized in Theorem 4.2.2 below.

Theorem 4.2.2 (Paley-Wiener-Levinson Sampling Theorem). Let {tk}k∈Z be a sequence
of real numbers such that t−k = −tk and

D = sup
k∈Z

∣∣∣tk − k π
Ω

∣∣∣ < 1

4

π

Ω
, (4.25)

and let

G(t) = (t− t0)
∞∏
k=1

(
1− t

tk

)(
1− t

t−k

)
,

then for any Ω-bandlimited function f , we have

f(t) =
∞∑

k=−∞
f(tk)

G(t)

(t− tk)G′(tk)
(t ∈ R).
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Table 4.1: Linear and angular fan-beam schemes that are equivalent from a union of coarse lattices
perspective: r is the radius of rotation of the angular fan-beam scheme, Q is the chosen discretization,
hα is the angular resolution, r̂ is the radius of rotation of the linear fan-beam transform, and hs is the
virtual detector resolution. The angular fan-beam configurations correspond to those in Figure 4.8.

Angular Fan-beam Linear Fan-beam

r Q Implied hα (×10−3) r̂ Implied hs

2.27 10 45.67 2.31 0.1110

4.80 30 6.98 4.83 0.0341

11.45 100 0.87 11.46 0.0100

19.21 200 0.26 19.21 0.0050

26.50 300 0.13 26.50 0.0033

40.50 512 0.05 40.50 0.0020

For a complete proof see [32].

Theorem 4.2.2 is a generalization of Theorem 4.1.1 since it allows us to reconstruct
a function exactly from irregular samples, as long as those samples are within a quarter of
the regular sampling distance.

As before, let us sample both the angular and linear fan-beam transforms with 2Q+1
points, then the respective sampling points are described by

t

Q
αM and arctan

(
t

Q
tan α̂M

)
,

where αM is the maximum sampling angle in angular fan-beam (see Figure 4.1), α̂M is the
maximum angle in the linear fan-beam (see Figure 4.2), and t = −Q, . . . , Q.

To find the smallest perturbation between the equidistant and equiangular points
we pose the optimization problem

min
α̂M

max
t=−Q,...,Q

∣∣∣∣arctan

(
t

Q
tan α̂M

)
− t

Q
αM

∣∣∣∣ . (4.26)

Solving (4.26) is not straightforward since to solve for α̂M one must know the t that max-
imizes the perturbation, which changes with α̂M . Let us instead make the substitution
t/Q← x and let x ∈ R, then we have

min
α̂M

max
x
|arctan (x tan α̂M )− xαM | .

Since the objective function is symmetric around the origin, we can reduce the solution set
for x to R+ thereby modifying the problem to

min
α̂M

max
x∈R+

arctan (x tan α̂M )− xαM .

From the first-order conditions of

max
x∈R+

arctan (x tan α̂M )− xαM
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we find that

x =

√
tan α̂M − αM
αM tan2(α̂M )

. (4.27)

Finally, we make another simplification to our optimization problem in (4.26) by
recognizing that the largest perturbations will occur at the edge of the detector (x = 1),
where αM − α̂M is largest, and at a point inside the detector, where√

tan α̂M − αM
αM tan2(α̂M )

αM − arctan

(√
tan α̂M − αM
αM tan2(α̂M )

tan α̂M

)

is largest. In other words, we must solve

αM
tan α̂M

√
tan α̂M
αM

− 1− arctan

(√
tan α̂M
αM

− 1

)
= αM − α̂M (4.28)

to find αM (or α̂M ) given α̂M (or αM ) which cause the least perturbation. This means that
given a linear (or angular) fan-beam scheme, we can find a respective angular (or linear)
fan-beam scheme which is closest to it.

For our theory to apply however, we need to also satisfy condition (4.25). That is,
the largest variation must also be smaller than a quarter of the discretization of the angular
fan-beam scheme, or

αM − α̂M <
αM
4Q

. (4.29)

This last condition implies that based on the discretization Q the condition becomes more
stringent and will not be met for some combinations of αM , α̂M , and Q. Figure 4.9 shows
a graph that relates the discretization Q to the minimal radius of rotation of the linear fan-
beam system which can be approximated by angular fan-beam using this method. Table 4.2
shows the corresponding angular fan-beam scheme for the data in Figure 4.9.

Table 4.2: Linear and angular fan-beam schemes that are equivalent from a non-uniform sampling
perspective: r is the radius of rotation of the angular fan-beam scheme, Q is the chosen discretization,
hα is the angular resolution, r̂ is the radius of rotation of the linear fan-beam transform, and hs is the
virtual detector resolution. The angular fan-beam configurations correspond to those in Figure 4.9.

Angular Fan-beam Linear Fan-beam

r Q Implied hα r̂ Implied hs

1.92 10 0.0548 1.96 0.1162

3.22 30 0.0105 3.24 0.0350

5.81 100 0.0017 5.82 0.0102

8.22 200 0.0006 8.23 0.0050

10.09 300 0.0003 10.10 0.0033

13.30 512 0.0001 13.30 0.0020
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Figure 4.9: The minimum radius of rotation of the linear fan-beam scheme as a function of the
discretization Q for which the non-uniform approximation is applicable. If a linear fan-beam radius
of rotation r̂ falls below the line at the given discretization Q, then it cannot be approximated by an
angular fan-beam transform using the proposed approximation.

So far, the discussion regarding non-uniform sampling has revolved around the sam-
pling of the detector space which is a one-dimensional problem, however, we would like to
apply this perturbation theory to tomography. In tomography, we must ensure that the
perturbation introduced in the detector space does not introduce aliasing in the angular
sampling space β. In fact, if we choose an angular sampling of ∆β = π

rΩ which corresponds
to the efficient standard sampling scheme (see Figure 4.5c), then it is possible to alias the
signal. To avoid aliasing from the angular direction, then we oversample the signal using
β ≥ 2π/Ω to obtain a sampling scheme like the one in Figure 4.7. We conjecture that
in this configuration the perturbations associated to the detector sampling can be treated
separately from the angular sampling scheme and therefore Theorem 4.2.2 is applicable.

4.3 Discussion, Next Steps and Future Work

4.3.1 A Discussion on the Proposed Approximation Approaches

It is apparent from Figure 4.10 that the coarse grid approach provides a stricter bound
for the approximation of the two sampling schemes than non-uniform sampling. This is
expected since the criterion in (4.24) measures the perturbation of the whole system, while
the non-uniform approach measures only the largest perturbation in the detector space as
dictated by (4.25). It follows that given a discretization 2Q+ 1, the radius r̂ obtained using
the coarse grid approach will be larger than the one resulting from non-uniform sampling.

Figure 4.10 is indicative of the aforementioned. The radius of rotation of the linear
fan-beam system for which said system can be treated as an angular fan-beam system is
determined by the discretization 2Q + 1. For example, in the case of the non-uniform
approach a linear fan-beam sampling scheme with Q = 100, given object support radius
ρ = 1, can only be treated by its equivalent angular fan-beam scheme if r̂ > 5.82. In other
words, the radius of rotation needs to be about a factor of 6 larger than the radius of support
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Figure 4.10: A combined view of Figures 4.8 and 4.9 for comparison: the minimum radius of
rotation of the linear fan-beam scheme using the proposed approximation methods

of the object being imaged. In the same case, using the coarse grid approach we would need
a radius of rotation that is 13 times the radial support of the object being imaged.

From our preliminary results, it seems the non-uniform approach provides a more
feasible “valid approximation” set for r̂ compared to the coarse-grid approach, albeit for
large Q the factor r̂ may prove infeasible.

4.3.2 Next steps

An important next step for the work presented in this chapter is to experimentally con-
firm our findings. That is, given the radius of rotation of the linear and angular fan-bean
transforms for which the two are equivalent, we want to show that essentially bandlimited
functions sampled using each scheme can be reconstructed exactly using either an angular
or linear fan-beam reconstruction algorithm.

When using the “union of coarse sampling lattices” approach the images can be
reconstructed using the known angular or linear fan-beam algorithms (cf. [55, Chapter 5]),
however, in the case of the “non-uniform sampling” we predict that we will need to design
a different reconstruction algorithm since this theory hinges on the interpolation scheme in
Theorem 4.2.2.

4.3.3 Future Work

While the work presented here can be applied to fan-beam imaging systems under the as-
sumption that there is no correlation of signal from different slices in the object space (i.e.
signal emitted in one object slice is detected in one row of the fan-beam detector), our
objective is to extend the theory to three dimensions so as to apply the same principles to
single-pinhole collimators in SPECT (or equivalently cone-beam CT). This is not a straight-
forward task as the essential set K must be found for the angular cone-beam transform (in
3D) in order to check the perturbation conditions for the flat-detector cone-beam transform.
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We recognize, however, that progress has been made in this respect as some results on the
essential support for cone-beam CT have been published in [8].

Finally, while the immediate objective of our approach is to find sampling conditions
for single-pinhole collimators with flat-detectors, we aim to develop the proposed approxima-
tion theory to a point where we can provide a theoretical framework for the approximation
of transforms whose sampling conditions are not known by those whose sampling conditions
are known.
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Chapter 5

Concluding Remarks and Future Outlook

The presented research attempts to address the key steps in the SPECT medical imaging
pipeline using pinhole collimators, namely, data acquisition, projector modelling, and image
reconstruction.

The proposed distance-driven projector is geared toward SPECT imaging, where the
object space discretization is typically coarser compared to other imaging modalities (such
as CT), and therefore fewer approximations are made (compared to conventional distance-
driven projection typically used for CT) with the intent of providing more accurate overlap
ratios. The intent of proposed distance-driven approach is to improve the quality and
accuracy of reconstructed SPECT images obtained from scanners such as the GE Discovery
NM 530c.

The proposed projector is incorporated in image reconstruction methods that em-
ploy kernel density estimators, to regularize the variations of time-activity functions over
proximal regions with similar temporal behaviour. Kernel density estimators and mean-
shift filtering have been extensively studied and used in image processing as a method of
image denoising. Here, we propose to apply the same concept in image reconstruction since
KDE-based priors seem suited for reconstruction from noisy measurements due to the abil-
ity to “extract” signal embedded in the noise under the (general) assumption that the prior
distribution can be described as a sum of kernel functions. That is, a KDE-like prior “lets
the data decide” whether the signal is significant.

In the future, it would be beneficial to evaluate the proposed projection and recon-
struction methods through receiver operating characteristic (ROC) studies, with the aim of
evaluating whether the proposed approaches facilitate the detection and diagnosis of heart
lesions such as ischemia or infarction in the context of dynamic emission tomography.

A completing step in the presented research is the study of sampling conditions
in tomography, where we attempt to find conditions for which the properties of the flat-
detector single-pinhole transform in 2D can be approximated using the (well-known and
thoroughly studied) fan-beam transform. Sampling is of great importance to the medical
imaging process since without an adequate acquisition it becomes difficult to assess whether
reconstructed images provide reliable or meaningful information (in a clinical sense). That
is, without adequate acquisition one cannot expect the image reconstruction algorithm to
“insert” relevant information. In the future, we envision the application of the presented
sampling theory to emission tomography scanners with varying shapes of the detector sur-
face.
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[3] K. Assié, V. Breton, I. Buvat, C. Comtat, S. Jan, M. Krieguer, D. Lazaro, C. Morel,
M. Rey, G. Santin, L. Simon, S. Staelens, D. Strul, J. M. Vieira, and R. Van de Walle.
Monte Carlo Simulation in PET and SPECT Instrumentation Using GATE. Nuclear
Instrumentation and Methods in Physics Research, A527:180–189, 2004.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull Algorithm for Convex
Hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

[5] J. Benedetto and A. Zayed, editors. Sampling, Wavelets, and Tomography, volume 21.
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