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CHAPTER - 1

INTRODUCTION

Optimization problems have long been of interest to
scientists and engineers. Problems of optimization are
those in which maximization or minimization of a function
- is sought. The function may be of one or more variables
and with or without constraints. Often the problem may be
to design a product in such a way that it meets certain
specifications, while at the same time some objective
function, such as cost or profit is minimized or -
maximized.

The field of optimization has attracted very wide
interest in recent times, mainly because optimization
problems can be encountered in all fields, in design
engineering, in commerce, in government, in military
service and so on. Development of high speed computers
has made possible the use of various optimization
techniques for solving these problems. However engineers
or others who encounter optimization problems can not be
expected to have the time and knowledge to write their own
programs for optimization, therefore the availébility of
general optimization subroutines to engineers and others
would save their time and energy.

An unfortunate characteristic of optimization is

that no one technique is best for all types of problems.



Relative success of any method depends upon the form of
the functions describing the given problem. It is a very
difficult task to predict which method would be best for a
particular problem, unless of course the problem is
linear. Realizing this difficulty, a multitechnique
optimization package OPTIPAC [2] was developed at McMaster
University. This is a fully integrated package containing
nine different methods. Any number may be called in one
run to compare results. It soon became apparent that
there was a need for a coordinated package of independent
subroutines. These individually require much less memory
and full variable dimensioning is possible. They can be
much more conveniently integrated into a design package.
This lead to the development of the OPTISEP [1] package,
to which this thesis has made a major contribution. New
programs have been developed and added to some of the most
useful subroutines extracted from OPTIPAC, to make up the
OPTISEP system. In contrast to OPTIPAC, new subroutines
can be easily added at any time. The two systems share a
strong emphasis on easily used documentation and easily
used programs.

The convenient use of OPTISEP subroutines in a
specific user oriented design package has proved to be a
very valuable feature. It has been demonstrated that an

engineer having only modest experience with and



understanding of both programming and optimization can use
‘these subroutines, and write design packages using them.

In addition to adapting six of the OPTIPAC
subroutines, four new techniques developed for this thesis
have been added to the package. The first subroutine,
SIMPLEX, is based upon a direct-search technique named
simplex, first described by Himsworth, Spendley and Hext
(3] in 1962. The technique was later on developed by
Nelder and Mead (4] in 1963. This method has nothing in
common with the standard simplex.method for solving linear
programming problems. It derives its name from the
geometric figure simplex which plays an essential role in
this method.

The second subroutine, MEMGRAD, is based upon a
recent paper published by A. Miele and J. W. Cantrell [13]
in 1969. This method makes use of the derivative and the
step size during previous iteration to improve the current
iteration and hence has been named the memory gradient
method.

The third subroutine, DAVID, is based upon an
algorithm originally proposed by Davidon [11] in 1959, and
later on developed by Fletcher and Powell [12] in 1963.
This technique makes use of the derivative of the function.

The fourth subroutine INTEGER is for a special class

of problems, where there is an additional requirement that



some or all the variables have to be integers. Until now
the methods of integer programming were used only for
linear integer programming, and not for nonlinear ones. A
few methods developed for nonlinear integer programming
wexre developed for special cases, but could not be used

for the general case. In this subroutine a branch and
bound technique of integer programming hés been used. This
subroutine works quite satisfactorily on all types of
nonlinear integer programming problems.

This thesis includes the underlying theory behind
various methods used in writing the programs. Flow charts
have been included to explain the logic of the methods.
Complete Fortran listings of the programs and the documen-
tation for the user have been included in the appendix.
Test problems have been included to demonstrate the use of

the subroutines.



CHAPTER ~ 2
HANDLING OF CONSTRAINTS IN SOLVING OPTIMIZATION PROBLEMS

Optimization problems without any constraints are
rarely encountered in actual practice. Most of the
problems are associated with certain constraints, which
must be satisfied by tﬁe optimum solution. Constraints may
be either equality or inequality, or both. For equality
constraints, the value of constraining function should be
equal to zero at the optimum point, where as for inequality
constraints, it should be greater than or equal to zero, or
any specified quantity.

Unfortunately most of the techniques developed for
minimizing a function are applicable to minimizing an
unconstrained function only, and hence.can not be applied
directly to solve a general optimization problem. The
optimization problem must be suitably transformed into an
unconstrained function before any minimization technique
can be used.

The transformation of the constrained optimization
problem intc an unconstrained function is normally
accomplished by defining an artificial objective function
which is a function of the objective function and the con-
straints. Such an artificial unconstrained objective

function has its minima lying in some feasible region.



However it is also possible in the case of special types
of constraints to transform the independent design vari-
ables such that constraints are automatically taken care
of. Constraints of the type in which a variable is con-
strained between upper and lower limits can be handled in
this way. For example if a variable is to be greater than
or equal to zero, the following transformation [5] could
be used.

x; = abs(;i) (2.1)

~

where X is the variable which is to be positive and X4 is
the unconstrained variable.
If the variable Xs is constrained between 0 and 1

the following transformation [5] could be used.

-~

- S
X, = Sin X (2.2)
BE. B = o7¥i (2.3)
i
+x -X.
e2+.e:L

For a general case where any variable is constrained
between upper limit u, and lower limit Ri, the following

trans formation could be used.

~

_ _ 2
X, = 2i + (ui42i)>31n Xy (2.4)

These transformations do not offer a general
solution to the problem of handling constraints because

they are restricted to special types of constraints.



Therefore the more general approach of transforming the
function instead of the variable, is generally used.

A typical optimization problem has the following
form: -

To minimize (2.5)

U = U(xl, Xy x3,...,xn)

subject to the following constraints

<
I

= wj(xl, Xyt x3,...xn) =0, =1, m
¢k = ¢k (xl, Xy x3,...xn) 20, k=1, p
where n is the number of variables
m is the number of equality constraints
p is the number of inequality constraints.
The general form of the transformed unconstrained
artificial objective function is

m
P(Xys XgreeX sT) = U +i£1 Ay () . G4y (x)) +i£1 A (x) S(wéx))

(2.6)
where r is a weighting parameter, and Ai(r) are weighting
functions. G and S are functions of inequality constraints
and equality constraints respectively. The difference be-
tween‘various transformations of this type is the differ-
ence in the ways the functions G, S, and weighting functions
are selected. A method generally proceeds by selecting a
sequence of parameter ry such that ry 3 0 and r»» as t-w,

For each value of r, the unconstrained artifical function
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is optimized, and t is the number of such optimizations.
Functions G and § are selected such that as t-+x, the
qguantity

m
p=] A (0,685 (1)) + ) A (X)) . S(¥; (0)
i=1 i=1

tends to zero. However parameter r, may also be chosen
such that as t-ow, rt+0, then functions G and S are accord-
ingly defined so that F+0Q as t»x. As t+x, the optimum of
the unconstrained artificial function converges to the
optimum of the constrained optimization problem. Thus the
constrained optimization problem is converted into an
unconstrained optimization problem and solved.
The following transformations have been proposed

for this purpose.
(a) Caroll [8] suggested that the problems with inequality

constraints only, can be solved by transforming it

into a function of the following type.

k

P(x/r,) = U +i£l r, - G(o;(x)) (2.7)

where parameter r >0 decreases as t increases and

t
tends to zero as t tends to infinity. Either of the
two functional forms could be used to define G(¢i(x)),

which are

po

Glo; (x)) =

1
A
i

0 3 (2.8)

"M

k
and G(¢,(x)) = -} log (¢;(x)) (2.9)
i=1



G functions have been selected of this form because
they tend to infinity as any constraint ¢ approaches zero.
Because of this property, the value of the artificial un-
constrained function immediately increases if the optimum
tends to go near the constraint, and hence the point stays
in the feasible region. This effect is more predominant
in the initial stages of optimization; later on as t in-
creases, the value of parameter ry becomes smaller, and
then the increase in the value of unconstrained artificial
function because of small value of inequality constraint,
is nullified by the small value of r, because in function
(2.7), the contribution of G to the unconstrained function
is the product of Iy and G. Because of this, as t+x, the
solution of the unconstrained function tends to the actual
optimum.

(b) Fiacco and McCormick [9] have further developed this
approach and have suggested the following transforma-
tion, which is applicable to solve any general
optimization problem.

k 1 o m

J o —2—+r.2 7 (w,xN?  (2.10)
to2q ¢ (x) B j=1 3

p(x,rt) =U+r
It can be analytically proved that as t»>« the solution
of this unconstrained function approaches the solution

of the actual problem. In this transformation the in-

equality constraints have been handled in a manner
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similar to the one proposed by Caroll, and the same
intuitive logic holds true. For equality constraints,
Fiacco & Mccormic have introduced an additional term
(wj)z//—rt. Intuitively the addition of such a term can
be explained as follows. As computation proceeds, the
value of r decreases, this would in turn increase the

=

value of the function (wj)z//—f and since no minimization

y
algorithm would permit an increase in the function, the
magnitude of wj would necessarily decrease to nullify the
increase due to l//—E£. In the limiting case as to>«, wj
must tend to zero, otherwise the function [wjzbﬂ_f would
tend to infinity. Thus inclusion of this term forces the
equality constraint equal to zero when the optimum is
reached.

The prerequisite for use of these transformations is
that the solution is started from a feasible point for the
inequalities. Fiacco and Mccormick suggest than an
additional term for violated inequality constraints should
be included in the transformed unconstrained function,
similar to the one used for equality constraints. Addition

of such a term would make violated inequality constraint

equal to zero and would force a feasible solution.
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Another approach is to transform the constrained
optimization prbblem into an unconstrained function in
which violated constraints are severely penalized.

The strategy was developed for direct search [7]. The
unconstrained function has the following form.

- 20 T 20 .
P(X1X2"‘xn'r) = U + 10 .Z |¢j(x)| + 10 §ABS (violated

. : j=1 k=1
inequality constraint}. (2.11)

This type of function puts a sort of wall around the
feasible region and any feasible point stays in the
feasible region. This type of transformation usually
stalls quickly and does not handle equality constraints
well. An infeasible start is permitted. All these
trans formations were tried for the optimization sub-
routines developed for this thesis. The one finally
used has basically the same form as proposed by Fiacco
and Mccormick. This has been found to give satisfactory
answers, because of the high penalty there is some

times a tendency to stall at inequality constraints, but
this at least keeps the solution feasible. The
unconstrained artificial objective function used for

the subroutines of this thesis is as follows:

P m
1 -1/2 2
P(X,/X,,0..X_ ) =U+1r_ ) + r YW (x))
1772 n t roq ¢ () - doy 3

+ lO20 JABS (violated inequality constraint)
A=l (2.12)
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The selection of a sequence of reduction in the
value of parameter Xy has been found to have significant
affect upon convergence. Larger reduction in value or Ty
helps in convergence. Generally useful values have been
recommended in the documentation of these subroutines.

An interesting result was observed while using
trans formation (2.12) . The value of parameter r, was
changed after every step, instead of changing it after
each optimization of the unconcstrained function, as
required by the algorithm. Convergence of the method to
the optimum solution was faster as compared to the latter
case. This feature has not been incorporated in the
subroutines developed, because of the risk that reducing
r, after every step might force the solution to converge
to a false optimum, as happens when too small a value of
r, is selected in the initial stages of optimization.

This has been a brief account of the problem of

handling constraints in optimization, and has been included

here to give some insight into the problem.



CHAPTER - 3

DESCRIPTION OF THE OPTISEP PROGRAMS

General Description

For using any of the optimization subroutines, the
user writes a small main program, defining the input
parameters etc. He also provides service subroutines to
define the objective function and the constraints of his
problem. These subroutines together with the small main
program make up the user's input deck. Other subroutines
necessary for execution may be stored on permanent file.
Input parameters can be varied by the user to improve the
efficiency of the method for his particular problem.

All subroutines have variable dimensioning; this
helps in keeping the memory space required in the computer
to a minimum. The user has the option of printing out
input data and intermediate steps, by appropriately choos-
ing the values of IDATA and IPRINT. If a method fails to
find the optimum after a specified number of iterations,
it exits without returﬁing to the main program, and the
results at the last iteration are printed out. If the
optimum is found, then the optimum values are returned to
the main program, and user has the option of printing out
the final result by calling subroutine ANSWER, which has
been written to print results in a standard format, or

providing his own output. A typical calling program is

-13~-
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shown in Figure 1.

Service subroutines -

Information about the problem to be optimized is.
supplied through three service subroutines. The objective
function, the equality constraints, and the inequality
constraints are evaluated in subroutines UREAL, EQUAL, and
CONST respectively. This convention for defining input was
used in OPTIPAC, in order to standardize the input, and
these subroutines are interchangeable between OPTIPAC and
OPTISEP.

The user formulates his problem in the following way.

Minimize the objective function defining the
optimization criterion.

U= U(xl,xz,x3,...xn)
subject to equality constraints defining feasibility

wj = wj(xl,xz,x3...xn) =0, j=1, m.
and ineguality constraints defining feasibility

¢ = ¢k(xl,x2,x3...xn) 20, k=1, p
where x; are independent or design variables.

n is the number of design variables.

m is the number of equality constraints.

p is the number of inequality constraints.

The user must formulate his problem in this manner.
A problem of maximization can be solved by minimizing the

negative of the function to be maximized. Similarly
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inequality constraints of the form ¢, < 0 can be converted
to ¢k 3 0 by multiplying throughout by -1.

The input to the service subroutines is the x; array
containing current values of the design variables. The
corresponding values of U, ¢k' and wj are returned to the
cptimization subroutine that calls them. The objective
function and the constraints can be expressed directly as

FORTRAN arithmetic statements, such as

U= x(1) + x(2) + x(3) + 4 .*x(2)
PHI(1l) = (X(1) **2) + (x(2) **3) + 5.
PSI(1l) = x(3)*x(4) + 2.*x(1) *x(3)

If other statements are necessary in order to define U, PHI
or PSI, they may be included in the service subroutine or
incorporated in auxilary subroutines.

Additional details on the service subroutines are
provided by the documentation of OPTISEP, included in the

appendix.

Method Subroutines -

(a) Simplex, Direct Search Method (subroutine SIMPLEX)

A set of n+ 1 points in n dimensional space define a
space called a simplex. This geometric figure plays an
essential role in this method, and accounts for the name
simplex.

Before going into the logic of the method, the

following notation is defined.
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Let xh be the vertex corresponding to f(xh) =
max(f(xi))

where i = 1, ntl . and ¥ 1is the vector defining

point i of the simplex.

Let Xy be the vertex corresponding to f(xs) =

max(f(xi)), i#h

Let X, be the point corresponding to f(xz) =

min £(x.)
i
Let X be the centroid of all X: 0 i # h and is given
by
1 ngl
X = = X. (3.1)
4] n o201
i#h

The three basic operations used in the method are
defined below.

Reflection - where Xy is reflected and new point X, is

obtained by the relation

X =X (3.2)

) of 0 h)
o is the reflection coefficient and is < 1

4+ a(x0 - X

Expansion - where X, is expanded in the direction along which
further improvement of the function value is expected. The
relation used is

Xe = Xo + ?(xr - xo) (3.3)

Yy is the expansion coefficient and is > 1
- Contraction - where simplex is contracted, the new point x

c
is obtained by the following relaticn



17.

X, = xO + B(xh - xo) (3.4)
8 is the contraction coefficient and satisfies
0 < B < 1. The values of the function to be minimized are

given by Uh, Us, U%, Ur, Ue, Uc, Uo at points Xpr X r Xoo

X,/ Xgr Xgo Xg respectively.
 The simplex algorithm is as follows
(1) (n+l) points are initially generated in n dimensional

space to form a simplex.
(ii) The functioh be minimized is evaluated at each of the

vertices in order to determine xh, X xz, and x

S 0°
(iii) A reflection move is attempted and functional value

evaluated at the reflected point X .

{iv) If Us 3 Ur > UL, then X is replaced by X, and the
process is restarted beginning with step (ii).

(v) If however Ur < U2, an expansion move is tried to
see if the function continues to decrease in the

direction of X, X The expansion succeeds if

UL > Ue, and in that case X, is replaced by x If

e.
the expansion does not succeed, X is replaced by X, .

In either case the process is restarted from step
(ii).
(vi) If the reflection move in step (iii) yields X, such

that Uh > Ur > Us, xp is replaced by X, and a

contraction move is made, however if Ur > Uh, a

contraction move is made without replacingx}l by’xrd
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(vii:) If the contraction fails, the last simplex is
shrunk about the point of lowest function value Xy,

by the relation,

_ 1
X, =5 (x;+%9) {3.5)

and the process is restarted from step (ii).
(ix) The search is presumed to have reached optimum of
the corresponding artificial unconstrained objective

function if
1/2
n+1

jzl (Uj - Uy)

2

R E
AN
o

(3.6)

where G is a given small quantity, provided as a

convergence criterion.

In subroutine SIMPLEX, the constraints of the
problem are taken care of by forming an artificial

unconstrained objective function which is of the form [9].

1
k=1 ¢k(xl,x2,...xn)

P(Xllleo-ox rr) = U(xl'xzi"‘xn) + rl

n

)

i ; 2 _—
i1 wj(xl,xz,...xn) /v ry

'+ 2970 )ABS (violated inequally

constraimts) (3.7)
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r, is a positive constant (r1 = 1.0 is normally
taken as starting value). The value of r, is reduced by
multiplying it by a factor REDUCE, after each optimum of
the function P(3.7) is found. The optimum of the
constrained problem is assumed to have been reached when
after two succeséive optimum of the function P(3.7) the
value of objective function U does not change significantly.

The value of the artificial objective function is
returned to the subroutine by calling Subroutine OPTIMF 2.
Subroutine ANSWER is used to print the results in the
standard format.

The available experience with this method shows that
it is very good. Given the sufficient number of iterations,
it almost always converges to the optimum eventually.

Initial size of the simplex has been found to have
some effect upon the efficiency of the method. It is better
to start with a fairly large simplex.

The program logic is given in Figure 2.

(b) Memory Gradient Method (subroutine MEMGRAD)

This method [13] is an extension of the Fletcher and
Reeves [10] method, the step size 8x is determined from the

relation

§x = —o(g(x)) + B (4x) (3.8)
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where o and B are scalors chosen at each iteration so as to
yield greatest decrease in the optimization function. The
quantity 6; is the previous step size. 8election of step 8x
depends on previous gradients and steps, hence the name
memory gradient. The convergence property of the Fletcher
and Reeves methods for quadratic functions is very good,
this method retains that property, and in addition has one
extra degree of freedom in the system of correction for 6x,
which should hopefully improve convergence.

The following quantities are defined

x the position vector at a particular stage

U the value of function at x

g(x) = the gradient at x, giving partial derivatives
of the function at x, with respect to X1 1%,
XgrXyeeeX
x = the point following x
x = the point preceeding x
The algorithm is as follows.
(i) For a given point, g(x) is computed numerically.

The vector 6; is known from the previous iteration.
6; is assumed = 0 for the first i1teration.

(ii) Optimum values of the multipliers o and B are found
by following a special search technique. o and B8

are those values which give the minimum value of the

function.
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Let f(;)f = f(x -~ ag(x) + 86;) = p(a,B) . (3.9)

o and B are actually the solutions of the symultaneous

equations.
gx)Tg(x) = 0 (3.10)
g(x)Tex = 0 (3.11)

where T denotes a transpose vector. These equations ensure
that o and B are selected such that the new gradient vector
g(;)is orthogonal to the previous gradient vector and the
previous step.

To begin the search, nominal values are given to %
and BO’ the starting values of o and B. The step sizes $§a

and 88 which are to be added to o and BO are given by

So = - n{D1/D3) sign (D4/D3) (3.12)
68 = - u(D2/D3) sign (D4/D3) (3.13)
where D1l = Fo FBR - FB FaB (3.14)
D2 = FB Faa - Fo FoB {3.15)
D3 = Fau PBR -~ Fa% {3.16])
D4 = Fo® FBB - 2Fa F§ Fap + F,? Foa (3.17)

and where Fo., FB, Fao, FBR are computed at (a0, BO), that is
at the point X, given by

A

Xg = X - a, gx) + BO §x (3.18)

The symbol y, which is 0 € y € 1, is a scaling factor for

the increments da and ¢B.
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Fa, FB, Fao, FBB, and Fuf are given by the following

Fa = - g (x;) g(x) | (3.19)
F = g (x,) 5%
Foo = {g[x0 + elg(x)] - g[x0 - szg(x)]}T g(x)/2e1
(3.20)
FBR = {g[xO + ezdx] = g[x0 - ezéx]}T 6;/252
(3.21)
Fap = {g[xo - slg(x)] - g[xO + elg(x)]}T 6x/2€l
(3:22)
where € is a small number and €, = e/lg(x) ]
g, = €/l5;l

2
Values of Sa and 88 are computed by equations (3.12)

and (3.13) for p = 1. o and B are calculated by
o = a0+5a, B = BO + 68. If F(o,B) < F(ao,ﬁo), p =1is
acceptable, otherwise it is replaced by a smaller value
until F(a,R) <'F(a0,80). At this stage one search step for
o and 8 is complete. The values of o and B are replaced by
a4 and 80 for the next search step. The procedure is
repeated until abs(ﬁa/ao) and abs(GB/BO) becomes very small.
Valves of o and B at this stage are optimum values for the
current iteration of the memory gradient method. However
for the first iteration these equations are not valid

because then 8x = 0. For this case §o is given by

§a = = u(Foa/Faa) sign (Fao) (3.23)
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B remains zero for the first iteration.
(iii) The correction 8o is determined by eguation (3.8)

~

(iv) The new position of x is computed by

; = x + 6x (3.24)

The optimum is assumed to have been reached when the
value of the function does not decrease by more than a
small specified quantity.

In subroutine MEMGRAD, values of the partial
derivatives of the artificial objective function are
returned by subroutine PARTIAL. Subroutine SUPPLY
numerically calculates partial derivatives of the actual
objective function U, of the ineguality constraints, and of
the equality constraints, which are called by PARTIAL,
where these values ére suitably combined to give
derivatives of the artificial unconstrained objective
function. Constraints of the problem are taken care of by
forming an artificial unconstrained objective function, of
a form similar to that used in SIMPLEX.

The value of parameter r is reduced each time after
optimizing the unconstrained artificial objective function,
the process continues until the difference between the two
values of the actual objective function, corresponding to
two successive optima, is insignificant.

Available experience with MEMGRAD shows that its

convergence is faster in most of the cases than that of
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SIMPLEX, but it hangs up more often. It is good for well
behaved functions.

A flow chart explaining the logic of the program is
given in Figure 3.

(c) Davidon Fletcher and Powell Method. (subroutine DAVID)

This method [12] is a gradient type of method. The
use of the knowledge of the function and its gradient at a
previous iteration is made to improve the current iteration.

th iteration

The directional vector d; is generated at the i
in such a way that it is orthogonal to all previous vectors
(d,,i=1, 2, ...i-1) rather than just the (i - 1)°% as in
ordinary gradient minimization. This vector di then de-
fines the down hill direction for the function. At the
(i+l)St iteration, vector x is computed by

Xi41 = %5 + A di (3.25)
where A is a scalar parameter, giving the optimum step
length. The complete algorithm is as follows:
(i) compute d;, = - Hi 1 9;
(i) Compute A to minimize f(x;+A d;). In order to find
the right value of A, the function is assumed to be of one
variable A, and a search strategy to minimize a function of
one variable is applied. There are various techniques
which can be used "Polynomial search' is the one which has

been used in this program. The search begins by establish-

ing bounds on the value of A. In order to establish bounds,
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first a small value of A say Al is chosen. The value of )\
is increased in steps by using the relation

2, .3 k-1

A, = Xl(l+r+r +r ...T ) (3.26)

k

until A, is such that F(xi + A di) > F(xi + Ak—l di). The

k k
value of r is arbitrarily chosen around 1 or 2. Values of A
which bound the minimum of the function are given by Ak-z’
Ak-l and Ak. Let a, b, ¢ denote these wvalues, and let

Fa, Fb, Fc be the value of the function, corresponding to
these values of A respectively. The turning point of the
approximate polynomial passing through these points is given
by

_1 2 -c? ra+ (c?-2a% mo+ (a®-1b%) Fe
2 (b-c) Fa+ (c -a) Fb + (a - b) Fc

(3.27)
Let Fd be the value of the function corresponding to A =-ad.
Shrinking of the interval is done as follows.
Thexre are four possiblebsituations; sketched below,
The replacement of one point by another is done as indicated.

1. b > ad and Fb > F4

FUNC

" ad
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In this case for the next polynomial fit b takes the value
of ad and c¢ takes the value of b.

2. b > ad and Fb < Fd

-
'

FUNC

ad

In this case a takes the value of ad, and b and ¢ remain the

same for the next polynomial fit.

3. b < ad and Fp > Fd

FUNC

In this case a takes the value of b and b takes the value

of'ad, for the next polynomial fit.
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4. b < ad and Fb< Fd

FUNC

In this case c is replaced by ad, for the next polynomial
£it.

Interval bounds are successively reduced by
repeated polynomial fits, and the value of A determined

to any value of desired accuracy.
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(iii) Having determined the value of A, the next point

X541 is determined by the relation (3.25) which is

Xijpp = %3 + A4y

{iv) The Matrix Hi to be used in the next iteration to

determine orthogonal directions. It is given by
T T
A d, 4. H, Y. Y. H.
- 2 L - o del "3 41 "3
H, = H _, + = (3.28)

1 T
g By 9 Yy Bpg Ay

where Yy T 9441 94
In the first step H0 is set as a unit matrix so
that the first step becomes eguivalent to a step in the
steepest descent method. There are rigourous analytical
proofs available to show that,
(a) Computation of the directional vector di as done
in step (i) satisfies the condition of orthogonality.
(b) Hy is positive definite if Hy is positive definite.
These two properties imply that convergence is faster
and for a quadratic function, the minimization is
reached in a fihite number of steps, which is equal
to N, the number of variables. However,
(b) condition requires that the exact optimum value
of A be known.
In actual practice the exact value of A may not be
found by the search procedure employed, and hence the matrix

Hi as computed from Hi-l may not be positive definite, under

these circumstances matrix H should be reset to a unit
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matrix.

Subroutine DAVID using this method has full variable
dimensioning like other methods.

Subroutine FIND returns the exact value of A to sub-
routine DAVID. Constraints of the problem are taken care
of by forming an artificial unconstrained objectiwve
function similar to the one used in SIMPLEX, subroutine
OPTIMF2 computes this function. Partial derivatives are
computed numerically in subroutine PARTIAL and returned
whenever PARTIAL is called.

This is a good method for well behaved functions; it
is quite fast but tends to hang up quite easily. The high
magnitude of the penalty term used in the formulation of
unconstrained artificial objective function (3.7), was
found to be a source of difficulty. The partial
derivatives of the artificial function near the constraints
were too steep because of these high penalty terms, and
hence the method did not work in‘the expected way. 'This
problem was eliminated by suitably modifying the partial
derivatives when ever the derivative would have been too
steep because of high penalty terms. This was done by
adding a small penalty while computing the derivatives,
instead of a high one. With this modification per formance
of the method has considerably improved. However, when the

function defining the objective function itself is too steep,
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such problems may still be encountered.
The flow chart explaining the logic of the method is

shown in Fig [4].

(a) Non Linear Inteqer Programming (subroutine INTEGER)

Quite a few optimization problems require that some
or all of the design variables should have integer values.
This type of problem arises whenever there are
indivisibilities; for instance it is not too meaningful to
schedule 3.25 flights between two cities, or assign 6.8
machines for a particular job. In the past various
methods have been applied to linear integer programming.
In design engineering, functions are very rarely linear and
there is a great need for a program of integer programming
which handles nonlinear functions.

General methods of integer programming can be

broadly classified in four catagories.

1. Cutting Plane Methods
2. Rounding Methods
3. Branch and Bound Methods

4, Partition Methods

Cutting plane methods [14] are only suitable for
linear programming problems. The rounding methods [15] are
not good in the sense that an optimal integer solution is
found only if the non integer optimum solution is very

close.
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The branch and bound technique [16] works on the general
idea of scanning all feasible integer solution in a
systématic way, and is one which could be applied to non-
linear integer programming. The partition algorithm [17]
has been successful only for small problem and hence can
not be used for any general problem.

Considering all this, there are only two approaches
left for nonlinear integer programming. One is to
linearize the function at a point and use Gomory's cutting
plane method [23]. The other alternative is to use a
branch and bound method. The first approach of linearizing
the nonlinear functions and subsequently applying cuts, to
make the solution integer was basically an attempt of
integrating the two techniques together. Griffith and
Steward [24] have developed a method of successive linear
approximation for solving nonlinear problems, and Gomory
{23] has proposed a cutting plane method of solving linear
integer programming problems. The attempted algorithm is
as follows.

(i) Obtain the continuous optimum solution of the non
linear problem.
0 0 0
(ii) Starting with this optimum solution (xl,xz,...xn)
approximate the functions by expansion in a Taylor's
series, in which terms above linear are dropped.

Functions U, ¢ and ¥ are thus approximated as follows.



0 0

n
U= U(X;, Xoree.X_) + )
1 2 n i=1

0 0

: n
wj(xl,xz,...xn) +_Z (xi—x
i=1l

0

° 1
O, (X, ,XQeeoX ) +
k71772 n i=1

Bngl,xz,..,xn)

0 0
0 awj(xl'leou.x

3¢k(xl,x2...xn)

(xi-xi)
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These equations can be rewritten in the following form.

n
U-U, =) c.6x,
bed L 8

where 0 0

BU(xl, XpreeoX

0

-

c, =
i 0x.
i

0

0 _ ]

0
.O.X
n)

0

0o o
. _ a?j(xl'XZ"°'xn)
ji 0x.
i
0 0 0 0

¢k = d)k(xlr xz,...xn)

0

0

0
y _ 8¢k(xl, Xy "'Xn)
ki 9X.

" i
6xi =X, - X,

(3.29)

>0, k = 1,p

£3.31)

(3.32)

{3.33)

(3.34)

(3.25)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Thus the problem is linearized and éxi becomes the
variables to be determined. In order to ensure that

Gxi is positive, the following substitution is used.

— + »
6xi = Gxi - 6xi (3.41)

where Sx; and Gx; are positive. Another constraint

is added to the above set of equations to limit the step

size Gxi, to a small agdunt so that linearization remains

valid.

(iii) Use revised simplex method of solving linear
programming, to solve this set of linear equations
together with additional constraints to keep the
variables integer.

(iv) Compute X using x. = X5 + Gxi

+1 +1
(v) Repeat the procedure beginning with step (ii), .

+ill solution is reached.

This élgorithm failedito produce any results.
Problem came when using revised simplex method. It
failed to find a feasible solution. The possible
reason for its failure may have been the constraint on
size of ¢x,. The linear approximation of the function is
valid only when the step size Sxi is less than a small
specified quantity, and the step size Gxi, required to

make the solution integer may be bigger than the limiting
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size, this thing might have caused the problem. When
this approach failed, the branch and bound method was
tried and it has shown appreciable success.

The branch and bound technique was first
proposed by Land and Doig [16] and consisted of a
systematic search of continuous solutions in which
variables to be integers are successively forced to take
integer values. The method as proposed by Land and Doig
had substantial practical difficulties for computer
applications, it requires recording of all the solutions
which could involve excessive storage space. The method
was modified from a computational point of view by
R. J. Dakin [18]. The logic of subroutine INTEGER is
based upon this modified method. This method, called
a tree-search algorithm, is simple in concept, but like
all other integer methods, it is lengthly, requiring

many optimization runs.
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The algorithm starts by finding a normal continuous
solution to the given problem. Let the solution for the i1th

variable be ' :
ky <% <R .

where ki is an integer. For the next trial, it is assumed
that one of the variables say x, must be either equal to
kl or kl+1' The tree thus begins with the two branches.
The integer solution for Xq is forced by adding the con-
straint X, € k1 in one branch, and Xy 3 kl+l in the other.
This again generates two branches. One of these branches
is arbitrarily abandoned. As the adding of constraints
for each variable in turn is continued, one of the
previously integerized variable may become non-integer. For
example Xy previously pushed to kl' may begin to drift
below k,+ It then must be re-examined with constraints

Xy € kl-l in one branch and X; 3 kl in the second. This
process continues until the desired integer solution is
reached, or until a non-feasible solution is reached.

The last node having an unexplored branch is then
searched, following the same procedure as before. A record
is kept of the current best integer solution. An
illustrative tree for three integer variables is shown in
Fig. 8. The nodes are numbered as they are generated, so
that when a solution is reached, or an infeasibility, the

search returns to the next lower node, and a marker is

- checked to see if both branches have been explored. If it



36.

has not, a new node is generated on the unexplored branch.
When all possible nodes have been generated and branches
explored, the search terminates. A |
For solving the nonlinear problem during the first
Step and subsequent steps with additional constraints, the
Hook and Jeeves [19] direct search method has been used.
It is incorporated in subroutine SOLVE. The constraints of
the problem are taken care of by forming an unconstrained
artificial objective function of the type used in SIMPLEX.
Subroutine INTEGER can be used for solving all
integer or mixed integer, linear or nonlinear problems.
The user simply specifies the number of variables to be
made integer. The problem must be formulated in such a way
that the variables to be made integers are the first k
design variables of the problem, begiﬁning with Xy where
k is the number of variables to be made integer. Thus if
three out of five variables are to be made integer, then

those variables should be Xy X, and Xqe

2

Additional constraints for making a variable integer
are supplied by subroutine ADDL, which returns the right-
constraint at a particular stage. An additional statement
card CALL ADDL (X, PﬁI), must be included in subroutine
CONST, just before the RETURN statement.

Subroutine INTEGER has been tried on various test

problems both linear and nonlinear and has been found to
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work satisfactorily. In some of the cases the Hook and
Jeeves search may fail to find non-integral solution of
the problem, and in that case it is necessary to find a
non-integral solution of the problem by using any other
method of nonlinear optimization. Subroutine INTEGER is
then used, using the optimum non-integral solution as
starting values for INTEGER. A flow chart explaining the
logic for subroutine INTEGER is given in Fig. 6, and the

logic for subroutine ADDL in Fig. 7.



CHAPTER - 4
ILLUSTRATIVE PROBLEMS

Many problems have been solved by using subroutine
SIMPLEX, MEMGRAD, DAVID, AND INTEGER. A few of those have
been included here to demonstrate the use of these
subroutines. The first two problems have been taken from a
book by Siddall [6], and have been solved by subroutines
SIMPLEX, MEMGRAD, and DAVID. The other two problems, in
which an integer optimum solution is required, have been
solved by subroutine INTEGER, especially written for solving
nonlinear problems requiring an integer optimum solution.

The problems are as follows:

Problem 1 - Design of a Pressure Vessel.

Problem i: to optimize the design of an unfired
cylindrical welded pressure vessel, The ASME Code for
unfired pressure vessel specifies that the shell thickness

shall be the greater of the following

£, = —FR___ (4.1)
SE - 0.6P
tl is based on circumferential stress. (4.2)
or t PR

1~ 38E + 0.4p
t1 is based on longitudinal stress
where P = design Pressure

Inside radius

w
i

=38~
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S

it

maximum allowable stress

E

]

Joint efficiency

The heads are to be semi-ellipsoidal in which half the
minor axis equals one guarter of the inside diameter. The
code specifies that the head thickness shall be determined
by

t, =PR/(SE - 0.1P) (4.3)

2
All joints are to be single welded butt joints with
backing strips. The efficiency from the code for such
joints is 0.90. Volume of the vessel is to be 2000 imp-
gallon, and a design pressure of 500p.s.i. The material is
to be SA201B, table UCS-23 in the code gives an allowable
stress of 15000 p.s.i. There is a length limitation of
30' and diameter limitation of 15 ft. maximum. Furthermore
vessel must accomodate a heating coil 100" long and 40" in

diameter.

Formulation

The design variables are

X, = thickness of cylindrical portion of pressure

vessel
Xy = thickness of the cap of pressure vessel
X, = 0.D. of the cylindrical portion
X, = length of cylindrical portion of the pressure

vessel.

The optimization criterion is to minimize the material
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cost, that is the volume of the material.

Volume of the cylindrical portion is

_ £ _ _ 2 -
=7 (x3 (x3 le) ) x4

Volume of the cap (both ends) is

—2x.. 3
I I T o Wy Y d R S - B 3
30 [16 ~% =13 |¥3 ~ (%3~ 2x,)

Total volume of pressure vessel
3 - 3
l x3 - (x3 2X2) '

- T 2 _ _ 2
= 4Ex3 (x3 2xl) ] X, +
U = total volume of pressure vessel.

W W

e
N

Therefo;e the optimization function is

Constraints on the design are as follows:

(1) c¢onstraints on thickness of shell.
_ . _ _PR

®1 = *1 7 SE-0.67

G = g - PR

N

1 2SE + 0.4P

(ii) constraint on thickness of ellipseoidal portion.

o _ PR
%3 = X3 - SE-0.1p

(iii) constraint on maximum iength
(=25 )

_ _ —3 "k
By W, g 3
(iv) constraint on maximum diameter
¢5 = 15 - Xq
(v) constraint on minimum length
6 -3~ _ 100

6 3 *4 12
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(vi) constraint on minimum diameter
8 = (x5 - 2x1) - 12

(vii) constraints to keep design variable positive

9g T ¥
¢9 = Xy
Pyg = ¥5
P11 = ¥4

Formulation for programming.

There are four design variables.

x(1l) = Xy v x(2) = Xy 0 x(3) = Xy x{(4) = Xy .

There are 11 inequality constraints

PHI(1) = ¢,, PHI(2) = ¢, ... PHI(11)=¢,,

There i3 no equality constraint.
Function to be minimized is
U = volume of material
The small main program was prepared, for each method,
using the documentation of OPTISEP. Following are the re-

sults.



Method Material Outside Length Thickness Thickness C.P. Time
(ft.3) dia. (£t.) (ft.) £, (£t.) t, (ft.) seconds
SIMPLEX 5.6232 3.46 6.66 .0632 .062 10.6
MEMGRAD 5.6387 3.46 6.67 .0632 .0625 61.3
DAVID 57022 3.46 6.79 .0631 .062 16.6

For this problem SIMPLEX has been fastest, and has also given the best solution.

The dimensions of optimum pressure vessel would be as noted for SIMPLEX method.
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Problem 2 - Design of a Rock Crusher

Problem is to design a rock crusher having a set of
rollers rotating about a vertical axis and rolling in a
track. Variables 4, ¢, ¢, w and L are to be selected to
yield the maximum crushing force, taking into consideration

both weight and centrifugal force. The roller is steel with

Angular
Velocity

T

W
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BHN No. 200. One equation of constraint is provided by
Hertz contact stress, which has a critical value of 70000
pP.s.i. A factor of safety of 2 is to be applied. Angular
velocity should be limited to a maximum of 200 rpm and arm
length L to a maximum of 7 feet,length of the roller c and

diameter d should not be more than 3'and 5' respectively.

Formulation

The design variables are

x1l = w, the angular velocity

x2 = ¢, the angle between arm and the vertical axis
x3 = ¢, the length of the roller

x4 = d, the diameter of the roller

x5 = L, the arm length.

The criterion for optimization is to maximize the
crushing force.
density of the material is 0.282 lb/in>.
weight of the crushing roller is

WD =T . %3 . x4% . 0.282 . 144 . 12.0/4.0 (4.4)
Centrifugal force Fc is given by |

FC = Wr . x1% . x5 . sin x2/32.2 (4.5)
Crushing force is given by :

FORCE = Fc . cos x2 + WT . sin x2 (4.6)
The objective criterion is to maximize FORCE or minimize

~FORCE, therefore the optimization function is



45,

U = - FORCE

constraints on the design are as follows -

(1) constraints to keep the design variables positive
¢l= x1
¢2= X2
¢3= X3
¢A= x4
¢5= x5
(ii) constrainton maximum contact stress (given by Hertz relation)
. _ 2 . FORCE
gMaXLmum stress SMAX = B %3 (4.7)
_ 4 , FORCE . (1-u?) . x4
whe:e B = %3 T (4.8)

B is the Poisson's ratio
E is the Young's modulus of elasticity for a

factor of safety equal to 2, stress constraints

s = 10000
6 2.0

x 144.0 -~ SMAX

(iii) constraint on maximum angular velocity is

_ 2 % 250 x m _
o7 = 60 e
(iv) constraints on size of roller and arm length are

¢8 = 7. = Xs

¢9 3. = x3

il

¢10 = 5, - x4.



Formulation for Programming

There are five design variables

x(1) - x1l, x(2) = x2, x(3) = x3, x(4) = x4, x(5) = x5

There are 10 inequality constraints

PHI (1) = ¢l,'pax(z) = dy0een $(10)

There is no eguality constraint

U

-
=

- FORCE

= %10
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The small main program was prepared, for each method,

using the documentation of OPTISEP.

Following are the

results.

Method xl X2 X3 X4 X5 force in| C.P, TIME
ib. (seconds)

MEMGRAD | 11.19| 0.784 | 2.998 | 4.974 | 4.43 | 2.651%10° | 18.362

STMPLEX | 12.24| 0.68 | 3.00 | 4.999| 3.80 | 2.666%10° | 42.114

DAVID | 11.29| 0.80 | 3.00 | 4.995| 4.33| 2.662%10° | 3.675

For this problem Davidon Fletcher and Powell's method

has been the fastest.

the methods.

Same starting point was used for all

Simplex has given the configuration, which

yields maximum crushing force, though all other methods

tend to converge to the same point.

The best configuration

for the rock crusher will have the following values of

design variables.




47.

w - the angular velocity = 12.24 rad/sec

¢ - the angle between vertical axis and the arm 0.68 radius

= 39°
¢ - the length of the roller | = 3'
d - the diameter of the roller = 4.999'
L - the arm length = 4.33"

Problem 3 - Optimizing reliability of a system

Components are to be connected in series parallel
configuration as shown below in figure. Reliability of
components in each stage is equal and equal to Ri' A
return P comes only if the system does not fail. Problem
is to determine optimum number of redundant components to

be attached in each stage.

1 2 3
1 1 A
—
L]
g e e o o v g oS e
2 2 | ] 2
l
j IRV
——

=
[
i
—
f




The reliability, cost and return data is as follows:

" stage R, C.

3 1
i - 0.333 0.200
2 0.500 1.000
3 0.750 1.000

4

10.0

This problem has been discussed by Siddall [6].

Formulation

The design variables are as follows.

il

xl
x2

it

x3
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total number of components in the first stage
total number cf components in the second stage

total number of components in the third stage

Since the profit P only occurs if the system does

not fail, therefore expected profit is P*Rd, where R4 is

the reliability of the system given by

X,
R4 = I {1 - (1 - R,) 7]

The net profit is

U= P.R4 - CT

(4.9)

(4.10)

(4.11)
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The objective criterion is to maximize this U,
subject to the constraints that all variables are integers
and > 1. There has to be at least one component in each
stage, otherwise the system would fail. The constraints to

keep x,_ 2 1 can be handled by using the following

is
transformation.
%, = 1 & sbelx, = 1) (4.12)
i 1

xi is the new unconstrained variable.
Thus the problem is reduced to maximizing U as given

by (4.11), subject to no constraints.

Formulation for programming.

There are three design variables
x{1l) = x1, x(2) = x2, and x(3) = x3.
The functicon to be minimized is
U=~10

There are no constraints

The results obtained by subroutine INTEGER are as

follows
x(1) = 7
x(2) =3
x(3) = 2
Maximum net profit = 1.322
C.P. Time in Seconds = 7.713

Thus the optimum configuration should have seven
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components in the first stage, three components in the

second stage, and two components in the third stage.

Problem 4 - Optimizing a war strategy

The problem in basic form has been discussed by
Bracken and McCormic [20]. The problem is to assign
weapons of 2 types to 3 different targets such that total
damage is maximized. The following table gives the
probabilities that the targets will be undamaged by weapons,
total number of weapons available, minimum number of weapons

to be assigned, and military value of the target.

Probability that weapon i will not Number of
damage target j weapons
available
Targets
Weapon 1 2 3
1 1.0 « 985 0.85 100
2 0.84 0.98 1.00 150
Minimum
number
6 bé 15 20 10
assigned
Military
Value 60 80 40
Formulation

The design variables are as follows.

X4 T the number of type 1 weapon assigned to target 1

Xip = the number of type 1 weapon assigned to target 2
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X153 = the number of type 1 weapon assigned to

target 3
Xyy the number of type 2 weapon assigned to
target 1
Xy9 = the number of type 2 weapon assigned to
target 2
X5q = the number of type 2 weapon assigned to

target 3
The objective function is to maximize is the total
expected target damage
u = 60[1 - (1.00%11 x 0.85°21)] + 801 - (.95 12x ,98%22))
+ 40[1 - (.85 13x 1%23))

(4.12)
The constraints on the total number of weapons are

¢l = X + X 2l ¢ < 100

1l i2 13

+ x + x £ 150

By ™ Hgy ¥ Hoy T Xoy
The constraints on the minimum assignment of weapons

are
¢3 = X494 + Xsq > 15
bg = X35 ¥ %55 3 20
¢5 = Xj4 + X53 2 10

The constraints to keep the variables positive are

?0,¢7=X >0,¢8=xl3>0

% = %11 12 2

99 = X5y 2 0y b3 = Xo5 3 0, ¢y = %53 30
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Formulation for programming

There are six design variables.
x(1) = Xyqr x(2) = Xyo0 x(3) = X4

x(4) = Xpqr x(5) = x and x(6) =

22 X23

The objective function to be minimized is
U= -1

There are eleven constraints

PHI(1l) = 100.- (x(1) + x(2) + x(3))

PHI(2) = 150.- (x(4) + x(5) + x(6))

PHI(3) = x(1) + x(4) ~ 15.
PHI(4) = x(2) + x(5) - 20.
PHI(5) = x(3) + x(6) - 10.

PHI(6) to PHI(ll) = ¢6 to ¢ll respectively.

The problem was solved by subroutine INTEGER and
following are the results.

Maximum expected target damage = 179.5

No, of weapons assigned
Targets
Weapon 1 2 3
1 0 63 37
.- 42 108 0

C. P. time in seconds = 107.7.




CHAPTER - 5

USE IN DESIGN PACKAGES

In spite of the wide accessibility of computers,
designers, so far, have not fully made use of them. One
of the reasons for this poor response may be the non-
availability of easily usable design packages, for solving
design problems. Designers, being too busy with other
problems, find it too time consuming to write their own
programs in FORTRAN for each problem. Therefore in order
that designers can use computers in a meaningful way, it is
necessary to develop computer aided design packages. Such
packages should be usabie by any designer who has almost no
knowledge of programming.

Computer‘aided design packages can be easily pre-
pared using any of the optimization subroutines, developed
for this thesis. The user's effort for using these
packages would be even less than that required for using
any of the optimization subroutines of OPTIPAC/OPTISEP.
The user need only supply values of a few input parameters
and call an executive subroutine to perform thé necessary
operations. He would not even write his own serivce
subroutines to define the objective function and the
constraints, because for a specific problem, constraints

can be defined once for all, and made a part of the package.

_53_
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The executive subroutine acts as a sort of coordinator,
calling the optimization subroutine and printing out the
solution which gives the optimum values of the design
variables.

The availability of various simple to use
optimization subroutines is of great use for the develop-
ment of such packages. Experience has indicated that a
given optimization method will not necessarily work with
any given problem, therefore, the fact that subroutines
for many optimization methods are available, significantly
increases the probability that any given problem can be
solved with at least one cf the available subroutines.

At times it may be necessary to tune the input
parameters for any optimization method to yield the best
results for a given problem. While using such design
packages, the user will not have to do this at all,
because the best values of input parameters may be
internally fixed. The designer would be ensured of the
best solution on the first trial.

The various stages for the deﬁelopment of such
design packages is as follows:

1. Identification of the problem

2. Formulation for optimization.

3. Selecting the best method of optimization.

4. TFormulation of the executive subroutine.
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5. Preparation of documentation.

The first stage for the development of any design
package, using any of the optimization subroutines, would
be to identify the problem, that is to determine what
should be the design criterion, what are the limitations on
the design, and what are the design #ariables, etc.

The second stage would be to formulate the problem
for optimization, as specified in the documentation for
OPTISEP/OPTIPAC. Subroutine UREAL, CONST, and EQUAL, should
be written to define the problem, these subroutines should
be written in a general form, so that they do not have to be
changed, for different materials. Material properties may
be transferred to these subroutines through common
statements.

Once the problem is formulated it should be tried on
all the available methods, in order to select the best one.
The input parameters for the respective optimization
subroutine may be tuned, if necessary. These parameters
may then be used in the executive subroutine and for all
practical purposes, for the designer, these parameters would
be the constants internally defined.

Having selected the method to be used, the executive
subroutine can be prepared. Only those input parameters
“which must be changed whenever a different problem is run,

should be included in the arguments of the executive
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subroutine. Most of the dimension statements may also be
internally defined, so that the designer dimensions only a
minimum of arrays in the main program.

Preparation of meaningful documentation is of great
importance. Improper documentation can greatly reduce the
effectiveness of a design package. Documentation should be
such that anyone using it would easily follow the require-
ments for use by just éoing through it once. Documentation
for such packages should include a definition of the
configuration being modelled, a step-by-step procedure for
using the package, a brief idea about4the design procedure
and the assumptions made, limitations of the design, the
optimization technique used, etc. Output formats should be
well written so that print out gives all necessary details
for the design.

Such packages can be prepared for various designs, a
few examples are as follows. Optimizing configuration of
components in series and parallel for maximizing reliability
of a system, designing a heat exchanger, designing a
pressure vessel, designing a flywheel, designing a gear,
designing a compression spring, etc. Examples are given
below to illustrate how simple the calling program would be
for some of the design packages explained here.

The first illustrative example is for a reliability
package. If a designer has to allocate some components in a

series parallel configuration, for maximizing reliability
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of the system, subject to a given maximum cost, he would
just specify a few input parameters and call RELIAB to get
the desired solution.

The second example is for a pressure vessel design
package. The designer will just specify the properties
of the material used, the maximum pressure in the vessel,
the required capacity, the limitations on the size of the
pressure vessel and would call VESSEL to get the optimum
design.

The third example is for a compression spring design
. package. The designer will supply a few input parameters
concerning the maximum load to which it will be subjected,
its stiffness, limitations on size, and would call sub-
routine SPRING to get the desired design.

The fourth example is for a flywheel design package.
The designer will specify parameters concerning material
properties, performance charactefistics, and Geometry.

The examples are illustrated on the following pages.


http:requir.ed
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fd 2 3

) 4 1 1

2 2 2

3

l i l l |
| ' |. l | '
! ! | | L_ |
Lt x(B) L e x@) Lo L x(3)
" X(1) - no. of components in the first stage

X{2) - no.

X(3) - no.

Rl = 0.92
R2 = 0.95
R3 = 0.90
CR1l = 2.0
CR2 = 4.5
CrR3= 1.0

of components in the second stage

of components in the third stage.

(reliability of each component in first stage)
(reliability of éach component in second stage)
(reliability of eacht component in third stage)
(cost of each component in first stage)
(cost of each component in second stage)

(cost of each component in third stage)

CMAX = 20000. (total maximum cost)

CALL RELIAB (R1, R2, R3, CRl, CR2, CR3, CMAX)

STOP

END

Example 1 Calling program for a reliability maximization

package.
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Xy X2)

|---—- X(4) St

SMAX 60000.

EFF1l 0.9

il

PRESS = 500.
CAPATY = 2000.
AMXLN = 15.

3.

i

AMNLN
CALL VESSEL (PRESS, EFF1, CAPATY, AMXLN, AMNLN, SMAX)
STOP

END

Example 2 Calling program for a pressure vessel design

package.
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——_—i ]—(————X(Z)

f— X(1) —

PMAX = 50
STIF = 30
HOLE = 1.5
AMXLN = 5.
ALIFE = 5000.

CALL SPRING (PMAX, STIF, HOLE, AMXLN, ALIFE)
STOP

END

Example 3 Calling program for a spring design package.



Flywheel

X(4)

sl | 1
Shafth;‘*’ | { . B g ¥ l

///r| ] xc;) X(2)

Press Fit

POISS = 0.3

SYP = 70000.

-,

E = 3.E7

FS = 3.5

'SPEEDF = 3000.
TORQ = 20.

Ccs .07

Cu = .27
SHAFTD = 2.75

30.

DIAFLY
CALL FLYWHL (POISS, SYP, E,‘Fs, SPEEDF,

TORQ, CS, CU, SHAFTD, DIAFLY)
STOP

END

Example 4 Calling program for a flywheel design package.
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Thus using the subroutines developed for this
thesis, many useful design packages éan be developed.
Such packages can then be stored in the library of a
computer, so that designers can use them for solving

design problems.



CHAPTER - 6

DISCUSSION AND CONCLUSIONS

This chapter includes the general discussion about
all the methods, the various points observed during
repeated use of these methods, the problems and their
possible remedies, and possible changes which can be made
'for future development of such a package.

All the subroutines are in user oriented form.
Particular attention has been given to keeping the documen-
tation as simple as possible, and to ensuring that the user
does a minimum of program writing and punching. Dimension-
ing of arrays, which is currently being done by the user in
‘the main program, could be done automatically by using the
dynamic storage allocation approach [21]. This is done by
having a dummy blank common array say XX with a large
dimension say 30000 or more. A few statements can then be
added to allocate the memory to desired arrays, using
values of input parameters. This approach would eliminate
the dimensioning job of the user, but a few more statements
would have to be added by the user in the main program.
Therefore as a trade-off, to keep the size of the main

program to a minimum, automatic dimensioning has not been

incorporated in these subroutines. A future trial of this

approach is recommended to see if it really makes it easier

-653~-
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for the user.

At times it is necessary to use additional data in
some of the function subroutines. This data is normally
transferred from the main program, to the subroutines,
through common statements. It has been observed that use
of blank common for this purpose invariably causes
problems, because then values of data in the blank common
may get mixed up with values of variables in other common
statements, already existing in the programs. To avoid
such a confusion it is always advisable'ﬁo use labelled
common statements for transférring the data.

Another source of blow ups in these programs may be
an attempt made to raise a negative quantity to a fractional
power, like taking square root of a negative guantity. To
avoid such a problem only the absolute value of any quantity
should be raised to a fractional power. Similarly SINE of a
laxge number can cause trouble, if it so happens, IF
statements may be included to prevent value of the variable
from becoming too large.

At times it may be a good idea to apply weighting
factors to some of the inequality constraints. When any
inequality constraint is very important, or has a very
small magnitude, application of a weighting factor would
increase the probability that the particuiar inequality

constraint is satisfied.
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For a convergence criterion, a small quantity G has
been used in all programs. Sometimes the value of the
ocbjective function itself may be so small that its order
is the same as that of G, and in that case the difference
between two successive values of the objective function may
always be less than G, and as a result the‘program would
indicate it as optimum, which may not be really true.
Therefore when the order of the function is of the order of
the convergence criterion, it is better to further reduce
the value of convergence criterion. Similarly when the
value of objective function is of a very large order, the two
successive values of objective function may take excessive
time to differ by the small amount of the order of G; in
that case value of convergence criterion may be suitably
increased. Generally the values of parameters recommended
in the documentation should be used.

Subroutine, SIMPLEX, has been found to be very
satisfactory in practice. It handles both equality and
inequality constraints nicely. It may require larger
number of iterations to converge, but in most of the cases
it ultimately converges. Whenever this method hangs up
one of the first changes the user should try is to increase
the number of iterations.

The simplex size also has some effect upon the
convergence of this method. It is better to have an

adequately large simplex size to start with. The simplex
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size is a function of F, RMAX, and RMIN. Generally
adequate values are indicated in the documentation.

The parameter REDUCE also has significant effect
upon convergence. The smaller the value of REDUCE, the
faster is the convergence. But selection of too small a
value for REDUCE would make the penalty term involving
equality constraints weighted very heavily, and this would
result in a very elongated and narrow valley, which would
make the constrained minimization difficult. There is no
formula for right choice of REDUCE. The best values based
on experience have been indicated in the documentation.

Subroutine DAVID, works satisfactorily and is
quite.fast, but when the objective function is not well
behaved and has steep valleys, this method has difficulties.
Because of very steep slopes it becomes difficult to select
the right step size. The penalty term incorporated in the
artificial objective function for avoiding violation of any
inequality constraints, results in steep gradients near the
constraints. This difficulty has been resolved by properly
modifying the value of derivatives near the constraints.

One of the ways of keeping the design or independent
variables positive is to use transformation (2.1) where
variables are forced to take absolute value whenever the
value of the objective function is computed. But for, DAVID,

this may cause problems, because DAVID'S logic is such that
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sometimes it becomes necessary to revert back to a
previous position, which is not possible in certain cases,
if this approach is used. For example, if x(l) is equal to
1.5, and a step is taken of magnitude -2.0, the result
would be -0.5. When the absolute value of x(1) will be
returned it will be +0.5, now suppose this is not a better
point and it is decided to revert back to the previous step.
Under normal circumstances the previous step would be reached
by just adding +2.0 to the current value of x(1), but in
this case it would give the previous value of x(1) as 2.5
and not the right value which is 1.5. This may cause
problems in logic of the program. To avoid this it is
suggested that while using gradient methods, constraints to
keep variables positive should be included in service
subroutine CONST instead of using transformation (2.1).

Various search strategies are possible to
determine thé best value of the step size A during any
iteration. Polynomial search has been used in the program
having been found faster then golden section or Fibonacci
search.

DAVID has quadratic convergence. For a quadratic
function it reaches the optimum in N iterations, where N
is the number of variables.

One source of error in this method may be the

numberical computation of derivatives. In future it would

-



68.

be useful to try Powell's method [22], which does not
require calculation of derivatives, since it also has
quadratic convergence, and the problem of derivatives will
not exist.

| MEMGRAD has been found to behave similarly to DAVID.
In this method the incremental step size used for computing
derivatives has been found to have a significant effect
upon results.

Subroutine INTEGER has been written for solving non-
linear problems requiring integer optimum solutions. It
has been found to work quite satisfactorily. The execution
time increases in proportion to the number of variables,
since the number of branches to be searched is proportional
to the number of variables.

Subroutine INTEGER is informed of infeasibility by
OPTIMF2, using NVIOL, the counter of violated inequality
constraints. In subroutine OPTIMF2, any constraint having
negative magnitude of the order of 1.E-10 or less is not
considered as violated. Whenever the Hook and Jeeves [19]
search fails to find the first noninteger optimum solution,
it is preferable to use another method, find the optimum,
and feed that optimum as starting values for subroutine
INTEGER. But in some cases it has been observed that in
spite of this starting point, a message of the type,

"Method has failed to find non integral solution" comes out.
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In this situation a nearly optimum solution has been

found, but it has not been considered feasible by the logic
of the program, because one or more of the constraints may
have been violated, though by a very small amount, say l.E-8,
which is more than the specified value of ZERO in subroutine
OPTIMF2. In such cases it is better to run the program
again by slightly increasing the value of ZERO in subroutine
OPTIMF2.

In subroutine INTEGER the optimum integer solution
does not have exact integer values. The logic of the
program treats any value, which does not differ from the
integer value by more than .001, as an integer value.

If subroutine INTEGER returns a message that "No
integer solution could be found", then it is better to give
another trial to subroutine INTEGER, after changing the
sequence of the variables. This would result in a different
sequence of search and there is some possibility that some
integer solution is found. In actual practice the
probability is not very high that such a situation will
occur.

Subroutine INTEGER has been written in such a way
that with very minor modifications any other optimization
technique could be used, instead of Hook and Jeeves direct
search. In future, if a very good method for optimization

is developed, then subroutine SOLVE can incorporate that
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~method, without requiring much change in subroutine
INTEGER.

These subroutines have made a significant contribu-
tion to the package OPTISEP [l1]. These have been tried in
the past, and will be tried in future on various types of
problems. More knowledge will be gained from the resulting
feed back, which can then be used to further improve the
package.

As explained in the last chapter, these subroutines
can be used to develop various user oriented computer aided
design packages. As illustrated in that chapter, the
calling programs for such packages would be even simpler
than those of OPTIPAC and OPTISEP. The engineer borrows
many theoretical tools from physics, mathematics, economics,
etc, and in his day to day work he must use these himself.
With the development of such design packages in future, the
engineer would be able to use computerized design also, as

a theoretical tool in his day to day life.
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cet working arrays = 0

{

LL=0

E

| I

B, A T G e @l T vertas
Generate (n+l) points, form simplex

Evaluate function at each vertex

and select xh,x8,xs,x0 & uh,ug,us,ud

{

LL=TI+1

: N
. LL.GE.MAXM > o DAET -
<: RESULT EXI?

jas)
o
1 b

o

. 2
Try No o)

. lv,. .2
Reflection Ei(ui-uo; <G

R_= R*REDUCE
|

<::§ifference in Values of U for'\\

two successive optimas ¢ q//r

Yes

(ﬁETURN. )

No

L Try
2 ) s

Try Contraction

!

.

li

XC
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FLOW CHART “SIMPLEX'
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Set all working arrays = 0

yes
IDATA = 1 PRINT DATA

‘X(I)=XTRT(I)

(), £(x), LL=0, F0=f£f(x)

§x=0, 0g=0, B,=0

X =X - aog(x)+60 §

N X

u =1

£lxy) g (xy

= g(x ) g(x)
FAA as per equation (3.20)

R () B

yes

= SIG=FAA
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DELA_,,FASIG

FB, FBB, FAB

!

D1, D2, D3, D4 as given by (3.14) to ,
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i
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n
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é
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[
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FLOW CHART 'MEMGRAD'
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set all working arrays = 0

(

L=0, LK=0, X(I)=%STRT(I)

(PRINT INPUT DATA)“’———'( IDATA = 1

]

)

RETURN -

f(xi%g(xi), FUNLl = f(xi)

(]

= a unit matrix

di =

=H. ®
i-

9
[ ]

= ’
-@./Di 0 > yes
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No
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<Criterzuon < G>'_‘1--r

LEX=LK+1
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yes

]
o

l .
<§x

X,
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g, =

= xX. +

i
e =

i .
f(xi)

get
g(x4)

.._Nﬁ< FUNZ > FUNL

!

D

F5 %1704

&

es

R=R*REDUCE|

L

Compute Hi' matrix to be used in newt iteration

—-
o FT

FUN1 = FUN2, LK =

LK+1

™

FLOW CHART SUBROUTINE 'DAYVIZS =
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L=0,Al=1,E~7,KK=1,S=2 ,FUN1

T

~ AL = AL(S-1)/(s5-1)

1
X. = X, FAL*d1
i i

CALL OPTIMF2 (FUN2)
1

FUN1 = FUN2 1
TFUN2
l ;
ik “‘“"'<<§UN2. GT. FUN1 i>>
[
> G
i
<:’ k=2 4>>-4.A=0,B=A1,C=A:
1
A = Al*(sk-2-1)/(s-1)
B = Al* (sk-1l-1)/(s-1)
c = al*(sk~1-1)/(s-1)
compute FA, FB, FC, for A, B and C
AD = (bz—cz)Fa + (cz-az)Fb+(a2—c2)Fc
{(b-c)Fa + (c-a)Fb + (a-b)Fc
3
L =r1n+1 |
|
{1.6T.20 Y5} = B | RETURN )
{ B-GT.AD :ﬁ“¥i<§B.GT.ra _)Vsi
T
A = AD
-/ C =B
<FB.GT.FD > FA = FD FC=FB
] * B =AD
A =B, FA = FB C = AD FB=FD
B = AD, FB = FD FC = FD

FLOW CHART FOR SUBROUTINE 'FIND'

Fig. 5
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common ICHECK IPZ,

N2, N1, NORG, NOD

Y

< IDATA =

kk = 0, NOD = 0, NORG = NCONS

!

6, T =1,50

IPZ(I) =

-

CALL SOLVE to optimize at

i each stage

'

= kk+1l
t

Solution Feasible :>>

kk
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es
l:>x_’(:PRINT.DATA )
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NOD = NOD+1° Record best .
"ICHECK (KB)=0 - €51lution
A ‘L‘ .
i ICHECK (NOD) = 1

KB.EQ.O

—*1pz (KB) =1 Akxi‘
— AX >Ng, | N1(NOD) = IX(L)
KB=KB-1 <E?§§7327 < 0.0 N2 (NOD) = IX(L)+l

;

= IX(L)
IX(L)~-1

3

N2 (NOD)
N1 (NOD)
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)
-/ es
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N
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common ICHECK, IVAR, [PZ, N2, N1, NORG, NOD

I=1
— |
—Y¥eS—ICHECK(I) = 0 )
!
L = IVAR(I)
NN = N1(I)

IT = I + NORG

ok

PHI(II) = - (X(L) - NN)

-———-<Ipz(1) =1 >—1§5
{

L = IVAR(I)
¢
NN = N2(I)
II = I + NORG
!
PHI(II) = (X(L)-NN

1 II = I+NORG

%

I) =

I = I+l

4
(RETURN )‘£‘5<I.EQ.NOD )

FLOW CHART SUBROUTINE 'ADDL'

FIG. 7
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APPENDIX A. DOCUMENTATION FOR THE SYSTEM

SUBROUTINE UREAL(X,U)

Puggose

To calculate the value of the objective function at a point
U= U(xl,xz,...xn)

where U = minimum at the optimum

Method
The objective function may be defined by
(a) a simple arithmetic FORTRAN statement such as
U= X(I)**2 + 2*SIN (X(2))
(b) by a complex analysis which may, for convenience,
be in one or more separate subroutines. It could,
for example, involve a solution of differential

equations or eigenvalue equations,

Input Variables

X(I) the current values of the independent variables

Output Variables

U The value of the objective function corresponding to

the input X(I) values.

How to Set Up Subroutine UREAL

The following cards must be punched by the user:

SUBROUTINE UREAL(X,U)
DIMENSION X(1)
U=arithmetic function
RETURN

END

-80 -
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If a more complex analysis is needed to define U, then subroutine UREAL

would be punched as follows:

SUBROUTINE UREAL(X,U)

DIMENSION X(1)
The coding required for analysis; it
may include any legal FORTRAN statements
and CALL's to auxiliary subroutines. The
final value of the objective function must
be placed in U,

RETURN

END

Miscellaneous

If additional data is required to perform the analysis, the
necessary READ statements should be inserted in the MAIN program and the
data transferred from MAIN to UREAL through labelled COMMON blocks.

Where possible, the user should include conditional STOP's in his
coding to prevent invalid results from being returned to the optimization

procedure.

SUBROUTINE EQUAL(X,PSI,NEQUS)

Puggose

To calculate the values of the equality constraints at a point
st wj(xlnxzn-'-xn) le!m

where wj=0 at a feasible point.
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Method
The equality constraint functions may be defined by:
(a) simple arithmetic FORTRAN statements such as
PSI(1) = X(I) + X(2)**2
(b) by a complex analysis which may, for convenience,
be in one or more separate subroutines. It could,
for example, involve a solution of differential

equations or eigenvalue equations,

Input Variables

X(1) the current values of the independent variables

NEQUS the number of equality constraints

Output Variables

PSI(I) the value of the equality constraints corresponding

to the input X(I) values

How to Set Up Subroutine EQUAL

The following cards must be punched by the user:

SUBROUTINE EQUAL(X,PSI,NEQUS)
DIMENSION X(1),PSI(1)

PSI(1)= arithmetic function
PSI(2)= arithmetic function
PSI(NEQUS)= arithmetic function
RETURN

END

If a more complex analysis is needed to define the PSI(I) values, then

EQUAL would be punched as follows:
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SUBROUTINE EQUAL(X,PSI ,NEQUS)

DIMENSION X(1),PSI(1)
The coding required for analysis; it may
include any legal FORTRAN statements and
CALL's to auxiliary subroutines. The final
values of the constraints must be stored in
the PSI(I) array.

RETURN

END

Note: If the user's problem has no equality constraints, then subroutine

EQUAL may be omitted altogether.

Miscellaneous

If additional data is required te perform the analysis, the
necessary READ statements should be inserted in the MAIN program and the
data transferred from MAIN to EQUAL through labelled COMMON blocks.

Where possible, the user should include conditional STOP's in his
coding to prevent invalid results from being returned to the optimization

procedure.

SUBROUTINE CONST (X ,NCONS ,PHI)

Purpose

To calculate the values of the inequality constraints at a point
¢k= ¢k(x1:x2:~--xn) k=1)p

where ¢ 2 0 at a feasible point

Method
The inequality constraint functions may be defined by:

(a) simple arithmetic FORTRAN statements such as

PHI(I) = X(I) + X(Z)**Z
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(b) by a more complex analysis which may, for
convenience, be in one or more separate
subroutines, It could, for example, involve a
sclution of differential equations or eigenvalue

equations

Input Variables

X(I) the current values of the independent variables

NCONS the number of inequality constraints

Output Variables

PHI(I) the values of the inequality constraints corresponding

to the input X(I) values.

How to Set Up Subroutine CONST

The following cards must be punched by the user:

SUBROUTINE CONST (X,NCONS,PHI)
DIMENSION X(1),PHI(1)

PHI{1)= arithmetic function
PHI(2)= arithmetic function
PHI (NCONS)= arithmetic function
RETURN

END

If a more complex analysis is needed to define the PHI(I) values, then

CONST would be punched as follows:



85.

SUBROUTINE CONST (X,NCONS,PHI)

DIMENSION X{1),PHI(1)
The coding required for analysis; it may include
any legal FORTRAN statements and CALL's to
auxiliary subroutines. The final values of the

constraints must be stored in the PHI(I) array.
RETURN

END

Note: If the user's problem has no inequality constraints, then subroutine

CONST may be omitted altogether,

Miscellaneous

If additional data is required to perform the analysis, the
necessary READ statements should be inserted in the MAIN program and the
data transferred from MAIN to CONST through labelled COMMON blocks.

Where possible, the user should include conditional STOP's in his
coding to prevent invalid results from being returned to the optimization

procedure.
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SUBROUTINE SIMPLEX(N,RMAX,RMIN,NCONS,NEQUS,XSTRT,
~NN,ALPHA,BETA,GAMA ,REDUCE,R,F,G,
MAXM, IPRINT,IDATA,U,X,PHI,PSI, XA,
XJ,FUN,XH,XS,XL,X0,XR,XE,XC,STEP)

Puggose

To minimize U= U(xl,xQ,...xn)

n
e
=1

subject to wj(xlxz,....xn) =0 j

u

P
hd
el

¢k(xl,x2,....xn) >0 k
Method

Equality and inequality constraints are taken care of by

defining an artificial unconstrained cbjective function,

b
- 1
P(xl,x2,....xn) = U(xl,xz,....xn) tr j{: ¢k(x1,x2,....xn)
k=1

2

m

+ ij(xl,x2’voonxn)
2

j=1

where Ty is a positive constant (rl=l.0 is normally assumed as starting
value). Value of r is reduced by multiplying it by a constant factor

¢ " . " ¥ -
REDUCE' after each iteration (i.e. Tl STy

The simplex method of search sets up a set of n+l points in

x REDUCE).

n-dimensional space, called the simplex. It gropes towards the
optimum by flipping, expanding or contracting the simplex, the logic
used depending on an evaluation of each cormer.

In the logic three parameters are required -- an acceleration
factor vy (y>1), a contraction factor B (0<B<l), and a step length

factor a.



87.

The simplex is first generated by using some starting point
XSTRT(I) plus n additional points
' XSTRT(I) + F* (RMAX(I) - RMIN(I)

ntl
The search is considered to have found optimum if {%-EZZ(Uj-UO)

_ J=1 |
where G is a small quantity used as a stopping criterion.

2,1/2 <G

Reference
1. Kowalik, J. and M.R. Osborne, "Methods for Unconstrained Optimization
Problems", Elsevier, 1968,

Special Features

The following programming parameters must be defined by the calling

program. Generally adequate values are as follows:

F = 0.1

G = 1. E-4
MAXM = 50

R = 1.0
REDUCE = 0.05
ALPHA = 1.0
BETA = 0.5

GAMA = 2.0

XSTRT(I)

(RMAX(I) + RMIN(I))/2.0
The value of F has a significant effect upon convergence. Out of various
values tried F=0.1 has proved to be the best.

Simplex is a good metﬁod for problems with inequality
constraints only. It tends to stall on equality constraints and it is

better to start as far as possible from the equality constraint lines.
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Input Variables

N number of design or independent variables
NN = N+1  number of simplex points generated
IPRINT prints results every IPRINTth iteration, set=0 for no

intermediate output

IDATA = 1, all input data to be pfihfédvoﬁf'
= 0, no input data to be printed out

NCONS the number of inequality constraints

F fraction of (RMAX(I) - RMIN(I)) used as step size in
forming initial simplex

MAXM maximum number of iterations allowed -

G small quantity used as convergence criterion

NEQUS the number of equality constraints

R penalty function parameter in calculating artificial
unconstrainedvobjective function

REDUCE reduction factor for R

ALPHA reflection coefficient

BETA contraction coefficient

GAMA expansion coefficient

RMAX(I) estimated upper bounds on X(I), dimensioned with the
value of N

RMIN(I) estimated lower bounds on X(I) dimensioned with the
value of N

XSTRT(I) starting value for X(I) dimensioned with the value of N

Output Variables

U minimum value of objective function, evaluated in UREAL
X(1) optimum values of independent variables, dimensioned with

value of N
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PHI(I) inequality constraint functions, evaluated in CONST,

dimensioned with NCONS

PSI(I) equality constraint functions, evaluated in EQUAL,
dimensioned with the value of NEQUS
NVIOL counter of number of inequality constraints violated

Working Arrays

XA(I,J) dimensioned with value of N,NN
XJ(I) dimensioned with value of N
XH(I) dimensioned with value of N
XS(I) dimensioned with value of N
XL(I) dimensioned with value of N
Xo(I) dimensioned with value of N
XR(I) dimensioned with value of N
XE(I) dimensioned with value of N
Xc(I) dimensioned with value of N
STEP(I) dimensioned with value of N
FUN(I) dimensioned with value of NN

Programming Information

SIMPLEX has full varisble dimensioning. The calling prograumme
must provide dimensioning as given above. |

If printout of the optimum is desirsd directly from
SIMPLEX then the statement CALL SIMPLEX may be followed immediately
by CALL ANSWER (U,X,PHI,PSI,N,NCONS,NEQUS). This prints out the
optimum point and the values of ¢'s and y's.

If NCONS or NEQUS is zero then it is dimensioned 1 in the
calling programme. If the method has not converged after MAXM then

the current answer is printed out and SIMPLEX exits without return.



Subroutines called are OPTIMF2, CONST, EQUAL and UREAL.

90.
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SUBROUTINE DAVID(N,RMAX,RMIN,NCONS,NEQUS,XSTRT,G,F,
MAXM, IPRINT, IDATA,R,REDUCE,U,X,PHI,
PSI,H,GS,D,GN,GA,Y,DT,C,YT,PHX,PSX,

PART,PAST,CH,UX)
Purpose
To minimize U = U(xl,xz,....,xn)
subject to ¢k(xl,x2,....,xn) >0 k = 1,p
wj(xl,xz,....,xn) =0 j = 1,m
Method

Subroutine DAVID uses the Davidon-Fletcher-Powell gradient
method of search in which, at the k+l step, the new value of an
independent variable is

x§+l = x? + Ak d?
where Xk defines an optimum step length and d? is a function of the
partial derivatives at x? and all of the derivatives at the previous
steps.

The search is considered to be cptimum if the value of U does
not change significantly in two successive steps.

Subroutine FIND is called to determine )\k, and subroutine
PARTIAL evaluates the partial derivatives by numerical calculation.
Subroutine OPTIMF2 is called to form the unconstrained artificial
objective function, described in SEEK3. The reader is referred to
SEEK3 for a more detailed description of the use of penalty functions
with successive optimization.

Reference

1. Kowalik, J., and M.R. Osborne, "Methods for Unconstrained

Optimization Problems", Elsevier, 1968.
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Special Features

The following program parameters must be set by the user,

generally adequate values are indicated.

R = 1.0

REDUCE = 0.05

F = 1.0 x 1070

G = 1.0 x 107"

MAXM = 50

XSTRT(I) = (RMAX{(I) + RMIN(I))/2.0, a known feasible start

is preferable

Input Variables

N number of design or independent variables

IPRINT prints results every IPRINT step, set = 0 for no intermediate
cutput

IDATA =1, all input data is printed out
=0, input data is not printed out

NCONS  the number of inequality constraints

NEQUS  the number of equality constraints

F fraction of (RMAX(I) - RMIN(I)) used as step size for
computing partial derivative

R penalty function parameter

REDUCE reduction factor for R

G a small value used as convergence criterion

MAXM maximum number of iterations allowed

RMAX(I) estimated upper bound for variable X(I), dimensioned with

the value of N
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RMIN(I) estimated lower bound for variable X(I), dimensioned with

the value of N

XSTRT(I) starting value for X(I}, dimensioned with N,

Output Variables

X(I) optimum values of the independent variables, dimensianed

with the value of N

U optimum value of objective function, evaluated in UREAL

PHI(I) inequality constraint function, evaluated in CONST,

dimensioned with value NCONS

PSI(I) equality constraint function, evaluated in EQUAL,

dimensioned with value of NEQUS

Working Arrays

H(I,J) dimensioned with
GS(1) dimensioned with
D(I) dimensioned with
GN(I) dimensioned with
GA(I) dimensioned with
Y(I) dimensioned with

DI(I,J) dimensioned with
Cc(I1,J) dimensioned with
YI(I,J) dimensioned with
PHX(I,J) dimensioned with
PSX(I,J) dimensioned with
PART(I) dimensioned with
PAST(I) dimensioned with

CH(I) dimensioned with

value

value

value

value

value

value

value

value

value

value

value

value

value

value

of N,N

of N

of N

of N

of N

of N

of NN

of NN

of N,N

of (N,NCONS)
of (N,NEQUS)
of N

of N

of N
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UX(I) dimensioned with value of N

Programming Information

DAVIDON has full variable dimensioning. The calling program
must provide the dimensioning as given above.

If printout of the optimum is desired directly from DAVID
then the statement CALL DAVID should be followed by

CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS)
This prints out the optimum point and the values of the ¢'s and ¢¥'s.

If the input value of NCONS or NEQUS is zero, it must be
set at 1 in the argument of PHI,PSI,PHX and PSX .in the calling programme
DIMENSION statement.

If the method has not converged after MAXM iterations the
current answer is printed out and DAVID exits without return. However,
there is no way of knowing if DAVID has hung up on a constraint or
valley and is indicating a false optimum.

Subroutines called are FIND,OPTIMF2,PARTIAL,SUPPLY,UREAL,CONST

and EQUAL.
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SUBROUTINE MEMGRAD(N,RMAX,RMIN,NCONS,NEQUS,XSTRT,
F,G,MAXM, IPRINT, IDATA,R,REDUCE,
U,X,PHI,PSI,GO,GNEW,GAl,GA2,GB1,
GB2,XA,XB,XC,XD,DELX,FGA,FGAB,
PHX,PSX,UX,PART, PAST ,CH, XNEW,XTRIAL)

Purpose

To minimize U = U(xl,x2,....,xn)

subject to wj = (xl,xz,....,xn) =0 j=1,m
¢k = (xl,x2,....,xn) > 0 k=1,p

Method

This method is an extension of that of Daviden, Fletcher

and Powell. The step size Gxi is determined from the relation

{6x,} = - a{—g-g—} + B{Gii}

e

-

where a and B are scalars chosen at each iteration so as to yield the
greatest decrease in the optimization function. The quantity éii is
the previous step size. Thus, two parameters must be optimally chosen
rather than one with Davidon, Fletcher, Powell. Selection of these
parameters depends on previous gradients and steps, hence the name
memory gradient.

The complete algorithm can be summarized as follows.

(1) For a given point Xss the gradient g%T is computed,

i

and the vector Gﬁi is known from previous iterations. All 621 =0
is assumed for the first iteration.

(2) Optimum values of the scalars a and B are found by a

special search technique. The initial values are arbitrary.
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The optimum is assumed to have been reached when the change
in the value of U between successive steps is less than an arbitrary
small quantity G.

Constraints of the problem are taken care of by forming an
artificial unconstrained objective function similar to thaf used in
SEEK3, Restarting of the alorithm beginning with Gﬁi = 0 after N
iterations, helps in convergence, and this has been incorporated in
subroutine MEMGRAD.

References
1. Miele, A. and J.W. Cantrell,"Study on a Memory Gradient Method

for the Minimization of Functions", Journal of Optimization Theory

and Application, Vol.2, No.6, 1969.

Special Features

The following program parameters must be set by the user. Generally,

adequate values are indicated.

R = 1,0

F = 1.0 x 107°

G =1.0 x 207"

MAXM = 50

XSTRT(I) = (RMAX(I) + RMIN(I))/2.0, a known feasible start

is preferable

REDUCE = 0.05
Input Variables
N number of design or independent variables

IPRINT prints results every IPRINT iteration, set = 0, for no

intermediate output



IDATA

NCONS

NEQUS

G

R
REDUCE
MAXM

RMAX(I)

RMIN(I)

XSTRT(I)

91,

1, all input data is printed out

0, input data is not printed out

]

the number of inequality constraints

the number of equality constraints

fraction of (RMAX(I) - RMIN(I)) used as incremenf for
computing partial derivatives

a small number used as a convergence criterion
penalty function parameter

reduction factor for R

maximum of iterations allowed

upper bound for variable X(I), dimensioned with the
value of N

lower bound for the variable X(I), dimensioned with the
value of N

starting value of X(I), dimensioned with N

Output Variables

X(1)
U

PHI(I)

PSI(I)

optimum value of independent variable, dimensioned with N
optimum value of objective function, evaluated in UREAL
inequality constraint function, evaluated in CONST,
dimensioned with value of NCONS

equality constraint function, evaluated in EQUAL, dimensioned

with NEQUS

Working Arrays

of N.

The following working arrays are dimensioned with the value
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GO,GNEW,GA1,GA2,GB1,GB2 ,XA,XB,XC,XD,DELX,FGA, FGB, FGAB,UX,PART ,PAST,
CH,XNEW,XTRIAL.

Other working arrays are dimensioned as follows

PHX dimensioned with the values of (N,NCONS)

PSX dimensioned with the values ofJ(N,NEQUS)

Programming Information

Partial derivatives are calculated internally by numerical
approximation in PARTIAL.

MEMGRAD has full variable dimensioning. The calling
programme must provide the dimensioning as given above.

If printout of the optimum is desired directly from
MEMGRAD, CALL MEMGRAD in the calling program should be followed by
CALL ANSWER(U,X,PHI,PSI,N,NCONS,NEQUS). This prints out the values
of ¢'s and ¥¢'s.

However, there is no way of knowing if MEMGRAD has hung
up on a constraint or valley and is indicating a false optimum,

If the input value of NCONS or NEQUS is zero, it must be
set at 1 in the arguments of PHI or PSI in the calling program DIMENSION
statement.

If the method does not converge after MAXM iterations, the
current answer is printed out and MEMGRAD exits without return.

Subroutines called are OPTIMF2,ANSWER,PARTIAL,SUPPLY,UREAL,

CONST and EQUAL.
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SUBROUTINE INTEGER(N,RMAX,RMIN,NCONS ,NEOUS,
XSTRT,F,G,R,REDUCE ,MAXNOD,
MAXM,K,IPRINT,INDEX,IDATA,
u,X,PHI,PSI ,NVIOL ,WORK1,
WORKZ ,WORK3 ,WORK4,IX,DIF,

XB)
Purpose
To minimize U = U(x1,x2,x3,...xn)
subiect to ¢k(x1,x2,...xn) 20 k=1,p
wj(x1,x2,...xn) =0 i=1,m
and (Xq:%p4%q...%,) to be integers

where 2 is such that 0O<o<N

Method
The method is based unon the branch and bound techniaoue of

inteaer proarammina. The nrocedure consists of a systematic search

of continuous solutions in which variables to be made integer are

successively forced to take integer value, If some variabie sayv

X, = ns+fs is to be inteaer, where n

S S
part respectivelv, two alternative nroblems are formulated and solved.

and fs are inteqer and fractional

These can be considered as two branches comina out of a node. One
contains the additional constraint Xg € Ng. The other contains the

additional constraints Xg > Ng + 1. Procedure is then repeated for
each of the two solutions so obtained. Search at a particular branch
is terminated when either an inteaer solution is reached or when no
feasible solution is nossible. A1l the possible branches are searched,
and the best integer solution reached this wav is the optimum inteaer

solution.
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Hooke & Jeeves direct search technique is used to solve
ontimization nroblems at each stage. Constraints of the problem are
taken care of bv forming an artificial objective function similar

to SEEK3.

Reference

1. Dakin, R.J., " A tree Search Alogarithm for Mixed Integer Programming
Problems", Comnuter Journal, Vol. 8, Aoril 1965 - January 1966,
nn, 250-255.

2. Land, AM, and A.G. Doig, "An Automatic Method of Solving Discrete

Proarammina Problems”, Econometrica, July 1960, Vol. 28.

Special Features

The following progqram parameters must be set by the user,

Generally adeauate values are indicated.

F = .0

MAXM = 300

MAXNOD = 25

G = .01

R = 1.0

REDUCE = ,04

XSTRT(I) = (RMAX(I)+RMIN(I))/2, a known feasible start is

nreferable.

Input Variables
N number of design or independent variables
NCONS the number of inequality constraints
NEQUS the number of equality constraints

McMASTER UNIVERSITY LIBRARY
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F fraction of (RMAX(I)-RMIN(I)), used as initial step size

G fraction of initial steo size used as minimum step length

R nenalty function parameter

REDUCE reduction factor for R

MAXNOD maximum number of branches to be searched to get integer
solution

MAXM maximum number of search cvcle

K number of design variables which must be integers

IPRINT prints result every IPRINT cycle, set at zero for no

intermediate output

INDEX set equal to 1

IDATA = 1, all input data is printed out
= 0, innut data is not printed out

RMAX(T) estimated upper bounds on X(I), dimensioned with the
value of N

RMIN(T) estimated lower bounds on X(I), dimensioned with the
value of N

XSTRT(I) starting value of X(I), dimensioned with the value of N

Outonut Variables

U minimum value of the objective function, evaluated in
UREAL
X(1) optimum value of the independent variables, dimensioned

with the value of N

PHI(I) inequality constraint functions, dimensioned with the

value of (NCONS+MAXNOD)
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PSI(I) equality constraint functions, dimensioned with the value
of NEQUS

R current value of penalty function multiplier

NVIOL number of inequality constraints violated

Working Arrays

WORK1 dimensioned with value of N
WORK2 dimensioned with value of N
WORK3 dimensioned with value of N
WORKA dimensioned with value of N
IX dimensioned with value of K
DIF dimensioned with value of K
XB dimensioned with value of N

Proarammina Information

Subroutine INTEGER has full variable dimensioning. The calling
nroaram must nrovide dimensioning as above.

If orintout is directly desired from INTEGER, then statement
CALL INTEGER in the calling orogram should be followed by

CALL ANSWER(U,X,PHI,PSI ,N,NCONS,NEQUS)

If search of all hranches is not over after MAXNOD branches
have been searched, then INTEGER exits without return, and last best
solution is printed out.

If NEOUS=0, it must be set at one in the arquments of PSI,
in the calling proaram DIMENSION statement.

If K out of N design variables are'to be integers, the problem

should be formulated such that variables have the following order
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(x],xz,x3,...xk,xk+1....xn)

where the first k variables are to be inteagers,

Statement CALL ADDL(X,PHI), should always be inserted in
subroutine CONST, just before RETURN statement.

If an initial continuous solution cannot be found in INTEGER,
it mav be nossible to first obtain one bv an alternate library
subroutine from OPTISEP, say SIMPLEX, and beqgin INTEGER with this
solution.

Subroutines called are SOLVE, SEARCH, ANSWER, OPTIMF2, ADDL,
UREAL, CONST and EQUAL.

V. Jha
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oDy

228
220
200

910

280
00

£00

£00

401
471

40?2

204

212

WE CHECY [F CANTRACTINANM
IF (UHJATUCHYIAN Tn 200
TF APAVFE MOVE 1S

NN 220U J=1sMN
NO-220 T=14N

Xa{1e1)=X {1
CANTINUR
P=P#2FAUCF
UOLD=UNFY

GN TN 299

NMAT SUCCFSSFEUL
ANMD RFESTART AGAIN ERpAr TUTS CHANGED SIMDLEX

HAS RFEEN

cp TOT 0209

SUCCFSSFUL
WE RPEDLACFE ALL POINMTS nF SIVPLFX

106.

XA{To )20 (XA(Toy+X1L (1))

an Tn al

N 210 T=1eM

XH{T)Y=XC (1)}

XA(TeMaYy=X=(T)

GO To 80 »

WE CHANGF THF opTIMUM DOINT IN AN ARRAY X
KO=1

nA S00 T=1,

X(Y)-Xl(Y\

“'OTT:((\"' ‘(‘ “AX“

EARUAT(IHASRSTYDLEX HAS HWUNG UDP AFTFD&,Ia,*rTFDATroNS*o/)
CALL Anf"nlu,x nu7,°°Y.H.Mr0M~.~FﬁU>)
CALL FI(IT

CALL URFAL (XL sUMFI
IFINCONMS  CR N GANNDMFAUSLFRLIIGO TO 402
KK =K 4D

IF(vvy eng1 e TR a4l
TREARS{UAL N=LIMFW ) ol ToRIAN TO 40

no A4l [=1eM

Kn=0
U_:t}:v;—:‘!,l
N B0 [=1sM
X{(1)y=Xt_ (1
FORMATIAIHTINTERMENTATE ALTPUT FVFRY IPRIMTITH) CYCLF. o o ¢ IPRI
INMT =eTA)
FARYAT(ATHCTNMBUT DATA IS PRINTED QUT FOAR INDATA=1 ONLYe o o o IDAT
1A =9]A)
cnovh%(‘1uAmUmnrn AT TMDNEPEMNFEMT VARTARLFS , ¢ o ¢ o« o o o o
N =9 TARYH
ENPMAT(RTHCNUIMRER AF TMEAUALTTY ((6GFEe) CONSTRATIMTS o o o o o Mco
NS =eTA)
FAPUMAT{ATHOFRACTINAN NAF RANMCF USFND AS STFD ST12F ¢ @ o o o o o
F =eF10,2}
FARMAT{ATHOMAX ITMUM NUMBEDR NF MAOYFS PERMITTEN o o o o o ¢ o o MA
IXM  =e1K)
FARUAT (A1HNSTED S12F FRACTIAN JSER AS FONVERAENMFE CBITESTANM,
 =eF19.7)
AN AT(#.‘H—H".N!'NﬂFb AF FAUALITY CMSTRAIMTSe o o o ¢ o 6 o o o NFED
US =s14)
FARMAT{ATHOFSTIVATEDR UPPRFR BAUND NN RAMGE OF X(Tle o o o o o 2M8X{
10) =9 //7(EF1AL9Y))
FARVAT(AIHITSTIMATED (LOWFR ROUMD ON RANMGF OF X{T)e o o o« o o PMIN{
) =9/ /({BC1A,R))
EARMAT (AT H- STAnTrmr VAIUIES OF XUT1Y o o o & 4 @ & o o 9o »' o oXSTRIA
11) =9 //(RF1ELR))
RETLIPMN
FAND
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82

201

200

200

140
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\

SuneAalT INE HrnroAn(m,nqu,pH'M,HrﬁNS,NCQJD,XQThTgr
TINATASR eI NUCF 91Ja X 9DHT 9 DET 4 AN o ANMEU 9 GA] 9 GA2 9 mA L 9D
INFIXsTARASI AN gF AR ¢ DLIX 3 DGX olIX 9(""T9"’\CT¢("49X'\'F" ' XTP

’ oORTNTy |
.
'
nr”"’\'SY"’\‘ X{ Yo AY('V,vO”I (1)0"0‘1)"""4‘“‘2
Y (
( (
*

 {
CoeXNy
’ {
1Y eGAT(T) o™ A2(1)eGRI{T) e AR D 1
TYOPHI{Y) oPST (1) sCHIT) s XNFU )
1YePSX{Me1)

RY THE MFMARY GRADIENT METHOD

-e "\X

COAMMAN ¥
APTI™I7A
| K=
CLFAPTNC A
L]

»
°
>
2
—‘
:
—1')‘ X
2

I
2
A
V)
—
]

e e [0 e el g o o P el et et

by o ey e e g b o
LI T R ¥ padCe RN R | N | [ B I 1]

>

z

n

5 o |
)

N re DD 08 0 e

e ) QDD

e te
~— <

NN =N~~~ HNHDIDIDIO=D
3

-4 K ]
J>e D)8 e Dwe o8 8 DNITIDIDD D
y—4 D720 T

n

ﬁ
g § e D;——-\
i~

DMAX{T1=RUIN{T}Y) .
)

FARUAT { 1A ARTIMVIZATIAN RY RMEAADY CDANRIFNT METHNANRKe /)
ALl TNPUT DATA IS PRINTED OUT rﬁP IDATA=1
IF(TINATA MR 1Y TN a9

WP TTE(4ae22)TORINT

WRITFE(A+202)INATA

WBITTF{AR 4N

WDITftﬁoﬂf?)N{ﬂNS

WRITF{A AT

WRTTE(ASZTT ) AXM

WRPITE(4s270) 1

WRITE(A 3 QYNMENS

WRDITE (A e210Y(PVAX(TYeT=1 ™)
WRITE(A 21 1) (RMIN(TYeT=1N)
WOTTF{A212YIXSTPT{I)s1=190)
L=1

LK=

KALINT =0

XAUTTHS RARTIAL PETURMS VALUSS NE ARANTENTS RENUTIREN
f\‘l PAPTIALIXsMaMOOMSyMFRUG ePHT 3P ST enn0le Ry CHLUIXIPSX, DHX.
1 PART o #AST)
SURRAUITINE ApTIMFY RFTHRMS VALY OF A2TIFICTAL OBJYFCTIVF FUNCTION
CALL - naryupp(x,cnmv.owg.nfy.m(ﬂmfy*fﬁﬂquV!“LoQ)
NNAW WE START SFEARCH Fan THF PEST VALUFS NF ALPHA AND OFTA
ALDHA AND RETA ARFE THE SCALORS SO CHOSEN TuaT STFP ST1Z2F DFLX =
—ALPUAXGHPETA(NFLX NF LAST ITFEPATIOM) GIVIS WAXIMUM DFCPFASE [N
THE EimrTrAM v e 59 o
%TagTanf VALIIFES AF ALDHA ANMD RETA ARE CHASFAN AS AN=0,0 AMD 3N=Nn,0
22._._.{":"
AMAtAL= (O

ANHGALTY+ROXDFLX(T)
XMEWe FUMOLNePHT » P’Y;KP"MQ MEAUCS MY TOL o R)

rALL DA TAL [ XMEWGN qMANME GJMTNIT g DUYT 9y NS T o ANFUy Ry CrislIXePEX o DHX
1DADTZDASTY ;

qglu‘l-n 0

nn 8 r=1,~

Suv1-SUMT+GNFW(I)*ﬂn(T!

'“—c
S~
“‘I

—4 --c)(o
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=SV}
FR=0,0
PN 6 T=1sN

FRs ”P+’NFW(I)*UFLX(Y)

SUM1=0,0

SumM2=0,0

FPS=14F=4

BO 7 [=1.M

SUMT=SUMYT+(AN{TY%2)

SUMI=SUMI & (NFLX(T)%*%2)
IF(JJeFNel)1SUMI=] (F=Rr

TF{ARS(ISUNT ) o1 To145=2018UNMT1=21,F<20
IF(ARS(SUM?2 ) oL Te1eF=20)1SUM2=14E=20
FPS1=FDS/SnRT{ARS{SUMY )Y
FPS2=FPS/SARTIARS(SUM21))

NO /R T=1eN

XA(T)=XNEULTYI4+EPSYIRAO(T Y

X2 T)=XNEV({T)~FDS1%rN( 1)
XCIT)=XNFR{TI4ED82xnNFt X( 1)
XN(T)1=XMNFR{T)=FDS2an"] X(T)

(ALL PARTTAL (XASNaNCONSINTNUS 9OHT 9DSToCATsR 3 CHaUX 9PEX ePHX

1PART ¢ %AST)

CALL PARTTIAL XD sMgNCONSoNCTAUSsPHUT eNST AP sR s CHIUX aBSX o DX
1PART ¢yPAST)

CALLL DADTtAt(XroM.H(GMQ MEMUS sPHT oPETaART aR oCHIUX o DSX s PHIX e
IDADRT ¢PASTY

CAL L ”A°T'A|(X“’Vo“’nﬁqs“cﬂUS’PHIvDST’fﬂ7999rHvUXoD<XsDUX'
1PART 4sPAST) :
DN 113 Y 19N

N

DI>
b B
NJ o= -
o~y oo
B
i

D3>
NN
b o~ o~
e L )
et e a?
e

CID D rtme cer

—te 0 0 -l U
OO DIDN

NO 14 1M
SUM1=SUMTI+FGA{T %
SUM2=SUMP+FGR (T ) #I
SUM2=SUMRALFGAR(T)
FAA=SUMY /{2, %FP5S1
FRo=SiIM2 /(2 4%FPS?
FAQ=GLIMR /(2 ,%ZDS>
n1-FA%rnn-rr*F«n
NP=FNAFAA-CAXFAR
N2RA=FCAAXFRR_CARXFAR
DA FA*FA*F?W—?.*FA*FQ«:AQ+FR*FQ*FAA
F(N2,FN, "N, 0IN3=0,00001

O= hﬁ/01

SI““=+1.0

TFID I TeNeaNIST1ANZ=),0

ND=0Q

;F(JJ rg s1VAN TO BY .

n Ta
FAP SIRST ITEPATIAM NELA AMD DFLAB ARF AIVFN Y FOLLOWING STATEMENTS
DFLA AND PELR ARF STEPS RY WHICH VALUFES OF ALPHA AMND BFTA ARE
UPNDATEN TILL. 8FST VALUFS OF ALFHA AND AFTA ARF FOUND

S1A=1,0
IF(EAA L TeO "\qt 2-1

TF(ARG{EAR) ol T, L AA=1 . Fh¥SIG
A A=) F=L#AN
DELA==FMUR(EA/FAAI*SIG

ALDHAZANENF_A

RETA=RA4NELQ

NO 21 T=1eM

XTRIAL{IY=X{T)=Al PHUARAN(TI+RFTASNFL X(T)

CALL "OTIMEDI(XTRTIAL sFUNFW gPHT ¢ OST o NCONS o NFONS s MY TAL 3R
1E(rinew | oorinn NYyn TN 22

Erell= Fuula.W "
MA =N 49 ;

Ic(mm,AT, RO)rn T~ o0

GO TN 24

IF(ARS(NFI A JLTJARS(AC2YIGO TO A

AN=A] DKA

nNA=NETA
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RN

Rl

N

109,

AIATRE s REATATY Y
[F(MMM AT 20 16N T an
GO TN 70
EARP TTERATION ATRED THAN TUFE FIRST FOLLOWING STATFVENTS ARF USED 10
COMPUTE NELA AND DFp R
AN NFL A==Fx (N /N2y #STAN
NEf Oz~CM % (N2 /M2y %S TGN
AT =(] gFwts) ®AN
AD=(1,C~a)n0N
ALODHA=AN+NELA
aFTA= uo+nc[n
NN 18 1=1,
18 XanAs(r\-X(')-nlou«*rn(V)+°=TA*hFLX(I)
(SENIEY IR, |
CALYL NPTTUED [XTRYTAL s FUMFU4DUT g DS T 4 NEOAMS iNFm'Qo?!VIN )
[F(FIUMENW | F,THNAI DYIYAN TO A2
FMU=SMU /L gl
Te(mm AT 60 N T al . i
co T /0 : ’ i
SFARCY EAS ALDHA AMM OFTA TS ASSUMEND TO BF cOMPLFTE IF YMAGNITUNFE
AF NELA AMD SFL R RFEOAVMES TNSIGNIFICANT
£ TC(AGS(NEL AY L FJARSAYT) JANRGARSINE R | FA25{AK2)10 TOH an
AN= A OKA 5
AN=RFTA
ATAIA s RTATRL L Y
1e({vnn T 20 Yyan TA af)
N T 74 ‘
REST VALUFS AF ALBKA ANND QETA HAVF REFM FOUNDs CALCULATE STEP FOR X
AN NN 1A T=14M .
NELX(T ) == (AL DHARAAN{ T )=RFTASNELX{ 1Y),
14 X(T)-X(r)*”flxt1$

AL ARTIVEI{X o FUNT3DHT oDST o NENNS 9 NFNLISINY TN o7)
ALMT =V ALMT +
TE{ITinT 0 Fal)rnr T2 20

TFIL ATe1 12~ TR @04

201 cnc-AT!1u1)

WRDITE (L e 5 & |
ofs FARUAT{1WN,: TMTEIVENTATE AUITDUT FAR MEMANRY ARANTENT DMFTRMAN®e /)
WRITE{Ast0N)
700 FAnATEIHA~ e UART 16 THFE APTIFTICTIAL UNCOMSTRAINFS ADTIIZATION FUM
CTTIoNES /) :
WPYTE{Ae2 )
0N2 EANYAT(THNSHATED MN 2t AN o % g 12N e ¥UARTH*a 30X s X TNNFOENNENT VARTARLF
S X(1)yxe/) ;
TE(IDDINT ME KALINT Y RN TN any
vAUINT =0
AL LIDEA] (X gl)}

WOTTE{2 207 11 ol)JgFlIND g (X{TYyeT=1aN)
20D EAD AT (I8 a2X 9T 14,2/24{ 70X eF14,9)}

CRITFRION FN% noTzuwu
a0y JF(APRPS{FIINTI=Z1MD) (| Fninn TA an

)

B

I =1+

1= cnyuTyﬁu nn:g MAT Ay EDAE APTrD ARY NUMRER NF JTERATIOANS THAN
peety T AT ST 1TERATIANM ADE Dp[mrcm ~AUT

TE{l T "‘X“)rn T~ 100

Li=tL+] .

JJ=JJ+1

OONCFSS S 2ESTARTEN oo THFE VERY REGIMNINA AFTFR M ITERATIOMS
1Tl oA Nyrn TN 200 .
O TA 18N
10N vA=)
WRTTE(A &) HAXM
ACN EADMAT (110, M OTLYY S HAS uwilmn UD A=T¢°*gIhs*!TCRAT!ﬁHQ*gl)
CALL ANSUER(1IgXaDHT sPSToMaNCANSGNENYSY
CaLlL FL1T
Ra R=PARPFNUCFK
CAapl URFAL (X glIMEN)
IF(LVFN 1)(‘!‘ TN ©oQ
IC(ADQ(HﬂLn_Hurw).Lr.ﬂ)nn TN ad
oa N N=IMEW
LY =t v+
=] %1
a0 TN 200



an KA=nN
Uil in

Fu

110,

209 cnounT(AYNOVMTEDuthyATr AUTRUT FVEDRY [ORTIMTI{THY CYCLF,.

INT

21 74)

203 FARMAT(ATHUINPUT DATA 1S PRINTED OUT FOR IBATA=) ONLY.

1A
204 FOPUMAT{ATHOMUMAFER NF [NDFOENDENT VARTARLES

=9 ]A)
Al =4+ 1A}
202 FARMAT (A
1MS =9[AY
208 FANUAT (&
1 =9F 19
207 TAnAT (&
1XM =418)
20a FARMAT(AIVSTED S17F
1T 3 =eF1Q,R
200 an~«T(41uﬂMUuapc NnE
1US =e¢1AY
210 FARYAT{ 41 IFSTIATED
mn =e//7(8F 14401}
21y FAnvaT(eyHorstreaten
1) =9/ /{BF14,R))
212 FARAT (A
11) =9/ /{8F 14 4,R))
RETHNRM
TN

FRACTION USFD

1u'vuunpo ne yMFHU»[rTY {

eiFa) CONSTRAIMTS
1uﬂrnA(Ttnm AF RANGF Uscn AS STFP StT1ZF
1H(;‘.‘A)(INUN anjmREn AR r‘rsvps PERMITTEN

*

AS CONVFRGENCE CRITFRION,

CAUALITY COANSTRAINTS,
UpRE? aayanl Ap RANMGE ne X1y,

LOWFED aayuun an

ch

1L-STARTThE VALUSS AF XUT)

L

PAMGF 0OF X(11},

L]

. 'YPR!
e IDAT
o

. NCO
. | .

° MA
° NED
o OMAK!
o SMINU
o XSTRT ¢
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SUennaUT e naVrn(N.ovaxco"rMomrﬂwﬁ,MFhUS,XSTDT,G-Fs"Ax".YDOIMY.ynA
TTASRGPENLCF slle X oPHT o PET o eAS 3N NN o (A quP:oC.YuoPHXoPQYQQAQToPAﬁfy
2 CHatIX :

ﬁVThAN FILETAHED AND DAWFL METHAN AF NPTIMIZATION
nTmcerﬂw X{9) g MAX{ YT oP MY e XSTOT (1) ott (Mg} g RS {1 ) e (T3 eN
1 AALT ) e Y (1 TN m Y o ¥YTI MY ) ol {NeM Y oPUTITYoPST{T)ePHX{Ns)} DS
2sDADT {11 eDPASTE Y Yo MY oUX{T)Y

COMMAN KO dNMAFEX

CLTARING ALL THF ARRAYS QFFNRF USE

(1)
X{Ns1)

NN 27 1= N

ARS(T)y=N"

0(1)=ﬂ.0

A {TYen 0

GA(1)1=0,0

Y{I)1=U,l0

PART(1)=C040

PAST(T)="f

CH(TY=040

UX(Ty=NgN

AN 21 =1 oM

NT(Ted¥=N, ]

YT(1sJ1=0,40

C(Y’J)=‘r).;

H(I’J)=Oo”

nn &G 11 4™

CH{TY=F%(ARSIDUAX(T)=R#*IN(TY))

X(1)=XsTRT(T1) .

lLv=1

L:C

WRTTF (A 427170 ; :
EAPMAT{1HA 42 ADTIMIZATIAN BY DAVINON FLETCHFD AND DONAWELL METHON®./Y
vAUNT =0 '

IF{INATALNE LTG0 TO 200

WRITF(AR«2_2)IDDINTY

wo[T:(A,a~9}ynnT&

WPRITEF(As2" AN

WRTTE(A g2 " RYM~mANS

WRTTR{A 3" AVE

WRTTF (AR TYIMAXM

WOTTT(A 2! °)'

WRITE{A 20 2)0eENYS

WRTITTE(A2Y ) (P*AX{TYseT=t MY
‘.'A'DTTC(&Q’A”‘I7(-’7‘~:‘--""(Y?9?=10""

WITTE (L 4212 {XYSTRTIT)e oy o)

AL ﬂﬁTY”ﬁﬁtx.FU”ﬁ.ﬁUTonc7y”’P“’ NEMIS gV T AL o P
QUARrAUTINE DAnTTAL PETHRME TwE qc&ﬂ["uri REAYIREN FAD cavDyTaTION
TA START 1T maToTX r Ppﬁ%"w AS A UMIT wmAaTRIX

CALY DARTTAL (X sNsNENNSsMEAIS oDHT 9257918 Ry CHaUXsPSX ¢PHX o

1DAPT 4DAST B R
JJg=n

nN ‘ ,2‘.\1

N =T e M

H{Ts j)=C,"

NN 2 Tzl

KK =

JJ=J1+1

DA 2 T=],N

N{TY="N

nOY A YS','\'

RO B =T M

NETY=(Te 1 2nS{gY)4N(Y)

IE(N(T)FALCINITYI=] F=2e0

N{TY==DI(T)

1€ A1)y ARES MAT EMSURE THAT FUNCTION WILL NRFCRFASF THEM o:sgy
H MATPTIX AS A UMTT vaTriX

IE(JJe)T1IAN TA 200

NA B2 T=3 40

IE({rnS{TY /R ()1 ) 2T Ne¥AN TN RO

CAMTIr

JJ=0

L=L+]

CEUNE =AY

SURPAUTINE SN DETUPNG ALYNA, WHICH RIVES APTIMUM STED L:“G?ﬁ
CALL FINDIX g ALMDA ¢N N ePHT gDGT oM NMS G NENUS o FIINC 4R )
ﬁﬁ A I"gr' ‘

A
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_Akas

A X{ry=X{T)r+A*nARN{T)
CALL NADTIMED (X eFLIMD Du:.Dst.Mrﬁw< MENUS MV T AL o R
1€ FUNCTINN STARTS INMNFREASINAG DOOG7A" 1S peST ern WITH PFM R

KAUMT =AM T 49 _
x:(voprmr 1LFLCYRn TR 23924
IF(LRT 1 )RN TH aly
wnyTF(A.aﬂ1)

any FADUMAT({IHY)
WRITF(ARND) ——

n02 FﬂPﬂAT(ﬂH”;* INTFRMEDIATE OUTPUT FOR DAVIDOM FLETCHER AND PQUWFLL¥,

1 /)
WeTTF(ARe700) :
700 EADUAT(THAsY UART 1S THF ARTIFICTAL UNCONSTRATNEN ADTIMIZATION FUM
1CTINAN2, /)
WURTTF (AR i
ala FAPUAT (1N STED MA e e X e ¥ Uk e 12X s #UART X 420X 4 #IMNFPEMACNT VARTARLYE
1S X{(T)Y*e/) -
e JFtIDRIMT g NE wnUNT)rn TN 224
vAUmMT =€
CALL “ornl(X;U)
WRITF(As?27 ] olieFliMag (X {T)s
297 FADAT(TE 92X 9aF 12,29 /04 (40X
-eRITEDYANM PNAD r«nTy LINAY]
2% [F(2RS{FIIMILFENT) | Fan)rin TN ac
”_-(L.r-:' MAXMYAA A qé’)

IF{FUND JLFFUMIYIGA TH 260
RA 246 TZ14N .
260 X{T)2X(T)y=ALNARN(T)
FUND=FLING
A TA g0
250 CAMTINIE ~
At DARTYIAL (X oMo NEAMSINENIS qFLT 3BSTenNe Dy ChelIXePBX 4 DX o

1 DAPTsBASTY
T3 % S 2 A2 30 200 20 90 400 34 46 36 36 3% 30 2 0903 R 36 WAL IR e H A A RN BRREEDABE R FE R IR SO
TUTS SECTION COUPUTES MATRIX W TO 8% UJSER I TWe MEXT 1752aT10N
NN 7 T=74M :
T YT =N T 15T

Yo -] 1_.7,3.

m

TI+ (T oY *G(S(KY)

Ay

'\TJJ'A(Y yEASLITY
oM

0
" cnnn§= ~
11 GA(T) ="

nA 12 v
12 GA(')—GA

ll He 1t Oll' '"—n--i-—lo

k]
9 ¢
{
<3
i 4
n
TeM
1,~
(! +{tH{Tek YK )
nn e r~1.m '
19 DRARI=NRANIL{AA(TISY(T))
ne 14 r—1,~
no Y4 g=1y
14 nT(ls!)~n(vsnn(J1
DA 18 [=1eM

PO 15 J=1eN

18 YT {Te Y=Y YaY{ 4
NN 16 T=1 4N

: NN 16 J=1M

1A €(T9))=","

: PA 17 T=1eM
NN 17 =10
NO 17 ¥=1 4N

17 ((!9J!=(th9V!*YT(V’J$1+((YOJ)
NO 19 T=1eN
NN 12 =1 M
Stive=0 0 L

NA 20 =1 g0

20 QH“=<H”+(f(T-V)*H(Y’J)) %

1K r(y.;l-,uu .
IF{aas(ern Ny 1. T E-iﬂ\DOﬂﬁYu‘.p-10
Ip(ga«(nhqnn).lT 1.r-a0)nnhﬁ3=1,--10
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A3,

AURYI=ALMNA/ORANY

AMIN2=] ,/07NN? : "
nA 2 [zY.N

NA 21 f=1 4N

ﬂf(r,;y:hT!!.J)*nun1
2V CUTeJY=ClTeJYenlin?
DN 22 T=14M
NO 22 J=1eN
29 H{To Y=k {Ys } !+hTfrnJ)-r(1.;s
LR R R R R R R R R R R R R R - TP R TR RS T EREL-EETEE EEE R LT R LR L
nA 227 T=1eN
22 GS{Ty=y™{1)
UM =FLNMD
e T 108
IN0 KN=)

WRITE(&Re22R )| ' ‘
2938 FARUAT (1UA#RAYINNN HAS HUMA UP AFTER %elsexlTFPATINMSHe/)
CAL! ANMSWED{11gXePHT oPST aMgNCAMS g MENLIS)
CAI L TXTT
RO N=PEOERICE
CALL UnTAal (XUrMFPW)
AF(LY EN 1V TA ra
IC(A”S(wﬂ!ﬁ-unrf).L".aycn Ta 20n
RA D} N=iImew )

1=l ¥+
N T 200
200 «n="
(EPNYIvEAN
202 EABUATL 41U INTEDBMERTATE AUTPUT FVERY TPRIMTL{TH) CYCLF, o« o o« IPRT
INT  =efR)
202 FEOARMAT{AIWCTIMDUT NDATA TS PRIMTED OQUT FOR IDATAST CNUYe o o o 1DAT
1A ‘:,T‘,
A% EADVAT (a1RAMIMRED AR !Mh:PCMﬂﬁMT VARTAQL S e« e 6 & o o o
1 LY ‘-’h"’\’ . :
208 CARUAT{ATL INIINDER AF 1HENUA(YTY (a%Fa) COMETRATINTES § o o o MCH
Me =z, TAY ‘ |
204 CAIAT( I CRACTIAN AF RAMAE JGCN AS STFD STZFE o o o ¢ o o @
1 F =4F12,R)
a0 cﬂcﬁaT(AwQ“'AY'““" MUMRED AF MAVES PFOIMITTIEN , o o e o o o o Ma
1 X\ =e[AY
270 EAPUAT(A1HTSTED SY172F eRAcTTIANM HISER A8 FOMYSRATNAE FRITERINM,
1. 7 =eC10 QY . i )
aln :no\nT(:1J mUMpED AR EAUALTAY . CONSTRAIMNT S, o s @ '3 0 s & & & pEn
1“: :97‘\) ) .
210 FAnATlatu e STIMATEN UDRER oAUMY AN RAMGT OF X{T)e o o o o o RAX!L
17) =y //{RF14 Q’, ’
211 FApvATlary ':*I“ATFW LAWER RAUNMD NN DAMGE OF X{1)e ¢ o o o ¢ RUMINI
11)  =e//(8F12,2)) > g
212 EAPYAT(RILNLSTARTINN VALUES OF X(T) o ¢« o ¢ ¢ ¢ ¢ 0 o ¢ & o »XST2T{
17 =e//(RF1A,RY)) ‘ '
RETURM ,
Fan

cn TOoT €202
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61

&0

10

11

12

1%

Lh
47

21

&2

114,

SUPPAUT INE FINMN{X o ALMNA¢N oM g PHTF 3PS T aNCANS oNFRUS e FUMY o R)
COMYNAN KN GMNMDEX
RIMENS TAN SRRRLARRELLARRRELERERY

=)
Al=14F=7
¥V =)
¥=1
Ke=vvey .
rc(vg (T 80170 TN 48
*3;*#**3*"*****4¥*¥**&*F*#’K*#*&*****lb****%**&{*i‘**&ii!***&i**il‘ii
TS SECTINAN FIMNS anluns AN THE VAL UF OF ALMOA
AL-A1M(((9**(*-1.1/1‘-1.\)
DO 1 I=1,N

X{T)=X(Ty+AL D7)

CALL nofr“r7(x.rwﬂp.nuy.DQY.N(ﬂﬂS.h‘QU%vNVTﬂLv”}
RO 2 [=1eN
X{I)=X{T)y=At =D (1)
IC(CUND JCTFIINYYIAA TA 10
V=Vel

CLNY =FUND ;
[T 7810 TO 40

G TH ')G

YFlf.lr.¥7)” T «a

. AY=AY /2

ela

A=" 0 .
NRe A}

C=AL

GO TN 113

A=AT¥({ (SE¥(K=2))=) )/ {S=1,)

=AY (Sur(Cm]l))mlg)/{S=T0)
C=Ad

(AMTTMU:

H A MR WAL R LG RGN H R R R AR R R R XH SRR RSN LSERSHAX TR R REP RSSO SO PR
THTS SEeTIAN STanS THT EXACT VALUE NE ALMDA Y BOLYNOTAL . STARECH
arsST VALUE ol AL"CA 18 RRACKFETFD WITHIN A Awp ¢
NA 2 T=]eN ' ‘
X{Ty=X{Ty+82n(1)
CALL NOTIMED{ X eTA  oPHT oDST g2COANSoMENLIS eV ML o)
nn 4
X{1)=

. & .

)- #0iry
’ X
-

Y4220 { 1) ‘

TUEA{XeFT  3OUT o DS G MCONMS G HNFNUS oMV AL o)
. 3
y=2wNE Ty
oM

)

+CN{T)
TUES (XoFC  sDHTsDG] eMCANS S HFAUS oMY T AL 92

(Frcyatay A»varny+t(ra*-»-sn*r);*wcv
ANa ) *(((u_ry* #FR (ALY %FC Y)Y
TELAPS{ARD Y L1 T, T 44
AR=ANT /AN
ono T av
ANz (A+NY /2,
CANTIMLE
IF( AN 1. ToAMAN=(
TE(ARLAT IO P et

=1 +1
(i

LA+ 3 /2,

D41 /7,

HTe 1F)fﬁ ™ 21
PMATATRIM AR THE OALYMAYTIAL - PASSING THRAUGH A R ANM €

o , )

FANEN( T :

U {XsFNP PDHT oNST g NEAMNS GMENLIS NV ]I AL R

At .

.\N&\(” j ;

\nyan T 18

Foynn TH 16

H - 0e
D‘»: Ix
il == e
® ’)‘-—‘ﬁ-dv-.‘-

T
!
{
o)
i
(1
T,

Uollv

%

NIT I A" Nee™ &
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%

21

4Ln

4N
L0

A=R
FA=FQ
Q:ﬁ"
Foa=rn

G TR 19
IFIFN AT ED¥IG0 T8 317
A=AN
FA=FD

6o TN 19
C=R
FC=FfFR
AR=AN
TR=rN

G TN 18

R R R R R R R R R R AR R RE R R R o D R R

A MNA=D
IF(FALLTST2)ALMDASA
AN TN 49

Al WA =0,0

A TA 40

Af VA =AY

nETHRN

AN

cn InT

. 115,

I E NN E NI Nt KWWK W RN W SN YT

6n99
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20

SURRAUTIME SHIDOY YiXeCIaDHT ¢DST oPSX o PHX o UX
JoPHX{N o1

PART 9 #AST)

NIMENSTAN X{ 1) sUXIYYoPSXIN of

1 PART{1)sPASTL1YsCH(1)

CALL UﬂfﬂL(x.UO)

NO 10 T1=1N

X{Ty=XtUyarur {1y

CALL URFAL (Xl
X{T)=X{1y=CHi( 1)
UX(T)=(U=tn)/CHiT)
[E(MCOMS FN Yy TR 20

CALL COMSTUXsNCONSIPART)

NO 30 [=1eN

X{T)=X(1)+OH{TY

CALL COAMST(X «MONNS 4PHT
X(T)=X(Iy=C (T}

nNA 20 =) eMCANS
DHleonztDu?(})—D*DT(J)}/(utr)
TF(NFAUS  FALTYIGO TA 40

CALL rQUAL(XgDASTQNFQUS)

RO 60 T=1eN

X{1y=X{I1+CH{T)

CALL FRUALIX WDST gMENUS)
X{T1=X(Tyelt (T}

NO 40 J=1NFOUS
DSXi!’J)=(PSIlJ)-DA<7!)vs/cu(za
RFETURA

END .

.CD TOY co28

116.

NelEONS o NEMYS
YePHTILY I ePSTET)


http:P"PT,*A.ST

10

AR
70
71
72

N
b7
2

Sunonurrvr DARPT AL IX o NeNEONEGNENUIS ¢PHI o P ST
r(1l.nurla1.D§r(13'UX(1).PMX(N.1s.=<xtﬁo1).CH!!}.

] PART 4»AST)
NTMEMSTIANY (Y )
1 PART{1)4PAST (]
nYV= SﬁnT(P!
2FRMz~1,0F-1"

L

N

117.

FHGUX 9 DSX ¢ DX

CALL QUDOLY(X,FHoDUYi0<!oﬂqxoDHXoUX’No“(“N§qNEﬁH§oaﬂ°T.QAST?

AN =

NN 10 1=14N

G1y=UXL{T)y

IF(MCONS,FR TR0 TO )

CALL CONSTIX yNCONS PHT Y

ne 20 I=19N

nn 20 J=?.N(”N§
TFIPHT{ J) 4 T 28PN TR 23
TP

GII)=C{TYH (VT F420)#ACS{PHX{ o J))
GR TN 20

IF(PHTI( JY oL Te=ZFPY¥Dd T 20
G(I)-f(I?-(?*Pux(le)fipuI(J)**Z))
COMT I NYF

cANTIMUE

fe(MeENS,FrlYen To 2

N 4l T=1,.M

NN RG J=1eMFNUS

GUT Y= T3+2#(BAST ) 120X Y /DY
COMTINUF

IFINCONSGFNGT YYD T 3

IF(MN ITLE¥RN TN 2

N 60 T=16N

X{ry=X{1y+o( 1

CALL CANSTIX oNMIONS 4OHTY
X{Ti=X{1y-24n0u( 1)

CALL COMISTIXJNCANES PARTY
X{T¥sX {1y 1)

nO 70 J=) eMCAMS
y:(oug(};.cT,LCPﬁ\nﬂ T "RE
aA TR 7Y
rc(nADTt;1.PY.Z:Dﬁ;nﬁ T 70
en TN 70

CONT M

GN TO AC

GiTi=l,

G TN 6”

ClT1)y==1,0

CONT P ays

RETURN
L4+

co TOT7 0248



RN NN

2NN

- N0

1l18.
SURRNAUTTNT TMTEACR (MeOMAX PUIN G RAANG qMENUS ¢ XSTOT o Fem oD 28nCT

JMAX

VM”no“ﬁX“sVsY“°7”T'TN““XOY“AT59U0X9?WT0°5TONVYGLOhﬁDKloVﬂ°V7QW“°K3o
PWORKL s [T XeDNTE 4 XY ) ;
DIMENSTIAN IX{1)e NDIF(1)e XP{TYe RUAX(1)e RMIN{I)e XSTRT{1)s PHII1)

1

-

» PSTI11s WORKI(1}s WORK?(1)e WOPK3(1)s WORKA(T)e X{1)
COMMON KN o NMIDFX

COMMAN /SDL/ TCHECKIRA) G TVARIGN) o IPZ (BN NI (8A) MY (&N ) L MNARA JNON
THIS SURRAUTINE 1S TA SOLVE OPTIMIZATINN PRARLEMS WHERS SOME NR ALt

THE VARIARL FS MUST HAVFE IMTFAFR VAL UFS,

LOGIC NF THT DRACDAMIS RASED JONAN THEE QRAMCH AND ROUND TECHNIAUE ©F

INTFGFR DRNAGRANMMIMA

INPUT PATA IS PRINTEN NUT FOR IDATA=]
IF (IDATANF,1) GO TO 1

WRITE (6+84)

WRITF (Ae/ii5Y) N

WRTTE (As4lL) TDDTMT

WRITF (Asa?) INATA

WRITF (Ae4 MCANS

WRYITE MENLES

WRITE 4 -
WRITF vAXNON
WRITF
WRTTG
W f IF
WRITA
WRITF
WRTTA
WRITF
WRITn
anTINU
KAUMT =
MK = ()
kK =0
MAR =0
NARA=MEANS
DO 2 T=zie%
197{1)=u

B, Sy S~ TV S AT, Yy
ﬂ?)h%)ﬂ\h?)%)

-~
o\

HANK  AND JIEVES DIRFCT SEARCH METHOD HAS AEEN USEN FOR OPTV1Z

CALL SOUVE (MRt AX gD 1t g ARG gL s XSTRT o B eR g PENLICE o8 18X |
S TANEX oljaXoePLi] ¢ DET AV TN 4 WiNRC Y 0! "P""o""‘QV’v ""QVL)

ADTIMUM Moy INTEARDAL SOLUTION 1S DRIMTED OUT FIPST

IF (NVICLLEN.00ANRGKKLFAL0) 50 T 4

6N Th

HWRITE (4944)

VIRITE (&£ 437)

WRITF {(Ae5R) U

WRTTE (£480) {TaX(T)eT=t ™)

IE (MeANS, EA,0) AA TA &

CWBEITE {44AC)H

WRITE (Agk1) {ToDHTET) e T=T4NCANS)
15 (MFALIS .:r.u) o 1O -6

WRITE (As42)

WOITE (Fel2) {T4PSTITIYeT=1eNFQUSYH
CANT TMUF

IF (Y FNTY N TH R

N s T = vnvuy*t

Iurronrnrﬂr’ AUTDOHIT 15 DRINTFR NUT FVERY [DRINTH cveLF
I (IDRINMT i Fe Y A TN 8

1E (e, rT.1) =R TA 7

WRITF (g,qa,

WRITF (4e34)

WRTITE (6425

1€ (IDRTIRNTMEVAUNTY "N TH B
ALMT =N

WOTTE (£428) K¥ G NANGNVYINDL sUla (X1 T=] M)
CAMT I NS '

VY =¥ 4

CHF7¢ 15 SALUTTINN 1S FRASIRLE

IF (MVIRL,ENG) &N TO 12

IF (KY ,FRG1Y 6O T0 27 '

KP=nmAn :
CHECY TF ALTEPNATFE CONSTRAINT AT A PARTICULAR MONE HAS REFY
IF (;rucrwczﬁ).rQ.O) ~0 T 11 ‘

JCHECY (v ) 2

Tl -oa‘:r+~vﬂh

R-'U.\ C 1

.
O

AT
enIN

1oy,
it

% )
ja ]
\_4
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119..

e T 2
C CHFCY [F ALL NODFS HAVF NEFN SFARCHED
11 IPZ{¥R)y=1
¥R=¢R-]
IF (KR,FN,CY GO T 23
; GO 1IN 1
:2 K“HF(( IF SOLUTION 1S INTEGRAL

'3

Ty s g

»

SEN SITGHTLY Th GET PROPER INTEGER VALUFS OF X -
irau

FLAATITXIT))
(1))eLTeleF=21 GO TO 14

1 OX oW

e 2K 1 DK

12

>~ Te Y 11
TIA e ~8 X

B e e et I
e e} X4+ Me

2Nt~ o~
IDp—t -1

Z—a
e L | e

- ,ﬂ(ﬁ._.—“a—.w(n.—ao
+ .0

TMUF ‘

(KMaFNQQY /D TH 17

snLHTInm 1S NONMINTFGRAL ADD COAMSTRAINMTS

=NOR+1 e
HECK (NAN) =)
R{NADY=L
{

llDI<Jﬂ

X11alTo0o) GO TH 18

2ot a2 e T Rt D D= XKD

T X< D=NDU

N2 (NMMN)
an TA Y
16 N2 (NAD )
N](Mﬂﬁ\
16 COMTIMUFE
\v(‘(\ng =sMAR LMD
TE (NORJATLMAXNADY A0 TA 2R
P=Q 00
GO TA 2 ‘
c 1F INTFRAaERAL SALUTTIAN 1S RFST SO FAR o RFECARN IT
b I 2 1€ (KK JEDW1). &0 TO 22 . .
IF (NNKNF,C) G0 TO 19
NN =MMNY 4]
NN 18 T=1.N
1R X {1y=xX{1
AFST=!!
GO T~ 9
10 SLUSE IR '
IF (SNUGL.TLREST)Y A Tn 20
GO T @
20 nn 21 t=
21 XE(T)y=X{
AFCT =St
GO IO 9
22 K0O=0
an TN 22
23 ¥n=0 :
IF (NNK FRaL) GO TO 21
NN 24 T=14N
24 X{1y=Xo{1)
1=REST
NAN=0
NCOMS=NADR
IF (NCANS FA ) an Tn 25
caLL €St (XaNCcons,puTy
2& IF (NEAUSFAGY AN Tﬂ 24
CALL FQUAL (X.P%I.”COUG)
24 CANT I NXFE
GA TA 2>
27 WRTITF (£,27)
CALL FXIT
20 1F {(npv en .0y A TAa 20
WRITE (Ay70)
DN 79 1=1N
249 X{1)y=x2(1)
NCOMS=MARG
=)

(rnNy =T
1

\

Te
1)



20
=7
22

21

A
2K

24
a7
2R

26
40

h
4H2
e
L4
L®
LA
L7
re

50

&

892

an
L

Y3
(e 4

sa

"0

A
£
Fx
AL

120.

MAD=0 y

CALL ANSUHFR (UsXsPHT 3PS T oMo MCOMNSINFENLIS)
caLL =XIT

WRITF (Ae20) MAXNON

CCALL FOIT

WRITF (A,40)
CALL FXTT
CANT [ NUF
PETURN

FARMAT (1HT+#INTFRVMFDTATFE OUTRPUT FOR NONL IMEAR [NMTEGRAL OPTIMIZAT!
10N% 4 /)

'F“QJ(T (1HA#SOLUTIAN TS FFASIRLE ANLY [F MyINt [Sanee/)

EABVAT (1HN,#STEDNA 242X ¢ BMANE 1N 2 02X 4 SNV 1AL Fea X g RUN 1NN o % [MNEDEW
INENT VADRTAREFS X{(T)¥s/)

EADUAT (TR TE X SN aATIA L0/ 08 (LAXVTF1R T4/ )]

FARYAT (1M #METHAN HAS FATLEN TA FIMD NON *HffﬂﬂﬁL SALUT NN TRY
1 _ATHER ”FTH“”S FOP MOMINTEGRAL SOLUTINNS 3 /1une2AND USE THAT SOLUTI]
20N AS STARTIMG DPOINT FOR THIS METUONE, /) )

EARMAT (THO9#SEARCH STAPPRED AFTER MAXIWUY Ay LOWABRLE NUVMRER OF NODE

1S# 9 /1HNG#REST [NTEADAL SALUTIAN 1S DRINMTFAEN niTR,e /)

EARUAT (1n g2 TRTTAED AT IAY AL NEEa TApnn AFTERR , T ¢ %MNANTCER )
TADwA (THA g2 TTHARN WAS WINA B AND - CALEN MAT FINN ANY INTESED 20U
1TINN, TRPY AGATIM RY (uqm*v;. THiT ﬁvpep OF TWE VARTAP|LTE%)

FARvAT (AITRIGFNUCTINN ﬁh(TﬁO FRo {(R)y AFTEFR FPACH MINIMIZATICN. RED

TUCE  =4F1967) ‘ =

FARMAT (ATHUDENALTY MULTIPLIER USED IN SFEC2 ¢ ¢ ¢ ¢ 6 o v o
1 B =,F10,0) e
_:QD”AT’(AT“ INPUT DATA IS PRINTFD JUT FOR INATA=Y ONLYe o o @ It
1ATA EXR D)

EHD”ﬁT’(&7HUI”TF°NEﬁ!ﬁTV OUTPUT FVERY [PRIMTITHY CYCLCe o o » PR
INT =417) 5
IFﬂDVQT’(ﬁ"ONUVQCQ_ﬁF IMDEDEMDEMNT YARTARIES ¢ o o o o o o o o
1 Moo =e14)

Cﬁg”AT,‘57HC“UM9FQ OF IMFQUALTITY (oGFe) CONMSTRAINTS ¢ o o o o NC
12MS =e06) .
»nn'AT,(;'u‘"QTT““Tfﬁ URDFR BAUMD AM RANGE AF X{1le o o o o o RPYMAX
{1 =9/ /(BT V1L 42 e »
FARVAT (21HCESTIVMATER LAWFD BAUND AN RANGE A% X{01Ve o o o o o TMIN

Y41 =9/ /(50149 ,
el o B (“Hh”“'r Irm NF DANMGE USFDR AS STFD €128 ¢ o o » o o o

e F 19,8 ) .
1FGD”AT’(67&C”AXIVUV NYRNREDR AF WVES PERPMITIFD ¢ o o o o o o o B
AXM  =417)
YEADHAT’("H STFO SIZ2E FRACTION YSFD AC‘PGNVCDGFHC? CRITERINN,
1 & =o,F10,9) N
Cf\D“AT’(ﬁJH«,'U“QF’? NE FRULLTITY CANSTRATNTS oA e e w e, e & wa NE
178 =¢17%
:“O“AT (R1H=STARTINA VAL UFS ”F X€TY o s 0.0 . o o o o & & o oXBIRT
101 =e//7(5F 16,5} . N
FoRMATY (]HCQ“{VDHT DaTA FOR NONLINMNEAR IANYEGFR OPTIMY ZWT! \*o/)
FARQMAT (1HD ¢ 2#MUNIRED OF VARIASLFS T0 BE MADE INTEGER: o o' o o o
1 v =ma1A) : :
ENRUAT (;FQO*VAXIVU” MUMRER NAF MARES TA RF GFARCHEDN. o o o o o ™28
TXMAN =%, 1A ' .
-—hf\l-AT (1uﬁ,‘)fﬁy N-"OTYHH-,A A-(\A\Q,TN!Tﬁ'ﬁDAL ‘:-’?L“T."",N*l'7(‘XQ*—OvO--—-—~-’—-

Y i i e 2o/

EARUAT (20X 43 s € ;‘/c“' U=+ eF 1026/ /)
FAnRAT (“HX~“MX(9T”v’“! =9F 1442}
FARMAT (1H—-g 22HTIMEAIAL TTY (_:f\Mgf"‘AINTS)
EARPAT (22X 4HDHT (o 12 42M) =814 ,Q)
FANAT (11io 4 EALIALITY (OMNSTRATHTSHE)
SARUAT (22X 4HDST (3 1242H) =eF14,7)

FORMAT (1H1)
CMD

cp TOT 218
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ne AN

»

?

1

e

X 121.

SURRNUT TME SALVE (MePYVAX ¢PMIMGMENNE gMENUS X ATRT o8 32T ¢ TN g AXM
IOPINMT g TANEX 4l g X ¢ PLIT 4T OF ¢V INL OBV 1 (WARY D g NPV R g uNEr 4y

NIMEMSTAN DUYAX{T)e PYMINLYT Yy XSTPT{1)e X(Y)e PHI{TI)s DS ({1) s WAL
Tiey WOPYI(1)e WORKA{T)y WCORKe(])

CAMYAN YN gNANE X

Z5RN WARY AR ARRAYS

|

s o000
Ll o0 B b )

40 Fah Sa

Wi n

KO=3

ULAST=10,C0F+4C :

QFFYTF MADEX=? SN THAT SFARCH WILL FUMCTION CORRFECTLY

NMBE (=2

CALL SEARCH (X 9!t aN o XSTPT 4 PMAX qRUTMGDUT P CT ¢ MCONS G MFOUS s VAR oMV IOL o
FaGalORIMT oI NNEX gR$MNRV ] 4 'ANY D N 34 WORK L)

IF (KN MELYTY an Tn 2
e T & o '/ .
IF (ARS{U=ULAST)aRT41eE="7#ABS(ULASTY) GO TA §

ARTIMUM HAS REFM RFACHED ' :

RETURN

PETUON

IR (D, 8T .1.0F=204 oA TH &

Nzl

GOy T & .
ULAST =1} .

R=R*RENUCF

RO 7 T=]eN

XSTRT(11=X(1)

GO TH 2

FNN

e TOT 0533
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SURRALTINF ANDL (X +PHT)

CAMLNAN /SDY / TCHPCYIRNY o TVAR(RDY
ANDI. rFTUQ‘QS ﬂﬂﬁ!TIﬁNAL CONSTRAIN
NIMEMSTION X{1)se PHI(T)

1€ (NN GFEN L) GO Tn 4

R 2 T=1,MAD
IE <rgu7cvzr>.ro.o» A T
)
(1)
REG .
I =-(X(L\~FLGAT(”N))*XGOO.
{

~

(:4'0«4'v<:<-w4-¢’<

A
g YoFNel) &N T 2

Iy
!

-
H Do ot~
-~ e

XL Y=FLNOATINMNNMY 21000,

DIL=DL~Zy NOIT—~Z1
= by |

NNV Ot 27 =) Do Z
n
T D YN - ')~<—~
nH 9
L]

Yrart b Dot 4N > Yt b B>

& 2.

el v I

I
=
9

cn Y07

InZ2is ﬁ)

TS

T\ M

0023

l

122,

SMILENT oMY (G0 ) 4 MARA A AN
AKE SCLUTICN INTEGER
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aiatalatalalel

& G

N

123,

SURRNUT INE Scan(u(X.U,NsXSTQT.nvAX.RMYMoPHI.PS[-chNSoNFOUS.MAXMcN
IVIOL sF R IPRINT G INDEX 4D g XDy XRoeNMXUXX o TXXX) :
NIMEMSTON XT1) o XSTRTIYF«RYAXI1 ) eRMINITIoPHT (1) oPST{ 1) eXDET)eXR{T1) 0

INXXX (1) o TXXX ()
COAMMON KNy NNREX

NDIPFCT SFARCH PORTION OF SEFK1 AMND  SFFKD

THIS 1S THE DIRECT SEARCH ALGORTTHM OF HOCOKF AND JUFEVES
SFARCH IS USEN BF SFFK1 AND SEF«3

MNDFX=1 MEANS SFARCH HAS BFEFN CALLFD RY SFriK}

NMDEX =2 MEANS SFARCH HAS BEFN CALLED RY SFFKS3

NVIAL T =1
KKK =
Ml '=
20 K1zl
K2=N
30 DO 40 T=K]1,K2
DXXX(T)=0,
TXXX(1)=0,4
Xf'\.('H:O.
40 XR(I&:”.
no A T=K]e¥K?2
60 X(1) = XSTRT(T1)
SFT FIRST RASFE DOOINT
DO 70 1=K1.K2
70 X1y =X(1)
GENTRATFE NFEX(T) AND  TFEST(I)
N RO T=K1,¥2
OXXX(T) = FH(RMAX({T)=-RMINI{TY)
AD TXXXCT31=NXXX{Ty%G
MCALL=1 |
100 CONTTIMUF
GO TO (101, ]0?;\N0=x
10T CALL OPTIMFI(XsUART sPHT o ST oNMCONSIMNENMIS NV INL )
N IO 110 '
102 CALL PDTIMEZ (X GIART 40T o BS] JMCAME JMNENUS VI AL 4D
T10 TF(NCALL JNF LTI INTN 120
UARTN = 11A=T
120 CoNTINMURE
YC(MVIn .”) 'OLY =N
]F(MMHPX rh.}) on T 120 :
TMpE (=N TN"'fﬂT S Tnm CfﬂDCH THAT 1T TS BFINA~ USFER RY FRASEY
TE(INNEX,EN,YY A T 130 :
IF_SFARCH 1§ 9c[an USER MESELY TA NAaTATN A EFASIALE STARTING POINT

THER RETURPN AS SnNM AS QﬂLurrnv GOFS CFASIRY ¢
[c(NVIHLI,C". 1en TAa 39
1290 6N TN (172 20Cs 210 1‘“‘ NCALL
170 CONTINUFE
MAKE  GFAPCM
180 NFATL=N
NN 240 1=¥14K?
X(r)~X(T)+DXXX(!)

200 CANMTINUF
IF(UADT.LT uarTny aO0Tn 230
X{T)=X(T1) = 2,0#NXXX(T)
NCALL =2
GO TN 110G
210 CONTINUF -
CIFLUART (LT LUARTAY 10T 230
NFATL NFATE + 1
X7 =X(114NXXX(T)
aoTNA 240
210 UarTN XnaeTv
240 CANT MR »
260 IF(MFATL ,FN,M)YaNTH 260
GNATA 2715
260 DO 290U I=K1.k2
TR(NPXXX(TYRTLTXXX(TYY &0 T 200
280 CANTINUF

U]

i

GN TO 385
290 nN 310 1=K14K?
210 nXXX{1 BXXXALTI V24

1SH NEW AASE  POINT
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-
N
Q
>
B
—
"

+ o~
—~ 1l

bt N

1F (MNREX,FNL1) O TO 330
N TN 340
330 KKK=¥KK+1 :
IF(KKK JMFLIPOTINTY 6N TO 340
CALL URFAL (X ULNWY
WRITE (As2) MYZULOW o (X{T)s I=1eM)
KKK =0
240 COMTINUE
IF(MY JAT MAXMY A0 TN 385
MAKFE A DATTFRN MAVE
» NO 280  1=X14.K2?
A0 X(T) = X(1) + (X(7) - XO{I}))
NCALL =4
GO TN 100
355 CNANTINMUF
IF{UART (LT, UARTN)Y AROTO 370
NN 2A0 =] 4K2

260 X(1) = X

27¢ NN 280
380 XN (1)

A e~X r— o~

ane (AL% o
la]
102 CALt NPT

108 [F(NMVIAL ,FR,0)GNTN3RT
TR aCT qMAXMYWRTITE (694 YMAXM
Y=
2IRT RETURN
2 EARMAT (10 s 1L 93X 9BF 16,2/ (24X stF1A,8Y) )
4 FARYAT({TH N JADHNN FFRASIRLSE SNLUTINN AFTFR ALLNAYARLE NUMRER NF MOVES
I%Mgh(v 2414/) ,

)
X
104 CALL NDTIME2IX UAR T oPHT ¢RST o NMCNMNS o NFRUSsMVIAL o)
)
)

cn 10T 0117
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SURRNAUTTINE NDTTMED (XsUART o PHT ¢ BST ¢NCANSoMNEQIIS gMYINL 4R )

DIMENSTIAM X{T1)sPHTI(1)s2S5T(1)

(‘f\lﬁ“(‘ﬂ dak \Q\OﬁF‘x

VERY MINOR VINLATINNS NF [MFAUALITY CONSTRATINTS SHOULD NOT MAKF
THE FNTIPRF S"lUTInN INFEASIRLF. THFREFORF TEST FOR PHI(T11,GEL2ERC
WHERF 7FRA==],0F-10 : .
ZFPN=~1,F=1C

NVINL =0

SUmMi=n,.n

QUM? 0 (‘

CALL UQFAL(XyJ)

SFFX? FNALTY FUNCTINONS =

THE ARTIFICIAL ORJECTIVE FUNCTINN 1S OF THE FORM
UAPT=URFAL + R#SUM(T,/PHI(I)} + SUMIPSTI{UY*22)/85QRT (R

NIV=SORT(R)

[FINCONS  LF ) aNTA1T2

CALL ’ﬁ“ST(X;"”~$9°uY’

NO 112 I=1.NCONS

IFIPHT (T) 47 4ZEROYIANTNTILT

NVIN =MVIOL 4+

ADD A SFVERFE PEMALTY TN ANY PHI(T) WHICH 1S VIOQLATED
SUMIT=SUMI4+ARS(PHI(I) I #10,°F+20

GATNM1 12 i F
AVOAID NIVINTMNA RY ADDRAXTVATFILY ZFRO. THERF 1S MO POINT PENMALTIZINA
A VFRY SMALL PHI(T)Y AnNYWAY

IF(ARS(PHI(T)) L Ta=ZFRAYGATOYIT?

SUMI=SUMTI+R/ARS(IPHTI( D))

(’('\NT ! '\Il IC'

IF(MF”P§ LFeIANTO1YS

CALL rnurq(x.nqv.wcnus)

nA 114 J=YsMENYS

SUMZ=SUM24(2nS(PST(Y) ) #%2)/DTV ) 18.
UADT =0+ SUMY SV _ :
PETURN

END

co 107 cn37
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SURRAUT INE ANSUWFR{Us X sPHT sDST sMeMCONS oNENUS)Y

DIMENSTON X{1)sPHTI(1)sPST{1)

COMMNAN KN gMANEX

THTS SUeRAUTINE 1S USFEN MERELY TH OUTPHT THE FInal SOLUTINN TN A
ANDARD FARM, IF AN ODRTIHMUM 18 MNT PRACHEDIKN=] I THRFMN THF RESULTS

THE 1LAST !TFRATIHN MAY RE PRINTFD 0OUT,

L URFALI(Xst)

T
T
A
F(kn :q.u)fﬂTﬂl
YR
R
30

I AREEREREY. B

k!

COMSsPHT)
9DH1(I7’1=79NCON5,
“yenTol0

WDST yNENALIS)

(TsPST(T)eT=
,TAX.7=UQ=SUL
Xe2HU =4F1648/
FARMA 1921Xs22HNDT M
FARMA CX o I PHMINTMUNM
EARMAT (9B X 92X { o 12421
CARMAT( THa g 22K TNMEAULIALTT
FADMAT [ 2AX g AMDMHT{ o172 421) F
FARMAT{ 1H=g? 22 CEAUALTITY Con
EARPMAT( 22X e AHDST{ 412 92M) = F
PETURN

EMD

NN Nne

X- -—

ITFRATIONG /)
M FOUNDs /)

FﬂﬁVA

e B
P I )

<nCC
£l
u{\.nu
Voo >-

&
A

I
9’
b
N
’
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