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 Abstract 

Bending deformation characteristics of monolithic, bi-layer and tri-layer laminate sheet 

materials are studied using Analytical and FE models in this work. The analytical model, 

based on advanced theory of pure bending considers von Mises yielding, Ludwik 

hardening law and Bauschinger effect for various laminate constituent thickness ratios. 

The principal stresses and strains through the thickness and, change in relative thickness 

at specified bend curvatures are obtained as a function of increasing curvature during 

bending. Additionally, 2D and 3D finite element (FE) based models for bending are 

developed to overcome simplifications of the analytical models such as the effect of 

specimen width on strain distribution. Further, to experimentally assess and validate 

bending characteristics from the analytical models, a new experimental bend test-jig that 

is closer to pure bending is developed. The experimental set-up is an open concept design 

that allows access to the tensile surface as well as through-thickness region for recording 

and analyzing strains using an online strain mapping system based on digital image 

correction (DIC) method. Experimental bending is carried out on annealed AA2024 

monolithic aluminum alloy sheet and Steel/Aluminum (SS400/AA1050) bi-layer 

laminate sheet at different thickness ratios. The model and experiments are studied in 

terms of stress and strain distribution as a function of relative thickness for different clad 

to matrix thickness ratios.  

Further the case of simultaneous bending and stretching over small radius bending is 

analyzed for limit strain prediction using an existing limit strain criterion based on major 

strain acceleration. An angular stretch bend test is used to subject an hour-glass shaped 
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AA20240-O aluminum sheet specimen to simultaneous stretching and bending 

deformation while continuously imaging the critical tensile surface region using an 

optical camera. The strain development in the critical region is subsequently analyzed 

using digital image correlation (DIC) method. The effect of DIC parameters such as facet 

size, facet step, and effect of curve fitting procedures on limit strain are studied. An 

average limit strain of 0.2 is obtained for AA2024 for a facet size of 9x9 pixels, a facet 

step of 5 pixels and by applying a 5th order polynomial curve fit to the strain data. The 

results obtained are comparable with a limit strain of the material. The results are 

compared with a commercially available tri-layer laminate sheet material Alclad 2024 

that has 80 μm thin layer of soft AA1100 on both surfaces of harder AA2024 core 

material. An improved stretch bendability limit strain of 0.24  for Alclad 2024 tri-layer 

specimen was predicted by utilizing the major strain acceleration criterion. The thin 

AA1100 protective layer produced a positive effect on the stretch bendability of Alclad 

2024 when compared with monolithic AA2024 specimen. 
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σ0   yield strength  

K1, K2   strength coefficient of matrix and clad 
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r   general radius of curvature of a fiber 

rm   radius of curvature of the mid surface. 
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rn   current radius of curvature of neutral surface 
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t, to   deformed and original laminate thickness, respectively 

tc  thickness of clad layer 

q1  clad to matrix thickness ratio (tc/t) 

    effective strain 

    effective stress 

X   applied stress in uniaxial tension 

εθ   tangential strain 

εr   radial strain  

εw   width strain  

εp   compressive pre-strain  

σθ  tangential stress 

σr   radial stress 
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σw   width stress 

σx  stress component along x-coordinate 

σy   stress component along y-coordinate 

σz   stress component along z-coordinate  

F   constant of anisotropy used in Hill’s 1948 yield criteria 

G   constant of anisotropy used in Hill’s 1948 yield criteria 

H   constant of anisotropy used in Hill’s 1948 yield criteria 

L   constant of anisotropy used in Hill’s 1948 yield criteria 

M   constant of anisotropy used in Hill’s 1948 yield criteria 

N   constant of anisotropy used in Hill’s 1948 yield criteria 

εt   thickness strain used in Hill’s 1948 yield criteria 

R0  plastic strain ratio (anisotropy value) at 0 degree to the rolling direction 

R90  plastic strain ratio (anisotropy value) at 90 degrees to the rolling direction  

η   relative thickness, t/to 

ρ   relative radius of curvature of neutral surface, rn/ru, 

κ   relative curvature, t/rm 

   volume fraction of material in analytical model for pure bending 

n   volume fraction of material between neutral radius and inner radius 

α   bend angle in analytical model for pure bending  

θ   rotation angle in analytical model for pure bending 

R   radius of curvature in FE-MPC model 

L   distance between nodes in FE-MPC model 
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Chapter 1  

Introduction 

 

With increasing demands on the performance of materials for automotive and industrial 

applications, there has been growing interest in laminate sheets of dissimilar materials. 

Laminated or clad composites are capable of overcoming the performance limitations of 

monolithic sheets by tailoring the properties of its constituent layers. In the context of 

press forming, it is useful to understand to what extent the sheet laminate materials can be 

press formed and the modifications that occur in the known formability theory for 

monolithic materials due to the presence of two or more layers when they are subjected to 

different stress states.  

1.1. Bending Characteristics of Laminated Sheet Materials 

Among the various press forming processes, bending is a critical process that is widely 

applied in the sheet metal industry. Theoretical study of pure bending of monolithic 

sheets has been studied extensively in the past. In sheet bending the specimen undergoes 

simultaneous tension and compression in different regions resulting in three principal 

stresses namely, the tangential stress (σθ), radial stress (σr) and width stress (σw) and 

different stress states at the edge and mid-width section regions. A schematic of a bend 

specimen with the bend line at the centre is shown in Figure 1. Pure bending process 
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imposes uniform curvature throughout the specimen without the action of any external 

forces, such as friction and die reaction forces. Many analytical models have been 

proposed to predict the pure bending characteristics of monolithic sheets. A review of 

several mathematical models is presented in Chapter 2. As compared to monolithic sheet 

material, few studies exist on the analysis of the bending characteristics of laminate sheet 

materials. A comprehensive assessment of the analytical models via suitable laboratory-

based experiments or using more rigorous finite element simulations of the lab-based 

experiments is often lacking. In the present work, a similar modeling approach based on 

advanced bending theory has been applied to well-bonded laminate sheet materials where 

the focus has been on studying the roles of laminate material properties and respective 

thickness ratios of constituent layers on bendability characteristics.  No interface 

delamination has been assumed for simplicity.   

 
Figure 1. Schematic of a bent specimen with principal stresses shown as σθ (tangential 

stress), σr (radial stress) and σw (width stress). 
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1.2. Stretch-bending and its Limit Strain Prediction 

Stretch-bending, a simultaneous stretching and bending operation, is commonly utilized 

in sheet forming processes to make components. Stretch-bending state also exists in the 

failure of critical punch profile radius region of sheet during cup drawing. Many theories 

of plastic instability in the form of diffuse or localized necking of sheet material exist in 

the literature for in-plane deformation. However, few such criteria have been assessed for 

stretch bending involving small radius bends where bending strains are superimposed 

with either tension on the convex surface, or compression on the concave surface. 

Specific forming tests that simulate stretch-bending have been proposed in the literature 

such as angular stretch-bending test (ASBT).  A limit strain criterion to predict the onset 

of failure is required to specify the forming limit in stretch bending.  

1.3. Objectives of Present Research 

Based on the above consideration, this research is aimed at three objectives that are 

precisely to validate the bending characteristics from a mathematical model for pure 

bending of monolithic sheet using experimental and FE based method, extending the 

model and validation to bi-layer and tri-layer laminate sheets and thirdly to predict the 

limit strain under stretch bending of sheets using a strain acceleration criterion. A test jig 

that is capable of simulating pure bending of sheet by the rotary action of a holding clamp 

and pivoted joints is used in the test. The experimental strain data under bending and 

stretch-bending are obtained using digital image correlation (DIC) based optical strain 
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measurement technique. Finally, an angular stretch-bending test rig is used to perform 

stretch-bend test until the material failure. The definition and motivation of the objectives 

are discussed below. 

1.3.1. Objective - 1  

Development of a mathematical model to determine the bending characteristics of 

laminate sheet materials.  

Key Issues and Motivation 

A comprehensive mathematical model for bending of laminate materials that is capable of 

predicting the through thickness tangential and radial stress and strain distribution is not 

available in the literature. Development of a model by incorporating suitable material 

properties, hardening law, Bauschinger effect, would aid in more accurate prediction of 

the bending deformation for laminate materials.  

1.3.2. Objective - 2  

Development of experimental test method for validation of pure bending models and 

comparing experimental results with FE based models.  

Key Issues and Motivation 

In spite of several mathematical models being available in the literature none have been 

satisfactorily validated due to limitations in through-thickness strain measurement in 
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sheet bending. Plastic deformation and particularly strain localization in bending is 

concentrated in a very small region. A new method is needed for such measurements. 

Such a method needs to be not only developed but its accuracy and limitations need to be 

assessed. FE based models can provide data for comparison purposes.  

1.3.3. Objective - 3 

Prediction of limit strain in stretch-bending based on available and applicable theories 

Key Issues and Motivation 

Many theories of plastic instability in the form of diffuse or localized necking of sheet 

material exist in the literature. However, few such criteria have been assessed for stretch 

bending involving small radius bends where bending strains are superimposed with either 

tension on the convex surface, or compression on the concave surface. Experimental 

angular stretch bending test is employed to characterize strain history and limit strain of 

an aluminum sheet material undergoing stretch-bending with the aid of an in-situ optical 

strain measurement system based on the digital image correlation (DIC) method. A 

number of methods based on DIC technique have been proposed for general limit strain 

prediction in the literature. A strain acceleration criterion proposed by Situ et al. (Situ, 

Jain and Metzger, 2011) has been successfully utilized for predicting strain localization 

under various stretching, drawing and plane strain deformation conditions. Its 

applicability for stretch bending is to be studied in the present work.  
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1.4. Organization of the Thesis 

The objectives of the thesis stated in Chapter 1 are followed by the Literature review 

section on analytical models on pure bending in Chapter 2. Several models based on 

advanced theory of bending, and other approaches such as FE modeling on monolithic 

and laminated sheets are discussed. A review of different sheet bending test methods in 

the literature and their feasibility in acquiring strain data are presented. Lastly, 

experimental tests methods to measure the stretch bendability of sheet materials are 

discussed. The analytical and FE models pertaining to bending characteristics are 

presented in Chapter 3 and 5 respectively. The details of a bend test fixture that could 

facilitate in-situ optical strain measurement during bending are discussed in Chapter 4. 

Apart from large strain bending, a fast and reliable method to predict the limit strain of 

the material based on a strain acceleration method using major strain data from the tensile 

surface in a stretch bending test has been studied on monolithic and tri-layer laminate 

sheet material. The results of the numerical models and experimental test on pure bending 

and bend stretching are presented and discussed in Chapter 6. Several bending 

characteristics that are obtained through analytical and FE models are validated wherever 

possible by experimental tests using DIC strain measurement. The limit strain in stretch 

bending is studied for different parameters such as facet size and the implication on major 

strain history by data fitting and choice of time scale. Finally, the effectiveness of DIC 

method in evaluating the limit strain between monolithic and tri-layer laminate sheet 

material is assessed from the experimental study. The conclusions on the results obtained 

from different bending and stretch-bending studies are presented in Chapter 7. 
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Chapter 2  

Literature Review 

 

2.1. Review of Analytical Models of Pure Bending of Sheet Materials 

Many classical theories exist on the elastic and plastic bending of monolithic beams and 

plates. Ludwik, established the first modern engineering theory for plastic bending of 

non-work hardening materials using four assumptions (Ludwik, 1903).  

a) Plane cross section remains plane during bending 

b) The transverse stress (radial stress) is ignored 

c) The neutral layer coincides with the mid-plane during bending 

d) Applied bending moment is equal to the moment causing elastic recovery upon 

removal of load. 

Over the years, except for the first assumption all others assumptions have been found to 

be invalid for large plastic strain, small radius, bending of wide sheets. The original 

theory of Ludwik is now classified as “elementary” theory of bending.  
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2.1.1. Pure Bending Models Based on Advanced Theory of Bending for Monolithic 

Sheets 

Based on Ludwik’s work, Hill (Hill, 1950) and Lubahn and Sachs (Lubahn and Sachs, 

1950) independently formulated the first advanced bending theory that provided not only 

the tangential through-thickness stress distribution (σt) but also the radial stress (σr) 

distribution and movement of the neutral axis towards the centre of curvature of the 

during bending. The theory of plane strain bending for rigid perfectly-plastic materials, 

formulated by Hill, described the through-thickness neutral fiber movements as shown in 

Figure 2(a). The advanced bending models start with the differential form of equilibrium 

equation in terms of the above stress components, and together with a material 

constitutive equation and boundary conditions, obtain closed form solutions for tangential 

and radial stress distributions through the sheet thickness. Figure 2(b,c) show the through 

-thickness stresses and relative thickness change from the works of Hill (1950) and 

Lubahn and Sachs(1950) respectively. Thinning of the specimen upon bending is 

observed through a reduction in relative thickness as shown in Figure 2(d). These studies 

have led to an understanding of the presence of a zone of tangential stress reversal where 

the stresses are initially compressive but change to tensile as the specimen curvature is 

increased and as the neutral axis migrates towards the center of curvature of the bend. 

This original formulation assumed, for simplicity, a rigid – perfectly plastic material and 

did not allow for thickness change in bending, as observed experimentally. Drucker 

investigated the influence of shear force on plastic bending of rectangular  
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(a) (b) 

 

 

 

 

 

 

 

 

(c) (d) 

Figure 2. Through-thickness bending characteristics, (a) Bending model developed by 

Hill, 1950, (b) through thickness tangential and radial stress distribution in Hill's model; 

(c) through thickness tangential, radial and width stress distribution; (d) relative thickness 

distribution Lubahn and Sachs, 1950. 
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cantilever beam and found that the interaction between shear and bending moment is not 

significant (Drucker, 1956). It was found that there was only 10% reduction in moment 

for a shear force equal to half the shear force in fully plastic yielding case. Following 

Drucker, the next significant contribution to plane strain sheet bending was made by 

Proksa (1959), who used Hill’s concepts of fiber movement as well as his suggested 

displacement equations in developing the theory of plane strain bending of rigid-linear 

hardening materials. Martin and Tsang applied Proksa’s model to model the plastic 

bending of sheets by considering die friction effects (Martin and Tsang, 1966). The work 

examined the validity of using a pure moment bending theory in bending with transverse 

load and friction at freely supported ends. A geometric model to obtain the forces acting 

while bending was proposed and solved to obtain the bending moment expression 

containing the geometric variables. Crafoord (Crafoord, 1967) extended the advanced 

plane strain bending model to rigid non-linear work hardening materials while adopting a 

constant flow stress model for fibers located in the region between the neutral and 

unstretched planes. By employing a numerical technique, he was able to compute the 

bending moment, thickness reduction and stress distribution as a function of curvature in 

bending. Other early attempts at modeling pure bending of sheet materials was carried by 

Dadras and Majlessi (Dadras and Majlessi, 1982), who developed two numerical models 

for the plane strain plastic bending of rigid–strain hardening materials. The work refined 

the moment curvature prediction by considering the thickness change effects that was 

neglected in the earlier works. Model 1 considered a linear stress strain behavior for 

fibers in reversed bending and involved numerical computations similar to that of 
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Crafoord’s 1967 solution. Model 2 was an extension of Proksa’s analysis (Proksa, 1959) 

to the case of rigid work hardening material where they considered material behavior in 

terms of Ludwik’s strain hardening equation. The thickness region of the bending 

specimen was sub-divided into three radial zones namely the Zone 1 (outer surface radius 

to mid-thickness plane radius), Zone 2 (mid-thickness plane radius to neutral plane 

radius), Zone 3 (neutral plane radius to inner surface radius). Based on fiber movement, 

the relative thickness change and relative curvature of the sheet upon bending was 

deduced. The tangential and radial stress distribution at different radii of curvature is 

shown in Figure 3(a). It was concluded that the overall pattern of bending moment 

variations with deformation is greatly affected by the rate of work hardening but changes 

only slightly with strength level. More recently, Zhu developed a model for pure bending 

of wide plates based on isotropic and kinematic hardening theories of plasticity (Zhu, 

2007). The work compared the relative thickness and non-dimensional moment with 

curvature and determined that large curvature bending resulted in significant reduction in 

thickness (Figure 3(b)). The work also compared his work with earlier bending models 

developed using the deformation and flow theories of plasticity and shell theory (which 

neglect transverse stress). Model parameters, namely, effect of anisotropy, strength 

coefficient and thickness change were, however not considered in Zhu’s model. Secondly, 

the model did not present the methodology to obtain stress distribution during bending.   
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(a) (b) 

Figure 3. Bending characteristics plots, (a) tangential and radial stress distribution at 

different radii of curvature (Dadras and Majlessi, 1982); (b) non-dimensional thickness 

versus non-dimensional bending curvature of a wide plate made of a material with 

‘isotropic hardening’ or ‘kinematic hardening (Zhu, 2007).  

 

2.1.2. Tan’s Pure Bending Model  

Tan et al., investigated the pure bending of sheet by further analyzing the three zones of 

bending by including material plastic anisotropy in the model (Tan, Persson and 

Magnusson, 1995). As earlier studies, the model considered plane strain pure bending of 

monolithic sheets and divided the specimen thickness into 3 characteristics zones, as 

shown in Figure 4. The zones consist of regions (i) from outer radius ry to unstretched 

fiber ru (marked zone I), (ii) unstretched fiber to neutral fiber rn (zone III) and (iii) neutral 

fiber to inner radius ri (zone II).  
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Figure 4. Through-thickness classification of zones in Tan et al. (1995) model. 

The kinematics of the model was based on solving a system of ordinary differential 

equations (or ODEs) representing volume constancy condition in terms of thickness and 

curvature to obtain the current radius of neutral fiber (rn).  A Runge-Kutta numerical 

method was used to solve the ODE equation. Once the neutral fiber radius was 

determined all other radii were fixed and the logarithmic strains of interest are obtained 

with respect to the unstretched fiber radius (ru). The radial stress and tangential stresses 

were obtained from the governing equilibrium equation and Hill’s quadratic anisotropic 

yield criterion (Hill, 1950). The model utilized two different hardening laws, namely 

Voce (Voce, 1955) and Ludwik (Ludwik, 1903). The Voce model (referred as Model 1 in 

Tan’s paper) was developed without Bauschinger effect and the Ludwik model (referred 

as Model II) considered Bauschinger effect.  
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2.1.2.1. Bauschinger effect in Tan’s Bending Model 

Material thinning in bending in Tan’s model was mainly due to Bauschinger effect and 

effects of strain hardening and anisotropy on material thinning were found to be minimal. 

Bauschinger effect refers to the reduction in yield strength of a material upon reverse 

loading from tension to compression or vice versa (Figure 5 (a)). In bending, the effect is 

observed due to shift in neutral fiber position causing the fibers to reverse load to tension 

from compression (Figure 5(b)). The effect of Bauschinger effect can be best described 

by choosing the appropriate kinematic hardening hypothesis for the material. The 

modification of Ludwik hardening law to address Bauschinger effect is explained in the 

work of Tan et al. (Tan, Magnusson and Persson, 1994). BE is measured as difference 

between forward stress (at which unloading begins) and reverse yield stress (𝜎𝑓 − 𝜎𝑟) (see 

Figure 6). The curve OAB is obtained from tension test and curve OCD-EF is obtained 

from compression – tension test.  

Ludwik hardening law is expressed as, 
n

pof k    

(2-1) 

For the case of isotropic hardening, rf    

For the case of kinematic hardening, orf  2  

Bauschinger effect in Ludwik hardening form is expressed as, 
n

por k    

(2-2) 
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Figure 5. Stress reversal in bending, (a) Bauschinger effect seen as diminishing yield 

stress in the stress strain plot; (b) reverse loading of fibers due to shift in neutral fiber. 

 

 
 

Figure 6. Schematic stress-strain curve. E'F' is the reverse flow curve replotted with the 

prestrain positive and OAB is the initial tensile curve (Tan et al. 1994). 
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2.1.2.2. Bending Characteristics from Tan’s Model 

A detailed description of Tan’s model and derivations of equations are presented in 

Chapter 3.  However, some general bending characteristics are summarized here. Tan et 

al. introduced material anisotropy (or r value) in the advanced theory of sheet bending by 

implementing the Hill’s quadratic anisotropic yield criterion. In this work, material 

thinning in bending was attributed mainly to Bauschinger effect and strain hardening. The 

application of anisotropy parameters in Tan et al. was based on the assumption that the 

tension and compression zones through the thickness act as plane strain tensile and 

compressive elements. Hill presented a theory of plastic anisotropy to describe the 

characteristic of different yield strength in different orientations (Hill, 1948), anisotropy 

yield criteria. According to Hill’s theory, the anisotropic yield criterion is expressed in the 

form, 

  1222)()()(2
222222  xyzxyzzxxzzyij NMLHGFf 

 
(2-3) 

 

where x, y and z axes are chosen coincident with the axes of anisotropy and F, G, H, L, M 

and N are constants of anisotropy.  

Equivalent stress is expressed as, 
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Equivalent strain increment is, 
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Where the anisotropy constants R0 and R90 are expressed as, 
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Based on the anisotropy expressions from Hill’s criterion, the anisotropic constants Co 

and C90 are defined based in the directions of bend axis with respect to the rolling 

direction (refer to Figure 7).  

(i) Bend axis parallel to RD 
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(ii) Bend axis perpendicular to RD 

  
 

2/1

900

900
90

1

11














RR

RR
CC  

(2-7) 

If an isotropic material is assumed, then R0 = R90 = 1 and C = 23. 
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Figure 7. Orientation of coordinates and sheet rolling direction (RD) in Tan et al., (1995) 

model. 

 

Case (I): If the width is coincident with the rolling direction, then dx = 0. The condition 

of volume constancy gives dy = - dz. The equivalent stress and the equivalent strain with 

respect the tangential and radial stress components, in the case of plane strain are, 

respectively, 
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Case (II): If the width is perpendicular to the rolling direction, then dy = 0.  
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(2-10) 
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According to Tan’s model the effective stress in plane strain bending is equal to the 

effective stress in uniaxial tension. Based on the assumption, the differential component 

of equilibrium equation in bending (Equation (3-6)) is represented in terms of the 

equivalent stress ( ) and anisotropy factor (C).   
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(2-12) 

 

The equivalent stress is later substituted with material constitutive laws (Ludwik or Voce) 

according to the tension and compression zones. In the case of isotropic assumption, R0 = 

R90 = 1 and C= 32 . A detailed description of the isotropic case of Tan’s model with 

Bauschinger effect incorporated is presented in section 3.1. Bending characteristics 

namely, the tangential and radial stresses, relative thicknesses and relative curvature of 

neutral fiber for the Voce and Ludwik models are obtained from the model Figure 8(a-d). 

The model plots showed that anisotropy had negligible effect in terms of stresses and 

relative thickness. The same is observed in the tangential stress and radial stress plot 

Figure 8 (e-f) for AA5052 specimen for two different anisotropy factors, C0=1.288 and 

C90=1.11 (refer to Table 1. in Tan et al. paper for properties).  It is to be noted that, in Tan 

et al. (Tan, Persson and Magnusson, 1995), the tangential stress plots in Figure 8(a,b) of 

their paper have been incorrectly labelled for the Voce and Ludwik models, respectively. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 8. Through-thickness bending characteristic plots from Tan's model for AA5052 

(Tan et al., 1995). 

-500

-400

-300

-200

-100

0

100

200

300

400

500

0.8 0.9 1 1.1 1.2

T
a
n
g
e
n
ti
a
l 
s
tr

e
s
s
 (

M
P

a
) 

Thickness, mm 

C=1.288

C=1.110

-15

-13

-11

-9

-7

-5

-3

-1 0.8 0.9 1 1.1 1.2

R
a
d
ia

l 
s
tr

e
s
s
, 
M

P
a

 

Thickness, mm 

C=1.288

C=1.110



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

21 

 

2.1.3. Summary of Bending Models Based on Advanced Theory of Bending 

A comparison of the various models of sheet bending with respect to important 

parameters and bend characteristics is shown in Table 1. These models are based on a 

largely similar method of analyzing the fiber movement during bending to that derived by 

Hill (Hill, 1950) and Lubahn and Sachs (Lubahn and Sachs, 1950) in their ‘advanced’ 

bending theory.  

Table 1. Comparison of bending models on monolithic sheets. 

Bending Models Lubhan and 

Sachs, 1950 

Martin and 

Tsang, 1966 

Dadras and 

Majlessi, 1982 

Tan et 

al., 1995 
Zhu, 2007 

Factors 

Plane strain condition      

Strain hardening - -    

Strength coefficient - -   - 

Anisotropy - - -  - 

Stress equilibrium 

condition 
     

Neutral axis shift      

Unstretched axis -    - 

Bauschinger effect - - -   

Stress distribution  -    

Strain distribution   - -  

Relative thickness      

Relative curvature  -    - 

Relative curvature of 

Neutral fiber 
 -    

Moment versus 

Curvature 
-     

Die friction effect -  - - - 
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From the comprehensive study of various models, it was observed that Tan et al. (Tan, 

Persson and Magnusson, 1995) model was more better in describing the pure bending 

phenomena than the rest of the models. The advantages of Tan’s model is that the model 

considered most of the relevant parameters for pure bending as shown in Table. 1. The 

model is also capable of predicting the tangential and radial stress distribution through the 

numerical integration method proposed first by Verguts and Sowerby (Verguts and 

Sowerby, 1975). The model utilizes the basic Ludwik hardening law to express the 

kinematic hardening and Bauschinger effect due to shift in neutral fiber. Apart from stress 

distribution, the model also predicted the change in thickness and relative curvature 

during bending that is necessary to describe the mechanics of sheet bending. 

 

2.1.4. Other Approaches on Bending Modeling 

For completeness, other approaches to bend modeling development are reviewed here. A 

comprehensive V-bending model that was not based on advanced bending theory was 

developed by Wang et al. (Wang, Kinzel and Altan, 1993) to determine the bending 

characteristics in terms of force versus stroke and bending moment versus curvature. The 

approach to bend analysis was different from others in that the length of bend specimen 

included not only the region in contact with the bending mandrel but also the region 

between the die and mandrel. Thus the bend length was divided into elastic, elastic-plastic 

and plastic zones (Figure 9) while the other models identify the zones horizontally (refer 

to Figure 2(b)). The model considered the effective stresses and strain, anisotropy factor, 
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friction coefficient, elastic and plastic components of the moment equations and the die 

geometry in determining the moment equations in each zone. The relation between the 

lengths of each zone is obtained from the moments, through which the bend angle 

variation of the specimen is calculated. An algorithm is developed to obtain the moment 

versus curvature plots. Some deficiencies in the model are the exclusion of various 

parameters at different stages such as the thickness variations while bending. Overall the 

results are comparable with their limited experimental results in bending moment and 

spring back angle. Another plane strain bending model for an elastic-plastic condition 

considering anisotropy and based upon Hill’s quadratic yield criterion and its associated 

normality flow rule was developed by Chakrabarty et al. (Chakrabarty, Lee and Chan, 

2001). This paper compared the moment versus curvature with the (Wang, Kinzel and 

Altan, 1993) model that neglected the elastic component while calculating the moment. A 

semi analytical process model for air bending was developed by Heller and Kleiner 

(Heller and Kleiner, 2006). In this model the sheet specimen was divided into piecewise 

segments for calculating the bending moments. With the segmental data, simulation of 

bending moment for the entire specimen length was performed. The experimental and 

simulation results were in close agreement (deviating by only 2%) with the average bend 

angles. Further, the model  predicted the thinning effect through drop in relative thickness 

for steel and aluminum alloy materials as shown in Figure 10. The relative thickness 

results were compared with experimental tests on v-bending that showed greater decrease 

in the relative thickness compared to model predictions. However, characteristics plots 
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that describe the tangential and radial stresses, strains, thickness change or their 

experimental validations have not been reported in these latter studies.  

 
Figure 9.  Schematic of Wang et al. (1993) bending model. 

 

 
Figure 10. Model plot showing the change in relative thickness in v-bending (Heller and 

Kleiner, 2006) 
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2.2. Laminated Sheet Materials 

Laminated sheet material have been developed to exploit the beneficial properties of the 

distinct constituent layers in a single product. Several methods to manufacture laminate 

sheets have been in practice for many years. One of the earliest applications of laminated 

composites is known to be in the development of armors made of layers of bronze, tin and 

gold that combines the aesthetics of gold and penetration resistance of bronze and tin 

(Lesuer et al., 1996).   A classic example is the Japanese Samurai swords made through 

solid state welding of high carbon steel with soft iron as illustrated in Figure 11. Forging 

was done at 1000°C, at which temperature both steels are softer and the oxide skin is 

readily broken. After heat treatment, the final product consisted of a hard high carbon 

steel casing with a tough iron core that inhibits cracking of the tool during use (Figure 

11). The various methods to manufacture laminate sheets and bonding mechanisms, are 

discussed in this section.  

 
 

(a) (b) 

Figure 11. (a) Solid state welding (forging) of high carbon steel (case) with soft iron 

(core), (b) Heat treatment by covering with clay, (Lesuer et al., 1996). 
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2.2.1. Production of Laminate Sheet Materials 

Laminated metal composites can be fabricated by many techniques, which may be 

broadly categorized into three groups namely (i) bonding, (ii) deposition and (iii) spray 

forming. Bonding techniques are widely used in components materials in sheet and plate 

form that are solid state bonded at the interfaces. Deposition techniques involve 

molecular scale transportation of component materials to form sequential layers. Spray 

forming techniques involve direct deposition of molten metals of the component materials 

into a laminate form. Table 2 describes the various processing mechanism in making the 

sheet laminates. The schematic of different bonding techniques are shown in Figure 12(a-

f). 

Table 2. Classification of various processing mechanism in making the sheet laminates. 

Bonding  

Process Mechanism Example Reference 

Roll bonding 

 

Layer ore stacked and 

deformed by rolling. 

Bonding established 

through extrusion of virgin 

metal into the cracks of the 

fractured surface due to 

deformation 

1. Copper –Nickel; 

Iron-Nickel; 

Mg-Cadmium; 

Al- Zinc etc. 

2. AA2024 – AA1100 

(Alclad) 

 

1. (McEwan and 

Milner, 1962) 

 

2. (Liu et al., 2008) 

 

 

Adhesive 

bonding 

Epoxy adhesives or solders 

bond the layers 

1. Al layers were bonded 

with epoxy adhesives 

2. Mild steel layers soldered 

with Tin-Lead-Silver solder 

1. (Alice and 

Danesh, 1978) 

 

2. (Embury, 1967) 

table continued in next page……. 
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Explosive 

welding 

Explosively impacting one 

metallic mass onto another 

under controlled 

conditions. The impact 

energy causes solid-state 

bonding. 

Copper and aluminum 

explosively welded 

(Mamalis et al., 

1998) 

Diffusion 

bonding 

Application of compressive 

stress at elevated 

temperature that bonds the 

layers. Metallic bonding is 

attained by interdiffusion; 

grain growth and 

recrystallization 

1.Diffusion bonding of 

layers of Al- Ti-25Al-10Ni 

sheets.  

2. Cladding of stainless 

steel on aluminum and 

carbon steel 

1. (Wu, Wei and 

Koo, 1998) 

 

2. (Deqing, Ziyuan 

and Ruobin, 2007) 

Deposition 

 

Chemical 

vapour 

deposition 

(CVD) 

Substrate material is 

exposed to vapours of one 

or more volatile precursors, 

which react and/or 

decompose on the substrate 

surface to produce the 

desired deposit 

silicon deposition over 

nickel, tungsten, titanium  
(Smith, 1995) 

Physical 

vapour 

deposition 

(PVD) 

and 

Sputtering 

Deposition of one metal by  

condensation and 

vaporization of the film 

material onto the substrate 

material 

Nickel – Copper laminated 

with thickness ratio of 9:1  

(Tench and White, 

1984) 

Spray Forming 

Spray 

forming 

Atomized spraying powder 

particulates of the 

metal/compound over the 

liquid metal 

Silicon carbide particles 

were periodically injected 

into liquid AA6061 

aluminum alloy 

To produce AA6061 – 

6061-SiC laminate 

(Wu et al., 1995) 
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(a) (b) 

  
(c) (d) 

 

 
(e) (f) 

Figure 12. Schematic of different lamination processes (a) roll bonding process, (b) 

optical micrograph of roll bonded AA2024/AA1100 specimen; (c)explosive welding 

process; (d) optical micrograph of explosive welded copper aluminum (Mamalis et al, 

1998); (e) diffusion bonding process, (f) aluminm titanium alloy joint (Wu et al. 1998).  

AA1100 

 
200 μm 
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2.2.2. Clad Sheet Production by Direct Chill Cast (Fusion) Process 

Hot roll bonding has generally been the process for producing large length scale clad 

sheets such as Alclad 2024 developed by Alcoa (Liu et al., 2008). This conventional 

process has many additional manufacturing steps. The clad and matrix layers have to be 

scalped, pre-heated, roll bonded, trimmed to required dimensions. Futher, an oxide 

interface layer between the clad layers becomes inevitable. This multi-step process is cost 

intensive that has led to the development of low cost and high efficient manufacturing 

process for cladded aluminum sheets. A new technique of simultaneous continuous 

casting of aluminum alloy known as direct chill casting (commerically known as Fusion 

Process) has been successful in producing bi-layer and tri-layer aluminum alloy clad 

sheets ( (Novelis Global Research, 2005)). During process startup, the liquid core alloy is 

poured into the opening delimited by the mold, the chill bar, and the starter block. A solid 

core shell is formed and extracted as the starter block is withdrawn at a given casting 

speed. The liquid clad alloy is then poured into the clad side of the mold and makes first 

contact with the solid shell immediately below the chill bar. Further cooling of the clad 

ingot below the mold takes place via an array of water jets shown. A schematic of the 

physical fusion process setup and a DC cast aluminum alloy specimen are shown in 

Figure 13(a-b). This method is different from conventional casting process by means of 

using cooling plates in traditional mold. The cooling plates served as divider walls that 

divide the chamber of the mold into three separate ones to mate three melts different alloy 

compositions. Another difference is that the solidification near the composite interface 

can be controlled. This provides a relatively ideal temperature distribution in the region 
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near the composite interface and ensures that three –layer composite ingots can be 

produced by semi-continuous casting. The major advantage of this process is that it can 

produce an absolutely clean and oxide-free interface between the layers that is not 

possible through conventional roll bonding process. A direct chill cast AA4045/AA3003 

clad sheet is shown in Figure 13(f) (Caron et al., 2014) . 

 

  
(a) (b) 

Figure 13. Novelis Fusion process to produce continuous direct chill cast aluminum alloy 

ingots (Novelis Global Research, 2005)); (a) DC casting process and (b) 

AA4045/AA3003 DC cast clad specimen (Caron et al. 2012). 

 

2.3. Bending of Clad Sheet Materials 

2.4. Mathematical Modeling of Bending Characteristics of Clad Sheet 

Materials 

As compared to monolithic sheet material, few analytical studies have been carried out on 

bending characteristics of clad sheet materials. One of the early notable works on 
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modeling the bending of clad sheets was carried by Verguts and Sowerby (Verguts and 

Sowerby, 1975). In this work on 304 stainless steel cladded with AA3003 aluminum, the 

deformation history of each individual fiber through the thickness of the sheet metal was 

tracked through three main equations namely the stress equilibrium equation, yield 

condition and Proksa’s thickness change equations (Proksa, 1959). Solving the three 

equations leads to determination of strains and stresses (i.e., deformation history) through 

the thickness of the sheet and bending moment at each stage of deformation. In addition, 

the variation of the total sheet thickness as well as the thickness of each laminate could be 

calculated during deformation. However, this work had a simplified approach to account 

for Bauschinger effect for fibers overtaken by neutral axis. The assumption considered 

the yield stress of the fiber after stress reversal was constant and equal to the original 

yield stress of the material. This resulted in higher flow stress values in reverse loading 

for determining the stress distribution across thickness. Another related work on the pure 

plastic bending of laminate sheets in plane strain condition was investigated by Majlessi 

and Dadras (Majlessi and Dadras, 1983), assuming rigid strain hardening material 

behavior. The work predicted the distribution of tangential and radial stress for three and 

two layer laminates. A detailed analysis of the changes in thickness ratios of the core and 

clad was conducted with various layer combinations of soft core and hard clad materials 

and vice versa. For example, for bi-layer laminate with strong core and weak clad, a 

reduction in overall thickness due to bending was observed. In the weak core and strong 

clad, overall thickening was usually noticed. But no experimental validation of the 

analysis was conducted. Even though the model predicted the fiber movement, this work 
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assumed a linear stress – strain model for fibers in reversed loading. Secondly, the basic 

material properties were simulated and no anisotropy effect was considered in the models. 

Digitized stress plot from their work in Figure 14(a) represents a non-strain hardening bi-

layer material with a strong inner layer and weak outer layer. The magnitude of stress in 

the inner layer represented by a-b-c-d-e denoting the stronger inner layer drops to f-g-h 

for the weak outer layer. In contrast, Figure 14(b) represents a tri-layer material with 

weak outer layers and a stronger inner core layer. The stress value drops in d-e-f-g 

representing the weaker core layer. Further, the reason for constant stress value at d-e is 

not explained by the authors. 

 

  

(a) (b) 

Figure 14. Stress distribution plots, (a) Bi-layer laminate by Verguts and Sowerby (1975), 

(b) Tri-layer laminate by Dadras and Majlessi (1983). 
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More recently, bending of stainless steel aluminum clad sheet was experimentally studied 

by Yilamu et al. (Yilamu et al., 2010) where change in sheet thickness for different 

relative positions of steel and aluminum were determined. The thickness change during 

bending was found to be dependent on the relative positions of the strong and weak 

layers. For example, for steel inner and aluminum outer layer (Steelin/Alout) a reduction in 

thickness was obtained and vice versa for Alin/Steelout combination (see Figure 15). For 

increased thinning during bending, the neutral layer is preferred in the stronger layer and 

the tensile stress is preferred in the weak outer layer causing it to elongate and thin down 

rather than fracture. A numerical analysis was carried for thickness change during  

bending using the Yohisda-Uemori kinematic hardening model (Yoshida and Uemori, 

2002). A schematic of tangential stress distribution through the specimen thickness from 

the model is shown in Figure 16. The figure shows the bending stress distribution through 

the thickness of the specimen based on the geometrical arrangement of aluminum and 

steel layers. The magnitude of stress is shown across the thickness with steel layer 

showing higher tangential stress compared to aluminum. 

 
(a) (b) 

Figure 15. Schematic illustration of mechanism of changes in thickness, bending radius 

and bending angle of bent clad sheet for the case of (a) SSin/Alout and (b) Alin/SSout 

(Yilamu et al. 2010). 
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Figure 16. Schematic illustration of mechanism of changes in thickness, bending radius 

and bending angle of bent clad sheet for the case of (a) SSin/Alout and (b) Alin/SSout 

(Yilamu et al. 2010). 

 

2.5. Finite Element Model of Pure Bending of Monolithic and Laminated 

Sheet Materials. 

An early pure bending FE model was developed by Triantafyllidis et al. (Triantafyllidis 

and Needleman, 1982). The objective was to numerically study the development of shear 

bands in a plate subject to pure bending. The effect of initial periodic imperfection in a 

plate subjected to pure bending for different material constitutive conditions namely, 

elastic-plastic and non-linear elastic models, was studied. The maximum moment 

condition (Figure 17(a)) was correlated with the preferential growth of a localized pattern 

of undulations (Figure 17(b)). The initial imperfections lead to the development of 

surface undulations on both the tensile and compressive sides of the specimen and 

subsequently shear bands initiated at points of strain concentration induced by these 
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surface undulations (Figure 17(b)). An interesting observation was that the surface 

undulations in the compressive side occurred prior to the maximum moment while that 

for tensile surface occurs after the maximum moment was achieved. Further, it was 

concluded that, in pure bending, the shear bands propagate from the free surface of the 

specimen and typically stopped inside the specimen. 

 

 

 

(a) (b) 

Figure 17. Pure bending model results, (a) Moment vs. curvature plots; (b) bent specimen 

with undulations on the free surfaces (Triantafyllidis et al. 1982). 

 

A pure bending FE model was developed by Patel (Patel, 2006) where sheet was bent 

using bending moment only and without any axial, shear and torsional forces. A difficulty 

that arises in modeling plastic sheet bending is that it is prone to exhibit plastic hinge 

effect. Plastic hinging is a plastic instability state in bending that is comparable to necking 

in tension. It requires the use of multi-point constraints (MPC) on the sheet nodes in order 

to achieve uniform pure bending.  The MPC method is governed by a set of analytical 

equations required to constrain the movements of the nodes in the specimen without 

causing any significant reaction forces on the sheet. Figure 18(a) shows an illustration of 
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the concept proposed by Patel. The nodes of the central fiber are constrained to make 

them lie on a circle. The first node along the central fiber is subject to symmetrical 

boundary conditions. The second node is free to move as dictated by the loading. All the 

nodes on the central fiber of the sheet to the right of the second node follow the 

deformation of the second node as shown in Figure 18(a). A set of analytical equations 

(not described here) were used to constrain the movements of the nodes in the central row 

as described in Figure 18(b).  Furthermore, the constraining equations did not constrain 

the radius of curvature of bend and eliminated any significant reaction forces on the sheet. 

The MPC subroutine was utilized within Abaqus
©

 FE software and the simulation output 

where a sheet is deformed into a completely circular shape is shown in Figure 19. 

 

 

(a) (b) 

Figure 18. Geometric relationship between the location of the free node and the other 

nodes along the centerline of the sheet; (b) curvature of centerline nodes of the sheet at 

different stages of bending, (Patel, 2006). 
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Figure 19. Pure bending simulation using 2D elements (Patel, 2006). 

 

Another FE model for pure bending of a dual phase steel sheet material was recently 

developed by Bettaieb et al. (Bettaieb et al., 2010). The objective was to study the 

bendability of metallic sheets using a combined GTN (Gurson-Tvergaard-Needleman) 

model (Tvergaard and Needleman, 1984) and Thomason (Thomason, 1990) material 

damage models to predict the coalescence of voids in bending. Such models are 

continuum based but involve microstructural parameters such as void fraction for onset of 

plastic instability in bending. Bending model considered mixed isotropic-kinematic 

hardening law and studied the combined effects of initial geometrical imperfection and 

damage evolution on the bendability. The sheet was divided into two parts, one that was 

subjected to bending and the other that underwent bending and stretching (Figure 20 (a)). 

Due to the symmetry of the sheet only half of the bend sample was modeled by applying 

a vertical displacement to the right end of the sheet while keeping the left end fixed. The 

work did not present any result on the limit strain or limiting curvature in bending but 

showed the distribution of voids in terms of void volume fraction (f) across the thickness 
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of the specimen as shown in (Figure 20 (b)). The void volume fraction (f) increased with 

bending curvature and promoted damage development. The tangential and radial stress 

distribution in pure bending is shown in Figure 21.  

 
 

(a) (b) 

Figure 20. Pure bending FE model, (a) boundary condition; (b) void volume fraction (f) 

distribution. (Bettaieb et al., 2010). 

 

 

 

(a) (b) 

Figure 21. Bending characteristics from pure bending model, (a) tangential and (b) radial 

stress plots (Bettaieb et al., 2010) (α – bend angle). 
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2.6. Review of Sheet Bending Test Methods 

Bending test methods essentially involve a certain span or length of test specimen that is 

simply supported or clamped at the ends. The specimen is subjected to loading 

perpendicular to its plane (thus giving rise to moment) to a small radius typical of plastic 

sheet bending. An experimental test rig to simulate pure bending through application of 

moment alone, and in the absence of frictional or other tensile forces, is required for 

validation of theoretical models. A challenge for the experimentalist is to measure plastic 

strain in bending of a thin sheet (automotive panel sheet for stamping is typically 1 mm or 

less in thickness) that has a strong gradient from tension to compression through the 

thickness. Two noteworthy test designs from literature are illustrated in Figure 22 and 

Figure 23 and briefly described below. The first method developed by Hill and Zapel 

(Hill and Zapel, 1962), and later adapted by Guijosa et al. (Guijosa et al., 2012), Perdujin 

and Hoogenboom (Perduijn and Hoogenboom, 1995), Yoshida et al. (Yoshida, Urabe and 

Toropov, 1998)(see Figure 22(b)), and by Doig et al. (Doig et al., 2010), uses an 

assembly of 4 parallel side-by-side rollers to convert axial tensile force supplied by the 

test system into a rotational force for the rollers. The rotary motion of the roller assembly 

is controlled by several belts around pairs of rollers which not only connect the rollers 

together but also provide tension between them. The two outer rollers are attached with 

pin joints to a test machine that applies the axial force while the two inner rollers 

accommodate the test specimen and move in the opposite direction at a constant angular 

velocity to cause bending of the specimen (see Figure 22(a)). The specimen is mounted 

with screws on (and across) the 2 inner rollers with the bend line placed symmetrically 
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between the rollers and aligned to the axis of the rollers. The design appears capable of 

producing pure bending in thin sheets although some frictional sliding between sheet 

tensile surface and the rollers is expected. However, proponents of this design concept [ 

(Guijosa et al., 2012), (Yoshida, Urabe and Toropov, 1998)] have also not utilized the test 

to carry out in-situ measurements of specimen deformation characteristics. The second 

design, shown in Figure 23, developed by Marciniak and Kuczynski (Marciniak and 

Kuczynski, 1979), consists of top and bottom assemblies attached to the top and bottom 

grips respectively of a tensile test frame. The top assembly consists of a pair of links to 

which a specimen clamping fixture is mounted via four pins. The clamping fixture 

consists of a pair of symmetrical upper and lower platens for clamping specimen with 

rows of bolts on each side. Each of the two upper platens take the form of a curved ‘knee’ 

shape over which a cable wraps around to attach the top and bottom assemblies to 

complete the loading train. The bottom assembly is simply a symmetrical horizontal 

beam, the two ends of which receive cables (assumed non-deformable during testing) 

from the upper assembly. When the upper grip is fixed and lower grips of the test system 

are pulled downwards, the two cables on either side of the clamped specimen are 

subjected to tension thus rotating the clamps in opposite directions about the two lower 

pivot points, and causing the specimen to bend. The specimen bend line is kept free from 

contact and spacing between the inner edges of the clamps is kept close enough to 

achieve a state of pure bending. The design, while more robust and rigid compared to the 

previous one, appears to be limited in terms of providing a clear viewing of the tensile 

surface of the test specimen. Another variant of this test design was developed by Weiss 
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et al. (Weiss et al., 2010) (see Figure 22(c)), that was able to produce small radius bends 

as the clamp rotation was arrested. However, no camera based measurements were carried 

out from the exposed surfaces. Strain measurements across the two exposed surfaces 

require the cameras to move in tandem with the specimen. This was not possible in the 

methods proposed by Weiss et al. (Weiss et al., 2010) and Yoshida et al. (Yoshida, Urabe 

and Toropov, 1998) in spite of their open designs. A number of other bend tests exist in 

the literature, but they utilize bending mandrels and dies to subject the material to 

bending (for example, V-bending). This system of loading invariably causes the specimen 

to not only bend but also stretch as it conforms to the radii of the bending mandrel and die 

and offer no viewing opportunity of the tensile surface as the specimen bends (Doig et al., 

2010). 

  
(a) (b) 

(figure continued on next page) 
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(c) 

Figure 22. Bend test design proposed by (a)Perjudin and Hoogenboom (1995); (b) 

Yoshida et al. (1998); (c) Weiss et al. (2010). 

 

 

Figure 23. Bend test design proposed by Marciniak and Kuczynski (1979). 
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It is to be noted that most available test methods in the literature appear to subject sheet 

material to large radius (or small curvature) bending. Significant plastic bending for sheet 

forming applications such as hemming, however, requires that the sheet is bent to a very 

small radius of the order of 1-2 mm (i.e., large curvature). Additionally, it is highly 

desirable for model validation to be able to observe relevant regions of the test specimen 

and to allow for in-situ displacement, curvature and possibly strain measurement during 

bending.  

 

2.7. Experimental Approaches to Acquiring Bend Data  

Experimental approaches for bend test data typically consists of a macroscopic response 

by recording the bend force, corresponding punch displacement and rotation. Local 

measurements in the bend region such as by micro-hardness measurement and grid based 

strain measurements have been utilized on post-test bend specimens (Geist and Parker, 

1984). Strain measurement across the through-thickness section in bending is often 

difficult especially for thin laminates. Bosia et al. (Bosia et al., 2004) used embedded 

fiber Bragg grating sensor and embedded strain gauges between the laminated layers for 

through-thickness strain measurements in a three point bend test.  The results were also 

compared with 2D and 3D finite element (FE) models of three point bend test. The 

measurement method and the FE models confirmed the presence of non-linearity in 

through-thickness strain distribution that is typically not predicted with existing 

composite laminate theories. A recent online strain measurement technique based on 
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digital image correlation (DIC) principle has been employed to make continuous strain 

measurement in the highly curved bend region (Marzouk, Shankar and Jain, 2014). The 

surface of the deforming specimen is initially applied with a speckle pattern (i.e., a 

stochastic pattern). The deformation of the pattern is recorded during the test using CCD 

cameras. Camera images of the deformed region are converted to gray scale images 

which as subsequently analyzed for grey level changes in the sub-region from image to 

image. The limitation of this optical method is that it requires unhindered access by the 

cameras to the region of interest on the specimen. The image is divided into small 

rectangular areas or facets which have a large numbers of speckles on them (see Figure 

24). Change in the intensity of the speckle pattern within each facet is correlated with 

initial or between adjacent images to yield a displacement map. For this purpose, a 

software converts the displacement of the random dots to a change in pixel intensity of 

the gray scale and then to a displacement vector field. By analyzing the displacement 

vectors within the entire image, the maximum correlation in each window corresponds to 

the actual displacement of the pattern. Further, by comparing the facets in the current 

image with those of the previous image, the shift, rotation and distortion of the facets can 

be calculated, so that the incremental and total strain can be obtained. The major 

advantages of this technique are (i) a full field strain map of region of interest on the 

specimen is obtained which is not possible with conventional methods; (ii) a continuous 

measurement of strain data can be made and (iii) the method is rapid and low cost 

provided suitable cameras and associated hardware and DIC analysis software are 

available. 
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Figure 24. Schematic of Aramis strain measurement principle. 

 

2.8. Plastic Instability Criteria for Determining Limit Strain 

Instability study in metal forming is critical in determining the limit strains or the extent 

to which the specimen could be usefully deformed. Such limit strain analysis in bending 

has been studied only to a limited extent in the past. Bendability or the bending limit is 

often defined as the initiation of an observable fissuring or crack growth by unaided eye 

in the outer fiber of the tensile zone for a specimen bent to a minimum bending radius and 

for a given initial thickness (rmin/t). Bend tests using a set of bending mandrels with 

decreasing radii are typically used to determine the minimum radius to which material 

can be bent without fracture. This simple test method however lacks precise 

determination of limit strain as no strain measurements are carried out. Many theories of 

plastic instability in the form of diffuse or localized necking of sheet material exist in the 

literature. Considère, proposed basic criteria for necking during tensile deformation when 
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a material's cross-sectional area decreases by a greater proportion than the material strain 

hardens (Considère, 1885). The work of Considère, and Swift (Swift, 1952) for diffuse 

necking, Hill (Hill, 1952) and Marciniak and Kuczynski (Marciniak and Kuczynski, 

1967) for localized necking from more than 40 or more years ago has been extensively 

referred to in the literature (Hosford and Duncan, 1999). These theories typically assume 

plane stress state in the sheet and most of the applications are to situations involving 

either in-plane stretching or large radius out-of-plane biaxial stretching conditions. A 

number of new theoretical approaches have been suggested in the recent years for 

analyzing plastic instability and flow localization processes in sheet material such as 

vertex theory (Storen and Rice, 1975), development of shear bands (Triantafyllidis and 

Needleman, 1982), through-thickness shear criterion (Eyckens, Bael and Houtte, 2009), 

non-planar stress states (Allwood and Shouler, 2009) and many have similar restrictions 

(Antolovich and Armstrong, 2014). Many of these criteria make use of macroscopic (or 

non-local) conditions, for example, a load maximum in the case of Hill’s theory for onset 

of plastic instability. A number of recent studies have presented and utilized strain 

localization criteria, applied to critical region of the sheet for limit strain prediction during 

FLD determination (Geiger and Merklein, 2003), (Situ, Jain and Metzger, 2011), 

(Martínez-Donaire, García-Lomas and Vallellano, 2014). The latter approaches are quite 

promising but their application to small radius bending is still lacking. In this context, the 

method proposed by Situ et al. is noteworthy because of its strong physical basis. This 

method is discussed next.  
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2.8.1. Maximum Major Strain Acceleration Criterion for Predicting Limit Strain 

A recent limit strain predicting criterion, by analyzing the major strain history of the 

surface of the sheet specimen from finite element simulations and DIC based 

experimental strain data was developed by Situ et al. (Situ, Bruhis and Jain, 2006). Strain 

measurement by DIC is based on series of images that reflect the spatial transformation of 

the specimen surface. The method offers the advantage of providing a complete history of 

strain at temporal and spatial scales in the critical stretch-bend region. This capability of 

DIC method to observe strain localization process provides an opportunity to predict the 

onset of necking and thereby limit strain of the material in Situ et al. (Situ, Jain and 

Metzger, 2011). The strain history plot of a strain localized region and its vicinity in a 

uniaxial tensile specimen is shown in (Figure 25). The major strain history shows the rise 

in the strain magnitude at the stage of diffuse necking and peak in the localized region 

(Situ, 2008). In this work, major strain distribution of a localized neck and its vicinity 

from a deformed specimen was obtained and plotted as a function of time (Figure 26(a)) 

as well as first derivative of major strain (i.e., major strain rate) and second derivative of 

major strain (i.e., major strain acceleration). The instant at which an inflection point 

occurred in the major strain rate curve, i.e., a peak in the major strain acceleration (Figure 

26(b)), was proposed as onset of localized necking. The criterion was employed with both 

experimental DIC-based strain field data and FE model data and the approach was 

applied to predict FLD using hemispherical punch stretching test. 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

48 

 

 

Figure 25. Strain history from ARAMIS indicating diffuse necking and localized necking 

for a uniaxial tensile test specimen (AA6111-T4, 1 mm thickness) (Situ, 2008). 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

49 

 

 
(a) 

 
(b) 

Figure 26. Limit strains prediction from the (a) major strain plot that corresponds to the 

peak in (b) strain acceleration plot obtained from the strain history for AA6111-T4 punch 

stretching FE model (Situ, Jain and Metzger, 2011).   
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2.8.2. Plastic Instability Criteria Applied to Limit Strain in Stretch Bending 

Stretch-bending, a simultaneous stretching and bending operation, is commonly utilized 

in sheet forming process to make components. Stretch-bending state also exists in the 

failure of sheet in the critical punch profile radius region of sheet during cup drawing. 

Sheet stretching is often performed at the end of bending operation to reduce springback. 

Swift  was perhaps first to theoretically study the mechanics of plastic bending under 

tension in 1948 (Swift, 1948). Mathematical expressions for tension in the specimen due 

to bending and friction were derived to predict the thinning in the circumferential 

direction. However, no study on plastic instability due to bending was conducted. Kruijf 

et al. (Kruijf, Peerlings and Geers, 2009) also analyzed the effect of bending on 

stretchability of the sheet where a Considère type criterion was analytically deduced to 

predict onset of necking under several simplifying assumptions. A finite element based 

analysis was made to study the effect of stretching before, during, and after bending. The 

criterion proposed by Kruijf et al. predicted that simultaneous stretching and bending 

improved the sheet stretchability, whereas a sequential operation, such as stretching 

followed by bending, had a detrimental effect on stretchability. However, such 

predictions were based on fracture strain and no strain localization in the form of a neck 

was predicted. Based on a so-called angular stretch bend test ( or ASBT), Yoshida et al. 

(Yoshida et al., 2005) developed a theoretical model (see Figure 27(a)) to predict the limit 

wall stretch and forming height required to measure the forming limit criteria prescribed 

by the Aluminum Association (Aluminum Association, 1998). The analytical model 

developed a relationship that represents the limit wall stretch Lmax/L0 (Lmax: limit wall 
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length of a sheet, L0: initial wall length) in terms of the limit outer surface true strain (ɛof). 

The limit wall stretch varied with strain hardening exponent (n) value of the material and 

non-dimensional bending curvature. An increasing n value and bending curvature 

increased the limit wall stretch and outer surface limit strain (ɛof) (see Figure 27(b)). 

Yoshida et al. also noted that a standard FLD may not be suitable for analyzing material 

deformation behavior in the vicinity of sharp radius bends.  

 

 

 

 
(a) (b) 

Figure 27. Bending model of Yoshida et al., (a) Schematic of stretch bending test , (b) 

relationship plot explaining the effect of strain hardening effect on limit wall stretching 

ratio (Yoshida et al. 2005). 

 

In this context, Wu et al. (Wu et al., 2006) developed a bending forming limit curve (or 

BFLC) based on so-called stretch bendability index (or SBI) proposed by Sriram et al. 

(Sriram et al., 2003).  The stretch bendability index is a ratio of limit strain in uniaxial 
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tension to the major membrane strain in the unsupported sidewall region.  The purpose of 

this index was to isolate the stretching effect from that of stretch bending. For example, a 

maximum SBI value of 1 means no bending effect on stretching. Under stretch bending 

state, the failure is assumed to occur if the following criterion is satisfied, 

(
𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝜀𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑏𝑒𝑛𝑑
)

𝛼

+ (
𝜀𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝜀𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑡𝑒𝑛𝑠𝑖𝑜𝑛
)

𝛽

= 1 

Where α and β are exponents in the above expression to be determined from test data. 

From curve fitting to experimental data it was found that the SBI increased with 

increasing punch radius to sheet thickness ratio. In other words, larger the bending radius 

or smaller the sheet thickness, the larger was the value of SBI.  

The applicability of general forming limit curve (or FLC) is more suited for relatively flat 

regions of parts where tool with a large radius punch are employed to create larger 

curvatures over panel surfaces, resulting in only a small bending effect. In many 

situations, however, stretch-bending is inevitable as the sheet is bent to smaller radii, such 

as for hemming, part styling and stiffening, and springback control. The work of Wu et al. 

was able to capture the movement of failure location from the side wall to punch nose 

area as bending curvature increased. However, the model was based on several overly 

simplifying assumptions such as thin shell theory, and no thickness change in bending. 

These assumptions caused deviation from the measured strain values and BFLC was 
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simply shifted downward from the conventional FLC depending on the severity of SBI 

parameter while no shape change occurred in the FLC.  

To account for bending, an alternative approach to conventional FLC representation has 

been suggested in the form of a so-called “concave side rule” (or CSR) (Tharret and 

Stoughton, 2003). This rule attempts to take into account inhomogeneous through-

thickness deformation that occurs in stretch-bending. It is assumed that onset of necking 

occurs on the convex side when strain on the concave side of the sheet (i.e., sheet-punch 

contact side) reaches the forming limit strain of conventional FLC. However, 

experimental work of Kitting et al. (Kitting et al., 2009), as mentioned earlier, showed 

that limit strains based on CSR were well above the measured values. 

In spite of availability several stretch bendability criteria in the literature; few have been 

assessed for stretch bending involving small radius bends where bending strains are 

superimposed with either tension on the convex surface, or compression on the concave 

surface. Plastic instability in stretch-bending operations is governed by tool geometric 

considerations (such as bending tool radius, clamping conditions) that result in large 

curvature and, significant out-of-plane deformation. Plastic instability is also related to 

global constitutive material properties, as well as microstructure and crystallographic 

texture of the sheet. While local microstructure and texture based parameters play a 

crucial role in affecting the limit strain bending and stretch-bending (Davidkov et al., 

2012) (Marzouk, Shankar and Jain, 2014), their incorporation into practical, industrially 

useful, limit strain prediction tools has been challenging. It is to be noted that the 
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prediction of limit strain in sheet forming involves not only a suitable plastic instability 

criterion but also consideration of stress state as well as material specific yield criterion, 

material constitutive law, and surface condition. Recently, a theoretical study of stretch-

bending involving effects of different constitutive models, yield criteria, anisotropy, 

Bauschinger effect was carried out by He et al. (He et al., 2013). However, a 

comprehensive laboratory-based experimental study involving all of the above with 

experimental tooling and strain measurement in the critical region is still lacking for 

assessment of stretch-bendability of sheet materials. 

 

2.8.3. Experimental Test Designs for Stretch Bending 

Hemispherical punch based stretching test (or Nakazima test), typically used for forming 

limit diagram (FLD) determination, does not quite simulate the stretch-bend conditions 

typically encountered in actual stampings. Therefore, specific forming tests that simulate 

stretch-bending have been proposed in the literature (Swift, 1948) (Baba and Tozawa, 

1964) (Kruijf, Peerlings and Geers, 2009). Swift was first to develop a bend-stretching 

test jig in which a sheet sample was wrapped around a cylindrical roller and pulled by 

clamps using a screw mechanism as shown in Figure 28. The test set-up was utilized to 

study the effect of tension due to bending and friction on sheet thinning and springback 

after removal of the load. The experimental set-up in this earlier study, however, was 

inadequate, since full field strain measurement methods were in their infancy in 1948, for 

studying aspects of strain localization and limit strain prediction in stretch bending. The 
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next experimental advance in stretch-bend test design involved an angular stretch bend 

test (ASBT) first developed by Uko et al. (Uko, Sowerby and Duncan, 1977) in 1977 and 

later adapted by Demeri (Demeri, 1981) in 1981 (Figure 29(a)). The test design offered 

several advantages such as ability to mount the test jig on a standard mechanical test 

system or to a forming press. The test jig itself was designed to be rigid and simple, and 

similar to the well-known and commonly available hemispherical punch stretching  

(HPS) test jig. ASBT jig consisted of a bending mandrel (or punch), and upper and lower 

clamping plates (or dies) with suitable lock-beads for clamping the sheet specimen. The 

mandrel or punch was angular in shape with a straight edge in one direction and a small 

radius in the perpendicular direction. The punch passed through the central hole in the 

dies to contact and stretch-bend the specimen from the bottom surface. Evolving convex 

shaped tensile surface of the deforming specimen could be viewed from the top (or 

bottom, depending upon the design) in this rather open design as shown in Figure 29(b). 

The strain was concentrated in a small stretch-bend region around the mandrel profile 

radius.  The test design offered several advantages such as ability to mount the test jig on 

a standard mechanical test system or to a forming press. However, in the works of Uko et 

al. (Uko, Sowerby and Duncan, 1977) and Demeri (Demeri, 1981), no continuous strain 

measurement were carried out during the test to analyze the nature of evolving strains in 

the neck (and failure) region.  
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Figure 28. Stretch-bend test design by Swift (Swift, 1948).  

 

 

 

 

 

(a) (b) 

Figure 29. Schematic of punch die set for (a) angular stretch bending by Uko, 1977 and 

(b) hemispherical stretch bending by Demeri, 1981. 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

57 

 

2.9. Strain Measurements on Stretch-bent Specimens 

2.9.1. Post-test Measurements from Imprinted Grid Patterns 

Strain measurement in bending with sharper mandrel profile radius has posed a challenge 

to any conventional strain measurement method. The major strain is localized in the small 

bend region with significant strain gradient in through-thickness direction at the bend 

line. Uko et al. (Uko, Sowerby and Duncan, 1977) measured post-test strain along the 

convex and concave sides of the ASBT specimen using a circular grid pattern of 0.96 mm 

diameter that was imprinted using photo-resist etching method. Sufficiently thick sheet 

specimen of 5.96 mm thickness were chosen to allow for through-thickness strain 

measurements from the edge of the specimen. The major (i.e., circumferential) strain was 

localized in the stretch-bend region and the maximum occurred at the bend line Figure 

30(a).  Effective fracture strain from the test was significantly lower than that from 

uniaxial tensile tests. The final stage in stretch-bending appeared to be a characteristic of 

plastic instability process rather than fracture.  A smaller punch radius resulted in higher 

limit strain and a larger gradient in the major strain distribution along the circumferential 

direction as shown in Figure 30(b). Similar grid-based strain measurements were carried 

out by Demeri (Demeri, 1981) to study the effect of specimen curvature and thickness on 

stretch-bending using a hemispherical stretch-bending test (HSBT) that uses 

hemispherical punch instead of angular punch (Demeri, 1986). Demeri’s work reported 

an important observation by comparing limit strain based on limiting height between 

HSBT and ASBT tests. In HSBT test, the limit strain increased with increasing material 

thickness due to increased material availability and increased uniformity in strain 
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distribution. In contrast the limit strain decreased with increasing thickness is ASBT 

where the specimen encountered more bending (i.e. lower R/t ratio) and increased 

through thickness strain gradient that contributes to early failure. The same was 

concluded in the works of Yoshida et al. (Yoshida et al., 2005) and Martínez-Palmeth 

(Martínez-Palmeth et al., 2013). 

 

 

 

(a) (b) 

Figure 30. Major strain distribution from tensile and compressive sides of HSLA steel 

ASBT specimen along (a) longitudinal (i.e., circumferential) (specimen thickness, t = 

5.26 mm), strains measured by a periodic grid pattern, and (b) thickness on strain 

distributions for two punch radii for AK steel. All results are taken from Uko et al. (Uko, 

Sowerby and Duncan, 1977).  

 

2.9.2. In-situ Measurements Using DIC Technique 

Kitting et al. (Kitting et al., 2009) recently conducted ASBT with different punch 

geometries where DIC technique was used for continuous strain measurements on the 
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convex surface to validate the so-called “concave side rule” (or CSR) for stretch-bending. 

This rule is discussed in a later section. The deformed specimens showed significant 

strain gradient in the stretch-bend region depending upon the punch geometry. The small 

radii punches shifted the forming limits to higher strains compared to the forming limits 

of homogenous in-plane deformation processes. The study stressed the significance of 

through thickness strain gradient in assessing the formability under stretch bending. It 

was concluded that CSR was not able to estimate formability for a wide range of punch 

radii in stretch bending. The study stressed the significance of through thickness strain 

gradient in assessing the formabilty under stretch bending. The test was also simulated 

using FE method. The major strain showed appreciable correlation between the DIC data 

(dotted line) and FE model (thicker line) at the bend line as shown in Figure 31. However, 

differences were also noted between the FE model and DIC data at the specimen edges 

and in between the edge and pole. Other information on DIC parameters such as facet 

size, facet steps and speckle pattern size to assess the quality of DIC analysis were not 

available. Martínez-Palmeth et al. (Martínez-Palmeth et al., 2013) measured fracture 

strain in hemispherical stretch bend test (HSBT) using a range of punch diameters and 

DIC method. Major strain distribution along a section line passing across the dome was 

utilized for curve fitting to determine peak major strain along the line. In general, larger 

necking strains were received with decreasing punch radius.  
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Figure 31. Major strain distribution from tensile surface along longitudinal axis from 

experiments and FE model (Kitting et al., 2009). 

 

2.9.3. Strain Calculation by Numerical Method 

A numerical model for comparing strain distributions in the inner and outer surfaces and 

mid-thickness region of a stretch-bend specimen was developed by McClintock et al. 

(McClintock, Zhou and Wierzbicki, 1993). The model predicted the effect of increasing 

bend angle, curvature and bending moment on plastic instability. It was concluded that 

necking will occur in plane strain under constant applied tension and increasing bending 

curvature when the tensile force can no longer be maintained. In other words, increasing 

curvature reduced the tensile force for necking. The strains were compared at the outer 

surface, mid-thickness layer and inner surface of the specimen that showed highest strain 

at the outer surface and least at the inner surface. Another FE-based stretch-bending 

model by He et al., based on Yoshida-Uemori kinematic hardening constitutive model , 

predicted major strain distribution across the outer surface, mid-thickness layer, and inner 

surface in a stretch-bend specimen (He et al., 2013). The major strain distribution across 
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the three regions followed a similar pattern (Figure 32). However, this study showed 

continuous increase in the magnitude of strains in all three regions in contrast to the work 

of McClintock et al. where the strains dropped at the inner surface. 

 

 
(a) 

Figure 32. Evolution of major strain distribution across outer surface, mid-thickness layer 

and inner surface for DP600 steel sheet (He, et al., 2013). 

 

A compilation of maximum major strain obtained from various experimental and 

numerical methods for different materials is shown in Table 3. When comparing the 

maximum strains to the tensile elongation, it should be noted that, in many studies, the 

stretch-bent material could attain almost twice the strain to that from uniaxial tension.  

In spite of the many studies on stretch-bending, as noted above, a reliable method of 

detecting the onset of necking or fracture in stretch bending is still not available. A strain 
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localization criterion based on measured continuous local strain data up to fracture in a 

stretch-bend test using DIC technology would serve well. Therefore, applicability of a 

strain acceleration criterion from Situ et al. (Situ, Jain and Metzger, 2011) based on 

spatial and temporal development of strains in the critical stretch-bend region is studied in 

this work.  

Table 3. Maximum major strain in stretch-bending obtained by various methods 

compared to the tensile elongation  

Material Thickness, 

mm 

Tensile 

elongation 

% 

Maximum major  

strain (rounded 

to closest 

approximation)  

Method Reference 

HSLA steel 5.26 mm 36% 0.5 Grid pattern (Uko, Sowerby and 

Duncan, 1977) 

1008AK 

steel 

1.04 mm 40% 0.8 Grid pattern (Tharret and 

Stoughton, 2003) 

AK steel 

(punch 

radius = 

12.7 mm) 

1.42 mm 44% 1.1 Grid pattern (Demeri, 1986) 

HSLA steel 1.2 mm 28% 0.5 DIC (Martínez-Palmeth 

et al., 2013) 

General 

material 

condition 

normalized Y.S/E = 

0.002 

0.45 Numerical (McClintock, Zhou 

and Wierzbick, 

1993) 

DP600 normalized 24% 0.7 FE model (He et al., 2013) 

H340 LAD 

steel 

1.5 mm 25% 0.55 FE model 

and DIC 

(Kitting et al., 

2009) 

DP600 

steel 

1.4 mm 22% 0.40 FE model (Lopez and van den 

Boogard, 2011) 

 

2.10. Summary of Literature Review 

Several models of pure bending of monolithic sheet materials are available in literature, 

yet theory is still lacking on laminated sheet materials. More notably, a detailed 
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experimental study to validate the pure bending models is not available in literature. It is 

also inferred that a comprehensive model and experimental validation method to fully 

characterize bending of wide sheets that has different stress states in the edge and mid-

width section is not available. Similarly, several criteria and test methods to predict the 

limit strain in in-plane deformation processes are available, yet only few have been 

reported on stretch bending of sheet material. Likewise a limit strain prediction criterion 

applicable to stretch bending of laminated sheet materials is not yet reported.  Further, the 

conventional strain measurement methods are not suitable for measuring strain on thin 

sheet specimens and not capable of obtaining full-field strain data. The current work is 

aimed to address these deficiencies in theory and experimental strain measurement in 

bending and stretch-bending of laminated sheet material.  
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Chapter 3  

Analytical Modeling of Pure Bending 

 

This chapter presents details related to analytical modeling of pure bending of monolithic 

and laminated sheet materials. The analytical model is a 2 dimensional analysis of plane 

strain bending based on advanced theory of bending. The basic framework of the 

analytical model for laminated sheet is based on plane strain pure bending of monolithic 

sheet from the work of Tan et al. The following assumptions are made. 

a) Plane sections remain plane as the sheet deforms, i.e., there is no lateral 

deformation to cause edge effect. 

b) Uniform moment is transmitted across the specimen, i.e., moment is not 

accumulated at a particular region of strain accumulation. 

c) Pure bending results in uniform curvature across the span of the specimen. 

d) There is no superimposed tension or compression on the sheet. 

e) Strain rate and temperature effect are not considered. 

f) Bending occurs in the plane strain condition and no specimen edge effect is 

considered.  

Additional assumptions related to choice of yield criterion and hardening law are 

discussed later along with the model formulation.  
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3.1. Tan’s 3 Zone Model for Pure Bending of Monolithic Sheet 

The analytical model of Tan et al. for pure plane strain bending of a monolithic sheet 

considered three zones across the specimen thickness. The zones were categorized by 

dividing the thickness with respect to outer radius (ry), un-stretched fiber (ru), neutral 

fiber (rn) and inner radius (ri). The model utilized Ludwik hardening law for tension, 

compression and reverse loaded zones. The Bauschinger effect in reverse loaded zone 

was captured by modified Ludwik law as described by Tan et al. (Tan, Magnusson and 

Persson, 1994). The hardening law was applied to the tension and compression zones 

with their material hardening parameters obtained from tensile tests. The model 

kinematics were based on solving a system of ordinary differential equations representing 

relative thickness and curvature to obtain the current value of the radius of neutral fiber. 

Subsequently, other radii of interest were obtained through which the logarithmic strain 

values of the zones are calculated. The radial stress and tangential stresses were obtained 

from the governing equilibrium equation and Hill’s quadratic anisotropic yield criterion. 

Because of the close relationship of new bending model for laminated sheet to the work 

of Tan et al., for monolithic sheet, the mathematical development of Tan’s model is 

presented in the following sub-sections. 

 

3.1.1. Equilibrium Equation of Pure Bending 

Consider a wide specimen undergoing plane strain bending as shown in Figure 33(a). 

Consider a specimen shown in shaded area Figure 33(b) for force analysis: 
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(a) 

 

 
(b) 

Figure 33. Tan et al.’s pure bending model (a) classification of zones in analytical pure 

bending model for monolithic sheet; (b) stresses acting on an element (A-B-C-D) of the 

bend specimen. 
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Force acting on upper side   =     ddrrd rr   

                            (3-1) 

 

Force acting on lower side   =   rdr  

(3-2) 

 

Equating the left and right side forces =  dr  

(3-3) 

 

Radial forces on the top face, Ft =     ddrrd rr 

   ddrddrrdr rrrr   

  or Ft ≈    ddrrdr rrr   (neglecting smaller order quantity, drdσr) 

Radial forces on the bottom face, Fb  =      2/sin2   ddrdrrdrd rrr   

  or Fb ≈    drdrdr     (considering Sin(dθ/2) ≈ (dθ/2)) 

Force equilibrium in the radial direction (Ft = Fb) gives, 

   drdrdddrrdr rrrr   

(3-4) 

 

   drddrddrd rr   

r
r

dr

d
r 


 

 
(3-5) 
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The equilibrium equation of pure bending is generally represented in the form, 

rdr

d rr   
 

(3-6) 

 

 

3.1.2. Hill’s Thickness Change Equation 

In order to maintain volume constancy during bending, the strain increment from Hill’s 

bending theory is given as, 

  






2
1   -dd

2

r

d

rr

r

t

dt

yi

n
















 
(3-7) 

     

where, α is the bend angle. The Hill’s general theory of pure bending shows that the 

neutral layer rn, which initially coincides with the middle surface rm moves towards the 

inner surface ri during bending. 

 

3.1.3. Tangential Strain Equation 

During neutral axis shift there exists a surface that has been compressed and then 

elongated by the same amount to regain its initial length. The layer is known as 

unstretched surface layer corresponding to a radial distance of ru. Therefore the true 

tangential strain of an element located at radius r is defined as, 













ur

r
ln

          (3-8)          
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3.1.4. Proska’s Relative Thickness - Curvature Relation 

Relative curvature (η) = 
2/)( iy

iy

m rr

rr

r

t




  

 (3-9) 

                 

Relative curvature (κ) = 
2/)( iy

iy

m rr

rr

r

t




  

iy

iy

m rr

rr

r

t






)(2


 
(3-10) 

Radius of curvature of neutral fiber (ρ) = 
u

n

r

r
 

(3-11) 

            

From volume constancy, ru . to = rm . t 













o

mu
t

t
rr .

 
 

.mu rr 
 

(3-12) 

 

o

iyiy

u
t

rrrr
r

)(
.

2

)( 


  
 

Radius of unstretched fiber (ru): 

o

iy

u
t

rr
r

.2

)(
22




 
(3-13) 

 

From the definition of relative curvature, we derive the radius of inner and outer fiber as, 
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)2/1(  mi rr
 

(3-14) 

 

)2/1(  my rr
 

(3-15) 

 

From the definition of radius of curvature of neutral fiber, 

..mn rr 
 

(3-16) 

 

The volume fraction of the material contained between the fiber of radius r and inside 

radius ri is defined as, 

22

22

iy

i

rr

rr






 
(3-17) 

Therefore the volume fraction of material between the neutral radius and inner radius is 

given as, 

22

22

iy

in
n

rr

rr






 
(3-18) 

 

Substituting the appropriate radius terms, 

2222

22222

)2/1()2/1(

)2/1(











mm

mm
n

rr

rr
 






2

)2/1( 222 
n

 
(3-19) 

 

By volume constancy relation, ru . to = rm . t and Equation  (3-9) we obtain, 
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.mu rr 
 

(3-20) 

 

Now tangential strain is given as, 

 lnlnln 


























my r

r

r

r

 
(3-21) 

 

From equation (3-18), 

2222 )( iiy rrrr    

Dividing both sides by rm
2
 

2

22

2

2222

2

2

2

22

2

2 )2/1()2/1()2/1([)(

m

m

m

mm

m

i

m

iy

m r

r

r

rr

r

r

r
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r

r  






  

2

2

2

)2/1(2  
mr

r
 

Taking log on both sides, 

]2)2/1ln[(
2

1
ln 2  

mr

r

 
(3-22) 

 

Substituting equation (3-22) into equation (3-21), 

 ln]2)2/1ln[(
2

1 2 
 

(3-23) 
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Now, the tangential strain εθ is a function of relative curvature (κ), relative thickness (η) 

and volume fraction (λ). Partially differentiating εθ, with respect to  κ, η and λ,  















 
 dddd 








































 
(3-24) 

 

Assuming that the volume fraction of material λ is a constant i.e. (λ=constant),  










 
 ddd 
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
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
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






 
(3-25) 

 

Substituting for εθ from equation (3-23), 











d
dd 

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
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
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2)2/1(

2

1
2

 
(3-26) 

                                                   

At the neutral surface (λ=λn), the circumferential strain increment equals zero, i.e., dεθ = 

0. Applying it to ((3-26), the following equation is obtained, 
















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



n

n

d

d

2)2/1(

2/21

2 2

 
(3-27) 

                           

From equation (3-19) we have, 
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
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)2/1( 222 
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222 )2/1(2  n  
(3-28) 

        

By rearranging the terms in equation (3-27) and substituting equation (3-28), 
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(3-29) 

 

  

3.1.5. Stress Equations: Ludwik Power Hardening Law 

Von Mises yield criterion 

    2/12

13

2

32

2

21 )()()(
2

1
 ys

 
(3-30) 

    

In case of uniaxial tension along rolling direction,  

  2/12

1

22

1 )0()00()0(
2

1
   

1
2

2
   

Therefore, effective stress is the applied stress (X), 

X 1  
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Similarly, effective strain, 

1   

For the case of plane strain bending,  

Von Mises effective stress, 

 r  
2

3

 
(3-31) 

  

Von Mises effective strain, 

 ijijdd 
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(3-32) 
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Therefore, 
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(3-33) 

 

The equivalent stress is obtained from von Mises criterion 
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In plane strain bending,  
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(3-34)        

 

According to Tan’s model the effective stress and strain in plane strain bending is equal 

to the effective stress and strain in uniaxial tension.  

 rX   
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(3-35) 


3

2
1 

 

(3-36) 

 

Through-thickness region of the monolithic sheet is classified as tension, compression 

and reverse loaded zone as shown in Figure 34.  The hardening law is applied to the 

equivalent stress for each of the zones as shown in Table 4.   
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Equating the equilibrium equation (3-6) and effective stress equation (3-34) gives the 

following differential equation for the radial stress,   




3

2


dr

d
r r

 

(3-37) 

On, substituting Ludwik hardening law for the effective stress at appropriate zones, one 

obtains the following differential equations. 

 
Figure 34. Boundary condition used for monolithic bend specimen. 

 

Table 4. Ludwik hardening law forms applied to different zones through the thickness. 
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ZONE I  (Tension) 
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3.1.6. Radial Stress – Ludwik Law 
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On integration between the limits r=r and r=ry 
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(iii) ZONE III : rn  ≤ r ≤ ru 
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(3-43) 

 

It is to be noted that the radial stresses are expected to be continuous across the zonal 

interfaces. The continuity of radial stress at the neutral fiber that shifts during the bending 

process is obtained by setting r = rn in the radial stress equations for those zones which 

meet at the neutral fiber. By equating the stresses at the neutral fiber boundary (eg: σr
II 

= 

σr
III

), the Ʌ parameter necessary for Proksa’s thickness – curvature relation (Proksa, 

1959) is obtained. The summary of radial and tangential stresses at each zone is shown in 

Table 5. 

    

3.1.7. Equality Condition 

For r = rn 
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and 
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Equating σr
II 

 and σr
III 
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Now substituting for the dimensionless parameters, 
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3.1.8. Thickness Change Equation 

From Equation (3-29), 
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Equation (3-47), gives the equation for relative thickness.
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Table 5. Summary of radial and tangential stress equation for pure bending of monolithic 

sheet. 
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The derived stress and relative thickness equations were coded using Matlab© to obtain 

the characteristic plots for AA2024 monolithic sheet (3.12 mm thick) monolithic sheets. 

The flow chart explaining the kinematics of the model to obtain the stresses by solving 

the ODE equation for relative thickness and curvature is shown in Figure 35.  
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Figure 35. Flowchart showing the calculation steps of Tan's bending model. 
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3.2. Development of a 4 Zone Model for Pure Bending of Bi-layer 

Laminates  

The derived model equations for the bi-layer and tri-layer laminate follow the same 

methodology as that for monolithic sheet. For bending of bi-layer laminates, an additional 

boundary radius parameter (rb) between the clad and the matrix has been introduced in the 

framework of Tan et al. model. The bi-layer specimen is termed C-T and C-C when the 

softer clad layer is on tension and compression sides respectively.  The schematic 

diagrams and corresponding boundary conditions for C-T and C-C bi-layer specimens are 

shown in Figure 36(a) and Figure 37(a) respectively. The corresponding boundary 

conditions based on radial stresses are shown in Figure 36(b) and Figure 37(b) 

respectively. The differential equations for four zone bi-layer laminate models for C-T 

and C-C cases are presented in Table 6 and Table 7 respectively.  
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(a) 

 
(b) 

Figure 36. Pure bending model for bi-layer (C-T) laminate, (a) classification of plastic 

zones;  (b) corresponding boundary conditions at zone interfaces. 
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(a) 

 
(b) 

Figure 37. Pure bending model for bi-layer (C-C) laminate, (a) classification of plastic 

zones; (b) corresponding boundary conditions at zone interfaces. 
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Table 6. Mathematical expressions for radial stress at each plastic zone for C-T specimen 

with boundary condition at zone interfaces.  
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Table 7. Mathematical expressions for radial stress at each zone for C-C specimen with 

boundary condition at zone interfaces. 

 Ludwik Model Tangential strain 
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The thickness of clad layer and clad to matrix thickness ratio are expressed by symbols tc 

and q1 respectively. The parameter rb can be represented in terms of other known 

parameters as shown below. For C-T specimen, 
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and, for C-C specimen, 
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3.3. Development of a 5 Zone Model for Pure Bending of Tri-layer 

Laminates 

For the tri-layer laminates the zones are categorized by dividing the thickness with 

respect to outer radius (ry), unstretched fiber (ru), neutral fiber (rn) and inner radius (ri). 

For tri-layer laminate sheets, additional boundary radii parameters (ra and rb) between the 

clad and the matrix are defined, making it a five zone model. The schematic diagrams for 

tri-layer specimens and corresponding boundary condition are shown in Figure 38(a) and 

(b) respectively. The differential equations for five zone tri-layer laminate model are 

presented in Table 8.  
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(a) 

 
(b) 

Figure 38. Pure bending model for tri-layer laminate, (a) classification of plastic zones (b) 

corresponding boundary conditions at zone interfaces. 
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Table 8. Differential expression for radial stress at each plastic zone for tri-layer specimen 

with boundary condition at zone interfaces. 
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Further, the value of the radius of boundary fiber (rb) between the clad and the matrix is 

represented in terms of other known parameters. The thickness of clad layers and clad to 

matrix thickness ratio are expressed by symbols (tc1, tc2) and (q1, q2) respectively. The 

parameters ra and rb can be represented in terms of other known parameters as follows: 
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3.4. Summary of Chapter 

The analytical models for bi-layer and tri-layer laminates sheet were developed based on 

advanced theory of bending. The final forms of radial and tangential stress equations for 

the 4 zones bilayer and 5 zones tri-layer laminates along with the Ʌ parameter for relative 

thickness are summarized in Appendix A. Matlab code for one case of bi-layer laminate 

C-T case is presented in the Appendix B. Convergence check for the bi-layer and tri-layer 

models was carried out by applying the same material properties to the laminate and 

matrix layers. The results are shown in Appendix D. Further, to validate the model 

results, experimental test method using a rotary test fixture and DIC strain measurement 

was developed. This work is presented in Chapter 5. 
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Chapter 4  

Experimental Methodology 

 

This chapter presents experimental details pertaining to bend testing and experimental 

strain measurement. Experimental validation of the numerical bending models was 

performed using a rotary bend test rig that was capable of producing pure bending with 

uniform curvature. The test rig was an open concept design that exposed the outside 

tensile surface for strain measurement. The bend test fixture offered several advantages 

compared to other designs discussed in the literature review. Strain measurements were 

carried along the through-thickness and width directions of the specimen using the DIC 

based optical method. 

4.1. Tensile Material Properties of Chosen Sheet Materials 

4.1.1. Uniaxial Tensile Test 

Tensile material properties for the constituent materials for the laminate, AA1100, 

AA2024, AA1050 and SS400, were determined from uniaxial tensile tests. AA2024 and 

AA1100 were received as cold rolled sheet and SS400/AA1050 bi-layer plate was 

received in explosively welded form. An image of sample SS400/AA1050 bi-layer plate 

laminate is shown in Figure 39.  Tensile specimens were cut from the plate using EDM 

from the blank material taken at 0 degrees to the rolling direction in the case of AA2024 
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and AA1100. The specimens were heat treated to fully annealed state according to ASM 

heat treatment standard as listed in Table 9. The test specimens were cut to 1 inch gauge 

length (25.4 mm) and 0.25 inch gauge width (6.35 mm) according to ASTM-E8 subsize 

standard (Figure 40) (ASTM-E8, 2008). Load displacement traces were obtained using a 

uniaxial MTS hydraulic press (250 kN) under cross head velocities of 2.54 mm/min 

(initial strain rate 0.1 /min) and 25.4 mm/min (initial strain rate 1 /min) to failure. Strain 

calculations were carried out using digital image correlation (DIC) technique using 

standard facet size times facet step (15 x 13) in Aramis Gom (Gom-mbH, 2001). The 

uniaxial tensile stress–strain curves for AA2024, AA1100, AA1050 and SS400 at 

different initial strain rates are shown in Figure 41.  Plastic portion of the plot was 

identified using proof stress (0.2% strain) intersection. This data was then subjected to 

nonlinear least square fitting using the Gauss Newton algorithm in Matlab curve fit tool 

box to obtain the Ludwik hardening law parameters. A sample curve fit plot and quality 

of curve fit for AA2024 0.1/min tensile plot is shown in Figure 42 and Table 10, 

respectively. The summary of yield strength and Ludwik parameters is shown in Table 

11. 
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(a) 

Figure 39. As received sample view of SS400-AA1050 steel-aluminum bi-layer laminate 

bonded by explosive welding. 

 

Table 9. Heat treatment parameters for chosen experimental materials (ASM 

International, 1991). 

Material Annealing Temperature  Annealing Time 

AA2024 686 K 2 hours 

AA1100 616 K 2 hours 

SS400 1163 K 2 hours 

AA1050 616 K 2 hours 
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Figure 40. Tensile test specimen dimensions (ASTM-E8 subsize specimen). All 

dimensions are in inches. 
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(figure continued on next page) 
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(b) 

 
(c) 

(figure continued on next page) 
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(d) 

Figure 41. Uniaxial tensile stress–strain curves for (a) AA2024, (b) AA1100, (c) SS400 

and (d) AA1050 at different initial strain rates. 

 

 

(a) (b) 

Figure 42. Tensile property determination, (a) obtaining yield stress by proof stress 

intersection; (b) non-linear curve fit using Matlab on AA2024 0.1/min tensile plot. 
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Table 10. Matlab curve fit results for AA2024 0.1/min tensile plot for Ludwik law. 

Ludwik hardening law  σ = σo + KL()nL
 

Coefficients (with 95% confidence bounds) KL =456.4 MPa (441.6, 471.2) 

nL = 0.4745 (0.4604, 0.4886) 

σo = 101 MPa  

Goodness of fit (sum of squares due to error ) 1.367e+004 

R-square 0.9679 

Adjusted R-square 0.9676 

 

 

Table 11. Ludwik hardening law parameters from tensile test. 

 Ludwik Hardening Parameters 

 σo, MPa KL, MPa nL 

AA2024 101 456 0.48 

AA1100 30 127 0.45 

AA1050 90 58 0.53 

SS400 438 1132 0.83 

 

 

4.2. Bending Experiments 

4.2.1. Rotary Bend Test Fixture and Test Conditions 

The test fixture consisted of 4 steel angled arms (2 pairs) that were attached to the top of 

servo-hydraulic mechanical test system via a cylindrical adapter and a rectangular steel 

block (see Figure 43). The top ends of the angled arms were pivoted using pins within the 

steel block. The pivoting connections made the angled arm rotate as the specimen was 

bent, eliminating stretching forces on the specimen. The bottom ends of the angled arms 

were attached to a clamp mechanism (one pair on each side of the specimen as shown in 
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Figure 43(a). These ends were also pivoted to the angled arm using a pinned connection 

that rotated the clamps to transmit uniform moment across the specimen as indicated by 

circular arc shape of the initially bent specimen. A bending mandrel was mounted to an 

actuator located below the suspended bending assembly. The test procedure involved 

moving the bending mandrel upwards until it came in line contact with the clamped 

specimen to begin the experiment. Upon further advancement of the mandrel, the pivoting 

action occurred at the two ends of the each of the four angled arms and the entire 

specimen length was subjected to pure bending in the early stage of bending. The 

specimen exhibited uniform curvature in the vicinity of the bending mandrel and non-

uniform curvature away from the bending mandrel and towards the two grips (Figure 43 

(c)). With continued upward motion of the bending mandrel, specimen grips came in 

contact with the sides of the bending mandrel which arrested the rotation of the grips 

resulting in pure stretching of the specimen to fracture in the specimen-mandrel contact 

region (see Figure 43(d,e)). This rather ‘open’ design enabled not only attainment of near 

pure bending condition but also allowed camera access to both the edges and tensile 

surface of the specimen. The test rig was mounted on a MTS 150KN uniaxial tensile 

testing system. V-shaped grooves were made on the specimen ends in a separate 

operation to position them in the clamp grips with similar V-shaped grooves. The 

specimen was tightened in the grips using threaded bolts. The proposed rotary bend test 

design was capable of producing 3 stages in bending, namely, (i) initial uniform curvature 

(i.e., pure bending), (ii) subsequent non-uniform curvature, and (iii) final stretching of the 

specimen to fracture.  
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(a) (b) 

   
 

(c) (d) (e) 

Figure 43. Experimental bend testing, (a) schematic of rotary bending test rig; (b) 

specimen curvatures in progressive bending (c) pure bending stage (uniform curvature); 

(d) bending with non-uniform curvature away from the mandrel; (e) stretching stage. 

Note that a thinner (1.25 mm) specimen is used to show the stretching stage in Figure 

43(e). 
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However, pure bending region (and thus effective bending length) continued to decrease 

as the bending progressed (see Figure 43(b)). The material in contact with the bending 

mandrel stayed in pure bending state up to large plastic strains. For curvature calculation 

and strain mapping using DIC, a relatively smaller effective bend length (24 mm) in the 

uniform curvature region was considered instead of the entire specimen length. 

Load versus displacement trace for a 1.25 mm thick AA2024 (annealed) specimen is 

shown in Figure 44 where 3 distinct stages of deformation can be identified. The first 

stage was characterized by pure bending wherein the entire specimen was bent close to a 

uniform curvature from the designed rotating clamp and rotating arm mechanism. The 

normal reaction force across the mid-span of the test specimen was negligible in this first 

stage of bending. This stage ends at an inflection point between the first and second knee 

as shown in Figure 44. The second stage involved non-uniform curvature of the specimen 

but still could be considered uniform curvature close to pure bending in the vicinity of the 

bending mandrel, as shown earlier in Figure 43(c). This stage occurred between the 

inflection point and the second knee. The third stage started at the second knee once the 

clamp rotation was arrested by the bending mandrel. In this stage pure stretching of the 

bent specimen occurs with rapid increase in load leading to fracture of the specimen. A 

similar curve up to the stretching stage was received for 3.12 mm sheet. This is shown as 

an inset in Figure 44. 
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Figure 44. A typical load versus displacement trace from bending test on AA2024 

(annealed) sheet of 1.25 mm. Inset to the figure shows, for comparison, another load 

versus displacement curve for 3.2 mm thick AA2024 sheet. 

 

4.2.2. Strain Measurement using DIC 

An online strain measurement procedure based on the DIC method was utilized to obtain 

full-field strain measurements (i.e., strain maps) using the commercially available Aramis 

system from Gom (Gom-mbH, 2001). DIC method of strain mapping is a non-contact 
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technique that uses high resolution digital camera images to track the gray level change of 

the speckles in small facets (constituting the image) during deformation at regular 

intervals. By comparing the facets (typically 15 pixels  15 pixels in the present work) in 

the current image with the previous reference image or with the initial reference image, 

the incremental or total strains were obtained. For utilizing the DIC method, the specimen 

was applied with a fine speckle pattern in the undeformed state over the tensile surface as 

well as in the thickness region using an air brush. The average speckle size was measured 

to be 165 μm. Two separate cameras with 1.3 megapixels resolution were used to record 

the images of size 1280 pixels x 1024 pixels from the two regions (Figure 45). The 

cameras were mounted such that they were able to move with the punch to maintain a 

constant distance from the imaged region of the specimen to keep the image in focus 

during the test. For the pure bending test, a punch speed of 1 mm/sec was selected and 

camera image acquisition rate was set at 1 frame per second (fps). The initial specimen 

thickness and width of the AA2024 specimen were chosen to be 3.12 mm and 40 mm and 

for bi-layer SS400/AA1050 specimens were chosen to be 4 mm and 40 mm respectively. 

The SS400/AA1050 specimens were machined from a thicker bi-layer plate stock to 10% 

and 25% clad to matrix thickness ratio using wire EDM machining.  Images from 

through-thickness section and tensile surface were recorded by the two cameras and their 

corresponding strain maps are shown in Figure 46 and Figure 47 respectively.  
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(a) 

 
(b) 

Figure 45. Experimental bend test jig, (a) schematic of bend test rig and camera 

arrangement for strain measurement, (b) experimental test set-up. 
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Figure 46. Images from a typical bent specimen with speckle pattern across the specimen, 

(a) through-thickness and (b) tensile surface regions. 

 

 

  

(a) (b) 

Figure 47. DIC based strain map of (a) through-thickness and (b) tensile surface regions. 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

106 

 

4.2.3. Thickness Measurement using Optical Microscopy 

Specimen thickness measurements were carried out on bend specimens using an optical 

microscope to acquire relative thickness data as a function of curvature. For this purpose, 

five specimens, bent at progressively decreasing inner radius of curvature ri = 73 mm, 32 

mm, 17 mm, 7 mm, and 3.5 mm, as shown in see Figure 48(a), were cut through the  

 

 (a) 

(b) 

 (c) 

Figure 48. AA2024 specimens bent to different radii, (a) full specimen images, (b) 

microscopic cross sectional view of bend specimen (ri=3.5 mm) from the (b) edge, and 

(c) mid-section. 
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thickness at mid-width. Microscopic examination was carried using Nikon optical 

microscope at a magnification of 10. The cross section of a bend specimen (ri= 3.5 mm) 

across the edge and mid-width are shown in Figure 48(b) and (c) respectively.  

 

4.2.4. Thickness Measurements Across Specimen Width 

Prior to thickness measurement, the bi-layer interface was observed with an optical 

microscope to assess the interface characteristics in the un-deformed and deformed (bent) 

state, and especially the possibility of de-bonding between layers. The images were 

observed at two different magnifications of 100 and 1000 in the VHX Keyence optical 

microscope. Perfect bonding between explosively welded SS400/AA1050 bi-layer was 

seen before and after deformation as shown in Figure 49. 

 

 

 

 

 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

108 

 

 
(a) 

  
(b) (c) 

Figure 49. Optical microscope images of SS400/AA1050 specimen (a) specimen cross 

section before deformation at 100; (b) un-deformed magnified at 1000X ; (c) bent 

specimen at 1000. 

 

 

The variation of thickness across the width of the specimen at the bend line was obtained 

from thickness measurements from optical microscopic images of cut AA2024, SS400 C-

T and C-C specimens as shown in Figure 50 (a),(b) and (c), respectively.  The curling 

effect at the edges is clearly evident in the photographs. The dark and light layers in the 

Figure 50(b,c) represent SS400 steel and 1050 aluminum layers, respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 50. Thickness measurements across the specimen width at the bend line from cut 

specimen for (a) AA2024 monolithic specimen for inner radius of 3.5 mm, (b) C-T and 

(c) C-C specimens for inner radius of 25 mm. 
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4.3. Stretch-Bending Test for Bendability Study 

4.3.1. Angular Stretch-bend Test Details 

The test set-up of ASBT, described in Figure 51 from Demeri (Demeri, 1981), was 

adopted in the present work. ASBT jig consisted of a bending mandrel (or punch), and 

upper and lower clamping plates (or dies) with suitable lock-beads for clamping the sheet 

specimen. The details of the tooling are described earlier in section 2.8.3. Hourglass 

shaped test specimens from AA2024 sheet of 1.25mm thickness were machined using 

WEDM process with gauge width 22.8 mm and radius 50.4 mm. The punch width and 

radius were 25.4 mm and 1.5 mm respectively. The test specimen was fully annealed at 

686 K for 2 hours. The punch, specimen and clamping plates were mounted on a MTS 

200 kN double-action mechanical testing system (see Figure 53(a-b)). Rubber sheet 

cushion was used between the specimen and clamping plate to provide cushioning effect 

in the clamped region of the specimen to avoid fracture at the beads. The tests were 

conducted at an actuator velocity of 1.5 mm/min and a clamping load of 75 kN. The 

specimens were deformed to fracture as shown in Figure 53(c). DIC system was 

employed to characterize strain history and limit strain of an aluminum sheet material 

undergoing stretch-bending.  
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(a) (b) 

Figure 51. Schematic of ABST tooling, (a) 2D and (b) 3D models from Demeri (Demeri, 

1981). 

 

The limit strain study was extended to a commercially available tri-layer laminate, Alclad 

2024. The laminate is produced by hot roll bonding of AA2024 as matrix and a thin layer 

(80μm) of AA1100 as clad material on either side of the matrix for corrosion resistance 

purposes. The material finds its application in aerospace structures owing to high strength 

and fatigue resistance property of AA2024 and better corrosion resistance property of 

AA1100. The hot roll bonding mechanism of Alclad 2024 is explained in the work of Liu 

et al. (Liu et al., 2008). A microscopic image of the through thickness section of Alclad 

2024 laminate of 1.25 mm thickness is shown in Figure 52. AA2024 at T3 temper 

condition is very hard and less ductile for stretch-bending test in the tempered state. 

Therefore the material for the test specimens was fully annealed at 686 K for 2 hours and 

furnace cooled following ASM heat treatment standard for AA2024 material (ASM 

International, 1991). The optical micrographs of the crack regions of AA2024 and Alclad 

2024 stretch bent specimens are shown in Figure 54 (a,b) respectively. While necking 
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type of fracture is observed in the AA1100 layer of Alclad 2024 specimen that is typical 

to ductile materials, a brittle fracture at the hard AA2024 specimen is seen. 

 

Figure 52.Optical image of Alclad 2024-T3 specimen cross section (thickness 1.25 mm). 
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(b) 

 
(a) (c) 

Figure 53. ASBT test details, (a) experimental test set-up with camera mounted above the 

test-jig for strain measurement, (b) camera view of tensile surface of deformed test 

specimen, and (c) specimen before the test and after fracture. 

 

 

  
(a) (b) 

Figure 54. Optical micrographs showing the crack region of (a) AA2024 and (b) Alclad 

2024  stretch bent specimens. 

camera 

clamping plates 
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4.3.2. Experimental Strain Measurement Considerations  

Strain measurements at the outer convex surface were carried out using DIC-method 

based Aramis® online strain measurement system from GoM (Gom-mbH, 2001). For 

utilizing the DIC method, the specimen was applied with a fine speckle pattern using a 

spray paint over the flat surface. First a fine coat of white paint was sprayed followed by a 

fine spray of black paint from a pressurized canister attached to an air brush. The black 

and white layers were applied to enhance image contrast and to minimize the average 

speckle size.  The deformation stages were recorded at 3 frames/sec using Aramis high 

resolution digital camera mounted directly above the specimen (see earlier Figure 53(a)). 

The camera was fixed at a distance of 450 mm from the specimen to overcome loss of 

focus due out-of-plane deformation of the specimen during the test.  

Despite several advantages of DIC measurement, obtaining high-fidelity quantitative 

information is necessary for local strain data. The fidelity of strain data is dependent upon 

several factors such as (i) optics of camera and stochastic (i.e., random speckle) pattern, 

(ii) image processing parameters (facet size and facet step), and (iii) length scale of 

interest (continuum or grain scale) (Amini and Kumar, 2014). The success in DIC relies 

on overcoming the limitations in composing the matching macroscopic continuum scale 

speckle pattern size for the microstructure of the material. Polycrystalline material such as 

aluminum is heterogeneous at the microscopic scale and hence the speckle size and facet 

size should correspond to the grain size to avoid local fluctuations. In other words, on 

continuum mechanics scale, it is suitable to have several grains spanning a single facet 

rather than a single grain spanning several facets. The AA2024 material after annealing 
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revealed an average grain size of 50µm, a speckle pattern with stochastic gray and white 

dots was spray painted to obtain an average speckle size of 165µm.  This could 

accommodate 3-4 grains. The grain size and speckle size was then correlated with the 

facet size in terms of pixels. The DIC method used high resolution camera of 1.3 mega 

pixels that rendered images of size 1280 pixels x 1024 pixels along the dimensions of 

width and height. For example, for a selection of 9 pixel   9 pixel facet size, a facet 

dimension of 1285 µm (~ 1.3 mm) was obtained. The dimensional ratio of grain size to 

speckle size to facet size for this case would be 1 : 3 : 3.25 as schematically shown in 

Figure 55(a).  The ratio indicates that there were adequate grains and speckles within the 

facet that would generate reasonable strain compared to far-field applied strain.  

Overlapping of facets is necessary to uniquely identify each facet and to obtain 

correlation. The overlap distance, otherwise known as facet step is inversely proportional 

to the distance between centroids of adjacent facets. The general rule of thumb for better 

strain resolution is that the facet step should be half of the facet size (Amini and Kumar, 

2014). Optical micrographs of surface of AA2024-O sheet with fine speckle pattern and 

Aramis DIC facet size-step for 9 x 9 pixels with a facet step of 5 pixels are shown in 

Figure 55(b, c) and a typical Aramis strain map is shown in Figure 55(d) respectively. 

The Matlab code to extract major strain data from Aramis strain output file is presented in 

Appendix C. 
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(a) (b) 

 
 

 

(c) (d)  

Figure 55. DIC based strain measurements, (a) schematic of length scales of facet, 

speckle and grain, (b) optical micrograph of AA2024-O sheet material from long 

transverse (or LT) plane, (c) higher magnification image of speckles (100X), (d) Aramis 

DIC strain map for facet size of 9 x 9 pixels and facet step of 5 pixels. 

 

4.4. Summary of Chapter 

The experimental test method describing the rotary bend text fixture, angular stretch 

bending and DIC strain measurement were discussed. However, strain data could only be 

obtained from the surface of the specimen in the bending tests. FE models for bending 

were developed to obtain data from sections across width and are presented in Chapter 5. 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

117 

 

Chapter 5  

Finite Element Models of Bending 

 

This chapter presents several different FE models of bending to compare and contrast 

with analytical model and experimental bend test results. FE models do offer some clear 

advantages in understanding the mechanics of sheet bending. 

5.1. Finite Element Models of Bending 

Current analytical models, including the previous work of Tan et al., are based on the 

assumption that plane sections remain plane during the entire process. This assumption is 

difficult to fulfill in wide sheet bending experiments. Loss of plane strain condition leads 

to inevitable anti-clastic curvature development at the specimen edges. In order to check 

for the validity of the analytical model assumptions, two FE based models using Abaqus 

FE modeling software (version 6.8.3), (Dassault Systemes, 2008) were developed. The 

first FE model was a two dimensional (2D) plane strain bending model that utilized multi-

point constraint (MPC) to attain a uniform curvature of the specimen. The second FE 

model was developed for three dimensional (3D) bending to simulate the laboratory 

experimental set up as closely as possible. FE models provide strain data for any section 

of interest (edge or centre of the specimen at the bend line) and the data could be obtained 

at any desirable position within the test specimen unlike the experimental test where data 
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was often difficult to obtain from the entire through thickness region due to speckle 

pattern degradation and consequent breakdown of DIC calculations.   

 

5.1.1. Two Dimensional FE model using Multi-Point Constraints (FE-MPC) 

Two dimensional plane strain bend test model was developed first for its simplicity to 

compare it with the analytical model. Pure bending was achieved in the specimen by 

constraining the mid fiber nodes to make them lie on a circle. The theoretical framework 

was adopted from the work of Patel as illustrated in Figure 56 (Patel, 2006). One end of 

the specimen was constrained and a pressure load was applied at the other end to avoid 

element damage. The left most node was held stationary and the next node acted as a 

‘free’ master node. The following nodes to the right of this node were all slave nodes that 

were tied to the master node. As the master node was displaced, the slave nodes moved in 

an angular manner so as to form a circular arc. CPE4R element, a 4-node bilinear plane 

strain quadrilateral element with reduced integration and hourglass control, was selected 

for model development. Static Riks algorithm was used for deformation steps and 

Abaqus/Standard solver was utilized. A total of 4000 elements were used with 40 

elements through the thickness of the specimen. The model bend specimen at two stages 

of bending is shown in Figure 57.  
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Figure 56. Two dimensional FE model by multi-point constraints (FE-MPC) (Patel, 

2006). 

 

 

The governing equations for the model were based on radius R, Length L, and angle θ 

(see Figure 56) and the following geometrical relationships: 
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The X and Y coordinates of node i (along the central row) were obtained using the 

following expression, 

 iiRx 2sin1   

 1)2(cos1  iiRy   

 
(a) 

  
(b) (c) 

Figure 57. FE-MPC model for pure bending using multi-point constraints; (a) undeformed 

specimen showing edge constraint and loading, (b), (c) bent specimen at different stages 

of bending. 
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5.1.2. Three-dimensional FE Model of Bending with Non-Uniform Curvature (FE-

NUC) 

The 3D model geometry (for specimen and punch) and loading were based on the 

experimental geometry and loading conditions discussed earlier in Chapter 4. Minor 

modifications to the clamp-arm design were made to avoid clamping step in the 

simulation. It is to be noted that the clamped region of the specimen was significantly 

away from the bend line and no sliding of the specimen within the clamped region 

occurred during the test. The specimen edge was tied to the rectangular element edge that 

exhibited the same action as that of the clamp. Likewise the top end of the angular arm 

was suspended at the reference point instead of pivoting at the steel block. An 8 node 

linear brick element with reduced integration (C3D8R element in Abaqus/Explicit) and 

hourglass control was used in the simulation process. Clamp, angular arm and punch were 

considered as analytical rigid (i.e., non-deformable) bodies. A total of 12 elements 

through the thickness and 40 elements through the width of the specimen were used to 

keep the size of the model manageable. Kinematic contact was considered between the 

specimen and the punch (i.e., bending mandrel) mating surfaces with a coefficient of 

friction value of 0.3. Material properties of AA2024 including stress-strain curve, as 

presented in section 4.3, were utilized with the isotropic Mises finite strain plasticity 

constitutive model in Abaqus/Explicit. The data points for Ludwik hardening law were 

obtained from the curve fit parameters of the experimental tensile data. A schematic of 

the test fixture and FE model output at different stages of bending is shown in Figure 58.  
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(a) (b) 

    

(c) (d) (e) (f) 

Figure 58. FE model results of rotary bend testing, (a-b) schematic of the test fixture; (c-f) 

FE model output at different stages of bending. 
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A schematic representation of stress states  in punch based bending is shown in Figure 59. 

A deformed specimen from the 3D model at an intermediate bending stage is presented in 

Figure 60(a) where the development of anticlastic curvature (Figure 60(b)) and punch 

penetration along the compressive side of the specimen (Figure 60 (c,d)) can be observed. 

This is due to the differences in stress state along the edge (uniaxial tension and 

compression) and mid-section (plane strain tension and compression) that is typical of 

small radius bending.  

 

Figure 59. Schematic representation of stress states at the edge and mid-width sections of 

punch based bending. 
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(a) (b) 

 

 

(c) (d) 

Figure 60. Three dimensional FE model for bending (FE-NUC), (a) model setup, (b) edge 

effect, (c) experimentally observed punch penetration effect on the compressive side, and 

(d) model predicted punch penetration region. 
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5.1.3. Shear Force and Bending Moment from the FE Model  

The shear force and bending moment imposed by the rotary bend tester on the specimen 

was studied using Abaqus FE/Explicit 3D model using 2 node linear beam elements 

(B31). The specimen was modeled as a wire part with length 150 mm and a rectangular 

cross sectional profile (40 mm x 3.12 mm) representing the actual specimen dimension 

used in the experiments and other 3D FE based bending models. Material properties of 

AA2024 including stress-strain curve, as presented earlier, were utilized with the 

isotropic Mises finite strain plasticity constitutive model in Abaqus/Explicit. The bend 

testing model was compared with a FE V-bending model with the same material 

properties. The V-bending model was based on a lab based design with punch radius, Rp 

= 3 mm (see Figure 61(a)). The study was to compare the moment distribution in V-

bending that has a significant moment gradient across span, die reaction and friction 

effects with that of the present design with and rotary clamps to distribute the bending 

moment across the span and without any die effects. A comparison of bend specimen 

curvature (1/ri) measured at 24 mm effective bend length at the mid-span is shown in 

Figure 61(b). The effective bend length was chosen closer to the experimental image 

width size used for strain mapping and radius measurement. The V-bending curve shows 

acute rise in curvature. The demarcation between uniform curvature (stage (i)) and non-

uniform curvature (stage (ii)) is characterized by sharp increase in curvature (1/ri) shown 

in Figure 61(b). The evolution of shear force and bending moment obtained for the rotary 

bending and V- bending cases are shown in Figure 62(a-d) respectively.   
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(a) (b) 

Figure 61. Bending test models, (a) schematic of V-bend tester used for FE model; (b) 

comparison of curvature in rotary bending and V-bending cases. 

 

The shear force and bending moment in rotary bending shows relatively uniform 

distribution across the specimen ends and maximum at the mid-span where the punch 

meets the specimen. For the V-bending case the shear force and bending moment shows a 

strong gradient with almost zero in most part of the specimen and peaks at the mid-span. 

A comparison of effective bend length of the same bending moment plot between the two 

cases is shown in Figure 62(e-f) respectively. The rotary bending case is initially 

characterized by constant moment across the span (uniform curvature stage) and 

gradually peaks at the center providing a narrow pure bending zone (non-uniform 

curvature). The V-bending comparatively shows a strong gradient in bending moment 

across the specimen span from the very early stage of bending. The uniform curvature of 
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the rotary bend specimen is better and this test was utilized in the present work to 

compare with the pure bending models.  

 

(a) 

 
(b) 

(figure continued on next page) 
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(c) (d) 

  
(e) (f) 

Figure 62. Comparison of rotary and V-bending test characteristics obtained from FE 

model in terms of (a), (b) shear force for increasing curvature; (c), (d) bending moment 

across entire span (150 mm) and (e),(f) bending moment within the effective bend length 

(24 mm) respectively. (V-bend test moment values are negative owing to punch 

displacement direction).  
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5.1.4. FE-MK Model 

The analytical models of pure bending presented earlier in Chapter 3 deviate from real 

bending processes in that they involve simplifying assumptions and neglect some 

important parameters in the analysis. The experimental bend tests performed in the 

laboratory are closer to real bending conditions but still fall short in measuring through-

thickness stresses and thickness change during bending, and especially from through-

thickness section at mid-width. Thus, 3D FE models were also developed to analyze 

strains across any section (edge, center, tension and compression sides of specimen). 

These models, in principle, are based on Marciniak-Kuczynski test method (Marciniak 

and Kuczynski, 1979) as described in Section 2.6 (Figure 23). The model is developed in 

general purpose commercial FE code, Abaqus/Explicit. An 8-noded linear brick element 

with reduced integration (C3D8R element in Abaqus) is used to represent the sheet 

material. The material was modeled as homogeneous, rate-independent and following the 

von Mises yield criterion. In the model, the test specimen was represented by 53 elements 

along its width and 21 elements though its thickness and 58 elements across the length. 

The specimen dimension considered for the model is 4 mm (thickness)   40 mm (width) 

  25 mm (length). The clamp tooling was considered rigid to simplify the model. The FE 

model embodied virtual rotary clamps tied to the specimen at its two ends such that, on 

rotation, the clamps allowed the application of pure bending moments to the specimen, 

Figure 63(a). A view of the bent specimen through the thickness (Figure 63(b)) and from 

the width side shows the anticlastic curvature (i.e., edge effect) that develops at the two 

edges (Figure 63(c)).  
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(a) (b) 

 
(c) 

Figure 63. Schematic of simplified M-K model for bending (Marciniak & Kuczynski, 

1979); (a) general test specimen geometry with clamp induced bending, (b) FE M-K 

model specimen undergoing bending; (c) FE-MK model specimen showing development 

of anticlastic curvature in small radius bending. 

5.2. Summary of Chapter 

Three FE based bending models were developed to bridge the gap between plane strain 

analytical model and experimental bending and to overcome the limitations in 

experimental strain measurement in bending. The model results are compared with the 

analytical and experimental test results in Chapter 6.  
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Chapter 6  

Results and Discussion 

 

This chapter deals with the results obtained from the analytical and FE bending models 

and experimental tests in bending. The stress and strain distribution results through the 

thickness and across width are compared for monolithic, bi-layer and tri-layer laminates. 

Microscopic thickness measurements for monolithic and bi-layer laminate cases are 

presented. The limitations and significance of the results are summarized at the end of 

each section. The later part of the chapter presents the stretch-bendability test results on 

monolithic and tri-layer aluminum alloy sheets. The strain prediction methodology and 

practical considerations of the strain acceleration criterion are discussed.  

6.1. Bending Characteristics of AA2024 Monolithic Sheets 

6.1.1. Strain Distribution in Bending of Monolithic Sheet 

The experimental strain map across the through-thickness and width sections of AA2024 

(3.12 mm thick) bend specimen are shown in Figure 64 where punch/specimen contact 

region has been chosen for strain mapping. The tangential strain map of the radial section 

at two stages of bending (ri = 5.5 mm and ri = 4.5 mm) are shown in Figure 64(a) and (b) 

respectively. As bending progresses, an increase in the tensile strain region and a decrease 

in the compressive strain region are observed. This is indicative of the shift in the neutral 
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fiber towards the compressive side of the specimen. The tangential strain map across the 

width section is shown in Figure 64(c). The effect of non-uniformity in curvature (i.e., 

deviation from plane strain) is seen in the form of strain concentration at the edges as well 

as in the mid-width region. The tangential strain plots along the width for the experiment 

and the FE-NUC model at various stages of bending are shown in Figure 65. The strain 

distribution is uniform at the beginning of bending and starts to deviate at the edges and 

centre as the bending progresses. The edges are in uniaxial tension stress state whereas 

the centre is close to plane strain state (see earlier Figure 59). The end of pure bending is 

marked by a rapid increase in the tangential strain at the centre, with strain magnitude 

much above those at the ends. Specimen edge and mid-width regions are potential sites 

for material approaching its limit strain in bend type deformation. The magnitudes of 

tangential strain show variation between the experimental and FE model, especially at 

later stages of increasing curvature. Possible reasons for the discrepancy include (i) some 

differences in curvature measurement methodology in experiment and model, and (ii) the 

effect of DIC parameters on strain data such as speckle size and selection of facet size and 

facet step. Development of anti-clastic curvature at the edges also made experimental 

curvature measurements difficult. However, the purpose of the plot is to show the 

evolution of tangential strain across the width during plane strain pure bending. Similar 

general trends between the experimental and FE model strain distribution were obtained. 
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(a) (b) (c) 

Figure 64. Experimental tangential strain maps from AA2024 (3.12 mm thick) bend 

specimen, (a) radial direction (ri=5.5 mm), (b) radial direction (ri = 4.5 mm),   and (c) 

convex surface, width direction (ri=5.5 mm). 

 

 
 

(a) (b) 

Figure 65. Tangential strain distribution across the width of the bend specimen; (a) 

experimental and (b) FE-NUC model  for AA2024. 
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6.1.2. Through Thickness Stress Distributions from Analytical and FE Models 

The analytical model of Tan et al. based on Ludwik hardening law, FE plane strain and 

FE-NUC models at the edge and mid-section are compared for 3.12 mm thick AA2024 

sheet. This comparison in terms of through-thickness tangential and radial stress 

components for specimen inner radius (ri) of 15 mm is shown in Figure 66(a) and (b) 

respectively. The analytical model shows a sharp and discontinuous transition in the 

tangential stress distribution from tension to compression (see Figure 66(a)) compared to 

the other two FE based models. The FE-MPC model shows a smoother transition from 

tension to compression, but differs only slightly from the analytical model in the reverse 

loaded zone, as it employs isotropic hardening rule in the analysis. In the 3D FE-NUC 

model, the tangential stress at the edges deviates significantly from the mid-section owing 

to the loss of plane strain state, i.e., edge effect noted earlier in Figure 60(a). Further, in 

the FE-NUC model, the lateral shift of the tangential stress with increasing curvature is 

very large at the edges compared to the mid-section. This arises from the non-uniformity 

in curvature of the specimen. As expected, the radial stress distribution in Figure 66(b) is 

compressive and shows no through-thickness discontinuity in the stress from any of the 

models. Note that concave and convex sides of the specimen correspond to left and right 

x axis in Figure 66(b). However, the analytical model shows the most compressive 

response in the mid-thickness region compared to the other models. The FE-MPC model 

shows only minor deviation from zero radial stress state at the concave inner surface 

perhaps arising from the method of application of MPC constraint to the specimen. In 

other words, the radial stress is not completely annulled as expected from force 
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equilibrium considerations and compressive stress remains at the outer surface.  The FE-

NUC model, on the other hand, shows significantly larger radial stress component at the 

inner surface of the bend. This is caused by punch penetration of the inner surface that 

induces normal compressive (i.e., radial) stresses. However, there is considerable 

variation in radial stress at the inner surface for the edge and mid-width regions. It is 

likely that the radial stress component at the two inner edges of the specimen is relieved 

due to the anticlastic curvature whereas the mid-width section of the inner surface 

maintains continuous contact with the punch. 
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(b) 

Figure 66. Comparison of (a) tangential stress distribution and (b) radial stress 

distribution at ri=15 mm for 3.12 mm thick AA2024 specimen. 
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pattern at the edges at small curvatures in the DIC strain measurements. The strain is 

uniformly, and almost equally, distributed between the tension and compression zones in 

the analytical and FE-MPC models. These two models exhibit very similar through-

thickness strain distributions, and similar to the tangential stress distributions shown 

earlier in Figure 66(a).  The strain response of the FE-NUC model in the mid-section 

region is also similar to the analytical model and FE-MPC model but indicates a slight 

shift of the curve to the right of the mid-thickness plane. This appears consistent with the 

earlier tangential stress results of Figure 60(a). The results from FE-NUC model from the 

specimen edge region are closest to the experimental data. This model appears to closely 

follow the experimental conditions of the test and measurement locations. Even then, 

some discrepancy with the experimental data is observed on the tensile surface (rightmost 

part of the FE-NUC-Edge curve in Figure 67). The model curve indicates a linear rise and 

a drop at the tensile surface. The discrepancy between experimental result and FE-NUC 

model in the tensile region is currently unclear and could be attributed to inadequacy of 

the constitutive model in considering the microstructure and texture characteristics of the 

surface layer. The discrepancy could also be due to the combined effect of neutral fiber 

movement towards the compressive side and edge effect. Experimental through-thickness 

strain profiles during progressive bending of the AA2024 are shown in Figure 68(a). 

While local oscillations in the experimental strain profiles (oscillations increasing with 

curvature) are observed, similar trends were observed from the FE-NUC-Edge model 

results (Figure 68(b)) indicating that the strains became predominantly tensile in the 

through-thickness region as the specimen curvature increased. The tangential strain 
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through the thickness are shown for inner radii (ri) values of 90 mm, 75 mm, 45 mm, 25 

mm, 15mm (indicated in red), 7.5mm, 3.5mm and 3mm respectively. The specimen 

thinning is observed through the contraction in strain distribution plot with increasing 

curvature. 

 

Figure 67. Comparison of tangential strain for different models for ri =15 mm. 
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(a) 

 
(b) 

Figure 68. Through-thickness tangential strain distribution from (a) experimental (DIC) 

strain measurement and (b) FE-NUC (edge) model for 3.12 mm thick AA2024. The strain 

data corresponds to inner radii (ri) values of 90 mm, 75 mm, 45 mm, 25 mm, 15mm 

(indicated in red), 7.5mm, 3.5mm and 3mm respectively. 
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Figure 69 shows the variation in width strain across the tensile surface of the specimen at 

the bend line from DIC measurements (see earlier Figure 46b) and the FE-NUC model 

data as a function of punch displacement. It is to be noted that width strain is compressive 

on the tensile surface and vice versa on the compressive surface. The FE-NUC model 

gives tensile width strain on the concave underside of the specimen that is not 

measureable in the experimental method. The experimental results for the tensile side are 

in good agreement with the results FE-NUC model. However, FE-NUC model shows that 

the compressive strain along the outer tensile surface (dashed line) is higher compared to 

the tensile strain on the inner compressive side (solid black line). This is attributed to the 

unsupported (and thus more deformable) tensile surface region of the bend compared to 

the punch supported underside of the specimen which also experiences punch penetration 

and frictional drag.  
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Figure 69. Comparison of width strain from FE-NUC model and experiments. 

 

 

Figure 70 shows a comparison of relative thickness of the bend sample at the bend line as 

a function of inner radius of curvature from the experiments and the various models 

studied in the present work. The experimental data was obtained from DIC strain 

measurements of the bent specimens at the edge as well as from optical microscope 

images across the edge and mid-section of the specimen. The results show consistent and 

systematic drop in the relative thickness with curvature for all of the models (analytical, 

FE-MPC and FE-NUC) in agreement with the experimental (DIC and optical 

microscopy) results. The FE-NUC-Edge data, on the other hand, showed significantly 

lower relative thickness values. This is consistent with the results of Figure 64(a) which 

indicated significantly higher tangential tensile strains from the FE-NUC-Edge region. 
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Since this region makes up a substantial part of the through-thickness region, a lower 

relative thickness is exhibited by this data compared to the mid-thickness data from the 

experiments and the FE-NUC-Mid-section data. As mentioned earlier, the degradation of 

speckle pattern at the inner and outer edges of the through thickness section could 

significantly affect the thickness strain measurement using DIC as maximum strains are at 

the edges. In other words, the entire span of thickness section was not available for 

capturing strain data especially at vary sharp curvatures. A loss of 10% of thickness 

section due to pattern degradation could generally be expected. The microscopic results 

across the edge were of similar trend to FE-NUC edge data showing that thinning effect 

was maximum at the edges. However, the microscope based mid-section thickness 

showed a rapid increase in thickness initially and decreased with the increase in 

curvature.   The thickening effect is very slightly observed in the FE-NUC model data for 

the mid-section. The variation in thickness across the width is most likely due to the 

differential stress states that exist at the two edges and mid-section. The edges are in 

uniaxial tension and compression, whereas the mid-section is in plane strain tension and 

compression. Punch penetration could also affect the thickness when compressive stresses 

are combined with the uniaxial and plane strain stress states at the edge and mid-section 

respectively.  
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Figure 70. Comparison of relative thickness versus inner surface curvature from models 

and experiments. 
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DIC based strain measurements. The specimen edges were quite susceptible to edge 

effects and speckle pattern degradation that affected the strain measurement at the edges.  

A 3D FE model (i.e., FE-NUC) was therefore considered to compare with the 

experimental results wherever possible. The bending characteristics described in the 

analytical models of bending in the published literature are typically plotted with respect 

to the relative curvature (κ) which is the ratio of thickness to mid fiber radius. This poses 

an issue for comparison of model data with experimental results as the mid fiber radius 

(rm) is neither uniform across the width nor directly obtainable through experiments. All 

the more, the physical meaning of relative curvature is not conveniently realized and 

could even be hypothetical. In order to have a common scale, the characteristic plots in 

Figure 70 were all represented with respect to the inner radius of the specimen (ri). The 

relative thickness decreases for all the models for AA2024 material. The decrease was 

rather large at the edges due to edge effect combined with the effect of punch penetration 

and this could not be accounted for in the analytical model and FE-MPC models. It is to 

be noted that the FE-MPC model could only produce curvature (1/ri) values upto 0.06 

unlike the analytical and FE-NUC models that could reach up to 0.12. This is because the 

FE-MPC model produced perfect curvature unlike the experimental and FE-NUC models 

where the specimen showed non-uniform curvature rather early in the deformation 

process. 
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6.2. Bending Characteristics of SS400/AA1050 Bi-layer Laminate Sheets 

In this section, experimental and model results pertaining to SS400/AA1050 bi-layer 

laminate are presented. Details related to experimental and modelling were provided 

earlier in Chapters 3-5. 

6.2.1. Through-thickness Stress Distributions from Analytical and FE-MK Models 

Figure 71(a,b) presents a comparison of through-thickness tangential and radial stress 

distributions corresponding to inner bend radius of 25 mm from analytical and FE-MK 

models (hereafter referred to as FE model) for C-T specimen for two different clad to 

matrix thickness ratios (q1) of 0.1 and 0.25. For proper comparison, FE model data was 

obtained from the mid-section of the specimen that is closer to theoretical plane strain 

condition. Also included in Figure 71, for comparison purposes, are curves for monolithic 

SS400 steel. Both analytical and FE-MK models exhibit very similar behavior in terms of 

tangential stress distributions (Figure 71(a)). For example, the tensile tangential stress 

drops in the soft outer clad region for both models and the amount of drop in the stress is 

quite similar. The position through the thickness when this drop occurs is clearly a 

function of the clad to core thickness ratio. The slopes of the curves in the plastic region, 

in both tension and compression, also exhibit similar responses for the two models. The 

slope appears slightly higher in the tension region compared to the compression region. A 

shift in the neutral layer towards the compressive side (i.e., into the core), as indicated by 

the position zero tangential stress in the curves, is observed with increasing clad 

thickness. While the shift is consistent for the two models, the shift appears to be 
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somewhat higher in the analytical model compared to the FE model. Among the 

differences, the mid-thickness elastic portion of the curve is expressed as a vertical line in 

the analytical model due to the assumption of rigid work hardening material whereas for 

the FE model a sloped line in the mid-thickness region is obtained. With respect to the 

radial stress distributions from the two models, Figure 71(b), consistent trends were once 

again observed in the two models. The radial stress component reached a maximum in 

compression in the mid-thickness region of the sheet and dropped to zero and near-zero 

values in the analytical and FE models, respectively. The radial stress slope declined for 

the soft clad layer as observed previously in the tangential stress plot. However the 

maximum radial stress value moves towards the core side as the clad to core thickness 

increases. The maximum compressive radial stress values from the FE results were 

almost half of those observed in the analytical model. In addition, the radial stresses 

develop more slowly in the FE model compared to the analytical model. This variation 

could be attributed to curvature difference, deviation from exact plane strain condition 

and free surface effect for FE model respectively.  Figure 72(a,b) presents results similar 

to Figure 71(a,b), for C-C specimen. Many of the observations were similar with regard 

to the two models. For example, the presence of the soft clad layer on the compressive 

tangential stress side (Figure 72 (a)) leads to a drop in tangential stress. However, some 

irregularities were observed in the stress profiles from the FE model data at the free 

surface that possibly relieved the stress. 

 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

147 

 

 
(a) 

 
(b) 

Figure 71. Comparison of through-thickness stress distributions in bi-layer C-T specimen 

and monolithic SS400 steel layer at an inner radius of 25 mm, (a) tangential stress, and 

(b) radial stress. 
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(a) 

 
(b) 

Figure 72. Comparison of through-thickness stress distributions in bi-layer C-C specimen 

and monolithic SS400 steel layer at an inner radius of 25 mm, (a) tangential stress, and 

(b) radial stress. 
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6.2.2. Through Thickness Tangential Strain Distributions from Analytical and FE-

MK Models 

 

Figure 73(a) presents tangential strain distribution from C-T specimens in a manner 

similar to earlier Figure 67 for monolithic AA2024 sheet. The analytical model exhibits a 

linear curve from compression at the core side to tension on the clad side. The FE model, 

however, shows lower slope in strain distribution as well as non-linearity especially at 

larger plastic strains. This is because the specimen undergoes perfect pure bend 

curvatures without strain along the third axis in the 2D analytical model. The 3D FE 

model allows the material to adjust along the width direction to cause the drop in strain at 

the weak clad layer. Similar results were obtained from the two models for C-C specimen 

(Figure 73(b)) but with a reversal in the positions of the curves in terms of clad to core 

thickness ratios. In other words, the tangential strain increased in magnitude with 

increasing clad thickness ratio for C-T specimen but decreased for C-C. The strain 

variation with respect to soft clad thickness is attributed to the relative difference in 

strengths between steel and aluminum. Aluminum being a weaker material is deformed to 

larger strains compared to steel and hence the variation with respect to clad thickness 

ratio. Overall the C-T specimen produced the maximum strain as AA1050 was subject to 

higher strain on the outer tensile convex side compared to compression on the inner 

concave side. 
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(a) 

 
(b) 

Figure 73. Through-thickness tangential strain distributions in bi-layer; (a) C-T and (b) C-

C specimens with monolithic SS400 steel layer at an inner radius of 25 mm. 
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6.2.3. Tangential Strain Distributions through the Thickness and Across Width 

from  Experimental and FE Model  

Figure 74 shows experimental through-thickness strain distribution for C-T and C-C 

specimens as obtained from DIC analysis. The strain data is taken from the specimen 

edge that is largely in uniaxial stress state but does exhibit edge effect (anticlastic 

curvature) when compared to plane strain state for analytical and FE model. The general 

trend is similar to the model data shown earlier in Figure 73. However, experimental 

strain measurements from through-thickness region tended to be rather sensitive to the 

quality (size) of the speckle pattern, DIC parameters (facet size, facet step, filter size) and 

the size of the image both of which influenced the accuracy of the strain calculation. The 

outer fibers of the through-thickness region did not yield any strain due to speckle pattern 

degradation.  

The width strains of the bi-layer C-T and C-C specimens from the two models and 

experimental DIC measurements are shown in Figure 75(b). In bending, the tension side 

contracts and compressive side elongates along the lateral (width) direction to 

compensate for the longitudinal tension and compression (refer Figure 75(a)).  The same 

was observed for C-T specimen, where width strains were compressive on the tension 

side and tensile on the compression side. For C-C specimen, with increase in thickness 

ratio (q1), the width strains became equally proportional on the tensile and compressive 

sides, i.e., the specimen was subjected to equal tension and compression across the width 

as observed in C-C-0.25 specimen. However, for the monolithic SS400 and C-T 

specimen, the strains become disproportional with increasing thickness ratio. For 
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example, for the C-T-0.25 specimen compressive strains were twice the magnitude of the 

tensile strains. 

 

Figure 74. Experimental through-thickness tangential strain distributions for C-T and C-C 

specimens for two different clad to core thickness ratios and monolithic SS400 steel layer 

at an inner radius (ri) of 25 mm. 
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(b) 

Figure 75. Bi-layer bending characteristics across width, (a)schematic of elongation and 

contraction along width section in bending; (b)FE-MK  model versus experimental width 

strain distributions for C-T and C-C specimens for two different clad to core thickness 

ratios and monolithic SS400 steel layer for a specimen bent to an inner radius of 25 mm. 

(width strain measurements were made on the convex surface of the specimen).  
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In general, it is observed that the order of magnitude in tangential and width strains for 

the C-T and C-C specimen is similar but not the actual magnitude between experiments 

and model data. The compressive width strain on the tensile tangential stress side is 

higher for C-T-0.25 that has a soft AA1050 outer clad material. The same effect is seen in 

the tensile width strain on C-C-0.25. In other words, the tensile strains dominate to 

produce higher width strain in bending when compared to compressive strain. It is to be 

noted that width contraction on the tensile side is more than width expansion on the 

compressive side.  

 

6.2.4. Model versus Experimental Relative Thickness Changes in Bending 

A comparison of relative thickness as a function of specimen curvature (1/ ir ) for 

analytical and FE models with experimental results from DIC data is shown in Figure 76 

and Figure 77. The analytical and experimental data is compared with FE model’s mid-

section data in Figure 76(a,b) and with edge data in Figure 77(a,b). The analytical model 

predicts that the relative thickness decreases (thinning), when softer aluminum is in the 

tension side and increases (thickens) when aluminum is in the compression side. The FE 

model mid-section data shows trend closer to analytical model that is in plane strain 

condition, whereas the edge data is closer to experimental data taken from the edge 

(uniaxial tensile condition). However, the experimental results do not distinctly show 

thickening for C-C case as seen in the models. Instead the magnitude of thinning is larger 

for C-T specimen. The primary reason for variations is that the strain data from 
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experiments are obtained from the specimen edge that is subject to edge effects as 

described in section 3.2.1. Secondly the window for strain data measurement is slightly 

smaller in scale compared to the full through-thickness span of the specimen owing to 

speckle pattern loss at the top and bottom edges. Further the rate at which the material 

thickness change depends upon the thickness ratio (q1) and the ratio of the yield strengths 

of the two materials owing to their different tensile properties. 
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(b) 

Figure 76. Models versus experimental (DIC edge) relative thickness as a function of 

radius of curvature for bi-layer specimens of two different thickness ratios and monolithic 

SS400 sheet, (a) C-T, and (b) C-C (compared with FE-mid-section data). 
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(b) 

Figure 77. Models versus experimental (DIC edge data) relative thickness as a function of 

radius of curvature for bi-layer specimens of two different thickness ratios and monolithic 

SS400 sheet, (a) C-T, and (b) C-C (compared with FE-edge data). 
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a function of clad/core thickness ratio. A higher thickness ratio of 0.25 led to significant 

decrease and increase in relative thickness for C-T and C-C specimens. The fluctuation in 

thickness profile are largely due to experimental error arising from specimen preparation 

and thickness measurement procedure rather than any microstructure related surface 

events. 

 

Figure 78. Experimental relative thickness traces across specimen width at the bend line 

for inner radius of 25 mm. 
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6.2.6. Discrepancy between Models and Experiments  

As shown in the previous section, all of the models capture certain experimental bending 

characteristics of laminate sheet materials. The 2D (or plane strain) analytical model 

considers zone-wise strain calculation by applying appropriate material hardening laws to 

account for stress reversal effects. It is superior in computational efficiency but still 

theoretical in many ways as properties such as tool-sheet contact and friction are 

neglected. A 3D FE model (FE-MK), is able to overcome many of the limitations of the 

plane strain analytical model such as extraction of stress, strain data from any section 

across the width (not possible in analytical and experimental methods). However, 

boundary conditions of the experiments are simplified in terms of punch and die reactions 

and coefficient of friction are assumed from the literature for dry friction. In spite of these 

differences, a good agreement between the analytical model and FE model has been 

achieved in predicting the relative thickness change as a function of specimen curvature 

(see earlier Figure 76 and Figure 77). Both models produce uniform curvature throughout 

the specimen to realize pure bending. However, the experimental relative thickness 

measurement do not follow the modeling results closely perhaps due to a combination of 

change in stress state (analytical model data corresponds to mid-width section where 

plane strain state exists whereas the experimental data comes from the edge of the 

specimen where the stress state is closer to uniaxial), punch penetration effect and DIC 

measurement error as discussed later. The 3D FE model is helpful in obtaining the strain 

across the width section and thickness gradient.  In this sense, it serves to bridge the gap 

between 2D analytical model and the experimental data.   
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6.2.7. Comparison with Other Bending Models   

Two other models on laminate sheets based on advanced theory of bending and following 

the zone-wise classification of sheet thickness are available in the literature. The model 

by Verguts and Sowerby (Verguts and Sowerby, 1975) used a non-strain hardening law 

for the zones that resulted in linear distribution of tangential and radial stresses, especially 

in the intermediate zone. The model did not consider the clad-matrix boundary radii, but 

instead considered the clad thickness ratio in terms of relative thickness and curvature 

parameters. The model predicted that a weak clad and strong matrix decreased the 

thickness and the opposite increased the thickness. There were no results on relative 

thickness variation and effects of clad to matrix thickness ratios on the stress and 

thickness magnitudes. A second comparison was made between strain hardening clad and 

non-strain hardening matrix and vice-versa. While the first combination decreased the 

thickness, the latter increased. However, such arbitrary hardening combinations of 

laminate systems are not commonly found in sheet metal manufacturing. The work by 

Majlessi and Dadras  (Majlessi and Dadras, 1983) categorized the model specimen based 

on the position of the neutral fiber with respect to the un-stretched radius. The outer and 

inner clad layer boundary radii were represented in terms of ratios of the strains of neutral 

fiber, whereas, the present approach represents them in terms of other boundary radii and 

thickness ratio. Other major information missing was about the geometrical arrangement 

of the clad layer and matrix. The work of Dadras and Majlessi generalized that a weak 

clad and strong core reduced the thickness and the vice versa increased the thickness. 

However the present work concludes analytically and experimentally that the reduction in 
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thickness was observed only when the weak clad was in the outer convex side. On the 

other hand, the material would thicken when the clad layer was placed on the inner 

concave side. Both of the studies represented the stress distribution in terms of relative 

curvature of the specimen. Such representation is especially inconvenient when results of 

the model are being compared with experiments and FE model. The current study thus 

presents the through-thickness stress distribution in terms of inner radius of the specimen. 

The above analytical models from the literature and the ones developed in the present 

work (analytical and FE-based) predict the same thinning or thickening effect based upon 

the relative strengths, thickness ratio and geometrical arrangement of the clad and 

laminate layers (i.e., C-C and C-T).  

 

6.2.8. Limitations and Significance of the Results 

It is to be noted that the interface between the laminate layers is assumed to be thin and 

perfect. Therefore, interface characteristics such as strength and thickness are not 

included in the analysis. The interface thickness was analyzed in the present bi-layer and 

tri-layer laminates and was found to be in the range 5–10 μm and well below the 

thickness of each of the layers. Also, the interface in bent specimens was examined by 

optical microscope and no delamination of the interface was observed up to ri = 25 mm. 

Therefore, the assumptions of ‘perfect’ interface between layers in the analytical and FE 

models appears reasonable. The properties of the interface obviously depend upon the 

type of lamination process, and especially when oxide, intermetallics or even voids are 
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formed during the cladding process and the interface layer thickness is significant. Also, 

for simplicity, it has been assumed in the development of the 4-zone analytical model that 

no stress reversal occurs in the innermost and outermost zones for the materials studied in 

the present work. This was indeed found to be the case in the FE model results where no 

such restrictions exist. It would be useful to study the role of interface when it lies in the 

load (or stress) reversal zone.  

The DIC methodology has been applied to in-situ bending experiments within a scanning 

electron microscope (SEM) for studying material flow and strain localization and 

corresponding through-thickness strain field in a monolithic aluminum sheet (Davidkov et 

al., 2012) where it was shown that the results are sensitive to the image magnification and 

other DIC parameters. The images of the deformed through-thickness bend region from 

larger bend specimens at low magnification, such as in the present experiments, introduce 

additional errors in terms of speckle size and loss of focus in the image in critical outer 

and inner fiber regions. Therefore, deviation between the experimental and model relative 

thickness and width strain data were likely from the inherent errors in the present DIC 

measurements and analysis. 
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6.3. Bending Characteristics of AA1100/AA2024/AA1100 Tri-layer 

Laminate Sheets 

6.3.1. Through-thickness Stress Distributions from Analytical and FE-MK Models 

Modeling results from analytical and FE-MK models for tri-layer laminate at two 

different clad to matrix thickness ratios (15% and 25%) are presented in this section.  FE 

method provides stress calculation at any section of the bend specimen which otherwise is 

not possible by experimental methods. Through-thickness tangential and radial stress 

distributions for different thickness ratios of AA1100 clad to AA2024 matrix are shown 

in Figure 79(a,b) respectively. The data for stress values are taken from the mid-width 

section of the specimen that is closer to plane strain state when compared to the edges 

(refer to Figure 1). Note that stress values for monolithic AA2024 sheet for an inner 

radius (ri) of 15 mm are also included for comparison. Both tangential and radial stresses 

decrease with increasing clad thickness ratio (i.e., increasing q values). However, the 

analytical model curve in the matrix layer remain largely unaffected. The tangential stress 

drop is considerable in the softer clad AA1100 layers in both tension and compression. 

The FE-MK model shows a smoother transition in tangential stress in the mid-thickness 

elastic region and a larger tangential stress drop in the soft clad layers. Note that elastic 

component is not included in the analytical model and it causes a sharp transition to 

plastic state. As expected, the radial stress components are compressive and continuous 

across the entire laminate thickness, and their maximum value is slightly shifted towards 

the center of curvature from the mid-thickness region. The maximum radial stress values 
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are only about 10% of the maximum tangential stress. There is a slight perturbation in the 

FE model plots of radial and tangential curves (see Figure 79) seen at the top and bottom 

surfaces that could be due to the interplay between the layer boundaries that is formed by 

partitioning the monolithic material in Abaqus. As in the case of bi-layer study, the 

magnitude of maximum radial stress is lower for the FE model compared to the analytical 

model. Secondly, variation in exact matching of the curvatures from analytical and FE 

models could cause this difference. In general, the two models exhibit very similar trends 

in through-thickness tangential and radial stress distributions. The tangential distribution 

across the width, i.e., along bend-line of the tension side is shown in Figure 80(a). The 

stress distribution is compared for inner radius of 15 mm at two laminate thickness ratios 

and for monolithic AA2024. The stress profile indicates that the maximum tangential 

(major) stress is at the mid-width location where the material is very close to plane strain 

state. The stress magnitude is higher for the harder AA2024 monolithic case. The 

tangential stress distribution at the tensile surface is compared with the data obtained 

from an approximate depth of 0.8mm. The depth was chosen to observe the stresses in the 

hard AA2024 matrix. The tri-layer laminates show negligible difference in stress 

distribution for the two thickness ratios both having similar material in its tensile surface, 

i.e. AA1100. This shows that that thickness ratio of the laminate material only has a 

subtle effect on the surface tangential stresses across the width. However the tangential 

stress magnitudes are closer in the hard AA2024 layer for the laminate and monolithic 

cases. The same behaviour is observed in the radial stress distribution across the width in 

Figure 80(b), except that the magnitude increases with depth. 
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(a) 

 
(b) 

Figure 79. Through-thickness stress distributions in tri-layer laminate for 2 different 

thickness ratios at a radius of curvature of ri =15 mm from analytical and FE-MK models. 

Also included, for comparison purposes, are the curves for monolithic AA2024 sheet. 
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(a) 

 
(b) 

Figure 80. Tangential stress distributions across width (bend-line) and on (a) the top 

surface and (b) at a depth of 0.8 mm from the top surface of the tri-layer laminate for 2 

different thickness ratios at a radius of curvature of 15 mm from analytical and FE-MK 

models. Also included, for comparison purposes, are the curves for monolithic AA2024 

sheet. 
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6.3.2. Tangential Strain Distributions through Thickness and Across Width 

Figure 81(a) shows tangential strain distributions across the thickness for two different 

laminate thickness ratios and for monolithic core material (AA2024) from analytical and 

FE models. The analytical model gives virtually the same curve for all 3 cases whereas 3 

distinct curves are obtained from the FE model. Similar to the monolithic material, the FE 

model for tri-layer predicts a lower slope. The reduction in slope is higher at the outer and 

inner surfaces for both clad and monolithic specimens, which is not observed in the 

analytical model. This is possibly due to stress relief at the free surfaces.  Figure 81(b) 

shows the tangential strain along the bend line (i.e., along the width) of the specimen for 

the same conditions as in Figure 81(a). The strain is compressive on the tensile side and 

vice versa on the compressive side. Compressive strain on the tensile side is significantly 

higher from both sets of models compared to the tensile strain on the compressive side 

due to the shift in the neutral plane towards the compressive side.  Note that similar 

observations were made for bi-layer material (see earlier Figure 75(b)). With respect to 

laminated sheets, a considerable variation in width strain from monolithic AA2024 is 

seen only on the tensile side of the specimen. Otherwise, negligible variations are 

observed among monolithic and laminate cases. 
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(b) 

Figure 81. Strain distributions in monolithic AA2024 and tri-layer laminate, (a) through-

thickness tangential strain distributions for 2 different laminate thickness ratios at a radius 

of curvature of 15 mm from analytical and FE-MK models, (b) width strains from tensile 

and compressive surfaces at bend line from FE-MK model at different radii of curvature. 

Also included, for comparison purposes, are the curves for monolithic AA2024 sheet. 
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Figure 82(a,b) shows the tangential and radial strain distributions across the specimen 

width. Unlike the tangential stress distribution, as shown earlier in Figure 80, the 

tangential strain is greater at the specimen edges compared to the mid-width. The radial 

strain is maximum at a slight offset from the edge compared to the tangential strain. The 

order of tangential and radial strain compared to the monolithic case shows that the  strain 

is slightly greater for the laminate with 25 % thickness ratio and decreases for 15%.  
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(b) 

Figure 82. Bending characteristics of tri-layer laminate sheet, (a) tangential and (b) radial 

strain distributions across width (bend-line) for 2 different thickness ratios at a radius of 

curvature of 15 mm from analytical and FE-MK models. Also included, for comparison 

purposes, are the curves for monolithic AA2024. 
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the initial thickness, is likely due to the nature of MK bend test design where bending 

initiates from the ends of the specimen and propagates towards the bend line as opposed 

to punch actuated bending where bending typically occurs at the mid-span and propagates 

towards the ends. This accumulates some material at the center that is seen in the form of 

an increase thickness. To verify this hypothesis, a comparison of relative thickness 

change between FE-MK and FE-NUC models based on punch actuation is presented in 

Figure 84(a) and (b) respectively. The FE-MK model is closer to a ‘pure’ moment 

condition through rotary clamp actuation. The FE-NUC model, on the other hand, utilizes 

punch force to initiate bending with clamps that are free to rotate. The relative thickness 

is measured across the width of the specimen, i.e., along bend line. Both models exhibit 

similar variation in thickness across the width. The specimen is thinnest at the two edges, 

increases in thickness at a distance from the edge, and further thins as one moves towards 

the mid-width region. At this section, FE-MK model increases in relative thickness for 

initial radii (ri = 75, 25, 15 mm) and later decreases.  In the punch based FE-NUC model 

the relative thickness continues to decrease up to the mid-width section. Here again, both 

models coincide in predicting the thinning of both monolithic and laminate specimens 

with increasing curvature. Also, the thinning effect decreases with increasing clad 

thickness ratios in both models.  Thickening was observed in the model of Majlessi and 

Dadras (Majlessi and Dadras, 1983) for the strong core and weak clad tri-layer laminate. 

However, thickening reported was considerably larger than the initial thickness of the 

material, in variance with the present study. Material thinning has ramifications in terms 

of limit strain by means of through-thickness strain gradient which can be considerable in 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

173 

 

small radius bending when compared to in-plane stretching or deep drawing. In general, 

forming limit improves with increasing sheet thickness (Hosford and Duncan, 1999) 

(Rees, 2001). It is interesting to note that increasing thickness has a negative effect on the 

bending limit (Demeri, 1981). The same was observed in AA2024 sheet through air 

bending test in the work of Zadpoor et al. (Zadpoor et al., 2011). Bendability tests showed 

that the minimum bending radius linearly increases as the sheet thickness increases. 

However, further investigation is needed to conclude the same for laminate sheets with 

different thickness ratios of distinct materials. 

 

 
Figure 83. Relative thickness versus specimen curvature in tri-layer laminate for 2 

different thickness ratios at a radius of curvature of (ri) 15 mm from analytical and FE 

models. Also included, for comparison purposes, is the curve for core AA2024 layer. 
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(a) 

 
(b) 

Figure 84. Distribution of relative thickness along the bend line from (a) FE-MK bending 

(clamp driven); (b) FE-NUC bending (punch driven) for AA2024 (3.12 mm thick) 

specimen. 
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The variation of relative thickness for different outer and inner thickness ratios by 

keeping one layer thickness constant is shown in Figure 85 (a,b). When the inner layer 

thickness is varied with a constant outer layer thickness (q1=0.25), the evolution of the 

relative thickness with curvature pattern shows an increase in relative thickness for 

increasing inner layer thickness ratio (q2) (Figure 85(a)). On the other case, when the 

inner layer thickness is kept constant (q2=0.25) the thickness pattern decreases in relative 

thickness until q1 = 0.35. For the case of q1=0.45, the relative thickness again shows to 

raise as shown in Figure 85(b). It is to be noted that the total sheet thickness remains 

constant for all these cases. 

 
(a) (figure continued on next page) 
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(b) 

Figure 85. Comparison of analytical model relative thickness for different thickness ratios 

of outer an inner layers of the AA2024-AA1100 tri-layer laminate. (a) Outer layer is at 

constant thickness (q1=0.25); (b) inner layer is at constant thickness (q2=0.25). (q1 and q2 

are the thickness ratios of laminte layers in the outer and inner sides of the tri-layer 

laminate). 
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relative thickness change with curvature for bi-layer and tri-layer laminate with AA1100 

as laminate and AA2024 as matrix is shown in Figure 86. Different geometrical 

arrangement of soft clad and hard matrix in bi-layer shows different response in thickness 

upon bending. When the soft clad (AA1100) lies on the tensile side of the hard matrix 

(AA2024) (referred as clad under tension as C-T), the specimen thins with increasing 

curvature as experimentally confirmed in the bi-layer plots in section 6.2.4. Similar 

results were reported in Verguts and Sowerby (Verguts and Sowerby, 1975) and Majlessi 

and Dadras (Majlessi and Dadras, 1983) where thinning increased with increasing clad 

thickness ratio. The opposite trend is noticed for clad in compression (C-C) type bi-layer 

laminate that shows increased thickening with clad thickness ratio. However, the 

thickness change magnitudes for same clad to matrix (0.25) is less in the tri-layer 

laminate than in the  bi-layer laminate. The thinning and thickening effect produced by 

the soft clad on either side of the specimen could counter each other to produce minor 

variations in thickness. 
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Figure 86. Comparison of relative thickness versus curvature plots for C-T and C-C type 

specimens for bi-layer AA1100-AA2024 and tri-layer laminates of different thickness 

ratios. 
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predicted using major strain acceleration criterion of Situ et al. (2011) applied to 

experimental DIC data parameters type of curve fitting. The sensitivity of the method is 

studied by comparing the results with Alclad 2024-O tri-layer laminate sheet of similar 

thickness. Sources of variability in limit strain prediction are also systematically 

investigated.   

 

6.4.1. Experimental Strains 

Figure 87(a) shows the ASBT test set up with a test sample in the test fixture. The major 

strain at a certain stage of deformation (or punch displacement) is overlaid on the test 

specimen. A close-up of the region of interest on the specimen is shown in Figure 87(b) 

where a major strain map was obtained using facet size 25 x 25 pixels (3.5 mm x 3.5 mm 

approx). Major strain localization is observed at the edges of the specimen. Two section 

lines AB and CD along (longitudinal) and across (transverse) the bend line respectively 

are chosen for determining the evolution of major strain during stretch-bending. Figure 

87(c,d) represent curve fitted major strain profiles from sections AB and CD respectively, 

where strain profiles in Figure 87(c) indicate the presence of a strain gradient at the two 

edges. The evolution of strain along the transverse direction of bend line, i.e., CD shows 

maximum strain gradient in the bend line that undergoes maximum bending and 

stretching compared to the side wall region. This is typical of stretch-bending, whereas 

strain localization is observed at the edges as well as at the mid-width section in pure 

bending as reported earlier in Figure 47(b). 
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(figure continued on next page) 
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(d) 

Figure 87. Experimental major strain maps and evolving strain profiles with increasing 

curvature, (a) major strain map using a facet size of 25 x 25 pixels is overlaid on the 

camera image of the test specimen where strain localization can be observed at the edges, 

(b) strain map with lines AB and CD along longitudinal and transverse direction of the 

specimen and strain profile along (c) longitudinal and (d) transverse directions. 

  

6.4.2.  Practical Considerations of Limit Strain Prediction by Major Strain 

Acceleration Criterion 

Strain measurement by DIC is based on a series of images that reflect the spatial 

transformation of the specimen surface. The method offers the advantage of providing a 

complete temporal and spatial history of strain at full-field and localized scales. This 

capability of DIC method to observe the strain localization process provided an 

opportunity to predict the onset of necking, and thereby the limit strain, of the material in 
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acceleration criterion of Situ et al. were reported earlier in section 2.8.1.  In this work, 

major strain distribution across a localized neck and its vicinity from a deformed 

specimens were obtained and plotted as a function of time. Also the first derivative of 

strain (i.e., strain rate) and the second derivative of strain (i.e., strain acceleration) were 

plotted as a function of time. The instant at which an inflection point occurred in the 

major strain rate curve, i.e., a peak in the major strain acceleration, was taken as the onset 

of localized necking. The criterion was employed with both experimental DIC-based 

strain field data and FE model data and the approach was applied to predict FLD using 

punch stretching test.  

In the present work, major strain acceleration criterion is studied for its applicability to 

stretch-bending condition to obtain the limit strain. The nodes in the vicinity of crack are 

chosen to obtain major strain and major strain acceleration data. A flow chart presenting 

the procedural steps for limit strain prediction using major strain acceleration cretion is 

shown in Figure 88.  Several factors influencing the major strain and strain acceleration 

profile were studied in an effort to reduce the variability in the limit strain prediction 

arising from data analysis considerations.  

 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

183 

 

 
Figure 88. Flow chart presenting the procedural steps for limit strain prediction using 

major strain acceleration criterion. 

 

Step-1: Specimen preparation with speckle pattern 

correlated with microstructure of the material.  

Step-2: Obtain DIC data by strain mapping the 

deformed test specimen by selecting appropriate DIC 

parameters such as facet size, step for the material 

Step-3: Obtain major strain data from visible strain 

localization spot and its vicinity.  

Step-4: Curve fit the major strain versus time plot for 

the major strain plot with highest magnitude. 

Calculate second derivative to the major strain plot to 

obtain major strain acceleration. Repeat the second 

derivative step by reducing the time scale window 

towards the end of the major strain plot, i.e., final 

stage of major strain.  The limit strain is the peak in 

the major strain acceleration that is typically observed 

within a range of time scale windows. 
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6.4.3.  Effect of Selection of Major Strain Points on Strain History 

Unlike strain localization from large radius hemispherical punch stretching, in small 

radius stretch bending using an angular punch, the specimen exhibits several distinct 

potential strain localization regions as shown in Figure 87(a,b). Since the magnitude of 

strain was highest at the edges, four data points (points 1, 2, 3 and 4 in (a)) in the vicinity 

of strain localization region near one of the edge (mesh facet size 9 pixel x 9 pixel)  (i.e., 

1.26 mm x 1.26 mm approx.) were chosen for limit strain study (see Figure 89(a)). These 

data points were chosen at a slight offset from the edge because of speckle pattern 

degradation at the edges in DIC strain measurement. The major strain histories at the 4 

points are shown in Figure 89(b) where  point 2 showed the maximum increase in the 

strain magnitude. Therefore, major strain history from point 2 was considered for limit 

strain analysis.  

 
(a) 

(figure continued on next page) 
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(b) 

Figure 89. Strain map at one end of specimen (a) at facet size 9 pixel by 9 pixel and (b) 

associated major strain history at 4 chosen locations in the critical strain region of ASBT 

specimen. 

 

6.4.4. Effect of Facet Size and Facet Step on Strain History  

As noted earlier in sub-section 4.1, the DIC based strain measurement is influenced by 

various considerations during data analysis and especially the facet size and facet step. 

The effect of these two parameters on strain magnitude was studied by selecting three 

different facet sizes times the number of facet step combinations, (i) 25 x 13, (ii) 17 x  9 

and (iii) 9 x  5 within the Aramis DIC software in the calculation of strain history of 
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critical point 2 (see Figure 90). The results from the DIC analysis in Figure 91 indicate 

that the rate of strain evolution is quite sensitive to the choice of facet size and the 

smallest facet size yielded the highest strains at any given time. It is to be noted that facet 

sizes to facet step lower than 9 x 5 pixels caused loss in data and hence any lower facet 

sizes were not considered for limit strain study. However, it appears that smaller facets 

sizes were effective in capturing local curvature effects compared to larger facet sizes that 

are more suited to situations where strain gradients are significantly smaller such as in 

large radius hemispherical punch stretching. The effect of facet size was thus assessed for 

limit strain prediction. The effect of facet with respect to image magnification were 

reported by Davidkov et al. (Davidkov et al., 2012) for DIC based strain history data in 

pure bending of an aluminum alloy. 

   
(a) (b) (c) 

Figure 90. Different facet size and facet step in DIC strain analysis. (The first number 

corresponds to facet size and second number corresponds to facet step). 

 

25 x 13 17 x 9 
 

9 x 5 
 

 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

187 

 

 

Figure 91. Major strain history at point 2 for three facet sizes in DIC analysis. 

 

6.4.5. Implication of Analyzing Major Strain History by Data Fitting 

The choice and effect of curve fitting applied to strain history data on predicted limit 

strain was also analyzed. Several curve fitting functions were utilized to fit the strain 

history data ranging from second order to eighth order polynomial as well as Gaussian 

and exponential functions. The objective of curve fit was to identify the best fit to the 

strain history data using the simplest (or leanest) form of the function, i.e., with minimum 

coefficients. Gaussian, exponential and other curve fit models did not offer strain 

acceleration phenomenon. Second and third order polynomials were not suitable for 
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obtaining second derivative and the fourth order polynomial failed to produce the strain 

acceleration phenomenon compared to 5th order in the DIC data. Based on quality of fit, 

three different curve fitting polynomials namely 4th, 5th and 6th order polynomials were 

chosen for curve fitting of strain history data.  Facet size and facet step combinations of 9 

x 5 were chosen from time scale 135.33 to 151.33 seconds in the experimental data, 

Figure 92(a). Only later stages in the major strain data associated with the strain 

localization and damage phenomenon were considered for calculating the strain 

acceleration as these were more relevant for limit strain prediction. This is discussed 

further in the next sub-section. Curve fitting was done using MS Excel software and 

second derivative for the major strain equation was obtained using online computational 

software, Wolframalpha (Wolfram Research, 2009). The coefficients of the polynomial 

were set to have at least 15 decimal places for accuracy of computation. The major strain 

acceleration for the 4th order polynomial curve fit responded almost like a straight line 

and 6th order polynomial provided negative values as shown in Figure 92(b-d). The 5th 

order polynomial responded with strain acceleration effect in the range of 135.33 seconds 

to 151.33 seconds with a peak in acceleration at 149.5 seconds, Figure 92(c). This 

corresponded to a limit strain of 0.205. The 7
th

 and 8
th

 order polynomials, Gaussian 

second order and Power law curve fit did not produce any strain acceleration behavior as 

shown in Figure 91(e-h) respectively. The exponential law curve fit did not yield second 

derivative for strain acceleration. The quality of curve fit to the major strain data are 

shown by the R
2
 value as summarized in Table 12.  



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

189 

 

 
(a) 

(Sixth order polynomial used for curve fitting, 

y = -0.000000058431923x
5
 + 0.000042474730714x

4
 - 0.012339994180089x

3
 

+ 1.791160601069200x
2
 - 129.897582861191000x + 3,765.552243096220000 
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(figure continued on next page) 
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(f) (g) 

(figure continued on next page) 
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(h) 

Figure 92. Effect of curve fitting on DIC major strain history data, (a) major strain 

history; major strain acceleration curves corresponding to (b) 4
th

 order polynomial, (c) 5
th

 

order polynomial, (d) 6
th

 order polynomial, (e) 7
th

 order polynomial, (f) 8
th

 order 

polynomial, (g) Gaussian second order (h) Power law fits to major strain history data. 

 

Table 12. Different curve fit equation applied to DIC major strain data. 

Equation type R
2
 

4
th

 order polynomial 0.9895 

5
th

 order polynomial 0.9895 

6
th

 order polynomial 0.9895 

7
th

 order polynomial 0.9895 

8
th

 order polynomial 0.992 

Gaussian second order 0.9891 

Power law 0.987 

Exponential 0.977 

Std. dev. 0.010 
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6.4.6. Effect of Choice of Time Scale on Strain Acceleration Characteristics and 

Limit Strain 

The results related to the effect of time scale chosen to analyze major strain history for 

calculating limit strain via strain acceleration criterion are presented in this sub-section. 

The major strain acceleration curve was plotted for several time scale windows closer to 

the end of the major strain curve that is associated with damage. Five time scales 121.33-

151.33 (window 1), 128.33-151.33 (window 2), 135.33-151.33 (window 3), 140.33-

151.33 (window 4) and 143.33-151.33 (window 5) from the major strain curve and their 

corresponding major strain acceleration curves are shown as examples in Figure 93(a-f), 

respectively . No strain acceleration peak was observed for window 1. As the window 

size was reduced, the peak in strain acceleration was observed for the consecutive 

windows. The peak strain acceleration (ɛ2*) occurred in the same region with minor 

lateral shift with respect to each other.  

(a) 
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(b) (c) 

  

(d) (e) 

 (f) 

Figure 93. Effect of choice of time scale on strain acceleration characteristics from 

experiment major strain history data with 5
th

 order polynomial curve fit. 
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The study shows that choice of time scale also has a bearing on the strain acceleration 

peak and hence in the prediction of limit strain. By applying different window sizes, the 

correct location of peak in strain acceleration curves is identified. This conclusion is 

based on repeated study by applying different time scales study on other locations of the 

curve and also from multiple tests.  

 

6.4.7. Comparison of Limit Strain Between Monolithic AA2024 and Alclad 2024 

Tri-layer Laminate 

It was of interest to compare the limit strain in stretch bending for AA2024 and Alclad 

2024 tri-layer sheets. Macroscopic response of these two materials in the form of ASBT 

shown in Figure 94. The presence of softer AA1100 clad layer has caused a minor drop in 

load compared to monolithic AA2024.  
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Figure 94. Load versus displacement plot for AA2024-O and Alclad 2024-O of 1.25 mm 

thickness obtained from ASBT test. 

 

The major strain data obtained from DIC node producing highest magnitude of strain 

from AA2024 and Alclad 2024 specimen is shown Figure 95. ABST test conditions and 

DIC parameters such as facet size (9 x 9) for Alclad 2024 were chosen similar to 

AA2024. The major strain plot for the DIC node with maximum strain is shown in Figure 

95. Limit strain based on maximum major strain acceleration criterion were calculated for 

decreasing order of time scale windows starting from 130 seconds for 21 windows. The 

quality of curve fit to the major strain data is represented through the goodness of fit (R
2
) 

value. It is observed that the major strain curve fit yields better results for time scale 

windows chosen closer to the strain localization stage of the deformation and deteriorates 

0

500

1000

1500

2000

2500

0 2 4 6 8 10

L
o

a
d

, 
N

 

Displacement, mm 

AA2024

Alclad 2024



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

196 

 

with larger window size. The limit strain values are not deducible at the outer range of the 

window sizes selected. In other words the initial part of the strain history does not 

contribute to the strain acceleration effect.  

 

Figure 95. Major strain history from AA2024 and Alclad 2024 stretch bent specimens 

through DIC analysis. 
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Table 13. Limit strain values for different time scale windows. 

Window 

number 

AA2024 Alclad 2024 

Time scale 

(sec) 
* R

2
 Time scale 

(sec) 
* R

2
 

Window 1 121.33-151.33 - NA -  0.9926 131.56-160.36 - NA -  0.9959 

Window 2 123.33-151.33 - NA -  0.9921 135.56-160.36 - NA -  0.9956 

Window 3 125.33-151.33 - NA -  0.9917 137.56-160.36 0.198 0.9952 

Window 4 126.33-151.33 0.178 0.9909 139.56-160.36 0.204 0.9949 

Window 5 128.33-151.33 0.178 0.9913 141.56-160.36 0.211 0.9944 

Window 6 129.33-151.33 0.2051 0.9911 143.56-160.36 0.211 0.9948 

Window 7 130.33-151.33 0.198 0.9903 144.56-160.36 0.2517 0.9936 

Window 8 131.33-151.33 0.2019 0.9906 145.56-160.36 0.2532 0.9926 

Window 9 132.33-151.33 0.2056 0.9902 146.56-160.36 0.2532 0.9923 

Window 10 133.33-151.33 0.2051 0.9893 147.56-160.36 0.2532 0.9913 

Window 11 134.33-151.33 0.199 0.9881 148.56-160.36 0.2532 0.9902 

Window 12 135.33-151.33 0.199 0.9885 149.56-160.36 0.2551 0.9898 

Window 13 136.33-151.33 0.2051 0.9874 150.56-160.36 0.2491 0.9889 

Window 14 137.33-151.33 0.199 0.9855 151.56-160.36 0.2428 0.9885 

Window 15 138.33-151.33 0.2051 0.9821 152.56-160.36 0.2428 0.9883 

Window 16 139.33-151.33 0.2065 0.9775 153.56-160.36 0.2428 0.9889 

Window 17 140.33-151.33 0.199 0.9736 154.56-160.36 0.2428 0.989 

Window 18 143.33-151.33 0.192 0.97 155.56-160.36 0.2432 0.9889 

Window 19 145.33-151.33 - NA -  0.9696 156.56-160.36 0.199 0.9881 

Window 20 146.99-151.33 - NA -  0.9715 157.56-160.36 - NA -  0.9869 

Window 21 147.66-151.33 - NA -  0.9654 158.56-160.36 - NA -  0.9855 

Average*  0.2023   0.2485  

Std. deviation*  0.0033   0.0052  

* Average and standard deviation calculations excluded for shaded values. 

The deduced limit strain values for AA2024 and Alclad 2024 stretch bend specimens are 

shown in Table 13. The limit strain values initially showed large fluctuation and 

stabilized to close values marked within the red dotted lines. The average of the limit 

strains within the band is considered as the limit strain in stretch bending. For the 

monolithic AA2024 specimen the average stretch bending limit strain is obtained as 0.202 

and for Alclad 2024 specimen it is 0.248. The standard deviation of the limit strain values 
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is less than 1% for either cases. The 80 μm thin ductile layer of AA1100 clad produced a 

positive effect of 4% increase on the stretch bendability of Alclad 2024 when compared 

with monolithic AA2024 specimen. 

6.5. Summary of Chapter 

The results from the bending models and experiments were presented for monolithic and 

laminate sheet materials. The differences between the edge and mid-width sections were 

observed in the 3D FE models and experiments when compared with 2D analytical 

models that are plane strain in nature. The effects of several aspects of sheet bending such 

as anticlastic curvature, punch penetration were also observed on the bending 

characteristics. The relative thickness change results for several geometric and material 

combinations of bi-layer and tri-layer laminates were observed in the form of thinning 

and thickening of the sheet. The second part of the results dealt with the limit strain 

predictions on stretch bending of monolithic and tri-layer laminate sheets. A methodology 

to arrive at the limit strain from DIC strain data was presented. The effect of DIC 

parameters, selection of major strain data, and curve fitting to major strain data were 

studied. The conclusions from the modeling and experimental works are presented in 

Chapter 7.  
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Chapter 7  

Conclusions 

 

Bending of monolithic and two different laminate sheet material systems has been studied 

through analytical, FE and experimental methods to understand their small radius plastic 

bending characteristics, and for tri-layer laminate, predict the limit strain using a strain 

acceleration criterion from literature. The following conclusions have been drawn from 

this study. 

 

7.1. Monolithic Sheets 

A new test method for conducting bending of sheet materials to produce large strain, 

small radius, pure bending was developed. The test rig is simple, rigid and robust in 

design, requires minimum accessories, and is well-suited for laboratory-scale experiments 

where sample area in the vicinity of the test specimen is available for camera mounting 

and image acquisition for subsequent analysis of continuous full field strain 

measurements. The proposed bend test method in conjunction with an online DIC strain 

mapping method was utilized to assess characteristics of a representative analytical model 

of pure bending based on advanced bending theory. In addition, three FE models were 

developed, a 2D model based on uniform curvature assumption similar to the analytical 
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model extensively studied in the literature, a 3D model that captures the experimental 

laboratory test set-up and conditions and a 3D model based on Marciniak-Kuczynski 

model (Marciniak and Kuczynski, 1979) that bends without specimen punch interaction. 

Various characteristics of the different models were assessed against the experimentally 

measurable data. While the analytical model captured many of the bend characteristics in 

an efficient manner, some limitations were also noted. Limitations of the analytical 

models of pure bending based on advanced bending theory can be significantly improved 

by utilizing three dimensional FE models that closely incorporated experimental 

conditions and material properties. The latter provide the best agreement with the 

experimental data. Specific conclusions from this study are as follows. 

 A new experimental bend test jig in conjunction with an online DIC method offers 

a means of assessing characteristics of existing and new bending models. The test 

method can subject the bend test specimen to subsequent stretching and thus 

enable, in future, a study of material characterization and limit strains in bend-

stretching mode of deformation. 

 The tangential strain map from the edge of the specimen obtained through DIC 

method indicates a shift in neutral fiber from mid-plane towards the compressive 

side with increasing curvature. The width section strain map shows the 

localization of strain at the edges and centre which are possible failure sites for 

predicting the limit strain under bend-stretching mode.  
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 Analytical plane strain pure bending model that considers uniform specimen 

curvature in bending as proposed by Tan et al. (Tan, Persson and Magnusson, 

1995) and FE-MPC model yield similar bending stress, strain and relative 

thickness characteristics for annealed aluminum alloy AA2024. This trend appears 

in good agreement with the through-thickness edge measurements, using a smaller 

window in online DIC. However, this model fails to capture the deformation 

characteristics at the edges of the test specimen. The models are simplistic in 

comparison to punch (i.e., bending mandrel) based experiments as they fail to 

account for punch penetration that occurs at the inner surface of the bend, and a 

likely deviation from pure bending mode of deformation.  

 A 3D FE model based on non-uniform curvature arising from punch contact (FE-

NUC) captures several experimental bending characteristics of annealed AA2024 

alloy such as anti-clastic curvature at the specimen edges, punch penetration into 

the inner surface, shift in neutral fiber from mid-plane towards the compressive 

side with increasing curvature, strain development on the tensile surface, and 

through-thickness edge regions of the specimen. The model allows for an 

assessment of the edge effect by comparing mid-width and edge region through-

thickness stresses and strains. The deviations in the tangential stresses and strains 

between analytical, FE-MPC and FE-NUC models are largely attributed to the 

edge effects in bending. While the specimen edge (i.e., anti-clastic curvature) and 

punch penetration effects complicate the interpretation of 3D FE results and their 

comparison with limited experimental data, the 3D FE model (FE-NUC) best 
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represented the overall experimental response. The analytical and FE models and 

bend test experiment are all capable of revealing various aspects of bending in the 

context of their assumptions and simplifications. Particular aspects of bending 

such as anti-clastic curvature arise from different stress state at the edge and mid-

section and its role in thickness gradient that develops across the width is clarified.  

 

7.2. Bi-layer Laminate Sheets 

A new analytical model based on advanced theory of bending, and Tan’s monolithic 

bending model (Tan, Persson and Magnusson, 1995) was extended to bi-layer laminate 

sheet material This plane strain analytical model is compared with a 3D FE model based 

on M-K bend test design to simulate pure bending. The model results were compared 

with experimental results from a new bend tester that utilized online DIC strain mapping 

method to obtain through-thickness and convex surface strain data. The model results 

were compared for SS400/AA1050 bi-layer laminate material for different thickness 

ratios and geometric arrangements.  

 The analytical model was able to predict the variations in tangential and radial 

stress distribution in the hard SS400 matrix and soft AA1050 clad layer of the bi-

layer laminate for two different thickness ratios. The stress and strain magnitudes 

dropped with an increase in soft clad thickness ratio.  The stress profile and 
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magnitudes were in good agreement with the FE model for values taken at mid-

section.  

 The model and experiments were in good agreement in the order of strain 

magnitude strain prediction for different geometrical arrangement of AA1050 and 

SS400 clad and matrix. The tangential strain was maximum for highest clad 

thickness ratio (q1=0.25) and when softer AA1050 clad layer was on the convex 

side.  

 The contraction and elongation in the width direction of tensile and compressive 

sides of the specimen were observed in FE model and experiment (for tension 

side). The magnitude of contraction in the width direction on the tensile side was 

almost double of the elongation on the compression side.  The clad layer on 

tension side produced the highest width strain.  

 The material thinned when clad was in tension and thickened when clad was in 

compression. The same was confirmed through microscopic thickness 

measurement at mid-section. The amount of thinning and thickening also 

increased with the clad thickness ratio. The strain and thickness variations were 

attributed to relative difference in strengths of soft aluminum clad and hard steel 

matrix leading to different magnitudes of straining.  

 The relative thickness at specimen edge and mid-section from FE model clearly 

showed reasonable agreement with the DIC data from the edge and plane strain 

analytical model data respectively. The stress state existing at the edge and mid-



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

204 

 

section was clearly captured in the 3D FE model as well other experimental 

characteristics of anticlastic curvature development and punch penetration. 

7.3. Tri-layer Laminate Sheets 

A new analytical model based on advanced theory of bending, and Tan’s monolithic 

bending model (Tan, Persson and Magnusson, 1995) was also extended to tri-layer 

laminate sheet material. A 3D FE model was also developed to simulate pure plastic 

bending of a tri-layer aluminum alloy laminate sheet based on an M-K bend test design. 

The model results for an aluminum alloy three layer laminate system for different 

thickness ratios were compared. 

 The analytical model provides insight about the stress distribution through the 

laminate thickness. The analytical model showed similar trend to mid-width data 

from 3D FE model in predicting the tangential and radial stress distribution for 

different clad to matrix thickness ratios. The model predicted a continuous 

reduction in sheet thickness with increasing specimen curvature. Its primary 

advantage over the FE model is in terms of adaptability to other material systems 

and rapid prediction of critical bending characteristics such as tangential strain at 

the outer surface. The model is limited to laminate materials that exhibit similarity 

in strain hardening behavior. The model is inadequate in describing the stress and 

strain characteristics along the width direction at the bend line, owing to its two 

dimensional nature.  
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 The 3D FE model of M-K bend test design captured all of the general 

characteristics of the analytical model. In addition, it was able to capture anti-

clastic curvature effect, stress and strain variation along the specimen width at the 

bend line. These features of the model are useful as failures can initiate at the 

edge.  This model showed an increase in specimen thickness at large radii of 

curvature and a decrease at smaller radii of curvature. This effect was not captured 

by the analytical model. The increase in thickness at larger radii of curvature is a 

result of bend propagation from the two ends in clamp driven bending. The 

thickness variation along the bend line showed the inhomogeneity in strain for 

wide specimens, a result not obtainable from plane strain based analytical models. 

 

7.4. Limit Strain Prediction in Stretch Bending of Monolithic and Tri-layer 

Laminate Sheets 

An angular stretch bend test was used on AA2024 aluminum alloy and Alclad 2024 tri-

layer laminate to predict the limit strain based on the strain data obtained from DIC based 

strain mapping. A major strain acceleration method from Situ et al. (Situ, Jain and 

Metzger, 2011) was successfully utilized to predict the limit strain in stretch bending 

corresponding to the onset of necking was studied. The study was carried out by 

correlating the three most important DIC parameters namely, microstructure, speckle size 

and facet size. Major strain history data from the vicinity of strain localization region was 

utilized in the analysis. Effects of several parameters associated with major strain  
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acceleration criterion on limit strain prediction were analyzed to optimize the use of 

major strain acceleration method.  

 The DIC based strain mapping served a visual method to locate the strain 

localization region in stretch bending around the bend line. The maximum major 

strain in stretch bending occurred on the edge of the specimen.   

 The fidelity of DIC based major strain was strongly dependent on the DIC 

processing parameters namely, facet step and size corresponding with the grain 

size of the material and speckle size of the random pattern used. Smaller facet size 

was capable of capturing strain local variations and thereby produced larger strain 

values. 

 Post processing factors such as type of fit to the major strain history data, size of 

time scale window for data selection had an influence on peak major strain 

acceleration and thus on limit strains. The major strain curve fit yields consistent 

strain acceleration results for time scale windows chosen closer to the strain 

localization stage of the deformation.  

 DIC based study utilizing major strain acceleration criterion predicted an average 

limit strain of 0.20 for stretch bending AA2024-O material with 0.15 uniaxial 

tensile ductility. This result was comparable with other studies that measured 

maximum major strain in stretch bending of sheets. The method was also sensitive 

to predict improved limit strain of 0.24 for Alclad 2024 tri-layer specimen with  
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80μm thin layer of AA1100, compared to limit strain of 0.20 for monolithic 

AA2024 specimen.  

 

7.5. Recommendations  

Based upon the findings and conclusions of this research the following recommendations 

can be made for future work.  

 The analytical model for predicting bending characteristics reported in this work 

is confined to Ludwik hardening law and its modified version to represent 

Bauschinger effect. Developing a model to accommodate other material 

constitutive laws for a better fit to the material hardening behavior is the next step 

in the modeling work. This could be further extended to developing a model that 

is adaptable to any hardening law within its framework. 

 The analytical model is still limited to bi-layer and tri-layer materials. Further 

modifications are required to improve the scope of the model to multi-layer 

materials. 

 Experimental study to precisely measure the shift on unstretched fiber for 

laminate sheets during bending could be carried through finer speckle pattern and 

also through in-situ bending under microscope. 
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 Limit strain prediction could be further studied using different microstructure to 

continuum scale ratios. Materials with large grain sizes could yield different strain 

values in DIC strain measurements. Selection of suitable speckle pattern, DIC 

parameters, camera optics and their effect on the fidelity of the results is an area of 

study. 

 The effect of punch radius on the stretch bendability was not covered in this work. 

Different punch radii produce different strain gradients and its effect on limit 

strain could be investigated. 

 In the present limit strain study on ASBT test, the camera used for strain 

measurement was stationary and could lose focus for cases involving large strain 

out of plane stretch bending. Movable camera system as utilized in the pure 

bending test could be arranged for constant focus to overcome such limitations.  

 Strain measurement through optical methods at macroscopic scale could be 

verified under the microscope through in-situ stretch bending. The present method 

could only observe failure shown at the surface. In-situ method could offer details 

of the location of crack initiation, especially in the case of laminate system where 

failure could also be from the matrix or interface.  

 The limit strain study based on strain acceleration applied to stretch bending of 

laminate system could be further extended to other in-plane deformation processes 

to observe the strain acceleration behavior on strain data obtained from strain 

localization regions in those processes. The effect of clad layer on the forming 

limits could be assessed in such cases. The same test could be simulated in FE 
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model and studied for limit strain. Modeling the tri-layer laminate system in FE 

software considering interface effect is a separate study that could be performed. 

Forming limit diagram developed through strain acceleration for monolithic and 

laminate material systems could be compared with those obtained from other FLD 

development methods.  

 The limit strain prediction work through strain acceleration could be automated 

using suitable software for rapid results. In such case, the software should carry 

out strain data extraction from Aramis DIC output files, followed by choosing the 

strain with the highest slope from strain localization region, curve fitting the major 

strain with different equations and taking second derivative to the fit equations for 

different time scale window sizes.  
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Appendices  

 

Appendix A:  Summary of Stress Equations and Λ Parameter for Bi-layer and 

Tri-layer Laminate Sheet Material  

 

The summary of tangential, radial stresses and ʌ parameter of equality condition for bi-

layer (C-T) , (C-C) and tri-layer laminate from the analytical model is presented in 

sections A1, A2 and A3 as follows.  

 

A1. Summary of Stress Equations and Λ parameter for Bi-layer C-T Laminate 

Table 14. Summary of stress equations for bi-layer C-T laminate 
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A2. Summary of Stress Equations and Λ parameter for Bi-layer C-C Laminate 

Table 15. Summary of stress equations for bi-layer C-C laminate 
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A3. Summary of Stress Equations and Λ parameter for Tri-layer Laminate 

Table 16. Summary of stress equations for tri-layer laminate 

Radial stress Tangential stress 
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Appendix B:  Matlab Code For The Bi-layer Bending Model (C-T) 

 

B1. Model Code for Stress Calculation 

clear all; 
clc; 

%COMMENTS: Matlab code for obtaining radial and tangential stress ans 

strains in bi-layer C-T bending model based on Tan et al. 1995 model. 

Ganesh Govindasamy, July 2010. Matlab R2008a. This code is based on 

advanced theory of bending. 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%Initial thickness fraction 
global q1 
global rho 
%Clad to Matrix thickness ratio 
q1 = 0.1; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
%Initializing the relative curvature and relative thickness 
rho=1; 
k=0.00; 
% 
N=1; 
count=1; 
countr=1; 
eta(1:30)=1.0; 
% count2 =1; 
fid = fopen('stress100.txt','wt'); 
for k=0.04:0.04:1.2 
    [x,y]=ode45('eq22',[k-(0.04-0.0000001),k], eta(count)); 
    N=y(length(x)); 
    eta(count)=N; 
    t=N*to; 
    Rm=t/k; 
    Ru=N*Rm; 
    Ri=(1-k/2)*Rm; 
    R=Ri; 
    Ry=(1+k/2)*Rm; 
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    Rb=Ry-(q1*N*to); 
    q1=(Ry-Rb)./(N*to); 
    while ((SIV(Ri,Ru,R)- SIII(Ry,Ru,Rb,R))>0); 
        R=R+0.001; 
    end 
    Rn=R-0.001; 
    rho=Rn/Ru; 
    kappa(count)=k; 
    relative_curavture(count) = rho; 
    R_start=Ri; 
    R_fin=Ry; 
    no_of_points=200; 
    rad_stress(1:no_of_points)=0.; 
    tan_stress(1:no_of_points)=0.; 
    gamma_stress_ratio(1:no_of_points)=0.; 
    C_sigbarI(1:no_of_points)=0.; 
    C_sigbarII(1:no_of_points)=0.; 
    C_sigbarIII(1:no_of_points)=0.; 
    C_sigbarIV(1:no_of_points)=0.; 
    R_over_Ru(1:no_of_points)=1.; 
    Ru_over_R(1:no_of_points)=1.; 
    strain(1:no_of_points)=1.; 
    R_inc=(R_fin - R_start)/no_of_points; 
    Rprime=R_start;  
    for Rprime=R_start:R_inc:R_fin 
        %Zone 4 
        if ((Rprime>=Ri) & (Rprime<=Rn)) 
            R_over_Ru(countr)=Rprime/Ru; 
            Ru_over_R(countr)=Ru/Rprime; 
            rad_stress(countr)=SIV(Ri, Ru, Rprime); 
            strain(countr)=(2/(sqrt(3)))*(log(Ru_over_R(countr))); 
            C_sigbarIV(countr)=-

(2/(sqrt(3)))*(sigma_01+(K1*(strain(countr))^n1)); 
            tan_stress(countr)=C_sigbarIV(countr) + rad_stress(countr);            

gamma_stress_ratio(countr)=rad_stress(countr)/tan_stress(countr); 
        end; 
%         %Zone 3 
        if ((Rprime>=Rn) & (Rprime<=Ru)) 
            R_over_Ru(countr)=Rprime/Ru; 
            Ru_over_R(countr)=Ru/Rprime; 
            rad_stress(countr)=SIII(Ry,Ru,Rb,Rprime); 
            strain(countr)=(2/(sqrt(3)))*(log(Ru_over_R(countr))); 
            C_sigbarIII(countr)=(2/(sqrt(3)))*(sigma_01-

(K1*(strain(countr))^n1)); 
            tan_stress(countr)=C_sigbarIII(countr) + rad_stress(countr);            

gamma_stress_ratio(countr)=rad_stress(countr)/tan_stress(countr); 
        end; 
%         %Zone 2 
        if ((Rprime>=Ru) & (Rprime<=Rb)) 
            R_over_Ru(countr)=Rprime/Ru; 
            Ru_over_R(countr)=Ru/Rprime; 
            rad_stress(countr)=SII(Ry,Ru,Rb,Rprime); 
            strain(countr)=(2/(sqrt(3)))*(log(R_over_Ru(countr))); 
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C_sigbarII(countr)=(2/(sqrt(3)))*(sigma_01+(K1*(strain(countr))^n1)); 
            tan_stress(countr)=C_sigbarII(countr) + rad_stress(countr);            

gamma_stress_ratio(countr)=rad_stress(countr)/tan_stress(countr); 
        end; 
%         %Zone 1 
        if ((Rprime>=Rb) & (Rprime<=Ry)) 
            R_over_Ru(countr)=Rprime/Ru; 
            Ru_over_R(countr)=Ru/Rprime; 
            rad_stress(countr)=SI(Ry,Ru,Rprime); 
            strain(countr)=(2/(sqrt(3)))*(log(R_over_Ru(countr)));            

C_sigbarI(countr)=(2/(sqrt(3)))*(sigma_02+(K2*(strain(countr))^n2)); 
            tan_stress(countr)=C_sigbarI(countr) + rad_stress(countr);            

gamma_stress_ratio(countr)=rad_stress(countr)/tan_stress(countr); 
       elseif ((Rprime>Ry)) 
            R_over_Ru(countr)=NaN; 
            rad_stress(countr)=NaN; 
            strain(countr)=NaN; 
            C_sigbarI(countr)=NaN; 
            C_sigbarII(countr)=NaN; 
            C_sigbarIII(countr)=NaN; 
            C_sigbarIV(countr)=NaN; 
            tan_stress(countr)=NaN; 
            gamma_stress_ratio(countr)=NaN;           
        end;                  
         fprintf(fid,'%12.8f %12.8f 

%12.8f\n',R_over_Ru(countr),tan_stress(countr),rad_stress(countr)); 

            
    end           
    end 
fclose(fid); 

 

B2. Radial Stress - I  

% Subroutine file for Radial stress I 

function sigmaI=SI(Ry,Ru,R) 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
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% 
sigmaI=(-k3*(log(Ry/R))-k4*((log(Ry/Ru))^(n2+1)-(log(R/Ru))^(n2+1))); 

 

B3. Radial Stress – II 

 

% Subroutine file for Radial stress II 

function sigmaII=SII(Ry,Ru,Rb,R) 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
% 
sigmaII=(-k1*(log(Rb/R))-k2*((log(Rb/Ru))^(n1+1)-(log(R/Ru))^(n1+1))-

k3*(log(Ry/Rb))-k4*((log(Ry/Ru))^(n2+1)-(log(Rb/Ru))^(n2+1))); 

 

B4. Radial Stress – III 

% Subroutine file for Radial stress III 

function sigmaIII=SIII(Ry,Ru,Rb,R) 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
% 
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sigmaIII=(-k1*(log(Rb/R))-k2*((log(Rb/Ru))^(n1+1)-(log(Ru/R))^(n1+1))-

k3*(log(Ry/Rb))-k4*((log(Ry/Ru))^(n2+1)-(log(Rb/Ru))^(n2+1))); 

 

B5. Radial Stress – IV 

% Subroutine file for Radial stress IV 

function sigmaIV=SIV(Ri,Ru,R) 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
% 
sigmaIV=(k1*(log(Ri/R))-k2*((log(Ru/Ri))^(n1+1)-(log(Ru/R))^(n1+1))); 

 

B6. Relative Thickness 

%COMMENTS: Matlab code for obtaining relative thickness in bi-layer C-T 

model based on Tan et al. 1995 model. Ganesh Govindasamy, July 2010.  
clear all; 
clc; 
%Initialising material properties 
to=4; 
% Properties of SS400 
n1=0.83; 
K1=1132; 
sigma_01=438; 
% Properties of AA1050 
n2=0.53; 
K2=58; 
sigma_02=90; 
%Initial thickness fraction 
global q1 
global rho 
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%Clad to Matrix thickness ratio 
q1 = 0.25; 
%For Luwik hardening law 
k1=sigma_01*(2/sqrt(3)); 
k2=K1*((2/(sqrt(3)))^(n1+1))/(n1+1); 
k3=sigma_02*(2/sqrt(3)); 
k4=K2*((2/(sqrt(3)))^(n2+1))/(n2+1); 
%Initializing the relative curvature and relative thickness 
rho=1; 
k=0.00; 
%Initializing the relative curvature and relative thickness 
k=0.00; 
N=1; 
rho=1; 
% 
count=1; 
countr=1; 
eta(1:50)=1.0; 
fid = fopen('ctc101.txt','wt'); 
for k=0.04:0.04:2 
    [x,y]=ode45('eq22',[k-(0.04-0.0000001),k], eta(count)); 
    N=y(length(x)); 
    eta(count)=N; 
    t=N*to; 
    Rm=t/k; 
    Ru=N*Rm; 
    Ri=(1-k/2)*Rm; 
    R=Ri; 
    Ry=(1+k/2)*Rm; 
    Rb=Ry-(q1*N*to); 
    q1=(Ry-Rb)./(N*to); 
    while ((SIV(Ri,Ru,R)- SIII(Ry,Ru,Rb,R))>0); 
        R=R+0.001; 
    end 
    Rn=R-0.001; 
    rho=Rn/Ru; 
    kappa(count)=k; 
    relative_curavture(count) = rho; 

  
    fprintf(fid,'%12.8f %12.8f %12.8f %12.8f %12.8f %12.8f 

%12.8f\n',k,N,rho,Ru,Rn,Ry,Ri); 
end 
fclose(fid); 
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Appendix C:  Matlab Code for Strain Data Extraction from Multiple 

Text (.txt) Files From Aramis Strain Measurement 

 

% Matlab code for obtaining strain data from multiple text from Aramis 

DIC output. Ganesh Govindasamy, July 2012. Matlab R2008a. 

%NOTE: This matlab file should be placed in the same folder as the text 
%files. Rename the files using BULK RENAME UTILITY software in the 

format 
%Text001, Text002...(Clue: Use Pad = 3 in numbering) 
myFolder = 'C:\<Enter folder path here>’ 
filePattern = fullfile(myFolder, '*.txt'); 
txtFiles = dir(filePattern); 
j=1; 
for k = 1:length(txtFiles) 
  baseFileName = txtFiles(k).name; 
  fullFileName = fullfile(myFolder, baseFileName); 
  fprintf(1, 'Now reading %s\n', fullFileName); 
  fid = fopen(baseFileName, 'rt'); 
  textData = 

textscan(fid,'%f%f%f',100,'headerlines',6,'delimiter','space'); 
  finaldata = cell2mat(textData); 
  column3=finaldata(:,[3]); 
  column3=column3'; 
  xlswrite('data.xlsx',column3,1, sprintf('A%d',j)); 
  fclose(fid); 
j=j+1; 
    end 
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Appendix D:  Convergence Check for Bi-layer and Tri-layer Analytical 

Bending Models 

 

To check the fidelity of the analytical model for bilayer and tri-layer laminates, 

convergence check was carried out by assigning SS400 matrix material properties to the 

bi-layer laminate layers. Similarly AA2024 material properties were applied to tri-layer 

laminate. The convergence plots for the stresses and relative thickness for Bi-layer C-T 

and C-C cases are shown in Figure 96 (a-c) and Figure 97 (a-c), respectively. The 

convergence plots for the stresses and relative thickness for tri-layer are shown in Figure 

98 (a-c), respectively. The tangential stress shows very close convergence with the 

monolithic AA2024 stress profile. A 7.5% deviation in the peak compression radial stress 

value is observed between the monolithic and laminate for an inner radius of curvature 

(ri) of 15 mm.  Similarly, minor differences are seen in the relative thickness. The 

differences are mainly due to the minor variations in the decimal values obtained from the 

model computation at different stages. The model computation is primarily based on 

solving the volume constancy equation represented in terms of relative thickness, relative 

curvature and relative curvature of neutral fiber. Solution from the ordinary differential 

equation (ODE) yields the above three parameters that are subsequently used to derive the 

essential radii values. The radii values are utilized to obtain stress values. A three stage 

processing of data could most likely result in minor differences in computed stress and 

thickness values. 
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(c) 

Figure 96. Convergence check plots for (a) tangential stress, (b) radial stress, (c) relative 

thickness for bi-layer C-T (AA1050/SS400) laminate and monolithic (SS400) sheets at 

ri=25 mm. 
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(c) 

Figure 97. Convergence check plots for (a) tangential stress, (b) radial stress, (c) relative 

thickness for bi-layer C-C (SS400/AA1050) laminate and monolithic (SS400) sheets at 

ri=25 mm. 

 

0.98

0.984

0.988

0.992

0.996

1

1.004

0 0.05 0.1 0.15 0.2

R
e
la

ti
v
e

 t
h

ic
k
n
e

s
s
, 

η
 

1/ri, mm-1 

Monolithic - SS400

Bi-layer - Convergence



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

239 

 

 
(a) 

 

(b) 

-400

-300

-200

-100

0

100

200

300

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

T
a

n
g
e

n
ti
a

l 
s
tr

e
s
s
 (

M
P

a
) 

Thickness, mm 

Monolithic (AA2024)

Tri-layer-convergence check
(q1=q2=0)

-30

-25

-20

-15

-10

-5

0

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

R
a
d

ia
l 
s
tr

e
s
s
 (

M
P

a
) 

Thickness, mm 

Monolithic (AA2024)

Tri-layer-convergence
check(q1=q2=0.15)

7.5 % 



Ph.D. Thesis – Ganesh N. Govindasamy; McMaster University – Mechanical Engineering 

 

240 

 

 
(c) 

Figure 98. Convergence check plots for (a) tangential stress, (b) radial stress, (c) relative 

thickness for tri-layer (AA1100/AA2024/AA1100) laminate and monolithic (AA2024) 

sheets at ri = 15 mm. 
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Appendix E:  Error Analysis on the Analytical Model for Pure Bending 

Characteristics 

 

Error analysis was conducted on analytical pure bending model to check the effect of 

tensile data curve fit parameters on the bending characteristics. The tensile data curve fit 

parameters for Ludwik hardening law for AA2024 specimen is shown in Table 10. The 

curve fit was based on 95% confidence limits. The tensile plot of AA2024 with Ludwik 

parameters and error bars are shown in Figure 99(a). The effect of upper and lower bound 

values of the confidence limits on the bending characteristics are shown in Figure 99(b-d) 

with error bars on the plots. It was observed that the 5% variation on the hardening 

parameters showed a maximum error of ±1.84 MPa on the tangential stress, ±0.12 MPa 

on the radial stress and ±0.00018 on the relative thickness plots, respectively.  
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(d) 

Figure 99. Error analysis on bending characteristics based on Ludwik hardening 

properties with 95% confidence limits, (a) tensile plot for Ludwik hardening parameters, 

(b) tangential stress, (c) radial stress and (d) relative thickness plots.  
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Appendix F:  Mesh Dependency Study on FE-MK Bending Model 

 

To study the effect of mesh dependency on the results, three different mesh sizes and 

element numbers across the specimen thickness were applied on SS400 monolithic 

specimen. The mesh element sizes (see Figure 100(a)) chosen are as follows, (i) uniform 

coarse mesh of 0.4   0.2 (all dimensions in mm) and 20 elements through the thickness, 

(ii) uniform fine mesh of 0.1   0.1 and 40 elements through the thickness and (iii) biased 

mesh of bias ratio 15 with 20 elements and largest element dimension of 1   0.2 at the 

end and smallest element dimension of 0.08   0.2 at mid-section through the thickness. 

The tangential stress, tangential strain and relative thickness taken at mid-section of width 

for different mesh sizes were compared for convergence (see Figure 100(b-d)). As 

suggested by the simulation results and for computational efficiency, the third type of 

mesh with bias ratio 15 was used in all simulations.   
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(d) 

Figure 100. FE model specimen section for different mesh sizes (i) uniform coarse mesh 

(0.4   0.2 (dimensions in mm)), (ii) uniform fine mesh (0.1   0.1) and (iii) biased mesh 

(bias ratio 15); comparison of through thickness (b) tangential stress, (c) tangential  strain 

and (d) relative thickness for various mesh sizes with analytical model on SS400 

monolithic sheet. 

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

T
a

n
g

e
n
ti
a

l 
s
tr

a
in

 

Thickness, mm 

Analytical (SS400)

Coarse mesh

Fine mesh

Biased mesh (bias ratio 15)

SS400 

Ri=25 mm 

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

R
e

la
ti
v
e

 t
h

ic
k
n

e
s
s
 (

t/
t o

) 

1/ri, mm 

Analytical (SS400)

Coarse mesh

Fine mesh

Biased mesh (bias ratio 15)


