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LAY ABSTRACT 
 

This thesis examined physiological and health-related adaptations to 

interval training, which involves brief bouts of intense exercise interspersed with 

recovery periods. One protocol involved alternating 60-second hard and easy 

cycling efforts for 20 minutes; the other involved three, 20-second ‘all-out’ sprints 

interspersed with 2 minutes of recovery. Both protocols improved indices of 

cardiometabolic health in previously inactive adults who trained three times per 

week for 6 weeks, even though the amount of exercise performed was lower than 

typically recommended in public health guidelines. When the latter protocol was 

directly compared against traditional endurance training, the improvement in 

cardiometabolic health after 12 weeks was the same, despite a five-fold difference 

in the total amount of exercise performed. Our findings highlight the effectiveness 

of short bursts of high-intensity exercise for improving health. These results may 

appeal to individuals who cite “lack of time” as a barrier to exercise. 



Ph.D. Thesis – J. B. Gillen; McMaster University – Kinesiology 

	   iv	  

ABSTRACT 
 

This thesis sought to advance our understanding of the physiological and 

health-related adaptations to low-volume interval training. Three separate studies 

were conducted in previously sedentary adults who trained three times per week. 

High-intensity interval training (HIIT) involved ten, 60-second cycling efforts at 

an intensity that elicited ~90% of maximal heart rate, interspersed with 60 

seconds of recovery, whereas sprint interval training (SIT) involved three, 20-

second ‘all-out’ cycling efforts interspersed with 2 minutes of recovery. Both 

protocols involved a brief warm-up and cool-down, resulting in 25- and 10-

minute sessions for HIIT and SIT, respectively. Peak oxygen uptake (VO2peak), 

skeletal muscle mitochondrial content as reflected by the maximal activity and 

protein content of mitochondrial enzymes, and glycemic control based on oral 

glucose tolerance tests (OGTTs), intravenous glucose tolerance tests (IVGTTs) or 

continuous glucose monitoring (CGM), were determined before and after training. 

Study 1 found that 6 weeks of HIIT in the fed or fasted state increased VO2peak 

and mitochondrial content in women, but insulin sensitivity based on OGTTs was 

unchanged. Study 2 showed that 6 weeks of SIT increased VO2peak and 

mitochondrial content in men and women, whereas mean 24-hour glucose based 

on CGM was reduced in men only. Study 3 directly compared 12 weeks of SIT to 

traditional moderate-intensity continuous training (MICT) in men. The two 

protocols elicited similar improvements in VO2peak, mitochondrial content and 

insulin sensitivity based on IVGTTs, despite SIT involving a five-fold lower 
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exercise volume and time commitment. This work advances our understanding of 

the potency of brief, intense exercise training to induce physiological remodeling 

and improve cardiometabolic health. It also highlights potential sex-specific 

adaptations to interval training that warrant clarification. Further investigation 

into the mechanisms of physiological remodeling to HIIT and SIT is needed, as 

are large-scale randomized clinical trials that compare these protocols to MICT. 
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CHAPTER 1: 

INTRODUCTION 
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1.1. Introduction  

Renewed interest in the topic of physiological and health-related 

adaptations to low-volume interval training has sparked a plethora of research 

over the past decade. Interval training refers to the concept of alternating periods 

of relatively intense exercise with periods of rest or low-intensity exercise for 

recovery. Low-volume interval training refers to training sessions that are 

relatively brief, consisting of ≤ 10 minutes of intense exercise within a ~25-

minute time commitment including warm-up, cool-down and recovery periods 

between intervals. In an effort to standardize terminology, a recent classification 

scheme proposed that the term ‘high-intensity interval training’ (HIIT) be used to 

describe protocols involving target intensities between 80 and 100 % of maximal 

heart rate (i.e., ‘near-maximal’), and ‘sprint interval training’ (SIT) be used to 

describe protocols involving ‘all-out’ efforts, in which target intensities 

correspond to workloads greater than what is required to elicit 100 % of maximal 

oxygen uptake (i.e., ‘supramaximal’) (117). Using these definitions, an example 

of a low-volume SIT protocol is repeated Wingate tests, which typically involve 

four to six, 30-second ‘all-out’ cycle sprints, interspersed with 4 minutes of 

recovery. An example of low-volume HIIT is ten, 60-second cycling efforts at 90 

% maximal heart rate, interspersed with 60 seconds of recovery.  This intermittent 

exercise pattern is different than moderate-intensity continuous training (MICT) 

generally reflected in public health guidelines (Figure 1). 
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Figure 1. Example of SIT (4 x 30 second ‘all-out’ efforts; black bars), HIIT (10 x 
60 second efforts at ~90 % HRmax; grey bars) and MICT (50 min at 70 % 
HRmax; hatched box). Taken with permission from Gibala et al. (2014) Sports 
Medicine. 44(2): 127-37. 

 

At least over the short term (i.e. up to six weeks), low-volume interval 

training elicits physiological remodelling similar to MICT, despite a reduced total 

exercise volume and time commitment (35). For example, as little as six sessions 

of low-volume interval training over 2 weeks increased muscle oxidative capacity 

to the same extent as an endurance training protocol that required a three-fold 

greater time commitment and nine-fold higher training volume (15, 34). Several 

weeks of interval training also elicits favourable changes in markers of health 

status, including cardiorespiratory fitness (14) and glycemic control in both 
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healthy individuals (5, 51, 87) and those with type 2 diabetes (65). These findings 

are significant from a public health perspective, considering a “lack of time” 

remains a commonly cited barrier to regular exercise participation (17, 96, 113). 

These findings also challenge the notion of training specificity, and suggest that – 

at least over the short term – brief bursts of intense exercise (i.e., low-volume 

HIIT and SIT), induce similar adaptations as those elicited by prolonged, 

moderate-intensity muscular contractions.  

The present thesis sought to advance our understanding of the 

physiological and health-related adaptations to low-volume interval training by 

addressing three major questions: 1) does nutritional manipulation augment the 

adaptive response to low-volume HIIT, 2) what is the minimal dose of SIT 

required to improve cardiometabolic health, and 3) how do SIT-induced 

improvements in cardiometabolic health compare to those elicited by traditional 

MICT over the long term (i.e., 12 wk)? Primary emphasis was placed on skeletal 

muscle mitochondrial content and markers of cardiometabolic health including 

cardiorespiratory fitness, insulin sensitivity and body composition. All studies 

involved 6- or 12-week exercise training interventions in previously sedentary 

adults.  

 

1.2. Adaptations to low-volume interval training in humans 

1.2.1. Skeletal muscle 
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 One of the most well characterized adaptations to low-volume interval 

training is increased skeletal muscle mitochondrial content. As little as six 

sessions of SIT or HIIT over 2 weeks has been demonstrated to increase the 

maximal activity and/or protein content of mitochondrial enzymes including 

citrate synthase (CS) and cytochrome c oxidase (COX) (13, 15, 34, 51, 56, 67, 

115). More recent evidence has revealed training-induced increases in 

mitochondrial respiratory capacity in permeabilized fibers (56, 115) and elevated 

in vivo oxidative capacity using phosphorus magnetic resonance spectroscopy 

(61). In addition to increased mitochondrial capacity, low-volume SIT and HIIT 

protocols lasting up to 6 weeks induce a number of other adaptations typically 

associated with MICT, including: increased resting muscle glycogen content (15, 

67), a lower rate of glycogen utilization and lactate production during submaximal 

exercise (15), increased glucose transport capacity (12, 51, 65, 67), enhanced 

capacity for whole-body (14) and skeletal muscle lipid oxidation (14, 95), 

improved peripheral vascular structure and function (22, 84) and increased 

skeletal muscle microvascular content and enzyme activity (21, 22).  

 The molecular mechanisms underlying skeletal muscle remodeling 

following low-volume interval training appear to be mediated, at least in part, 

through similar molecular signaling pathways proposed to regulate the adaptive 

response to MICT (66). For example, acute activation of signaling pathways 

involved in mitochondrial biogenesis have been reported following a single 

session of SIT or HIIT, including phosphorylation of 5’AMP (adenosine-
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monophosphate)-activated protein kinase (AMPK) (36, 66), p38 mitogen-

activated protein kinase (p38 MAPK) (36, 66) and p53 (6, 28). Peroxisome-

proliferator activated receptor γ coactivator (PGC)-1α, which is regarded as the 

‘master regulator’ of skeletal muscle mitochondrial biogenesis (125), is up-

regulated following acute low-volume SIT and HIIT when measured 3 hours post 

exercise (28, 36, 66). Consistent with the response to MICT (124), PGC-1α 

acutely translocates to the nucleus (66), which coincides with increased mRNA 

expression of several mitochondrial genes (28, 66). These transient and repeated 

pulses of gene expression in response to successive exercise bouts precede 

changes in skeletal muscle protein content and enzymatic activity (74) and have 

been proposed to regulate mitochondrial adaptations to exercise training (29).  

 

1.2.2. Cardiorespiratory fitness 

Cardiorespiratory fitness, as objectively measured through a peak oxygen 

uptake (VO2peak) test, is considered to be a stronger predictor of risk for adverse 

health outcomes than traditional risk factors such as hypertension, smoking, 

obesity and hyperlipidemia (58). Low-volume SIT (4, 44, 118) or HIIT (31, 56), 

involving as few as six sessions over 2 weeks, has been shown to rapidly increase 

VO2peak, although this is not a universal finding (15) and seems to depend in part 

on the initial fitness or activity level of the subjects. A recent systematic review 

and meta-analysis of 16 studies concluded that the aggregate improvement in 

VO2max after SIT in young healthy individuals was 3.6 ml/kg/min (8 %), which 
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was no different than that elicited by MICT (38). These findings are consistent 

with a review by Sloth et al. (104) who analyzed 19 studies and reported VO2max 

increases in the range of 4-13 % after 2-8 weeks of SIT in healthy sedentary or 

recreationally active individuals. This is important from a clinical perspective, as 

improvements of this magnitude (~3.5 ml/kg/min or 1 MET) have been shown to 

translate into a 15 and 19 % reduced risk of all-cause and cardiovascular disease 

mortality, respectively (63).  

It has been suggested that SIT-induced improvements in VO2peak may be 

mediated by peripheral factors (i.e., enhanced oxygen extraction), at least over the 

short-term (104). Although improvements in VO2peak following MICT are 

traditionally believed to be centrally-mediated (7), several studies have failed to 

observe an increase in cardiac output following short-term SIT or HIIT (56, 70). 

In contrast, Esfandiari et al. (31) recently reported that Doppler-derived measures 

of end-diastolic volume, stroke volume, and cardiac output, as well as blood 

volume and VO2max, were increased to a similar extent after a 2 weeks of HIIT 

or MICT. Continued investigation is needed to decipher the mechanisms 

mediating the rapid improvement in VO2peak following low-volume interval 

training. 

 

1.2.3. Glycemic control 

Several studies have reported improvements in glycemic control following 

short-term, low-volume interval training, in both healthy and diseased populations. 



Ph.D. Thesis – J. B. Gillen; McMaster University – Kinesiology 

	   8	  

As little as 2-6 weeks of low-volume SIT has been shown to increase insulin 

sensitivity based on oral-glucose tolerance tests (OGTTs) in young healthy 

individuals (5, 22, 91, 95) and overweight/obese men (21, 118). Perhaps the most 

convincing evidence comes from Richards et al. (87) who reported increased 

insulin sensitivity 72 hours following a 2-week SIT intervention using the 

hyperinsulinemic-euglycemic clamp in recreationally active adults. Low-volume 

HIIT interventions lasting 2 weeks have also been shown to improve glycemic 

control in sedentary adults based on fasting-derived indices (51), and in patients 

with type 2 diabetes using continuous glucose monitoring (65). All of these 

studies have been relatively short-term interventions, with few direct comparisons 

to high-volume MICT protocols (21, 22, 91, 95).  

While a coordinated response from multiple tissues is likely involved, 

exercise-induced adaptations within skeletal muscle are likely central to the 

improvement in glycemic control following low-volume SIT and HIIT. Skeletal 

muscle is the primary disposal site for ingested glucose (24) and is recognized to 

be a key contributor to the improvement in insulin sensitivity following MICT 

(49). The high degree of muscle fiber-recruitment (28) and glycogen utilization 

(19, 97) during acute SIT and HIIT may contribute to the training-induced 

improvements in insulin sensitivity (49). As little as 2 weeks of training increases 

whole-muscle GLUT4 protein content (12, 51, 65, 67), which is believed to play a 

role in exercise training-induced improvements in glycemic control (42, 49). In 

rodents, the training-induced increase in total GLUT4 protein content is 
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proportional to the increase in sarcolemmal GLUT4 translocation in response to a 

given insulin concentration (86), supporting the notion that elevated GLUT4 after 

training may help to improve glycemic control.  

It is also possible that increased skeletal muscle mitochondrial content 

plays a role in mediating the improvement in insulin sensitivity following low-

volume interval training. Individuals with obesity, insulin resistance and type 2 

diabetes have reduced markers of skeletal muscle mitochondrial content compared 

to lean, healthy controls (46, 88, 89, 99, 100). There is also evidence of impaired 

in vivo mitochondrial function in individuals with insulin resistance (75, 76) and 

type 2 diabetes (93), supporting the theory that reduced mitochondrial content or 

oxidative capacity of skeletal muscle contributes to the development of insulin 

resistance and type 2 diabetes (68, 72, 77). Reduced mitochondrial content or 

function can result in defects in lipid oxidation (50, 55) and accumulation of 

deleterious lipid intermediates (e.g., fatty acyl CoA, diacylglycerol and 

ceramides) that can impair insulin signaling and GLUT4 translocation to the cell 

surface (68, 72, 114). If this theory holds true, increased mitochondrial content 

following low-volume interval training could improve insulin sensitivity by 

enhancing the capacity to oxidize lipid substrates. However, the hypothesis that 

reduced skeletal muscle oxidative capacity causes insulin resistance has been 

questioned (48). It is also possible that the increased skeletal muscle capillary 

density observed following low-volume SIT (21, 22) contributes to improvements 

in glucose transport and insulin sensitivity (1, 21). 
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1.2.4. Body composition 

Limited evidence highlights the potential for low-volume interval training 

to induce favorable changes in body composition. Short-term SIT and HIIT 

interventions lasting 2 weeks are not associated with changes in body composition, 

however a 6-week running SIT intervention was shown to reduce fat mass in men 

(70). Trapp et al. (111) also reported that a cycling-based SIT protocol involving 

60 repetitions of 8-second sprints, interspersed with 12 seconds of recovery, 

performed three times per week for 15 weeks, was more effective than a MICT 

protocol involving 40 minutes of cycling at 60 % of VO2peak for decreasing 

whole body and abdominal fat mass in women. It is currently unknown if changes 

in body composition occur earlier than 15 weeks in women however, or if they 

can be elicited by less demanding HIIT protocols. Various factors have been 

suggested to mediate the observed changes in body composition after low-volume 

interval training (11), with likely candidates being increased post-exercise oxygen 

consumption (45, 94, 101) or changes in appetite (98, 119).  

 

1.3. Potential for nutrition to augment the adaptive response to interval 

training 

 Nutrient availability is a potent modulator of the adaptive response to 

endurance exercise training (43). Arguably one of the most effective nutritional 

interventions purported to augment select markers of the training response is 
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carbohydrate restriction. Originally proposed by Hansen et al. (40), it was 

suggested that repeated exercise sessions commenced in a low glycogen state 

would enhance physiological remodeling due to a greater relative stress placed 

upon the muscle. Indeed, using a unique design – involving once daily versus 

twice every other day training – several authors have reported superior training 

adaptations when half of the weekly training sessions are commenced with low 

endogenous carbohydrate (40, 54, 73, 127). Specifically, greater increases in 

resting muscle glycogen content (40, 127), maximal activities of mitochondrial 

enzymes including CS and β-hydroxy acyl CoA dehydrogenase (β-HAD) (40, 54, 

127), and fat oxidation during submaximal exercise (54, 127) have been conferred 

using this “train low” strategy.  

The superior training response is believed to be mediated, at least in part, 

by the enhanced activation of upstream signaling pathways believed to regulate 

mitochondrial biogenesis in response to exercise training. Indeed, a number of 

studies have reported an inverse relationship between skeletal muscle 

carbohydrate availability and the activation and/or nuclear translocation of 

AMPKα2 (79, 106, 122, 126) and p38 MAPK (16, 19), which coincide with 

greater PGC-1α mRNA expression (83) and nuclear translocation (79) 3 hours 

post exercise. Other pathways recently implicated in mitochondrial biogenesis, 

including p53 (6) and peroxisome proliferator activated receptor-δ (PPAR-δ) (79), 

have been shown to be up-regulated to a greater extent when exercise is 

performed with low muscle glycogen. Indeed muscle glycogen is implicated as an 
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important signaling molecule (78) that can regulate skeletal muscle adaptation to 

exercise training. 

 An alternative strategy to alter carbohydrate availability before exercise is 

manipulation of exogenous carbohydrate sources by commencing exercise in the 

overnight fasted state. Fasted exercise is well recognized to alter substrate use 

during exercise, namely by increasing energy provision from fat oxidation 

compared to fed-state exercise (23, 26, 52, 60). The elevated circulating plasma 

epinephrine and low insulin concentrations (8) associated with fasting conditions 

stimulate lipolysis of both intramuscular (9) and peripheral adipose tissue depots 

(52). In contrast, carbohydrate ingestion prior to or during exercise reduces fatty 

acid lipolysis (8, 52) and oxidation (23), and increases the contribution of plasma 

glucose to energy provision (3, 23, 60). These differences in skeletal muscle fuel 

availability, and subsequent oxidation, have been suggested to alter the adaptive 

response to training (81, 82). Van Proeyen et al. (82) reported that 6 weeks of 

high-volume MICT in the fasted state, involving 60-90 minutes of cycling at 70 % 

VO2peak four times per week, increased the maximal activities of CS and β-HAD 

to a greater extent than fed-state training in young healthy males. This is not a 

universal finding, however, as others have failed to detect differences in the extent 

of improvement in oxidative capacity following fasted versus fed-state training (2, 

81, 105). In addition to potential differences in skeletal muscle remodeling, fasted 

but not fed-state MICT has been shown to increase insulin sensitivity and prevent 

weight gain in the face of a hyper-caloric fat-rich diet in young healthy males (81). 
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The improvement in insulin sensitivity in the fasted group was associated with a 

larger increase in GLUT4 protein content compared to fed-state training (81). 

Based on these findings, it is possible that performing HIIT in the fasted state 

could augment improvements in skeletal muscle oxidative capacity and insulin 

sensitivity. It is also possible that fasted HIIT could be a highly effective means to 

induce fat loss in overweight/obese individuals. 

 

1.4. How low can you go? Reducing the time commitment of low-volume 

interval training 

The interval training stimulus is infinitely variable and can be manipulated 

in various ways. Traditional Wingate-based SIT involving ‘all-out’ efforts is the 

most common, and perhaps most potent, low-volume interval training protocol 

employed to date. Despite being a highly effective training stimulus, SIT is 

extremely demanding and may not be well tolerated or appealing for most 

individuals (41). The relative “time efficiency” of SIT has also been questioned 

(37, 41), as once a warm-up, cool-down and rest between intervals are included, 

each session requires ~25 minutes. When performed three times per week, the 

total time commitment is in line with the 75 minutes of vigorous-intensity 

physical activity that some public health agencies suggest as an alternative to 150 

minutes of moderate-intensity exercise (32, 123). A “lack of time” remains a 

commonly cited barrier to regular exercise participation (113), and therefore it is 

important to identify more time-efficient exercise alternatives. 
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A variety of approaches have been employed in an attempt to reduce the 

time commitment of low-volume interval training further, including reducing the 

duration (44, 69, 71, 102) or number (71) of high-intensity intervals, or the 

recovery period duration between sprints (20, 44, 69). A few of these protocols 

require ≤ 10 minutes per session, yet maintain the capacity to induce 

physiological remodeling and improve markers of cardiometabolic health. 

Reminiscent of the early work of Tabata and colleagues (108), Ma et al. (69) 

reported a 19 % increase in VO2peak in young men following a 4-week SIT 

intervention, involving eight, 20-second cycling efforts at 170 % peak power, 

interspersed with 10 seconds recovery, when performed three times per week. 

These findings and those of others (20, 44, 71, 110) confirm that brief bursts of 

intense exercise, requiring  ≤ 10 minutes a few times per week, improve 

cardiorespiratory fitness.  

With respect to glycemic control, Metcalfe et al. (71) reported that a SIT 

protocol involving two, 20 second ‘all-out’ sprints within a 10-minute period of 

otherwise low-intensity cycling, improved insulin sensitivity in men, but not 

women, when performed three times per week for 6 weeks. While the low sample 

size (n=8 for women) may have hindered the researchers ability to detect an 

improvement in the women, it is also possible that there are sex-based differences 

in the adaptive response to this type of training. It has been suggested that high 

rates of glycogen breakdown and subsequent resynthesis following acute intense 

exercise may explain the rapid improvement in insulin sensitivity following short-
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term SIT (5). However, women are reported to break down ~50 % less muscle 

glycogen in type I fibers during a single Wingate sprint compared to their male 

counterparts (30).  Further work is needed to clarify if women might in fact 

“respond less” to low-volume SIT. 

Improvements in mitochondrial capacity are well established in response 

to traditional Wingate-SIT, however there is limited and equivocal data regarding 

the effect of very low-volume interval training on skeletal muscle remodeling. A 

2-week SIT intervention, involving six sessions of 8-12, 10-second ‘all-out’ 

cycling sprints against 5.0 % body weight interspersed with 80 seconds of rest, 

did not improve oxidative capacity in overweight men as evidence by no change 

in the protein content of COXII and IV (102). Ma and colleagues (69) however, 

reported increased protein abundance of COXI and IV after 4 weeks of “Tabata-

style” SIT in young men. The maximal activity of CS was unchanged following 

training however, which is reportedly one of the best markers of mitochondrial 

content in human skeletal muscle (62). Further research is needed to clarify 

whether these brief SIT protocols induce similar physiological remodeling as 

those elicited by traditional SIT or MICT. 

 

1.5. SIT compared to MICT for improving cardiometabolic health: The 

relative importance of exercise intensity versus volume 

1.5.1. Intensity versus volume for improving cardiometabolic health  
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Exercise volume is a product of the duration, frequency and intensity of 

the activity performed (80), and is the major focus of public health 

recommendations (32, 112, 123). The positive relationship between exercise 

volume and cardiometabolic health is well established (80), with numerous dose 

response studies indicating that a greater exercise volume confers larger 

improvements in cardiometabolic health. For example, the DREW study (Dose 

Response to Exercise) compared three different volumes of exercise training on 

improvements in cardiorespiratory fitness in > 400 overweight or obese women 

(18). Women were assigned to one of three groups, required to expend either 4, 8 

or 12 kcal/kg per week at a fixed intensity of 50 % VO2peak. Following the 24-

week intervention, there was a clear dose response between exercise volume and 

the improvement in cardiorespiratory fitness (4 vs. 6 vs. 8 % increase) (18). 

Similar results were obtained from STRRIDE (Studies of a Targeted Risk 

Reduction Intervention through Defined Exercise), as authors concluded that 

exercise volume was the greatest determinant of the improvement in 

cardiorespiratory fitness (27), insulin sensitivity (53) and body composition (103) 

following a 32-week exercise intervention in overweight adults. In addition to 

these functional outcomes, there is strong epidemiological evidence supporting an 

inverse and curvilinear relationship between exercise dose and risk of all-cause 

mortality (80, 116). 

It has been more difficult however, to tease out the importance of exercise 

intensity, independent of its contribution to total volume of energy expended. 
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While some studies have reported added benefit of vigorous-intensity exercise, 

the greater volume of exercise associated wither higher-intensity activity 

confounds these results. Thus, it is seemingly impossible to determine the 

importance of exercise intensity irrespective of exercise volume, unless exercise 

duration and frequency are manipulated.  

Several authors have attempted to decipher the importance of exercise 

intensity on health indices when exercise is matched for total volume. In these 

scenarios, exercise duration is commonly reduced in the vigorous-intensity group 

in an attempt to maintain a given dose of energy expenditure. Results from studies 

of this nature suggest that when exercise is matched for total volume, higher-

intensity exercise training confers larger improvements in VO2peak (10, 39, 47, 

59, 90, 107, 109, 121) and glycemic control (10, 25, 59, 90, 109). For example, 

Gormley and colleagues (39) assessed changes in cardiorespiratory fitness in 

response to three training programs that differed in exercise intensity, but were 

matched for total volume. Young men performed either moderate- (50 % VO2 

reserve), vigorous- (75 % VO2 reserve) or near maximal- (95 % VO2 reserve) 

intensity exercise training for 6 weeks. Following training, there was a clear effect 

of exercise intensity on cardiorespiratory fitness, with the near maximal-intensity 

group conferring the largest improvement in VO2peak (21 vs. 14 vs. 10 %). This 

is in agreement with work from Ulrik Wisloff’s lab, suggesting that 12-16 weeks 

of high-volume HIIT is more effective than an equal volume of MICT for 

increasing VO2peak in patients with heart failure (121) and metabolic syndrome 
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(109). Recent work from Ross et al. (90) also indicates that for a fixed amount of 

exercise, increases in cardiorespiratory fitness and glycemic control are intensity 

dependent. In this randomized control trial, 300 obese adults trained for 24 weeks 

in one of three exercise groups: 1. low-amount, low-intensity (300 kcal at 50 % 

VO2peak); 2. high-amount, low-intensity (600 kcal at 50 % VO2peak); or 3. high-

amount, high-intensity (600 kcal at 75 % VO2peak). At the end of the intervention, 

improvements in VO2peak and glycemic control, assessed by the 2-hour blood 

glucose concentration following an OGTT, were greater in those performing a 

given volume of exercise at a high- compared to low-intensity. Exercise-induced 

reductions in waist circumference however, were independent of exercise 

intensity (90). The intensity-dependent increase in glycemic control is consistent 

with other reports suggesting that volume-matched exercise performed at a higher 

intensity confers larger improvements (10, 25, 59, 109). Recent epidemiological 

evidence also suggests that there is an inverse relationship between relative 

exercise intensity and risk of coronary heart disease (64, 92), metabolic syndrome 

(57) and all-cause mortality (92, 120). 

In general, findings highlighting the importance of exercise intensity 

oppose current physical activity guidelines which imply that, in comparison with 

moderate-intensity exercise, the benefits of engaging in vigorous-intensity 

exercise are attributed to the greater energy expenditure dose per unit of time and 

do not relate to intensity per se. However, given the evidence discussed above, it 

has been suggested that population-based physical activity interventions with a 
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focus on high-intensity exercise should be implemented at the national and 

international level (33, 85). 

1.5.2. Low-volume SIT versus high-volume MICT 

A number of studies have revealed positive improvements in 

cardiometabolic health following short-term SIT, yet relatively few provide direct 

comparison to adaptations elicited by MICT as often reflected in public health 

guidelines. Comparison between these diverse training strategies pose a unique 

question however, as exercise is not matched for total volume. Instead, studies of 

this nature raise the question: Can a small dose of high-intensity exercise improve 

cardiometabolic health similar to a large dose of moderate-intensity exercise? 

There are currently no studies comparing adaptations to very brief SIT 

protocols requiring ≤ 10 minutes per session to those elicited by traditional MICT. 

However, comparisons between Wingate-based SIT and MICT reveal similar 

increases in skeletal muscle oxidative capacity (14, 34), cardiorespiratory fitness 

(14) and insulin sensitivity derived from OGTTs (22, 91, 95), at least over the 

short-term (i.e. up to 6 weeks). It has been suggested that the relatively short-term 

studies may favour SIT with respect to the early time course of physiological 

adaptations, and potential divergent adaptations from MICT may be more 

apparent if the duration of training is extended (104). However, to date no studies 

have directly compared adaptations to SIT and MICT protocols lasting longer 

than 6 weeks.  
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1.6. Scope and nature of this work 

  The overall purpose of the present thesis is to advance our understanding 

of the physiological and health-related adaptations to low-volume interval training 

in sedentary adults. While a number of studies suggest that low-volume interval 

training induces physiological remodeling traditionally associated with endurance 

training, a number of fundamental avenues regarding the chronic response to SIT 

and HIIT remain to be explored.  

First, nutrition is recognized to be a potent modulator of adaptive response 

to endurance exercise training, but little is known regarding the potential for 

prolonged nutritional manipulation to augment HIIT-induced remodeling. The 

purpose of Study 1 was to evaluate the effect of HIIT in the fed versus fasted state 

on skeletal muscle oxidative capacity, body composition and insulin sensitivity 

based on OGTTs. In light of recent findings following high-volume endurance 

training (81, 82), we hypothesized that 6 weeks of HIIT performed in the fasted 

state would improve muscle mitochondrial capacity, body composition and 

insulin sensitivity to a greater extent than training in the fed state in sedentary 

women.  

Low-volume SIT is a highly effective training stimulus, but it is extremely 

demanding and may not be well tolerated or appealing for most individuals (41). 

The relative “time efficiency” of SIT has also been questioned (37, 41). Several 

recent reports suggest that it may be possible to confer similar benefits using brief 

SIT protocols requiring ≤ 10 minutes per session. The purpose of Study 2 was to 
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clarify and advance our understanding of the impact of very low-volume SIT on 

physiological and health related adaptations in sedentary men and women. 

Specifically, we examined the impact of a training protocol that involved only 1 

minute of intense intermittent exercise within a 10-minute time commitment, 

including warm-up and cool-down. Our primary hypothesis was that 6 weeks of 

training would increase skeletal muscle oxidative capacity, improve VO2peak, and 

reduce mean 24-hour blood glucose concentration measured using continuous 

glucose monitoring (CGM).  

Based on findings from Study 2, the purpose of Study 3 was to directly 

compare the effects of 12 weeks of SIT and MICT on indices of cardiometabolic 

health in sedentary men. No other studies have directly compared this type of very 

low-volume SIT to high-volume MICT reflected in public health guidelines, nor 

examined changes occurring beyond 6 weeks. We hypothesized that, compared to 

a non-training control group, SIT and MICT would similarly increase VO2peak, 

skeletal muscle mitochondrial capacity, and insulin sensitivity based on the 

intravenous glucose tolerance test (IVGTT) method.  
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CHAPTER 2 

Interval training in the fed or fasted state improves body composition and 
muscle oxidative capacity in overweight women 

Published in Obesity 21: 2249-55, 2013 
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Interval Training in the Fed or Fasted State Improves
Body Composition and Muscle Oxidative Capacity
in Overweight Women
Jenna B. Gillen1, Michael E. Percival1, Alison Ludzki1, Mark A. Tarnopolsky2 and Martin. J. Gibala1

Objective: To investigate the effects of low-volume high-intensity interval training (HIT) performed in the
fasted (FAST) versus fed (FED) state on body composition, muscle oxidative capacity, and glycemic
control in overweight/obese women.
Design and Methods: Sixteen women (27 6 8 years, BMI: 29 6 6 kg/m2, VO2peak: 28 6 3 ml/kg/min)
were assigned to either FAST or FED (n ¼ 8 each) and performed 18 sessions of HIT (10" 60-s cycling
efforts at #90% maximal heart rate, 60-s recovery) over 6 weeks.
Results: There was no significant difference between FAST and FED for any measured variable. Body
mass was unchanged following training; however, dual energy X-ray absorptiometry revealed lower
percent fat in abdominal and leg regions as well as the whole body level (main effects for time, P $
0.05). Fat-free mass increased in leg and gynoid regions (P $ 0.05). Resting muscle biopsies revealed a
training-induced increase in mitochondrial capacity as evidenced by increased maximal activities of
citrate synthase and b-hydroxyacyl-CoA dehydrogenase (P $ 0.05). There was no change in insulin
sensitivity, although change in insulin area under the curve was correlated with change in abdominal
percent fat (r ¼ 0.54, P $ 0.05).
Conclusion: Short-term low-volume HIT is a time-efficient strategy to improve body composition and
muscle oxidative capacity in overweight/obese women, but fed- versus fasted-state training does not
alter this response.

Obesity (2013) 21, 2249-2255. doi:10.1002/oby.20379

Introduction
Most adults fail to meet minimum physical activity guidelines, often
citing a ‘‘lack of time’’ as a key barrier to regular exercise participa-

tion (1). High-intensity interval training (HIT), characterized by

brief bursts of intense exercise separated by short periods of recov-

ery, is a time-efficient stimulus to induce physiological adaptations

normally associated with continuous moderate-intensity training (2).

For example, as little as six sessions of HIT over 2 weeks increased

muscle oxidative capacity to the same extent as a continuous moder-

ate-intensity training protocol that required a approximately three-

fold greater time commitment and approximately ninefold higher

training volume (3). Short-term low-volume HIT has also been

reported to improve various health-related indices in healthy adults

including insulin sensitivity (4,5) and cardiovascular function (6).

We recently showed that a practical, low-volume HIT model con-

sisting of 10" 60-s intervals at 90% of maximal heart rate (HRmax)

reduced 24-h blood glucose concentration immediately following an

acute session of HIT (7) and 72 h following a 2-week HIT interven-

tion (8) in patients with type 2 diabetes.

Despite the abundance of evidence linking low-volume HIT to

improved metabolic and cardiovascular fitness, the effect on body

composition is less known. Short-term HIT interventions lasting 2

weeks yield no change in body composition; however, Trapp and

colleagues reported that a 15-week maximal effort HIT intervention

was more effective than moderate-intensity continuous exercise at

reducing whole body fat mass and in particular, intra-abdominal adi-

posity in young healthy women (9). Six-week ‘‘all-out’’ sprint inter-

val running has also been shown to reduce fat mass in men (10). It

has yet to be determined in a large cohort of females if changes in

body composition occur earlier than 15 weeks or if they can be

induced by less intense HIT protocols that do not demand all-out

efforts.

Nutrient availability is a potent modulator of many acute physiologi-

cal responses to exercise. Recently, it was reported that 6-week of
endurance training in the fasted state potentiated adaptations in mus-
cle oxidative enzymes (11), glucose, and fatty acid transport capaci-

ties (11,12) and prevented weight gain in the face of a high calorie
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fat-rich diet in young healthy men (12). It was speculated that the
greater distortion of energy homeostasis associated with fasted-state

exercise triggered the augmented training response (11).

The purpose of the present study was to evaluate the effect of HIT
in the fed versus fasted state on body composition, skeletal muscle
metabolic capacity, and glycemic control. We hypothesized that HIT
performed in the fasted state would improve body composition,
muscle mitochondrial capacity, and insulin sensitivity to a greater
extent than training in the fed state in overweight/obese women.

Methods and Procedures
Subjects
Sixteen overweight/obese women took part in the study (Table 1).
Subjects were deemed sedentary based on their self-reported habit-
ual physical activity which consisted of !2 sessions/week of struc-
tured exercise lasting !30 min. The study protocol was approved by
the Hamilton Health Sciences/McMaster University Faculty of
Health Sciences Research Ethics Board. Following routine medical
screening to rule out any conditions that may have precluded partici-
pation, subjects provided written informed consent.

Experimental protocol
The experimental protocol consisted of three phases: (1) baseline
testing; (2) a 6-week HIT protocol under one of the two dietary
interventions; and (3) post-training measurements.

Baseline testing. Subjects performed an incremental maximal oxy-
gen uptake (VO2peak) test on an electronically braked cycle ergome-
ter (Lode Excalibur Sport V 2.0, Groningen, The Netherlands) using
procedures similarly to what we have previously described (13).
Briefly, following a 5-min warm-up at 50 W, resistance was
increased by 1 W every 2 s until volitional exhaustion or the point
at which pedal cadence fell below 50 rpm. A metabolic cart with an
online gas collection system (Moxus modular oxygen uptake system,
AEI Technologies, Pittsburgh, PA) acquired oxygen consumption
(VO2) and carbon dioxide production (VCO2) data. VO2peak was
defined as the highest average oxygen consumption over a 15-s pe-
riod. Peak power output (Wmax) and maximal heart rate (HRmax)
were also recorded. Pairs of subjects were matched for age, BMI,

VO2peak, and oral contraceptive use and then randomly assigned to
either the fed (FED) or fasted (FAST) state training condition.

Baseline testing included an oral glucose tolerance test (OGTT) fol-
lowing a "10 h overnight fast. An indwelling catheter was inserted
into a forearm vein, and a single fasting blood sample was obtained
before ingestion of a 75 g glucose solution. Thereafter, blood sam-
ples were collected into appropriately treated tubes at 10, 20, 30, 60,
90, and 120 min and immediately placed on ice. Plasma and serum
were separated by centrifugation (10 min at 4000 rpm) and stored at
#20$C for subsequent analysis. Following the OGTT, participants
recorded their dietary intake over a 3-day period before returning to
the lab to undergo a dual energy X-ray absorptiometry (DEXA) scan
(Lunar Prodigy Advance, Madison, WI) and resting skeletal muscle
biopsy procedure as we have previously described (3). Muscle sam-
ples were obtained from the vastus lateralis under local anesthesia
(1% Lidocaine) using a Bergstrom needle adapted with suction.
Samples were blotted to remove excess blood, sectioned into several
pieces, immediately snap frozen in liquid nitrogen, and stored at
#80$C for later analysis.

Training protocol. The HIT protocol involved 18 supervised ses-
sions over 6 weeks (Monday, Wednesday, Friday each week). Each
session consisted of 10% 60-s cycling bouts interspersed with 60-s
recovery as we have previously described (8,13). Training was per-
formed on an ergometer (LifeCycle C1, Life Fitness, Schiller Park,
IL) set in constant watt mode at a pedal cadence of 80-100 rpm.
Individual workloads were selected to elicit a heart rate of &90%
HRmax during the intervals. Heart rate and rating of perceived exer-
tion (RPE; using a 0-10 scale) were recorded at the end of each
interval. During the 60-s recovery, participants rested or pedaled
slowly at a resistance of 50 W. Training sessions included a 3-min
warm-up and a 2-min cool-down at 50 W, for a total time commit-
ment of 25 min. The weekly training protocol therefore involved a
30-min high-intensity exercise within a 75-min time commitment
including warm-up and cool-down. All training sessions were per-
formed in the morning from 0700 to 1000 h.

Nutritional intervention. Subjects ingested a standardized and
identical breakfast on training days. The FED group ingested the
meal &60 min prior to training, while the FAST group remained in
the overnight fasted state and ingested their meal &60 min following
exercise. The meal consisted of an energy bar, yogurt, and orange
juice, which provided 439 kcal derived from 74% carbohydrate,
14% fat, and 12% protein. Aside from the standardized breakfast
provided on training days, no other dietary controls were applied in
order to simulate normal free-living conditions. Subjects were
instructed to maintain their pre-training dietary habits throughout
this study, which was confirmed by 3-day diet records at weeks 3
and 6 of training (P > 0.05; Food Processor SQL).

Post-testing. An OGTT was performed 72 h after the last training
session, followed by a DEXA scan and resting muscle biopsy proce-
dure 24 h later. A VO2peak test was completed 6 days following
training cessation. All procedures and controls were identical to
those employed during baseline testing.

Blood analysis
Plasma glucose was analyzed using a kit assay (Pointe Scientific,
Canton, MI), and serum insulin was measured by ELISA (ALPCO

TABLE 1 Subject characteristics

Variable Fed Fasted All

Age, years 27 6 7 27 6 9 27 6 8
Height, cm 163 6 8 163 6 5 1.63 6 6
Weight, kg 77 6 13 78 6 13 78 6 12
BMI, kg/m2 29 6 3 29 6 4 29 6 3
VO2peak, l/min 2.2 6 0.4 2.1 6 0.4 2.2 6 0.4
VO2peak, ml/kg/min 29 6 6 27 6 6 28 6 6
Maximal workload, W/kg 2.6 6 0.03 2.7 6 0.04 2.7 6 0.04

Values are means 6 SD. n ¼ 8 for the fed- and fasted-state training group.
VO2peak, peak oxygen uptake. There was no difference between groups in any
variable.
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Immunoassays, Salem, NH). Glucose and insulin area under the
curve (AUC) values were calculated using the trapezoidal rule. Insu-
lin sensitivity was calculated using ISI(HOMA) (14), ISI(composite)
(14), and ISI(Cederholm) (15).

DEXA analysis
A whole body DEXA scan on a Lunar Prodigy Advance (Madison,
WI) was used to measure body composition by one trained techni-
cian. The abdominal region included the area distal to T12 and
superior to the iliac crest.

Muscle analysis
Enzyme activity. One piece of muscle (!25 mg) was homogenized
using a glass tissue grinder (Kimble/Kontes 885300-0002) in 20 vol-
umes of buffer containing 70 mM sucrose, 220 mM mannitol, 10
mM 4-(2-hydroxyethyl)-1 piperazineethanesulfonic acid (HEPES)
supplemented with protease inhibitors (Complete MiniV

R

, Roche
Applied Science, Laval, PQ, Canada) and used to determine the maxi-
mal activity of citrate synthase (CS) and b-hydroxyacyl-CoA dehy-
drogenase (b-HAD) as we have previously described (3,13,16). Pro-
tein concentration of homogenates was determined using a
commercial assay (BCA Protein Assay, Pierce, Rockford, IL), and
enzyme activity is expressed as mmol/kg protein/h wet weight.

Western blotting. A second piece of muscle (!30 mg) was homog-
enized in radioimmunoprecipitation assay (RIPA) buffer for Western
blot analyses using techniques described previously (3,13). Briefly,
protein concentration of homogenates was determined (BCA Protein
Assay), and equal amounts of protein (20 lg) were prepared in 4"
Laemmli’s buffer, heated to 95#C before being separated by 12.5%
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), and electrotransferred to nitrocellulose membranes. Ponceau
S staining was performed following transfer to visualize equal loading
and transfer. Following 1-h blocking in 5% fat-free milk Tris-buffered
saline 0.1% TweenVR 20 (TBS-T), membranes were incubated in the
primary antibody (glucose transporter 4 [GLUT4]; Millipore,
AB1345) overnight at 4#C or in 3% bovine serum albumin TBS-T
based on previously optimized conditions. After 3" 5-min washes in
TBS-T, membranes were incubated in the species-specific secondary
antibody diluted (1:10,000) in 3% fat-free milk TBS-T for 1 h at
room temperature (RT), washed in TBS-T for 3" 15 min, and visual-
ized by chemiluminescence (SuperSignal West Dura, Pierce) using a
FluorChemVR SP Imaging System (Alpha Innotech Corporation, San
Leandro, CA). ImageJ software (NIH) was used to quantify the opti-
cal density of protein bands.

Statistical analysis
Muscle, blood, and DEXA scans were analyzed by way of a two-
factor ANOVA, with one between-factor (group; FAST versus FED)
and one within-factor (time; pre-training versus post-training). Pear-
son’s product-moment correlation coefficient was used to determine
the relationship between variables. The level of significance for all
analyses was set at P $ 0.05, and all data are presented as means 6
SD. All data are based on n ¼ 8 for both groups; however owing to
difficulties during data collection, we only report an n ¼ 7 for FED
blood analyses and n ¼ 6 for FAST muscle data.

Results
Exercise responses and training data
All subjects completed the 18 exercise training sessions, except for
one who missed two sessions during week 3 owing to an illness

FIGURE 1 Characterization of the HIT training protocol. Training intensity expressed as percent of maximal
workload (bars), maximal heart rate (solid line), and RPE (dashed line) averaged across all 18 sessions for
all subjects. Values are means 6 SD (n ¼ 16). RPE, ratings of perceived exertion.
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unrelated to this study. Interval intensity averaged 85 6 5% of
Wmax, elicited 91 6 2% HRmax, and was associated with an RPE of
7.4 6 0.9, with no differences between groups (Figure 1). Training
increased VO2peak with no difference between groups (FED: 34.3 6
5.2 ml/kg/min vs. 28.2 6 6.1 ml/kg/min; FAST: 31.3 6 5.7 ml/kg/
min vs. 27.4 6 6.4 ml/kg/min; main effect for time, P < 0.001).
This was associated with a 12% and 10% increase in peak power
output for FED (228 6 23 W vs. 200 6 27 W) and FAST (240 6
37 W vs. 215 6 34 W), respectively (main effect for time, P <
0.001).

Body composition
Body mass was unchanged following training (FED: 77 6 13 kg vs.
77 6 12 kg; FAST: 79 6 15 kg vs. 79 6 15 kg, P > 0.05). DEXA
revealed lower percent fat after training in abdominal and leg
regions as well as at the whole body level (Table 2, P ! 0.05). HIT
also reduced abdominal (Table 2, P ! 0.05) and total body fat mass
(Figure 2, P ! 0.05). Lean mass increased in leg and gynoid regions
(Table 2, P ! 0.05) and tended to increase at the whole body level
(Figure 2, P ¼ 0.07). There was no effect of the dietary intervention
on changes in body composition (Table 2).

Skeletal muscle and blood metabolites
The maximal activity of CS increased by 23% and 22% following
HIT in FED and FAST, respectively (Figure 3, main effect for time,
P ! 0.01). b-HAD tended to increase more after FAST (#19%)
compared to FED (#10%), but the difference was not significant
(main effect for time, P ! 0.05). GLUT4 protein content increased
by 42% in FED and 61% in FAST following training (Figure 3,
main effect for time, P ! 0.05). Glucose AUC during the OGTT
was lower after training (Table 2, main effect for time, P ! 0.05).
However, there was no change in any marker of insulin sensitivity
owing to a slight but non-significant change in insulin concentration

(Table 2, P > 0.05). Interestingly, changes in insulin AUC were
positively correlated with changes in the abdominal percent fat (Fig-
ure 4, r ¼ 0.54, P ¼ 0.04).

Discussion
The major novel finding from the present study was that, regardless
of nutritional intake around the training sessions, 6-week low-vol-
ume HIT favorably altered body composition in overweight and
obese women despite no change in body mass. Following training,
percent fat was reduced in both the abdominal and leg regions as

TABLE 2 Health adaptations

Variable

Fed Fasted

Pre Post Pre Post

Body mass, kg 77 6 12 77 6 13 79 6 15 79 6 15
Total fat mass, kg* 30.3 6 7.9 29.7 6 7.9 32.3 6 10.3 31.7 6 10.2
Total lean mass, kg 43.5 6 8.2 44.1 6 7.8 42.8 6 5.5 43.3 6 5.5
Percent body fat* 40.9 6 5.8 40.1 6 5.4 42.3 6 8.1 41.6 6 7.8
Abdominal fat mass, kg* 2.65 6 0.5 2.63 6 0.5 2.76 6 0.9 2.66 6 0.9
Abdominal percent fat* 47.7 6 6.3 47.1 6 6.4 48.2 6 7.8 46.7 6 8.1
Leg lean mass, kg* 15.3 6 3.1 15.7 6 3.1 14.7 6 1.4 15.1 6 1.9
Gynoid lean mass, kg* 6.4 6 1.1 6.6 6 1.0 6.4 6 0.8 6.5 6 0.7
Fasting plasma glucose, mmol/l 4.5 6 0.6 4.4 6 0.5 5.0 6 0.8 4.7 6 0.8
Fasting plasma insulin, pmol 41 6 15 59 6 20 54 6 50 68 6 66
Glucose AUC, mmol/l 3 h* 752 6 143 720 6 120 748 6 63 691 6 136
Insulin AUC, lIU/ml 3 h 4325 6 2301 5020 6 1945 6292 6 4670 6224 6 4001
ISI(HOMA) 13.9 6 5.2 10.4 6 4.0 12.9 6 7.8 11.2 6 6.3
ISI(composite) 7.4 6 1.1 5.7 6 1.9 6.3 6 3.1 5.9 6 3.6
ISI(Cederholm) 70 6 18 69 6 18 71 6 20 78 6 30

Values are means 6 SD. *Significant difference of pre- versus post-training (main effect for condition such that pre-training = post-training, P ! 0.05).

FIGURE 2 Change in total body fat and lean mass analyzed from DEXA scans taken
before and 96 h following 6-week HIT in either the fed (FED; white bar) or fasted
(FAST; black bar) state. P < 0.05 unless otherwise stated.
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well as at the whole body level. To our knowledge, we are also the
first to report a gain in fat-free mass following low-volume HIT in
women. Considering the exercise protocol involved only 30-min
intense exercise per week, our data suggest that HIT represents a
time-efficient exercise alternative for improving body composition.
We cannot comment on how this compares to endurance training as
the major goal of the present investigation was to assess the poten-
tial for nutrition to potentiate the effects of HIT as opposed to mak-
ing a direct comparison versus endurance training per se. That said,
we did not detect any measurable differences between fed- and
fasted-state HIT on training outcomes. Power analyses performed on

variables which were the closest to being significantly different
between groups (VO2peak, b-HAD maximal activity, and abdominal
fat mass) revealed that a sample size of 21-63 per group would have
been necessary to detect a significant difference with 80% power.
The practical message from our findings would seem to be that the
beneficial effects of HIT can be realized regardless of when food is
ingested around the acute training sessions.

Effect of low-volume HIT on body composition
Public health guidelines recommend adults accumulate !150 min of
‘‘moderate-to-vigorous-intensity’’ aerobic physical activity each
week (17); however, most adults do not meet these guidelines.
While we recognize reasons for inactivity including numerous psy-
chological, social, and environmental factors, one commonly cited
barrier to regular exercise participation is lack of time (1). In the
present study, we show that 6-week low-volume HIT induced small
but significant improvements in body composition, including
reduced adiposity at the abdominal and whole body level and
increased leg lean mass. Few studies have investigated the effect of
HIT on fat mass; however, early reports suggest that 20-week sprint
training reduced subcutaneous fat, as measured by skin folds, to a
greater extent than moderate-intensity continuous exercise training
(18). More recently, Trapp and colleagues reported superior fat loss
in young women following 15-week HIT compared to moderate-in-
tensity continuous endurance training (9). The present data are con-
sistent with the findings from Trapp et al. and demonstrate that low-
volume HIT can induce fat loss in as early as 6 weeks and does not
need to be performed using ‘‘supramaximal’’ efforts in order to be
effective. Interestingly, Macpherson and colleagues did not detect a
change in fat mass following 6-week sprint interval running in
young healthy women (10). While these findings appear to conflict
with the present study, the lack of improvement could be attributed
to low sample size (n ¼ 4) and different HIT protocol and/or subject
characteristics.

The mechanisms mediating the reductions in fat mass following HIT
remain elusive. The large hormonal response associated with HIT
may be important, as catecholamines are known to drive lipolysis of

FIGURE 3 Skeletal muscle mitochondrial and glucose transport capacity measured
in biopsy samples obtained from the vastus lateralis before (PRE) and 96 h after
(POST) 6-week HIT performed in the fed (FED) or fasted state (FAST). Maximal ac-
tivity of CS (A) and b-HAD (B) and protein content of GLUT4 (C) Values are means
6 SD (n ¼ 6, FAST; n ¼ 8, FED). *P < 0.05, main effect for time.

FIGURE 4 Relation between the change in abdominal fat percentage and the
change in insulin AUC after 6-week HIT. P < 0.05.
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both subcutaneous and intramuscular fat stores. Post-exercise oxygen
consumption (EPOC) could also play a role (19), as Hazell and col-
leagues recently reported equivalent 24 h EPOC following an acute
bout of HIT (4! 30-s sprints with 4-min recovery) and a 30-min
bout of continuous moderate-intensity exercise (20). Lastly, appetite
suppression following high-intensity exercise could be involved, as
suggested by Boutcher (21) in a recent review on HIT-induced fat
loss.

To our knowledge, we are the first to report a gain in fat-free mass
following low-volume HIT in women. Heydari et al. found increased
fat-free mass in the leg (0.4 kg) and trunk (0.7 kg) regions following
12-week HIT in young men (22). In the present study, we found
similar gains in leg fat-free mass (0.3 kg) as Heydari et al. (0.4 kg)
despite our training program lasting only 6 weeks. A direct compari-
son between HIT and endurance training at this time point would be
interesting, as it is likely that the increase in fat-free mass is unique
to HIT. Future studies could investigate whether low-volume HIT
acutely stimulates muscle protein synthesis, which could be related
to the observed increase in leg fat-free mass.

Skeletal muscle adaptations after fed- versus
fasted-state HIT
Acute endurance exercise performed in the fasted state enhances the
energy contribution from fat oxidation compared to fed-state exer-
cise (23,24). This difference in skeletal muscle fuel utilization has
been proposed to alter the training response (11,12). Van Proeyen
et al. (11) recently reported that following 6-week high-volume en-
durance training in young healthy males, increases in the maximal
activity of CS and b-HAD as well as glucose and fatty acid trans-
port capacity were significantly greater in subjects who trained in
the fasted compared to the carbohydrate fed state. This, however, is
not a universal finding, as another work has shown no difference
between fed- and fasted-state endurance training on improvements
in muscle oxidative capacity (25). In the present study, we did not
detect a difference in training-induced gains in the maximal activity
of CS and b-HAD or GLUT4 protein content between FAST and
FED after 6-week HIT.

Although HIT induces similar metabolic adaptations as continuous
endurance training, there are fundamental differences in the dura-
tion, intensity, and thus the pattern of substrate utilization during
each exercise bout compared to END. In the work by Van Proeyen
et al. (11), subjects cycled for 60-90 min/session, a stimulus previ-
ously shown to deplete muscle glycogen by "70% (26). In this sce-
nario, exogenous glucose availability likely becomes an important
substrate, and the differential metabolic states of FAST and FED
could alter muscle remodeling. The short nature and higher intensity
of training employed in the present study however likely rely more
on intramuscular substrates (particularly glycogen), with relatively
little difference in glucose utilization. Mixed venous blood glucose
concentration measured before and immediately following the first
exercise bout in a subset of participants (n ¼ 9) revealed no change
in glucose availability during exercise in either FAST or FED (data
not shown). We did not measure acute muscle glycogen utilization;
however, previous work has reported that five 3-min bouts (27) or
five 4-min bouts (28) of interval exercise decrease muscle glycogen
content by only 30-35%. It is also possible that the potency of the
HIT stimulus may overshadow any effect of the nutritional interven-
tion, especially in untrained individuals like those in the present

investigation. We also recognize that our relatively small sample
size may have limited our ability to detect small differences that
potentially exist between FAST and FED for some outcome varia-
bles. Finally, it is possible that sex-based differences exist as Stan-
nard and colleagues found that fasted END stimulates greater
increases in CS activity in men than women (25).

Low-volume HIT and markers of insulin
sensitivity
We found no training-induced change in insulin sensitivity when
measured 3 days following the last training bout in either FED or
FAST. Previous work has reported improved insulin sensitivity in
young healthy males at this time point following HIT (4,5); however,
this is not universal (22,29,30). It has been proposed that the rapid
improvement in insulin sensitivity following HIT is attributed to mus-
cle glycogen breakdown and its subsequent resynthesis following each
exercise bout (4); however, women have been shown to utilize up to
50% less glycogen during a single Wingate sprint compared to men
(31). Indeed, a recent report suggested that improvements in insulin
sensitivity following a very low-volume HIT model were sex-specific,
with improvements observed in men but not the women when meas-
ured 3 days after training (29). Individual analyses revealed that some
of our subjects appeared to be ‘‘nonresponders,’’ and it has been dem-
onstrated that up to 25% of the population does not improve insulin
sensitivity following a period of exercise training with 15% actually
showing a decline (32). Despite the lack of change in insulin sensitiv-
ity, an interesting observation was that the change in insulin AUC was
positively correlated with the change in abdominal percent fat. While
this does not provide any insight into a cause and effect, abdominal
adiposity has been implicated as a major determinant of insulin resist-
ance in women, and it is in keeping with the findings of a significant
correlation between loss of abdominal fat and improvements in insulin
sensitivity following energy restriction (33).

Conclusion
In summary, we report that 6-week low-volume HIT, consisting of
only 30-min exercise within a 1-h time commitment per week,
improved body composition and skeletal muscle oxidative capacity in
overweight and obese women. These adaptations were realized
regardless of when food was ingested around the acute training ses-
sions and provide evidence to suggest that HIT is a time-efficient and
effective exercise strategy to improve fitness in overweight women.
The HIT protocol employed in our study is more practical than previ-
ous models such as Wingate-based HIT that demands maximal efforts
and may be especially attractive for those with limited time available.
It is currently unknown how such a small volume of total exercise can
induce these favorable adaptations in body composition. The lack of
control group is a limitation of the present investigation, and future
studies are needed to identify how these findings compare to 6-week
traditional endurance training. It is also possible that sex-based differ-
ences influence the adaptive response to HIT and future studies should
make comprehensive comparisons in this regard.O
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Abstract

We investigated whether a training protocol that involved 3 min of intense intermittent exercise per week — within a total
training time commitment of 30 min including warm up and cool down — could increase skeletal muscle oxidative capacity
and markers of health status. Overweight/obese but otherwise healthy men and women (n = 7 each; age = 2969 y; BMI
= 29.862.7 kg/m2) performed 18 training sessions over 6 wk on a cycle ergometer. Each session began with a 2 min warm-
up at 50 W, followed by 3620 s ‘‘all-out’’ sprints against 5.0% body mass (mean power output: ,450–500 W) interspersed
with 2 min of recovery at 50 W, followed by a 3 min cool-down at 50 W. Peak oxygen uptake increased by 12% after
training (32.664.5 vs. 29.164.2 ml/kg/min) and resting mean arterial pressure decreased by 7% (78610 vs. 83610 mmHg),
with no difference between groups (both p,0.01, main effects for time). Skeletal muscle biopsy samples obtained before
and 72 h after training revealed increased maximal activity of citrate synthase and protein content of cytochrome oxidase 4
(p,0.01, main effect), while the maximal activity of b-hydroxy acyl CoA dehydrogenase increased in men only (p,0.05).
Continuous glucose monitoring measured under standard dietary conditions before and 48–72 h following training
revealed lower 24 h average blood glucose concentration in men following training (5.460.6 vs. 5.960.5 mmol/L, p,0.05),
but not women (5.560.4 vs. 5.560.6 mmol/L). This was associated with a greater increase in GLUT4 protein content in men
compared to women (138% vs. 23%, p,0.05). Short-term interval training using a 10 min protocol that involved only 1 min
of hard exercise, 3x/wk, stimulated physiological changes linked to improved health in overweight adults. Despite the small
sample size, potential sex-specific adaptations were apparent that warrant further investigation.
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Introduction

Interval exercise is characterized by repeated bursts of relatively
intense effort, interspersed by periods of rest or lower-intensity
exercise for recovery. Short-term interval training protocols can
induce physiological remodeling similar to continuous moderate-
intensity training, despite reduced time commitment and a
relatively small total exercise volume [1]. Recent studies have
also shown improvements in various health indices including
markers of glycemic control in both healthy individuals [2–4] and
people with cardiometabolic disorders including type 2 diabetes
[5] after low-volume interval training. These studies have been
conducted on relatively small numbers of subjects and involved
relatively short training interventions. Nonetheless, the findings
have garnered significant interest from a public health perspective,
given one of the most commonly cited barriers to regular exercise
participation is ‘‘lack of time’’ [6].

A common interval training model is the Wingate Test, which
involves a 30 s ‘‘all out’’ burst of cycling on a specialized
ergometer. Typically, 4–6 such intervals are performed, separated
by ,4–5 min of recovery, with three training sessions performed
each week [1]. Despite the very small total amount of exercise, a
training session typically lasts ,25 min, given the brief warm-up
and cool down that are usually included in addition to the
recovery periods. The relative ‘‘time efficiency’’ of Wingate-based
training has therefore been questioned [7], considering the
,75 min time commitment per week, which falls within the
physical activity guidelines advocated by some public health
agencies. While 150 min of moderate-intensity exercise per week is
the general recommendation [8,9] some guidelines include 75 min
of vigorous physical activity as an alternative [9].

Several recent studies investigated physiological and health-
related adaptations to very low-volume interval training protocols
that involved a time commitment of #15 min per session [10–12].
For example, Metcalfe and colleagues [10] reported that a 10 min
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training protocol, involving low-intensity cycling except for 2,
20 sec all out sprints, improved cardiorespiratory fitness (VO2

peak) in previously sedentary adults when performed 3x/wk for
6 wk. The potential for very low-volume interval training
protocols to improve VO2 peak has also been described by Ma
et al. [11] and Hazell et al. [12]. Metcalfe et al. [10] also reported
that insulin sensitivity based on oral glucose tolerance tests was
improved after training in men but not women, highlighting the
potential for sex-based differences in the adaptive response. Only
one study has examined muscle adaptations to this type of
training, with Ma et al. [11] reporting increased protein content of
some mitochondrial enzymes after training, although the maximal
activity of citrate synthase was unchanged.

The purpose of the present study was to clarify and advance our
understanding of the impact of very low-volume interval training
on physiological and health related adaptations to very low-
volume SIT. Specifically, we examined the impact of a training
protocol that involved only 1 minute of intense intermittent
exercise within a 10 min time commitment, including warm-up
and cool-down. Sedentary but otherwise healthy subjects trained
3x/wk for 6 wk, and needle biopsies were obtained before and
after training to examine skeletal muscle remodeling. We also
assessed changes in several markers reflective of cardiometabolic
health. In light of the findings by Metcalfe et al. [11], a secondary
aim was to explore potential sex-based differences in the adaptive
response to this type of training. We hypothesized that the training
intervention would increase skeletal muscle oxidative capacity, as
reflected by the maximal activity and protein content of
mitochondrial enzymes, increase VO2 peak, and reduce resting
blood pressure and 24 h mean blood glucose concentration
measured using continuous glucose monitoring (CGM) under
conditions of controlled activity and feeding. We further hypoth-
esized that reductions in 24 h glucose would be superior in men.

Materials and Methods

The protocol for this study and supporting TREND checklist
are available as supporting information; see Checklist S1 and
Protocol S1.

Subjects
Fourteen overweight or obese men and women were recruited

by poster advertisement from the McMaster University commu-
nity and took part in the study (Table 1). Subjects were deemed
sedentary based on their self-reported habitual physical activity,
which consisted of #2 sessions/wk of structured exercise lasting #
30 min. Participants were allocated into the male or female
intervention group and matched for age, body mass index and
VO2 peak. The experimental protocol, which consisted of
familiarization and baseline testing, a 6 wk training intervention,
and post-training measurements, was approved by the Hamilton
Integrated Research Ethics Board and all visits took place at
McMaster University. All subjects provided written informed
consent prior to their participation.

Experimental Protocol
Familiarization and baseline testing. Participants report-

ed to the laboratory on four separate occasions over 14 d for
familiarization and baseline testing during May-July 2013. On the
first visit, subjects initially sat quietly for 10 min prior to 3 separate
measurements of blood pressure using an automatic blood
pressure cuff (Contec 08A, Qinhuangdao, China), with the lowest
of these values used for analysis as previously reported [13].
Subjects subsequently performed an incremental maximal oxygen

uptake (VO2 peak) test on an electronically braked cycle ergometer
(Lode Excalibur Sport V 2.0, Groningen, The Netherlands) as
previously described [14,15]. Briefly, following a 2 min warm-up
at 50 W, the resistance was increased by 1 W every 2 s until
volitional exhaustion or the point at which pedal cadence fell
below 50 rpm. A metabolic cart with an on-line gas collection
system (Moxus modular oxygen uptake system, AEI Technologies,
Pittsburgh, PA) acquired oxygen consumption (VO2) and carbon
dioxide production (VCO2) data. VO2 peak was defined as the
highest average oxygen consumption over a 30 s period.
Approximately 15 min following the VO2 peak test, participants
performed 1–2620 s all-out sprints on an electronically braked
cycle ergometer (Veletron, RacerMate, Seattle, WA, USA) to
become acquainted with the interval protocol.

Approximately 5 d after the familiarization session, participants
returned to the laboratory and were fitted with a continuous
glucose monitor (CGM; CGMS; iPro, Medtronic, Northridge,
CA) and chest-worn accelerometer (Actiheart; Camntech, Cam-
bridge, United Kingdom). Subjects were also given a glucose
meter (OneTouch UltraMini, Lifescan, Milpitas, CA) with
instructions on how to perform capillary blood sampling.
Participants received a standardized food parcel, which they were
instructed to consume at prescribed meal times over the
subsequent 24 h. The diet was individualized for each participant
and energy intake was estimated using the Mifflin-St Jeor equation
[16]. Mean total energy was 26236123 and 18866146 kcal for
men and women, respectively, derived from 5661% carbohy-
drate, 3061% fat and 1461% protein.

Starting at 600 h the day following CGM insertion, participants
began consuming the control diet under free-living conditions and
CGM data was collected for a 24 h period. Participants obtained
capillary blood glucose samples at four points over the 24 h period
when blood glucose was expected to be stable (i.e. upon
awakening, before lunch, before dinner and before bed) and were
automatically stored in the glucose meter provided. Average blood
glucose concentration, glucose area under the curve (AUC) and
the daily peak glucose concentration (Gmax) were calculated from
CGM data for a 24 h period from 600 to 559 h before and after
training. Physical activity was monitored continuously over this
24 h period using a chest-worn device (Actiheart) that simulta-
neously measured heart rate and activity with an internal
accelerometer that senses the frequency and intensity of torso
movements to calculate energy expenditure. Following CGM
removal at ,1200 h, glucose data were uploaded as previously
described [5].

Approximately 2 d later, participants reported to the lab
following a 10 h overnight fast. A single resting blood sample
was obtained by venipuncture from an antecubital vein. Plasma
and serum were separated by centrifugation (10 min at 4000 rpm)
and stored at 220uC for subsequent analysis. A resting skeletal
muscle biopsy was obtained using procedures we have previously
described [17]. Briefly, muscle samples were obtained from the
vastus lateralis under local anesthesia (1% lidocaine) using a
Bergstrom needle adapted with suction. Samples were sectioned
into several pieces, immediately snap frozen in liquid nitrogen and
stored at 280uC for later analysis.

Training protocol. At least 5 d following the muscle biopsy,
subjects initiated the interval training program, which consisted of
18 supervised sessions over 6 wk during June-August 2013.
Training was performed on Monday, Wednesday and Friday
each week. Each session consisted of 3620 s all-out cycling efforts
against a load corresponding to 0.05 kg/kg body mass, separated
by 2 min of low intensity cycling (50 W), on an electronically
braked ergometer (Veletron, RacerMate, Seattle, WA, USA). All
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training sessions included a 2 min warm-up and 3 min cool-down
at 50 W, for a total time commitment of 10 min. The weekly
training protocol therefore involved a total of 3 min of very intense
intermittent exercise within a time commitment of 30 min
including warm-up, cool-down and the recovery between efforts.
Peak and mean power output was recorded for each sprint and an
average determined for each session. Heart rate (HR) was
measured continuously on the first training session.

Post-testing. Resting blood pressure was measured 24 h after
the final training session, before subjects were fitted with the CGM
and Actiheart. CGM data was collected for a 24 h period starting
,48 h after the final exercise session and diet was controlled to be
the same as baseline. There was no difference in activity counts
between the baseline and post-testing CGM period (P.0.05).
Fasting blood and a resting muscle biopsy sample were obtained
72 h following the last training bout. Approximately 4 d following
the biopsy and 1 wk after the final training session, a maximal
exercise test was performed using the same procedures as at
baseline. All procedures and controls were identical to those
employed during baseline testing and took place during July-
September 2013. A flow chart of all participants involved in the
trial is depicted in Figure 1.

Blood Analysis
Plasma glucose was analyzed using a kit assay (Pointe Scientific,

Canton MI, USA) and serum insulin was measured by ELISA
according to manufacturer instructions (ALPCO Immunoassays,
Salem NH, USA). Insulin resistance was calculated using HOMA-
IR [18].

Muscle Analysis
Enzyme activity. One piece of muscle (,25 mg) was

homogenized in Lysing Matrix D tubes (MP Biomedicals, Solon,
OH, USA) using the FastPrep-24 Tissue and Cell Homogenizer
(MP Biomedicals, Solon, OH, USA) for 1065 s cycles at a speed
of 4 m/s with samples placed on ice for 5 min in between cycles.
Samples were homogenized in 20 volumes of buffer containing
70 mM sucrose, 220 mM mannitol, 10 mM HEPES supplement-
ed with protease inhibitors (Complete Mini, Roche Applied
Science, Laval, PQ, Canada) and used to determine the maximal
activity of citrate synthase and 3-b-hydroxyacyl CoA dehydroge-
nase (b-HAD) as we have previously described [14,19,20]. Protein
concentration of homogenates was determined using a commercial
assay (BCA Protein Assay, Pierce, Rockford, IL, USA) and
enzyme activity is expressed as mmol/kg protein/hr.

Western blotting. A second piece of muscle (,30 mg) was
homogenized in RIPA buffer using Lysing Matrix D tubes (MP
Biomedicals, Solon, OH, USA) with the FastPrep-24 Tissue and
Cell Homogenizer (MP Biomedicals, Solon, OH, USA). Samples
were processed for 4620 s cycles at 4.0 m/s, with samples placed
on ice for 5 min in between cycles, followed by 2620 s cycles at
4.0 m/s, with samples placed on ice for 2 min in between cycles.
Western blot analysis was conducted using techniques described
previously [14,19]. Briefly, protein concentration of homogenates
was determined (BCA Protein Assay) and equal amounts of
protein were prepared in 46Laemmli’s buffer and heated to 95uC
before being separated by 10% SDS-PAGE and electrotransferred
to nitrocellulose membranes. Ponceau S staining was performed
following transfer to visualize equal loading and transfer.
Following 1 h blocking in 5% fat-free milk Tris-buffered saline
0.1% Tween 20 (TBS-T), membranes were incubated in the
primary antibody (glucose transporter 4; Millipore, AB1345 or
COXIV; Mitosciences, MS408) overnight at 4uC in 3% fat-free
milk TBS-T based on previously optimized conditions. After
365 min washes in TBS-T, membranes were incubated in the
species-specific secondary antibody diluted (1:10,000) in 3% fat-
free milk TBS-T for 1 h at room temperature, washed in TBS-T
for 665 min, and visualized by chemiluminescence (SuperSignal
West Dura, Pierce) using a FluorChem SP Imaging System (Alpha
Innotech Corporation, San Leandro, CA, USA). ImageJ software
(NIH) was used to quantify the optical density of protein bands.
Protein content was expressed as a fold change relative to pre-
training for all subjects. a-tubulin (Cell Signaling Technology,
#2125), which did not change following training (p = 0.91), was
used as a loading control.

Statistical Analysis
All data were analyzed using a two-factor analysis of variance

(ANOVA), with the between factor group (men, women) and the
within factor time (pre-, post-training) using SPSS Statistics
software. Significant interactions and main effects were subse-
quently analyzed using a Tukey’s honestly significant difference
post hoc test. The level of significance for all analyses was set at
P,0.05 and all data are presented as means 6 S.D for n = 7 in
each group, except for the CGM data which represents n = 6 per
group.

Results

Descriptive characteristics of training
Adherence to the training sessions was 100%. Mean HR,

measured continuously during the first training session and

Table 1. Subject Characteristics.

VARIABLE MEN WOMEN

Age (y) 2969 30610

Height (cm) 17665 16268

Weight (kg) 9768 75612*

Body Mass Index (kg/m2) 3162 2962

VO2peak (L/min) 3.060.5 2.060.2*

VO2peak (ml/kg/min) 3164 2864

Maximal Workload (W) 262630 202623*

Values are means 6 S.D. N = 7 for men and women. VO2peak, maximal oxygen uptake.
*Significantly different from men (p#0.05).
doi:10.1371/journal.pone.0111489.t001
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averaged over the entire 10 min protocol including warm-up and
cool-down, was 8362% of HRmax. Relative PPO and MPO
measured on the first and last training session did not differ
between men and women and increased with training (Table 2,

main effect for time, p,0.01). The average HR response for all
subjects and average MPO for men and women during session 1 is
depicted in Figure 2.

Figure 1. Flow diagram of participants through all phases of the trial.
doi:10.1371/journal.pone.0111489.g001

Table 2. Markers of Health and Fitness.

MEN WOMEN

VARIABLE PRE POST PRE POST

Body Mass (kg) 77612 77613 79615 79615

FPG (mmol/L) 5.160.3 5.260.3 5.060.3 5.060.3

FPI (uIU/ml) 13.567.9 10.767.0* 9.664.0 7.163.0*

HOMA-IR 3.161.9 2.561.5* 2.160.9 1.560.6*

Gmax (mmol/L) 8.061.3 6.861.1* 7.360.6 7.660.9

Resting SBP (mmHg) 12468 11668* 109611 100611*

Resting DBP (mmHg) 71611 6765 6669 6069

Resting MAP (mmHg) 8868 8364* 80610 7469*

Relative PPO (W/kg FFM) 11.364.1 12.263.6* 10.060.6 11.861.1*

Relative MPO (W/kg FFM) 9.061.6 10.661.5* 9.060.5 12.060.1*

Values are means 6 S.D. N = 7 for men and women. *Significantly different than pre-training (p#0.05).
FPG, fasting plasma glucose; FPI, fasting plasma insulin; Gmax: daily peak glucose concentration.
doi:10.1371/journal.pone.0111489.t002
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Skeletal muscle adaptations to very low-volume SIT
The maximal activity of citrate synthase increased by ,40%

after training (Fig. 3A, main effect for time, p,0.001). COXIV

protein content also increased after training with no differences
between groups (Fig. 3B, main effect for time, p,0.01), however
b-HAD maximal activity only increased after training in the men
(Fig. 3C; interaction between training and sex, p,0.05). GLUT4
protein content increased in both men and women following
training (Fig. 4A, main effect for time, p,0.01), however men
increased to a greater extent compared to women (138% vs. 23%,
interaction between training and sex, p,0.05).

Indices of cardiometabolic health
Very low-volume interval training increased VO2 peak by 12%

in both men and women (Fig. 5, main effect for time, p,0.001),
which was associated with a 14% increase in maximal workload
(Table 1, main effect for time, p,0.001). Mean arterial pressure
(MAP) was reduced by 6% and 8% in men and women
respectively following training (Table 2, main effect for time, p,
0.01). Systolic blood pressure (SBP) was also reduced following
training (Table 2, main effect for time, P,0.01), while diastolic
blood pressure (DBP) trended towards being lower (Table 2,
p = 0.07). Insulin sensitivity measured by HOMA-IR was
improved after training (Table 2, main effect for time, p,0.05),
owing mainly to a decrease in fasting serum insulin (Table 2, main
effect for time, p#0.05). There was no change in fasting plasma
glucose in either group (Table 2, p.0.05). CGM revealed a lower
24 h average blood glucose concentration after training in men
(5.460.6 vs. 5.960.5 mmol/L, p,0.05) but not women (Fig. 4B,

Figure 3. Very low-volume SIT improves skeletal muscle mitochondrial capacity. Measured in muscle biopsy samples obtained from the
vastus lateralis before (PRE) and 72 h after (POST) 6-week SIT in men and women. Maximal activity of citrate synthase (A), protein content of COXIV (B)
and maximal activity of b-HAD (C). Values are means 6 SD (n = 7 per group). Representative Western blots for 2 men and 2 women are shown for
COXIV. a-tubulin was used a loading control and representative Western blots are shown. *P,0.05, pre- vs. post-training; +p,0.05, men vs. women at
same time point; line denotes a main effect.
doi:10.1371/journal.pone.0111489.g003

Figure 2. Characterization of the low-volume SIT protocol. Solid
line represents average heart rate (HR) response, expressed as a % of
maximum, for all subjects during the first training session (left side y-
axis). Bar graph represents relative mean power output (MPO) per
kilogram fat-free mass (FFM) for men (dark bar) and women (white bar)
during the first training session (right side y-axis).
doi:10.1371/journal.pone.0111489.g002
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5.560.6 vs. 5.560.4 mmol/L, p.0.05). Similarly, 24 h glucose
AUC was reduced in men only (Fig. 4C, interaction between
training and sex, p,0.05). Gmax was lower in men following
training, but not in women (Table 2, interaction between training
and sex, p,0.01)

Discussion

The main finding from the present study was that short-term
interval training, using a protocol that involved only 1 min of very
intense exercise within a total time commitment of 10 min, was a
potent stimulus to induce physiological adaptations that are linked
to improved health in overweight and obese adults. Our general

design, which involved 3 sessions per week for 6 wk, was similar to
recent studies by Metcalfe [10] and Ma [11], but clarified
outstanding questions regarding the potential for very low-volume
interval training to increase muscle oxidative capacity, resting
blood pressure and aspects of glycemic control. Despite the small
sample size, we also found evidence of potential sex-specific
adaptations to this type of training that warrant further
investigation.

Very low-volume interval training increases muscle
oxidative capacity

A recent systematic review and meta-analysis [21] proposed a
classification scheme for interval training in an effort to

Figure 4. Improved indices of blood glucose control in men following very low-volume SIT. GLUT4 protein content measured in muscle
biopsy samples obtained from the vastus lateralis before (PRE) and 72 h after (POST) 6 week SIT in men and women (A). Individual 24 h average
blood glucose concentration (B) and 24 h blood glucose area under the curve (AUC) measured before (PRE) and 48–72 h after (POST) 6 week SIT in
men and women using continuous glucose monitoring (CGM). Values are means 6 SD (n = 7 per group for muscle data, n = 6 per group for CGM
data). Representative Western blots for 2 men and 2 women are shown for GLUT4. *P,0.05, pre- vs. post-training; +p,0.05, men vs. women at same
time point.
doi:10.1371/journal.pone.0111489.g004
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standardize terminology employed in future studies. Using the
descriptors proposed by Weston and colleagues, we have opted to
classify the present protocol as ‘‘sprint interval training’’ (SIT)
given the ‘‘all-out’’ efforts, as opposed to ‘‘high-intensity interval
training’’ (HIIT), which the authors define as bouts performed at
relatively intense but nonetheless submaximal workloads corre-
sponding to 80–100% of maximal heart rate [21]. We report here
for the first time that very low-volume SIT can increase the
maximal activity of citrate synthase, which is reportedly one of the
best indicators of mitochondrial content in human skeletal muscle,
as it is highly correlated with gold-standard measures made by
electron microscopy [22]. While skeletal muscle adaptations to
SIT are well established, there are limited and equivocal data
regarding the effect of very low-volume SIT on mitochondrial
content. Skleryk et al. [23] reported that a protocol involving 8–
12610 s all-out cycle sprints against 5% body weight interspersed
with 80 s rest, performed six times over 2 wk, did not improve
mitochondrial capacity in overweight men as reflected by a lack of
change in the protein content of COXII and COXIV. In contrast,
Ma et al. [11] showed that a protocol consisting of 8, 20 s cycling
efforts at an intensity of 170% of VO2 peak and interspersed with
10 s of recovery, performed four times per week for 4 wk,
increased the protein content of COXI and COXIV, however, the
maximal activity of citrate synthase was unchanged. The results
from the present study confirm that 6 wk of very low-volume SIT,
involving a total of only 3 min of all out intermittent exercise
within a 30 min time commitment per week, was a sufficient
stimulus to elicit a robust increase in citrate synthase similar to
what has been reported after protocols involving a larger volume
of SIT or traditional moderate-intensity continuous training that
involve a much greater total volume of exercise and training time
commitment [24]. Clearly, there is some minimal total volume of
SIT necessary to acutely stimulate mitochondrial biogenesis,
which when performed repeatedly leads to measureable increases
in enzyme protein content or maximal activity. The various short-
term, very low-volume SIT protocols that have been employed to
date are likely on the lower end of this threshold, which may in
part explain the equivocal results to date. Additional studies, like
the elegant work by Perry et al. [25], which characterized the early
time course of adaptation to HIIT, will help to resolve this matter.

Effect of very low-volume interval training on markers of
cardiometabolic health

Seminal work by Tabata and colleagues over two decades ago
showed that 7–8 bouts of 20 s all out sprints, with 10 s rest in

between, improved VO2 peak in young men by 15%, when
performed four times per week for 6 wk [26]. The beneficial effect
of ‘‘Tabata style’’ training on VO2 peak, which is a popular
exercise strategy among many personal trainers, was recently
confirmed by Ma et al. [11] who reported a 19% increase in young
men after 4 wk. The present work, and recent studies by others
[10–12,27], confirm that very brief bouts of all-out exercise,
performed a few times per week, is a very time efficient strategy to
improve VO2 peak, which is a strong predictor of all-cause
morbidity and mortality [28]. A novel, important finding from the
present work was the significant reduction in MAP when
measured 24 h after the final training bout, which is of similar
magnitude to findings following traditional Wingate-based SIT in
overweight/obese men and women [13], as well as 16 wk of high
volume aerobic interval or continuous moderate intensity training
in individuals with metabolic syndrome [29]. Based on findings
from a recent systematic review and meta-analysis, the blood
pressure reduction in the present study is of similar magnitude to
those following intermittent isometric resistance training [30],
which is emerging as a very effective exercise strategy for lowering
resting blood pressure [30,31]. It is unclear if our findings
represent an acute effect of the last training bout, however if one
performs SIT every other day as in the present study, the
beneficial effect on blood pressure would be maintained.

Potential sex-specific adaptations to low-volume interval
training

SIT has been shown to improve insulin sensitivity, based on
hyperinsulinemic euglycemic clamps performed on sedentary and
recreationally active individuals [2] as well as oral glucose
tolerance tests (OGTTs) performed on young healthy [4] and
overweight/obese [13] men. Metcalfe et al. [10] recently reported
that a 10 min low-intensity cycling protocol that included 2620 s
all-out sprints, performed 18 times over 6 wk, improved insulin
sensitivity measured by OGTTs in men but not women [10].
Consistent with the observations of Metcalfe et al. [10], we found
using CGM that 24 h average blood glucose concentration,
glucose AUC and Gmax, measured under standard dietary
conditions from 48–72 h after the final training session, were
improved in men but not women. Interestingly, the training-
induced increase in total GLUT4 protein content was approxi-
mately 6-fold higher in men compared to women.

The lack of change in peripheral glucose control in women in
the present study is consistent with recent reports by others
[10,15], although this is not a universal finding [2]. It is possible
that our low sample size (n = 6 for CGM data), or the fact that the
women had higher 24 h blood glucose control at baseline,
influenced our findings and resulted in a type 2 statistical error.
Nonetheless, by way of a possible related mechanism, it has also
been speculated that the rapid improvement in insulin sensitivity
following SIT is attributed to high rates of glycogen breakdown
and subsequent re-synthesis following each exercise bout [10], and
women have been shown to break down 42% less muscle glycogen
in type I fibers during a single Wingate sprint [32]. Future studies
are needed to investigate if GLUT4 translocation following acute
SIT is blunted in women, and definitively determine in larger
cohorts of subjects if improvements in glucose control following
SIT are sex-specific. HOMA-IR was improved in both men and
women after training, owing to significant reductions in fasting
plasma insulin, and consistent with previous studies [3,33].

We also found sex-specific differences in a marker of lipid
oxidation capacity, based on changes in the maximal activity of b-
HAD which were detected in men but not women. A similar
period of Wingate-based SIT was reported to improve the

Figure 5. Very low-volume SIT increases VO2 peak. Measured
before (PRE) and 1 week following (POST) 6 wk SIT in men and women.
Values are means 6 SD (n = 7 per group). *P,0.05, pre- vs. post-
training; line denotes a main effect.
doi:10.1371/journal.pone.0111489.g005
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maximal activity of b-HAD in both men and women, but that
study did not involve a specific comparison between sexes [24].
Similar to the pre-training CGM data, it is possible that the higher
baseline value for b-HAD in women in the present study reduced
their potential to increase the capacity for lipid oxidation
compared to men. Other recent studies however, have also
highlighted sex-based differences in the skeletal muscle adaptive
response to SIT in active young men and women [34]. Scalzo et
al. [34] reported higher rates of muscle protein synthesis in men
compared to women following a 3 wk SIT intervention, based on
oral administration of deuterium oxide. Future research is needed,
using designs which control for menstrual cycle phase and initial
fitness level [35], to evaluate if sex-based differences exist in the
skeletal muscle adaptive response low-volume SIT.

Conclusions

In summary, we report that 3 min of all-out exercise performed
within a 30 min time commitment per week including warm-up
and cool-down, improved skeletal muscle oxidative capacity and
indices of cardiometabolic health including VO2 peak and blood
pressure, in overweight/obese adults. The protocol employed in
the present study involved a training time commitment that was
considerably lower than in previous Wingate-based SIT studies
(i.e., 10 versus ,25 min per session) and provides further evidence

of the potential for very brief, intense bursts of exercise to elicit
physiological adaptations that are associated with improved health
status in a time-efficient manner. Despite the small sample size,
potential sex-specific adaptations were apparent that warrant
further investigation.
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CHAPTER 4: 

Twelve weeks of sprint training improves cardiometabolic health similar to 
traditional endurance training despite a five-fold lower exercise volume 
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KEY POINTS SUMMARY 
 
 

• Sprint interval training (SIT) protocols involving ≤10 minutes per session 

improve indices of cardiometabolic health similar to moderate-intensity 

continuous training (MICT) protocols that involve larger exercise volumes 

and time commitments. 

• No studies have directly compared this type of very low-volume SIT to 

traditional high-volume MICT, nor examined changes occurring beyond 6 

weeks.  

• We investigated changes in cardiometabolic health indices after 12 weeks 

of thrice weekly SIT (involving three, 20-second ‘all-out’ cycling intervals 

within a 10 minute exercise session) or MICT (50 minutes of continuous 

cycling per session). 

• SIT and MICT elicited similar improvements in cardiorespiratory fitness, 

skeletal muscle oxidative capacity and insulin sensitivity based on 

intravenous glucose tolerance tests, whereas a control group showed no 

changes.  

• Twelve weeks of brief intense interval exercise improves indices of 

cardiometabolic health to the same extent as traditional endurance training, 

despite a five-fold difference in total exercise volume and time 

commitment. 
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ABSTRACT 
 

We investigated whether sprint interval training (SIT), involving 1 minute 

of intense exercise within a 10-minute time commitment per session, could 

improve indices of cardiometabolic health to the same extent as traditional 

moderate-intensity continuous training (MICT) involving 50 minutes of 

continuous exercise. Sedentary men (27±8 y; BMI = 26±6 kg/m2) performed three 

weekly sessions of SIT (n=9) or MICT (n=10) for 12 weeks or served as non-

training controls (n=6). SIT involved 3x20-second ‘all-out’ cycle sprints (~500 

W) interspersed with 2 minutes of cycling at 50 W, whereas MICT involved 45 

minutes of continuous cycling at ~70% maximal heart rate (~110 W). Both 

protocols involved a 2-minute warm-up and 3-minute cool-down at 50 W. Peak 

oxygen uptake increased after training by 19% in both groups (SIT: 32±7 to 38±8; 

MICT: 34±6 to 40±8 ml/kg/min; p<0.05). Skeletal muscle mitochondrial content 

also increased similarly after SIT and MICT, as reflected by the maximal activity 

of citrate synthase and protein content of electron transport chain subunits 

(p<0.05). Insulin sensitivity, determined by intravenous glucose tolerance tests 

performed before and 72 hours after training, also increased similarly after SIT 

(4.9±2.5 to 7.5±4.7) and MICT (5.0±3.3 to 6.7±5.0 x 10-4 min-1 [µU/mL]-1) and 

this was accompanied by similar increases in muscle GLUT4 protein content 

(p<0.05). There was no change in the control group for any variable (p>0.05). 

Twelve weeks of brief intense interval exercise improved indices of 
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cardiometabolic health to the same extent as traditional endurance training, 

despite a five-fold lower total exercise volume and time commitment.  
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Abbreviations: AUC, area under the curve; ΔAUCINS, insulin area under the curve 

above the fasting concentration; β-HAD, 3-β-hydroxyacyl CoA dehydrogenase; 

CGM, continuous glucose monitoring; COX, cytochrome c oxidase; CS, citrate 

synthase; CSI, insulin sensitivity index; CTL, non-training control; HR, heart rate; 

HRmax, maximal heart rate; IVGTT, intravenous glucose tolerance test; KG, 

glucose disappearance rate; MICT, moderate-intensity continuous training; MISI, 

Matsuda composite index; OGTT, oral glucose tolerance test; RPE, rating of 

perceived exertion; SI, minimal model insulin sensitivity index; SIT, sprint 

interval training; VO2peak, peak oxygen uptake; Wmax, maximal workload. 
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INTRODUCTION 

Regular endurance exercise training enhances cardiorespiratory fitness (4) 

induces skeletal muscle remodeling towards a more oxidative phenotype (22) and 

promotes favorable changes in cardiometabolic health indices including insulin 

sensitivity (21). These well established training responses provide support for 

current physical activity guidelines that generally recommend 150 minutes of 

moderate-intensity or 75 minutes of vigorous-intensity aerobic physical activity 

per week to achieve health benefits (15, 54, 62). Despite the association between 

low amounts of physical activity and increased risk of many chronic diseases, 

including cardiovascular disease and type 2 diabetes (58), most adults do not meet 

the minimum physical activity guidelines, as confirmed by studies that 

incorporated accelerometer data (11, 55). The reasons for not engaging in regular 

physical activity are numerous and complex, but “lack of time” remains one of the 

most commonly cited barriers (56). 

In contrast to traditional endurance training, sprint interval training (SIT) 

is characterized by brief intermittent bursts of very intense exercise, i.e., at an ‘all-

out’ pace or an intensity above that which elicits peak oxygen uptake (VO2peak), 

separated by short periods of rest or low-intensity exercise for recovery (59). At 

least over the short-term (i.e., up to 6 weeks), SIT has been shown to induce 

numerous physiological adaptations similar to endurance training, despite a lower 

total exercise volume and time commitment (17, 18). The most commonly studied 

SIT protocol involves repeated Wingate Tests; typically four to six, ‘all-out’ 30-
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second cycling efforts are performed each session, interspersed by 4-5 minutes of 

recovery. The few studies that have directly compared Wingate-based SIT versus 

moderate-intensity continuous training (MICT) have reported similar 

improvements in cardiorespiratory fitness (6), skeletal muscle oxidative capacity 

as reflected by the maximal activity or protein content of mitochondrial enzymes 

(6, 16) and indices of cardiovascular structure and function (10, 41). Other studies 

have reported improved insulin sensitivity after short-term SIT (2, 42), including 

studies that have incorporated brief running efforts at maximal or near-maximal 

effort (45). 

Given that Wingate-based SIT or similar run-based protocols involve ~20-

30 minutes per session, not including warm-up or cool-down, the purported “time 

efficiency” of this type of training has been questioned. Indeed, the weekly time 

commitment is comparable to the lower end of physical activity guidelines that 

call for at least 75 minutes of vigorous-intensity aerobic physical activity per 

week (15, 62). Intriguingly, several recent studies have shown that very brief SIT 

protocols elicit adaptations similar to longer SIT protocols and MICT. We found 

that a modified Wingate-based protocol involving three, 20-second ‘all-out’ 

sprints, within a training session that lasted 10 minutes including warm-up and 

cool-down, improved VO2peak in previously sedentary adults when performed 

three times per week for 6 weeks (19). Other adaptations included a reduction in 

resting blood pressure and lower 24-hour blood glucose concentration, as well as 

higher skeletal muscle mitochondrial and glucose transport capacities (19). These 
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data, which are supported by recent findings by others (32, 36, 53), highlight the 

potential for very brief SIT protocols involving ≤10 min of exercise per session to 

improve cardiometabolic health similar to traditional endurance training. However, 

no study has directly compared these diverse training strategies in a 

comprehensive manner, nor studied potential adaptations occurring beyond six 

weeks.  

The purpose of the present study was to compare the effects of 12 weeks 

of SIT or MICT on indices of cardiometabolic health, including cardiorespiratory 

fitness, skeletal muscle oxidative capacity and glycemic control. The two 

protocols differed markedly with respect to total exercise volume and time 

commitment: SIT involved 1 minute of intense intermittent exercise within a 

session that lasted 10 minutes, whereas MICT consisted of 50 minutes of 

moderate-intensity continuous exercise. Both groups performed three sessions per 

week, such that total exercise volume and time commitment was five-fold lower 

in SIT compared to MICT. We hypothesized that, compared to a non-training 

control group (CTL), SIT and MICT would similarly increase VO2peak, the 

maximal activity and protein content of mitochondrial enzymes, and insulin 

sensitivity based on the intravenous glucose tolerance test method. 

 

METHODS 

Subjects and Ethics Approval 
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A total of 27 sedentary but otherwise healthy men were recruited by poster 

advertisement to take part in the study. Participants were generally deemed 

inactive based on an International Physical Activity Questionnaire score of less 

than 600 MET-minutes per week. Participants were matched for age, body mass 

index and VO2peak, and assigned to SIT, MICT or CTL. One subject in each of 

the two training groups dropped out for reasons unrelated to the study, resulting in 

a total of n=9, 10 and 6 in the SIT, MICT and CTL groups, respectively (Table 1). 

The experimental protocol, which included baseline testing, a 12-week 

intervention, and post-testing, was approved by the Hamilton Integrated Research 

Ethics Board at McMaster University and conformed to the Declaration of 

Helsinki. All participants provided written informed consent prior to their 

participation.  

Experimental Protocol 

Baseline testing and exercise familiarization 

Following entry into the study, participants reported to the laboratory on four 

occasions over 2 weeks. On visit 1, participants performed an incremental 

VO2peak test on an electronically-braked cycle ergometer (Lode Excalibur Sport 

V 2.0, Groningen, The Netherlands), as described previously (19). Briefly, 

following a 1-minute warm-up at 50 W, the resistance was increased by 1 W 

every 2 seconds until exhaustion or when pedal cadence fell below 50 rpm. 

Oxygen consumption and carbon dioxide production data were acquired through a 

metabolic cart with an on-line gas collection system (Moxus modular oxygen 
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uptake system, AEI Technologies, Pittsburgh, PA), and VO2peak was defined as 

the highest average oxygen consumption over a 30-second period. Before 

departing from the laboratory, participants were provided with a standardized 

meal that they were instructed to consume the evening before visit two.  

Approximately 5 days later, participants reported to the laboratory following a 10-

hour overnight fast to undergo a body composition test and a 50-minute 

intravenous glucose tolerance test (IVGTT) recently validated by Tura et al. (57). 

Food intake was recorded for 24 hours prior to the IVGTT, and participants 

consumed a standardized meal the evening before the visit consisting of 561 ± 99 

kcal derived from 47 ± 2% carbohydrate, 31 ± 3% fat and 22 ± 4% protein. Upon 

arrival to the laboratory, fat and fat-free masses were determined through air-

displacement plethysmography (BodPod®, COSMED Inc., Concord, CA, USA). 

Subsequently, two indwelling catheters were inserted into forearm veins (one in 

each arm) by a trained nurse. A fasting blood sample (12 ml) was obtained from 

the “sampling arm”, and a bolus dose of glucose (0.5 g/kg up to a maximum of 35 

g) was manually delivered to the contralateral “infusion arm” at an even pace over 

3 minutes using two 60 ml syringes. A 38 ± 2 % glucose solution (Hospira 

LifeCare) was used in a total volume of 90 ml. Following infusion, the catheter 

was removed from the “infusion arm”, and blood samples (8 ml) were obtained 

from the “sampling arm” at 10, 20, 30, 40 and 50 minutes post-infusion. The 

catheter was immediately flushed with 5 ml of 0.9 % saline after each blood draw. 
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Plasma and serum were separated by centrifugation (10 minutes at 1300g) and 

stored at -80°C for subsequent analyses. 

Approximately 2 days later, a resting skeletal muscle biopsy was obtained using 

procedures described previously (51). Briefly, a single muscle sample (~100 mg) 

was obtained from the vastus lateralis under local anesthesia (1% lidocaine) using 

a Bergström needle adapted with suction. Samples were sectioned into several 

pieces, snap frozen in liquid nitrogen and stored at -80°C for later analysis. 

At least 5 days following the muscle biopsy, participants assigned to SIT or MICT 

returned to the laboratory for exercise familiarization. Participants in the SIT 

group performed one or two 20-second ‘all-out’ sprints on an electronically-

braked cycle ergometer (Veletron, RacerMate, Seattle, WA, USA) to become 

acquainted with the interval protocol. Participants in the MICT group were fitted 

with a heart rate (HR) monitor (Polar A3, Lake Success, NY, USA) and cycled on 

an ergometer (Kettler, Ergo Race I, Germany) for ~20 minutes to determine the 

workload that elicited 64-76 % of maximal heart rate (HRmax). The wattage was 

initially set to 30% of maximal workload (Wmax), and was subsequently adjusted 

by investigators in an effort to elicit the desired stimulus. The target HR for MICT 

was based on the classification for “moderate-intensity” put forth by the American 

College of Sports Medicine (15). 

12-week intervention 

Participants in SIT and MICT completed 12 weeks of supervised exercise training. 

A “lead-in” phase to training was provided, in which one session was completed 
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in week 1, and two sessions in week 2. Exercise was performed three times per 

week thereafter, with the exception of week 7 where two sessions were replaced 

with a “mid-training assessment” for VO2peak and arterial ultrasound imaging (a 

collaborative measure not reported in the present manuscript). Training was 

typically performed on Monday, Wednesday and Friday each week, and all 

participants completed ≥30 training sessions over 12 weeks. During training, a 

chest-worn monitor (Polar Team System) recorded HR every 5 seconds, from 

which the average HR during each exercise session was determined. The SIT 

protocol consisted of 3 x 20-second ‘all-out’ cycling efforts against 0.05 kg/kg 

body mass, separated by 2 minutes of low intensity cycling (50 W), on an 

electronically-braked ergometer (Veletron, RacerMate, Seattle, WA, USA). The 

MICT protocol consisted of 45 minutes of continuous cycling at ~70% HRmax on 

an ergometer set in constant-watt mode (Kettler, Ergo Race I, Germany). Both 

protocols involved a 2-minute warm-up and 3-minute cool-down at 50 W, 

resulting in 10- and 50-minute sessions, respectively, for SIT and MICT. To 

accommodate progression, training loads were adjusted throughout the 12 weeks 

to maintain the desired relative exercise intensity. Specifically, if the average HR 

elicited by SIT was <75% HRmax for three consecutive sessions, the resistance 

was increased by 0.005kg/kg body mass to a maximal resistance of 0.07kg/kg. 

Likewise, if the average HR elicited by MICT was <70% HRmax for three 

consecutive sessions, the resistance was increased by 5-10 W. Ratings of 

perceived exertion (RPE; Borg 6-20 scale) were also recorded at the end of each 
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sprint (SIT) or at 15, 30 and 45 minutes of exercise (MICT), on the 1st, 15th and 

30th sessions to ensure the appropriate stimulus was maintained throughout the 

intervention. Overall, the SIT and MICT training programs involved 30 and 150 

minutes per week, respectively, resulting in a 5-fold difference in weekly time 

commitments. Participants in CTL did not report to the laboratory during the 12 

weeks intervention, with the exception of week 7 for the mid-assessment. CTL 

participants were asked to maintain their current activity levels throughout the 12 

weeks. 

Post-testing 

Participants were asked to refrain from all physical activity during the post-testing 

period. 72 hours after the intervention, participants repeated the body composition 

test and IVGTT adhering to the baseline pre-visit nutritional controls. A resting 

muscle biopsy was obtained 96 hours following the last training bout. 

Approximately 4 days following the biopsy and 1 week after the final training 

session, a VO2peak test was performed. All procedures and controls were 

identical to those employed during baseline testing. 

Glucose and Insulin Analysis 

Plasma glucose was analyzed using a kit assay (Pointe Scientific, Canton MI, 

USA), and serum insulin was measured with ELISA, according to manufacturer 

instructions (ALPCO Immunoassays, Salem NH, USA). The insulin sensitivity 

index (CSI) was calculated as proposed by Tura et al. (57) using glucose and 

insulin data from the 50-minute IVGTT. CSI has been shown to be highly 
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correlated with the Minimal Model insulin sensitivity index (SI) obtained from a 

3-hour IVGTT, as well as the gold standard glucose infusion rate measured during 

a hyperinsulinemic-euglycemic clamp in individuals with both normal and 

impaired glucose tolerances (57). This method has also been used to assess insulin 

sensitivity in response to acute exercise (38, 39), and was also shown to have 

greater day-to-day reproducibility than the Matsuda composite index (MISI) 

derived from a 120-minute oral glucose tolerance test (OGTT) (39). Briefly, CSI 

was calculated as follows: 

    CSI = α [KG / (ΔAUCINS / T)] 

where α is a scaling factor (0.604), KG is the glucose disappearance rate (mmol/L; 

calculated as the slope of log [glucose]), ΔAUCINS is the insulin area under the 

curve above the basal/fasting sample (uIU/ml) and T is the time interval between 

10 and 50 minutes (40 minutes) from which KG and ΔAUCINS were calculated 

(57).  

Delta glucose and insulin area under the curve (AUC) from 0-50 minutes were 

also calculated, and fasting insulin resistance was determined using HOMA-IR 

(34). 

Muscle Analysis  

Enzyme activity. One piece of muscle (~25 mg) was homogenized in Lysing 

Matrix D tubes (MP Biomedicals, Solon, OH, USA) using the FastPrep-24 Tissue 

and Cell Homogenizer (MP Biomedicals, Solon, OH, USA) for 5 x 5-second 

cycles at a speed of 4.0 m/s with samples placed on ice for 5 minutes between 
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cycles. Samples were homogenized in 20 volumes of buffer containing 70 mM 

sucrose, 220 mM mannitol, 10mM HEPES, 1mM EGTA, supplemented with 

protease inhibitors (Complete Mini®, Roche Applied Science, Laval, PQ, Canada). 

The maximal activities of citrate synthase (CS) and 3-β-hydroxacyl CoA 

dehydrogenase (β-HAD) were determined with modification to that previously 

described (8). For determination of CS maximal activity, 15 µl of muscle 

homogenate was added to cuvette containing: 825µl 0.1M Tris Buffer (pH 8.0), 

100µl 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB, 0.5mg/mL Tris Buffer) and 10 

µl acetyl CoA (6mg/mL Tris Buffer). The cuvette was warmed to 37°C, the 

spectrophotometer (Cary Bio-300, Varion, Inc., Palo Alto, CA, USA) was zeroed 

and 50 µL of oxaloacetate (6.1mg/mL Tris buffer) was added to initiate the 

reaction. Absorbance was recorded at 412 nm for 120 seconds and the slope 

between 30 and 90 seconds was recorded. For determination of β-HAD, 25 µl of 

muscle homogenate was added to a quartz cuvette containing: 800 µl Tris buffer 

(50mM Tris-Cl, 1mM EDTA, pH 7.0) with 0.2% Triton X-100 and 10 µL NADH 

(3.54mg/mL Tris buffer). The cuvette was incubated at 30°C for 5 minutes, at 

which point 10 µl acetoacetyl CoA (4.8mg/mL) was added to initiate the reaction. 

Absorbance was recorded at 340 nm for 120 seconds and the slope between 30 

and 90 seconds was recorded. Samples were run in duplicate and the intra-assay 

coefficient of variation (CV) for CS and β-HAD were 3.0 and 6.5% respectively. 

Protein concentration of the homogenates was determined using a commercial 
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assay (BCA Protein Assay, Pierce, Rockford, IL, USA) and enzyme activity is 

expressed as mmol/kg protein/h.  

Western blotting. A second piece of muscle (~30 mg) was homogenized in RIPA 

buffer supplemented with protease (Complete Mini®, Roche Applied Science) and 

phosphatase inhibitors (PhosSTOP, Roche, Applied Science) using Lysing Matrix 

D tubes (MP Biomedicals, Solon, OH, USA) with the FastPrep-24 Tissue and Cell 

Homogenizer (MP Biomedicals, Solon, OH, USA). Samples were processed for 6 

x 20-second cycles at 4.0 m/s, with samples placed on ice for 5 minutes in 

between cycles. Samples were rotated end-over-end for 1 hour at 4°C, underwent 

a 10 minute spin at 14,000 g, and the supernatant was aliquoted for use. Western 

blot analysis was conducted using techniques described previously (31). Briefly, 

the protein concentrations of homogenates were determined (BCA Protein Assay), 

and equal amounts of protein were prepared in 4X Laemmli’s buffer and heated to 

95°C before being separated by 10% SDS-PAGE. Protein was electrotransferred 

to nitrocellulose membranes and Ponceau S staining was performed to visualize 

equal loading and transfer. Following 1 hour blocking in 3-5% fat-free milk Tris-

buffered saline 0.1% Tween® 20 (TBS-T), membranes were incubated in the 

primary antibody overnight at 4°C in 3-5% fat-free milk TBS-T based on 

previously optimized conditions. After 3 x 5-minute washes in TBS-T, 

membranes were incubated in the species-specific secondary antibody diluted 

(1:10,000) in 3% fat-free milk TBS-T for 1 hour at room temperature. Membranes 

were washed in TBS-T for 3 x 15-minutes and visualized by chemiluminescence 
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(SuperSignal West Dura, Pierce) using a FluorChem® SP Imaging System (Alpha 

Innotech Corporation, San Leandro, CA, USA). ImageJ software was used to 

quantify the optical density of protein bands. α-tubulin (Cell Signaling 

Technology, #2125), which did not change following training (p=0.85), was used 

as a loading control. Primary antibodies for the following proteins of interest were 

used: NDUFA9 (Mitosciences, MS111), Complex II 70 kDa subunit 

(Mitosciences, MS204), Complex III Core 2 protein (Mitosciences, MS304), 

cytochrome c oxidase (COX) subunit II (MitoSciences, MS405), COX subunit IV 

(Mitosciences, MS408), ATP synthase α-subunit (MitoSciences, MS507) and 

GLUT4 (Millipore, AB1345). 

Statistics 

Baseline subject characteristics (Table 1) were analyzed using a one-way (group) 

analysis of variance (ANOVA). Muscle, blood and body composition data were 

analyzed using a two-way ANOVA with the between factor group and the within 

factor time (pre- and post-training for all variables except for VO2peak which 

included a mid-point test as well). Significant group x time interactions (p<0.05) 

were subsequently analyzed using a Tukey’s honestly significant difference post 

hoc test. All analyses were conducted using SPSS software, and the level of 

significance was set at p<0.05. All data are presented as means ± standard 

deviation for n=10 (MICT), n=9 (SIT) and n=6 (CTL), unless otherwise stated. 

Due to difficulties during data collection, we report n=9 (MICT) and n=5 (CTL) 

for body composition data and n=8 (SIT) for blood analyses.  
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RESULTS 

Descriptive characteristics of training 

A total of 31 ± 1 and 32 ± 2 sessions were completed for SIT and MICT, 

respectively. Mean HR, measured continuously over the 10- and 50-minute 

protocols and averaged over all training sessions, was 79 ± 4% and 71 ± 5% of 

HRmax for SIT and MICT, respectively. Mean RPE, measured during the 1st, 15th 

and 30th exercise sessions, was 16 ± 1 for SIT and 13 ± 1 for MICT. Mean total 

work per session, calculated over the course of training based on average power 

outputs, was ~60 and ~310 kJ per session for SIT and MICT, respectively. While 

there was no change in total body mass (Table 2), there was a slight reduction in 

whole-body percent fat following SIT and MICT (p<0.05 vs. pre-training for both, 

Table 2).  

Cardiorespiratory fitness  

VO2peak increased by ~12% after 6 weeks of training in both SIT and MICT 

(p<0.05 vs. pre training for both; Fig. 1). VO2peak increased further at 12 weeks 

compared to 6 weeks in both exercise groups (p<0.05 for SIT and MICT; Fig. 1), 

resulting in a ~19% overall improvement in both groups vs. pre-training. 

Accordingly, Wmax increased by ~12% following 12 weeks of training (p<0.05 vs. 

pre-training, Table 2). VO2peak and Wmax were unchanged at all time points in 

CTL (p>0.05). 

Skeletal muscle adaptations  
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The maximal activity of CS increased after SIT and MICT (p<0.05 vs. pre-

training for both), respectively, such that both were greater than CTL post-training 

(p<0.05 vs. CTL; Fig. 2A). Individual changes in CS activity are depicted for all 

participants in Figure 2B. SIT and MICT also increased mitochondrial protein 

content as evidenced by changes in Complex II 70 kDa, Complex III Core 2 

protein, COX subunit IV and ATP Synthase α-subunit (all p<0.05 vs. pre-training), 

all of which were also greater than CTL post-training (p<0.05; Fig. 2C). The 

increase in the protein content of NDUFA9 after SIT and MICT did not reach 

statistical significance (p=0.26; Fig 2C). There was no training by time interaction 

for β-HAD maximal activity, although the absolute changes in SIT (28%) and 

MICT (17%) were larger compared to CTL (-2%; data not shown). GLUT4 

protein content increased by ~50% following SIT and MICT (p<0.05 vs. pre-

training for both), and SIT was greater than CTL post-training (p<0.05; Fig. 3). 

Indices of glycemic control  

CSI from the IVGTT, and associated variables (KG and ΔAUCINS), are reported in 

Table 2. CSI increased 53 and 35% following 12 weeks of SIT and MICT, 

respectively (p<0.05 vs. pre-training for both; Fig. 4). Glucose AUC during the 

50-minute IVGTT was lower following SIT and MICT (p<0.05 vs. pre-training 

for both; Table 2); however, no significant changes were observed in insulin AUC 

(p>0.05 vs. pre-training; Table 2). Fasting indices of glycemic control, including 

plasma glucose, serum insulin and HOMA-IR, were unchanged following training 
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(p>0.05, Table 2). There were no changes in CTL for any index of glycemic 

control (p>0.05, Fig. 4, Table 2).  

 

DISCUSSION 

The major novel finding from the present study was that 12 weeks of SIT 

in previously inactive men improved cardiorespiratory fitness, skeletal muscle 

oxidative capacity and insulin sensitivity to the same extent as MICT that 

involved a five-fold greater exercise volume. SIT involved 1 minute of intense 

intermittent exercise, within a time commitment of 10 minutes per session, 

whereas MICT consisted of 50 minutes of continuous exercise at a moderate pace. 

A few previous studies have reported similar improvements in skeletal muscle 

remodeling and markers of health status after SIT and MICT protocols lasting up 

to 6 weeks (6, 10, 16). The present work was more ambitious in scope, involving 

a SIT protocol that required less than half the time of previous interventions, a 

training program that was twice the duration of previous studies, and the inclusion 

of a non-training control group. Our data demonstrate that 12 weeks of brief 

intense exercise improves indices of cardiometabolic health to the same extent as 

traditional endurance training involving a five-fold greater time commitment and 

exercise volume. 

 

Cardiorespiratory fitness  
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Tabata and colleagues showed over two decades ago that a low-volume 

SIT protocol involving eight 20-second cycling sprints, interspersed with 10 

seconds of rest, increased VO2peak by ~13% when performed 4 days per week for 

6 weeks (50). The finding that brief, intense exercise training can improve 

cardiorespiratory fitness has been demonstrated by others using various protocols 

that involve a total time commitment of ≤10 minutes per session (19, 32, 36). One 

such study included a comparison to MICT (35) and showed that 16 sessions of 

body-weight type SIT over 4 weeks improved VO2peak to the same extent (~7-

8%) as 30 minutes of continuous cycling at 85% of VO2peak per session. In the 

present study, we observed a strikingly similar rate of improvement between 

groups over 12 weeks of training, which amounted to 19% overall after both SIT 

and MICT, despite a five-fold difference in the weekly training time commitment. 

This mean increase compares favorably with the typical change in VO2peak 

reported after several months of traditional endurance training (37, 44), although 

individual responses can be highly variable (48) as also observed in the present 

study. Exercise intensity is generally regarded to be the more critical factor in the 

trainability of VO2peak, with higher intensity exercise conferring larger 

improvements in cardiorespiratory fitness when exercise is matched for total 

volume (5, 20, 27, 52). The present data show it is possible for previously 

sedentary individuals to markedly improve VO2peak using interval training, to a 

similar extent as traditional endurance despite requiring a five-fold lower time 

commitment. These findings are noteworthy given the well-established link 
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between low cardiorespiratory fitness and increased risk of cardiovascular disease 

and all-cause mortality (28, 29).  

Improvements in VO2peak following MICT are traditionally believed to 

be centrally mediated (4), however SIT studies of this nature are limited and 

controversial (14, 24, 33). Esfandiari et al. (14) reported similar increases in 

stroke volume during exercise following 2 weeks of HIIT or MICT, as a result of 

increased plasma volume and left ventricular filling. This is not a universal 

finding however (24, 33), and it has also been suggested that SIT-induced 

improvements in VO2peak may be mediated by peripheral factors, at least over 

the short-term (49). It remains to be determined if the similar rate of improvement 

in VO2peak at both 6 and 12 weeks of training in SIT and MICT is a result of 

similar or distinct mechanisms and this is a fruitful area for continued 

investigation. 

 

Mitochondrial content 

It is well established that short-term SIT can markedly enhance skeletal 

muscle oxidative capacity as reflected by increases in the maximal activity and 

total protein content of mitochondrial enzymes (6, 19). With respect to potential 

underlying mechanisms, SIT appears to activate many of the same molecular 

signaling pathways that are believed to regulate skeletal muscle remodeling in 

response to MICT (31). A few previous studies have shown that very low-volume 

SIT, similar to that employed in the present study, also increases mitochondrial 
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content. For example, Ma et al. (32) showed that Tabata-style training involving 

eight, 20-second cycling efforts at an intensity equivalent to 170% VO2peak, 

interspersed with 10 seconds of rest, increased the protein content of COXI and 

COXIV when performed three times per week for 4 weeks. Similarly, we have 

shown that 6 weeks of training, using the protocol employed in the present work, 

increased the maximal activity of citrate synthase (19). The present study extends 

these observations and demonstrates that 12 weeks of SIT increases multiple 

markers of mitochondrial content to the same extent as MICT despite a five-fold 

difference in weekly time commitment. 

We did not specifically examine the time course of skeletal muscle 

remodeling in the present study, but the mean increase in citrate synthase maximal 

activity in the two groups after 12 weeks of training was similar to the 30-40% 

increase that we previously observed after 2 (7) and 6 weeks (6, 19) of SIT and 

MICT. Consistent with the recent observations by Egan et al. (13), who examined 

the time course for the increase in mitochondrial content in response to 14 

sessions of endurance training, these data would seem to collectively imply that 

much of the increase in mitochondrial content occurs relatively early in response 

to training. The robust remodeling induced by SIT would also seemingly suggest 

that training intensity, rather than volume, may be the more critical determinant of 

the improvement in mitochondrial capacity, or at least that brief bouts of very 

intense exercise can stimulate pathways leading to mitochondrial biogenesis to a 

similar extent as longer periods of less intense contractile activity. As recently 
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reviewed by Bishop et al. (3), we know surprisingly little regarding the optimal 

exercise stimulus for inducing mitochondrial adaptations in human skeletal 

muscle, and well-controlled studies directly manipulating training intensity and 

volume are required. 

 

Insulin sensitivity 

Previous studies lasting up to 6 weeks have employed a variety of 

techniques to assess changes in glycemic control after SIT. Babraj et al. (2) were 

the first to show that short-term SIT could improve insulin sensitivity, as reflected 

by OGTTs performed before and after six sessions of SIT performed over 2 weeks. 

Others have replicated this finding using the same method (60), and Richards et al. 

(42) verified the observation using the gold standard hyperinsulinemic-

euglycemic clamp method. We have also observed lower 24-hour blood glucose 

concentration in men after a 6-week SIT protocol that was otherwise similar to the 

one employed in the present experiment (19). Previous studies directly comparing 

short-term SIT and MICT have reported similar improvements based on OGTT-

derived measures (9, 45, 47). In the present study, we measured insulin sensitivity 

using data obtained from a 50-minute IVGTT (CSI) recently established by Tura 

and colleagues (57). The technique was shown to be highly correlated with the 

gold standard glucose infusion rate obtained during a hyperinsulinemic-

euglycemic clamp (57), and CSI has been shown to have greater reproducibility 

than MISI derived from OGTTs (39). 



Ph.D. Thesis – J. B. Gillen; McMaster University – Kinesiology 

	   81	  

Houmard et al. (23) previously reported that a continuous training protocol 

involving 170 minutes of exercise per week improved insulin sensitivity based on 

IVGTT-derived measures more substantially than 115 minutes per week, 

regardless of exercise intensity and volume. However, several recent reports 

suggest that higher-intensity exercise training confers larger improvements in 

insulin sensitivity, when exercise is matched for total volume (5, 12, 27, 43, 52). 

In the present study, SIT improved insulin sensitivity to the same extent as MICT 

despite a five-fold lower exercise volume.  

The potential mechanisms that mediate exercise-training induced increases 

in whole-body insulin sensitivity are obviously complex (21). With respect to 

potential changes in skeletal muscle that might in part explain the improved 

insulin sensitivity, we found similar increases in GLUT4 protein content after the 

two different training protocols despite large differences in total exercise volume. 

SIT and MICT have also been shown to similarly increase skeletal muscle 

microvascular density (9), which is also associated with improved glucose 

transport and insulin sensitivity (1, 9), despite large differences in training volume. 

It is also possible that the improvement in mitochondrial content (21) or an 

increased capacity for intramuscular triglyceride utilization (47) could be involved. 

 

Is exercise intensity the key for improving cardiometabolic health? 

There is currently no consensus on the importance of exercise intensity for 

improving cardiometabolic health (40). Physical activity guidelines imply that, in 



Ph.D. Thesis – J. B. Gillen; McMaster University – Kinesiology 

	   82	  

comparison with moderate-intensity exercise, the benefits of engaging in 

vigorous-intensity exercise are attributed to the greater volume or energy 

expenditure dose per unit of time, and do not relate to intensity per se. 

Epidemiological evidence however, suggests there is an inverse relationship 

between relative exercise intensity and risk of coronary heart disease (30, 46), 

metabolic syndrome (25) and all-cause mortality (46, 61). Accumulating evidence 

also indicates that when exercise is matched for total volume, higher intensity 

exercise confers larger improvements in cardiorespiratory fitness (5, 20, 27, 52) 

and insulin sensitivity (5, 12, 27, 43, 52). Our findings compliment this general 

concept and suggest that when exercise dose is not matched, a low volume of 

high-intensity exercise is as effective as a high volume of moderate-intensity 

exercise for improving cardiometabolic health. These findings may be of interest 

to individuals citing a “lack of time” as a barrier to regular exercise participation. 

Large-scale randomized control trials are needed to confirm these findings in 

individuals at risk for, or afflicted with, cardiometabolic disease.  

 

CONCLUSION 

 In summary, we report that a SIT protocol involving 3 minutes of intense 

intermittent exercise per week, within a total time commitment of 30 minutes, is 

as effective as 150 minutes per week of moderate-intensity continuous training for 

improving cardiorespiratory fitness, skeletal muscle oxidative capacity and insulin 

sensitivity in previously inactive men. While largely a proof-of-concept study, the 
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investigation represents the longest comparison of SIT and MICT to date and 

demonstrates the profound effectiveness of short, intense bursts of exercise for 

improving cardiometabolic health. Future studies should examine the potential for 

other protocols that are relatively intense, but not necessarily ‘all-out’ efforts, to 

induce similar effects in an equally time-efficient manner. Considering a large 

number of individuals do not meet the minimum physical activity 

recommendations (11, 55), and preliminary evidence suggesting greater 

adherence to interval compared to traditional endurance training (26), it is worth 

exploring the potential for this exercise strategy on a larger scale to improve 

public health.  
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TABLES 

 

 

  

TABLE 1: Subject Characteristics 
VARIABLE MICT (10) SIT (9) CON (6)
Age (y) 28 ± 9 27 ± 7 26 ± 8
Height (cm) 176 ± 10 177 ± 11 176 ± 5
Weight (kg) 84 ± 20 84 ± 23 78 ± 25
Body Mass Index (kg/m2) 26 ± 6 27 ± 5 25 ± 7
VO2peak (ml/kg/min) 33 ± 6 32 ± 7 32 ± 7
VO2peak (L/min) 2.7 ± 0.5 2.6 ± 0.8 2.5 ± 0.7
Maximal Workload (W) 248 ± 30 243 ± 68 219 ± 60
Values are means ± S.D. VO2peak, maximal oxygen uptake
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TABLE 2: Markers of Health and Fitness  
VARIABLE

PRE POST PRE POST PRE POST
Weight (kg) 84 ± 20 82 ± 20 84 ± 23 83 ± 22 78 ± 25 78 ± 23
Body Mass Index (kg/m2) 26 ± 6 26 ± 6 27 ± 5 26 ± 5 25 ± 7 25 ± 7
Percent Fat (%) 27 ± 10 25 ± 10* 30 ± 7 28 ± 8* 24 ± 6 25 ± 6
VO2peak (L/min) 2.7 ± 0.5 3.2 ± 0.5* 2.6 ± 0.8 3.0 ± 0.7* 2.5 ± 0.7 2.5 ± 0.7
Maximal Workload (W) 248 ± 30 271 ± 33* 243 ± 68 275 ± 50* 219 ± 60 213 ± 52
CSI 5.0 ± 3.3 6.7 ± 5.0* 4.9 ± 2.5 7.5 ± 4.7* 7.4 ± 5.8 7.0 ± 4.9
KG (%/min) 2.0 ± 0.9 2.1 ± 0.7 2.1 ± 0.9 2.4 ± 0.8 2.1 ± 0.6 2.1 ± 0.7
ΔAUCINS (10-50 min) (uIU/ml) 1171 ± 591 1007 ± 545 1231 ± 705 1149 ± 844 1095 ± 843 1158 ± 908
ΔInsulin AUC (uIU/ml) 1423 ± 712 1223 ± 647 1515 ± 917 1454 ± 1065 1317 ± 946 1425 ±1035
ΔGlucose AUC (mmol/L) 321 ± 114 257 ± 103* 303 ± 92 225 ± 75* 201 ± 52 222 ± 54
FPG (mmol/L) 5.3 ± 0.8 5.7 ± 0.9 5.0 ± 1.2 5.4 ± 0.8 5.5 ± 1.6 5.4 ± 0.8
FPI (uIU/mL) 10.1 ± 6.0 8.4 ± 6.9 9.5 ± 5.3 7.8 ± 4.1 7.5 ± 6.4 10.8 ± 13.2
HOMA-IR 2.4 ± 1.6 2.3 ± 2.1 2.1 ± 1.3 1.9 ± 1.0 2.0 ± 2.3 2.7 ± 3.7
Values are means ± S.D. VO2peak, maximal oxygen uptake; CSI, insulin sensitivity index from IVGTT; KG, glucose rate of  
disappearance during 10-50 min of IVGTT; ΔAUCINS, insulin area under the curve from 10-50 min of IVGTT; ΔInsulin AUC, insulin 
area under the curve from 0-50 min of IVGTT; ΔGlucose AUC, glucose area under the curve from 0-50 min of IVGTT; FPG, fasting 
plasma glucose; FPI, fasting plasma insulin. *Significantly different vs. pre-training (p<0.05)

MICT (10) SIT (9) CON (6)
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FIGURE LEGENDS 
 
Figure 1. Similar improvements in VO2peak after 6 and 12 weeks of SIT or 

MICT. Measured at baseline (PRE), 6 weeks (MID), and 12 weeks (POST) in 

MICT, SIT and CTL. Values are means ± S.D. * p<0.05, vs. same group at PRE; 

# p<0.05, vs. same group at MID. 

 

Figure 2. 12 weeks of SIT or MICT increases skeletal muscle mitochondrial 

capacity. Measured in muscle biopsy samples obtained from the vastus lateralis 

before (PRE) and 96 h after (POST) the 12-week intervention in MICT, SIT and 

CTL. Maximal activity of citrate synthase (A), individual changes in maximal 

activity of citrate synthase (B) and protein content of various subunits from 

complexes in the electron transport chain (C). Representative western blots are 

shown. Values are means ± S.D. * p<0.05, vs. same group at PRE; † p<0.05, vs. 

CTL at POST. 

 

Figure 3. 12 weeks of SIT or MICT improves GLUT4 protein content. 

GLUT4 protein content measured in muscle biopsy samples obtained from the 

vastus lateralis before (PRE) and 96 h after (POST) the 12-week intervention in 

MICT, SIT and CTL. Values are means ± S.D. * p<0.05, vs. same group at PRE; 

† p<0.05, vs. CTL at POST. 
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Figure 4. Similar increases in insulin sensitivity following 12 weeks of SIT or 

MICT. 

The change in insulin sensitivity (CSI) over the 12-week intervention, measured 

from a 50-minute IVGTT in MICT, SIT and CTL. Closed circles denote 

individual responses. Values are means ± S.D. * p<0.05, PRE vs. POST. 
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Figure 1. Similar improvements in VO2peak after 6 and 12 weeks of SIT or 
MICT. Measured at baseline (PRE), 6 weeks (MID), and 12 weeks (POST) in 
MICT, SIT and CTL. Values are means ± S.D. * p<0.05, vs. same group at PRE; 
# p<0.05, vs. same group at MID. 
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Figure 2. 12 weeks of SIT or MICT increases skeletal muscle mitochondrial 
capacity. Measured in muscle biopsy samples obtained from the vastus lateralis 
before (PRE) and 96 h after (POST) the 12-week intervention in MICT, SIT and 
CTL. Maximal activity of citrate synthase (A), individual changes in maximal 
activity of citrate synthase (B) and protein content of various subunits from 
complexes in the electron transport chain (C). Representative western blots are 
shown. Values are means ± S.D. * p<0.05, vs. same group at PRE; † p<0.05, vs. 
CTL at POST. 
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Figure 3. 12 weeks of SIT or MICT improves GLUT4 protein content. 
GLUT4 protein content measured in muscle biopsy samples obtained from the 
vastus lateralis before (PRE) and 96 h after (POST) the 12-week intervention in 
MICT, SIT and CTL. Values are means ± S.D. * p<0.05, vs. same group at PRE; 
† p<0.05, vs. CTL at POST. 
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Figure 4. Similar increases in insulin sensitivity following 12 weeks of SIT or 
MICT. 
The change in insulin sensitivity (CSI) over the 12-week intervention, measured 
from a 50-minute IVGTT in MICT, SIT and CTL. Closed circles denote 
individual responses. Values are means ± S.D. * p<0.05, PRE vs. POST. 
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CHAPTER 5: 

GENERAL DISCUSSION	  
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5.1. Introduction 
 
 The present thesis sought to advance our understanding of the 

physiological and health-related adaptations to low-volume interval training. The 

first study (Chapter 2) investigated whether performing 6 weeks of HIIT, in the 

fasted- versus fed-state, could potentiate adaptations in skeletal muscle oxidative 

capacity, insulin sensitivity and body composition in previously sedentary women. 

In contrast to the augmented responses seen after 6 weeks of MICT when 

physically active men trained in the fasted compared to fed state (80, 81), there 

was no effect of the nutritional manipulation on HIIT-induced improvements in 

skeletal muscle oxidative capacity or body composition. A surprising observation 

however, was the lack of improvement in insulin sensitivity after HIIT, as 

determined from OGTTs. This finding is in contrast to previous low-volume 

interval training studies in men, which consistently showed improved markers of 

glycemic control (4, 83, 107), revealing the potential for sex-based differences in 

the adaptive response. In Study 2 (Chapter 3), we attempted to advance our 

understanding of the physiological and health-related adaptations to very low-

volume SIT by examining the impact of a protocol involving only 3 minutes of 

intense intermittent exercise within a 30-minute weekly time commitment. 

Following a 6-week intervention in previously sedentary men and women, we 

observed improvements in VO2peak and mitochondrial capacity, as reflected by 

increased maximal activity of CS and protein content of COXIV. Intriguingly, 24-

hour blood glucose concentration, assessed by CGM, was improved in men but 
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not women, which is consistent with observations from Study 1. In the final study 

(Chapter 4), we conducted a 12-week training intervention in men directly 

comparing the low-volume SIT protocol from Study 2 to high-volume MICT 

reflective of current public health guidelines. Despite a five-fold lower exercise 

volume and time commitment in SIT, both protocols elicited strikingly similar 

improvements in VO2peak, skeletal muscle mitochondrial content and insulin 

sensitivity derived from IVGTTs. Collectively, these findings highlight the 

potency of low-volume SIT and HIIT for improving cardiometabolic health in a 

time-efficient manner. The present chapter attempts to integrate findings from all 

studies and highlight the collective contribution of the thesis to the larger field. 

Potential limitations, unanswered questions, and future directions are discussed 

throughout. 

 

5.2. Fasted- versus fed-state HIIT: No differences in the adaptive response 

 MICT performed in the fasted state is characterized by a greater 

contribution of fat-derived energy provision as compared to fed-state exercise (20, 

23, 49, 56). The low circulating insulin and high plasma epinephrine 

concentrations associated with fasting are believed to limit carbohydrate flux and 

oxidation (20, 56), and concomitantly increase oxidation of fatty acids derived 

from both adipose tissue (49) and intramuscular depots (10). These metabolic 

differences in substrate use have been suggested to alter the skeletal muscle 

adaptive response (80, 81). However, we found that 6 weeks of HIIT performed in 
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the fasted state did not potentiate training-induced gains in mitochondrial capacity, 

as reflected by similar increases in the maximal activity of CS and β-HAD in 

fasted and fed groups (37).  

 The disparity between our findings and those reported following 6 weeks 

of MICT could be due to a number of factors, including differential effects of the 

fasted state on moderate- versus high-intensity exercise. Evidence suggesting the 

fasted state is associated with increased fat oxidation during exercise are mainly 

derived when exercise is performed at 50 % of VO2peak (7, 20, 49, 56), 

coinciding with the optimal intensity to promote fat utilization. It is well 

established however, that as exercise intensity increases, the relative and absolute 

contribution of fatty acids to energy provision declines (104). Alternatively, 

carbohydrate, particularly muscle glycogen, is the primary fuel source during 

exercise above 70 % VO2peak (85, 104) and appears quite resistant to 

modification. Indeed, no difference in fuel oxidation was reported during 30 

minutes of MICT at 75 % VO2peak when performed in the fasted- or fed-state (7). 

Similarly, Whitley et al. (106) showed that regardless of whether exercise was 

performed after an overnight fast, or following a high-carbohydrate or high fat 

meal, substrate selection during 90 minutes of MICT at 70 % of VO2peak was 

unaltered. It is likely that substrate selection was also similar between fasted- and 

fed-state HIIT during each 25-minute exercise session, considering the high-

intensity nature and likely resilient reliance on muscle glycogen for energy 

provision. Thus, the metabolic perturbation induced by training was presumably 
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quite similar between groups, explaining the lack of difference in the adaptive 

response to training. It is also possible that the potency of the HIIT stimulus in an 

untrained population may have overshadowed any effect of the nutritional 

manipulation, which may have been difficult to tease out with our limited sample 

size. There is also evidence of sex-based differences in the response to fasted-state 

training. Stannard et al. (95) reported that 4 weeks of MICT performed at 65 % 

VO2peak in the fasted- compared to fed-state potentiated training-induced gains in 

CS maximal activity in men but not women. Although not a universal finding (61), 

greater activation of AMPKα2 during exercise in the fasted versus fed-state (1) 

has been suggested to mediate the superior training response. Women reportedly 

have lower AMPKα2 activation than men following acute exercise performed in 

the fasted state however (84), which could explain the lack of response to fasted-

state training in women (37, 95).  

 

5.3. Low-volume interval training improves cardiorespiratory fitness  

 Cardiorespiratory fitness increases following short-term low-volume 

interval training programs (3, 11, 13, 43, 70). The improvement in VO2peak is 

comparable to that elicited by traditional MICT, at least in short-term studies 

lasting up to 6 weeks (14, 18, 30, 92). In Study 1, we observed a 15 % increase in 

VO2peak following 6 weeks of low-volume HIIT in sedentary women, which is 

comparable to previous studies of similar duration (14, 18). More recently, brief 

SIT protocols, requiring ≤ 10 minutes per session including warm-up and cool-
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down, have been shown to increase VO2peak (43, 64, 72). In Study 2, we found 

that a SIT protocol involving 1 minute of intense intermittent exercise, within a 

10-minute time commitment, improved VO2peak by 12 % in men and women 

when 18 sessions were performed over 6 weeks (38). Improvements of this 

magnitude (~3.5 ml/kg/min or 1 metabolic equivalent) have been associated with 

a 15 and 19 % lower risk of all-cause and cardiovascular disease mortality (60), 

respectively, highlighting the clinical significance of these findings. 

 It has been speculated that the rapid improvement in VO2peak observed 

following short-term interval training programs may begin to plateau over time, 

with divergent responses to MICT becoming more apparent over long-term 

interventions (94). Findings from Study 3, however, suggest that the increase in 

VO2peak during SIT and MICT follow a strikingly similar pattern up to 12 weeks 

of training, amounting to a 19 % (6 ml/kg/min) improvement overall in both 

groups. In the longest previous comparison to date, Nybo et al. (76) showed that 

the increase in VO2peak after 12 weeks of near-maximal interval running was 

double that elicited by a continuous running protocol (14 vs. 7 %) despite a lower 

weekly training time commitment (~40 vs. ~150 minutes). Our findings and those 

of Nybo and colleagues (76), highlight that brief bursts of very intense exercise 

are as effective as a higher volume of MICT for improving cardiorespiratory 

fitness over the longer-term.  

 The mechanisms mediating the improvement in VO2peak following low-

volume SIT and HIIT cannot be ascertained from the present thesis. 
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Improvements in VO2peak following MICT are traditionally believed to be 

mediated by central factors (i.e., enhanced oxygen delivery) (6, 9), with an 

increased stroke volume likely being the single most important determinant (9, 

88). Studies measuring cardiac responses to short-term low-volume interval 

training are limited, however, with equivocal evidence suggesting that stroke 

volume is increased (30, 100) or unchanged (50, 66) after training. Recently, a 2-

week low-volume HIIT versus MICT intervention in young healthy men revealed 

similar increases in Doppler-derived measures of end-diastolic volume, stroke 

volume and cardiac output, as well as plasma volume and VO2peak (30). Other 

studies, however, found no change in cardiac output using the nitrous oxide 

rebreathing method following a similar 2-week HIIT intervention (50), or after 6 

weeks of SIT (66). As a result, it has been proposed that short-term improvements 

in VO2peak following low-volume interval training are primarily attributed to 

peripheral factors (i.e., enhanced oxygen extraction) (50, 66, 94), although few 

studies have directly examined potential cardiovascular adaptations after very 

short-term protocols. While additional work is warranted to clarify the precise 

nature of the mechanisms involved, the present thesis highlights the potency of 

short, intense bursts of exercise for improving cardiorespiratory fitness.   

 

5.4. Low-volume interval training increases skeletal muscle mitochondrial 

content 
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Results from the present thesis are consistent with other reports 

highlighting the potency of low-volume interval training for improving skeletal 

muscle oxidative capacity (35). In all three studies, the maximal activity of CS 

was used as the primary indicator of mitochondrial adaptation to training, with the 

protein content of various mitochondrial enzymes employed secondary. CS 

activity is a commonly used biomarker of mitochondrial content in exercise 

training studies, as it is highly correlated with gold-standard measures made by 

electron microscopy (59). The most significant finding from the present thesis 

with regards to mitochondrial content was the profound improvement that can be 

elicited by a very small amount of high-intensity exercise. Specifically, we 

observed a 40 and 50 % increase in the maximal activity of CS following 6 and 12 

weeks of low-volume SIT, respectively, with the latter being comparable to a 

similar period of MICT involving a 5-fold larger exercise volume.  

Although increased mitochondrial content is among the most well 

described adaptations to aerobic exercise training (46), surprisingly little is known 

regarding the optimal stimulus for promoting this favorable metabolic adaptation 

(8). Exercise-induced increases in mitochondrial content are largely the result of 

an increased size of mitochondria (97), which likely reflects the incorporation of 

new proteins into existing mitochondria. This expanded mitochondrial network 

primarily serves to alter substrate metabolism during exercise and enhance 

endurance capacity (14, 39, 47, 79). As little as three sessions of aerobic exercise 

is sufficient to increase mitochondrial content (27, 78), but the extent to which 
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exercise duration and intensity influence this adaptation has received little 

attention (8).  

The robust remodeling induced by SIT in Study 3 may suggest that 

intensity rather than duration is the more critical determinant of the improvement 

in mitochondrial content following exercise training. Indeed, evidence from acute 

studies reveal that when exercise volume is matched, higher intensity exercise 

elicits greater increases in signaling pathways believed to regulate mitochondrial 

biogenesis in response to training (24, 26, 108). However, caution is warranted 

when extrapolating these findings, as acute protein signaling events do not 

necessarily predict long-term phenotypic adaptations (16). We currently lack 

chronic studies in humans that directly manipulate training duration and intensity 

in an effort to determine the optimal stimulus for inducing mitochondrial 

biogenesis (8). The most comprehensive study of this nature was performed in 

rodents, which included 19 different groups of various exercise intensity and 

duration combinations (25). Dudley et al. (25) reported that exercise intensity, 

rather than duration, was more closely associated to the extent of improvement in 

cytochrome c concentration following 8 weeks of aerobic training. The authors 

also concluded that as exercise intensity increased, the duration required to 

achieve a given mitochondrial response decreased, which is consistent with 

findings from Study 3. The strength of the relationship in the study by Dudley and 

colleagues was most pronounced in muscle groups containing a greater proportion 

of “fast white” (type II) fibers (25). This suggests that the greater motor unit 
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recruitment during high-intensity exercise (87), and subsequent remodeling of 

type II fibers, could largely mediate the positive relationship between exercise 

intensity and mitochondrial adaptations. 

A limited number of studies have examined muscle fiber type-specific 

responses to interval training in humans. There is evidence to suggest that interval 

training induces a modest shift in fiber type, with most studies showing an 

increase in type IIa fibers (i.e. I  IIa  IIb) (58), consistent with an enhanced 

oxidative capacity. Specifically with respect to mitochondrial adaptations, 

Henriksson and Reitman (44) showed almost four decades ago that 8 weeks of 

maximal-intensity intermittent cycle training induced greater increases in 

succinate dehydrogenase (SDH) activity in type II compared to type I fibers. In 

comparison, a similar amount of work performed continuously at a moderate 

intensity increased SDH activity in type I fibers only (44). Kristensen et al. (57) 

recently characterized fiber type-specific responses to an acute bout of continuous 

(30 minutes at 70 % VO2peak) and interval (6 x 90 second sprints 95 % VO2peak, 

150 seconds recovery) exercise by dissecting muscle samples into type I and type 

II fiber pools. In contrast to the continuous protocol, interval exercise elicited 

fiber type-specific responses such that glycogen utilization and AMPK expression 

were greater in type II versus type I fibers (57). This in turn could preferentially 

trigger mitochondrial adaptations in type II fibers over the course of training. 

Recent investigations into fiber type-specific responses to low-volume interval 

training do not support this hypothesis however, as similar increases in SDH (90) 
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and COXIV (92) expression were reported after 6 weeks of SIT in type I and II 

fibers. This conclusion is based on serial section immunofluorescent staining, 

however, and investigations using recent methodological advances for fiber type-

specific analyses remain ripe for future research (75).  

 

5.5. Low-volume interval training and indices of glycemic control 

 5.5.1. Methods of assessment  

The hyperinsulinemic-euglycemic clamp, originally proposed by 

DeFronzo et al. (22) is widely accepted as the reference standard for direct 

assessment of insulin sensitivity in humans (74). However, performing the test is 

time consuming, labour intensive, technically complex and expensive (74, 105). 

Thus, a variety of surrogate methods are available for measurement of insulin 

sensitivity and/or glycemic control, ranging in accuracy, complexity and 

invasiveness. In this thesis, four methods were employed for assessment of insulin 

sensitivity and/or glycemic control, all of which are associated with different 

merits and limitations. 

Insulin sensitivity derived from fasting samples is arguably the easiest, 

quickest and least expensive surrogate index. The homeostasis model assessment 

(HOMA) (69), which was employed in all three studies, is commonly derived 

from fasting samples for determination of insulin sensitivity or insulin resistance. 

However, the fasting condition represents a basal steady state for glucose and 

insulin, which primarily reflects hepatic insulin sensitivity (74). In contrast, 
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skeletal muscle is the primary disposal site in response to a glucose load (21), 

perhaps making glucose tolerance tests a more effective method for assessing 

exercise-induced changes in glycemic control.  

OGTTs are recognized as the accepted diagnostic method for type 2 

diabetes (2) and are commonly employed in exercise interventions (method 

described in Study 1, ref 37). This 2-hour test is designed to provide information 

on glucose tolerance, however insulin sensitivity can also be obtained from 

surrogate indexes, such as the Matsuda composite index (68). The OGTT is easy 

to perform, minimally invasive and mimics glucose and insulin dynamics of 

physiological conditions more closely than the glucose clamp. However, intra-

variability in the OGTT has been reported as high as 17 % (91), and poor 

reproducibility is documented in multiple studies (12, 73, 77). This could be 

attributed to variable glucose absorption, splanchnic glucose uptake and incretin 

effects associated with the oral glucose load (74). Indeed, this may have limited 

our ability to detect training-induced changes in insulin sensitivity in Study 1 (37). 

An alternative method overcoming some of the limitations associated with 

the OGTT is the IVGTT. The Minimal Model insulin sensitivity index is 

calculated based on frequent glucose and insulin samples obtained during a 3-hour 

IVGTT (74, 105). IVGTTs are more labour intensive than OGTTs, but the insulin 

sensitivity index obtained is reliable (31) and correlates well with the glucose 

clamp method in healthy individuals (86). However, IVGTTs are time consuming 

and a specialized computer program is required to calculate insulin sensitivity, 
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making this a difficult measure to implement in clinical and/or research settings 

(74, 105). Tura and colleagues (103) recently validated an insulin sensitivity index 

calculated from glucose and insulin data during a modified 50-minute IVGTT 

(method described in Study 3). This method is highly correlated with the Minimal 

Model insulin sensitivity index obtained from the 3-hour IVGTT, as well as the 

gold standard glucose infusion rate measured during the glucose clamp in 

individuals with both normal and impaired glucose tolerances (103). This method 

has also been shown to have greater day-to-day reproducibility than the Matsuda 

composite index derived from a 2-hour OGTT (77). While the intravenous 

delivery of glucose generates a more artificial stimulus than OGTTs, the high 

reliability and validity of the 50-minute IVGTT makes it a superior method for 

determination of insulin sensitivity. Indeed, we were successful in capturing 

changes in insulin sensitivity using this method following 12 weeks of SIT or 

MICT in Study 3.  

Lastly, CGM has emerged as an effective tool for assessing glucose 

control and was implemented in Study 2. While insulin sensitivity cannot be 

determined from this method, CGM provides detailed information on the direction, 

magnitude and frequency of blood glucose excursions over several days under 

free-living conditions (55). CGM proved to be a sensitive measure to detect 

training-induced reductions in 24-hour blood glucose concentration in Study 2, 

consistent with other reports (36, 54, 62, 67). In fact, a recent meta-analysis 

revealed that a number of exercise interventions reduced mean daily glucose 
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concentration as detected by CGM, despite no changes in fasting glucose or 

insulin concentrations (65). This suggests that CGM may provide greater insight 

into the effects of exercise on glucose regulation than simple fasting blood 

markers.  

 

5.5.2. Are changes in glycemic control after low-volume interval training 

sex-specific? 

Low-volume SIT and HIIT have been shown to improve insulin sensitivity, 

based on hyperinsulinemic euglycemic clamps performed on recreationally active 

individuals (83) as well OGTTs performed on young healthy (4, 18) and 

overweight/obese (17, 107) men. These studies have been relatively short-term 

interventions lasting up to 6 weeks, but nonetheless indicate that low-volume 

interval training elicits similar improvements in glycemic control as MICT (18, 89, 

92). Results from Study 2 advance these findings, as they suggest that a brief SIT 

protocol – involving only 3 minutes of intense exercise within a 30-minute time 

commitment per week – lowered mean 24-hour blood glucose concentration in 

men after 6 weeks of training (38). These findings were confirmed and expanded 

upon in Study 3 when we directly compared 12 weeks of this low-volume SIT 

protocol to MICT as reflected in public health guidelines. Despite a five-fold 

lower time commitment in SIT, insulin sensitivity derived from IVGTTs 

performed 72 hours following training were similarly improved in SIT and MICT, 

with no change in the non-training control group. The mechanisms mediating 
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improvements in insulin sensitivity following low-volume interval training could 

not be ascertained from the present thesis, however it is tempting to speculate that 

adaptations within skeletal muscle were involved. As discussed in Chapter 1, 

these adaptations could include the observed elevation in GLUT4 protein content 

or mitochondrial capacity, as well as previously reported increases in 

capillarization following low-volume SIT (17, 18).   

Intriguingly, our results also revealed potential sex-based differences in 

the adaptive response, as we did not detect a change in glycemic control following 

6 weeks of training in women. In Study 1, fasting and OGTT-derived measures of 

insulin sensitivity were unchanged following 6 weeks of HIIT in previously 

sedentary women (37), which contrasts earlier findings observed in men. 

Similarly, in Study 2 we observed no change in the mean 24-hour blood glucose 

concentration in women following 6 weeks of SIT, whereas improvements were 

detected in men (38). These findings are consistent with those of Metcalfe and 

colleagues (72) who reported that a 10-minute low-intensity cycling protocol that 

included 2 x 20 second ‘all-out’ sprints, performed 18 times over 6 weeks, 

improved insulin sensitivity measured by OGTTs in men but not women.  

The training-induced increase in GLUT4 protein content in our study was 

6-fold higher in men compared to women (38), which could in part explain the 

observed differences in glucose control. It has been suggested that high rates of 

glycogen utilization and subsequent resynthesis following high-intensity exercise 

may be related to the rapid improvement in insulin sensitivity following low-
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volume interval training (72). In comparison to men, however, women are 

reported to break down 50 % less muscle glycogen during a single Wingate sprint 

(29), which is supported by lower blood lactate accumulation following single (28, 

51) and repeated 30-s sprints (28). In comparison to men, a lower rate of 

glycogenolysis in women may be due to a reduced activity of glycolytic enzymes 

(40, 51), a greater proportion of type I fibers (63, 96) or a reported predisposition 

for aerobic metabolism during a 30-second sprint (45). It is important to note, 

however, that other studies involving mixed cohorts of men and women have not 

described sex-based differences in insulin sensitivity following low-volume 

interval training (48, 83, 89), although these studies were not specifically 

designed to address this issue. It is also possible that the higher glycemic control 

in women compared to men at baseline, consistent with other reports (34, 72), 

influenced our findings. Clearly, well-controlled studies are warranted to 

determine whether women might in fact “respond less” to low-volume interval 

training, using best practice designs that control for various factors, such as 

menstrual cycle phase and relative fitness, that can increase variance and lead to 

false conclusions regarding potential sex-based differences (98). 

 

5.6. Low-volume interval training: A time efficient strategy to improve public 

health? 

 It is well established that regular endurance training enhances 

cardiorespiratory fitness (9), increases skeletal muscle oxidative capacity (47) and 
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improves indices of cardiometabolic health including insulin sensitivity (42). 

These findings provide support for current public health guidelines, which 

recommend 150 minutes of moderate- or 75 minutes of vigorous-intensity 

physical activity per week to achieve health benefits (32, 99, 109). Unfortunately, 

objectively measured accelerometer data from population-based studies in Canada 

(19) and the United States (101) indicate that only 15-20 % of adults meet these 

minimum guidelines. Reasons for not engaging in regular exercise are numerous 

and complex, but a “lack of time” remains a commonly cited barrier (15, 93, 102).  

The present thesis suggests that there may be an intensity-duration trade-

off with respect to stimulating the health benefits of exercise. Indeed, in the final 

study we report that a 12-week intervention involving 3 minutes of ‘all-out’ 

intermittent exercise per week improved cardiometabolic health to the same 

extent as 150 minutes per week of moderate-intensity physical activity. From an 

applied perspective, our findings may appeal to individuals citing a “lack of time” 

as a barrier to regular exercise participation. Nonetheless, concerns have been 

raised regarding the feasibility of implementing this type of exercise at the public 

level (41). SIT requires a specialized cycle ergometer and a high degree of 

participant motivation, perhaps making it impractical for many individuals. All 

studies in the present thesis employed a cycling model, however other types of 

traditional whole-body exercise may also be effective, e.g., climbing stairs, brisk 

uphill walking or running. A recent study found that subjects who performed 8 x 

20 second efforts of a single exercise (burpees, jumping jacks, mountain climbers, 
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or squat thrusts) interspersed by 10 seconds of rest, four times per week for 4 

weeks increased VO2peak to the same extent as a group who performed 30 

minutes of traditional endurance training per session (71). Nonetheless, future 

studies should examine the potential for HIIT protocols that are relatively intense, 

but not necessarily ‘all-out’ efforts, to induce similar effects in an equally time-

efficient manner. Emerging evidence suggests that HIIT is perceived to be more 

enjoyable than MICT in recreationally active individuals (5, 53) and also results 

in greater exercise adherence in individuals with pre-diabetes (52). Given the 

improved health outcomes observed in the present thesis, it is worth exploring the 

potential for low-volume interval training to improve public health on a larger 

scale. 

 

5.7. Conclusions 

The studies in the present thesis advance our understanding of the 

physiological and health-related adaptations to low-volume interval training in 

humans. Our findings suggest that low-volume HIIT and SIT are time-efficient 

exercise strategies to increase cardiorespiratory fitness, glycemic control and 

skeletal muscle oxidative capacity in previously sedentary adults. Importantly, 

these beneficial adaptations are realized despite a very low exercise volume and 

time commitment, highlighting the potency of short, intense bursts of exercise for 

improving cardiometabolic health. While previous studies have been relatively 

short-term interventions, including studies 1 and 2 in the present thesis, the 
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strikingly similar response to 12 weeks of SIT and MICT in Study 3 reveals the 

efficacy of SIT to improve health over the longer-term. Large-scale randomized 

control trials are needed to confirm these findings in individuals at risk for, or 

afflicted with, cardiometabolic disease. Nonetheless, the present thesis raises 

fundamental questions regarding the minimum exercise stimulus necessary to 

induce physiological remodeling that is linked to improved health. As proposed 

by others (33, 82), there is value in studying the potential for vigorous-intensity 

exercise to maximize the health benefits of physical activity, which could have 

implications for clinical and public health guidelines. 
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Creative Commons Legal Code

Attribution 4.0 International

Official translations of this license are available in other languages.

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal
services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client
or other relationship. Creative Commons makes its licenses and related information available on an “as-
is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons disclaims all liability for damages
resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other
rights holders may use to share original works of authorship and other material subject to copyright and
certain other rights specified in the public license below. The following considerations are for informational
purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give
the public permission to use material in ways otherwise restricted by copyright and certain other rights.
Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the
license they choose before applying it. Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the material as expected. Licensors should clearly
mark any material not subject to the license. This includes other CC-licensed material, or material
used under an exception or limitation to copyright. More considerations for licensors.

Considerations for the public: By using one of our public licenses, a licensor grants the public
permission to use the licensed material under specified terms and conditions. If the licensor’s
permission is not necessary for any reason–for example, because of any applicable exception or
limitation to copyright–then that use is not regulated by the license. Our licenses grant only
permissions under copyright and certain other rights that a licensor has authority to grant. Use of the
licensed material may still be restricted for other reasons, including because others have copyright or
other rights in the material. A licensor may make special requests, such as asking that all changes be
marked or described. Although not required by our licenses, you are encouraged to respect those
requests where reasonable. More considerations for the public.

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and
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conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in
consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the Licensed Material available under these
terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or
based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged,
transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar
Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a
musical work, performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your
contributions to Adapted Material in accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright
including, without limitation, performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or categorized. For purposes of this Public
License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper authority,
may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to
Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public
License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed
Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
i. Share means to provide material to the public by any means or process that requires permission

under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public including
in ways that members of the public may access the material from a place and at a time individually
chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of
the European Parliament and of the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your
has a corresponding meaning.

Section 2 – Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a

worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the
Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its
terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).
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4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to
make technical modifications necessary to do so. The Licensor waives and/or agrees not to
assert any right or authority to forbid You from making technical modifications necessary to
exercise the Licensed Rights, including technical modifications necessary to circumvent
Effective Technological Measures. For purposes of this Public License, simply making
modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights under
the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different
terms or conditions on, or apply any Effective Technological Measures to, the Licensed
Material if doing so restricts exercise of the Licensed Rights by any recipient of the
Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or others
designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for the

exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others

designated to receive attribution, in any reasonable manner requested by the
Licensor (including by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may



Ph.D. Thesis – J. B. Gillen; McMaster University – Kinesiology 

	   138	  

 

2015-06-30 11:14 AMCreative Commons — Attribution 4.0 International — CC BY 4.0

Page 4 of 5http://creativecommons.org/licenses/by/4.0/legalcode

be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that
includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)
(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and
Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have
Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights
(but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the
contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or
warranties of any kind concerning the Licensed Material, whether express, implied, statutory,
or other. This includes, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where disclaimers of
warranties are not allowed in full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages
arising out of this Public License or use of the Licensed Material, even if the Licensor has
been advised of the possibility of such losses, costs, expenses, or damages. Where a
limitation of liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner
that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all
liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However,
if You fail to comply with this Public License, then Your rights under this Public License terminate
automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek
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remedies for Your violations of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms

or conditions or stop distributing the Licensed Material at any time; however, doing so will not
terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by
You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein
are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit,
restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without
permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be
automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability of
the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to
unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any
privileges and immunities that apply to the Licensor or You, including from the legal processes of any
jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to
apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under the
CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared under
a Creative Commons public license or as otherwise permitted by the Creative Commons policies
published at creativecommons.org/policies, Creative Commons does not authorize the use of the
trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior
written consent including, without limitation, in connection with any unauthorized modifications to any of
its public licenses or any other arrangements, understandings, or agreements concerning use of licensed
material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

Additional languages available: Nederlands, Norsk, Suomeksi, українська. Please read the FAQ for more
information about official translations.
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JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Jun 23, 2015

This Agreement between Jenna Gillen ("You") and John Wiley and Sons ("John Wiley and
Sons") consists of your license details and the terms and conditions provided by John Wiley
and Sons and Copyright Clearance Center.

License Number 3654790374389

License date Jun 23, 2015

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Obesity

Licensed Content Title Interval training in the fed or fasted state improves body
composition and muscle oxidative capacity in overweight women

Licensed Content Author Jenna B. Gillen,Michael E. Percival,Alison Ludzki,Mark A.
Tarnopolsky,Martin. J. Gibala

Licensed Content Date May 31, 2013

Pages 7

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

Physiological and health-related adaptations to low-volume interval
exercise training in humans

Expected completion date Aug 2015

Expected size (number of
pages)

150

Requestor Location Jenna Gillen
101-1964 Main St. W

Hamilton, ON L8S4N6
Canada
Attn: Jenna Gillen

Billing Type Invoice

Billing Address Jenna Gillen
101-1964 Main St. W
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Hamilton, ON L8S4N6
Canada
Attn: Jenna Gillen

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking �accept� in connection with completing this
licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the billing and payment terms and conditions established by the
Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at
the time that you opened your Rightslink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright. 

You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license is for a one-
time use only and limited to any maximum distribution number specified in the
license. The first instance of republication or reuse granted by this licence must be
completed within two years of the date of the grant of this licence (although copies
prepared before the end date may be distributed thereafter). The Wiley Materials shall
not be used in any other manner or for any other purpose, beyond what is granted in
the license. Permission is granted subject to an appropriate acknowledgement given to
the author, title of the material/book/journal and the publisher. You shall also
duplicate the copyright notice that appears in the Wiley publication in your use of the
Wiley Material. Permission is also granted on the understanding that nowhere in the
text is a previously published source acknowledged for all or part of this Wiley
Material. Any third party content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner. You may not alter, remove or suppress
in any manner any copyright, trademark or other notices displayed by the Wiley
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Materials. You may not license, rent, sell, loan, lease, pledge, offer as security,
transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights
granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto. 

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU

WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you. 

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND
WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY
NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY
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LIMITED REMEDY PROVIDED HEREIN. 

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC. 

These terms and conditions together with CCC�s Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns. 

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC�s Billing and Payment terms and
conditions, these terms and conditions shall prevail. 

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment
terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state�s conflict of law rules.
Any legal action, suit or proceeding arising out of or relating to these Terms and
Conditions or the breach thereof shall be instituted in a court of competent jurisdiction
in New York County in the State of New York in the United States of America and
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each party hereby consents and submits to the personal jurisdiction of such court,
waives any objection to venue in such court and consents to service of process by
registered or certified mail, return receipt requested, at the last known address of such
party. 

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses:: Creative Commons Attribution (CC-BY) license Creative
Commons Attribution Non-Commercial (CC-BY-NC) license and Creative Commons
Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND) License. The license type is
clearly identified on the article.

Copyright in any research article in a journal published as Open Access under a Creative
Commons License is retained by the author(s). Authors grant Wiley a license to publish the
article and identify itself as the original publisher. Authors also grant any third party the
right to use the article freely as long as its integrity is maintained and its original authors,
citation details and publisher are identified as follows: [Title of Article/Author/Journal Title
and Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links
to the final article on Wiley�s website are encouraged where applicable.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-commercial re-use of an open access article, as long as
the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors,
including without limitation the right not to have their work subjected to derogatory
treatment. It also does not affect any other rights held by authors or third parties in the
article, including without limitation the rights of privacy and publicity. Use of the article
must not assert or imply, whether implicitly or explicitly, any connection with, endorsement
or sponsorship of such use by the author, publisher or any other party associated with the
article.

For any reuse or distribution, users must include the copyright notice and make clear to
others that the article is made available under a Creative Commons Attribution license,
linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and
without representation or warranties of any kind whether express, implied, statutory or
otherwise and including, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of defects, accuracy, or the presence or
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absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may access, download,
copy, display and redistribute to colleagues Wiley Open Access articles, as well as adapt,
translate, text- and data-mine the content subject to the following conditions:

The authors' moral rights are not compromised. These rights include the right of
"paternity" (also known as "attribution" - the right for the author to be identified as
such) and "integrity" (the right for the author not to have the work altered in such a
way that the author's reputation or integrity may be impugned). 

Where content in the article is identified as belonging to a third party, it is the
obligation of the user to ensure that any reuse complies with the copyright policies of
the owner of that content. 

If article content is copied, downloaded or otherwise reused for non-commercial
research and education purposes, a link to the appropriate bibliographic citation
(authors, journal, article title, volume, issue, page numbers, DOI and the link to the
definitive published version on Wiley Online Library) should be maintained.
Copyright notices and disclaimers must not be deleted. 

Any translations, for which a prior translation agreement with Wiley has not been
agreed, must prominently display the statement: "This is an unofficial translation of an
article that appeared in a Wiley publication. The publisher has not endorsed this
translation." 

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee. Commercial
purposes include:

Copying or downloading of articles, or linking to such articles for further
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redistribution, sale or licensing; 

Copying, downloading or posting by a site or service that incorporates advertising
with such content; 

The inclusion or incorporation of article content in other works or services (other than
normal quotations with an appropriate citation) that is then available for sale or
licensing, for a fee (for example, a compilation produced for marketing purposes,
inclusion in a sales pack) 

Use of article content (other than normal quotations with appropriate citation) by for-
profit organisations for promotional purposes 

Linking to article content in e-mails redistributed for promotional, marketing or
educational purposes; 

Use for the purposes of monetary reward by means of sale, resale, licence, loan,
transfer or other form of commercial exploitation such as marketing products 

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com 

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.9

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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Creative Commons Legal Code

Attribution 4.0 International

Official translations of this license are available in other languages.

Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal
services or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client
or other relationship. Creative Commons makes its licenses and related information available on an “as-
is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons disclaims all liability for damages
resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other
rights holders may use to share original works of authorship and other material subject to copyright and
certain other rights specified in the public license below. The following considerations are for informational
purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give
the public permission to use material in ways otherwise restricted by copyright and certain other rights.
Our licenses are irrevocable. Licensors should read and understand the terms and conditions of the
license they choose before applying it. Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the material as expected. Licensors should clearly
mark any material not subject to the license. This includes other CC-licensed material, or material
used under an exception or limitation to copyright. More considerations for licensors.

Considerations for the public: By using one of our public licenses, a licensor grants the public
permission to use the licensed material under specified terms and conditions. If the licensor’s
permission is not necessary for any reason–for example, because of any applicable exception or
limitation to copyright–then that use is not regulated by the license. Our licenses grant only
permissions under copyright and certain other rights that a licensor has authority to grant. Use of the
licensed material may still be restricted for other reasons, including because others have copyright or
other rights in the material. A licensor may make special requests, such as asking that all changes be
marked or described. Although not required by our licenses, you are encouraged to respect those
requests where reasonable. More considerations for the public.

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and
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conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in
consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the Licensed Material available under these
terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or
based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged,
transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar
Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a
musical work, performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your
contributions to Adapted Material in accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright
including, without limitation, performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or categorized. For purposes of this Public
License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper authority,
may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to
Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public
License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed
Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
i. Share means to provide material to the public by any means or process that requires permission

under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public including
in ways that members of the public may access the material from a place and at a time individually
chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of
the European Parliament and of the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your
has a corresponding meaning.

Section 2 – Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a

worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the
Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its
terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).
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4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to
make technical modifications necessary to do so. The Licensor waives and/or agrees not to
assert any right or authority to forbid You from making technical modifications necessary to
exercise the Licensed Rights, including technical modifications necessary to circumvent
Effective Technological Measures. For purposes of this Public License, simply making
modifications authorized by this Section 2(a)(4) never produces Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights under
the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different
terms or conditions on, or apply any Effective Technological Measures to, the Licensed
Material if doing so restricts exercise of the Licensed Rights by any recipient of the
Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or others
designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for the

exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others

designated to receive attribution, in any reasonable manner requested by the
Licensor (including by pseudonym if designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may
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be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that
includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)
(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter's License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and
Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have
Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights
(but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the
contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or
warranties of any kind concerning the Licensed Material, whether express, implied, statutory,
or other. This includes, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where disclaimers of
warranties are not allowed in full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages
arising out of this Public License or use of the Licensed Material, even if the Licensor has
been advised of the possibility of such losses, costs, expenses, or damages. Where a
limitation of liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner
that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all
liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However,
if You fail to comply with this Public License, then Your rights under this Public License terminate
automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek
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remedies for Your violations of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms

or conditions or stop distributing the Licensed Material at any time; however, doing so will not
terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by
You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein
are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit,
restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without
permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be
automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability of
the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to
unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any
privileges and immunities that apply to the Licensor or You, including from the legal processes of any
jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to
apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under the
CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared under
a Creative Commons public license or as otherwise permitted by the Creative Commons policies
published at creativecommons.org/policies, Creative Commons does not authorize the use of the
trademark “Creative Commons” or any other trademark or logo of Creative Commons without its prior
written consent including, without limitation, in connection with any unauthorized modifications to any of
its public licenses or any other arrangements, understandings, or agreements concerning use of licensed
material. For the avoidance of doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

Additional languages available: Nederlands, Norsk, Suomeksi, українська. Please read the FAQ for more
information about official translations.


