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CHAPTER - 1 

INTRODUCTION 

Optimization problems have long been of interest to 

scientists and engineers. Problems of optimization are 

those in which maximization or minimization of a function 

is sought. The function may be of one or more variables 

and with or without constraints. Often the problem may be 

to design a product in such a way that it meets certain 

specifications, while at the same time some objective 

function, such as cost ·or profit is minimized or 

maximized. 

The field of optimization has attracted very wide 

interest in recent times, mainly because optimization 

problems can be encountered in all fields, in design 

engineering, in commerce, in government, in military 

service and so on. Development of high speed computers 

has made possible the use of various optimization 

techniques for solving these problems. However engineers 

or others who encounter optimization problems can not be 

expected to have the time and knowledge to write their own 

programs for optimization, therefore the availability of 

general optimization subroutines to engineers and others 

would save their time and energy. 

An unfortunate characteristic of optimization is 

that no one technique is best for all types of problems. 
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Relative success of any method depends upon the form of 

the functions describing the given problem. It is a very 

di.fficult task to predict which method -would be best for a 

particular problem, unless of course the problem is 

linear. Realizing this difficulty, a multitechnique 

optimization package ·OPTIPAC [2] was developed at McMaster 

University. This is a fully integrated package containing 

nine different methods. Any number may be called in one 

run to compare results. It soon became apparent that 

there was a need for a coordinated package of independent 

subroutines. These individually require much less memory 

and full variable dimensioning is possible. They can be 

much more c.onveniently integrated into a design package. 

This lead to the development of the OPTISEP [l] package, 

to which this thesis has made a major contribution. New 

programs have been developed and added to some of the most 

useful subroutines extracted from OPTIPAC, to make up the 

OPTISEP system. In contrast to OPTIPAC, new subroutines 

can be easily added at any time. The two systems share a 

strong emphasis on easily used documentation and easily 

used programs. 

The convenient use of OPTISEP subroutines in a 

specific user oriented design package has proved to be a 

very valuable feature. It has been demonstrated that an 

engineer having only modest experience with and 
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understanding of both progranuning and optimization can use 

these subroutines, and write design packages using them. 

In addition to adapting six of the OPTIPAC 

subroutines, four new techniques developed for this thesis 

have been added to the package. The first subroutine, 

SIMPLEX, is based upon a direct-search technique named 

simplex, first described by Himsworth, Spendley and Hext 

[3] in 1962. The technique was later on developed by 

Nelder and Mead [4] in 1963. This method has nothing in 

common with the standard simplex method for solving linear 

programming problems. It derives its name from the 

geometric figure simplex which plays an essential role in 

this method. 

The second subroutine, MEMGRAD, is based upon a 

recent paper published by A. Miele and J. w. Cantrell [13] 

in 1969. This method makes use of the derivative and the 

step size during previous iteration to improve the current 

iteration and hence has been named the memory gradient 

method. 

The third subroutine, DAVID, is based upon an 

algorithm originally proposed by Davidon [11] in 1959, and 

later on developed by Fletcher and Powell [12] in 1963. 

This technique makes use of the derivative of the function. 

The fourth subroutine INTEGER is for a special class 

of problems, where there is an additional requirement that 
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some or all the variables have to be integers. Until now 

the methods of integer programming were used only for 

linear integer progranuning, and not for nonlinear ones. A 

few methods developed for nonlinear integer programming 

were developed for special cases, but could not be used 

for the general case. In this subroutine a branch and 

bound technique of integer programming has been used. This 

subroutine works quite satisfactorily on all types of 

nonlinear integer programming problems. 

This thesis includes the underlying theory behind 

various methods used in writing the programs. Flow charts 

have been included to explain the logic of the methods. 

Complete Fortran listings of the programs and the documen

tation for the user have been included in the appendix. 

Test problems have been included to demonstrate the use of 

the subroutines .. 
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HANDLING OF CONSTRAINTS IN SOLVING OPTIMIZATION PROBLEMS 

Optimization problems without any constraints are 

rarely encountered in actual practice. Most of the 

problems are associated with certain constraints, which 

must be satisfied by the optimum solution. Constraints may 

be either equality or inequality, or both. For equality 

constraints, the value of constraining function should be 

equal to zero at the optimum point, where as for inequality 

constraints, it should be greater than or equal to zero, or 

any specified quantity. 

Unfortunately most of the techniques developed for 

minimizing a function are applicable to minimizing an 

unconstrained function only, and hence can not be applied 

directly to solve a general optimization problem. The 

optimization problem must be suitably transformed into an 

unconstrained function before any minimization technique 

can be used. 

The transformation of the constrained optimization 

problem into an unconstrained function is normally 

accomplished by defining an artificial objective function 

which is a function of the objective function and the con

straints. Such an artificial unconstrained objective 

function has its minima lyin'g in some feasible region. 

-s
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However it is also possible in the case of special types 

of constraints to transform the independent design vari

ables such that constraints are automatically taken care 

of. Constraints of the type in which a variable is con

strained between upper and lower limits can be handled in 

this way. For example if a variable is to be greater than 

or equal to zero, the following transformation [5] could 

be used. 

x. = abs (x.) (2 .1)
l.. 1 

where x. is the variable which is to be positive and x. is 
1 1 

the unconstrained variable. 

If the variable xi is constrained between 0 and 1 

the following transformation [5] could be used. 

S . 2 x. = in x. (2. 2)
l. 1 

e -rX'
i (2.3)or x. = 

l.. 

For a general case where any variable is constrained 

between upper limit u. and lower limit ~9-- . , -the fol-lowing
1 l.. 

transformation could be used. 

. x. = l. + (u. - £.) sin2 x. (2. 4)
1 l l. J. l. 

These transformations do not offer a general 

solution .to the problem of handling constraints b~cause 

they are restricted to special types of constraints. 
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Therefore the more general approach of transforming the 

function instead of the variable, is generally used. 

A typical optimization problem has the following 

form:

To minimize (2.5) 

subject to the following constraints 

1/J.
J = l/J j (Xl I x2' x3, ... xn) = 0, j = 1, m 

<Pk = <Pk Cx1 , x2, x 3 , ••• xn) ) 0, k = 1, p 

where n is the number of variables 

m is the number of equality constraints 

p is the number of inequality constraints. 

The general form of the transformed unconstrained 

artificial objective function is 
P m 

P ( x1 , x , . • • xn , r) = U + l A. ( r ) • G { ¢ . ( x )) + l A. ( r ) • s ( 1Jl.(x) )2 i=l l. l. i=l l. 1 

(2. 6) 

where r is a weighting parameter, and A. (r) are weighting
1. 

functions. G and S are functions of inequality constraints 

and equality constraints respectively. The difference be

tween various transformations of this type is the differ

ence in the ways the functions G, S, and weighting functions 

are selected. A method generally proceeds by selecting a 

sequence of parameter rt such that rt) 0 and r~00 as t~00 • 

For each value of r, the unconstrained artifical function 
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is optimized, and t is the number of such optimizations. 

Functions G and S are selected such that as t+00 , the 

quantity 

·p = ! ).. (r) ,G(<j>. (x)) + ~ A.. (r) • S(lµl.. (x}) 
i=l l. l. i=l 1 

tends to zero. However parameter rt may also be chosen 

such that as t+oo, rt+{), then functions G and S are accord

ingly defined so that F+O as t+00 • As t+00 , the optimum of 

the unconstrained artificial function converges to the 

optimum of the constrained optimization problem. Thus the 

constrained optimization problem is converted into an 

unconstrained optimization problem and solved. 

The following transformations have been proposed 

for this purpose. 

(a) Caroll [8] suggested that the problems with inequality 

constraints only, can be solved by transforming it 

into 	a function of the following type. 

k 
P(x;,rt) = u +J rt . G(cf>. (x)) (2. 7) 

. 1'=1 1 

where para~eter rt>O decreases as t increases and 

tends to zero as t ' tends to infinity. Either of the 

two functional forms could be used to define G (<pi (x)) , 

which are 
k 1 

G ( cp . (x) ) 	 (2. 8)
1 =i~l ¢i (x) 

k 
and G ( cp. (x) ) ~ - I log (¢i(x)) (2. 9)

1 i=l 
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G functions have been selected of this form because 

they tend to infinity as any constraint ¢ approaches zero. 

Because of this property, the value of the artificial un

constrained function immediately increases if the optimum 

tends to go near the constraint, and hence the point stays 

in the feasible region. This effect is more predominant 

in the initial stages of optimization; later on as t in

creases, the value of parameter rt becomes smaller, and 

then the increase in the value of unconstrained artificial 

function because of small value of inequality constraint, 

is nullified by the small value of r, because in function 

(2.7), the contribution of G to the unconstrained function 

is the product of rk and G. Because of this, as t~00 , the 

solution of the unconstrained function tends to the actual 

optimum. 

(b) 	 Fiacco and McCormick [9] have further developed this 

approach and have suggested the following transforma

tion, which is applicable to solve any general 

optimization problem. 
1 

~ 1 + r-2 
m 

( r U + r 	 (lJ;. (x)) 2 (2.10)p X; 	 t 
) 

= tt;l ¢t(X) t I Jj=l 

It can be analytically proved that as t~00 the solution 

of this unconstrained function approaches the solution 

of the actual problem. In this transformation the in

equality constraints have been handled in a manner 
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similar to the one proposed by Caroll, and the same 

intuitive logic holds true. For equality constraints, . 

Fiacco & Mccormic have introduced an additional term 

2
{lJ.ij) ;rrt. Intuitively the addition of such a term can 

be explained as follows. As computation proceeds, th~ 

value of rt decreases, this would in turn increase the 

value of the function (1/Jj) 2'/I - rt' and since no minimization 

algorithm would permit an increase in the function, the 

magnitude of W· would necessarily decrease to nullify the 
J 

increase due to 1Irr . In the limiting case as t+oo, 1jJ • 
t J 

must tend to zero, otherwise the function [1JJ .21;/-r would 
J 

tend to infinity. Thus inclusion of this term forces the 

equality constraint equal to zero when the optimum is 

reached. 

The prerequisite for use of these transformations is 

that the solution is started from a feasible point for the 

inequalities. Fiacco and Mccormick suggest than an 

additional term for violated inequality constraints should 

be included in the transformed unconstrained function, 

similar to the one used for equality constraints. Addition 

of such a term would make violated inequality constraint 

equal to zero and would force a feasible solution. 
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(c) 	 Another approach is to transform the constrained 

optimization problem into an unconstrained function in 

which violated constraints are severely penalized. 

The strategy was developed for direct search [7]. The 

unconstrained function has the following form. 

20 m · 20 ~ 
P(x1

x	 ••• x ,r) = u + 10 l I~· (x) I + 10 LABS {violated2 n j-1 J k=l 

inequality constraint). - (2.11) 


This type of function puts a sort of wall around the 

feasible region and any feasible point stays in the 

feasible region. This type of transformation usually 

stalls quickly and does not handle equality constraints 

well. An infeasible start is permitted. All these 

transformations were tried for the optimization sub

routines developed for this thesis. The one finally 

used has basically the same form as proposed by Fiacco 

and Mccormick- This has been found to give satisfactory 

answers, because of the high penalty there is some 

times a tendency to stall at inequality constraints, but 

this at least keeps the solution feasible. The 

unconstrained artificial objective function used for 

the subroutines of this thesis is as follows: 

P(xl,x2, ••• xn) = U +rt l ~) + rt-1/2 r (W.(x))2
i=l ¢i x j=l J 

io 20+ 	 lABS (violated inequality constraint) 
i=l (2.12) 
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The selection of a sequence of reduction in the 

value of parameter rt has been found to have significant 

affect upon convergence. Larger reduction in value or rt 

helps in convergence. Generally useful values have been 

recommended in the documentation of these subroutines. 

An interesting result was observed while using 

transformation (2.12) • The value of parameter rt was 

changed after every step, instead of changing it after 

each optimization of the unconcstrained function, as 

required by the algorithm. Convergence of the method to 

the optimum solution was faster as compared to the latter 

case. This feature has not been incorporated in the 

subroutines developed, because of the risk that reducing 

rt after every step might force the solution to converge 

to a false optimum, as happens when too small a value of 

rt is selected in the initial stages of optimization. 

This has been a brief account of the problem of 

handling constraints in optimization, and has been included 

here to give some insight into the problem. 



CHAPTER - 3 

DESCRIPTION OF THE OPTISEP PROGRAMS 

General Description 

For using any of the optimization subroutines, the 

user writes a small main program, defining the input 

· parameters etc. He also provides service subroutines to 

define the objective function and the constraints of his 

problem. These subroutines together with the small main 

program make up the user's input deck. Other subroutines 

necessary for execution may be stored on permanent file. 

Input parameters can be varied by the user to improve the 

efficiency of the method for his particular problem. 

All subroutines have variable dimensioning; this 

helps in keeping the memory space required in the computer 

to a minimum. The user has the option of printing out 

input data and intermediate steps, by appropriately choos

ing the values of IDATA and IPRINT. If a method fails to 

find the optimum after a specified number of iterations, 

it exits without returning to the main program, and the 

results at the last iteration are printed out. If the 

optimum is found, then the optimum values are returned to 

the main program, and user has the option of printing out 

the final result by calling subroutine ANSWER, which has 

been written to print results in a standard format, or 

providing his own output. A typical calling program is 

-13
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shown in Figure 1. 

Service subroutines 

Information about the problem to be optimized is . 

supplied through three service subroutines. The objective 

function, the equality constraints, and the inequality 

constraints are evaluated in subroutines UREAL, EQUAL, and 

CONST respectively. This convention for defining input was 

used in OPTIPAC, in order to standardize the input, and 

these subroutines are interchangeable between OPTIPAC and 

OPTISEP. 

The user formulates his problem in the following way. 

Minimize the objective function defining the 

optimization criterion. 

u = U(x1 ,x2 ,x3 , ••• xn) 

subject to equality constraints defining feasibility 

Wj = ~j(x1 ,x2 ,x3 ••• xn) = 0 1 j = 1, m. 

and inequality constraints defining feasibility 

~k = ~k(x1 ,x2 ,x 3 •.• xn) ~ O, k = 1, p 

where x. are independent or design variables. 
l. 

n is the number of design variables. 


m is the number of equality constraints. 


p is the number of inequality constraints. 


The user must formulate his problem in this manner. 


A problem of maximization can be solved by minimizing the 

negative of the function to be maximized. Similarly 
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inequality constraints of the form ~~ ' 0 can be converted 

to ~k ~ 0 by multiplying throughout by -1. 

The input to the service subroutines is the xi array 

containing current val.ues of the design variables. The 

corresponding values of u, ~k' and ~j are returned to the 

optimization subroutine that calls them. The objective 

function and the constraints can be expressed directly as 

FORTRAN arithmetic statements, such as 

U = x(l) + x(2) + x(3) + 4 .*x(2) 

PHI(!) = (X(l) **2) + (x(2) **3) + 5. 

PSI(l) = x(3)*x(4) + 2.*x(l) *x(3) 

If other statements are necessary in order to define u, PHI 

or PSI, they may be included in the service subroutine or 

incorporated in auxilary subroutines. 

Additional details on the service subroutines are 

provided by the documentation of OPTISEP, included in the · 

appendix. 

Method Subroutines 

(a) Simplex, Direct Search ~ethod (subroutine SIMPLEX) 

A set of n+ 1 points in n dimensional space define a 

space called a simplex. This geometric figure plays an 

essential role in this method, and accounts for the name 

simplex. 

Before going into the logic of the method, the 

following notation is defined. 
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Let xh 	be the vertex corresponding to f (xh.) = 
max(f(xi)) 

where i = 1, n+l • and x is the vector defining 

point i of the simplex. 

Let xs be the vertex corresponding to f {x )s = . 
max(f(x,)),

l. 
i ~ h 

Let xi be the point corresponding to f (xt> = 
min f (x.}

l. 

Let x0 be the centroid of all xi, i ~ h and is given 

by 
n+l 
l x. (3 .1) 

i=l l. 

i;Fh 

The three basic operations used in the method are 

defined below. 

Reflection - where ~h is reflected and new point xr is 

obtained 	by the relation 

xr = + a(x0 - xh) (3.2)x0 

a is the reflection coefficient and is ' 1 

Expansion - where xr is expanded in the direction along which 

further improvement of the function value is expected. The 

relation used is 

Xe= x0 + y(xl"' - x 0 ) (3. 3) 

y is the expansion coefficient and is > l 

Contraction - where simplex is contracted, the new point xc 

is obtained by the following relation 
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(3. 4) 

a is the contraction coefficient and satisfies 

0 < S < 1. The values of the function to be minimized are 

given by Uh, us, UR., ur ·, Ue, Uc, Uo at. points xh, xs' x
1

, 

·x : , xe:, x , x respectively.r . .C 0 

The simplex algorithm is as follows 

(i) 	 (n+l) points are initially generated in n dimensional 

space to. form a simplex. . 

(ii) 	 The function be minimized is evaluated at each of the 

vertices in order to determine xn' xs' xi, and x0 • 

(iii) 	 A reflection move is attempted and functional value 

evaluated at the reflected point xr. 

{iv) If Us ) Ur ~ ut, then~ is replaced by x: and the r 

process is restarted beginning with step (ii) • 

(v) 	 If however ur · < Ui, an expansion move is tried to 

see if the fwiction continues to decrease in the 

direction of xr x0 • The expansion succeeds if 

UR. > Ue, and in that case xh is replaced by xe. If 

the expansion does not succeed, xh is replaced by xr. 

In either case the process is restarted from step 

(ii) • 

(vi) 	 If the reflection move in step (iii) yields xr such 

that Uh > Ur > Us, xh .is replaced by xr and a 

contraction move is made, however if Ur > Uh, a 

contraction move is made without replacing xh · by xr. • 
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(vii~) 	 If the contr~ction fails, the last simplex is 

shrunk about the point of lowest function value x~ 

by the relation, 

xi= 21 
(xi+xR.) (3.5) 

and the process is restarted from step (ii) , 

(ix) 	 The search is presumed to have reached optimum of 

the corresponding artificial unconstrained objective 

function if 
1/2 

1 {n!1 (UJ. - UO) 2} ~ G (3.6) 
n j=l 

where G is a given small quantity, provided as a 

convergence criterion. 

In subroutine SIMPLEX, the constraints of the 

problem are taken care of by forming an artificial 

unconstrained objective function which is of the form (9]. 

io 20·+ IABS {violated 	inequally _ 

cons tra:-f,"111.t..s)j (:.3 .. 7) 
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r 1 is a positive constant (r = 1.0 is normally1 

taken as starting value). The value of r is reduced by1 
multiplying it by a factor REDUCE, after each optimum of 

the function P(3.7) is found. The optimum of the 

constrained problem is assumed to have been reached when 

after two successive optimum of the function P(3.7) the 

value of objective function U does not change significantly. 

The value of the artificial objective function is 

returned to the subroutine by calling Subroutine OPTIMF 2. 

Subroutine ANSWER is used to print the results in the 

standard format. 

The available experience with this method shows that 

it is very good. Given the sufficient number of iterations, 

it almost always converges to the optimum eventually. 

Initial size of the simplex has been found to have 

some effect upon the efficiency of the method. It is better 

to start with a fairly large simplex. 

The program logic is given in Figure 2. 

(b) Memory Gradient Method (subroutine MEMGRAD) 

This method [13] is an extension of the Fletcher and 

Reeves [10] method, the step size ox is determined from the 

relation 

ox= -a(g(x)) + $(Qx) ( 3. 8) 
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where a and S are scalars chosen at each iteration so as to 

yield greatest decrease in the optimization function. The 

quantity ox is Lli.e previous step size. Selection of step o;x: 

depends on previous gradients and steps, hence the name 

memory gradient. The convergence property of the Fletcher 

and Reeves methods for quadratic functions is very good, 

this method retains that property, and in addition has one 

extra degree of freedom in the system of correction for ox, 

which should hopefully improve convergence. 

The following quantities are defined 

x the 	position vector at a particular stage 

U the 	value of function at x 

g(x) = 	the gradient at x, giving partial derivatives 

of the 	function at x, with respect to x1 ,x2 

:x;3 ,x4,· • .xn 

x -- the point following x 

x - the point preceeding x 

The algorithm is as follows. 

(i) 	 For a given point, g(x) is computed numerically. 

The vector ox is known from the previous iteration. 

ox is assumed = O for the first iteration. 

(ii) 	 Optimum values of the multipliers a and S are found 

by following a special search technique. a and B 

are those values which give the minimum value of tht" 

function., 
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Let f ( x) = f ( x - ag (x) + 86x) == F (a , 13) (3.9) 

a and a are actually the solutions of the symultaneous 

equations. 
.... T 

g(x) g(x) -- 0 (3.10) 
- T ,, 

g(x) cSx = O (3.11) 

where T denotes a transpose vector. These equations ensure 

that a and S are selected such that the new gradient vector 

g(x)is orthogonal to the previous gradient vector and the 

previous step. 

To begin the search, nominal values are given to a 
0 

and s0 , the starting values of a and $. The step sizes oa 

and oe which are to be added to a and s are given by0 0 

oa = - µ (Dl/D3) sign (D4/D3) ( 3 .12) 

oS = - µ (D2/D3) sign (D4/D3) (3.13) 

where Dl = Fa FSS - FS Fa6 (3 .14) 

D2 = FS Faa - Fa Fa(3 ( 3 .15) 

2 
03 = Faa FSS - FaB (3.16) 

04 = Fa 2 FSS - 2Fa FB Fo:S + Fs 2 
Fa.a (3.17) 

and where Fa, FS, Faa, F!3S are computed at (aO, So) , that is 

at the point x given by0 

XO = x - ao g(x) + So ox 
~ 

(3.18) 

The symbol µ, which is O ' µ ~ 1, is a scaling factor for 

the increments oa and oS. 
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Fa, FS, Faa., FBB, and Fa.6 are given by the following 

T 
Fa. = - g <xo> g(x) (3.19) 

T - "' 

-
FS = g (xo> ox 


T

Fa.a. = {g[xo + £ g(x)] - g[x - s 2g(x)]} g(x)/2s

1 0 1 

(3.20) 

F88 = 

(3.21) 

T "' 
Fa8 = {g(XQ - £ 1g(x)] - g[x0 + s 1g(x))} ox/2El 

(3.22) 

where £ is a small number and E 1 = s/ j.g (x) I 
A 

s = s/joxl
2 

Values of oa. and oS are computed by equations (3.12) 

and (3.13) for µ = 1. a. and B are calculated by 

a = a +6a, S = 8 + oS. If F(a.,S) < F(a. ,80), µ = 1 is0 0 0 

acceptable, otherwise it is replaced by a smaller value 

until F(a.,S) < F(a. ,s ). At this stage one search step for0 0

a and S is complete. The values of a and 8 are replaced by 

a and a for the next search step. The procedure is0 0 
repeated until abs (oa./a.0 ) and abs"(cSS/8 0 ) becomes very small. 

Values of a and B at this stage are optimum values for the 

current iteration of the memory gradient method. However 

for the first iteration these equations are not valid 

because then ox = O. For this case oa is given by 

ca.= - µ(Fa/Fa.a) sign (Fa.a.) (3.23) 
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a remains zero for the first iteration. 

(iii) 	 The correction oa is determined by equation (3.8) 

(iv) 	 The new position of x is computed by 

x = x + ex (3.24) 

The optimum is assumed to have been reached when the 

value 	of 'the function does not decrease by more than a 

small 	specified quantity. 

In subroutine MEMGRAD, values of the partial 

·derivatives of the artificial objective function are 

returned by subroutine PARTIAL. Subroutine SUPPLY 

numerically calculates partial derivatives of the actual 

objective function u, of the inequality constraints, and of 

the equality constraints, which are called by PARTIAL, 

where these values are suitably combined to give 

derivatives of the artificial unconstrained objective 

function. :constraints of the problem are taken care of by 

forming an artificial unconstrained objective function, of 

a form 	similar to that used in SIMPLEX. 

The value of parameter r is reduced each time after 

optimizing the unconstrained artificial obj ec tive function, 

the process continues until the difference between the two 

values of the actual objective function, corresponding to 

two successive optima, is insig~ificant. 

Available experience with MEMGRAD shows that its 

convergence is faster in most of the cases than that of 
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SIMPLEX, but it hangs up more often. It is good for well 

· behaved functions. 

A flow chart explaining the logic of the program is 

given in Figure 3. 

(c) Davidon Fletcher and Powell Method. (subroutine DAVID) 

This method [12] is a gradient type of method. The 

use of the knowledge of the function and its gradient at a 

previous iteration is made to improve the current iteration. 

The irec iona vec or i is genera ed . t' 1 t d · t d at the i.th i'terati'on 

in such a way that it is orthogonal to all previous vectors 

(di,j,=l, 2, ..• i-1) rather than just the (i - 1) 5 t as in 

ordinary gradient minimization. This vector d. then de
i 

fines the down hill direction for the function. At the 

( . l)st. . . db1+ iteration, vector x is compute y 

(3.25) 

where A is a scalar parameter, giving the optimum step 

length. The complete algorithm is as follows: 

(i) compute d. 
l. 

= ~ H. 
1i-

g.
1 

(ii) Compute A to minimize f(x.+A d.}.
l. l.. 

In order to find 

the right value of A., the function is assumed to be of one 

variable A., and a search strategy to minimize a function of 

one variable is applied. There are various techniques 

which can be used "Polynomial search' is the one which has 

been used in this program. The search begins by establish

ing bounds on the value of A.. In order to establish bounds, 
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first a small value of .A say Al is chosen. The ·value of A 

is increased in steps by using the relation 

2 3 k-1). = A1 (l+r+r +r ••• r ) {3.26)k 

until ~\ is such that F(x. + Ak di) > F(x.. The
1 1 

+ Ak-l d.)
1 

• 

value of r is arbitrarily chosen around l or 2. Values of A 

which bound the minimmn of the function are given by Ak_ 2 , 

~-l and Ak. Let a, b, c denote these values, and let 

Fa, J:b, Fe be the value of the function, corresponding to 

these values of A respectively. The turning point of the 

approximate polynomial passing through these points is given 

by 

2 2 2 2l (b - c ) Fa + (c - a ) Fb + (a 2 - b 2 ) Fe 
ad = 2 (b - c) Fa + (c - a) Fb + (a - b) Fe 

(3.27) 

Let Fd be the value of the function corresponding to A = ad. 

Shrinking of the interval is done as follows. 

There are four possible situations, sketched below. 

The replacement of one point by another is done as indicated. 

1. b > ad and Fb > Fd 

FUNC 


aa 
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In this case for .the next polynomial fit b takes the value 

of ad and c takes the value of b .. 

2. b > ad and Fb < F.d 
..., 

FUNC 


In this case a takes the value of ad, and b and c remain the 

same for the next polynomial fit. 

3. b < ad and Fb > Fd 

c 

a 

FUNC 

In tbis case a takes the value of b and b takes the value 
""I!' •. ' 

of ad, for the next polynomial fit. 
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4. b < ad and Fb < Fd 

FUNC 

b 

In this case c is replaced by ad, for the next polynomial 

fit. 

Interval bounds are successively reduced by 

repeated polynomial fits, and the value of A determined 

to any value of desired accuracy. 
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(iii) 	Having determined the value of A, the next point 

xi+l is determined by the relation (3.25) which is 

Xi+l 	= Xi + Adi 

(iv) 	 The Matrix Hi to be used in the next iteration to 

determine orthogonal directions. It is given by 

H
.• 
l. 

= H 
i-1 

+ Ad. d.T
l. l. 

T g. H. lg.
i 1 1 

H. l y. y~ H. l_i___i.__i__i_-_ 
T 

y. H. l A.
1 i- l. 

(3.28) 

where yi = gi+l - gi 

In the first step H0 is set as a unit matrix so 

that the first step becomes equivalent to a step in the 

steepest descent method. There are riqourous analytical 

proofs available to show that, 

(a) 	 Computation of the directional vector di as done 

in step (i) satisfies the condition of orthogonality. 

(b) 	 Hi is positive definite if Hi-l is positive definite. 

These two properties imply that convergence is faster 

and for a quadratic function, the minimization is 
'-. 

reached in a finite number of steps, which is equal 

to N, the number of variables. However, 

(b) condition requires that the exact optimum value 

of :\ be known. 

In actual practice the exact value of A may not be 

found 	by the search procedure employed, and hence the matrix 

H. as 	computed from H. 1 may not be positive definite, under
1 	 ].

these 	circumstances matrix H should be reset to a unit 
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matrix. 

Subroutine DAVID using this method has full variable 

dimensioning like other methods. 

Subroutine FIND returns the exact value of A to sub

routine DAVID. Constraints of the problem are taken care 

of by forming an artificial unconstrained objective 

function similar to the one used in SIMPLEX, subroutine 

OPTIMF2 computes this function. Partial derivatives are 

computed numerically in subroutine PARTIAL and returned 

whenever PARTIAL is called. 

This is a good method for well behaved functionsi it 

is quite fast but tends to hang up quite easily. The hiqh 

magnitude of the penalty term used in the formulation of 

unconstrained artificial objective function (3.7), was 

found to be a source of difficulty. The partial 

derivatives of the artificial function near the constraints 

were too steep because of these high penalty terms, and 

hence the method did not work in the expected ·· way. This 

problem was eliminated by suitably modifying the partial 

derivatives when ever the derivative would have been too 

steep because of high penalty terms. This was done by 

adding a small penalty while computing the derivatives, 

instead of a high one. With this modification performance 

of the method has considerably improved. However' when the 

function defining the objective function itself is too steep, 
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such problems may still be encountered. 

The flow chart explaining the logic of the method is 

shown in Fig [ 4] • 

(d) Non Linear Integer Programming (subroutine INTEGER) 

Quite a few optimization problems require that some 

or all of the design variables should have integer values. 

This type of problem arises whenever there are 

indivisibilities; for instance it is not too meaningful to 

schedule 3.25 flights between two cities, or assign 6.8 

machines for a particular job. In the past various 

methods have been applied to linear integer programming. 

In design engineering, functions are very rarely linear and 

there is a great need for a program of integer progranuning 

which handles nonlinear functions. 

General methods of integer programming can be 

broadly classified in four catagories. 

1. Cutting Plane Methods 

2. Rounding Methods 

3. Branch and Bound Methods 

4. Partition Methods 

Cutting plane methods [14] are only suitable for 

linear programming problems. The rounding methods [15] are 

not good in the sense that an optimal integer solution is 

found only if the non integer optimum solution is very 

close. 
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The branch and bound technique [16] works on the general 

idea of scanning all feasible integer solution in a 

systematic way, and is one which could be applied to non

linear integer programming. The partition algorithm [17) 

has been successful only for small problem and hence can 

not be used for any general problem. 

Considering all this, there are only two approaches 

left for nonlinear integer programming. One is to 

linearize the function at a point and use Gomory's cutting 

plane method [23]. The other alternative is to use a 

branch and bound method. The first approach of linearizing 

the nonlinear functions and subsequently applying cuts, to 

make the solution integer was basically an attempt of 

integrating the two techniques together. Griffith and 

Steward [24] have developed a method of successive linear 

appro~imation for solving nonlinear problems, and Gomory 

(23] has proposed a cutting plane method of solving linear 

integer programming problems. The attempted algorithm is 

as follows. 

(i) 	 Obtain the continuous optimum solution of the non 

linear problem. 
0 0 0 

(ii) 	 Starting with this optimum solution (x1 ,x2 , ••• xn) 

approximate the functions by expansion in a Taylor's 

series, in which terms above linear are dropped. 

Functions u, ¢ and $ are thus approximated as follows. 
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(3.29) 

0 0 0 
o o n o atµj(x1 ,x2 , ••• xn) 

"1 • (x1 IX'°' t • • • X ) + l (X. -X • ) d = Q f j = l ,m
J ~ n i=l J. i xi 

(3.30) 

(3 .. 31). 

These equations can be rewritten in the fol1owing form. 
n 

u - u = l c. cSx. (3.32)
0 1. J.i=l 

n 
t ~ = - ,,,o,l U .• vX. 'i" (3.33)
i=l J1 1 J 

(3.34) 


(3.25) 


0 0 0uo = U(x
1 

,x ••• x ) (3.36)
2 n 

0 0 0 

<1$. (x , x 
2

, .... x )
J 1 nu .. = (3.37)ox.J1 

J. 


0 0 0 0 


= (3.38)<Pk cf>k (xl' x2, ••• xn) 

0 0 0 

d¢k(xl, x2' ••• x )
n (3.39)vki = ax. 

l. 
0 

ox. = x. - x. (3.40)
1 l .l. 
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Thus the problem is linearized and ox. becomes the 
1. 

variables to be determined. In order to ensure that 

ox . is positive, the following substitution is used. 

ox. 
l. 

= + 
ox.

l. 

-
- ·ox. 

l. 
(3.41) 

where ox! and oxi are ·positive. Another constraint 

is added to the above set of equations to limit the step 

size ox., to a small amount so that linearization remains 
1 

valid. 

(iii) 	 Use revised simplex method of solving linear 

progranuning, to solve this set of linear equations 

together with additional constraints to keep the 

variables integer. 

(iv) 	 Compute xi+l using xi+l = xi + oxi 

{v) 	 Repeat the procedure beginn~ng with step (ii), 

till solution is reached~ 
t~ ' 

This algorithm f~iled
1 

to produce any results. 

Problem came when using revised simplex method. It 

failed to find a feasible solution. The possible 

reason for its failure may have been the constraint on 

size of ox .• The linear approximation of the function is 
1 

valid 	only when the step size ox. is less than a small 
1 

specified quantity, and the step size ox., required to 
l. 

make the solution integer may be bigger than the limiting 
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size, this thing might have caused the problem. When 

this approach failed, the branch and bound method was 

tried and it has shown appreciable success. 

The branch and bound technique was first 

proposed by Land and Doig [16] and consisted of a 

systematic search of continuous solutions in which 

variables to be intege:i;s are successively forced to take 

integer values. The method as proposed by Land and Doig 

had substantial practical difficulties for computer 

applications, it requires recording of all the solutions 

which could involve excessive storage space~ The method 

was modified from a computational point of view by 

R. J. Dakin [18]. The logic of subroutine INTEGER is 

based upon this modified method. This method, called 

a tree-search algorithm, is simple in concept, but like 

all other integer methods, it is lengthly, requiring 

many optimization runs. 
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The algorithm starts by finding a normal continuous 

solution to the given problem. Let the solution for the ith 

variable be 
k. 
. J_ 

< x.
l. 

< k. 1i+ 
(3.42) 

where ki is an integer. For the next trial, it is assumed 

that one of the variables say x must be either equal to1 
or k1+1. The tree thus begins with the two branches.k1 


The integer solution for x1 is forced by adding the con


straint x1 ' k1 in one branch, and ~ k1+1 in the other.x1 
This aqain generates two branches. One of these branches 

is arbitrarily abandoned. As the adding of constraints 

for each variable in turn is continued, one of the 

previously integerized variable may become non-integer. For 

example x1 previously pushed to k1 , may begin to drift 

below k1 • It then must be re-examined with constraints 

x ' k -1 in one branch and ) k1 in the second. This1 1 x1 
process continues until the desired integer solution is 

reached, or until a non-feasible solution is reached. · 

The last node having an unexplored branch is then 

searched, following the same procedure as before. A record 

is kept of the current best integer solution. An 

illustrative tree for three integer variables is shown in 

Fig. 8. The nodes are numbered as they are generated, so 

that when a solution is reached, or an infeasibility, the 

search returns to the next lower node, and a marker is 

checked to see if both branches have been explored. If it 
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has not, a new node is generated on ~~e unexplored branch. 

When all possible nodes have been generated and branches 

explored, the search terminates. 

For solving the nonlinear problem during the first 

step and subsequent steps with additional constraints, the 

Hook and Jeeves (19] direct search method has been used. 

It is incorporated in subroutine SOLVE. The constraints of 

the problem are taken care of by forming an unconstrained 

artificial objective function of the type used in SIMPLEX. 

Subroutine INTEGER can be used for solving all 

integer or mixed integer, linear or nonlinear problems. 

The user simply specifies the number of variables to be 

made integer. The problem must be formulated in such a way 

that the variables to be made integers are the first k 

design variables of the problem, beginning with x1 , where 

k is the number of variables to be made integer. Thus if 

three out of five variables are to be made integer, then 

those variables should be x 1 , x and x 3 •2 
Additional constraints for making a variable integer 

are supplied by subroutine ADDL, which returns the right

constraint at a particular stage. An additional statement 

card CALL ADDL(X, PHI), must he included in subroutine 

CONST, just before the RETURN statement. 

Subroutine INTEGER has been tried on various test 

problems both linear and nonlinear and has been found to 
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work satisfactorily. In some of the cases the Hook and 

Jeeves search may fail to find non-integral solution of 

the problem, and in that case it is necessary to find a 

non-integral solution of the problem by using any other 

method of nonlinear optimization. Subroutine INTEGER is 

then used, using the optimum non-integral solution as · 

starting values for INTEGER. A flow chart explaining the 

logic for subroutine INTEGER is given in Fig. 6, and the 

logic for subroutine ADDL in Fig. 7. 



CHAPTER - 4 

ILLUSTRATIVE PROBLEMS 

Many problems have been solved by using subroutine 

SIMPLEX, MEMGRAD, DAVID, AND INTEGER. A few of those have 

been included .here to demonstrate the use of these 

subroutines. The first two problems have been taken from a 

book by Siddall [6], and have been solved by subroutines 

SIMPLEX, MEMGRAD, and DAVID. The other two problems, in 

which an integer optimum solution is required, have been 

solved by subroutine INTEGER, especially written for solving 

nonlinear problems requiring an integer optimum solution. 

The problems are as follows~ 

Problem 1 - Design of a Pressure Vessel. 

Problem i G to optimize the design of an unfired 

cylindrical welded pressure vessel. The ASME Code . for 

unfired pressure vessel specifies that the shell thickness 

shall be the greater of the following 

PR ( 4 .1) 
SE - 0.6P 

t is based on circumferential stress. (4. 2)
1 

PR or tl = 2SE + 0.4P . . 


t is based on longitudinal stress
1 

where P = design Pressure 

R ~ Inside radius 

-38
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S = maximum allowable stress 

E = Joint efficiency 

The heads are to be semi-ellipsoidal in which half the 

minor axis equals one quarter of the inside diameter. The 

code specifies that the head thickness shall be determined 

by 

t = PR/ (SE - 0 • lP) (4. 3}
2 

All joints are to be single welded butt joints with 

backing strips. The efficiency from the code for such 

joints is 0.90. Volume of the vessel is to be 2000 imp · 

gallon, and a design pressure of SOOp.s.i. The material is 

to be SA201B, table UCS-23 in the code gives an allowable 

stress of 15000 p.s.i. There is a length limitation of 

30' and diameter limitation of 15 ft. maximum. Furthermore 

vessel must accomodate a heating coil 100" long and 40" in 

diameter. 

Formulation 

The design variables are 

x = thickness of cylindrical portion of pressure1 

vessel 

= thickness of the cap of pressure vesselx2 

.X3 = O.D • of the cylindrical portion 

:::: length of cylindrical portion of the pressureX4 

vessel. 

The optimization criterion is to minimize the material 
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cost,. that is the volume of the material. 

Volume o"f the cylindrical portion is 

7f 2 2 
(x3 - (x3 - 2x ) ) 	 x4= 4 1 

Volume of the cap (both ends) is 

4 .. [X~ (X3-2X2) 31 [ 3 ~ 
3 11"' I6 - ·. 16 J = ~2 L3 - <x3 - 2x2) J 

Total volume of pressun~ vessel 

2 
- : ~x~ - - 2x1 ) ] + ~2 [x~ - (x3 - 2x 2 ) 

3 J(x 3 	 x 4 

Therefore the optimization function is 

U = total volume of pressure vessel. 

Constraints on the ··design are as follows: 

(1) 	 cons~raints on thickness of shei1. 


PR 

¢1 = Xl - SE-0.6P 

PR
~2 = xl - 2SE + 0.4P 

(ii) 	 constraint bn thickness of ellipsbidal portion. · 

PR 
~3 = x2 - SE-O.lP 

(iii) 	 constrai:nt on maximum iength 
(~3-2x1) 

·ct> = 30 - x + ---4 	 . 4 .. 2 

(iv) 	 constraint on maximum diameter-· 


<P = 15 - x
5 3 

(v) 	 constraint on minimum length 


¢ x3 - 2x1 100 

= 2 + X4 - ~6 
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(vi) 	 constraint on minimum diameter 

. 40 


~7 = (x 3 -	 2x1) - 12 

(vii) constraints to keep design variable positive 

¢a = xl 


cj>9 = x2 


=
cf>10 X3 


=
<1>11 X4 

Formulation for programming. 

There are four design variables. 

x(l) - x x(2) - x x(3) = x , x(4) : x •- 1 , - 2 ' 3 4 

There are 11 inequali ty constraints 

PHI (1) = ¢ l' PHI (2) = cf> ••• PHI (11)=$ ll2 

There i s no equality constraint ~ 

Function to be minimized is 

U = voltU~e of material 

The small main program was prepared, for each method, 

using the documentation of Ol?TISEP. Following are the re

sults. 



Method Material 
(ft. 3 ) 

Outside 
dia. (ft.) 

Length 
{ft.) 

Thickness 

tl (ft.) 

Thickness 

t2 (ft.) 

C.P. Time 
seconds 

SIMPLEX 5.6232 3.46 6.66 .0632 .062 10.6 

MEMGRAD 5.6387 3.46 6.67 .0632 .0625 61.3 

DAVID 5.7022 3.46 6.79 .0631 .062 16 .6. 

For this problem SIMPLEX has been fastest, and has also given the best solution. 

The dimensions of optimmn pressure vessel would be as noted for SIMPLEX method. 

-42
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Problem 2 - Design of a Rock Crusher 

Problem is to design a rock crusher having a set of 

rollers rotating about a vertical axis and rolling in a 

track. Variables d, c, ~, w and L are to be selected to 

yield the maximum crushing force, taking into consideration 

both weight and centrifugal force. The roller is steel with 

d 

""'( Track 

:o:t.i:ve 
·Sb.aft 
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BHN No. 200. One equation of constraint is provided by 

Hertz contact stress, which has a critical value of 70000 

p.s.i . A factor of safety of 2 is to be applied. Angular 

velocity should be limited to a maximum of 200 rpm and arm 

length L to a maximum of 7 feet, length of the roller c and 

diameter d should not be more than 3; and 5' respectively. 

Formulation 

The design variables are 

xl = w, the angular velocity 

x2 = ¢, the angle between arm and the vertical axis 

x3 = c, the length of the roller 

x4 = d, the diameter of the roller 

x5 = L, the ann length. 

The criterion for optimization is to maximize the 

crushing force. 

density of the material is 0.282 lb/in3 • 

weight of the crushing roller is 

2WT :::; ·rr • x3 • x4 • 0.282 144 • 12.0/4.0 (4.4) 

Centrifugal force Fe is given by 

FC =WT . xl2 • xS • sin x2/32.2 (4.5) 

Crushing force is given by 

FORCE = Fe • cos x2 + WT • sin x2 (4. 6) 

The objective criterion is to maximize FORCE -or minimize 

-FORCE, therefore the optimization function is 
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U = - FORCE 

constraints on the design are as follows 

(i) 	 constraints to keep the design variables positive 

,.. = ·,xl'i'l 


¢ = x2
2 


4>3= x3 


<P x4

4 = 


¢ = xS
5 

(ii) 	 constrainton maximum contact stress (given by Hertz relation) 

Maximum stress SMAX = 2 • FORCE (4. 7)
'TT • B • x3 

4 FORCE • (l-µ ,. 2) • x4where B = 	 (4.8)
'TT • x3 	 • E 

µ is the Poisson• s ra tic 

E is the Youncj' 's modulus of elasticity for a 

factor of safety equal to 2, stress constraints 

70000 
= x 144.0 - SMAX¢6 2.0 

(iii) 	 constraint on maximum angular velocity is 


2 x 250 x 1T
= 	 ·· - Xl¢7 60 

(iv) 	 constraints on size of roller and arm length are 

<Pg = 7. - xS 

:::: .....3. x3¢9 

-~ 5 .. - x4..<Pio 
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Fo·rmulation for Progranuning 

There are five design variables 

x(l) = xl, x(2) = x2, x(3) = x3, x(4) = x4, x(S) = xS 

There are 10 inequality constraints 

PHI(l) = ~l' PHI(2) = ~ 2 , ••• $(10) = $lO 

There is no equality constraint 

U = - FORCE 

The small main program was prepared, for each method, 

using the documentation of OPTISEP. Following are the 

results. 

Method X1 X2 X3 X4 xs j force in 
lb. 

C•P • . TIME 
(seconds)

-

MEMGPAD 

SIMPLEX 

DAVID 

11.19 

12.24 

11.29 

0.784 

0.68 

0.80 

2.998 

.' 3.00 

3.00 

4.974 

4.999 

4.995 

4.43 

3.90 

4.33 

2.651*10 5 

2.666*10 5 

2.662*10 5 

18.362 

42.114 

3.675 

For this problem Davidon Fletcher and Powell's method 

has been the fastest. Same starting point was used for all 

the methods. Simplex has given the configuration, which 

yields maximum crushing force, though all other methods 

tend to converge to the same point. The best configuration 

for the rock crusher will have the following values of 

design variables. 
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w - the angular velocity = 12.24 rad/sec 

cp the angle between vertical axis and the arm= 0.68 radius 

= 39° 

c - the length of the roller = 3' 

d t.J.t-ie diameter of the roller = 4.999' 

L the arm length = 4.33' 

Problem 3 - Optimizing reliability of a system 

Components are to be connected in series parallel 

configuration as shown below in figure. Reliability of 

components in each stage is equal · and .equal to R.• . A 
l.. 

return P comes only if the system does not fail. Problem 

is to determine optimum number of redundant components to 

be attached in each stage. 

1 


1 


1--···1 
-2 

l 

I l 

~ 


3
2 

~ 1 

3 

-1 
-Di {~l 

~, l 
I 
I 

Lf~J 
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The reliability, cost and return data is as follows: 

· stage R. c. p 
l. l. 

1 0.333 0.200 10.0 

2 0.500 1.000 

3 0.750 1.000 

This . problem has been discussed by Siddall [6]. 

Formulation 

The design variables are as follows. 

xl = total number of components in the first stage 

x2 = total number of components in the second stage 

x3 = total number of components in the third stage 

Since the profit P only occurs if the system does 

not fail, therefore expected profit is P*Rd, where Rd is 

the reliability of the system given by 

x.3 	 1Rd = n (1 - (1 - R.) ] 	 (4.9)
l.i=l 

Total cost of components is 
n 

CT = l 	 c.x. ( 4 .10} 
i=l 1 l. 

The net 	profit is 

U = P .•Rd - CT ( 4 .11) 
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The objective criterion is to maximize this u, · 

subject to the constraints that all variables are integers 

and > l. There has to be at least one component in each 

stage, otherwise the system would fail. The constraints to 

keep xis ~ 1 can be handled by using the following 

transformation. 
t 

x = 1 + abs(x. - l) ( 4 .12)
i l. 

x! is the new unconstrained variable. 
l. 

Thus the problem is reduced to maximizing U as given 

by (4.11), subject to no constraints. 

Formulation for prog,ramming. 

There are three design variables 

x(l) = xl, x(2) = x2, and x(3) : x3. 

The function to be minimized is 

u = - u 

There are no constraints 

The results obtained by subroutine INTEGER are as 

follows 

x(l) = 7 

x(2) = 3 

x(3) = 2 

Maximum net profit = 1.322 

C.P. Time in Seconds = 7.713 

Thus the optimum configuration should have seven 



so. 


components in the first stage, three components in the 

second stage, and two components in the third stage. 

Problem 4 - Optimizing a war strategy 

The problem in basic form has been discussed by 

Bracken and Mccormic [20]. The problem is to assign 

weapons of 2 types to 3 different targets such that total 

damage is maximized. The following table gives the 

probabilities that the targets will be undamaged by weapons, 

total number of weapons available, minimum number of weapons 

to be assigned, and military value of the target. 

Probability that weapon i will not I N~~;-~fl damage target j weapons 
available 

Targets 

Weapon . 1 2 3 

l .951.0 0.85 100 

2 

Minimum 
number 
to be 
assi_s.ned 

0.84 

15 

0.98 

20 

1.00 

10 

150 

Military 
Value 60 80 40 

Formulation 

The design variables are as follows. 

xll = the number of type 1 weapon assigned to target l 

xl2 = the number of type l weapon assigned to target 2 
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x = the number of type l weapon assigned to13 

target 3 

x
21 

= the number of type 2 weapon assigned to 

target l 

x : the number of type 2 weapon assigned to
22 

target 2 

x = the number of type ·2 weapon assigned to
23 

target 3 

The objective function is to maximize is the total 

expected target damage 

u = 60(1 - c1.oox11 x o.asx21)J + soc1 - (.9sx12x .9ax22>1 

+ 40[1 - (.85~13x lx23 >J 

(4.12) 

The constraints on the total number of weapons are 

¢1 = xll + xl2 + xl3 ~ lOO 

¢2 = x21 + x22 + x23 ' lSO 

The constraints on the minimum assignment of weapons 

are 

) 15<P3 = xll + x21 


~ 20
cP4 	 = xl2 + x22 


== ~ 10
<P5 Xl3 + x23 

The constraints to keep the variables positive are 

¢6 = xll ~ O, <P..,
I 

= xl2 >.. 0, <Pg = xl3 ) 0 


O,
<P 9 	 = x21 :::= 0, 4>10 = x22 ~ $11 = x23 ~ 0 
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Formulation for progranuning 

There are six design variables. 

x(l) = x
11

, x(2) = x 12 , x(3} = x 13 


x(4) = x x(S) and x(6)

21

, = x 22 = x 23 

The objective function to be minimized is 


u = - u 


There are eleven constraints 


PHI(l} = 100.- (x(l) + x(2) + x{3)} 


PHI ( 2) = 15 0..... (x ( 4) + x ( 5) + x ( 6) ) 


PHI(3) = x(l) + x{4) - 15. 


PHI(4) = x(2) + x(S) - 20. 


PHI(S) = x(3) + x{6) - 10. 


PHI(6) to PHI{ll) = to ¢ 11 respectively.¢6 

The problem was solved by subroutine INTEGER and 

following are the results. 

Maximum expected target damage = 179.5 

Weaoon 

No. of weapons assigned 
Targets 

l 2 3 

1 

2 

0 

42 

63 

108 

-

37 

0 

C. P. time in seconds = 107.7. 



CHAPT:ER - 5 

USE IN DESIGN PACKAGES 

In spite of the wide accessibility of computers, 

designers, so far, have not fully made use of them. One 

of the reasons for this poor response may be the non

availability of easily usable design packages, for solving 

design problems. Designers, being too busy with other 

problems, find it too time consuming to write their own 

programs in FORTRAN for each problem. Therefore in order 

that designers can use computers in a meaningful way, it is 

necessary to develop computer aided design packages. Such 

packages should be usable by any designer who has almost no 

knowledge of programming. 

Computer aided design packages can be easily pre

pared using any of the optimization subroutines, developed 

for this thesis. The user's effort for using these 

packages would be even less than that required for using 

any of the optimization subroutines of OPTIPAC/OPTISEP. 

The user need only supply values of a few input parameters 

and call an executive subroutine to perform the necessary 

operations. He would not even write his own serivce 

subroutines to define the objective function and the 

constraints, because for a specific problem, constraints 

can be defined once for all, and made a part of the package. 

-53
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The executive subroutine acts as a sort of coordinator, 

calling the optimization subroutine and printing out the 

solution which gives the optimum values of the design 

variables. 

The availability of various simple to use 

optimization subroutines is of great use for the develop

ment of such packages. Experience has indicated that a 

given optimization method will not necessarily work with 

any given problem, therefore, the fact that subroutines 

for many optimization methods are available, significantly 

increases the probability that any given problem can be 

solved with at least one of the available subroutines. 

At 'times it may be necessary to tune the input 

parameters for any optimization method to yield the best 

results for a given problem. While using such design 

packaqes, the user will not have to do this at all, 

because the best values of input parameters may be 

internally fixed. The designer would be ensured of the 

best solution on the first trial. 

The various stages for the development of such 

design packages is as follows: 

1. Identification of the problem 

2. Formulation for optimization. 

3. Selecting the best method of optimization. 

4. Formulation of the executive subroutine. 
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s. Preparation of documentation. 

The first stage for the development of any design 

packaqe, using any of the optimization subroutines, would 

be to identify the problem, that is to determine what 

should be the design criterion, what are the limitations on 

the design, and what are the desiCJil variables, etc. 

The second stage would be to formulate the problem 

for optimization, as specified in the documentation for 

OPTISEP/OPTIPAC. Subroutine UREAL, CONST, and EQUAL, should 

be written to define the problem, these subroutines should 

be written in a general form, so that they do not have to be 

changed, for different materials. Material properties may 

be transferred to these subroutines through common 

statements. 

Once the problem is formulated it should be tried on 

all the available methods, in order to select the best one. 

The input parameters for the respective optimization 

subroutine may be tuned, if necessary. These parameters 

may then be used in the executive subroutine and for all 

practical purposes, for the designer, these parameters would 

be the constants internally defined. 

Having selected the method to be used, the executive 

subroutine can be prepared. Only those input parameters 

which must be changed whenever a different problem is run, 

should be included in the arguments of the executive 
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subroutine. Most of the dimension statements may also be 

internally defined, so that the designer dimensions only a 

minimum of arrays in the ma.in program. 

Preparation of meaningful documentation is of great 

importance. Improper documentation can greatly reduce the 

effectiveness of a design package. Documentation should be 

such that anyone using it would easily follow the require

ments for use by just going through it once. Documentation 

for such packages should include a definition of the 

configuration being modelled, a step-by-step procedure for 

using the package, a brief idea about the design procedure 

and the assumptions made, limitations of the design, the 

optimization technique used, etc. Output formats should be 

well written so that print out gives all necessary details 

for the design. 

Such packages can be prepared for various designs, a 

few examples are as follows. Optimizing configuration of 

components in series and parallel for maximizing reliability 

of a system, designing a heat exchanger, designing a 

pressure vessel, designing a flywheel, designing a gear, 

designing a compression spring, etc. Examples are given 

below to illustrate how simple the calling program would be 

for some of the design packages explained here. 

The first illustrative example is for a reliability 

package. If a designer has to allocate some components in a 

series parallel configuration, for maximizing reliability 
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of the system, subject to a given maximum cost, he would 

just specify a few input parameters and call RELIAB to get 

the desired solution. 

The second example is for a pressure vessel design 

package. The designer will just specify the properties 

of the material used, the maximum pressure in the vessel, 

the requir.ed capacity, the limitations on the size of the 

pressure vessel and would call VESSEL to get the optimum 

design. 

The third example is for a compression spring design 

. package. The designer will supply a few input parameters 

concerning the maximum load to which it will be subjected, 

its stiffness, limitations on size, and would call sub

routine SPRING to get the desired design. 

The fourth example is for a flywheel design package. 

The designer will specify parameters concerning material 

properties, performance characteristics, and Geometry. 

The examples are illustrated on the following pages. 

http:requir.ed
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1 3 

1 1 

2 2 2, 

f . ' t . I 

LB-1 
.. I 

t I 

L8J 
I I 

I : 

~ 
X(l) - no. o..f .components- in the first stage 

X(2) - no. of components in the second stage 


X(3) - no. of components in the third stage. 


Rl = 0.92 (reliability of each component in first stage) 


R2 = 0.95 (reliability of each component in second stage) 


R3 = 0 .·90 (reliability of each component in +;hi rd stage) 


CRl = 2.0 (cost of each component in first stage) 


CR2 = 4.5 (cost of each component in second stage) 


CR3= 1. 0 (cost of each component in third stage) 


CMAX = 20000. (total maximum cost) 


CALL RELIAB (Rl, R2, R3, CRl, CR2, CR3, CMAX) 


STOP 


END 


Example 1 Calling prograJn fo·r a. reliability maximization 

package. 
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X(Pi , 

t 
)((2) ____) 

-X(4) 

SMAX = 60000. 

EFFl = 0.9 

PRESS = 500. 

CAPATY = 2000. 

AMXLN = 15. 


AMNLN = 3. 


CALL VESSEL (PRESS, EFFl, CAPATY, AMXLN, AMNLN, SMAX) 


STOP 


END 


Example 2 Calling program for a pressure vessel design 

package. 
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~ X(I) 

PMAX = 50 

STIF = 30 

HOLE = 1.5 

AMXLN = 5. 

ALIFE = 5000. 

CALL SPRING (PMAX, STIF, HOLE, AMXLN, ALIFE) 

STOP 

END 

Example 3 Calling program for a spring design package. 
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f 
X(6) f X(4) 

X(S) 

_tit 
X(l) 

IShaft_ ~---'----___......___~ 

4 • . 
X(l) X(2) 


· Press Fit 


POISS = 0.3 

SYP = 70000. 

E = 3.E7 

FS = 3.5 

. SPEEDF = 3000. 

TORQ = 20. 

cs = .07 

cu = .27 

SHAFTO= 2.75 

DIAFLY = 30. 

CALL FLYWHL (POISS, SYP, E, FS, SPEEOF, 

~ORQ, CS, CU, SHAFTO, DIAFLY) . 

STOP 

END 

Example 4 Calling program for a flywheel design package. 
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Thus using the subroutines developed for this 

thesis, many useful design packages can be developed. 

Such packages can ~~en be stored in the library of a 

computer, so that designers can use them for solving 

design problems. 



CHAPTER - 6 

DISCUSSION AND CONCLUSIONS 

This chapter includes the general discussion about 

all the methods, the various points observed during 

repeated use of these methods, the problems and their 

possible remedies, and possible changes which can be made 

for future development of such a package. 

All the subroutines are in user oriented form. 

Particular attention has been given to keeping the documen

tation as simple as possible, and to ensuring that the user 

does a minimum of program writing and punching. Dimension

ing of arrays, which is currently bein·g done by the user in 

·the main program, could be done automatically by using the 

dynamic storage allocation approach [21]. This is done by 

havinq a dummy blank common array say XX with a large 

dimension say 30000 or more. A few statements can then be 

added to allocate the memory to desired arrays, using 

values of input parameters. This approach would eliminate 

the dimensioning job of the user, but a few more statements 

would have to be added by the user in the main program. 

Therefore as a trade-off, to keep the size of the main 

program to a minimum, automatic dimensioning has not been 

incorporated in these subroutines. A future trial of this 

approach is recommended to see if it really makes it easier 
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for the user. 

At times it is necessary to use additional data in 

some of the function subroutines. This data is normally 

transferred from the main program, to the subroutines, 

through conunon statements. It has been observed that use 

of blank common for this purpose invariably causes 

problems, because then values of data in the blank conunon 

may qet mixed up with values of variables in other common 

statements, already existing in the programs. To avoid 

such a confusion it is always advisable . to use labelled 

conunon statements for transferring the data. 

Another source of blow ups in these programs may be 

an attempt made to raise a negative quantity to a fractional 

power, like taking square root of a negative quantity. To 

avoid such a problem only the absolute value of any quantity 

should be raised to a fractional power. Similarly · SINE of a 

large number can cause trouble, if it so happens, IF 

statements may be included to prevent value of the variable 

from becoming too large. 

At times it may be a good idea to apply weighting 

factors to some of the inequality constraints. When any 

inequality constraint is very important, or has a very 

small magnitude, application of a weighting factor would 

increase the probability that the particular inequality 

constraint is satisfied. 
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For a convergence criterion, a small quantity G has 

been used .in all programs. Sometimes the value of the 

objective function itself may be so small that its order 

is the same as that of G, and in that case the difference 

between two successive values of the objective function may 

always be less than G, and as a result the program would 

indicate it as optimum, which may not be really true. 

Therefore when the order of the function is of the order of 

the convergence criterion, it is better to further reduce 

the value of convergence criterion. Similarly when the 

value of objective function is of a very large order, the two 

successive values of objective function may take excessive 

time to differ by the small amount of the order of G; in 

that case value of convergence criterion may be suitably 

increased. Generally the values of parameters recommended 

in the documentation should be used. 

Subroutine, SIMPLEX, has been found to be very 

satisfactory in practice. It handles both equality and 

inequality constraints nicely. It may require larger 

number of iterations to converge, but in most of the cases 

it ultimately converges. Whenever this method hangs up 

one of the first changes the user should try is to increase 

the number of iterations. 

The simplex size also has some effect upon the 

convergence of this method. It is better to have an 

adequately large simplex size to start with. The simplex 
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size is a function of F, RMAX, and RMIN. Generally 

adequate values are indicated in the documentation. 

The parameter REDUCE also has significant effect 

upon convergence. The smaller the value of REDUCE, the 

faster is the convergence. But selection of too small a 

value for REDUCE would make the penalty term involving 

equality constraints weighted very heavily, and this wouid 

result in a very elongated and narrow valley, which would 

make the constrained minimization difficult. There is no 

formula for right choice of REDUCE. The best values based 

on experience have been indicated in the documentation. 

Subroutine DAVID, works satisfactorily and is 

quite fast, but when the objective function is not well 

behaved and has steep valleys, this method has difficulties. 

Becaus~ of very steep slopes it becomes difficult to select 

the right step size. The penalty term incorporated in the 

artificial objective function for avoiding violation of any 

inequality constraints, results in steep gradients near the 

constraints. This difficulty has been resolved by properly 

modifying the value of derivatives near the constraints. 

One of the ways of keeping the design or independent 

variables positive is to use transformation (2.1) where 

variables are forced to take absolute value whenever the 

value of the objective function is computed. But for, DAVID, 

this may cause problems, because DAVID'S logic is such that 
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sometimes it becomes necessary to revert back to a 

previous position, which is not possible in certain cases, 

if this approach is used. For example, if x(l) is equal to 

1.5, and a step is taken of magnitude -2.0, the result 

would be -o.s. When the absolute value of x(l) will be 

returned it will be +o.s, now suppose this is not a better 

point and it is decided to revert back to the previous step. 

Under normal circumstances the previous step would be reached 

by just adding +2.0 to the current value of x(l), but in 

this . case it would give the previous value of x(l) as 2.5 

and not the right value which is 1.5. This may cause 

problems in logic of the program. To avoid this it is 

suggested that while using gradient methods, constraints to 

keep variables positive should be included in service 

subroutine CONST instead of using transformation (2.1). 

Various search strategies are possible to 

determine the best value of the step size A during any 

iteration. Polynomial search has been used in the program 

having been found faster then golden section or Fibonacci 

search. 

DAVID has quadratic convergence. For a quadratic 

function it reaches the optimum in N iterations, where N 

is the number of variables. 

One source of error in this method may be the 

numberical computation of derivatives. In future it would 
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be useful to try Powell's method [22], which does not 

require calculation of derivatives, since it also has 

quadratic convergence, and the problem of derivatives will 

not exist. 

MEMGRAD has been found to behave similarly to DAVID. 

In this method the incremental step size used for computing 

derivatives has been found to have a significant effect 

upon results. 

Subroutine INTEGER has been written for solving non

linear problems requiring integer optimum solutions. It 

has been found to work quite satisfactorily. The execution 

time increases in proportion to the number of variables, 

since the number of branches to be searched is proportional 

to the number of variables. 

Subroutine INTEGER is informed of infeasibility by 

OPTIMF2, using NVIOL, the counter of violated inequality 

constraints. In subroutine OPTIMF2, any constraint having 

negative magnitude of the order of l.E-10 or less is not 

considered as violated. Whenever the Hook and Jeeves [19] 

search fails to find the first noninteger optimum solution, 

it is preferable to use another method, find the optimum, 

and feed that optimum as starting values for subroutine 

INTEGER. But in some cases it has been observed that in 

spite of this starting point, .a message of the type, 

"Method has failed to find non integral solution" comes out. 
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In this situation a nearly optimum solution has been 

found, but it has not been considered .feasible by the logic 

of the program, because one or more of the constraints may 

have been violated, though by a very small amount, say l.E-8, 

which is more than the specified value of ZERO in subroutine 

OPTIMF2.. In such cases it is better to run the program 

again by slightly increasing the value of ZERO in subroutine 

OPTIMF2. 

In subroutine INTEGER the optimum integer solution 

does not have exact integer values. The logic of the 

program treats any value, which does not differ from the 

integer value by more than .001, as an integer value. 

If subroutine INTEGER returns a message that "No 

integer solution could be found", then it is better to give 

another trial to subroutine INTEGER, after changing the 

sequence of the variables. This would result in a different 

sequence of search and there is some possibility that some 

integer solution is found. In actual practice the 

probability is not very high that such a situation will 

occur. 

Subroutine INTEGER has been written in such a way 

that with very minor modifications any other optimization 

technique could be used, instead of Hook and Jeeves direct 

search. In future, if a very good method for optimization 

is developed, then subroutine SOLVE can incorporate that 



70 • 


. method, without requiring much change in subroutine 

INTEGER. 

These subroutines have made a significant contribu

tion to the package OPTISEP [l]. Th~se have been tried in 

the past, and will be tried in future on various types of 

problems. More knowledge will be gained from the resulting 

feed back, which can then be used to further improve the 

package. 

As explained in the last chapter, these subroutines 

can be used to devel'op various user oriented computer aided 

design packages. As illustrated in that chapter, the 

calling programs for such packages would be even simpler 

than those of OPTIPAC and OPTISEP. The engineer borrows 

many theoretical tools from physics, mathematics, economics, 

etc, and in his day to day work he must use these himself. 

With the development of ~uch design packages in future, the 

engineer would be able to use computerized design also, as 

a theoretical tool in his day to day life. 
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A TYPICAL CALLING PROGRAM . 


Fig. 1 
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set working arrays = 0 

T-· . '· ,-~ .. ~ , :~~~- :.... .:..:,. ...- · .. ;..t-: p""r"+......~;.ii.,...; 

Generate (n+ll' pofril:s , · 'form "siinp!ex 

'l'ry 
Reflection 

xh -~ xr-

Evaluate function at each vertex 

and select xh ,xR; ,xs ,xO & uh, Uil / us, uO 

LL.GE.MAXM 

1 2 2-I (t1. ~u )n . i O 

R ;:: R*REDUCE 

PRINT 
LA~3 T 

RESULT 

Difference in Values of U for 

two successive optirnas 

Yes 
.RETURN 

_Try 
Expansion 

xh=xr 

Try Contraction 

-....x. :.:.":~ •'x_ -:-x , ) .....-~IJh > Uc >---......, Xh.  xc 
J. ;! . ,,; ;~: yes 

FLOW CHART "SIMPLEX' 

Fi.g. 2 



Set all working arrays = 0 

yes 
PRINT DATA 

RET RN cSx=O S=O SIG= FAA/ 
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... 
ABS(F'AA 

DELAFB, FBB, FAB 

X(I) =XTRT (I) 


f (x) LL=O, FO=f {x) 

ox=O I a.o=O' B =O 

FA = g ( xn) g ( x) 


FAA as per equation (3.20) 


Dl, 02, 03, D4 as given by (3.14) to 
cx=a.O+DELA. ;( 3 .1)7) 

. . 

DELA, DELB 

a. = a.0 + DELA 

s --= -~·eo + DELB 

XTRIAL = x - ag(x)+Sox 

f (XTRIAL) = ABS(FO-FN) ~ = 

No 

LL=LL+l ............... ox = ag (x) +Box 

E:LA and DELB<e; 

FLOW CHART 'MEMGRAD' 


Fig. 3 
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set all working arrays = O 

L=O, LK=O, X(I)=KSTRT(I) 

RETURNPRINT INPUT DATA !DATA = 1 · 

EXIT Set H = a unit matrix
0 No 

Criterion < G 
K.GT.MAXM 

get 
g (x.) 

yes 

CALL FIND, to determine A 

x. == x . + Ad. 
1 l. .1 

No FUN2 > FUN,l 

LK=LK+l 

0 

yes 

R=R*REDUCE · 

Compute Hi' matrix to be used in neJl.~iteration 

FUNl, = FUN2, LK = LK+l 

:r 

FIG .. 4 .... 
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L=O Al=l. E-7 I KK=l, S=2 FUNl 

____.... AL = Al {Sk-1) I (S-1') 

CALL OPTIMF2 (FUN2) 
kk.GT.50X. = X. - AL *d. 

i 1 
FUNl = FUN2 

compute FA, FB, FC, for A, B and C 

L = L+l 

' . 

L.GT.20 ). = B RETURNes 

B.GT.AD 

----------...-1 FB.GT.FD 

A = B, FA = FB 
B = AD, . FB =FD 

C = AD 
FC = FD 

A = AD 
FA = FD 

C = B 
FC=PB 
B :::aAD 
FBcm 

k=k+l FUN2. GT. FUNl 

k=l 

k=2 .A=O,B=Al,C=A: 

A= Al*(S - -1)/(S-lY 
B = Al*(sk-1-1)/(S-l) 
C = Al*(sk-l_l)/(S-1) 

FLOW CHART FOR SUBROUTINE 'FIND' 


Fig. 5 
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common ICHECK IPZ.~!l N2, Nl, NORG, NOD 

PRINT ( DATA!DATA = 1 

kk = 0, NOD = O, NORG ~ NCONS 

tPZ(I) ~ O, I = 1,50 

---------.,..CALL SOLVE to optimize at 
each stage 

Exit kk = kk+l 


Feasible 


es 

Integer 


kk = .. . --...: -"· ~· 

Record best . so1ut.i.on 

Nl(NOD) = IX(L)< o.o 
N2 (NOD) = IX(L)+l 

= IX(L) 

= IX(L)-1 

es 

solution 

NOD= NOD+l · 

IP 

I<B=KB-1 

yes 

ICHECK(NOD) = 1 

IVAR(NOD)=L 

AX=XL 

AX 
ABS(AX) 

N2 (NOD) 

,Nl (NOD) 

NCONS=NORG+NOD 

es
NOD.GT.MAXM EXIT 

FLOW CHART SUBROUTINE 'INTEGER' 


FIG. 6 
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conunon ICHECK, IVAR, [PZ, N2, Nl, NORG, NOD 

ICHECK(I) = 0 


L = IVAR (I) 

NN = Nl (I) 

II = I + NORG 

PHI(II) = - (X(L)' - NN) 

eIPZ(I) = 1 

L = IVAR(!) 


NN = N2 0:) 


II = I + NORG 


PHI(II} = (X(L)-NN 

PH 

I = I+l 

RETURN . I.EQ.NOD 

FLOW CHART SUBROUTINE 'ADDL' 


FIG. 7 
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: xl = 3.67, x2 = 1.72, X3 = 6.28 

-..

x1 ' 3 : 
X_i ~ 4 

1 

1 x · ~ 2 x2 f; 1 x2 ~ 2 
6 

IN 
X3 ~ 7 

x 

x2 

3 ' 6 

3 

IS 

It> 

~ 

~ 7
2 6 ]x3.x3 ~ 

J 7X3 Ik I 
i; -' 6 \.. ~3 

~ 3xl xl' 2 

4 

IS 
~ 3x2x2 ' 2 

8 

IS IN 

IS - Integer Solution 

I~ - Infeasible Solution 

- 7 

IS 

A TYPICAL TREE SEARCH FOR INTEGER VARIABLES 

Fig. 8 

2 
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xfyr 

CONTOtJR S 

OBJECTIVE 

X(2) 

xh~s 

I - Simplex 

II - Simplex 

III - Simplex 

starting staqe 

Intermediate stage 

Near Optimum 

OF 

FUNCTION 

X(I) 

SIMPLEX SEARCH PROCEDURE 

Fig. 9 

0 
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APPENDIX A. DOCUMENTATION FOR THE SYSTEM 

SUBROUTINE UREAL(X,U) 

Purpose 

To calculate the value of the objective function at a point 

where U =minimum at the optimum 

Method 

The objective function may be defined by 

(a) 	 a simple arithmetic FORTRAN statement such as 

U = X(I)**2 + 2*SIN (X{2)) 

(b) 	 by a complex analysis which may, for convenience, 

be in one or more separate subroutines. It could, 

for example, involve a solution of differential 

equations or eigenvalue equations. 

Input Variables 

X(I) the current values of the independent variables 

Output Variables 

u The value of the objective function corresponding to 

the input X(I) values. 

How 	 to Set Up Subroutine UREAL 

The 	 following cards must be punched by the user: 

SUBROUTINE UREAL(X,U) 
DIMENSION X(l) 
U=arithmetic 	function 
RETURN 
END 

-80
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If a more complex analysis is needed to define U, then subroutine UREAL 

would be punched as follows: 

SUBROUTINE UREAL(X,U) 
DIMENSION X(l) 

The coding required for analysis; it 
may include any legal FORTRAN statements 
and CALL's to auxiliary subroutines. The 
final value of the objective function must 
be placed in U. 

RETURN 
END 

Misce11aneous 

If additional data is required to perform the analysis, the 

necessary READ statements should be inserted in the MAIN program and the 

data transferred from MAIN to UREAL through labelled CO~ON blocks. 

Where possible, the user should include conditional STOP's in his 

coding to prevent invalid results from being returned to the optimization 

procedure. 

SUBROUTINE EQUAL(X,PSl,NEQUS) 

Purpose 

To calculate the values of the equality constraints at a point 

j=l ,m 

where ~.=O at a feasible point.
J 
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Method 

·nie equality constraint functions may be defined by: 

(a) 	 simple arithmetic FORTRAN statements such as 

PSI(l) = X(I) + X(2)**2 

(b) 	 by a complex analysis which may, for convenience, 

be in one or more separate subroutines. It could, 

for example, involve a solution of differential 

equations or eigenvalue equations. 

Input Va-riab les 

X(l) the current values of the independent variables 

NEQUS the nwnber of equality constraints 

Output Variables 

PSI (I) the value of the equality constraints corresponding 

to the input X(I) values 

How to Set Up Subroutine EQUAL, 


The following cards must be punched by the user: 


SUBROUTINE EQUAL(X,PSI,NEQUS) 

DIMENSION X(l),PSI(l) 

PSI(l)= arithmetic function 

PSI(2)= arithmetic function 


PSI(NEQUS)= arithmetic function 
RETURN 
END 

If a mo.re complex analysis is needed to define the PSI (I) values., then 

EQUAL would be punched as fo I lows : 
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SUBROUTINE 	 EQUAL(X,PSI,NEQUS) 
DIMENSION X(l),PSI{l) 

The coding required for analysis; it may 
include any legal FORTRAN statements and 
CALL's to auxiliary subroutines. The final 
values of the constraints must be stored in 
the PSI(I) array. 

RETURN 
END 

Note: If the user's problem has no equality constraints, then subroutine 

EQUAL may be omitted altogether. 

Miscellaneous 

If additional data is required to perform the analysis, the 

necessary READ statements should be inserted in the MAIN program and the 

data transferred from MAIN to EQUAL through labelled Ca.IMON blocks. 

Where possible, the user should include conditional STOP's in his 

coding to prevent invalid results from being returned to the optimization 

procedure. 

SUBROUTINE CONST(X,NCONS,PHI) 

Purpose 

To calculate the values of the inequality constraints at a point 

k=l,p 

where ~k .::_ 	 0 at a feasible point 

Method 

1be inequality constraint functio~s may be defined by: 

(a) 	 simple arithmetic FORTRAN statements such as 

PHI(I) =X(I) + X(2)**2 
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(b) 	 by a more complex analysis which may, for 

convenience, be ' in one or more separate 

subroutines. It could, for example, involve a 

solution of differential equations or eigenvalue 

equations 

Input Variables 

X(I) the current values of the independent variables 

NCONS the number of inequality constraints 

Output Variables 

PHI(I) the values of the inequality constraints corresponding 

to the input X(I) values. 

How to Set Up Subroutine CONST 


Tite following cards must be punched by the user: 


SUBROUTINE CONST(X,NCONS,PHI) 

DIMENSION X(l),PHI{l) 

PHI(l)= arithmetic function 

PHI(2)= arithmetic function 


PHI(NCONS)= arithmetic function 
~ru~ 

END 

If a more complex analysis is needed to define the PHI(I) values, then 

CONST would be punched as follows: 
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SUBROUTINE CONST(X,NCONS,PHI) 
DIMENSION X(l),PHI(l) 

The coding required for analysis; it may include 
any legal FORTRAN sta.tements and CALL's to 
auxiliary subroutines. The final values of the 
constraints must be stored in the PHI(!) array. 

RETURN 
END 

Note: If the user's problem has no inequality constraints, then subroutine 

CONST may be omitted altogether. 

Miscellaneous 

If additional data is required to 'perform the analysis, the 

necessary READ statements should be inserted in the MAIN program and the 

data transferred from MAIN to CONST through labelled COMMON blocks. 

Where possible, the user should include conditional STOP's in his 

coding to prevent invalid results from being returned to the optimization 

procedure. 
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SUBROUTINE SIMPLEX(N,RMAX,RMIN,NCONS,NEQUS,XSTRT, 
"·'fi!l, ALPHA, BETA, GAMA, REDUCE, R, F,G, 
MAXM,IPRINT,IDATA,U,X,PHI,PSI,XA, 
XJ,rUN,XH,XS,XL,XO,XR,XE,XC,STEP) 

Purpose 

To minimize U= U(x1 ,x2, ••• xn) 

subject to wj<x1x2,····xn) = 0 j = l,m 

k = l,p 

Method 

Equality and inequality constraints are taken care of by 

defining an artificial unconstrained objective function, 

p 

= U(xl,x2, •. • .xn) + rl \ ( 1 )L +k xl ,x2, ••••x 
k=l n 

where r is a positive constant Cr =1.o is normally assumed as starting1 1

value). Value of r is reduced by multiplying it by a constant factor 

'REDUCE' a~er each iteratio~ (i.e. ri+l = r 1 x REDUCE). 

'nle simplex method of search sets up a set of n+l points in 

n-dimensional space, called the simplex. It gropes towards the 

optimum by flipping, expanding or contracting the simplex, the logic 

used depending on an evaluation of each corner. 

In the logic three parameters are required -- an acceleration 

factory (y>l), a contraction factor B (O<e<l), and a step length 

factor a. 



87. 

'!be simplex is first generated by using some starting point 

.XSTRT(I) plus n additional points 

XSTRT(I) + F* (RMAX(I) - RMIN(I) 
.- · 

n+l 
2

}112The search is considered to 'bave found optimum if {! \1 (U -U ) < G 
, n L j o 

j=l 
'where G is a small quantity used as a stopping criterion. 

Reference 

l. Kowalik, J. and M.R. Osborne, "Methods for Unconstrained Optimization 

Problems", Elsevier, 1968. 

Special Features 

'!be following programming parameters must be defined by the calling 

program. Generally adequate values are as follows: 

F =0.1 

,.. 
~ = 1. E-4 

MAXM - 50 

R =l.O 

REDUCE = o.os 

ALPHA = 1.0 

BETA = o.s 

GAMA = 2.0 

XSTRT(I) = (RMAX(I) + RM.IN(I))/2.0 

The value of F has a significant effect upon convergence. Out of various 

values tried F=O.l has proved t? be the best. 

Simplex is a good method for problems with inequality 

constraints only. It tends to stall on equality constraints and it is 

better to start as far as possible from the equality constraint lines. 
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Input Variables 

N number of design or independent variables 

NN = N+l number of simplex points generated 

IPRINT prints results every IPRINTth iteration, set=O for no 

intermediate output 

!DATA =1, all input data to be printed out 

=O, no input data to be printed out 

NCONS the number of inequality constraints 

F fraction of (RMAX(I) - RMIN(I)) used as step size in 

forming initial simplex 

MAXM maximum number of iterations allowed · 

G small quantity used as convergence criterion 

NEQUS the number of equality constraints 

R penalty function parameter in calculating artificial 

unconstrained objective futiction 

REDUCE reduction factor for R 

ALPHA reflection cpefficient 

BETA contraction coefficient 

GAMA expansion coefficient 

RMAX( I) estimated upper bounds. on X(I), dimensioned with 'the 

value of N 

RMIN(I) estimated lower bounds on X(I) dimensioned with the 

value of N 

XSTRT(I) starting value for X(I) dimensioned with the value of N 

Output Variables 

u minimum value of objective function, evaluated in UREAL 

X(I) optimum values of independent variables, dimensioned with 

value of N 
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PHI( I) 	 inequality constr aint functions, evaluated in CONST, 

dimensioned with NCONS 

PSI(!) 	 equality constrai nt functions, evaluated in EQUAL, 

dimensioned with the value~· of NEQUS 

NVIOL counter of nurr.ber of inequality constraints violated 

Working Arrays 

XA(I,J) dimensioned with value of N ,NN 

XJ(I) dimensioned with value of N 

XH(I) dimensioned with value of N 

XS(I) dimensioned with value of N 

XL(I) dimensioned with value of M 

XO(!) dimensioned with value of N 

XR(I) dimensioned with value of N 

XE(I) dimensioned with value of N 

XC(I) dimensioned with value of N 

STEP( I) dimensioned with value of N 

FUN(I) dimensioned with value of NN 

Programming Information 

SIMPLEX has full vai,,iab le dimensioning~ The calling pl"Cgramme 

must provide dimensioning as given above. 

If printout of the optimum is d.esir.~d directly from 

SIMPLEX then the statement CALL SIMPLEX may be followed immediately 

by CALL ANSWER {U,X,PHI,PSI,N,NCONS,NEQUS). 'fnis prints out the 

optimum point and the values of +'s and ~'s. 

If NCONS or NEQUS is zero then it is dimensioned 1 in the 

calling programme. If the method has not converged after MAXM then 

the current answer is printed out and SIMPLEX exits without x-eturn. 
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Subroutines called are OPTIMF2, CONST, EQUAL and UREAL. 
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SUBROUTINE DAVID(N,RMAX,RMIN,NCONS,NEQUS,XSTRT,G,F, 
MAXM,IPRINT,IDATA,R,REDUCE,U,X,PHI, 
PSI,H,GS,D,GN,GA,Y,DT,C,YT,PHX,PSX, 
PART,PAST,CH,UX) 

Purpose 

subject to 	 k = l,p 

j :: 	 l,m 

Method 

Subroutine DAVID uses the Davidon-Fletcher-Powell gradient 

method of search in which, at the k+l step, the new value of an 

independent variable is 

k+l k x. = x. + 
l. l. 

where Ak defines an optimum step length and d~ is a function of the 
1 

partial derivatives at x~ and all of the derivatives at the previous
l. 

steps. 

The search is considered to be optimum if the value of U does 

not change significantly in two successive steps. 

Subroutine FIND is called to determine Ak, and subroutine 

PARTIAL evaluates the partial derivatives by numerical calculation. 

Subroutine OPTIMF2 is called to form the unconstrained artificial 

objective function, described in SEEK3. The reader is referred to 

SEEK3 for a more detailed description of the use of penalty functions 

with successive optimization. 

Reference 

l. 	 Kowalik, J., and M.R. Osborne, "Methods for Unconstrained 

Optimization Problems", Elsevier, 1968. 
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Special Features 

The following program parameters must be set by the user, 

generally adequate values are indicated. 

R = 1.0 

REDUCE = 0.05 

F = 1.0 x 10-6 

G = 1.0 x 10-4 

MAXM = 50 

XSTRT(I) = (RMAX(I) + RMIN(I))/2.0, a known feasible start 

is preferable 

Input Variables 

N number of design or independent variables 

!PRINT prints results every !PRINT step, set = 0 for no intermediate 

output 

IDATA =l, all input data is printed out 

=O, input data is not printed o.ut 

NCONS the number of inequality constraints 

NEQUS the number of equality constraints 

F fraction of (RMAX(I) - RMIN(I)} used as step size for 

computing partial derivative 

R penalty function parameter 

REDUCE reduction factor for R 

G a small value used as convergence criterion 

MAXM maximum number of iterations allowed 

RMAX(I) estimated upper bound for variable X(I}, dimensioned with 

the value of N 
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RMIN(I} estimated lower bound for variable X(I), dimensioned with 

the value of N 

XSTRT(I) starting value for X(I), dimensioned with N. 

Output Variables 

X(I) optimum values of the independent variables, dimensioned 

with the value of N 

u optimum value of objective function, evaluated in UREAL 

PHI( I) inequality constraint function, evaluated in CONST, 

dimensioned w:lth value NCONS 

PSI(I) equality constraint function, evaluated in EQUAL, 

dimensioned with value of NEQUS 

Working Array__s 

H(I,J) dimensioned with value of N,N 

GS(I) dimensioned with value of N 

D{I) dimensioned with value of N 

GN(I) dimensioned with value of N 

GA(I) dimensioned with value of N 

Y(I) dimensioned with value of N 

DI(I,J) dimensioned with value of N,N 

C(I ,J) dimensioned with value of N,N 

YI(I,J) dimensioned with value of N,N 

PHX(I,J) dimensioned with value of (N,NCONS) 

PSX(I,J) dimensioned with value of (N,NEQUS) 

PART( I) dimensioned with value of N 

PAST(!) dimensioned with value of N 

CH(I) dimensioned with value of N 
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UX(I) dimensioned with value of N 

Programming Information 

DAVIDON has full variable dimensioning. The calling program 

must provide the dimensioning as given above. 

If printout of the optimum is desired directly from DAVID 

then the statement CALL DAVID.should be followed by 

CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS) 

Tnis prints out the optimum point and the values of the ~'s and ~'s. 

If the input value of NCONS or NEQUS is zero, it must be 

set at l in the argument of PHI,PSI,PHX and PSX .in the calling programme 

DIMENSION statement. 

If the method has not converged after MAXM iterations the 

current answer is printed out and DAVID exits without returin. However~ 

there is no way of knowing if DAVID has hung up on a constraint or 

valley and is indicating a false optimum. 

Subroutines called are FIND,OPTIMF2,PARTIAL,SUPPLY,UP.EAL,CONST 

and EQUAL. 
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SUBROUTINE MEMGRAD(N,RMAX,RMIN,NCONS,NEQUS,XSTRT, 
F,G,MAXM,IPRINT,IDATA,R,REDUCE, 
U,X,PHI,PSI,GO,GNEW,GAl,GA2,GBl, 
GB2,XA,XB,XC,XD,DELX,FGA,FGAB, 
PHX,PSX,UX,PART,PAST,CH,XNEW,XTRIAL) 

PUX'pose 

To minimize U = U(x1,x2, •••• ,xn) 


subject to 
"'j = (x1,x2,••••,xn) = 0 j = 1,m 


+k = Cx1 ,x2, •••• ,xn) ~ 0 k = l,p 

Met hod 

This method is an extension of that of Davidon, Fletcher 

and Powell. The step size ox. is determined from the relation 
1 

A{ex.} a {~l + Bf1. 0X. }r .I 

J. uX.i 1 

where a and S are scalars chosen at each iteration so as to yield the 

g~4test decrease in the optimization function. The quantity 6x. is 
1 

the previous step size. Thus, two parameters must be optimally chosen 

rather than one with Davidon, Fletcher, Powell. Selection of these 

parameters depends on previous gradients and steps, hence the name 

memory gradient. 

The complete algorithm can be summarized as follows. 

• • h d. oU • d(1) For a given point x., t e gra ient -~--is compute ,
1 uX • 

.l 

and the vector ~x. is known from previous iterations. All 6x. = o 
i 1 

is assumed for the first iteration. 

(2) Optimum values of the scalars a and B are found by a 

special search technique. The initial values are arbitrary. 
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The 	optimum is assumed to have been reached when the change 

in the value of U between successive steps is less than an arbitrary 

small quantity G. 

Constraints of the problem are taken care of by forming an 

ar~ificial unconstrained objective function si~ilar to that used in 

SEEK3. Restarting of the alorithm beginning with dx. = O after N 
. 	 1 

iterations, helps in convergence, and this has been incorporated in 

·subroutine MEMGRAD. 

References 

l. 	 Miele, A. and J. W. Ca.'ltrell, nstudy on a Memory Gradient Method 

for the Minimization of Functions", Journal of Optimization Theory 

and Application, Vol.3, No.6, 1969. 

Soecial Features 

The 	following program parameters must be set by the user. Generally, 

adequate values are indicated. 

R = 1.0 

F = 1.0 x 10-6 

G = LO x 10-4 

MAXM = 50 

XSTRT(I) = (RMAX(I) + RMIN(I))/2.0, a known feasible start 

is preferable 

REDUCE = 0.05 

Input Variables 

number of design or independent variables 

IPRINT prints results eve't"j !PRINT iteration, set = O, for no 

intermediate output 
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I DATA = 1, all input data is printed out 

= O, input data is not printed out 


NCONS the number of inequality constraints 


NEQUS the number of equality constraints 


. F fraction of (RMAX(I) - RMIN(I)) used as increment for 

computing partial derivatives 

G a small number used as a convergence criterion 

R penalty function parameter 

REDUCE reduction factor for R 

MAXM maximum of iterations allowed 

RMAX(I) upper bound for variable X(I), dimensioned with the 

value of N 


RMIN(I) lower bound for the variable X(I), dimensioned with the 


value of N 

XSTRT(I) starting value 0£ X(I), dimensioned with N 

Output Variables 

X(I) optimum value of independent variable, dimensioned with N 

u optimum value of objective fi.mction, evaluated in UREAL 

PHI( I) inequality constraint function, evaluated in CONST, 

dimensioned with value of NCONS 

PSI(I) equality constraint function, evaluated in EQUAL, dimensioned 

with NEQUS 

Working Arrays 

The following working arrays are dimensioned with the value 

of N. 
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GO,GNEW,GA1,GA2,GB1,GB2,XA,XB,XC,XD,DELX,FGA,FGB,FGAB,UX,PART,PAST, 


CH,XNEW,XTRIAL. 


Other working arrays are dimensioned as follows 


PHX dimensioned with the values of (N,NCONS) 


PSX dimensioned with the values of (N,NEQUS) 


Programming Information 


Partial derivatives are calculated internally by numerical 

approximation in PARTIAL. 

MEMGRAD has full variable dimensioning. -The calling 
,. 

programme must provide the dimensioning as given above. 

If printout of the optimum is desired directly from 

MEMGRAD, CALL MEMGRAD in the calling program should be followed by 

CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS). . This prints out the values 

of ''s and .P's. 

However, there is no way of knowing if MEMGRAD has hung 

up on a constraint or valley and is indicating a false optimum. 

If the input value of NCONS or NEQUS is zero, it must be 

set at l in the arguments of PHI or PSI in the calling program DIMENSION' 

statement. 

If the method does not converge after MAXM iterations, the 

current answer is printed out and MEMGRAD exits without.re~urn. 

Subroutines called are OPTIMF2,ANSWER,PARTIAL,SUPPLY,UREAL, 

CONST and EQUAL. 
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SUBROUTINE INTEGER(N,RMAX,RMIN,NCONS,NEQUS,
XSTRT,F,G,R,REOUCE,MAXNOD, 
MAXM,K,IPRINT,INDEX,IDATA, 
U,X,PHI,PSI,NVIOL,WORKl, 
WORKZ,WORK3,WORK4,IX,DIF,
XB) 

Puroose 

To minimize U = U(x1,x2,x3, .•. xn) 

sub~ect to ~k(x ,x2 , ..•xn) ~ o k=l,p1 
~5 Cx1 ,x2 , •.•xn) = o i=l,m 

and (x1,x2,x3.•. xt) to be inteqers 

where i is such that O<~~N 

Method 

The method is hased uoon the branch and bound technique of 

intener nroqrammino. The nrocedure consists of a systematic search 

of continuous solutions in which variables to be made integer are 

successively forced to take inteqer value. If some variable say 

x = n +f is to be inteoer, where n and f are inteqer and fractional
5 5 5 5 5 

nart respectivel.v, two alternative oroblems are formulated and solved. 

Thes~ can he considered as two branches comino out of a node. One 

contains the additional constraint x ~ n • The other contains the 
5 5 

additional constraints x >, n + 1. Procedure is then repeated for 
5 5 

each of the two solutions so obtained. Search at a oarticular branch 

is terminated when either an inteoer solution is reached or when no 

feasible solution is nossible. All the possible branches are searched, 

and the best integer solution reached this wav is the optimum inteqer 

solution. 
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HookP &Jeeves direct search techniQue is used to solve 

optimization nrob1ems at each staqe. Constraints of the problem are 

taken care of by fonninq an artificial objective function similar 

to SEEK3. 

Referenee 

111. 	 Dakin, R.J., A tree Search Alogarithm for Mixed Intecter "Proqra1T111ing 

Problems 11 
, Comnuter Journal, Vol. 8, Aoril 1965 - January 1966, 

on. 250-255. 

2. 	 Land, A .M. and A.G. Doi q, 11 An Automatic Method of Solving Discrete 

Proorammimi Problems .. , Econometrica, lJuly 1960, Vol. 28. 

Sneci a 1 	Features 

The fo11owinq proqram parameters must be set by the user. 

~enerally ade~uate values are indicated. 

F = 	 .01 

MAXM = 	300 

MAX NOD = 	 25 

G = .01 


R = 1.0 


REDUCE = 	 .04 

XSTRT(I) = 	 (RMAX(I)+RMIN(I))/2, a known feasible start is 

oreferable. 

Input Variables 

N 	 number of design or independent variables 

NCONS 	 the number of inequality constraints 

NEQUS 	 the number of equality constraints 

McMASTER UNIVERStTY LIBRARY 
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F fraction of (RMAX(I)-RMIN(I)), ' used as initial step size 

G fraction of initial steo size used as minimum step lenqth 

R oenalty function r>arameter 

REDUCE reduction factor for R 

MAXNOO maximum number of branches to be searched to get integer 

solution 

MAXM maximum number of search cycle 

K number of desiqn variables which must be integers 

I PRINT orints result every IPRINT cycle, set at zero for no 

intermediate output 

INDEX set equal to 1 

I DATA = 1, all inout data is printed out 

=0, input data is not printed out 

RMAX( I) estimated upper bounds on X(I), dimensioned with the 

value of N 

RMIN( I) estimated lower bounds on X{I}, dimensioned with the 

value of N 

XSTRT( I) startinq value of X(I), dimensioned with the value of N 

Outout Variables 

u minimum value of the obiective function, evaluated in 

UREAL 

X( I) optimum value of the independent variables, dimensioned 

with the value of N 

PHI (I) inequality constraint functions, dimensioned with the 

value of (NCONS+MAXNOD) 



IX 

102. 

PSI (I) equality constraint functions, dimensioned with the value 

of NEQUS 

R current value of penalty function multiplier 

NVIOL number of inequality constraints violated 

Workinq Arrays 

WORKl dimensioned with value of N 

WORK2 dimensioned with value of N 

WORK3 dimensioned with value of N 

WORK4 dimensioned with value of N 

dimensioned with value of K 

DIF dimensioned with value of K 

XB dimensioned with value of N 

Proorammino Infonnation 

Subroutine INTEGER has full variable dimensioning. The calling 

prooram must nrovide dimensioninq as above. 

If orintout is directly desired from INTEGER, then statement 

CALL INTEGER in the ca1linq oroqram should be followed by 

CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS) 

If search of all branches is not over after MAXNOD branches 

have been searched, then INTEGER exits without return, and last best 

solution is printed out. 

If NEOUS=O, it must be set at one in the arquments of PSI, 

in the callinq oroqram DIMnfSION statement. 

If K out of N design variables are to be inte~ers, the problem 

should he fonnulated such that variables have the followinq order 
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(x,,x2,X3,···xk~xk+l•···xn) 

where the first k variables are to be inteoers. 

Statement CALL ADDL(X,PHI), should always be inserted in 

subroutine CONST, .iust before RETURN statement. 

If an initial continuous solution cannot be found in INTEGER, 

it ma.v be nossihle to first obtain one bv an alternate library 

subroutine from OPTISEP, say SIMPLEX, and beqin INTEGER with this 

solution. 

Subroutines called are SOLVE, SEARCH, ANSWER, OPTIMF2, AODL, 

UREAL!' CONST and EQUAL. 

V. Jha 
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r r..•r"~·' '·'I:" rrwnUTF l.\PTTcTr.!fiL t"'~.J~l'.""TIV~ FU"-1(TT0"-' AT Vl\PTOU~ ~nfNTS 
1r; 0 1 C J =1 ' N ~·! 


D~ l ~ T=J ~fl 

, c; X.J ( T ) =XA { T • J ) 


(A LL 0 p T r n ... ?. ( x J ' u f\ p T ' 0 H T , p s r ' N ( () Ns , N~cus ' ~.J v T0 L t p , 
lO FU\t{Jl=U/\QT ' 

~ "'"'\'! 1.•11= ~Dl":'M1r.s:: i:'IJ"-'C"TT"p.' \/!\l_IJ~S Pl "S(r:"'H)f!\IG 0Rnc-R TO SC'LFCT HtGHFST 
r L,..,,_.Jr:ST,f\~1"' "-"=XT T" Tµs= HJ~Hf:'ST V.f\LUFS 

f)f'\ ?0 K=l ;\' 

KK=1<+1 

nr. ?. o J= i< I( , m.1 

rr=tr:lJM(k'l.U".FlJN(Jl) r;n Tn 20 
TF='~m: ;:"lJM ( '< 1 

l='U~' < v. l =l='lf".1 ( J > 

f=" IJ ~. I ( .J l =TF ' ~ f1 

"'t"' !, s:. T=l • ~' 

r i:- ~' o =x/\ < r , K > 

XA(J,~.)=(A(!,j) 


4 1' X ~ ( T , J ) =T p.• P 
?0 (0f'.'T T "'Ur: 

r SF L F ( T H'G V c::' CT(' r:> S X~ , XL , X n , XS s= TC • 
r · xw TS n~C' vr:rT"'l., f:!VP.'f: l.,A~.XT"!tU'~ Vl\'lUF o~ ()t'}.JF"(TTVF' ~lJll.!(Tt~~J 
r xL T~ n-1 r: vr:: r Tri r') r: TvTr'.1 ~ Lf) 1.\' ~ ~ T v"L ur: 0 r: THC' 0 P. J r (' T Tvr. f:' I .f N ( T t n ~J 
r X('"\ re; THr. 1'.\./r:P,~r,· r r.~ l\ll.. P~H~Tc. l"HHt::'P TH-""'' ""'T~Hc-~r ">~PH Xr• 
r xs rs THC" vr-rr("\r> •.·!f nJ t;r(f'\M'J ur1,HFST Vl\tUF nr- "'l'.'ur.rrrvr- r:uMcTrnM 

nn ~6 !=1•1\l 
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("' 

(" 

,.. 
r 

xH cr > =x1\ cr , ~· + l > 
XSCT>=X/\(T.Ml 
XLCTl=X1'(Y,1) 


10 XnCT)=fl.0. 

n f'\ .~ c; T=, ' ~· 	 .. 
f'\(') ~e; J~i ,~. I 	 ..,, . 

~~ Xn<r>=X~(T)+(1.IFLnATC~l)*XA(T•J) 
UH= FlJ"·I ( l\'+ l) 

US=F"tJ M C"··' ;

UL=FUMC1) 
('_l\LI . 00Tp.1r:/ fXr"tlJ~,rH~T ,p~q t~!(('lt-. 1 ~.~H'!'t;U~.~IVH'f t~l 


Ts=- ( To,., T"' T • I =•0 ) r:. r"' T,..., n "."! i . · 

T~<LL.~T.11~,..., T~ A04 


\:'Jr> T Tr:: ( ~ '~ () 1 } 

~ 01 Ff') q ~ - ~ l\ T Cl !-J 1 ) 

'tJf'.? ! TF" CA tP U ?) 
QO? F0P"'~TC1H0,*P·'TF.rJ".~r:r)fl\TF OUTPUT roR SPJPLFX*t/) 

WPTT~r~,7001 . 
700 Fno• .1 _,'\T(1l-U'l9~H).l\DT IS THC- \jt'.LUF nF ARTIF!Cif'.L U~((')NSTR/\. l"'F.r) O~JFCTIV,C' ~ur- 1 (Tff'l~I :'\T TH~ ("C'f\!T~0rn .!f.,/) 

1:1 c:> I T != ( ~' ' P; t. ~ l 
AO~ -F~r>'~l\T(1µ1"'. ,1t-STFo ~'f\• U UAP.T VA 

1or/\~LFS X(T' AT TH;:- (i:-~•T"0If.l !"'r- THC' SI~·~Pt_FX~t/) 
P 0 r~ 	 ! i:- CI o o I "' T • r-.• C: • K'.""'\ U~' T >r; n T0 o 0 l 

K0.lJ'1T=0 
(!\LL UPr-"ft.t._ (Xi"' ,u) . 
t·..1~ r r c:- < /.., • ~ •- '..; > t..L • 11, u("\ , cxn cr > , r -= i , ~1 l 

~()0 i:-rH:>'..-".T( Ti:,'l.X.~r;:lf.....~,·.'.)C. (/tt.QX,bC'1~.Q)) 
rR TTr;:R T0N ::"'"''? f'iPT r "'lJ~' 

001 u.c:;flu:r·.o 
n O "l. 0 0 T=1 • ~, • '' 

UI"' r r: =(F U!'<l ( T } -u~) 

Un TI= S~ =Ur") TF i'· U I°' ! F 


~co 	UStJ··~=U .~lY· '+iHJ!F.Sf'\ 
,- P i T= .~ •'°) D T ( U~ i :• ~ IF Ln !\ T ( "·' ) l 
TC' Cr r:> ! T • L T • r, ) r:. '"'\ TI"\ 1. 0 ("I 

Ti:- < l L • ' r-. •, ~ t1. X · . ~) r.;,.... T,.... ~ r:; 0 
\1..IC' Tr)V q::"t:'f_t:"f""TT~M '-lfil,\I 


rv" t'" 0 T=1 , ~.., 

L. 0 Xr.> ( T ) : X0 ( I ) .._ :'\ l PH A* ( Xf! ( T l - XH { I ) l 

(' !I L L r: o r r \,, ~ ' <xP , 1y:: •o j.' r , P.e. r , ~ .1 r r: :\; s , r·!c: nu ~ ,. :1v r 0 1 , q > 
TF U S TS r. '< t:' t-. n~ r-' T~~ A\: !_;? .!\ "' ~ Uo r: !? F fl p:· P Tl -f " ~,1 UL • -_,,rr:: Rr= r? F' D l ACF XH 
q y ( (? ."'-.\In pr: sT fl D T !:" f' ,..., ~. \~ . .. ~·. '. t y !=" ,,....: l'J v ~ ~ s I r -~ D t !:" x 

Tc ( ' ·' s • r; c. u,., • ,. ~.1 r\ • t In • r.. r • l 11 . } r,0 T ~ c; ~ 
1TF ,.., r.r-vr- ,..,....~- 1 r'ITTT0\1 ~'("'\T '"r-T .•JL=' Tf.VS: "'CXT ~reo Tfi ~'-"F.' tr: L'r.~ t5 LT UL 

Grl T~ 60 
1c:i o nn 70 r =1 , ~ 

7 () xA { T • !\I"·' l ~ xf) ( T ) 	 lz 

G0 Tf'! A0 l 
Tc:" uo.t_T.UL we Tr~Y C)(Of\~!5T<"N H'f'PP.!(i THAT FtJPTt-JS:-P. ' r'.•PQOVF'.i'l:·Nr TS 
or.St;TPlF 

~() T$!" ( l._JQ. LT .ut_) r;ri Tri oO 
(ii'"' Tr 100 

on ,.,,., l lo r=1 • ~-1 ,,n X~(T}:X~(!)~~A~A*CXP(T}-XnCT)) 
( AL L ~D T p.";. ' ( xF ' u;:: • 0 H ! ' p .S T • ~,I cn•. t s ' ~.!~~us ' Nv r01 ' R )

TF J:" X P Ml :: l f1 '-1 f S SU(' ( =- .S 5 F' lJ l \\/ F. o t:: P l I\ ( e XI I RY XF 0 TH~ q '·"!! Sf° P Y X~ 
ri:-cu~.LT.'JL) (:.(')Tr'),;,.;
r;r: rn c;n 

1 ? n n ~ i "2. G T=i , "·' 
, "l 0 	 x"' ( T ' P.} r-.i l : x;:" ( T)

r..r' Tn AO 
T~ LJD TS ~T. UH w~ ~nMT P~PLA(~ XH RY XD OTH~RWTS~ WF f")n

100· IFfUP.~T.UHl~(" T() p;C 
TF <l.J' ~ • ~ T• tJR • 1'. ~· ' f) • lJ ~ • r, T• US ) G0 Tn 1 ~ c; 
r.n 	 H'! ,?c; 

("H .A. Mr:~ X 1...1 P Y Xq 
, ~ c; IV" 1 1-, ~) T':': , ' r-.: 
ll,0 Xf-ICt>=XO(Il 

("/\.Lf 0.DTT~·t:".., CXHtU~,nwr ,ni;y .~!(f'!"'5tf\!S:-t")IJS,~Wrot t'<l we NnW ~~v~ rn~TPAf"'TTnN ~nV~ 
1 5 n I') n l P 0 I =1. • i\1 

i P 0 XC ( T ) :: X0 CT l + n f": TA* ( X•·~ ( l l ..- X0 ( T ) ). 
("ALL no T p.• i:-? CX(' , U( • D q T, o S I , "' (" ry.JS , "! E()US • MVT0 l. , R l 
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(' t-!!=" (""-•Frv Ti (''1t-'T'<f\.~TT"'~·! HAS ~r:~~1 SU('.(~SSFUL 
T~ CUH.r.T .u~ )r:n Tr\ ,l')n 

('" Tr= /\PtWF "..-r;vr: TS r..'"'T ~tJCCJ:"SS~tJL '1!F pr.OLI\.(~ All POH'T5 rF . S H"PL,:-X 
c: 	 A~n QrSTAPT A~AJM ~p~~ T~IS C~A~~EO S!~PLEX 

2/~ I')(') ? ? G J : 1 , f\.! M 

??0 

?0~ 

'1" 

( 

~ ~ () 

c; () 0 

"00 

400 

r:. o1 
., 0 ? 

.,O'l 

'l 0ll 

'l r. i; 

"l 0 ~ 

"l(); 

~ n Q 

~no 

~,o 

"l,, 

f)f"l · 2?0 I=1 ,N 
x~cr.Jl:n.~*fXA<Y•J)•XL<Y>> 
~"' Tr. PO 

"' r"t ' 1 0 T=1.' ~' 

XH{J)::X({!l 
Xtd h"''+'l=X~CT l 
GO T~ ~O

WF (HANGF THF 
Kn=} . 
I)(') c:. 0 ('\ ! :!::: J • ~,, 
X<n-=XI <n 

0PTt~u~ P~I~T r~ AN APRAY x 

1.ro TTe <f, , I- r' r. l ~ ~ ~ X ~-· . 

~ r-." '.•/!. T ( 1 H"' , ~- ST~.mt.. r= X HA S ~UM t'i UP ~. FTF P ~ , 

(ALL t..• ".1 S 1.•j ":'°~(U,XtfH...q .-~S! .~.•• ~.ico~.1:-:.,11.?f:~U.Sl 

CALL F(JT 
(fill UOFf!.1_ ( Xt. ,u~.w1.-n 


I F ( ~1 (' 0 MS• C' ~ • (' • .!\I\.~ r, • t.! r= QU S • ~ 

' '(l(l(:l(Vl(.;.1 

r~<:--'<~.c-f"..1,~r: Tr"t 4n1 
TF ( .~ n ~ ( U !"" L~ - U~H: '···' ) • L T • 
f) ("! l.i c~ t =l ' ~.1 
Xt1 CT., l::XL ·( T) 

(f"lr-.1T T ~ 1 u~ 

P=i?*~F.r'iUCF 


U(")L f) =U"' r.w 
~f"I Tn 'q(') 

I( f"t: 0 

U=lJ:..·i::~•.l 

r)f'\ t; () ] t=1,~1 


xcr ' =x,_c 1 ' 
r:- ~R~- · :\ T { Ap.J ·'"'. p .1Tc- n ~n=- f' P 

1 "'·' T =• Tt.. l 
F(')D' l ,6T(~1H (~ I'·lOUT 

11\ =d6l 
c rio•/ ,-,, T ( .'- i µ :·"" '--' l.i~.,q:u:f".' 

l ".I :,y~, 
C'f"\pH ,\T(~n~\,l\tlJ•,.~ni=e 

1 ~! S =•T~ l 

[)AT/'. 

f°'i:" 

f"I&:' 

· 1!} ~.11rc~1~.~>l 

'l 1 ? ~"'Q'· ' J\ T ( e. i µ_5 T ~ ~ T P't:: 


1T> :,//(~~1~.R)l 

RFTllf">r-.1 


FNf) 


lt) =•//(~FlA.Pl) 
Ff'"~''1'. T(f..11-1 .'1i-STP ··t, TFI") 

~ l ~" 

· 

() • n ) (,() T 0 4 0 2 

TIi 4 r: ? 

c nD ' ··' ,.._ T ( (.. , H I~ i:: QA(" T rn '! ".t c 9 /\. r---! r.. F u5F D 
1 F :,i:-1q.q~ 

F'tV-?'1f\. T ( !-, l HC>'. :'\X r•·,~Ur- ~ t..tU'H~F" ~F f~(")VFS 
1x~ 1 =•If-il 
~ r; ~ •• '-'· T C" H 1nST ::- P ~ ! l c:- r !':) i\ ( T ! f' "·~ USc !') 

i r:. =•Fl'l.!'!1 

T1+ ' -!{· TTF'P A T t ON 5*• I ) 

T~ n UTPU T r- VF r< Y TPR ! MT (TH l (' YCL E • • • • t PR t 

rs PRINTf0 OUT FC'R !1)!'.TA=l ONLY •••• TDAT 

T,._,f)C""Pr-,.,1,-..,c::- ,. . T VI\ q I·°' o L F S • • • • • • • • • 

!"IFl"'\1.J .AL!TY C.r;f.l (('f-.!SiP.f\. P,JTS • • • • • ~-.•CO 

f. s sT FD s Tl c • • • • • • • 

Pf~ ~... I TTE"'.I • • • • • • • • MA 

~. ~.. r 0 ".JV ~ " r, ~"I r r: <'" P TTC' ~ t "'! ,..,, • 

- i:'f"IQ' 4 !\T(~1H C'M !J ~ 4 pr.f") ni:- r:nu~. LtTY ("'iMSTRATMTS ••••••• ~ • • Ntn 
1US =df-il 
Ff'\~ ~'ATC~11-~0~sTp.l .4,T~D UPPFP Rnur..~~ ("')"-.) RMtGE ()f:' X( t) ••••• . • p•.•.6,Xf 

L('!\.!F"~ Rnur-.!r) ON ~ .1VM.)F CF X<r> •••••• D~.'fl\1( 


V ,'\I tJc:- ~ n~· X ( !l • • • • • • • • • • • • • X<; TQ T C 


CD TOT 0?09 
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SU f'2 r> /9\ UT I ~.1 i:- ~, I!'' ·~ r:.? -" n ( ~· , ~,,. !'. X • P ~ -"· i ,.~ • ~,,.... ri ,._, S • ~! e Q US ' X~T" T • ;:.- • C: '•.• " X'-' ; t P ~ T''T t . 
1 T~ ti. T A. , " • " r n Ur I!' , U , X , o H T, o ~ T•·r: r. • --: "p:· W, (; ,A. l • r; /\ '? , r .tl l • !-~ "? • X6. • XQ , X( t Xri • · 
., l"'l F' L X , r- G .I\ , r. r., n , r.- ~ A. n • rn-' X, o ~ X • \ I X•:£' r.. r) T , n !\. <"', T • ( '~ , X~i F \,' , X TP ! /1 l ) 

r') f".A F' Ms T f"\ M x ( , } 'x s TI? T ( l l ' '")'. /\ x f 't )· ~ q ~q M( , } • ~(1 ( , } 'r. "'1 n.\J ( , ) 'n FL x( 1 ) 
1 , x.t\ < 1 > ,x n c1 l , xr < 1 > • X!") < , ' • Gf':. 1' c 1 ) , r; ~- ' < , l • r, q l ci > • ~P? <.l ) • ~ r: t-. ' 1 l • 
? F' ~ n ( 1 l , Fr; t ~ C1 l , XTR T f'.. L C1 ~ • Pµ, Y. ( 1' l , P ~ T ( 1 ) ' ( µ C1 ) t X"' l=' \•J ( 1 ) t I JX( 1 ) t · 

., P I\ r> T ( i l , r.- fl .S T ( 1 l , "HX( f'.1 • i ) • !' S X( "·! • l l · 
cn~.~ '-·~ r-..1 v ~ , !'!' 1 ~F x 

r f"\P T p~ r 7. .A TI~~~ Ry TH~ f·~FUOP y (;I( A') I'=-" NT rJETHnr> 
I k' :0 

( 	 tLFAPJNr: ~LL TH~ APPAVS n~FOR~ US~ 
DO~? t=ltN 
lir" ( I ) =0 • o 

G~l F'W CT ) !: 0 • 0 

Xl\CT1='"'•0 

x~nl=11.n 
X((Il='l.O
XIJC!)=n.c 
fiAlP>=O.G 

r,.a2Cil=O.iJ

GPl{Tl=O.C

<'iG?(f)=O.O 

XTr;lIAl {I l=f'•r'I 

X~·' r= I•' ( T l =n !- D 

-Ff.A(Tl=C. ~ 
Ft:P.(f):O. C: 


c:;, i:-r..~Q( Tl=O.C 

on l r=1, r-.: 

CH ( T l =~ * !\ O. S ( rn.A AX C! l - ~ •.,q ~·! { l ) ) 

XC T l=X~,p:q( T) 

'-"'OTT~(!-,,~ n 1 l 


~01 ~n6~-aT<1µ~,*~oryvrz~TT~~ nv ~E~~~Y Gn~nIF~T ~ET~on~./l 
r 	 Al.l . INPUT ru\TI\ TS P~PHFO OUT Ff'IR IDATt..=l 

! F ( Tr'!A TI'.. ~.q:· • J )I';~ T-" ?.OQ . 
'.·! P TT i= ( e, , ~ ,. ' ' ) TD ~ l I\' T 
WPTTF(~,~C~linAtA 

1:.'o TTr: ( f.., •~ :~ ."If ) ~.. • 

Wo f T i:- ( ~ , ,~ 1 e; ) ~-' ( 0. t-.' S 

~~' o T T i:- C~ , ~ n r:, l = 

Wo TTr.. CF.. • ~ r ,7 l ·- ~ f.. X ·~ 

',~Ip TTC ( &, '':2 '."'.A, r.. 

\-'! o TTc ( f.: • 1 I,° o ) '' i:- n! JS 

l·J D TT i:' ( ~ ' ':2 , c l ( 0 v A x ( Tl ' T =1 ' ..... ) 

\\1 Q TTc- Ct.. ' "- l 1 > ( r? ~-· T~! { ! ' • T-= i ' r-~ l 

i,.; o ! T;:- C,:... • ~ 1 ., l CXS TD T ( T l • I =i t i\J > 


?oo L=1 

l.l<'=l 

1((11 J",'i=r 


:? 0 Ci N" . ? 0 r=l • t-l 

?D r"!='l..X( T l=f:.:; 

~~LL\:G.O 

f)~LS=C.O

LL=G 
JJ=l 

r SIJof.?\'UT!"·lr- o~. ~TTAL P.t:TUl"-?MS Vf\LUt:"~ l:")t:" f:OAfHF~·TS QF0UTR~~ 
1 c;tj r \LL PAPT T/\l ( X,M, Mr~l''5 t\tf:O".)!JS tP'-IT ,P~ T ,.r:(hR • (._,tUX .PSX ,C'1-1)( t 

1 PAOTt*A~T) . 
(" SURr.>l'")UTr·\1::- n~TT'~F? o~Ttm~·'S VAtttr. ()F°· ,1\")TIFTCTt,t. i"RJ~CT{V!=" ~tJNCT?4'"l 

c l\ l L . "" I") T f ~ -' F° ., ( x' ~TI ~-· , 'I DH t • (') s I ....,c0 t. I C':, ' ': r rn Is • ,..iv I r; L • ~ )
C N~W we STAPT SfA~r~ ~~~ TH~ nFST V!LUF5 nF ~LPH~ A~~ 0 ~T~ 

r ALD~6 ~~n n~TA ARr THC SCALnRS sn c~os~N TY~T STFP S!ZF nfLX ~ 
r - A L n L.,A * r; + n ~ r.q r- J= L x (' F L ~ ~ T rr r:: p f, T I 0 M , G rv;s ~ .Ax H/u '~ ~F c p ~A ~ E TN 
r r~c c:- 1•r..1rT T~'i'·' v~. 1 r_1t'.'

(' sT I\ Q T ! ,. •~ \/ ,.,t . :_; r: ~ ..~ r- ~ l !')~A !<. "l f'\ ~ ~ T ,., " R ,.: ct-',.. sF '-1 a. s ~ 0 =n•n AM~ ~ r'9 =~ •0 
Af"'l=').O 
P~=r.c 

"'"''"''=0 11 o '°' n 	 'l r =1 • ~
'>i 	 XMF\.if ! l:X( T i-Afi*(i0( T )+f'(")~f)r='LXf T) 

( ft. L L r: 0 T T\: F ;i ( x~-.J r: ~·: ' ;:: l J~: "L~ ' r H T t p c; T • f'! r0 ~t s•N Ft;u~ •N v T0 L ' R ) 
F"~•tJ=1.n 
rf\LL DA.orr~LCX"-!l::1.r,~·.-- 1 r""-1 ~•• ,..e')u~,04y .r>sr .~~1r: 1·'• ~. r.~.ux,P~X.?HX• 

1 l")AOT, DA ~, T) 


S! .! .. "1 =i1 • n 

1rin c; r =i , r-

~ 	 SUr-t.1. :Su~-.~1+r;MFW( I l~·~n( T, 
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FA =-5LJ~··l 

F~=0.0 

nti 	A ! =J • M 

~ FQ:C"R+~NfWC!l*~FLX(ll 
sur-.q -:o .o 
s u~.~?. =o•o 
J:PS=l.F-4 
nn 7 f:J,M 

SUMl ::SlP·.... , + ((if"\ c J l **') 


7 SU,_,.. ' ::: S1!~~ ~ + (r) ,:- LX f t l **' J 

IF ( .JJ. ~0. l }sw~' = l • F-R 

T~ CJ\. P. ~ ( SUv1 l el . T. l. c:--?0) SlNl =l .t:-'0 

TF Cf\ ~ .S ( ~U~? l • LT • l • r: - ? fj l SU··~ 2 =l • E- ?0 

~PS1:~DS/~~9T(~PS<SU~1l) 

FPS?=FPS/S~RTC~A5(5UM2)) 


r)~ ~ T=1 ' "·' 

XA ( T) :X'-~C"I.•!( T '~r:PS1*-r;f'f T ~ 


xt:t ( r l =x"·' ev < r , - I'=' o ~ , *~ti cr ~ 

Xr CT}=X"' C:-\·1 CT ) + c: o ~ '*nr-' L X< T > 

A XF1 ( Tl =X~..1r:- ~~q Tl - ~ o ~ ' *"r:- I X( T )

('1ll.. P/\DTfAL (Xl\tN'"·'(N.lSt'-·!C::f)lJS,OH! ,DST ·~Ai ,q,o.;.ux,P~X.PHXt


lPART,*/\ST)

(ALL P ~PT! h l CXn, 1'', Nt'""C~·! St r-.1C'QlJS • P1...q , n St • r. A? t ~, (;-h .UX , P ~ X • PHX • 
!P~PT,P~ST) 
r I\ U P A r.> T T,.d_ { Xt~ t "' t "'' (" ~"' ~ t 1\t F rH J~ • PH I • P ~ T t I':.~ l t P • ("t·h U X t C> t; Y. • 0 ~X• 
io~PTtP~~T) • 
r "L r. o I\ o T r " L < xi; • "' • "'rnM ~ , ~! c:.-~us •P~ r , P sT , r: ~ ., , P • r 4 • ux • !'.> sx •o ""'x ,

10hRT,PASTl . 

on I" T=l•N 

F~A CI) :::(:Al ( T )-e";A2 CI l 

i:-r=rq r l :(;111 ( T>-r-:~? < Yl 


1~ FC:JH~( I ):GR?( I l-GRl { T) 

Sll'·il=O.n . 

~U'.A/:C • ~ 

sur·,.~=G.G 

no 14 r=1 • ~~ 

SU~l=SUMl+F~A(T>*GO!I> 

SUM?:SU~?+FGQ(f)*DFLXCJ)


14 	SUM~=SU~~+F~AP(!)*~O<Tl 

FAA:SUM1/{2•*~P51) 

FPC:SUM?/(?.*~P5') 

Fl\q=~U~r~/ ( '·-1{- :'P~?) 

rq =FA*FqR-r~*F ~ q 

l'"\?::::"'i~Ft-.~-~!-.*!=-"fl.P 


n~=~~~*~Qp_r~P.*FA~ 
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l("=l 



120. 

"Jl")f):O 
CAl l 	 A "-1S~·: r- q { U ' X , ~:H.q t P S t • ~ i t !\.!( m .1S • NF.~US ) 
(ALL 	 EX IT 

~o WP'T~ <A.~a> ~~xNnn · 
(fill 	c:- (! T 

-=-1 \,\ff'TT~ '"•40)
COLL ~XTT 

~ 2 ('~l'H I NL'r; 
P~TUQ~I 

( 
~1 ~f'~~!AT C1µ1,*H.!TFQ~l="Df ATF OUTPUT ~0R NCNt. tr-:r .H; fMTEG~M_ , CPTH·1.JZATt 

1(1"'*' /) 
'l,/J. ~'"'R ~ '.t'. T <i~~.~'1-S/!! UTY("'I~' T'7. FFf\ $ {C:1_c:- f"\".'LV iF' ~ .i vrnL Y5s~'*•li 

~ c: e ('" ~, /\. r ( , t-1~ ' ,~. si I=' D ~I • ~ • ., x• lP.I l"'l ~ e:- 11. I '"' • * t "l x • "!;- ' ·1v r~ t. -r.- • ~ x t ~ t; ,.,. • 't ~ x• ..!$- I · ! i);:p E~·
"" 	 ·

1 :"I r: ' ·' T V !\ o T t n L r- S X ( T 1.,,_ • I ) 
~ ,... ::: ,.., o •·•/\ T ( T c:. , r,x , r r: , 1. x , T~ • ' x • 1, r:- ~ ,., • ~ • / ~ e. ( 4 .,, x • ~ ~ , ,..., ~., • / l 1 
"17 F°"'P''~T (11-1r, ,*A.'r::r~r.r- ~i\S r::."'.JLF'f'J T"' ~J't'.!D ~: ('f'. ' !~ t ,c:'v~AL S"LUT?'1Ne T~V 

1 ,..., TH f ,., ~-w TH :~ Gs Fr r ~ 1 ,.,....! r I'lT :-: ~ ? ~ L s ·""'Lu T I ~ t\:·x- • / ! u ~.,, * A,.~ n us F. TH ~. T s OL u T ! 
'("'W 1' S ST APT ! ' ·'0 P ·~ T;'\; T ~CR TH I S ~ ~ r: Tu C·r:~ * t I ' . 

~~ !=°~j)~· ·'A T ( 1H(}' r.-Sf f .RC4 s T:'WPE:') .t .. FT'?.R \~ .l\X t '.-u:--1 At LO\:J1'RLF. l';u ~-'~ER OF NOlJE 
is~~ ,/1H0,H~r-: _s r P .' TC'G"'At ~f''H l ~ Tt~~· I.S PQf 11 1 T;:"~ rq_IT~·.ll 

11"H"i t:" ""o .. 4 ~.. T ( , w ,..,, , '~· 1 '"' r ~ ! T r. r. c- " ~ ~u .IT TI'"> ~ ' !-• '" S ri r. r: •J ~ I" t ·•..!,.., r. r: T r:- ? "" , T~ • -~ -.:f"' "' e- <* ' 
4~ t='"'o·..·:.r <,,,,...,~pr:-ri..1 r-r" t.-it\S u '.._ i~ 1 G uc ·'" '. f! ('"' Li t"" "!'"IT r-p,;c: '1",'V p·r;:CJ~P snL 

1 !J T I rw ' i r:> Y !H'"i ~ I r-.1 P. Y ( u l'1 ~ ! (~ ! M ~ TI'::: 0 PD:: R 0 r- -T µ f V ~ P. t !\Pl f- S ~ )
h1 FnOVAT (~140P~~uc TrnN F~(T~~ F~P (R) AFTF~ ~~(H ~I~I~lZATtCN. RED 

lUCE =•Fl 9 .R) . 
t~/ F'"'P- ·4 1\T (1'-F-H.;Df 11U\LTY ~..~UL.TIPLlEP . USED H -' Sf'f=. '<'."• • • • • • • • • 

~ 0 =•~1~.Q, . 
~~ F~PVAT (~1HG I~PUT n~TA IS PRI~TF~ OUT FOR r~~TA~l n~LV. • • • IC 

l~TA =•T~l . 
44 r.:'nPqt-.T (f.1H :jy,. 1 r~rn.1.r:-nr .~Tf!' nUTPU'f ~VFRY JP?f"ITCTH) CYCLe-e • • • IPP 

l!~T ~.T7J . 
4~ ;:''iP'.4AT (~iw O '\•lJ'.H~~~ f'"if!° P!r)~Pff'.1 r) r.-" .1 T V 1~'-'!APU:S • • • • • • • • • 

., r.1 =, ! t, ) · 
1~ t:, i:- f". o v I\ T ( A 1 4 C ~1 Uv P F ~ r. F T"If: Q Uf, L I TV ( • GF • ) ( C~l~ T~A ! NTS • • • • • NC 

10 ~.' S = " TA ) 
01:7 	 F!"'r:'', ,~T (:'-"H"' c- ST!• .. :~T::-f'"\ UPDFf' ~U "!!') !"l'.1 ~Ai-,!1";E ,._F X( I'• • • • • • Qe.,~t.. X 

1(!) :9//(~~,~.01) 
/~Q Ft"O \ 'AT (~·q.J '.) ::-5jp·,1'T~n u::•.'f:t? ~0U'lr> '°'\t-l qAr-.~r:E f".~ X(!t • .••••• ~~·"I',j 

1f !l :,//(~r-1A.~\) 
,, o c:-'"'? q A T ! ;... , 1-1r. ~ ~: r. t ! ,.. M n J=" r.. ~. ~. 1 r, r 1J s r. r~ /·..s sT ~ o ~. t zr: • • • • • • • 

1 F =•F~G.P.) 
~n F"0' ~ .o.r (f..l 1~ c .,Ax1vuv ~~:y,,·r~~ ~F ·~"WES PEf)'.11rrr.r.i........ ,. 

1 A X~ '~ ~ • ! 7 ) 
r; , ~,.., p •.4 AT ( ,q H .:~ ~ Tl:' 0 ~\ I ? r: C' p :\ ( T r",. usFf) /\ s .c()"N ~ ~ c:. r.: ~H: := cP. yT c:: R r~ r-.~ • 

i f". :,r-10.P) 
I;? r;,...p~.-"r (~1qc ~. !l.J\~q~~ f'C' f:'. ~~·UtLITY (n"~STr."!AP:r:=-,•••••••••• "if'. 

Jr-. U ~ =•i7} 
e~ i::-"o'..'L\.T (~lH-t;T.~r:lTP, 1 1"; VALUFS "F X( T) • • • • • • • 1 • • • • . ,X~T~t 

1(!) ~.//(5~1~.='l 
c1~ FOP'·~AT C1Hi;~7(·fNPtJT f) .AT .6 F(:~ !'~O"'llfr.! F;A~ iNT~Gr'R OPT!','!ZATTO~*•/' ) 
s:.~ F'"'f.?"/~T C.,~ :-:. ~~·"'U''R~o 0r: Vf.PIAt;Lr:S T~ RE ~/.~.OF lNTF.GE~. • • • • • 

1 ~ =~.TA) 
1~~ ~"""'-" /\ T <, i--.ir ). ~··,AAX t v ty NU'-H~fP 0i:- 'L~r,~s T~ · PF ~. F.A~C:HF.n. • • • • • ·-u 

1X"''")"' =*~TAl . 
c: .., ~ ~ D .. t.. T ( 1 w~ , ., ~ x • ~ '"'n T P •t ,~ .' .. •r ~,• - T"' T ;:· r- ~ " l c ~t t JT r~~•* / , ? r )( • -~!- - .- ..... - - - - - - - 

1------------------~·''r:.o r-""'0"-' .~T <.,C.:X,* ' -" !'- '. T'tU•t U-::¥-,cl~.ll,//) 
~('.') l=",..·!7••.i\T ( ? ~X·?HX(,j/,~Lq =tt-",A ".q 
!-,0 r" ."'lp•.• ,t. T ( 11...1-, ??l-.!P t ~ ·'""'U .~L !TY (!"\"'r~T'.'q~n .c;, 
4. i r: n P ~ . - t. T c ? ., x , t.._ l...l P '"' I c • r ' • ., H , =, c: 1A • q ) 
~, ~'"''".'\T {1~'-·~ r=~lll\t_IfY crr.·~~TR~P·Ts~' 
~ ~ ~ ""? '• !\ T ( ., .., X • ld-tn S T ( tT ' t .., H ) = • F 1~ • cq 
~4 FnP~·/.~.. T Cl H l ) 

r:'.'D 

co r:n 0?.15 

http:U-::�-,cl~.ll
http:9//(~~,~.01
http:P!r)~Pff'.1r
http:rq_IT~�.ll


7 

121 • 


.sun r,nu T T~.,r:~ s""L v::- ( "''.,,,~. I~ x . ,r:i ~.Ar M. \!r- ~ ~-~ .r:: • '-'F~tJ ~' 'x ~ T·" T • :: • r:. e • ~ ~ .... '. :::". ~ • 'l .~ x,..1. 
, ro" Tl'.t T. T"''"'~X ,11, x. Dt..tT. ~ r; T· ·'"\/ ! ~L. U~1 QV 1 • \•'()R~? '\·'''!?'( ~ t ,_.._, ,"".r;~ 4} 
"f':~~~1 sr.-.~1 0''~.x { 1) .. "~"T"I( 1 '. XST,.,T<,)., x (1,. P~T t 1 '. t':l~T {1)' ~,~~6( 1 (

1 1 i t \ft' n PK ? ( 1 1 t li'.' ·~? K ~ ( 1 ) t 1.-! CPI( 4 ( l ) 
(" ('\'~V .''"\~.I ~ f' 9 '\! f\I f\C X 
l=Pn w~~~,~~ ~?~AYS 
on l r=l•N 
X(!):: ;) .0 
Wt'i?ttl (I }: C .::: 
\~I r:i q ~ ? c I ) =c • r: 

'.·J ~ ~ ~ cr l =o• ~:
0 

•.·!1"'191(ld r )::C.l· 

Kfi-: 0 

UL.i\~T=i C. CF+4 0 

~~FI~~ F !'l~r--!r:,f X=? .St" i~AT SFt·P.CH ~·dLL FU"lCT!ON C()R~F.CTLY 

~,l''-' D~ ( =?
., (' " l l sc fl r:> r~ (x ' u • "'' • xsT" T ' ~ r-..l I\ x • p ~-1 T ~..• ~ p u T• p e, r ••.'( f) ~1 ~ • MF' OU s • ~ ~ xv •"~ v J~L • 

, F 'c;. To"! '!T. T•,ir"\ CX. r<. 1 ·/("· ~ v 1 • 1..- · ~r:>~ ') • '··''"'?•~ 1t'.-!nf'-H"4, 

t~ (~n.~~.i) ~n T~ ~ 

r.." T(' 1~ 


Tf:" ( t\ P 5 CU-U L !~ .S T ) • r, T • i • r:.- - ,-:: 7 ~ ~ ~ S CUl -~. <: T l ) (';0 T~ r; 

f'") D T f ~ - ' :y.~ Hf...S r~ r= F ~1 Q F AC ~ff 0 

Q(!"TUP~.1 


~!:'TtJ~~\~ 

T~ {o.r.r.1.cc-?Ol ~~ T~ ~ 
lt/1~1 

r;~ T~ 4 

Uf /\ S T:! .1 

p;p*1'Ff'JUCF 
l')n 7 ! ~ 1 , r--..: 

XST~T(T)=X(!) 
GO T".1 2 
F"-!'"' 

(!" TnT 

http:SFt�P.CH
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Sl.JQO~IJT ! NF' l\ nr)L rx. PH T l 

r',..~,.~.•f'r..• /SOt/ T(!-tJ!"('l((r;.n)•TV~. P(~(),,TPZfc;!'1)•~!?t;;0l.~-!1(~0'•'°'~Q~,~t~" 


C 	 .A')OI.. CFTUR~1S fif\D! T I0N~L <.CNSTRAINTS T~ r.~~KE SOLUT !CN PHE<;ER 
~J~FMST0N X(l)t PHT(l) 
!~ <Nn~.F.0. 0 ) i,f) rn 4 
111') "'t I =l , ~~f"ln . 
I~ crc~~cv(T>.~0.01 ~n T~ 1 
L=TVA~( l) 
M~J="' l ( T ) 
!T:J+M~O~ . 
PHTCT!l~-CXCL'-FL~AT(MN)t•tOOO.
GO TO 	 3 . 

l 	 TJ!' CTPZ<Tl.F~.1) ('!(') rn 2 
l:!T\Jf\P ( l l 
''"'=~1? <I l 
TT= T +r-·n~r: 
o~rcrr,=fX<ll-~L0ATCNM)l~1on0. 
(,(' T(} ~ 

? I I =I + ~' 0 or; 
P~T(IY>=0• 

~ 	 c("l,..H r 1~. ur: · 
t. 	 r.?~TU~"' 

~MO 

en TOT 002~ 

http:crc~~cv(T>.~0.01
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SUQRnUT I Ne S~ AQ(~ ( X,• l} 'f'h ~ ~ TP.'! , · i:?·l .~ X •~MTN t PH t •PS t , NCO.NS •NF.OUS eMAXMt N 
1vroL,F•~•TDQTNT.tNn~x.o.xo,x~.n~xx.rxxx> . 

I] Tv r: 11.t s Tf' l'J x ( , l • x s TR r ( ' ,. •qt:•~ :x l l , • R~ rN ( 1 , • p ... r t , ) .• p s r ' 1 , t x~ ' l . , • x~ ' l , • 
inxxxc11.rxxx(1' 	 ·· 

C-r1M"',•f'N I( 0, N~!riC' X 
(', 
C 	 OtPFCT SFAPCH PO~TI~~ OF SEFKl AMn SF~K3 
('_ 
C TH!S TS THE ntP~CT SE~~CH ALCiORTTHV. OF HOOK~ A~O JE£VfS 
C SEAPCH IS US~D AF SFFKl AND SEF(1 
~ ~~DFX=l ~fANS SFAQCH HAS B~f~ CALLFD RY SF~Kl 
( ~NOFX=? ~[AMS Sf~RCH ~A~ BEFN CALLED ~y 5E~K3 

MVTl"lbl=l 

Kt<K= 

~1 :: 0 


?0 '<l=l 

t< ?=f\I 


~ODO 40 !=Kl•K2 

DXXX ( r l :0. 

TXXX( ! } ~o. 

X~CT)=O. 


AO 	 xq<r>="'·
11() 	 AO f='(l,K2 

f,0 X<r> ~ XSP~T<Tl 
r s~T ~T~ST n6SF D0T~T 

on 10 T=':.'1.K? 
70 XI) ( T ) =X C ! l 

r 	 ~~~~QATF ~~LX(Tl AN~ TFST(J) 
nr-, ~o T=t<:l•'<2 
f"'l X X X ( T 1 = F* < ~ ~.~ f.. X { T l - R ._,. TMt I l ) 

AO 	 TXXX ( T) :f'JXXX C! , *(, 


"'C.A.LL =l 

l 00 c:mH P.~UF 


~o rn <101.102JNNn~x 

101 rALL 0PT!~Fl(X,UA~T.PH!tD5TtNC~NStNE0USt~V!~Ll 


r,n T~ 110 

le)? ("flu ""DT P ·'s:'? ( x'U"~T .rH..q •l°'S I •" .f(':f'lr..!~ •"ff"US ,.~vt ~t. ,p) 

1 1 0 T~ CI'.! r Al L • ",i ~ • 1 ) .) rH ~ l ? 0 


Uf\PTti 	 = UflQT 
l ?0 	 (('H•H H·'U~· 


r !=" c~, v I i) L • r:- 1-: • c l 11.1 vi nL 1 == 0 

r~<~~n~x.~0.1) ~n Tn l~O 


r 	 p.1rir:( =0 p•r)yr·~rcs T~ t;c."Q(~ TH~T YT TS 8FTNr: U5C:'9) PY F,:'t\S~L 
T~CINnFX.c~.11 ~n Tti l~~ 

0r r F s!=" A 0 ,- H Ts C' P·'G u.s r:- ~ ~,.. ~ 0 f,:" Ly T" () t1 r t'\ T N ·" ~~A s I ~ u: sT A P. T ! ".!G ...,~ IN l 
C Tf-lfM PC-TUP~! t.:S _srv-,r-i AS $!9\LUT!r1'-! G0FS C-fA~Pll.E 

t~(~VTOLl.~0.C,~n Tn 1~~ 

1~0 Gn Tn c17:, ?CC, 210, 15~) ~CALL 

170 CONTINUE 


( 	 ~ -~l(~ SF"i\D("H 
1 ~ 0 	 ~' I= A I l =n 


nti ? 4 0 T=v. 1 , K? 

X ( T l =X f T l +r) XX X C T ) 

"I( ALL::? 

Gl"l Tn 100 


~ 00 	 ("'Nt TT "'UI= 

!FCUl\PT.LT.U~.PTf') ~OT,., 2~0 

X< Tl: X ( T l - / • O·tH)X XX ( I ) 
Nt""ALL::'l 
c;n Tn 1 00 


2 l 0 ("'NH I "1UJ:' 

Tf:'flJiHH.LT.UttQT:1l HHn '-~O 

MFATL : N~ftfl + 1 

X< T l = X C T H·n XX X ( T ) 

r;0rn ?M) 


;>~O UtioTn :: xr.or 

? 4 () r"'"-' TT ~.II Ii:
'c;O Jt='("tF/\TL.e"\•"'>~r,TM ?60 


(;f"ITf"' ~ 1 Ii 

~hO no ?qu I=Kl,~~ 


p: Cf""I X X X < Tl • r., T • T X XX CTl l ~I') T" ~ o '1 

? "0 ( f" "-1T £"-! U F 


GO TO ;p5

2qo nn 110 t=Kl,K? 

~10 	~XXXCTl=~XXX(!\/?•

r,nH' 1qo 
r FSTA~LJS~ N~W ~ASF POTNT 

http:T~CINnFX.c~.11


~1~ 	 DO ~?C l=K1,K2 
~?.0 	 X~CI1:: C<Il 

~1 : Ml + 1 
T~ (M~nc:'x,~~.ll ~n 
~" T0 ~4,J 

~~0 	KKl<=~t<'(+l 
tF<~,K.~~.TPOJNT•
CALL UR~~L(X,ULnW) 
w~rrc:- (~,.,, ~,.~,,ULC"\VJ. (X(!)t Y=ltN) 
IC::KK=O 

~40 	cmnt NUF 

'!' 

-s~O 

~55 

~~o 

1iC 
~FO 

'2~c; 

10~ 

104 
1 0 ~ 

~A'1 
., 
l~ 

TFfM1.~T.vAXU) ~n T" 1A~ 
v h !(' f: .f\ o A T T ~ !? T\t ~ 4(\VF. 
r:>n ~Ci 0 l =t< l • K ;;> 
X(Tl: X(J) + CXCf) 
NC'ALL=u 
c;o Tn 100 
CtiNTtMUF 
IFCUA~T.LT.UAQTO) . 
r')('I ~ 6 0 T=I( l t K 2 
x~ c r ' :: xi:q r ' x ( I ) = XP ( r, 
t;('\Tn l~C 
~n ~PC r~~1•(' 
X"'CTl = X~f!) 
U.f\QTf" = U .·'~T
r;rnri l ~ o 
('ALL U1'J= ."L f X tU l 
r,n Tn < 1()'l,1 06. >"'ri.•nc:-x 

124. 

TO~~~ 

~~ Tn 340 

- X(')(!)) 

~OTO 370 

CAf . 1. nory~.·s:-1<X.Uf.~r,o~y9t'~t •'-!C'"'t"-!S.~lF.'<1U5•"'Vtr.L) 
r;r, TO 105 
Cf\LL !'IDTP_.s::-,ix.ur.. ~r.P~r.osr.,..,c~~,s.m~·~us.,.,vr~L•Q> 
T~ < "-IV i "'L. r.'"). :) ) (:f"' T0 ~ R 7 

rF c'·•1 • r-~ r • ~' ,, xM > v-: q r r F. <6 , /.+ , ,."' t.. xM 

Y~=1 

~~TtJQ"' 

S:-1"\qqflT( wC,f!it1Xt~ci~.~/(?h'Xtl.if:''T,_,•A)l 

F~Pql.TC ...,~,~::;..If\'" i:-r=~st~LC: S~LUiT.n~ .4'FTf."~ 


1 ' ~A A ( ~.' . • I ~ I ) 
F~D 

CD TOT Ol.17 

.~Ll"'tJ.'\QU: ~!U'H~C::-Q i'F ~.~nvEs 

http:F~Pql.TC
http:IDTP_.s::-,ix.ur
http:M~nc:'x,~~.ll


125. · 


SUQ ~r"'UT r "' t: ~ o TT ...4~' c x , u APT , o'-' r • ~ 5 T , ~1rnl'1 c:;, r-• ~01 ·'~ 9~! v T'"'L , o l 

nyM ~ ~' s y ~ ~, x < ~ > , o ~ t ( l \ , o s r <1 l 

(l")W~0N I( 0 t w.•f)J:" X . 


( V~PY VfN0P V!nLATJnNS ~F t~,~~UftLlTY ~n~STPAT~TS SHOUL~ ~nT ~A~F 
( T~E FNTIPF Sf'LUT!nr-.1 JM~f.f.~!RLF. THF.RFFCRr. r~sr FOR PHJ( n.~£.ZERO 
C WHFQ~ Z~R~:-1.0F-10 

Z~Pl"'t=-1.F-10 

~JV I ~L =O 

.SLJ".q =0 • n 

SU"·-'?= n.c 
C .A.l L Ur? r:- AL <X , lJ > 

C 	 SFF~~ DFNALTY FU~CTIOMS 
c
C T~E APTTFTCIAL O~J~CT!VE FUNCTT~N !S OF THE FO~~ 
( UAPT:URFAL + R*SU~(l.IPH!(!)} + SU~ClPSIIJ)**')/5QRTCq)) 
( 

110 	'1!V= .C:.0P.T(~l 

! ~ <~-' ( r ..,S • L F=' • C ) r:n T~ l i ~ 

Cl\LL (0~1 ST f x•"'Cf'tr...•s,pµy' 

no 112 I=,,~.'C("'l~S 

!F(PHT(Tl.r,r..z~R0)~0T~lll 

MV ! nt. =:~•VT \IL+ 1 


r 	 ,H)f') '" SFVt=r:>~ pc:"!"L TY Tn ANY PHH Tl WYTCH IS VIOLAT~O 
swn =slP..A 1 + /\ R s { DH I ( r ) ) * , 0 • 0 F +? 0 
~~Tn11' 

r · AV" Tr" - r-. YV FH "' r. ~ V t'. or>~"X f '" .!\ T~ t. V l F' P () t TH~RF ! S ~.' 0 P0 f ~ff PE'! Al T Z t '1 f. r A VFQY s~ALL DHT(T' A~YWAY 
1 i 1 IF ( ,r... RS ( OH! ( T ) l • LT• -z ~ R~) r;r:i T01_ 1 ' 

SU ~-4 ~ = S l Pll l +R I .~. P ~ ( PH T ( I ) ) 

11.? C(".'l~! TP1 Ui:'. 

i1-:2. I~("q:."~l'S.LF. :: )~('Htnic; 


r J\ LL I:'() tJ r.. t._ C X • n ~ T • ~..t r=- 0 US l 

rv~ i 1 t+ .J= i , ".1 ~f°'U~ 


, , 4 s u ~~ ' == s u ~.A ' + ' t. P s c Ps r < J > > **? > / n t v i s • 
i 1 e: U ,, o T =U+ ~U ~ -· 1+ SU v ' 

PFTUP'·' 
c-~m 

CD HH 

http:I~("q:."~l'S.LF


126. 

SUPRnUTT~c A~SW~R(U.XtPHTtDST•M•MCONS1~EOUS' 
I"') p...u:· NS I ti N X C J ) , P J-H ( 1 ) • P S I ( 1 l 
c:n~-4 ~-·(H,! 1(0.~.w~r-x . 

r T!-fT~ su~P.f'\UTTMt:" f~ uss::-~ ''f:°l?C'LY T1 ntJTPt.H iHC' f!"f".tAt C..f'\LtJTT0•.I '~'A 
r, ST~MD~or, F(")Q'· ~. I~ A~1 f'PTP,~lW t~ ~'"T OFACHf.0(J(f'1a1 lTH~M THF P.ESULT5 
c AT TME L~ST YTFR~TI~N ~AY 8~ PRTNTFD nur. 

CALL Uf:?~/\L(XtU)

TF'< '<~.~o.c '(:'1T~1

'Im TTF' <f.:.' l A> 

WQTTS:-(f->•10}U
r;crn2 

1 \\!DfTC:-{r,,,:. l 

\~P T Tr; ( 6 , ? 1 ) U 


? W~TT~<~•''lf !,X<T>•T:l•N>

T F ( '-1C0t--1S • ~r.t. r'. l r;t;Tn~ . 

CALL C0"'5T(X,"'(nMS,DHf l 
WRITS:-<A•?~) · 

\Al Q TTF ( ~ , ' 4 l C T • PH ! ( I l t T=1 , N CC N S ' 


., T~ ( ~IF0U~ • ~'). ~- l r:r,iT 0".:\0 

(~LL Fr:'Uht. ( X ,os r •"'i:-f'IJS) 

'NPTTS:-(f;,;;>~) 


WDtT~c~,~~'<t•osrcr1.r:1,~~~us, 
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