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Abstract

Businesses analyze large datasets in order to extract valuable insights from the data.

Unfortunately, most real datasets contain errors that need to be corrected before any

analysis [1]. Businesses can utilize various data cleaning systems and algorithms to

automate the correction of data errors [2] [3] [4] [5]. Many systems correct the data

errors by using information present within the dirty dataset itself [3] [4]. Some also

incorporate user feedback in order to validate the quality of the suggested data cor-

rections [5] [6]. However, users are not always available for feedback [6]. Hence, some

systems rely on clean data sources to help with the data cleaning process [7] [8]. This

involves comparing records between the dirty dataset and the clean dataset in order

to detect high quality fixes for the erroneous data. Every record in the dirty dataset

is compared with every record in the clean dataset in order to find similar records.

The values of the records in the clean dataset can be used to correct the values of

the erroneous records in the dirty dataset. Realistically, comparing records across

two datasets may not be possible due to privacy reasons. For example, there are

laws to restrict the free movement of personal data [9]. Additionally, different records

within a dataset may have different privacy requirements. Existing data cleaning

systems do not factor in these privacy requirements on the respective datasets [7] [8].

This motivates the need for privacy aware data cleaning systems. In this thesis, we
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examine the role of privacy in the data cleaning process. We present a novel data

cleaning framework that supports the cooperation between the clean and the dirty

datasets such that the clean dataset discloses a minimal amount of information and

the dirty dataset uses this information to (maximally) clean its data. We investigate

the tradeoff between information disclosure and data cleaning utility, modelling this

tradeoff as a multi-objective optimization problem within our framework. We propose

four optimization functions to solve our optimization problem. Finally, we perform

extensive experiments on datasets containing up to 3 million records by varying pa-

rameters such as the error rate of the dataset, the size of the dataset, the number of

constraints on the dataset, etc and measure the impact on accuracy and performance

for those parameters. Our results demonstrate that disclosing a larger amount of

information within the clean dataset helps in cleaning the dirty dataset to a larger

extent. We find that with 80% information disclosure (relative to the weighted op-

timization function), we are able to achieve a precision of 91% and a recall of 85%.

We also compare our algorithms against each other to discover which ones produce

better data repairs and which ones take longer to find repairs. We incorporate ideas

from Barone et al. [10] into our framework and show that our approach is 30% faster,

but 7% worse for precision. We conclude that our data cleaning framework can be

applied to real-world scenarios where controlling the amount of information disclosed

is important.
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Chapter 1

Introduction

Data cleaning is a crucial process for organizations that aim to extract valuable in-

formation from raw data. Most raw datasets typically contain erroneous information

such as misspellings, missing values, etc [1]. Operating on such dirty datasets can lead

to a substantial economic loss. The financial impact of poor data quality is approx-

imated at 600 billion dollars per year on US businesses [11]. Thus, it is essential for

businesses to have efficient and effective data quality tools to minimize financial loss.

For example, British Telecommunications (BT) estimates that such tools provide a

business value of more than £600 million to its organization [12]. In fact, the market

for data cleaning and data quality systems is growing by 16% every year, higher that

the 7% average for the other IT sectors [13].

Data cleaning systems work by automating the correction of data errors. Many

data cleaning systems rely on constraints defined on datasets in order to detect errors

[3] [4] [7] [14] [15] [16] [17]. These errors are corrected so that the resulting dataset

satisfies the constraints. We provide a small example to illustrate how a simple system

might work. Imagine a table containing information about employees, shown in Table
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Table 1.1: Employee table

ID Employee Designation

r1 Ted Designer

r2 Ted Designer

r3 Ted Developer

1.1. Suppose that a constraint has been defined on this table that states that every

unique employee should have a unique designation. We notice that this table does not

satisfy this constraint because the employee “Ted” has two different designations. One

correction might be to change the designation of r3 to be “Designer” while another

might be to change the designation of r1 and r2 to “Developer”. Since the value

“Designer” has a higher frequency in the table compared to “Developer”, an algorithm

might correct the designation of r3 to be “Designer”. However, data cleaning is often

subjective [6]. It is possible that the designation of r1 and r2 should be changed

to “Developer” instead, even though the value “Developer” has a low frequency in

Table 1.1. Moreover, if two values have an equal frequency within the table, it is not

clear how to correct errors within the table. Some systems solve these problems by

involving user feedback to filter out undesirable data repairs [5] [6]. However, users

are not always available for feedback [6]. Also, if an algorithm cannot proceed unless

it receives user feedback and users are unavailable, then this could negatively impact

the efficiency of the cleaning algorithm.

Some systems produce data repairs by performing a record matching step along

with the data repairing step [7] [8]. Record matching involves identifying records

that refer to the same real-world entity [18] [19] while data repairing refers to finding

2
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Table 1.2: Clean employee table

Employee Designation

Ted Designer

Teddy Database Admin

another dataset that minimally differs from the dirty dataset such that the errors

in the dirty dataset were fixed [15] [16]. For example, if we have another table that

contains correct values, Table 1.2, then we know that “Ted” is really a “Designer”.

Hence, we can fix the data values in Table 1.1 by changing the designation of r3 to

be “Designer”. In the industrial setting, companies like IBM, SAP, Microsoft and

Oracle often maintain tables that contain correct and consistent information [8]. The

information contained within such tables is referred to as master data, and we refer

to such tables as master tables [20]. In this context, we prefer to address the dirty

table as the target table [3]. Master tables contain high-quality and reliable data,

providing users with a unified and synchronized view of its underlying core business

entities. Prior work that uses master data for data cleaning assumes that the master

data is publicly available [7] [8]. However, master data is often not disclosed publicly.

Hence, data privacy is an important concern for systems that involve master data.

Moreover, different records have different privacy requirements. For example, let

us assume that a master table consists of names and the postal code associated with

each name. Imagine that two records exist in this table: “John Kerry, L4M 5P3”

and “John Doe, M4P 8E8”. Revealing “John Kerry, L4M 5P3” might be undesirable

because “John Kerry” is a famous politician and we do not want to reveal the postal

code associated with the politician “John Kerry”. In contrast, revealing “John Doe,

3
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M4P 8E8” might be more acceptable because “John Doe” is not a famous personality.

We present a novel data cleaning framework where data privacy is an important

concern. Our framework facilitates cooperation between the master data and the

target data so that the master data discloses a minimal amount of information and

the target data uses this information to (maximally) clean its values. We provide

measures to quantify information disclosure and data cleaning utility. These measures

are defined over embedded records, which are records that have been obfuscated in

some manner. This ensures that our data cleaning algorithm does not operate over

the actual records but only over the embedded records. Our data cleaning algorithm

involves solving a multi-objective problem consisting of three objectives.

1. The pvt objective involves minimizing information disclosure from the master

table.

2. The ind objective involves maximizing data cleaning utility on the target table.

3. The changes objective involves minimizing the number of data updates that

are to be performed on the target data.

We model the interaction between our three objectives using four optimization

functions. Finally, we perform extensive experiments on real datasets in order to

validate our framework. Our results show that disclosing a larger amount of infor-

mation within the master data helps in cleaning the target data to a larger extent.

We find that with 80% information disclosure (relative to the weighted optimization

function), we are able to achieve a precision of 91% and a recall of 85%. We also

compare our algorithms against each other to discover which ones produce better

quality data repairs and which ones take longer to find repairs. We incorporate ideas

4
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from Barone et al. [10] into our framework and show that our approach is 30% faster,

but 7% worse for precision. We conclude that our data cleaning framework can be

applied to scenarios where master datasets are not publicly disclosed and different

records within the master datasets have different privacy requirements.

1.1 Contributions

1. We present a novel data cleaning framework that supports the cooperation

between the master data and the target data such that the master data discloses

a minimal amount of information and the target data uses this information to

(maximally) clean its values.

2. We use ideas from information theory to model information disclosure (by re-

vealing master data) and data cleaning utility (on the target data). Our infor-

mation disclosure measure is an extension of the measure proposed by Arenas

et al. [21]. The data cleaning utility measure was proposed by Dalkilic et al.

[22].

3. We define a multi-objective optimization problem based on the information

disclosure measure and the data cleaning utility measure, and utilize four opti-

mization functions to model the optimization problem. The four optimization

functions are popular methods of modeling multi-objective optimization prob-

lems in optimization literature. The solution to our optimization problem is a

set of data updates that can be made to the target dataset in order to clean it.

4. We implement our framework and perform extensive experimental evaluation

on datasets containing up to 3 million records.

5
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Note that our data cleaning algorithm operates on obfuscated records, and not

actual records. This protects the privacy of individual records.

1.2 Thesis outline

The outline of the thesis is as follows. Chapter 2 provides background information

about the relational model, functional dependencies and information theory. Chapter

3 describes research that is related to our work. Chapter 4 gives an overview of our

framework. Thereafter, we examine each step of the framework in greater detail

between Chapters 5 and 8. In Chapter 9, we provide an implementation of our

framework and perform extensive experiments on large datasets. Finally, we present

our conclusions and avenues for future research in Chapter 10.
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Chapter 2

Background

2.1 Relational model

We assume that the target data and master data is stored in tables known as relations.

A single row in the table represents a single tuple (or record), and each tuple can be

described by a set of columns known as attributes. For some tuple, each attribute

can only be associated with a single value from a set of allowed values, known as the

attribute domain. The set of tuples in a relation can be denoted by I and the total

number of tuples is given by the cardinality of I, denoted by N = |I|. One example of

a relation is shown in Table 2.1. This target table contains 5 tuples and 7 attributes:

tid, ClinicId, FName, LName, Gender, DOB and Illness. Another table is shown

in Table 2.2. This master table contains 3 tuples and the same 7 attributes as the

target table.

Many popular database management systems follow the relational model and are

ubiquitous in industrial applications [23]. Conceptually, relations are easy to under-

stand and visualize. Often, business owners define rules over tables in an attempt to
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Table 2.1: Target table

tid ClinicId FName LName Gender DOB Illness

t1 542334 Alex Smith Female 20081977 Flu

t2 542334 Alex Smith Male 10081989 Allergies

t3 882081 Barry Burns Male 26082004 Flu

t4 882081 Barry Burns Female 26082004 Allergies

t5 882081 Barry Burns Male 26082004 Flu

Table 2.2: Master table

tid ClinicId FName LName Gender DOB Illness

m1 542334 Alexis Smith Female 20081977 Flu

m2 542334 Alex Smith Male 10081989 Allergies

m3 882081 Barry Burns Male 26082004 Flu

control the quality of the data that is stored in the tables. Incoming data that violate

these rules need to be examined carefully. These rules are known as constraints, and

a variety of constraints exist in the literature [4] [14] [24] [25]. We focus on constraints

known as functional dependencies because they are frequently used to enforce data

consistency and are essential in helping to maintain and improve data quality [14]

[23] [26].

2.2 Functional dependencies

Let us assume that X and Y are two attribute sets in some relation I. A particular

functional dependency (FD) over I can be written as F : X → Y , where X is referred

8



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

to as the antecedent while Y is referred to as the consequent. I is said to satisfy F ,

denoted as I � F if and only if for every pair of tuples t1 and t2 where t1, t2 ∈ I,

t1[X] = t2[X] implies that t1[Y ] = t2[Y ]. Note that the notation t1[X] represents

a projection of t1 onto the attributes X. For example, the following two FDs are

defined over both the datasets in table 2.1 and table 2.2.

F1 : [FName, LName]→ [DOB]

F2 : [ClinicId,DOB]→ [Illness]

F1 states that a specific first and last name of a patient corresponds to a unique

patient date of birth. In table 2.1, “Alex, Smith” corresponds to “20081977” in t1

while the same “Alex, Smith” corresponds to “10081989” in t2. This is a violation of

F1, so table 2.1 does not satisfy F1. On the other hand, table 2.2 does satisfy F1. In

fact, Table 2.2 satisfies both FDs (denoted by Σ, where Σ = {F1, F2}).

2.3 Information theory

In this section, we provide a brief background on two concepts: self-information and

entropy.

Let us assume a discrete source of information X that can produce outputs from

the set A = {a1, ..., an}. Each output is associated with a probability of occurring,

given by {p1, ..., pn}. Self-information, which is the information contained in a partic-

ular output, is defined as I(X = aj) = log 1
pj

, where aj ∈ A and pj is the probability

of aj occurring [27]. Self-information, also known as the Shannon information content

of an output [28], satisfies the following four conditions [27].

1. The self-information of an output aj depends on pj and not the value of aj.

9
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2. Self-information is a continuous function.

3. If an output ai ∈ A is less likely than another output aj ∈ A, then observing ai

conveys more information than observing aj i.e., self-information is higher for

ai compared to aj.

4. If the information about an output aj can be broken up into two independent

outputs aj1 and aj2, then the amount of information gained by revealing aj is

equal to the amount of information gained by revealing aj1 plus aj2 because aj1

and aj2 are independent pieces of information.

The entropy of the information source X is defined as the weighted average of the

self-information of all the outputs. Formally, H(X) =
n∑

j=1

pj log 1
pj

. Entropy captures

the “uncertainty” of the information source X. The higher the entropy, the lower the

certainty with which we can predict a value from X.

10



Chapter 3

Related Work

We propose a privacy aware data cleaning framework. Consequently, our work finds

similarities with two areas of research: data cleaning and data privacy.

3.1 Data cleaning

There is a large amount of work related to data cleaning using constraints [3] [4] [7]

[14] [15] [16] [17]. These constraints express certain requirements and semantics that

the data must satisfy. Bohannon et al. use equality classes to group together tuples

for which similar updates will be suggested to fix the erroneous values (i.e., to repair

the erroneous values) [4]. A variety of heuristics are presented that manipulate the

content of each equality class based on the cost of adding tuples to the class. All

tuples in final set of equality classes will be updated so that all constraints (a set

of functional dependencies and inclusion dependencies) are satisfied. Other systems

also incorporate equivalence classes but handle a larger variety of constraints [3].

In fact, a large amount of existing research is concerned with data cleaning with a

11
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variety of constraints such as functional dependencies [25], functional dependencies

and inclusion dependencies [4], conditional functional dependencies [24], edit rules

[16]. However, previous work does not consider data privacy in relation to data

cleaning. We define measures to quantify information disclosure and incorporate this

directly into our data cleaning algorithm. For example, unlike Bohannon et al. [4],

our cost model incorporates a component for information disclosure. Our algorithms

try to find repairs that are maximally beneficial in cleaning dirty data while at the

same time, suggested repairs minimize information disclosure. Moreover, we utilize

four different optimization functions to find data repairs for the target dataset.

User interaction is another important aspect of data cleaning, and some systems

involve user feedback in order to improve their algorithms [5] [6]. For example, Yak-

out et al. use a classifier in order to predict the quality of data repairs [5]. When

users select any suggested repairs, this feedback is channelled back into retraining the

classifier. Volkovs et al. are able to find repairs to the constraints too, in addition to

data repairs [6]. This is accomplished by leveraging a cost model to determine if the

data is dirty, or if the constraint itself is incorrect [26]. Again, user feedback is used to

retrain the classifier. Our work can be similarly extended to include a user feedback

component. For example, all the data repairs that are suggested can be evaluated by

the target dataset. If too many of the suggested data repairs are rejected, then the

quality of repairs can be improved by automatically increasing the record matching

threshold between the target dataset and the master dataset. This will improve the

quality of the record matches which will lead to an improvement in the quality of the

data repairs.

There are a variety of algorithms that rely on master data for data cleaning [7] [8].

12
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For example, one algorithm uses editing rules (constraints) in order to perform tuple-

by-tuple data repairs [7]. These editing rules are defined over both the master data

and the target data. Another algorithm proposed by Fan et al. interleaves the record

matching and data repairing steps in order to clean data [8]. Fan et al. examine three

algorithms: one that relies on user-defined confidence values over the data, another

that uses entropy to quantify the relative certainty of data and finally, a heuristic

that produces lower quality repairs compared to the first two algorithms. Unlike Fan

et al., we do not use matching dependencies to drive the record matching process

[8]. However, our algorithm also interleaves the record matching and data repair-

ing steps. For the confidence-based algorithm, users are required to place confidence

scores on the data, whereas none of our algorithms assume heavy user involvement [8].

More importantly, our data cleaning algorithm operates over embedded (obfuscated)

records. This ensures that our data cleaning algorithm is unable to directly view the

data values that are involved within the algorithm. In addition, our data cleaning

algorithm tries to minimize the information that is disclosed from the master data

while maximizing the data cleaning utility to the target dataset. This is done by solv-

ing a multi-objective optimization problem which involves measures for information

disclosure and data cleaning utility.

3.2 Data privacy

Data privacy requires that information must be concealed, but there are various

interpretations of what constitutes data privacy and different ways to address these

concerns.

In the database community, microdata records contain unperturbed information

13



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

about specific individuals and microdata publishing is concerned with the sanitiza-

tion of this information. One area of research focuses on membership disclosure (i.e.,

checking if a specific individual is present in the published table) [29] [30]. Another

popular area of research is focused on sensitive attribute disclosure, that involves

concealing the association of quasi-identifier attributes (i.e., those that can serve as

an identifier for an individual) with sensitive attributes (i.e., attributes that contain

sensitive values like private medical data). The techniques here include generalizing

data values (e.g., a person’s specific age can be generalized to a numeric range) or

suppressing data values in order to satisfy some notion of privacy like k-anonymity

or l-diversity. For example, k-anonymity requires that every record with some spe-

cific quasi-identifier values be indistinguishable from at least k-1 other records in the

published table [31]. However, if all records within this group are associated with the

same sensitive attribute value, then privacy can be breached if an attacker knows that

some individual is in that group [32]. Unlike k-anonymity, we are more interested in

defining a measure that can model the privacy of individual data values. We aim to

incorporate our measures in data cleaning applications where both data privacy and

data cleaning utility are important.

Closer to our research is work that examines tradeoffs between privacy and data

utility [32] [33] [34]. Kifer et al. propose a way to inject utility into k-anonymous

and l-diverse tables by publishing additional contingency tables along with the k-

anonymous and l-diverse tables [32]. Rastogi et al. define utility as the ability to ac-

curately estimate statistical queries on published private tables [33]. Finally, Brickell

et al. consider utility gain for classification tasks over private tables [34]. It is evident
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that data utility can be defined in a variety of ways. We are in agreement with Brick-

ell et al. that utility measurements are dependent on the specific task that is being

performed on the dataset [34]. We are interested in data utility in the context of

data cleaning. We use the information dependency measure to quantify the amount

of data cleaning utility on a dataset [22]. We also propose a model for measuring

the amount of information that is disclosed by a dataset. Thereafter, a tradeoff be-

tween information disclosure and data cleaning utility is modeled as a multi-objective

optimization problem, where the information disclosure is minimized while the data

cleaning utility (measured using information dependency) is maximized.

To the best of our knowledge, our work is the first of its kind to examine the

tradeoff between information disclosure and data cleaning utility. A comparative

experiment is detailed in Chapter 9 where we compare SparseMap embedding [35]

(used in our framework) with Bourgain embedding [10]. These embeddings are used

to perform record matching in our framework. We show that SparseMap is 30%

faster, but 7% worse in terms of precision. Additionally, we note that our information

disclosure measure is an extension of the measure proposed by Arenas et al. to measure

the quality of a database design [21]. The difference is that we incorporate frequency

information into the measure. This will be described in Chapter 6.
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Chapter 4

Framework Overview

In this chapter, we describe our novel data cleaning framework that facilitates the

cooperation between the target and master datasets so that the master dataset dis-

closes a minimal amount of information and the target dataset uses this information

to (maximally) clean its data.

Figure 4.1 shows the steps involved in our framework. Three parties are involved

in the framework: the master dataset, the target dataset and the third-party. All

three parties are assumed to be semi-honest i.e., these parties will follow the steps

outlined in our framework but might try to infer additional information if possible.

4.1 Master dataset

The master dataset has two main responsibilities: (i) embedding the master table,

and (ii) building an information content table.

The embedding step is a process that obfuscates the values in the records. We

embed the records before sending them to the third-party because we want to preserve
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Figure 4.1: Data cleaning framework

the privacy of the records from the third-party (since the third-party is semi-honest).

The master dataset creates an information content table and sends it to the third-

party so that the third-party can measure information disclosure when values are

revealed from the master table. The information content table duplicates the tuples

and attributes in the master table. Every cell in the information content table contains

an information content score (a cell is a unit where a row and column intersect).

A higher information content score indicates that the corresponding value in the

master table contains a high amount of information. Revealing a value with a high

information content score represents a high amount of information disclosure by the

master dataset. The construction of the information content table is carried out by

utilizing our novel privacy model.

4.2 Target dataset

The target dataset has two key responsibilities: (i) embedding the target table, and

(ii) detecting violations. The embedding step for the target table is performed in a
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similar manner as the embedding step for the master table.

The violation detection step involves finding records that are inconsistent with

respect the constraints. The target dataset hopes to clean these records by receiving

data value updates.

4.3 Third-party

The third-party consists of two modules: (i) the private record matching module and

(ii) the recommendation engine.

Private record matching is performed between the embedded master records and

the embedded target violations. This involves comparing the embedded records be-

tween the master table and the target table in order to identify embedded records that

refer to the same real-world entity. Since the comparison is performed on embedded

records (obfuscated records) and not on actual attribute values, privacy is preserved

during the record matching phase of the framework. The third-party performs record

matching in order to determine which data values in the embedded master table

should be sent to the target dataset so that it can clean its data values. However, the

third-party does not know the actual data values in either dataset. Only the actual

data values can be used to clean the target data. Hence, the third-party has to ask

the master dataset to reveal the actual data values directly to the target dataset.

The third-party indicates this by sending a set of master record identifiers and the

corresponding attributes to the master dataset. This is the central task of the third-

party: to determine the set of master record identifiers and attributes that minimize

the amount of information disclosed (by the master dataset) while maximizing data

cleaning utility (to the target dataset). This is difficult, because the third-party only
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knows the embedded records (and the record identifiers) but not the actual record

values. We introduce measures to calculate information disclosure and data cleaning

utility on the embedded records.

4.3.1 Recommendation engine

The recommendation engine is a module within the third-party whose objective is

to find a set of master record identifiers (ids) and attributes that minimize informa-

tion disclosure (by the master dataset) while maximizing the data cleaning utility

(to the target dataset). These record ids and attributes are determined by solving a

multi-objective optimization problem that consists of three objectives: an objective to

control information disclosure (privacy), an objective to control data cleaning utility,

and an objective to control the size of the solution. The search module within the rec-

ommendation engine is tasked with finding solutions to the multi-objective problem.

Solving the multi-objective problem involves searching within the space of possible

master ids and attributes, and finding the set of master record ids and attributes that

minimize the three objectives. For a set of master record ids and attributes, infor-

mation disclosure is determined by referring to the information disclosure table while

data cleaning utility is determined by using the information dependency measure.

The information dependency measure is based on entropy, so that a lower informa-

tion dependency is more desirable for data cleaning. By solving the multi-objective

optimization problem, the recommendation engine returns a set of master record ids

and attributes that should be revealed to the target dataset. The third-party sends

the master record ids and attributes to the master dataset, who then reveals the data

values directly to the target dataset. However, the target dataset does not know which

19



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

tuples should be repaired even after receiving data values from the master dataset.

Hence, the third-party indicates the target record ids and attributes that should be

updated for each data value that is revealed by the master dataset.
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Chapter 5

Private Record Matching

The central contribution of this thesis is our end-to-end data cleaning framework that

minimizes the information that is disclosed by the master dataset and maximizes the

data cleaning benefit to the target dataset. In this section, we describe how the

target dataset discovers violations that need to be cleaned, and how these violations

are matched with the master tuples in order to discover similar tuples between the

two datasets. By discovering similar tuples, the values of the clean master tuples can

be used to clean the errors in the target violations.

5.1 Detecting Violations

Let us assume that some FD F : X → Y is defined over some target dataset T .

By the definition of an FD, T � F if and only if for every pair of tuples t1 and t2,

t1[X] = t2[X] implies that t1[Y ] = t2[Y ]. If t1[X] = t2[X] but t1[Y ] 6= t2[Y ], then t1

and t2 violate F , and are considered violations. The violation detection procedure is

shown in Algorithm 1.
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Algorithm 1 calcViolations(T , f): Target dataset T , f : X → Y
Returns all the violations with respect to F .

1: Define a set V , initialized to ∅.

2: for all pairs (ri, rj) ∈ T × T do

3: if ri[X] = rj[X] and ri[Y ] 6= rj[Y ] then

4: V ← V ∪ {ri, rj}

5: end if

6: end for

7: return V

Algorithm 1 accepts a target dataset T and an FD f : X → Y as the input. Note

that T here refers to a collection of tuples. In line 1, we define a set V that will

contain all the violations. In line 2, we loop over all the pairs of records in T . The

violation detection step can be seen in line 3, and all records that pass this check are

added to the violation set in line 4. Finally, the set of violations is returned in line

7. In Algorithm 1, we only identify violations where ri[X] = rj[X] and ri[Y ] 6= rj[Y ].

However, we can easily extend this algorithm to also include the violations that are

produced when ri[Y ] = rj[Y ] and ri[X] 6= rj[X]. This is necessary if we want to

discover violations with respect to all the attributes in an FD.

Running example In table 2.1, notice that tuples t1 and t2 violate F1, hence

{t1, t2} ⊂ V , where V contains all the violations. Note that the master dataset

M in table 2.2 does not violate any of the constraints because M is a clean dataset.

We have described how T can discover violations with respect to F . We now

provide an algorithm to group these violations and order the groups. This ordering

determines which groups will be sent for data repair first.

The orderV iolations algorithm accepts the violations V and an FD f : X → Y
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Algorithm 2 orderViolations(V , f): Violations V , FD f : X → Y
Orders the violations into violation chunks (groups) by descending size.

1: Define a hashmap D with no keys.

2: Define an empty list G.

3: for r ∈ V do

4: k ← r[X]

5: D[k]← D[k] ∪ r

6: end for

7: for (k,R) ∈ D do

8: G← G ∪R

9: end for

10: sort G in descending order by the size of its elements

11: return G

and orders the violations in V into groups. Violations are grouped by the antecedent

of the FD and inserted into a hashmap (line 3-6). We refer to each group as a violation

chunk. The contents of the hashmap are then added to G (lines 7-9). Finally, G is

sorted by the size of its elements (line 10) and returned (line 11). The reasoning is

that a larger violation chunk should be processed (by our data cleaning framework)

before a smaller violation chunk because T wants to greedily repair as many of its

data values as possible.

5.1.1 Ordering a set of FDs

For a set of FDs Σ, we process the FDs in descending order with respect to the

number of violations. We process FDs with the most inconsistencies first due to their
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possible overlap with other FDs. The FD ordering procedure is shown in Algorithm

3.

Algorithm 3 orderFDs(T , Σ): Target dataset T , a set of FDs Σ
Orders FDs by the number of violations with respect to each FD.

1: Define a hashmap D with no keys.

2: Define an empty list Σo.

3: for F ∈ Σ do

4: D[F ]← calcV iolations(T, F )

5: end for

6: Do ← sort D in descending order by the size of the violations

7: for (f, V ) ∈ Do do

8: Σo ← Σo ∪ f

9: end for

10: return Σo

Algorithm 3 accepts a target dataset T and a set of FDs Σ. In lines 3-5, violations

are calculated with respect to every FD F and inserted into a hashmap. The hashmap

consists of key-value pairs, where every key is an FD and the value is the number of

violations for that FD. In line 6, the hashmap is sorted so that an entry with a higher

number of violations is ordered first. In line 7-9, the keys of the ordered hashmap

(FDs) are inserted into a list Σo and in line 10, this list is returned.

5.2 Record matching for an FD

Once the target dataset has identified the violations with respect to some FD, it would

like to fix these violations in order to satisfy the FD. Fixing the violations refers to
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updating the data values of the target tuples so that the target dataset is closer to

satisfying the current FD. The clean data values that are used to update the target

tuples reside in the master dataset. These clean tuples within the master dataset are

determined via record matching. For example, imagine that ri, rj ∈ T are violations

with respect to some FD F : X → Y i.e., ri[X] = rj[X] and ri[Y ] 6= rj[Y ]. We perform

record matching to determine that ri and rj are very similar to rk ∈M . Hence, if we

update ri[Y ] ← rk[Y ] and rj[Y ] ← rk[Y ], then we have fixed the violations because

ri[Y ] = rj[Y ]. These updates are also known as data repairs. Note that it is possible

that ri and rj may match multiple tuples in the master dataset, and our subsequent

examples illustrate this case. In this section, we focus on the record matching process.

Record matching involves comparing records between two datasets in order to

detect similar records. This comparison is based on a distance metric, like string edit

distance, and involves one or more attributes. Record matching helps us identify the

clean master tuples that can be used to repair the violating target tuples. Existing

data cleaning research assumes that both the target and master datasets are avail-

able publicly [7] [8]. However, there may be data privacy regulations defined over

the dataset that restrict the records that are observable by outside parties. For ex-

ample, consider a hospital that has a master dataset containing patient information

for an entire district. Imagine a clinic that wants to clean its target table containing

information about its own patients with the help of the hospital records. The hos-

pital cannot simply reveal all its records since they might contain sensitive patient

information for specific individuals who are not part of the clinic. Thus, the hospi-

tal may not want to disclose all its tuples when performing the comparison in the

record matching phase. Instead, the hospital may only want to disclose the tuples
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that match across the two datasets while hiding the tuples that do not match. To

solve this problem, we introduce a third-party W to help with the record matching.

A key condition is that W should not be able to observe the data values in either of

the datasets when performing the record matching in order to protect the privacy of

the individual records. One way to accomplish this is to embed the data values into

a vector space so that the actual values stay hidden to W . Record matching can then

be performed on embedded records instead of the actual records.

We apply a metric embedding method known as SparseMap, using a similar ap-

proach as Scannapieco et al. [35]. The embedding method is carried out by the target

and master datasets and the embedded records are sent to the third-party. The em-

bedding hides the actual data values from the third-party. The embedding method

consists of four steps:

1. Building a generator set. This is a set of random strings that are built together

by the target and master datasets. The generator set is used to create the

reference set in the next step.

2. Building a reference set. The reference set is created using the generator set.

Records can be embedded using the reference set. However, embedding will be

slower because it involves a large number of string edit distance calculations.

Instead, if we embed the reference set first, we can reduce the number of string

edit distance calculations by using intermediate euclidean distance calculations.

3. Embedding the reference set. This set is generated from the reference set.

Records are embedded using both the reference set and the embedded reference

set.
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4. Embedding the records. Finally, the target and master records are embedded

using both the reference set and the embedded reference set. The target and

master datasets send the embedded records to the third-party, who performs

record matching using the embedded records in order to protect the privacy of

individual records.

5.2.1 Building a generator set

The generator set is a set of strings that will be used to generate a reference set, and

all records will be embedded using the reference set. The same generator set is shared

by target dataset T and master dataset M . Thus, T and M work together to decide

the size of the generator set, N , and the length of each string within the set, x. They

then generate a set of N random strings where each random string has a length of x.

Running example Let us assume that T in Table 2.1 wants to embed the violations

t1 and t2 with respect to the FName attribute and send t1[FName] and t2[FName]

to W . Similarly, M in Table 2.2 wants to embed m1-m3 with respect to FName

and send these to W . Let us assume that T and M agree that the generator set size

should be equal to 10 and that the length of each random string in the set should

be equal to 7. One generator set is (GEtuzDz, DUOcGCk, DZHOgUD, XDtiVZm,

JyeruGf, bKLQQID, uOxjCpT, rJmnZaU, OfmUnlC, MJZCIOn). We will use this

generator set to build the reference set, and our records will be embedded using the

reference set.
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5.2.2 Building a reference set

In the second step, the generator set is used to create a reference set so that the

records can be embedded using the reference set. Each element of the reference set

is a (randomly chosen) subset of the original generator set. The number of subsets

is approximated by blog2Nc2 where N is the size of the generator set. Assuming

that the subsets are given by {S1, ..., Sk}, each subset Si has a size 2q where q =

b(i− 1)/(log2N) + 1c [35].

Running example One possible reference set corresponding to the earlier gener-

ator set is {S1, S2, ..., S9} ← {(DZHOgUD, uOxjCpT), (DZHOgUD, DUOcGCk),

..., (JyeruGf, JyeruGf, bKLQQID, OfmUnlC, DZHOgUD, uOxjCpT, DZHOgUD,

DUOcGCk)}. We have 9 elements in the reference set because blog2 10c2 = 9.

We now have the reference set and can embed our records using this reference

set. Unfortunately, embedding the records using the reference set is an expensive

process (known as Bourgain embedding [10]). This is because it involves a large

number of string edit distance calculations. An alternative embedding procedure,

called SparseMap embedding was proposed so that the records could be embedded in

a faster manner [35]. The idea is to embed the reference set itself. Since the embedded

reference set consists of numeric vectors while the reference set in Bourgain embedding

consists of string vectors, we can use the euclidean distance metric to perform some

intermediate calculations and reduce the number of string edit distance calculations

needed for embedding the records. In the next step, we describe how the embedded

reference sets are created from the reference sets.
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5.2.3 Embedding the reference set

The target and master datasets embed the reference set to create embedded refer-

ence set because we can use the embedded reference set to speed up computation.

For example, we can embed S1 (from our running example), which is (DZHOgUD,

uOxjCpT), as follows:

• (d(DZHOgUD, S1), d(DZHOgUD, S2), ..., d(DZHOgUD, S9))← (0.0, 0.0, ..., 0.0)

• (d(uOxjCpT, S1), d(uOxjCpT, S2), ..., d(uOxjCpT, S9)) ← (0.0, 6.0, ..., 0.0)

Another example is embedding S2 (from our running example), which is (DZHOgUD,

DUOcGCk) as follows:

• (d(DZHOgUD, S1), d(DZHOgUD, S2), ..., d(DZHOgUD, S9))← (0.0, 0.0, ..., 0.0)

• (d(DUOcGCk, S1), d(DUOcGCk, S2), ..., d(uOxjCpT, S9)) ← (6.0, 0.0, ..., 0.0)

Here d refers to a distance function that accepts a string as the first argument,

a set of strings as the second argument and returns the closest distance between its

first argument and a member of the second argument. To elaborate, d(DZHOgUD,

S1) is the nearest distance between DZHOgUD and (DZHOgUD, uOxjCpT), which

is 0. This is calculated by selecting the minimum edit distance between DZHOgUD

and the elements of (DZHOgUD, uOxjCpT). Hence, 0 is the first coordinate of the

embedded vector of DZHOgUD. The second coordinate would be d(DZHOgUD, S2),

which is the minimum distance between DZHOgUD and (DZHOgUD, DUOcGCk),

which is 0. Thus, we are able to build the vector corresponding to DZHOgUD in S1.

We can follow the same process to calculate the vector corresponding to uOxjCpT in

S1. Since there are no more elements in S1 to embed, we move on to embedding all
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the elements in S2 as shown, and repeat till S1, ..., S9 are all embedded to produce

S ′1, ..., S
′
9.

5.2.4 Embedding the records

The final step is for the target and master datasets to embed their records using both

the reference set and the embedded reference set. Let us denote A as some attribute

within some record r. We embed the value v = r[A] with respect to the embedded

reference set by using Algorithm 4.

Algorithm 4 accepts the data value to be embedded v, the reference set {S1, ..., Sn}

and the embedded reference set {S ′1, ..., S ′n}. In line 1, we define an empty array that

will contain the embedded data value. In line 2-3, we define two integers used to track

some metadata within our algorithm. In line 4, the first coordinate of D is determined

by the function d(v, S1) defined in Section 5.2.3. Lines 5-15 are used to determine the

rest of the coordinates of D. In line 5, we loop through each member of the embedded

reference set S ′i, starting from the second member. For each numeric vector oj ∈ S ′i

(line 6), we calculate the euclidean distance between the i− 1th coordinate of oj and

the i− 1th coordinate of D and check if it is bigger than integer m (line 7). In simple

terms, lines 6-11 are performed to determine the index of the numeric vector p so

that the distance between D[i − 1] and oj[i − 1] is minimized. In line 12, the string

edit distance between v and the string Si[p] is calculated and added to the embedded

data value D. In line 13-14, we just reset the values of the two integers. Finally, the

embedded data value D is returned.

Running example From our running example, the target dataset wants to embed

t1[FName] and t2[FName] in Table 2.1 while the master dataset wants to embed
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Algorithm 4 embedValue(v, {S1, ..., Sn}, {S ′1, ..., S ′n}): Data value v, Reference set
{S1, ..., Sn}, Embedded reference set {S ′1, ..., S ′n}
Embeds v with respect to {S1, ..., Sn} and {S ′1, ..., S ′n}.
1: Define an empty array D with n entries.

2: Define integer m as the maximum possible integer value.

3: p← 0

4: D[0] ← d(v, S1)

5: for S ′i ∈ {S ′2, ..., S ′n} do

6: for oj ∈ S ′i do

7: if m > |D[i− 1]− oj[i− 1]| then

8: p← j

9: m← |D[i− 1]− oj[i− 1]|

10: end if

11: end for

12: D[i]← string edit distance between v and Si[p]

13: p← 0

14: Reinitialize m to maximum possible integer value.

15: end for

16: return D
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m1[FName]−m3[FName] in Table 2.2. We show how to embed t1[FName], which is

“Alex”, using the reference set {S1, ..., S9} and the embedded reference set {S ′1, ..., S ′9}.

The target dataset embeds “Alex” by first computing d(“Alex”, S1) i.e., finding the

minimum distance between “Alex” and S1. This is 7.0, following the definition of d in

Section 5.2.3. Hence, 7.0 is the first coordinate of the numeric vector that is produced

by embedding “Alex”. Next, the second coordinate is found by computing:

1. |7.0 - first coordinate of first vector of S ′2| = |7.0 - 0.0| = 7.0

2. |7.0, first coordinate of second vector of S ′2| = |7.0 - 6.0| = 1.0

. The minimum distance of 1.0 was due to the second vector. The second vector in S ′2

corresponds to the second vector in S2, which is “DUOcGCk”. Now we calculate the

string edit distance between “Alex” and “DUOcGCk”, which is 7.0. This is the second

coordinate of the numeric vector that represents the embedded value of “Alex”. So

far, our embedding of “Alex” has the coordinates (7.0, 7.0). We continue to apply

the heuristic by using S ′3, ..., S ′9 and finally obtain the numeric vector for “Alex”.

Some of the security properties of the embedding procedure were described by

Scannapieco et al. [35]. For example, they showed that the length of the original

data values in either T or M are not disclosed to W because W is not involved in

creating the reference set and the embedded reference set. Moreover, T and M can

control the size of the embedded values that are sent to W by controlling the size of

the generator set and the length of each string within the generator set.

5.2.5 Matching

We have described the procedure for embedding data values in the records. T and M

embed all the data values in their records and send these to W for record matching.
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Note that every embedded record that is sent by T and M is tagged with a record

identifier (id) so that W can return information about the matched tuple ids to T

and M .

The third-party matches the target violations with the entire master dataset for

a set of attributes {A0, ..., An}. To match a set of violations with the master tuples,

W loops through every violation (or symmetrically, every master tuple) and com-

putes the euclidean distance between the embedded data values for the attributes in

{A0, ..., An}. If the distance between the data values for two records for all attributes

together in {A0, ..., An} is lesser than a user specified similarity threshold τ , then a

match has been found. Note that there could be multiple matches for a single target

tuple below the matching threshold τ . Formally, let us denote the matches for the

attributes of an FD F : X → Y byMF = {(rm, rt)|rm ∈M ′, rt ∈ T ′,match(M ′, T ′)}

where M ′ and T ′ refer to the embedded datasets corresponding to M and T respec-

tively and match(M ′, T ′) refers to the matching procedure described in this para-

graph.

Running example The matches for the target violations t1 and t2 in Table 2.1

with respect to the attributes in F1 : FName, LName → DOB is given by MF1 =

{(m1, t1) (m2, t1), (m2, t2)} for τ = 0.8. Here, (m1, t1) ∈ MF1 means that “Alex,

Smith, 20081977” matches “Alexis, Smith, 20081977”, although the third-party does

not know these values since it only has the embedded values.

We have described how the target and master datasets can embed their records

and how the third-party can compute matches on these embedded records. We now

present the overall embedding and matching algorithm described in this section. This

algorithm is shown in Algorithm 5. Note that in order to improve the running time
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of the matching operation, the dimensionality of every embedded data value (which

is a numeric vector as shown in our example) in every embedded record is reduced

first [35].

Algorithm 5 embeddingAndMatching(T , M , f): Target dataset T , Master dataset
M , f : X → Y

1: g0, ..., gn ← create n random strings of length x

2: s0, ..., sz ← select z random subsets of g0, ..., gn

3: s′0, ..., s
′
z ← embed s0, ..., sz

4: T ′ ← embed T w.r.t s0, ..., sz and s′0, ..., s
′
z and reduce dimensions from z to k

(user defined)

5: M ′ ← embed M w.r.t s0, ..., sk and s′0, ..., s
′
k

6: MF ← {(rm, rt)|rm ∈M ′, rt ∈ T ′,match(M ′, T ′)}

7: return (T ′,M ′,MF )

Algorithm 5 accepts the target dataset T , the master dataset M and an FD

f : X → Y . In line 1, the generator sets are created. In line 2, the reference sets

are created from the generator sets and subsequently embedded in line 3. In line 4,

the target dataset is embedded with respect to the reference set and the embedded

reference set. At the same time, the dimensionality of each data value in the target

is reduced from z to k following [35]. Next, M is embedded (line 5). In line 6, the

embedded datasets are matched with respect to the attributes in f and the matches

are produced. Finally, the algorithm returns the embedded target T ′, embedded

master M ′ and the matches.

After the third-party has computed the matches between the target and master

datasets, we want to restrict the matches so that the amount of information disclosure
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by the master dataset is minimized while the amount of data cleaning utility to the

target is maximized. We decompose the matches into a more discrete form, called

units. We do this because a single unit is a data update that can be performed on

some target tuple and it is easier for us to develop algorithms that manipulate units.

Given some matches MF with respect to some FD F : X → Y , we can convert

the matches to units U where U = {(rm, rt, a)|(rm, rt) ∈MF , a ∈ X ∪ Y }.

Running example The units corresponding to the earlier matches MF1 are U =

{(m1, t1, FName), (m1, t1, LName), (m1, t1, DOB), (m2, t1, FName), (m2, t1,

LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName), (m2, t2, DOB)}.

Note that F1 : FName, LName → DOB. Each unit is a data update that can be

made to a target tuple. For example, a single element in U e.g., (m1, t1, FName)

says that the target tuple t1 should have its FName attribute value changed to be

the same as the FName attribute value in m1.

Function 6 getUnits(MF , f): Matches MF , f : X → Y
Decomposes the matches into discrete units.

1: Define a set U , initialized to ∅.

2: for (rm, rt) ∈MF do

3: for a ∈ X ∪ Y do

4: U ← U ∪ (rm, rt, a)

5: end for

6: end for

7: return U

Function 6 shows how the units can be created from the matches for an FD

f : X → Y . In line 2, we loop through every match, and for every attribute in f , we

add the units to a set U (in line 4). The set of units U is returned in line 7.
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Problem statement Given U , determine C ∈ P(U) (where P is a power set) that

minimizes the amount of information disclosure by M and maximizes the data clean-

ing utility to T (information disclosure and data cleaning utility are described in

Chapter 6). Here, we refer to C as a solution that is composed of a set of units. A

potential solution is known as a candidate, and P(U) consists of the space of candi-

dates.

In the next chapter, we propose measures for quantifying information disclosure

by the master dataset and data cleaning utility to the target dataset and move one

step closer to developing an algorithm to solve our problem statement.
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Chapter 6

Information Disclosure and Data

Cleaning Utility Measures

In this section, we define measures for quantifying information disclosure by the

master dataset and data cleaning utility to the target dataset. We need to define

these two measures in order to solve our problem statement defined in Chapter 5.

6.1 Information disclosure measure

The master dataset suffers a loss in privacy by revealing its data values. Consequently,

the third-party has to calculate the amount of information that is disclosed by the

master dataset if the master records in the matches are revealed to the target dataset.

Two popular approaches for measuring data privacy include k-anonymity and l-

diversity. These approaches are focused on preventing sensitive attribute disclosure,

which involves concealing the association of quasi-identifier attributes (i.e., those that

can serve as an identifier for an individual) with sensitive attributes (i.e., attributes
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that contain sensitive values like private medical data). k-anonymity requires that

every record with some specific quasi-identifier values be indistinguishable from at

least k-1 other records in a table [31]. However, if all records within this group are as-

sociated with the same sensitive attribute value (i.e., attributes that contain sensitive

values like private medical data), then privacy can be breached if an attacker knows

that some individual is in that group [32]. To overcome this weakness, a measure

called l-diversity was proposed. A table satisfies l-diversity if the probability that

any tuple within a quasi-identifier group is linked to a sensitive attribute is a most

1
l

[36]. However, unlike k-anonymity and l-diversity, we want to model the privacy

of individual data values. We want to assign an information content score to each

data value so that revealing values with a higher score results in a higher amount of

information disclosure and privacy loss. We propose a model for information disclo-

sure by constructing a table that is identical to the master table except that each cell

contains an information content score. Since W does not have access to the actual

data values in M , M has to build the information content table and send it to W so

that the amount of information disclosure can be calculated by W .

The calculation of the information content score for every cell in M is an exten-

sion of one method proposed by Arenas et al. [21]. Arenas et al. originally used their

information content score to measure the quality of a database design. We are inter-

ested in using the information content score to measure the amount of information

disclosed by the master dataset.
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1 2 5

Figure 6.2: Three tables, I1(left), I2 (center) and I3 (right).

6.1.1 Information content score

We want to calculate an information content score for each data value in the master

table. The idea is to calculate how much information is gained if we lose a specific

data value in the master table and then some value is replaced back (this could be

any value in the attribute domain). For example, in Figure 6.2, let us assume that

the FD Fi : A→ B is defined on all three tables. Let us imagine that the grey cell in

I1 is lost. Since we know that Fi holds on I1, we can infer that the value of the grey

cell should be “2” from the remaining values in attribute B. Hence, the information

content of the grey cell in I1 is low. In contrast, if the grey cell in I2 was lost, then

it is more difficult to infer the value. This is because either “1” or perhaps some

other value outside the domain of attribute A could be substituted in and I2 would

still satisfy Fi. Hence, the information content of the grey cell in I2 should be higher

because it is more difficult to infer the value.

Formalizing this idea, for an attribute A, let adom(A) be the active domain of

A. The active domain consists of all the values that exist in the master dataset M

for the attribute A. As shown in our earlier example, it is possible that some value

outside of the active domain can be substituted and the constraints would still hold.

Hence, we ensure that at least one value v exists outside the active domain, and use
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adom(A) ∪ v as the domain of A.

Let Mc←a denote a database instance constructed from the master dataset M by

replacing the attribute value in cell c by a (a cell is a unit where a row and column

intersect). We define a probability space for every cell c, denoted by E(M, c) where

E(M, c) = (adom(A) ∪ v, P ), where P is the probability density function given by :

P (a) =


0 Mc←a 2 Fi

1
|b| otherwise

and b = {a|Mc←a � Fi}. The information content of the cell c with respect to

Fi ∈ Σ is inf(c) = H(E(M, c)) =
∑

a∈adom(A)∪v P (a) log 1
P (a)

.

Running example For the FD F1, let us consider the cell m1[FName] in Table 2.2.

Here, adom(FName) ∪ v = {Alexis, Alex, Barry, ∗}, where v = ∗ (some value

outside the active domain). For cell m1[FName], P (“Alex′′) is 0, while, P (b) = 1
3

for the rest of the b ∈ adom(FName) ∪ v. Hence, inf(m1[FName]) = 0 + 1
3

log 3 +

1
3

log 3 + 1
3

log 3 = 1.58.

The problem with the inf measure is that it does not account for the frequency

of the values in the master table. For example, in Figure 6.2, let c1 denote the grey

cell in I1 while let c2 denote the grey cell in I3. Here, H(E(I1, c1)) = H(E(I3, c2)) = 0.

Intuitively, cell c2 should contain less information compared to c1 because I3 contains

more redundancy compared to I1 [37]. More redundancy means that there is more

support (higher frequency) for the values in attributes A and B in I3 compared to

the support for the values in attributes A and B in I1. We can say with a higher

confidence that c2 contains the value “2” compared to c1 containing the value “2”

because we have higher support in I3 that c2 should be “2”. Consequently, it is less
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surprising to find out that c2 contains “2” compared to finding out that c1 contains

“2” because of this higher support. It follows that c2 contains less information than

c1. Hence, it is important to factor in the effect of frequency of the values into our

information content score.

We define a new measure, einf , to quantify the amount of information in each

cell by accounting for the frequency of the data values in the table. We define a

function freq(a) where freq(a) = num(a)
|M |+1

where num(a) is the number of cells that

contain the value a in the master table M . We add 1 to the denominator because of

the value v that lies outside the active domain of the current attribute. Let P ′(a) =

freq(a) ∗ P (a). Finally, einf(c) =
∑

a∈adom(A)∪v P
′(a) log 1

P ′(a)
. Comparing the grey

cell c1 in I1 with the grey cell c2 in I3 in Figure 6.2, einf(c1) = 1
3

log(3
1
) = 0.159

while einf(c2) = 2
4

log(4
2
) = 0.151. Since c2 has a lower einf score, it contains less

information compared to c1, which is what we want.

6.1.2 Information content table

An information content table is calculated by the master dataset owner and sent to

the third-party. Every cell of the information content table is associated with an

information content score of the corresponding cell in the master table.

Algorithm 7 shows the steps used to construct the information content table.

Algorithm 7 accepts the master dataset M , and an FD f : X → Y . In line 1, the

table P is defined as a 2D array, and will eventually be returned by the algorithm. In

lines 3-8, the attribute value b is captured in set active domain a while the frequency

count for every value is stored in the hashmap D. In line 9, the active domain is

augmented with ‘*’. This ensures that at least one value exists outside the domain.
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Algorithm 7 calcInfoContentTable(M , f): Master dataset M , f : X → Y
Use privacy model to quantify information content of every attribute value in M .

1: Define a |M | × |X ∪ Y | 2-dimensional array P .

2: for b ∈ X ∪ Y do

3: Define a hashmap D with no keys.

4: Define a set a, initialized to ∅.

5: for rm ∈M do

6: a← a ∪ rm[b]

7: D[rm[b]]← D[rm[b]] + 1

8: end for

9: a← a∪ ‘*’

10: D[‘*’]← 1

The frequency of the dummy symbol ‘*’ is also added to D in line 10. In line 11, the

algorithm loops through the master records. In line 13, the old value of the rm[b] cell

is temporarily stored in a variable p because we are going to be changing the values

of rm[b] and will want to eventually undo all the changes. In lines 14-19, we loop on

the active domain, and replace rm[b] with every value in the active domain one by

one. We do this in order to determine the values that can be assigned to rm[b] so that

M will still satisfy f . All these satisfying values are added to a set S in line 17. In

line 20, we rollback any changes to rm[b]. In line 22, we loop on the satisfying values.

For every satisfying value, we multiply the frequency of that value with 1
|S| . Then, in

line 24, we calculate p ∗ log 1
p

and add it to the information content score for the cell

rm[b]. Finally, in line 26, we assign the information content score to the cell in the

information content table.
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Algorithm 7 (continued) calcInfoContentTable(M , f): Master dataset M , f : X →
Y
Use privacy model to quantify information content of every attribute value in M .

11: for rm ∈M do

12: Define a set S, initialized to ∅.

13: p← rm[b]

14: for v ∈ a do

15: rm[b]← v

16: if M � f then

17: S ← S ∪ v

18: end if

19: end for

20: rm[b]← p

21: c← 0

22: for v ∈ S do

23: p← D[v]
|M |+1

∗ 1
|S|

24: c← c+ p ∗ log 1
p

25: end for

26: P [rm][b]← c

27: end for

28: end for

29: return P
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6.1.3 Measuring information disclosure

We now show how to measure information disclosure by revealing a candidate to the

target dataset. For a candidate C ∈ P(U), W can calculate the information disclosure

for C by referring to the information table. Let us denote information disclosure for C

by pvt(C), where pvt(C) =
∑

(rm,a)∈R einf(rm[a]) where R = {(rm, a)|(rm, rt, a) ∈ C}.

Running example Recall that we had determined the matches earlier for the tuples

t1 and t2 in Table 2.1 and then converted these to get the units. The units were given

by U = {(m1, t1, FName), (m1, t1, LName), (m1, t1, DOB), (m2, t1, FName), (m2,

t1, LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName), (m2, t2, DOB)}.

One possible candidate C ∈ P(U) is C={(m1, t1, FName), (m1, t1, LName), (m2,

t2, DOB)}. From the definition of R = {(rm, a)|(rm, rt, a) ∈ C}, we use C to calculate

a set R where R={(m1, FName), (m1, LName), (m2, DOB)}. By our definition of

information disclosure, pvt(C) =
∑

(rm,a)∈R einf(rm[a]), we can calculate pvt(C) =

einf(m1[FName]) + einf(m1[LName]) + einf(m2[DOB]).

Function 8 shows how information disclosure is measured. Function 8 accepts a

candidate c and the information content table P . In line 3, we iterate over all the

units in the candidate. In lines 4-6, if a particular value rm[x] has not been accounted

for yet, then add the information content score P [rm][x] to p. In line 7, we add (rm, x)

to S, which represents the fact that P [rm][x] was already accounted for, so we will

not account for this value again in the information disclosure score. Finally, in line

9, p is returned as the total information disclosure by revealing c.

Note that the information disclosure measurement is calculated only with respect

to the current FD because the einf measure is defined over the current information

table (that is built with respect to the current FD). When calculating the information
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Function 8 pvt(c, P ): Candidate c, InfoContentTable P
Returns the amount of information disclosure by revealing the master data values in
the candidate.

1: Define a set S, initialized to ∅.

2: p← 0

3: for (rm, rt, x) ∈ c do

4: if S ∩ (rm, x) = ∅ then

5: p← p+ P [rm][x]

6: end if

7: S ← S ∪ (rm, x)

8: end for

9: return p

disclosure with respect to a different FD, the information table will have to be rebuilt

with respect to the new FD.

We have formalized the amount of information that is disclosed by the master

dataset when a candidate is revealed.

6.2 Data cleaning utility measure

When the third-party reveals master data values to the target dataset, the target

dataset uses those data values to clean its own values and move closer to satisfying

its constraints. It is incumbent upon the third-party to ensure that the target dataset

benefits from the revealed information as much as possible. Hence, the third-party

has to quantify the amount of data cleaning utility to the target dataset by revealing

master data values. Data cleaning utility is the amount of benefit to the target dataset
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Figure 6.3: Two tables, I1(left) and I2 (right).

(in moving closer to satisfying its constraints).

We use the InD (information dependency) measure developed by Dalkilic et al.

to quantify data cleaning utility [22]. InD provides a measure of the relationship

between the data values in a table. For example, in a weather report, if we know that

the current month is “July”, then we can be certain that the weather prediction will

be “Hot”. On the other hand, we are uncertain that the weather prediction will be

“Snowing”, because snowfall during July is surprising and unexpected. We want to

capture this uncertainty about data values from observing related data values.

Entropy is commonly used to capture uncertainty for an attribute in a table.

Formally, given a set of data values A = {a1, ..., an} with probabilities {p1, ..., pn},

the entropy of attribute A is H(A) =
n∑

j=1

pj log 1
pj

. Entropy captures the “uncertainty”

within A. For example, in Figure 6.3, the entropy of A in I1 is H(A) = log 1 = 0

while the entropy of A in I2 is H(A) = 2
3

log 3
2

+ 1
3

log 3
1

= 0.276. I2 has a higher

entropy because there is more uncertainty about the values in A.

The InD measure uses entropy to quantify the dependency between two attributes,

X and Y . It answers the question: how much do we not know about Y , given X?

[22]. Formally, the InD for an FD F over T is measured by i(T ) = H(X∪Y )−H(X).

If the InD is a non-zero value, this means that T is inconsistent with respect to F.
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A higher InD measure indicates that T is more inconsistent with respect to F. Note

that the InD of the embedded dataset T ′ is the same as the InD of the original

dataset T . This is possible because the entropy measure uses the distinct values that

are present in the table and also the frequencies of those values in the table. Since

the embedding process preserves the distances between records in the original space,

then theoretically, there is an approximately one-to-one mapping between an original

record and the embedded record. Hence, i(T ) = i(T ′).

We define data cleaning utility as the InD on the repaired target table. The third-

party simulates the application of data repairs (i.e., applying C to T ) and measures

the InD of the FD F on the repaired table. For a candidate C ∈ P(U), we define

a function apply(C, T ′) that simulates the application of every unit in C to T ′ and

returns the repaired embedded target instance T ′rep. We define the data cleaning

utility of applying C to T ′ as ind(C, T ′) = i(apply(C, T ′)). The lower the ind, the

higher the data cleaning utility.

Running example Continuing our running example, let us consider C ∈ P(U) where

C={(m1, t1, FName), (m1, t1, LName), (m2, t2, DOB)}. We simulate applying C

to T in Table 2.1, and this leads to the repaired table shown in Table 6.3. Thus, for

F1, ind(C, T ) = H(FName ∪ LName ∪ DOB) - H(FName ∪ LName) = 0. This

means that T � F1 because ind is 0. Note that in Table 6.3, we show the actual

data values in the target table T but in our framework, the algorithm works on the

embedded values when calculating ind.

Function 9 shows how ind is calculated. Function 9 accepts a candidate c, the

embedded target dataset T ′ and an FD f : X → Y . In lines 1-3, we simulate updating

rt[x] to rm[x], where rt[x] is an embedded target data value while rm[x] is an embedded
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Table 6.3: Repaired target table where the bold text indicates repaired cells

tid ClinicId FName LName Gender DOB Illness

t1 542334 Alexis Smith Female 20081977 Flu

t2 542334 Alex Smith Male 10081989 Allergies

t3 882081 Barry Burns Male 26082004 Flu

t4 882081 Barry Burns Female 26082004 Allergies

t5 882081 Barry Burns Male 26082004 Flu

Function 9 ind(c, T ′, f): Candidate c, Embedded target table T ′, f : X → Y
Returns the amount of ind on the target by revealing the candidate.

1: for (rm, rt, x) ∈ c do

2: simulate updating rt[x] to rm[x]

3: end for

4: i← H(X ∪ Y ) - H(X) on the table T ′

5: return i

master data value in candidate c. In line 4, InD is calculated on the repaired table

T ′ produced by simulating the repairs on T . Finally, the InD is returned in line 5.

We have shown that the data cleaning utility of a candidate can be calculated

by utilizing the ind measure. We have also shown that the information disclosed by

the master dataset can be calculated by using the pvt measure. In addition to these

two measures, we introduce a third measure, referred to as changes, that is defined

as changes = |C| where |C| is the number of elements in a candidate set C. Along

with minimizing pvt and ind, we also minimize changes because we want the repaired

target dataset to be as “close” as possible to the original inconsistent target dataset

[38].

48



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

Refined problem statement The initial problem statement that was proposed

towards the end of Chapter 5 can be refined as follows: Given the units U , determine

the candidate set C ∈ P(U) such that three objectives are minimized: (i) the pvt

objective (pvt) is minimized for M , (ii) the ind objective (ind) is minimized for T ,

and (iii) a minimal number of changes are made to T so that it reaches closer to

satisfying F . We propose a solution to address this problem via a recommendation

engine module, as described in the next chapter.

6.3 Relationship between information disclosure and

data cleaning utility

We want to understand the relationship between information disclosure and data

cleaning utility in order to identify the conditions that will minimize information

disclosure and maximize data cleaning utility.

Information disclosure is minimized when no values are disclosed from the master

dataset. However, if no values are disclosed, then the target dataset cannot be re-

paired. This means that some information has to be disclosed in order to clean the

target dataset. Intuitively, a larger amount of information disclosure should lead to

a larger amount of data cleaning utility because more values in the target dataset

can be repaired if more values are disclosed. However, this relationship is likely to

be non-linear, because information disclosure is calculated over the data values in

the master table while data cleaning utility is calculated over the entire target table.

Practically, we have to perform trade-off analysis to determine how much informa-

tion has to be disclosed in order to clean the target dataset. We perform experiments
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where we vary the amount of information disclosure and observe its effect on the

quality of data repairs (Section 9.4.1) and also vary the amount data cleaning utility

and observe its effect on information disclosure (Section 9.4.6).
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Chapter 7

Finding Optimal Candidates

This chapter describes four methods to solving the multi-objective optimization prob-

lem that was described towards the end of Chapter 6. Given the units U , we want to

determine the candidate set C ∈ P(U) such that three objectives are minimized: (i)

the pvt objective (pvt) is minimized for M , (ii) the ind objective (ind) is minimized

for T , and (iii) a minimal number of changes are made to T so that it reaches closer

to satisfying the FD F . Our solver finds the candidate C that minimizes the three

objectives. Note that C is a set units, and each unit is a data update that can be

made to the target dataset. Once the third-party W finds C, it asks M to send

the actual data values in C directly to T (since W only has the embedded values, it

cannot send actual values to T ). T receives the actual data values from M and uses

these to clean its erroneous values.

Running example From Table 2.1 and Table 2.2, imagine that our solver minimizes

the multi-objective function and finds C={(m1, t1, FName), (m1, t1, LName), (m2,

t2, DOB)} as the optimal solution. For each unit in C, W asks M to send the actual

data values to T . For example, for the unit (t1, m1, FName), M sends m1[FName]
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directly to T . W indicates to T that the data value that M sent should be used to

update t1[FName].

The recommendation engine module contains the solver that returns a C ∈ P(U)

that minimizes all the objectives. Typically, in a multi-objective optimization prob-

lem, all the objectives do not reach the minima at the same solution. Moreover,

objectives can influence each other. For example, imagine that we have some candi-

date C that minimizes ind but does not minimize pvt or changes, but we want to also

minimize pvt and changes. We can do so by removing units from C as this will lower

pvt (since fewer master data values are being disclosed) and will also lower changes

(since the size of C is smaller). However, imagine that removing any unit or any

combination of units from C increases the ind. In such a situation, pvt and changes

cannot be decreased without increasing ind. Thus, C is a pareto-optimal solution,

because the output for a single objective cannot be improved without deteriorating

the performance in at least one of the other objectives [39]. A multi-objective prob-

lem typically has more than one pareto-optimal solution. Finding all the possible

pareto-optimal solutions in the search space yields a pareto-optimal set. For com-

plex problems with a large search space, we are interested in finding a diverse and

representative subset of the pareto-optimal set so that a decision maker can decide

between a good range of solutions [39]. However, a decision maker can only select

a single solution from the set of pareto-optimal solutions that are found [39]. A de-

cision maker performs this selection by using tradeoff analysis to determine which

pareto-optimal solution might be preferred. In our context, if our solver finds a set of

pareto-optimal candidates {C1, ..., Cn}, then we select the pareto-optimal candidate

Ci ∈ {C1, ..., Cn} that has the smallest size because a smaller candidate leads to a
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smaller pvt output (since fewer values are disclosed) and a smaller changes output

(since Ci is small) compared to the other candidates in {C1, ..., Cn}.

We now describe four methods (four optimization functions) that are used by

our solver to model our optimization problem: (i) the weighted method, (ii) the

constrained method, (iii) the dynamic method, and (iv) the hierarchical method.

We selected the weighted method because it allows us to attach different weights to

each of the objectives and control the relative influence of each objective in relation

to each other. We selected the constrained method in order to overcome some of

the weaknesses of the weighted method (described later). We wanted to explore the

dynamic method because it is a variant of the constrained method and requires no

user-defined parameters, unlike the constained method. Finally, in the hierarchical

method, we arrange the objective functions in order of their importance, where the

more important objectives are minimized before less important objectives.

7.1 Weighted method

In the weighted method, all objectives are converted into a single, weighted objective,

and the goal is to find a solution that minimizes that weighted objective [39] [40].

min
k∑

i=1

wifi(x)

x ∈ S

(7.1)

For a set of objectives {f1, ..., fk}, we attach a weight wi > 0 to each objective so

that
k∑

i=1

wi = 1. Note that S refers to the space of possible inputs.

53



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

min
C

wsum(C)

C ∈ P(U)

(7.2)

In the context of our work, the recommendation engine would have to find a

candidate C that minimizes the objective wsum(C), where wsum(C) = α ∗ pvt(C) +

β ∗ ind(C, T ′) + γ ∗ changes(C). The symbols α, β and γ denote the user-defined

weights for our three objectives.

One problem with the weighted method is that the whole pareto-optimal set of

solutions cannot be found for non-convex problems [39] [40]. This means that there

might be some pareto-optimal solutions that can never be reached, no matter how

the weights are selected. Our solver does not involve any user interaction so we only

require that the pareto-optimal set that is returned is non-empty. As long as the

solution set is non-empty, our solver will pick the pareto-optimal solution that has

the smallest size because a smaller candidate leads to a smaller pvt output (since

fewer values are disclosed) and a smaller changes output.

Another problem with the weighted method is that deciding on appropriate weights

is difficult. The relative influence of one objective on the wsum function might be

disproportionately higher than another objective, and it is unclear how to precisely

set the weights in order to control the relative importance of the objectives. For

example, if we only consider two objectives, pvt and ind, and want to assign both of

them equal importance, then we set the weights so that α = 0.5 and β = 0.5 (equal

weights). However, imagine that for a given search space of candidates in target T ,

the pvt objective has a mean value of 0.5 and a standard deviation of ±0.1 while the

ind objective has a mean value of 0.5 and a standard deviation of ±0.5. In this case,
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the assigned equal weights will not convey equal importance of pvt and ind because

ind has a much higher relative influence on the output of wsum compared to pvt

due to its higher standard deviation. We will have to increase the weight for pvt and

lower the weight for ind so that both objectives exert equal influence on wsum. A

common solution is to test a variety of different weights in order to gauge the relative

importance of different objectives and exploring the tradeoffs between the various ob-

jectives [40]. In Chapter 9, we have performed experiments where we vary the weights

in order to gauge the relative influence of pvt, ind and changes on the accuracy of

our results.

7.2 Constrained method

We refer to this method as the constrained method although it is commonly known

as the ε-constraint method [39]. In this method, a single objective is chosen to be

minimized, while the rest of the objectives are bound by user-defined thresholds.

min fl(x)

s.t. fj(x) ≤ εj for all j = 1, ..., k, j 6= l

x ∈ S, εj ∈ R

(7.3)

Here fl is selected to be minimized while the rest of the objectives are bound by

thresholds.
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min
C

pvt(C)

s.t. ind(C, T ′) ≤ εi

changes(C) ≤ εj

C ∈ P(U), εi, εj ∈ R

(7.4)

In our context, we want to find a candidate C that minimizes pvt(C), subject to

ind(C, T ′) ≤ εi and changes(C) ≤ εj where εi and εj are user-defined thresholds.

The advantage of the constrained method over the weighted method is that any

pareto-optimal solution (within the pareto-optimal set) can be found for any problem

(the problem can be convex or non-convex) [39]. Hence, by changing the constraint

thresholds, it is possible to find the entire pareto-optimal set compared to the weighted

method where changing the weights does not guarantee that all pareto-optimal solu-

tions will be found for non-convex problems.

The drawback of the constrained method is that for a specific εi and εj, if there

is a good solution really close to εi and εj but above εi and εj by a small amount,

then it will never be found (unless εi and εj is increased). In Chapter 9, we have

performed experiments where we vary the thresholds and measure their effect on the

pvt objective.

7.3 Dynamic method

We propose the dynamic method for solving our multi-objective problem, a variant

of the adaptive ε-constraint method [41]. In this method, a single objective is chosen

to be minimized, while the rest of the objectives are bound by thresholds that are
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updated dynamically as the algorithm proceeds.

min fl(x)

s.t. fj(x) ≤ fj(x0) for all j = 1, ..., k, j 6= l

x ∈ S

(7.5)

Here fl is selected to be minimized while the rest of the objectives are bound by

thresholds that are updated dynamically.

min
C

pvt(C)

s.t. ind(C, T ′) ≤ ind(C0, T
′)

changes(C) ≤ changes(C0)

C ∈ P(U)

(7.6)

In our context, we want to find a candidate C that minimizes pvt(C), subject to

ind(C, T ′) ≤ ind(C0, T
′) and changes(C) ≤ changes(C0). We provide an example to

illustrate the dynamic method. Imagine that C0 is the initial starting point of our

search algorithm, and pvt(C0) = 0.5, ind(C0, T ) = 0.5 and changes(C0) = 5. Hence,

the initial threshold on ind is set to 0.5 while on changes, it is set to 5 i.e., ind(C, T ′) ≤

0.5, changes(C) ≤ 5. In the next iteration of the search algorithm, imagine that

another candidate C1 is being evaluated, where pvt(C1) = 0.4, ind(C1, T ) = 0.4 and

changes(C0) = 4. Since C1 is minimizes all three objectives better than (or equal to)

C0, we update the thresholds so that ind is 0.4 while changes is 4 i.e., ind(C, T ′) ≤ 0.4,

changes(C) ≤ 4. Note that C1 has to minimize all three objectives more than C0 in

order for the thresholds to be updated.

This advantage of this method over the constrained method is that users do not
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have to specify any fixed thresholds because the algorithm is able to update the

thresholds dynamically starting from the initial solution.

7.4 Hierarchical method

The hierarchical method is a hybrid method that combines ideas from the constrained

method and the lexicographic ordering method described by Fishburn [42]. In the

lexicographic ordering method, we have to arrange the objective functions in order

of their importance, where the more important objectives are minimized before less

important objectives. We start by minimizing the most important objective function.

If it has a unique solution, then the solution process stops. If there are multiple

solutions, then next most important objective is minimized for the solutions that

were found so far. The solution process stops when either a unique solution is found

or if all the objectives have been minimized individually one after another.

lex min F (x) = (f1(x), .., fk(x))

x ∈ S
(7.7)

In the lexicographic ordering method, lex min refers to the lexicographic mini-

mization of the k objectives, where f1 is the most important objective and fk is the

least important objective.
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min
C

pvt(C)

min
C

ind(C, T ′)

s.t. pvt(C) ≤ εk

min
C

changes(C)

s.t. pvt(C) ≤ εk

ind(C, T ′) ≤ εl

C ∈ P(U), εk, εl ∈ R

(7.8)

In our context, we want to minimize the objective pvt(C) first, and then minimize

the next objective ind(C, T ′) subject to pvt(C) ≤ εk, where εk is a user-defined

threshold. Lastly, we want to minimize changes(C), subject to pvt(C) ≤ εk and

ind(C, T ′) ≤ εl, where εl is also a user-defined threshold. We treat pvt as the most

important objective since pvt is defined over the master table that contains clean and

curated data. ind is the next important objective, since it is defined over the target

dataset that contains dirty data. changes is ordered last because it simply restricts

the size of the solution that is produced.

The advantage here is that the more important objectives will be minimized before

the less important objectives. On the other hand this method runs for a longer time

compared to the other methods because the three objectives are minimized one after

another, and this requires two additional minimization steps compared to the other

methods.
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Chapter 8

Repair Algorithm

We described four methods that can be used to model the multi-objective optimization

problem outlined in the problem statement. Finally, we have all the background

necessary to implement our data repair algorithm.

We recapitulate the steps that we have taken thus far. Our data cleaning frame-

work involves three parties: the target dataset T , the master dataset M and the

third-party W . In the first step, T and M embed their records and send them to

W . W then performs record matching to match T ’s violations with M ’s records. W

decomposes these matches into a set of units U . W then has to find the candidate

set C ∈ P(U) such that three objectives are minimized: (i) the pvt objective (pvt)

is minimized for M , (ii) the ind objective (ind) is minimized for T , and (iii) a mini-

mal number of changes are made to T so that it reaches closer to satisfying F . We

proposed four methods to model the minimization of the three objectives. In this

chapter, we provide implementations of the four methods so that we can identify the

optimal candidate C that will be sent to T for data repairing. Finally, we provide

an overall data repairing algorithm that combines all the various components of our
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framework described in this paragraph.

8.1 Implementation of the four methods

The four methods that we described in Chapter 7 have to be incorporated into a

search algorithm in order to solve the optimization problem. These four methods

guide the search algorithm so that the best candidate C ∈ P(U) can be found that

minimizes our objectives. We select the simulated annealing algorithm as our search

algorithm and incorporate the four methods into this search algorithm in order to

solve our optimization problem.

8.1.1 Hill climbing algorithm

To motivate our choice of selecting the simulated annealing algorithm, we first briefly

describe a related algorithm, called the hill climbing algorithm. The hill climbing al-

gorithm is a simple and popular iterative algorithm that incrementally moves towards

better solutions in the search space until a local optima is reached [43]. Starting from

an initial input (e.g., a random candidate), the algorithm evaluates every neighbor

of that candidate. A neighbor is a candidate that is very similar to the current can-

didate and all neighbors of the current candidate belong to its neighborhood. If the

best neighbor in the neighborhood of the current candidate is better than the current

candidate, then it is marked as the current solution. The algorithm then evaluates the

neighborhood of the new current solution. This process terminates when no neighbor

of the current solution is better than the current solution. A major problem with

the hill climbing algorithm is that globally optimal solutions may not be found if
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the search process terminates at some local optima. Simulated annealing an algo-

rithm that overcomes this weakness by allowing worse neighbors to be accepted as

the current solution with a non-zero probability [44]. Simulated annealing has the

same underlying simplicity of the hill climbing algorithm while at the same time,

overcomes problem of the search getting trapped in the local optima.

8.1.2 Simulated annealing algorithm

Simulated annealing is inspired by the physical annealing process. Annealing is a

metallurgical technique that is used to harden metals by exposing them to a high

temperature and then gradually cooling the temperature [43]. This allows the metal

to reach a low energy and refine its internal structure. Similarly, simulated annealing

accepts a worse solution with a high probability at higher temperatures while grad-

ually lowering this acceptance probability at lower temperatures. The rate that the

temperature is lowered is determined by a cooling schedule. If the cooling schedule

is lowered slowly enough, the algorithm will find a global optimum with probability

approaching 1 [43] [45].

We now describe the simulated annealing algorithm in more detail. Simulated

annealing starts with an initial input (e.g., some candidate C), and marks this as the

current solution. Next, a single random neighbor Cn of the current solution is selected

and compared with the current solution. If Cn is better than C, then it is marked

as the current solution. If Cn is a worse than C, then we mark the random neighbor

as the current solution with some probability P . Whether Cn is better or worse than

C is determined by the objective function output. Each iteration of the algorithm

is associated with a temperature K that is determined by a cooling schedule. A
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common cooling schedule is Kn = β ∗Kn−1 where Kn represents the temperature at

some timestamp n, while β is a user-defined weight that falls within the range (0,1).

If we assume that the objective output of the current solution is c while the output

of the random neighbor is n, then P is defined as P (K,n, c) = exp(−(n−c)
K

). The

algorithm iterates until the final (user-defined) temperature is reached (this ensures

that the algorithm terminates).

In the simulated annealing algorithm, two important issues have to be addressed:

(i) how to initialize a candidate for the simulated annealing algorithm and (ii) how to

define a neighborhood for a candidate. Once we address these issues, we can integrate

the four proposed methods within the simulated annealing algorithm.

8.1.3 Initializing a candidate

Initialization can affect the quality of the solutions that are found by the simulated

annealing algorithm, especially if the search space is very large. Starting at a good

initial solution is better that starting at a poor initial solution because the simulated

annealing algorithm can only be iterated a fixed number of times (determined by the

cooling schedule), and we do not want to waste iterations exploring poorer areas of

the search space. Hence, we want to initialize candidates that have a smaller output

for the objectives compared to a random candidate since such candidates are good

solutions for a minimization problem.

We propose two initialization strategies: greedy initialization and random ini-

tialization. The idea with greedy initialization is to create a candidate Cg that is

composed of units that involve the most commonly matched master tuple. The in-

tuition is that Cg will likely minimize the objectives more than a random candidate
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C. Cg is likely have a lower ind output compared to C because when Cg is applied

to T , the target violations will be changed to the same values from the single master

tuple (this lowers the entropy calculations in the ind). Moreover, Cg is likely have a

lower pvt output compared to C because all the units in Cg involve the same master

tuple (information disclosure is low). Random initilization is the same as greedy ini-

tialization, except that we randomly remove some units from Cg to create Cr. Since

|Cr| ≤ |Cg|, Cr will have a lower changes output compared to Cg by the definition of

the changes objective.

Running example From our running example, we had determined the units to be U

= {(m1, t1, FName), (m1, t1, LName), (m1, t1, DOB), (m2, t1, FName), (m2, t1,

LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName), (m2, t2, DOB)}. Since

m2 is most commonly matched tuple, greedy initialization will create the candidate

Cg ∈ P(U), where Cg={(m2, t1, FName), (m2, t1, LName), (m2, t1, DOB), (m2,

t2, FName), (m2, t2, LName), (m2, t2, DOB)}. Notice that all the units in Cg

involve the same master tuple m2. Random initialization might create a candidate

Cr ∈ P(U), where Cr={(m2, t1, FName), (m2, t1, DOB), (m2, t2, FName)}. Notice

that all the units in Cr also involve m2. |Cr| < |Cg| because Cr was created from Cg

by randomly removing some units.

Algorithm 10 shows the greedy initialization procedure. The algorithm accepts

units u′ and returns a candidate c. In lines 4-6, we compute of how many times a

particular master record id is seen and store this information in a hashmap. In line

7, we get the best master record id by determining the key with the highest value in

D. In lines 8-12, we loop on the units, and any unit that involves the best master

match is added to a set c. Finally, c is returned in line 13.
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Algorithm 10 initialize(u′): Units u′

Greedy initialization: returns an initial starting point for the search algorithm.

1: Define a set c, initialized to ∅.

2: Define an empty list z.

3: Define a hashmap D with no keys.

4: for (rm, rt, x) ∈ u′ do

5: D[rm]← D[rm] + 1

6: end for

7: rb ← key from D that has the highest value.

8: for (rm, rt, x) ∈ u′ do

9: if rm = rb then

10: c← c ∪ (rm, rt, x)

11: end if

12: end for

13: return c
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Algorithm 11 initialize(u′): Units u′

Random initialization: returns an initial starting point for the search algorithm.

1: Define a set c, initialized to ∅.

2: Define an empty list z.

3: Define a hashmap D with no keys.

4: for (rm, rt, x) ∈ u′ do

5: D[rm]← D[rm] + 1

6: end for

7: rb ← key from D that has the highest value.

8: for (rm, rt, x) ∈ u′ do

9: if rm = rb and randDouble > 0.5 then

10: c← c ∪ (rm, rt, x)

11: end if

12: end for

13: return c
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Algorithm 11 shows the random initialization algorithm. This algorithm is similar

to Algorithm 10 except for line 9, where an additional condition is added randDouble >

0.5. This condition only allows the unit (rm, rt, x) to be added to the initial candidate

with probability 0.5.

8.1.4 Defining a neighborhood

The simulated annealing algorithm requires that a random neighbor Cn of the current

candidate C is explored and that Cn and C are compared. If Cn minimizes the

objectives more than C, then the search algorithm updates the current candidate to

Cn. Otherwise, the search algorithm only updates the current candidate to Cn with

a probability P (K,n, c) = exp(−(n−c)
K

), where K is the current temperature, n is the

objective output of Cn and c is the objective output of C. In this section, we describe

how Cn is determined for a given C.

A neighborhood of C is a set of k candidates {C1, ..., Ck} where each Cn ∈

{C1, ..., Ck} is a neighbor of C. A neighbor Cn is very similar to C. For exam-

ple, we define Cn as a candidate that differs from C by only one unit i.e., Cn∪U = C

or Cn = C ∪ U where U is a set containing a single unit so that |U | = 1.

Running example From our running example, we had determined an initial candi-

date Cg ∈ P(U), where Cg={(m2, t1, FName), (m2, t1, LName), (m2, t1, DOB),

(m2, t2, FName), (m2, t2, LName), (m2, t2, DOB)}. If the neighborhood of Cg

consists of all candidates that differ from Cg by one unit, then one neighbor of Cg is

Cg={(m2, t1, FName), (m2, t1, LName), (m2, t1, DOB), (m2, t2, FName), (m2,

t2, LName)}. The difference between Cg and Cn is only one unit, which is (m2, t2,

DOB).
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Our present definition of Cn is incomplete, because it ignores a large group of

similar candidates to C. It is important to consider all similar candidates to C in its

neighborhood because otherwise, some candidates in will never be explored by the

simulated annealing algorithm i.e., a large area of the search space will be ignored.

Running example Recall that we had initialized our current candidate to Cg={(m2,

t1, FName), (m2, t1, LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName),

(m2, t2, DOB)}. If the neighborhood of Cg only consists of candidates that differ

from Cg by one unit, then C ′n={(m1, t1, FName), (m1, t1, LName), (m1, t1, DOB),

(m2, t2, FName), (m2, t2, LName), (m2, t2, DOB)} can never be a neighbor of

Cg because it differs from Cg by three units, which are (m1, t1, FName), (m1, t1,

LName), (m1, t1, DOB). However, C ′n is clearly a neighbor of Cg because they are

very similar to each other. The only difference is that Cg recommends data updates

to t1 using values from m2 while C ′n recommends data updates to t1 using values from

m1. If we do not expand our current definition of the neighborhood, then C ′n will

never be evaluated by the simulated annealing algorithm.

We define a neighbor Cn of C as follows: (i) Cn differs from C by one unit (Cn is

called the unit neighbor) or (ii) Cn and C have the same number of units, except that

at most one of the target tuples (in Cn) has update recommendations from a different

master tuple (Cn is called the choice neighbor). Before describing our algorithm to

find Cn for C, we introduce the notion of validity. A candidate is valid if and only

if every target tuple involved within the candidate is associated with a single master

tuple within the candidate. We provide an example to illustrate the importance of

validity.

Running example Let us consider Cg from our previous example where Cg={(m2,
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t1, FName), (m2, t1, LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName),

(m2, t2, DOB)}. One of the neighbors of Cg is Cg={(m1, t1, FName), (m2, t1,

FName), (m2, t1, LName), (m2, t1, DOB), (m2, t2, FName), (m2, t2, LName),

(m2, t2, DOB)} because Cn and Cg differ by only one unit, which is (m2, t1, FName).

However, in Cn, the target tuple t1 is associated with two different master tuples m1

and m2. The two data updates that are recommended by Cn conflict with each other

i.e., we do not know if t1[FName] should be changed to m1[FName] or m2[FName].

Also, let us imagine that in some iteration of the search procedure, the current can-

didate is updated so that C= {(m1, t1, FName)}. One neighbor of C is C ′n= {(m1,

t1, FName), (m2, t1, LName)}. However, C ′n is an invalid candidate because we are

applying data updates to t1 from different master tuples (even though the updates

are on different attributes).

Function 12 checks if a candidate is valid. It accepts a single candidate c as the

input and returns true if c is valid and false otherwise. In line 1, we define a hashmap

D. Iterating over the units in c (line 2), we first check if there was any master tuple

r′m associated with rt (line 3). If there was a master tuple associated with rt but it

is not the same as the current master tuple rm (line 4), then this means that rt is

associated with two different master tuples r′m and rm. Hence, c is not valid (line 5).

In line 7, we store the current master tuple rm associated with rt. Finally, if every rt

is associated with the same rm, then c is valid.

Finally, we show the algorithm to get a neighbor of a candidate in Algorithm 13.

Algorithm 13 accepts a candidate c, and the units u′ and returns a neighbor of c. In

line 1, we define a set N that will contain the neighborhood of c. In lines 3-7, we

add all neighbors of c to N that are smaller than c by one unit. We iterate over the
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Function 12 isValid(c): Candidate c
Checks if every target tuple in c is associated with a single master tuple.

1: Define a hashmap D with no keys.

2: for (rm, rt, a) ∈ c do

3: r′m ← D[rt]

4: if r′m 6= ∅ and r′m 6= rm then

5: return false

6: end if

7: D[rt]← rm

8: end for

9: return true

elements in c (line 3), and create neighbors (line 4) that are smaller than c by one

unit (line 5), and add these to the neighborhood (line 6). In lines 8-14, we add to N

all neighbors of c that are bigger than c by one unit. We iterate over the units (line

8), creating a neighbor of c (line 10) and adding the unit to that neighbor so that

it is bigger than c by one unit (line 11). If this neighbor is valid (line 12), then we

add it to N (line 13). Note that line 9 is for storing information that is used after

line 15. In lines 16-25 we add all neighbors of c where every neighbor has the same

number of units as c, except that at most one of the target tuples (in each neighbor)

has update recommendations from a different master tuple. In line 16, we iterate over

D, which contains key-values pairs where a key k is a target tuple, and a value V is

the set of master tuples associated with k. For a target tuple k, we iterate on every

master tuple v ∈ V (line 17), create a neighbor of c (line 18), and for each unit in

the neighbor (line 19), we find the units where the target tuple is the same as k (line

20), and replace those units with new units that contain the new master tuple v ∈ V
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(line 21). We add the neighbor to N in line 24. Finally, we randomly pick a single

neighbor from the neighborhood and return it (line 27).

Algorithm 13 getNeighbor(c, u′): Candidate c, Units u′

Returns a random neighbor of c from its neighborhood.

1: Define a set N , initialized to ∅.

2: Define a hashmap D with no keys.

3: for (rm, rt, a) ∈ c do

4: c′ ← create copy of c.

5: remove (rm, rt, a) from c′[i]

6: N ← N ∪ c′

7: end for

8: for (rm, rt, a) ∈ u′ do

9: D[rt]← D[rt] ∪ rm

10: c′ ← create copy of c.

11: c′ ← c′ ∪ (rm, rt, a)

12: if isV alid(c′) then

13: N ← N ∪ c′

14: end if

15: end for

The way that we define the neighborhood size in the simulated annealing algorithm

influences the search results that are produced. If the neighborhood size is too small,

then we will have to iterate the algorithm a higher number of times in order to

explore a larger area of the search space. However, if the neighborhood size is too

large, then the algorithm essentially performs a random search over the search space

[46]. One solution is to compare different neighborhood sizes and measure its effect
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Algorithm 13 (continued) getNeighbor(c, u′): Candidate c, Units u′

16: for (k, V ) ∈ D do

17: for v ∈ V do

18: c′ ← create copy of c.

19: for (rm, rt, a) ∈ c′ do

20: if rt = k then

21: (rm, rt, a)← (v, rt, a)

22: end if

23: end for

24: N ← N ∪ c′

25: end for

26: end for

27: return n ∈ N
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on the search results. For example, we can simply expand our current definition of

a neighbor as follows: (i) Cn differs from C by k unit(s) or (ii) Cn and C have the

same number of units, except that at most l of the target tuples (in Cn) have update

recommendations from a different master tuple. k and l refer to user defined values

that can be adjusted in order to obtain different neighborhood sizes. Although we

have not explored the effect of different neighborhood sizes in our study, we hope to

perform this experiment at a later date.

8.1.5 Implementation of simulated annealing

We have addressed two important issues related to the simulated annealing algorithm:

(i) how to initialize a candidate and (ii) how to define a neighborhood for a candidate.

In this section, we implement the simulated annealing algorithm to solve the four

objective functions described in Chapter 7. We describe a function called calcSolns

that contains the implementation of the simulated annealing algorithm. Two flavors of

calcSolns are provided: Algorithm 14 is for the weighted, constrained and dynamic

methods while Algorithm 18 is for the hierarchical method. We separate the two

flavors because the simulated annealing algorithm for the hierarchical method requires

a slightly different implementation from the other three methods.

Simulated annealing for the weighted, constrained and dynamic methods

Algorithm 14 describes the simulated annealing algorithm for the weighted, con-

strained and dynamic methods. This algorithm accepts an embedded target table T ′,

an embedded master table M ′, the information content table P , the units u′, an FD

f : X → Y and returns a set of pareto-optimal solutions s. In line 1, we define a set
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Algorithm 14 calcSolns (T ′, M ′, P , u′, f): Embedded target table T ′, Embedded
master table M ′, InfoContentTable P , Units u′, f : X → Y
Calculate all solutions to the multi-objective optimization problem for three methods:
weighted, constrained, and dynamic.

1: Define a set s, initialized to ∅

2: c← initialize(u′)

3: for i← 1 to ∞ do

4: t← schedule[i]

5: if t = 0 then

6: return s

7: end if

8: n← getNeighbor(c, u′)

9: c← nextCandidate(c, n, t, P )

10: if n is best solution so far then

11: s← {n}

12: end if

13: if n is as good as other best solutions then

14: s← s ∪ n

15: end if

16: end for

17: return s
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that consists of the solutions that will be returned. In line 2, we initialize a candidate

(either greedy or random initialization) and begin the search in line 3. In line 4, we

assign a temperature to the variable t using the temperature schedule, as per the

simulated annealing algorithm. In line 5, if the temperature has cooled to 0, then we

can return the set of solutions (line 8). In line 8, we get a neighbor of the current so-

lution. Thereafter, in line 9, nextCandidate is called. In the nextCandidate method,

the neighbor n is evaluated against the current solution c to determine if n should

be marked as the current candidate. nextCandidate is where we define our objective

functions for the weighted method, the constrained method and the dynamic method.

In lines 10-12, if n is the best solution, remove all previous solutions from s and add

n, and in lines 13-15, if n is as good as the other solutions in s, then add n to s.

Deciding if n is the best solution is dependent on comparing the objective output of n

with the objective outputs of the solutions in s. The solution with a lower objective

output is better than another solution with a higher objective output. For example,

s is initially empty. Imagine that a candidate c1 with objective output o1 gets added

to s. Subsequently, another candidate c2 with output o2 was found where o2 < o1.

In this case, c1 is removed from s and c2 is added to s because it is the best solution

so far. If o2 = o1, then c2 is added to s without removing c1 from s. The objective

functions that are used to determine the solutions in s are:

• For the weighted objective function, the objective output for a candidate c is

α ∗ pvt(c, P ) + β ∗ ind(c, T ′) + γ ∗ changes(c).

• For the constrained objective function, the objective output for a candidate c

is pvt(c, P ).

• For the dynamic objective function, the objective output for a candidate c is
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pvt(c, P ).

We now describe the nextCandidate algorithm used in calcSolns. In the nextCandidate

method, the neighbor n is evaluated against the current solution c to determine if n

should be marked as the current solution. This method influences how calcSolns tra-

verses through the search space of solutions because nextCandidate updates the cur-

rent solution and the current solution determines the neighborhood that is explored.

In its essence, nextCandidate captures the objective functions that we described in

Chapter 7. We provide three implementations of nextCandidate: one for the weighted

method, one for the constrained method and one for the dynamic method. We will

describe the algorithm for the heirarchical method later.

Algorithm 15 nextCandidate(c, n, t, P ): Candidate c, Candidate n, double t,
InfoContentTable P
Returns the solution used in the next step of the simulated annealing algorithm. This
implementation is for the weighted method.

1: e1 ← α ∗ pvt(n, P ) + β ∗ ind(n, T ′) + γ ∗ changes(n)

2: e2 ← α ∗ pvt(c, P ) + β ∗ ind(c, T ′) + γ ∗ changes(c)

3: ∆E ← e2 − e1

4: if ∆E > 0 or e∆E/t > randDouble then

5: return n

6: else

7: return c

8: end if

Algorithm 15 shows the nextCandidate algorithm for the weighted method. nextCandidate

accepts the current candidate c, the neighboring candidate n, the temperature t and

the information content table P and returns the next candidate. In lines 1 and 2, the
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weighted objective outputs are calculated for the neighboring candidate and the cur-

rent candidate respectively. In line 4, if the neighbor produces a more minimal output,

or if the neighbor was worse but passed the test e∆E/t > randDouble, then return

n as the next candidate for the next iteration of the simulated annealing algorithm.

Otherwise, return c.

Algorithm 16 nextCandidate(c, n, t, P ): Candidate c, Candidate n, double t,
InfoContentTable P
Returns the solution used in the next step of the simulated annealing algorithm. This
implementation is for the constrained method.

1: ∆E ← pvt(c, P )− pvt(n, P )

2: if (∆E > 0 and ind(n, T ′) < εi and changes(n) < εc) or (e∆E/t > randDouble)

then

3: return n

4: else

5: return c

6: end if

Algorithm 16 shows the nextCandidate algorithm for the constrained method.

nextCandidate accepts the current candidate c, the neighboring candidate n, the

temperature t and the information content table P and returns the next candidate.

In line 1, the privacy loss is calculated for both the candidates. In line 2, if the

neighbor is more minimal than the current candidate, and both the constraints are

satisfied, or if the test e∆E/t > randDouble is passed, then return n as the next

candidate for the next iteration of the simulated annealing algorithm. Otherwise,

return c.
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Algorithm 17 nextCandidate(c, n, t, P ): Candidate c, Candidate n, double t,
InfoContentTable P
Returns the solution used in the next step of the simulated annealing algorithm. This
implementation is for the dynamic method.

1: ∆E ← pvt(n, P )− pvt(c, P )

2: if (∆E > 0 and ind(n, T ′) < εi and changes(n) < εc) or (e∆E/t > randDouble)

then

3: if ind(n, T ′) < εi then

4: εi ← ind(n, T ′)

5: end if

6: if changes(n) < εc then

7: εc ← changes(n)

8: end if

9: return n

10: else

11: return c

12: end if
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Algorithm 17 shows the nextCandidate algorithm for the dynamic method. nextCandidate

accepts the current candidate c, the neighboring candidate n, the temperature t and

the information content table P and returns the next candidate. It is similar to algo-

rithm 16 except for the additional lines 3-8 where the thresholds are updated if the

neighbor has a better threshold than the current thresholds.

Simulated annealing for the hierarchical method

We have described calcSolns for the weighted, constrained and dynamic methods. In

this section, we describe calcSolns for the hierarchical method. We have a separate

calcSolns algorithm for the hierarchical method because it consists of two additional

minimization steps compared to the other three methods.

Algorithm 18 is very similar to Algorithm 14. Lines 1-21 are similar to Algorithm

14. However, in lines 22-24, we have added a check where if the neighboring candi-

date’s pvt output satisfies εp or if its ind output satisfies εi, then we add the neighbor

to j, that is then added to s in line 26. Thereafter, between lines 27-32, we first find

a subset of s that minimizes the ind objective the most (line 28), and if this subset

contains more than one candidate (line 29), then find a subset of s that minimizes

the changes objective the most. We implement the functionality in line 28 and line

29 by simply iterating through all the solutions in s and finding the set of solutions

that minimize ind in line 28 and changes in line 29. Lines 27-32 represent the two

minimization steps in the hierarchical method described in Chapter 7. Finally, we

return s (line 33).
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Algorithm 18 calcSolns (T ′, M ′, P , u′, f): Embedded target table T ′, Embedded
master table M ′, InfoContentTable P , Units u′, f : X → Y
Calculate all solutions to the multi-objective optimization problem for hierarchical
method.

1: Define a set s, initialized to ∅.

2: Define a set j, initialized to ∅.

3: c← initialize(u′)

4: for i← 1 to ∞ do

5: t← schedule[i]

6: if t = 0 then

7: return s

8: end if

9: n← getNeighbor(c, z, u′)

10: e1 = pvt(n, P )

11: e2 = pvt(c, P )

12: ∆E ← e1 − e2

13: if ∆E > 0 or e∆E/t > randDouble then

14: c← n

15: end if
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Algorithm 18 (continued) calcSolns (T ′, M ′, P , u′, f): Embedded target table T ′,
Embedded master table M ′, InfoContentTable P , Units u′, f : X → Y
Calculate all solutions to the multi-objective optimization problem for hierarchical
method.

16: if n is best solution so far then

17: s← {n}

18: end if

19: if n is as good as other best solutions then

20: s← s ∪ n

21: end if

22: if pvt(n, P ) < εp or ind(n, T ′) < εi then

23: j ← j ∪ n

24: end if

25: end for

26: s← s ∪ j

27: if |s| > 1 then

28: s← select a subset of s that minimizes the ind objective the most

29: if |s| > 1 then

30: s← select a subset of s that minimizes the changes objective the most

31: end if

32: end if

33: return s
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8.2 Overall data repair algorithm

We have implemented the simulated annealing algorithm calcSolns for all four of

our optimization functions. We now present our entire framework in the dataRepair

algorithm.

Algorithm 19 accepts a target dataset T , a master dataset M and a set of FDs,

Σ and modifies tuples in T so that T is closer to satisfying Σ. We first order the FDs

so that FDs that produce a higher number of violations in T are ordered first (line

1). We process FDs with the most inconsistencies first due to their possible overlap

with other FDs. We then iterate through all the ordered FDs (line 2). In line 3, T

computes all violations with respect to the current FD f . T wishes to repair these

violations. T then groups the violations into violation chunks and orders the chunks

so that the biggest violation chunk is processed first (line 4). T does this because it

wants to repair as many of its data values as possible. Next, T , M , and W perform

the embedding and approximate record matching steps (line 5). Record matching is

performed so that the clean tuples in M that correspond to the dirty tuples in T can

be identified. Data values from the clean master tuples can be used to repair the

erroneous values in the target violations. W then decomposes the matches into a set

of units denoted by u, where a single unit is a data update that can be performed on

some target tuple. Units are easy to visualize as data updates, and consequently, it is

easier for us to develop algorithms that manipulate units (compared to manipulating

the record matches). In line 7, M computes and returns an information content table

P to W that can be used to calculate information disclosure if its data values are

disclosed to T . Here, M would like to reveal as little information as possible. We

then iterate through the ordered violation chunks to find repairs for the bigger chunks
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Algorithm 19 dataRepair(T , M , Σ): Target table T , Master table M , a set of FDs
Σ
Our entire framework.

1: Σo ← orderFDs(T,Σ)

2: for f ∈ Σo do

3: V ← calcV iolations(T, f)

4: {V0, ..., Vm} ← orderV iolations(V, f)

5: (T ′,M ′,MF )← embeddingAndMatching(T,M, f)

6: u← getUnits(MF , f)

7: P ← calcInfoContentTable(M, f)

8: for V ′ ∈ {V0, ..., Vm} do

9: Define a set u′, initialized to ∅.

10: for (rm, rt, x) ∈ u do

11: if rt ∈ V ′ then

12: u′ ← u′ ∪ (rm, rt, x)

13: end if

14: end for

15: s← calcSolns(T ′,M ′, P, u′, f)

16: c← pick the candidate in s that has the smallest size

17: for (rm, rt, x) ∈ c do

18: M sends rm[x] directly to T for rt[x].

19: end for
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Algorithm 19 (continued) dataRepair(T , M , Σ): Target table T , Master table M ,
a set of FDs Σ
Our entire framework.

20: for (rm, rt, x) ∈ c do

21: P [rm][x]← 0

22: end for

23: end for

24: end for

first (line 8). A bigger violation chunk should be processed before a smaller violation

chunk because T wants to greedily repair as many of its data values as possible. We

define a set u′ (line 9) that will eventually consist of a subset of u i.e., u′ ⊆ u. In lines

10-14, u′ is calculated so that it contains all target record ids present in the current

violation chunk V ′ being repaired. We do this because we only want to work with

the relevant units that can be used to repair V ′. In other words, the set u \u′ cannot

be used to repair V ′ because u \ u′ does not contain units that involve the target

tuples in V ′. Our main goal now is to find a candidate c ∈ P(u′) that minimizes

three objectives: (i) the pvt objective (pvt), (ii) the ind objective (ind), and (iii) the

changes objective. We select one of the four optimization functions to model our

optimization problem. Since P(u′) is a very large search space, we use the simulated

annealing search algorithm to find solutions to our objective function (line 15). This

set of pareto-optimal solutions is denoted by s. Only one solution is to be picked

from s, so we pick the candidate c ∈ s that has the smallest size because a smaller

candidate leads to a smaller changes output compared to the other candidates in s.

Intuitively, a smaller candidate should also lead to a smaller pvt output because fewer

values are disclosed. M then sends the data values in c to T one by one (line 17-19)
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and W adjusts the information content table to account for all the master data values

that were revealed to T (lines 20-22).

As a final note, we do not guarantee that our data repair algorithm will cause

T to satisfy Σ. This is because our algorithm tries to minimize multiple objectives

simultaneously, and only the ind objective is minimized when T � Σ.

8.3 Complexity analysis

The complexity of our dataRepair algorithm is dominated by the complexity of the

calcSolns algorithm shown in Algorithm 14. This is because calcSolns is the sim-

ulated annealing search algorithm and is present in the innermost loop (line 15) of

the dataRepair algorithm, and is called for every FD (line 2) and for every viola-

tion chunk (line 8). We analyze the getNeighbor and nextCandidate algorithm in

order to determine the complexity of calcSolns. This is because getNeighbor and

nextCandidate and present in the innermost loop of the calcSolns algorithm, and

these two functions are called a large number of times (lines 3-7).

8.3.1 Complexity of the getNeighbor algorithm

getNeighbor, described in Algorithm 13, returns a random neighbor n from the neigh-

borhood of the current candidate c. In practice, determining the entire neighborhood

of c is expensive if it has many neighbors. Thus, our implementation of getNeighbor is

optimized in Algorithm 20. The difference between getNeighborOpt and getNeighbor

is that in getNeighborOpt, we do not need to determine the entire neighborhood of

c.
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getNeighborOpt accepts a candidate c, and the units u′ and returns a neighbor of

c. Between lines 1-3, we define a few auxillary data structures. In line 4, we randomly

decide if we want a unit neighbor or choice neighbor of c (these were defined in Section

8.1.4). Between lines 4-17, a unit neighbor was selected while between lines 19-35,

a choice neighbor was selected. In lines 5-7, we randomly decide to return a unit

neighbor that is smaller than c by one unit. In lines 8-16, we randomly decide to

return a unit neighbor that is larger than c by one unit. We describe lines 8-16 in

more detail. In lines 8-10, we keep track of the master tuple associated with each

target tuple in c. In line 11, we iterate over the units in u′. We add a unit to set N

(line 13) only if either the target tuple in the unit is not in c, or if the target and

master tuple in the unit is in c but the entire unit (including the attribute) is not in

c (line 12). In line 15, we select any unit from N and assign it to n. This n is a unit

neighbor that is larger than c by one unit. Next, we examine the case where a choice

neighbor was selected (lines 19-35). In lines 19-21, we keep track of the master tuple

associated with each target tuple in c. Between lines 22-26, we add master tuples

and associated target tuples to set K (line 24) which are not present in c (line 23).

We then copy c to create n (line 27). Next, we randomly select one element (r′m, r
′
t)

in set K (line 28). Iterating on n (line 29), if the target tuple in a unit matches r′t,

the we change the master tuple of that unit to r′m (line 31). Finally, we return n in

line 35. The worst case complexity of getNeighborOpt is O(U) where U is the size

of u′. Note that by the very defintion of units, the size of u′ indicates the amount of

matches that were found for a particular FD i.e., the higher the size of u′, the higher

the number of matches that were found for an FD.
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Algorithm 20 getNeighborOpt(c, u′): Candidate c, Units u′

Returns a random neighbor of c from its neighborhood.

1: Define a hashmap D with no keys.

2: Define a set N , initialized to ∅.

3: Define a set R, initialized to ∅.

4: if randDouble > 0.5 then

5: if randDouble > 0.5 then

6: n← create copy of c and remove a random unit in c.

7: else

8: for (rm, rt, a) ∈ c do

9: D[rt]← rm

10: end for

11: for (rm, rt, a) ∈ u′ do

12: if (D[rt] 6= ∅) or (D[rt] = rm and (rm, rt, a) /∈ c) then

13: N ← N ∪ (rm, rt, a)

14: end if

15: n← create copy of c and add a random unit in N .

16: end for

17: end if

18: else
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Algorithm 20 (continued) getNeighborOpt(c, u′): Candidate c, Units u′

19: for (rm, rt, a) ∈ c do

20: D[rt]← rm

21: end for

22: for (rm, rt, a) ∈ u′ do

23: if D[rt] 6= ∅ and D[rt] 6= rm then

24: K ← K ∪ (rm, rt)

25: end if

26: end for

27: n← create copy of c.

28: (r′m, r
′
t)← randomly select an element from K.

29: for (rm, rt, a) ∈ n do

30: if rt = r′t then

31: (rm, rt, a)← (r′m, rt, a)

32: end if

33: end for

34: end if

35: return n
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8.3.2 Complexity of the nextCandidate algorithm

We now examine the complexity of the nextCandidate algorithm. The complexity

of all the three flavors of the nextCandidate algorithm (shown in Algorithms 15-17)

is dominated by the complexity of the ind function shown in Function 9 because ind

is calculated over the embedded target table T ′, which is very large. In particular,

line 4 of Function 9 is an expensive procedure because calculating the entropy on T ′

involves calculating the frequency of all the embedded values in T ′. We do not want

to keep recalculating the frequency of the values in T ′ each time the ind function is

called because this involves iterating over all the values in T ′, which is a large table.

Instead, we perform the following optimization. When ind is first called by calcSolns,

we calculate the frequency of the values in T ′. This frequency information is stored.

For any candidate c that is passed as input, the units in c are applied to T ′ and

the stored frequency information only needs to be updated in order to calculate the

entropies.

The initial calculation of frequency values runs at O(N) where N = |T ′|. If ind is

called N times, then the amortized cost of calculating the initial frequency values is

O(1). The cost of applying a unit c to T ′ and updating the frequency values is O(U)

where U = |u′| (note that |c| ≤ |u′|). Thus, the amortized complexity of ind is O(U),

and the amortized complexity of nextCandidate is also O(U).

8.3.3 Complexity of the calcSolns and dataRepair algorithms

The number of times that we iterate within the calcSolns algorithm (lines 3-7 in

Algorithm 14) depends on the temperature schedule. This number is some constant

d, and in our experiments we set this constant to 288. Given that the complexity
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of getNeighbor is O(U) (where U refers to the size of input u′) and the complexity

of nextCandidate is also O(U), the complexity of calcSolns is O(dU). Thus, the

complexity of dataRepairs is O(dUXY ) where X is the number of FDs and Y is

the number of violation chunks that were found for each FD. It is clear that the

complexity of dataRepair depends on:

1. The number of FDs that are accepted as input.

2. The number of violation chunks that are found for each FD.

3. The number of matches which are found between the target and master datasets

for each violation chunk for an FD.

4. The number of iterations performed within the simulated annealing algorithm

(this is a user-defined constant).

Our performance experiments in Section 9.5 corroborate our analysis. For exam-

ple, in Section 9.5.1 and Section 9.5.2, we find that when the number of violation

chunks are increased linearly (all other factors being the same), then the running

time increases linearly too.
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Chapter 9

Experiments

In this section, we describe the experiments that we carried on our implementation

of the proposed framework. We divide the experiments into three categories: accu-

racy experiments, performance experiments and comparative experiments. For the

accuracy experiments, we wanted to measure how well our framework is able to rec-

ommend the right repairs. This is measured via the quality metrics (precision, recall

and F1). For the performance experiments, we wanted to measure the run time

performance of our framework as the dataset error rate, the number of tuples, the

number of FDs and the record matching similarity threshold parameters are varied.

Finally, for the comparative experiments, we compared SparseMap embedding used

in our framework with Bourgain embedding used by Barone et al. [10] and found that

SparseMap is 30% faster but 7% worse for precision.
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9.1 Datasets

We utilized two datasets for our experiments. The IMDB dataset [47] has 14 at-

tributes and 1.2 million tuples. The 14 attributes are : “actor id”, “act first name”,

“act last name”, “act gender”, “act film count”, “movie id”, “act role”, “movie name”,

“movie year”, “movie rank”, “director id”, “director first name”, “director last name”,

“movie genre”. The IMDB dataset contains details about the actors and directors

involved in a movie. We defined 2 FDs over the IMDB dataset.

• FI1 : [“act first name”, “act last name”, “movie year”] → “movie genre”

• FI2 : [“act first name”, “movie name”] → “act role”

The books dataset [48] has 12 attributes and 3 million tuples. The 12 attributes are

: “user id”, “user age”, “book rating”, “isbn”, “book title”, “book author”, “publi-

cation yr”, “publisher”, “img url”, “city”, “state”, “country”. The books dataset

contains information about users who have rated a particular book. We defined 6

FDs over the books dataset for our largest experiment, although most of our experi-

ments use only the first two FDs.

• FB1 : [“user id”, “user age”] → “city”

• FB2 : [“book title”, “publisher”] → “book author”

• FB3 : [“city”, “state”] → “country”

• FB4 : [“book author”, “isbn”] → “publisher”

• FB5 : [“book title”, “publication yr”, “user id”] → “book rating”

• FB6 : [“publisher”] → “book title”
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For our experiments, when we describe a dataset, we specify the number of tu-

ples within parenthesis. For example, IMDB(500k) refers to the IMDB dataset with

500,000 tuples while IMDB(1.2m) refers to the IMDB dataset with 1,200,000 tuples.

We now describe how the target and master datasets are prepared for the ex-

periments. We generate the master dataset M from the raw dataset by detecting

and removing all violations with respect to every FD. Next, we generate the target

dataset T . For some FD F : X → Y , violations are generated by selecting rm ∈ M ,

creating a copy rt ← rm, and updating rt[Y ] to be different from rm[Y ]. rt[X] might

also be updated to be different from rm[X]. All such updates are tracked and referred

to as erroneous values. rm and rt are then added to T . Error rate is defined as the

number of violating tuples with respect to F . We continue adding tuples to T until

the desired error rate is reached. For example, for a dataset with 1 million tuples, an

8% error rate amounts to 80,000 tuples which violate the FDs in Σ. We assume the

errors are equally distributed among the FDs in Σ.

9.2 Normalization of the objectives

We normalize all three objectives in our experiments so that they have a value in

the range [0,1], where 0 is the minimal output and 1 is the maximal output. We

normalize the pvt output for a candidate C ∈ P(U) by dividing pvt(C) by the total

information content of all cells in the information content table. We normalize the

ind output for a candidate C ∈ P(U) by dividing ind(C, T ) by ind({}, T ), where

{} is a candidate with no units. We normalize the changes output for a candidate

C ∈ P(U) by dividing changes(C) by |U|.

We now discuss the properties of measurement that are satisfied by each of the
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three normalized measures. Each scale of measurement satifies one or more of the

following properties [49].

1. Identity: each value on the measurement scale has a unique interpretation e.g.,

the gender “Male” is different from “Female”.

2. Magnitude: values on the measurement scale have an ordered relationship to

one another e.g., “First”, “Second” or “Third” place in a swimming contest.

3. Equal intervals: a unit of measurement has an equivalent interpretation through-

out the measurement scale e.g., the difference between two numbers 1 and 2 is

equal to the difference between 15 and 16. Note that a unit of measurement is

different from our definition of units described in Section 5.2.5.

4. Minimum value of zero: the measurement scale has a minimum point below

which no values exist.

Normalized pvt satisfies the following properties of measurement: identity, mag-

nitude and a minimum value of zero. Normalized pvt satisfies the identity property

because every value in [0,1] is unique. Since a larger value in [0,1] corresponds to a

larger amount of information disclosure, normalized pvt also satifies the magnitude

property. The minimum value of zero is reached when pvt equals 0.

Normalized ind satisfies the following properties of measurement: identity, mag-

nitude and a minimum value of zero. Normalized ind satisfies the identity property

because every value in [0,1] is unique. Since a lower value in [0,1] corresponds to

a larger amount of data cleaning utility, normalized ind also satifies the magnitude

property. The minimum value of zero is reached when ind equals 0.
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Normalized changes satisfies the following properties of measurement: identity,

magnitude, equal intervals and a minimum value of zero. Normalized changes satisfies

the identity property because every value in [0,1] is unique. Since a lower value in

[0,1] corresponds to a lower amount of changes (by definition), normalized changes

also satifies the magnitude property. changes merely measures the number of units

that are present within a candidate, a very simple measurement of size which satisfies

the equal interval property. The minimum value of zero is reached when changes

equals 0.

9.3 Experimental settings

Our implementation was written using Java 1.7. All accuracy and comparison ex-

periments were run on a server with 4 virtual CPUs (2.1 GHz each) and 32 GB of

memory. The performance experiments were run on a server with 8 virtual CPUs (2.1

GHz each) and 32 GB of memory. In addition, we have made all our code publicly

available [50].

Unless otherwise stated, the settings for every experiment are:

• The record matching threshold τ is set at 70%.

• The error rate in the target dataset is 8%.

• Greedy initialization is used for generating the initial candidate for the simu-

lated annealing algorithm.

• FI1 and FI2 are defined on the IMDB dataset and FB1 and FB2 are defined on

the books dataset.
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• If a figure is shown for the weighted method, the pvt objective weight is set at

0.1, ind objective weight is set at 0.895 and changes objective weight is set at

0.005.

• If a figure is shown for the constrained, dynamic or hierarchical method, all the

thresholds are set at 1.0.

• We perform 288 iterations in our simulated annealing algorithm.

9.4 Repair accuracy experiments

We want to measure how well our framework is able to recommend the right repairs.

This is measured via the accuracy measures: precision, recall and F1.

Let rc refer to the number of recommended data repairs that were correct. These

recommendations are made by the recommendation engine. A correct repair refers

to a correct data update to an erroneous value. Let rt refer to the total number of

recommended data repairs. Let et refer to the total number of erroneous values that

exist in the target dataset.

• precision = rc/rt

• recall = rc/et

• F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

We vary the following parameters against accuracy: the weights for the weighted

method, the record matching similarity threshold, the thresholds in the constrained,

dynamic and hierarchical methods, the error rate and the number of tuples.
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Figure 9.4: Relative importance of pvt objective vs accuracy

9.4.1 Varying the weights for the weighted method

We varied the weights for α (controls the pvt objective), β (controls the ind objective)

and γ (controls the changes objective) and tested the effect on the accuracy of the

solutions for the IMDB(500k) dataset.

In Figure 9.4, we varied the α weight between 0.1-0.9 while conversely varying the

β weight between 0.9-0.1. The weight for γ was fixed at 0.05.

When the weight on the pvt objective is between 0.1-0.4, there is very little change

in any of the three measures. Precision is approximately 90% and recall is approx-

imately 85%. This is due to the relative difference in magnitudes between the pvt

objective and the ind objective. At these lower weights, the influence exerted by the

pvt objective on the weighted function is negligible compared to the influence exerted

by the ind objective. This is a well understood trait of the weighted method and

was described in Chapter 7 (that different objectives have different magnitudes and

influence the weighted objective differently at different weights).
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Figure 9.5: Relative importance of ind objective vs accuracy (image 1 of 2)

When the weight on the pvt objective is increased beyond 0.5 (i.e., when the

weight on the ind objective is decreased below 0.5), the pvt objective exerts more

influence on the weighted function. For example, at α = 0.8, precision is 85% and

recall is 34%. An increased weight on the pvt objective causes the precision and

recall to decrease, because when pvt becomes more important, shorter solutions are

found by the recommendation engine. Shorter solutions refer to candidates which are

composed of fewer units. Shorter solutions minimize the pvt objective better than

larger solutions because fewer data values are revealed. Since fewer data values are

revealed, many of the errors are not captured by the algorithm, resulting in a sharp

decline in recall. Precision also decreases, but at a slower rate, because even though

most of the solutions are shorter, they are still mostly correct.

In Figures 9.5 and 9.6, we varied the β weight between 0.1-1.0 while conversely

varying the γ weight between 0.9-0. The weight for α was fixed at 0.05.

When the weight on the ind objective is between 0-0.98, there is very little change
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Figure 9.6: Relative importance of ind objective vs accuracy (image 2 of 2)

in any of the three measures. This is due to the relative difference in magnitudes

between the ind objective and the changes objective. For example, imagine that

we have initialized a candidate C. To minimize our objectives, we input C into our

simulated annealing algorithm and find that ind(C, T ) = xi while changes(C) = xc.

The simulated annealing algorithm then examines a neighbor Cn, and finds that

ind(Cn, T ) = yi while changes(Cn) = yc. It is likely that |yi − xi| << |yc − xc|

because the standard deviation of the ind objective is much smaller compared to the

standard deviation of the changes objective. The standard deviation of ind is very

small because ind is defined over T , and T contains 500,000 tuples. This means that

C and Cn will likely have a more similar output for ind compared to the output for

changes. Thus, any weight lesser than 0.98 on the ind objective is not significant

enough to increase the influence of the ind objective on the weighted objective.

When the weight on the ind objective is increased beyond 0.98 (i.e., when the

weight on the changes objective is decreased below 0.02), the ind objective exerts
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more influence on the weighted function. This causes the precision and recall to

increase (up to 88% precision and 85% recall), because the ind objective becomes

more important compared to the changes objective. When the changes objective

becomes less important compared to the ind objective, longer solutions are found by

the simulated annealing algorithm because changes has less influence on limiting the

size of the solutions. A longer solution C has more units, which means that there are

more data repairs. Thus, many of the injected errors can be corrected, which results

in an increase in precision and recall.

9.4.2 Record matching similarity threshold vs accuracy

We vary the record matching similarity threshold τ between 60 and 100% and observe

its effect on accuracy for the four methods for the IMDB(500k) dataset. We use

the normalized euclidean distance measure to compare the similarity between two

embedded records, where 100% means that two embedded records are exactly the

same while 0% means that two embedded records are completely different.

As the record matching similarity threshold is increased, the recall (in Figure

9.8) decreases while precision (in Figure 9.7) remains largely unchanged. At higher

similarity thresholds, there are fewer record matches i.e., fewer master tuples are

matched against the target’s violating tuples. Since our algorithms cannot find data

repairs for unmatched target violations, this decreases recall. On the other hand,

precision remains unaffected because even at lower thresholds, there is a clear best

match for the dirty tuples, so that when the threshold increases, the best matches

for the dirty tuples remain the same and are selected by greedy initialization. For

example, at a similarity threshold of 60%, let us assume that there is only one match
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Figure 9.7: Record matching similarity threshold vs precision

Figure 9.8: Record matching similarity threshold vs recall
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Figure 9.9: Record matching similarity threshold vs F1

for some violation chunk A and ten matches for some violation chunk B. At a 90%

similarity threshold, chunk A could have zero matches while chunk B could have only

one match. In this case, recall has decreased because the injected error in chunk A

will not be fixed (at a 90% similarity threshold) as there are no matches. However

precision remains roughly the same because the same best match for chunk B exists

even as the threshold is increased. Hence, the number of recommended repairs that

are correct remains roughly the same.

9.4.3 Threshold vs accuracy (constrained and hierarchical

methods)

We vary the thresholds for the constrained and hierarchical methods and note the

change in accuracy for the IMDB(500k) dataset. We do not examine the dynamic

method because the thresholds vary dynamically as the candidates are evaluated.

In Figure 9.10, we varied the εi parameter for the constrained method. Precision
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Figure 9.10: Threshold vs accuracy for the constrained method

Figure 9.11: Threshold vs accuracy for the hierarchical method
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and recall increase as εi is increased. When εi is between 0.2-0.5, precision is 85% on

average and recall is 20% on average, but when εi is between 0.5-0.8, precision is 88%

on average while recall is 74% on average. This is because when εi is low, most of

the candidate solutions lie above εi and are unable to satisfy the constraints. Hence,

few (or no) solutions are found for most of the simulated annealing experiments.

Thus, precision and recall is low because few (or no) values are revealed. As εi is

increased, candidates do not have to minimize ind very much in order to satisfy

the constraints. This means that more candidates can satisfy the threshold and the

simulated annealing algorithm is able to return solutions for most of the experiments,

increasing the precision and recall.

In Figure 9.11, we varied the εk parameter for the hierarchical method. We see that

the increase in recall is much more gradual for the hierarchical method. For example,

when εk is between 0.2-0.8, precision stays roughly the same at 85% while recall

increases gradually from 71% (εk=0.2) to 83% (εk=0.8). Note that εk is defined on the

pvt objective for the hierarchical method whereas εi was defined on the ind objective

in the constrained method. Since we did not vary εl, every simulated annealing

experiment is able to return some solution that minimizes the ind objective in the

hierarchical method. Whereas in the constrained method, most of the simulated

annealing experiments did not return any solutions because most of the candidates

could not satisfy εi when it was low. Hence, the slope for the constrained method is

much steeper compared to the hierarchical method.
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Figure 9.12: Dataset error rate vs precision (greedy initialization)

9.4.4 Error rate vs accuracy

We vary the error rate (between 2-12%) and measure its effect on accuracy for the

IMDB(500k) dataset. Both greedy and random initializations were tested for this

experiment. We present the results for greedy initialization first.

In Figures 9.12-9.14, the hierarchical method has the poorest precision, recall and

F1 results compared to the other methods because the pvt objective is minimized

first, before the ind objective. It is approximately 5% worse on average for precision

and approximately 14% worse on average for recall compared to the other methods.

The pvt objective has the greatest influence on the returned solutions, leading to

smaller solutions with fewer data updates because fewer updates normally require

fewer values to be disclosed. Smaller solutions lead to a lower recall score because

fewer errors are corrected since there are fewer updates. Similarly, the weighted

method is approximately 6% worse on average for recall compared to the constrained

and dynamic methods because the weighted pvt objective influences the output to a
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Figure 9.13: Dataset error rate vs recall (greedy initialization)

Figure 9.14: Dataset error rate vs F1 (greedy initialization)
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Figure 9.15: Dataset error rate vs precision (random initialization)

higher extent compared to the constrained and dynamic methods.

We now describe the error rate vs accuracy experiment using random initialization.

The precision, recall and F1 values shown in Figures 9.15-9.17 are lower for all

the four methods compared to the greedy initialization shown in Figures 9.12-9.14.

Precision is approximately 9% lower on average while recall is approximately 5%

lower on average. This is expected because starting at a better initial solution forces

the simulated annealing algorithm to explore a better search space from the very

beginning. With random initialization, it is much more unlikely that the simulated

annealing algorithm will be able to explore the better search space for the given

number of iterations.

The constrained and dynamic methods have worse precision, recall and F1 with

the random initialization when compared with greedy initialization. The constrained

method has 13% worse precision and 8% worse recall with the random initialization

while the dynamic method has 15% worse precision and 10% worse recall. This is
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Figure 9.16: Dataset error rate vs recall (random initialization)

Figure 9.17: Dataset error rate vs F1 (random initialization)
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because the thresholds on the constrained and dynamic methods are set based on the

initial solution (we do this for the constrained method in our experiments because

there is no user to fine tune the initial fixed thresholds). If the initial solution is

poorer (i.e., random initialization), then the thresholds will be much larger, because

we use the initial solution to determine an appropriate threshold. If the thresholds are

much larger, this means that at every step of the the simulated annealing algorithm,

many neighbors will be accepted as better solutions. This means that the simulated

annealing algorithm has to spend more iterations exploring a worse search space.

With greedy initialization, the good initial solution ensures that the thresholds are

much tighter. Hence, better solutions are found with the constrained and dynamic

methods using the greedy initialization compared with random initialization.

9.4.5 Number of tuples vs accuracy

We vary the number of tuples (between 200,000-1,200,000) and measure its effect

on accuracy of the data repairs using the IMDB dataset. Both greedy and random

initializations were tested for this experiment. We present the results for greedy

initialization first.

The slope of the curves in Figures 9.18-9.20 are not as steep as the slope of the

curves in Figures 9.12-9.14. This is a by-product of the way violations were generated

on the IMDB dataset. When we increase the number of tuples (Figures 9.18-9.20),

the violation patterns remain very similar. However, when we increase the error

rate (Figures 9.12-9.14), the violation patterns change significantly. For example,

for the FD FI2 : [“act first name”, “movie name”] → “act role”, if the tuple pat-

terns “Leonardo, Titanic” → “Jack” and “Leonardo, Titanic” → “Rose” exist in the
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Figure 9.18: Number of tuples vs precision (greedy initialization)

Figure 9.19: Number of tuples vs recall (greedy initialization)
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Figure 9.20: Number of tuples vs F1 (greedy initialization)

IMDB(200k) dataset, they would also exist in the IMDB(400k) dataset. The differ-

ence is that perhaps we might have a new pattern “Leonardo, Titanic” → “Cal” in

IMDB(400k). Since the patterns have the same antecedent (“Leonardo, Titanic”),

the total number of violation chunks stays the same even as the number of tuples

is increased. This means that if a set of data updates is found for IMDB(200k), it

will likely also be discovered for IMDB(400k) because the tuple patterns within a

violation chunk are usually similar (this influences record matching and hence, the

data repairs). This is not the case with increasing errors. With increasing errors, the

IMDB(500k) dataset was used for all the error rates. Hence, when new violations

were generated, they would form distinct violation chunks. e.g., with 2% error rate,

“Leonardo, Titanic” → “Jack” and “Leonardo, Titanic” → “Rose” might exist, but

with 4% error rate, it is more likely that “Keanu, Matrix” → “Neo” and “Keanu,

Matrix” → “Morpheus” will be added as violations. In other words, with increasing
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error rate, we are not increasing the existing violation chunks but rather, we are intro-

ducing new violation chunks with different tuple patterns. However with increasing

tuples, we are increasing existing violation chunks with similar tuple patterns. Hence,

the same solutions that we found for previous errors on a smaller dataset are found

again in the larger dataset. This results in a gentler slope for the experiment with

increasing tuples.

Similar to Figures 9.12-9.14, the hierarchical and weighted methods perform worse

than the constrained and dynamic method in Figures 9.18-9.20 since they place a

higher emphasis on the pvt objective. The hierarchical method is approximately 2%

worse on average for precision and approximately 5% worse on average for recall

compared to the other three methods. The weighted method is approximately the

same for precision but 2% worse on average for recall compared to the constrained

and dynamic methods.

We now describe the number of tuples vs accuracy experiment using random

initialization.

The constrained and dynamic methods have worse precision, recall and F1 with

the random initialization (Figures 9.21-9.23) when compared with greedy initializa-

tion (Figures 9.18-9.20). Both the constrained and dynamic methods have 22% worse

precision and 10% worse recall with the random initialization. This is due to the

same reason as explained in Section 9.4.4 for the random initialization experiment.

To reiterate, random initialization is worse for the constrained and dynamic methods

compared to greedy initialization because the thresholds for these methods are set

based on the initial solution. If the initial solution is poorer ( random initialization),
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Figure 9.21: Number of tuples vs precision (random initialization)

Figure 9.22: Number of tuples vs recall (random initialization)
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Figure 9.23: Number of tuples vs F1 (random initialization)

then the thresholds will be much larger, because we use the initial solution to deter-

mine an appropriate threshold. If the thresholds are much larger, this means that at

every step of the the simulated annealing algorithm, many neighbors will be accepted

as better solutions. This means that the simulated annealing algorithm has to spend

more iterations exploring a worse search space. With greedy initialization, the good

initial solution ensures that the thresholds are much tighter. Hence, better solutions

are found with the constrained and dynamic methods using the greedy initialization

compared with random initialization.

9.4.6 Threshold vs information disclosure (constrained and

hierarchical methods)

We vary εi (between 0.05-0.95) for the constrained method and εk (between 0.05-0.95)

for the hierarchical method and measure the amount of information disclosed (pvt)

with a 0.1% error rate on the IMDB(500k) dataset.
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Figure 9.24: Threshold vs information disclosure for constrained and hierarchical
methods

We normalize the information disclosure to get the y-axis in Figure 9.24. Nor-

malized information disclosure is the total amount of information content that is

disclosed to the target dataset divided by the total information content of all cells in

the information content table.

In Figure 9.24, as εi is increased for the constrained method, the amount of in-

formation disclosed increases. When εi is low, most of the candidate solutions lie

above εi and are unable to satisfy the constraints. Hence, few optimal solutions are

found for most of the simulated annealing experiments. When few optimal solutions

are found, information disclosure is low because fewer values are revealed. As εi is

increased, more candidate solutions are able to satisfy εi. Hence, the simulated an-

nealing algorithm is able to return optimal solutions for most of the experiments. If

more solutions are found by the algorithm, information disclosure is higher because

more values are revealed to the target dataset owner.
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Figure 9.25: Dataset error rate vs running time

In Figure 9.24, as εk is increased for the hierarchical method, the amount of infor-

mation disclosure increases. A lower εk means that most of the candidate solutions

are not able to satisfy εk. Hence, fewer solutions are found, which means that fewer

values are disclosed. Thus, information disclosure is lower when εk is lower.

9.5 Performance experiments

9.5.1 Error rate vs running time

We vary the error rate between 2-14% for books(500k) and record the running time.

As the error rate increases, the running time for the experiments increases linearly

(Figure 9.25). As error rate is increased linearly, the number of violation chunks also

increases linearly. For each additional violation chunk, an additional simulated an-

nealing experiment is needed in order to find a solution. Hence, the number of simu-

lated annealing experiments also increases linearly. This causes the running time to
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also increase linearly, because the running time of our framework is heavily dependent

on the number of simulated annealing experiments that need to be performed as seen

in Algorithm 19 in Chapter 8.

The weighted, constrained and dynamic methods take approximately the same

time to complete for all error rates. Moreover, this observation holds across all the

various performance experiments. This is because the simulated annealing search

algorithm is run for the same number of iterations for the three methods. However,

the hierarchical method takes 70% longer (on average) compared to the other methods

because two additional minimization steps are required with this method (described in

Chapter 8). In the hierarchical method, the pvt objective is hierarchically minimized

first using the simulated annealing algorithm, and a set of pareto-optimal solutions are

found. If the size of the set is greater than one, then we need to perform an additional

minimization step in order to minimize the ind objective and return a subset of the

pareto-optimal set. If this minimization procedure results in yet another solution

set with a cardinality greater than one, then the changes objective is hierarchically

minimized. These two additional minimization steps are not required in the other

methods. Hence, the hierarchical method takes a longer time to terminate.

9.5.2 Number of tuples vs running time

We vary the number of tuples for the books dataset to between 500,000-3,000,000

tuples and measure the running time.

As the number of tuples are increased, the running time also increases linearly

(Figure 9.26). This is because when the number of tuples are increased linearly, the

number of violations chunks also increase linearly. Every additional violation chunk
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Figure 9.26: Number of tuples vs running time

requires an additional simulated annealing experiment in order to find a solution.

This means that more simulated annealing experiments are required, and this results

in an increase in the running time of the experiment.

There is a divergence in the running time between the hierarchical method and

the other three methods as the number of tuples is increased. This is because even

though the number of violation chunks increases with an increased number of tuples,

the average size of each violation chunk also increases. When the average size of the

violation chunks increases, the search space also increases, and hence, more pareto-

optimal solutions are returned by the simulated annealing algorithm (on average).

If the size of the pareto-optimal set increases, then the two additional minimization

steps that are involved in the hierarchical method take a longer time to complete,

because they have to iterate over a larger set.
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Figure 9.27: Number of FDs vs running time

9.5.3 Number of FDs vs running time

We vary the number of FDs in the books(500k) dataset to between 2-6 FDs and

measure the running time.

As the number of FDs increases, the running time increases (Figure 9.27). This

is because of how the errors were injected into the book(500k) dataset. Imagine that

for an 8% error rate, we have x number of violation chunks for 2 FDs. This requires

x number of simulated annealing experiments to be performed (as per the steps of

Algorithm 19 in Chapter 8). When we increase the number of FDs, we increase the

number of violation chunks, which subsequently increases the number of simulated

annealing experiments which are performed. This causes the running time to increase

as the number of FDs are increased.
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Figure 9.28: Record matching similarity threshold vs running time

9.5.4 Record matching similarity threshold vs running time

We vary the similarity threshold τ to between 60-100% and measure its effect on the

running time using the books(500k) dataset (Figure 9.28). We use the normalized

euclidean distance measure to compare the similarity between two embedded records,

where 100% means that two embedded records are exactly the same while 0% means

that two embedded records are completely different.

As the similarity threshold increases, fewer matches are found by the matching

algorithm. Fewer matches means that the search space decreases, causing the running

time to decrease.

The gradient of the curves in Figure 9.28 are much gentler compared to the other

performance experiments in this section because even at the highest similarity thresh-

old, most of the matches were found. Hence, the running time decreases only by 20%

on average when we go from 60% to 100% similarity for all the four methods.
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Table 9.4: Comparative experiment

Bourgain embedding SparseMap embedding

Precision of matching (%) 88 82

Time taken for matching (sec) 42 30

Precision for repair process (%) 85 79

Recall for repair process (%) 84 84

9.6 Comparison experiments

In this experiment, we compare the SparseMap embedding technique used in our

framework with the Bourgain embedding technique [10] for the IMDB(100k) dataset

with the weighted approach. In our framework, the embedding technique is used to

embed target and master records that are sent to the third-party. The third-party

performs record matching on embedded records and thereafter, calculates information

disclosure and data cleaning utility on the embedded records in order to find a set of

data repairs for the target dataset.

Our results are shown in Table 9.4. Let us denote record matches that are calcu-

lated over actual records by ma. Let us denote the record matches that are calculated

over embedded records by me. “Precision of matching” is defined as |ma∩me|
|me| . For ex-

ample, imagine that we have two tables M and T , and their embedded counterparts

M ′ and T ′. Matches over actual records can be calculated by comparing all pairs of

records across M and T . If the normalized string edit distance between ri ∈ M and

rj ∈ T is below some threshold, then we add (ri, rj) to ma. Matches over embedded

records can be calculated by comparing all pairs of records across M ′ and T ′. The

SparseMap embedding and matching steps are described in Algorithm 5 in Chapter 5
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while the Bourgain embedding and matching steps are described by Barone et al. [10].

All resulting matches (ri, rj) where ri ∈ M ′ and rj ∈ T ′ are added to me. We then

intersect the sets ma and me to determine the “correct matches” in me. Any element

in the set ma is defined as a “correct match” because this match was calculated using

the normalized string edit distance measure over actual records. Finally we divide

the number of “correct matches” in me by the total number of matches in me, and

this is defined as the “precision of matching”.

“Precision for repair process” and “Recall for repair process” are defined in Section

9.4.

From Table 9.4, SparseMap embedding has an 82% precision for matching while

Bourgain embedding has 88% precision for matching. This is because SparseMap em-

bedding involves two additional heuristics compared to Bourgain embedding. Bour-

gain embedding calculates the exact distance between the reference set and the data

value in a record, whereas SparseMap uses the embedded reference set to approxi-

mate the distance between the reference set and the data value (this is described in

Chapter 5). Thus, the quality of embedding is lower with SparseMap. Moreover, with

SparseMap embedding, the dimensionality of the embedded records is reduced before

record matching. This reduces the quality of the matches since fewer dimensions are

being compared between the master and target dataset records during the matching

phase. However, SparseMap embedding is approximately 30% faster compared to the

Bourgain embedding method.

The precision results for the repair process is also higher for the Bourgain embed-

ding method (at 85%) compared to SparseMap embedding (at 79%) as a result of the

difference in the precision of matching. However, the recall results are not significantly
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different between the Bourgain embedding and the SparseMap embedding. This was

because we set the dimensionality reduction parameter to 0.9, and this is only a 10%

difference in dimensionality between the two embedding techniques. Consequently,

the quality of the record matching is similar across the two techniques, which leads

to similar solutions and a similar recall for the solutions.

9.7 Summary of results

• For the weighted method, as the weight on the pvt objective is increased, the

quality of data repair decreases. This is because disclosing a smaller amount of

information helps in cleaning the dirty dataset to a smaller extent. Similarly,

when the weight on the ind objective is increased, the quality of data repair

increases.

• When we lower εi for the constrained method and εk for the hierarchical method,

the quality of data repair decreases because most candidates lie above the

thresholds and are not found by our search algorithm.

• For all the four methods, as the record matching similarity threshold is in-

creased, the recall decreases while precision remains largely unchanged. This

is because fewer matches are found when the similarity threshold is increased,

which means that fewer data repairs are found.

• When measuring error rate against the accuracy of data repairs, the hierarchical

method has the poorest results compared to the other methods. This is because

it places more emphasis on the pvt objective compared to the other methods.

More emphasis on pvt means that fewer values are disclosed, and hence, data
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repairing is not as effective. For this same reason, the hierarchical method

also has the poorest results when we measure the number of tuples against the

accuracy of data repairs.

• Greedy initialization is better than random initialization in producing better

quality data repairs because starting at a better initial solution forces the simu-

lated annealing search algorithm to explore a better search space from the very

beginning.

• As we increase the error rate, or the number of tuples, or the number of FDs, the

running time of all four methods increases linearly because we have to repair

a higher number of violations which requires a higher number of simulated

annealing experiments to be performed.

• The weighted, constrained and dynamic methods generally have similar run-

ning times because the simulated annealing search algorithm is run for the

same number of iterations for the three methods. In contrast, the hierarchical

method takes 70% longer (on average) compared to the other methods because

two additional minimization steps are required with this method (described in

Chapter 8).

• SparseMap embedding is 30% faster than Bourgain embedding, but 7% worse

in terms of precision of data repairs. This is because SparseMap embedding

uses two heuristics to speed up the embedding and record matching process, at

the cost of embedding quality.
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Chapter 10

Conclusion

We have presented a complete data cleaning framework to clean a target dataset by

using information from the master dataset. Our framework facilitates the cooperation

between the two datasets so that the amount of information disclosed by the master

dataset is minimized while the amount of data cleaning utility to the target dataset

is maximized. We examine measures for quantifying information disclosure and data

cleaning utility. Our information disclosure measure is an extension of the measure

proposed by Arenas et al. [21] while the data cleaning utility measure was proposed

by Dalkilic et al. [22]. Both measures are defined over embedded tuples, and not

on actual tuples. Operating on embedded tuples protects the privacy of individual

records in the datasets. We use the measures to develop a multi-objective optimization

problem where the solution to the problem consists of a set of data repairs that will

help to clean the target dataset. We utilize four optimization functions to model the

optimization problem and incorporate the optimization functions into the simulated

annealing search algorithm in order to find solutions to our optimization problem.

The four optimization functions are popular methods of modeling multi-objective
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optimization problems in optimization literature.

We perform extensive experiments on datasets containing up to 3 million records

by varying parameters such as the error rate of the dataset, the size of the dataset, the

number of constraints on the dataset, etc and measure the impact on accuracy and

run-time performance for those parameters. Our results demonstrate that disclosing

a larger amount of information within the clean dataset helps in cleaning the dirty

dataset to a larger extent. We find that with 80% information disclosure (relative to

the weighted optimization function), we are able to achieve a precision of 91% and

a recall of 85%. In terms of running time, we find that increasing the error rate, or

the number of tuples, or the number of FDs linearly causes the running time of our

algorithms to increase linearly. This is because we have to repair a higher number

of violations, so our algorithms take longer to find all repairs. We also compare our

algorithms against each other to discover which ones produce better quality data

repairs and which ones take longer to find repairs. We find that the hierarchical

method has the poorest results compared to the other methods because it places

more emphasis on the pvt objective. More emphasis on pvt means that fewer values

are disclosed, and hence, data repairing is not as effective. Moreover, the hierarchical

method takes 70% longer (on average) compared to the other methods because two

additional minimization steps are required with this method. Finally, we incorporate

ideas from Barone et al. [10] into our framework and show that our approach is 30%

faster, but 7% worse for precision.

We conclude that our data cleaning framework can be applied to scenarios where

master datasets are not publicly disclosed and different records within the master

datasets have different privacy requirements.
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10.1 Future research

In our experiments, our data repair algorithm tries to find solutions that minimize

information disclosure by the master dataset and maximize data cleaning utility to

the target dataset. However, the simulated annealing search algorithm does not

guarantee that the solution is indeed the global minimal solution (unless we iterate

the search algorithm enough times). Experimentally, we can verify the effectiveness

of our search algorithm (in finding the global minima) by comparing its output with

the output of a brute force search procedure on a small dataset.

Different privacy operations could be integrated into the framework. For example,

we could generalize data values in the master dataset and measure the amount of

information disclosed by revealing the generalized values. We could develop heuristics

that use these generalized values to help clean the target dataset.

We can integrate different types of constraints into our framework apart from

functional dependencies. This would be helpful in cleaning datasets which have dif-

ferent types of constraints defined on them. For example, we could perform record

matching based on matching dependencies (a type of constraint [8]) and use these

matches to clean the dirty data.

Various search algorithms (e.g., tabu search) could be explored and compared

with the simulated annealing algorithm in terms of data repair quality and run-time

performance.

127



Bibliography

[1] T. Redman, “The impact of poor data quality on the typical enterprise,” Com-

munications of the ACM (CACM), vol. 41, no. 2, pp. 79–82, 1998.

[2] M. Dallachiesa, A. Ebaid, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and

N. Tang, “Nadeef: A commodity data cleaning system,” Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data (SIGMOD),

pp. 541–552, 2013.

[3] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The llunatic data-cleaning

framework,” Proceedings of the VLDB Endowment (VLDB), vol. 6, no. 9,

pp. 625–636, 2013.

[4] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model and

effective heuristic for repairing constraints by value modification,” Proceedings

of the 2005 ACM SIGMOD international conference on Management of data

(SIGMOD), pp. 143–154, 2005.

[5] M. Yakout, A. K. Elmagarmid, J. Neville, and M. Ouzzani, “Gdr: a system

for guided data repair.,” Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data (SIGMOD), pp. 1223–1226, 2010.

128



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[6] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller, “Continuous data cleaning,”

Proceedings of the 2014 IEEE 30th International Conference on Data Engineer-

ing (ICDE), pp. 244–255, 2014.

[7] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain fixes with editing

rules and master data.,” The VLDB Journal — The International Journal on

Very Large Data Bases, vol. 21, no. 2, pp. 213–238, 2012.

[8] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Interaction between record match-

ing and data repairing,” Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data (SIGMOD), pp. 469–480, 2011.

[9] E. Union, “Directive 95/46/ec on the protection of individuals with regard to

the processing of personal data and on the free movement of such data.,” Official

Journal of the European Communities, 1995.

[10] D. Barone, A. Maurino, F. Stella, and C. Batini, “A privacy preserving frame-

work for accuracy and completeness quality assessment.,” Emerging Paradigms

in Informatics, Systems and Communication, pp. 83–87, 2009.

[11] W. W. Eckerson, “Data quality and the bottom line: Achieving business success

through a commitment to high quality data.,” The Data Warehousing Institute,

2002.

[12] B. Otto and K. Weber, From health checks to the seven sisters: The data quality

journey at BT. St. Gallen: University of St. Gallen, Institute of Information

Management, 2009.

129



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[13] Gartner, “Forecast : Data quality tools, worldwide, 2006-2011. technical report.,”

Gartner, 2007.

[14] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality: Con-

sistency and accuracy,” Proceedings of the 33rd international conference on Very

large data bases (VLDB), pp. 315–326, 2007.

[15] M. Arenas, L. E. Bertossi, and J. Chomicki, “Consistent query answers in in-

consistent databases.,” Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (PODS), pp. 68–79, 1999.

[16] I. Fellegi and D. Holt, “A systematic approach to automatic edit and imputa-

tion.,” Journal of the American Statistical Association, vol. 71, no. 353, pp. 17–

35, 1976.

[17] C. Mayfield, J. Neville, and S. Prabhakar, “Eracer: a database approach for

statistical inference and data cleaning.,” Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data (SIGMOD), pp. 75–86, 2010.

[18] T. N. Herzog, F. J. Scheuren, and W. E. Winkler, Data Quality and Record

Linkage Techniques. Springer-Verlag New York, 1 ed., 2007.

[19] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record de-

tection: A survey,” IEEE Transactions on Knowledge and Data Engineering,

vol. 19, no. 1, pp. 1–16, 2007.

[20] D. Loshin, “Master data management.,” Knowledge Integrity, Inc., 2009.

130



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[21] M. Arenas and L. Libkin, “An information-theoretic approach to normal forms

for relational and xml data.,” Proceedings of the twenty-second ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems (PODS),

pp. 15–26, 2003.

[22] M. Dalkilic and E. Robertson, “Information dependencies,” Proceedings of

the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems (PODS), no. 245 - 253, 2000.

[23] F. Chiang and R. J. Miller, “Discovering data quality rules,” Proceedings of the

VLDB Endowment, vol. 1, no. 1, pp. 1166–1177, 2008.

[24] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional functional de-

pendencies for capturing data inconsistencies.,” ACM Transactions on Database

Systems, vol. 33, no. 2, pp. 1–48, 2008.

[25] J. Wijsen, “Database repairing using updates.,” ACM Transactions on Database

Systems (TODS), vol. 30, no. 3, pp. 722–768, 2005.

[26] F. Chiang and R. J. Miller, “A unified model for data and constraint repair,”

Proceedings of the 2011 IEEE 27th International Conference on Data Engineer-

ing (ICDE), pp. 446–457, 2011.

[27] J. Proakis and M. Salehi, Communication Systems Engineering. Prentice Hall,

2nd ed., 2001.

[28] D. MacKay, Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, 4th ed., 2005.

131



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[29] C. Dwork, “Differential privacy,” Proceedings of the 33rd international conference

on Automata, Languages and Programming (ICALP), pp. 1–12, 2006.

[30] M. Nergiz, M. Atzori, and C. Clifton, “Hiding the presence of individuals from

shared database,” Proceedings of the 2007 ACM SIGMOD international confer-

ence on Management of data (SIGMOD), pp. 665–676, 2007.

[31] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee, “Toward privacy in

public databases,” Proceedings of the Second international conference on Theory

of Cryptography, vol. 3378, pp. 363–385, 2005.

[32] D. Kifer and J. Gerkhe, “Injecting utility into anonymized datasets,” Proceedings

of the 2006 ACM SIGMOD international conference on Management of data

(SIGMOD), pp. 217–228, 2006.

[33] V. Rastogi, D. Suciu, and S. Hung, “The boundary between privacy and utility

in data publishing,” Proceedings of the 33rd international conference on Very

large data bases (VLDB), pp. 531–542, 2007.

[34] J. Brickell and V. Shmatikov, “The cost of privacy: Destruction of data-

mining utility in anonymized data publishing,” Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining

(KDD), pp. 70–78, 2008.

[35] M. Scannapieco, I. Figotin, E. Bertino, and A. Elmagarmid, “Privacy preserving

schema and data matching,” Proceedings of the 2007 ACM SIGMOD interna-

tional conference on Management of data (SIGMOD), pp. 653–664, 2007.

132



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[36] A. Machanvajjhala, J. Gerkhe, D. Kifer, and M. Venkitasubramaniam, “l-

diversity: Privacy beyond k-anonymity.,” Proceedings of the 22nd International

Conference on Data Engineering (ICDE), p. 24, 2006.

[37] D. Srivastava and S. Venkatasubramanian, “Information theory for data man-

agement,” Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data (SIGMOD), pp. 1255–1256, 2010.

[38] S. Kolahi and L. Lakshmanan, “On approximating optimum repairs for func-

tional dependency violations,” Proceedings of the 12th International Conference

on Database Theory (ICDT), pp. 53–62, 2009.

[39] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Multiobjective Optimization.

Springer, Lecture Notes in Computer Science, 2008.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[41] M. Laumanns, L. Thiele, and E. Zitzler, “An efficient, adaptive parameter vari-

ation scheme for metaheuristics based on the epsilon-constraint method.,” Eu-

ropean Journal of Operational Research, vol. 169, pp. 932–942, 2006.

[42] P. Fishburn, “Lexicographic orders, utilities and decision rules: A survey,” Man-

agement Science, vol. 20, no. 11, pp. 1442–1471, 1974.

[43] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice

Hall, 3rd ed., 2009.

[44] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

133



M.Sc. Thesis - Dhruv Gairola McMaster - Computer Science

[45] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images.,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

[46] L. Goldstein and M. Waterman, “Neighborhood size in the simulated annealing

algorithm,” American Journal of Mathematical and Management Sciences, vol. 8,

no. 3-4, pp. 409–423, 1988.

[47] M. Stepp, J. Miller, and V. Kirst, “Web Programming Step by Step.” http:

//www.webstepbook.com/supplements-2ed.shtml, 2015. [Online; accessed 24-

June-2015].

[48] C. Ziegler, “Book-Crossing Dataset.” http://www2.informatik.

uni-freiburg.de/~cziegler/BX/, 2015. [Online; accessed 24-June-2015].

[49] S. Stevens, “On the theory of scales of measurement,” Science, vol. 103, no. 2684,

pp. 677–680, 1946.

[50] D. Gairola, “privacyCleaning repository.” http://github.com/dhruvgairola/

privacyCleaning, 2015. [Online; accessed 24-June-2015].

134

http://www.webstepbook.com/supplements-2ed.shtml
http://www.webstepbook.com/supplements-2ed.shtml
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://github.com/dhruvgairola/privacyCleaning
http://github.com/dhruvgairola/privacyCleaning

	Abstract
	Acknowledgements
	Introduction
	Contributions
	Thesis outline

	Background
	Relational model
	Functional dependencies
	Information theory

	Related Work
	Data cleaning
	Data privacy

	Framework Overview
	Master dataset
	Target dataset
	Third-party
	Recommendation engine


	Private Record Matching
	Detecting Violations
	Ordering a set of FDs

	Record matching for an FD
	Building a generator set
	Building a reference set
	Embedding the reference set
	Embedding the records
	Matching


	Information Disclosure and Data Cleaning Utility Measures
	Information disclosure measure
	Information content score
	Information content table
	Measuring information disclosure

	Data cleaning utility measure
	Relationship between information disclosure and data cleaning utility

	Finding Optimal Candidates
	Weighted method
	Constrained method
	Dynamic method
	Hierarchical method

	Repair Algorithm
	Implementation of the four methods
	Hill climbing algorithm
	Simulated annealing algorithm
	Initializing a candidate
	Defining a neighborhood
	Implementation of simulated annealing

	Overall data repair algorithm
	Complexity analysis
	Complexity of the getNeighbor algorithm
	Complexity of the nextCandidate algorithm
	Complexity of the calcSolns and dataRepair algorithms


	Experiments
	Datasets
	Normalization of the objectives
	Experimental settings
	Repair accuracy experiments
	Varying the weights for the weighted method
	Record matching similarity threshold vs accuracy
	Threshold vs accuracy (constrained and hierarchical methods)
	Error rate vs accuracy
	Number of tuples vs accuracy
	Threshold vs information disclosure (constrained and hierarchical methods)

	Performance experiments
	Error rate vs running time
	Number of tuples vs running time
	Number of FDs vs running time
	Record matching similarity threshold vs running time

	Comparison experiments
	Summary of results

	Conclusion
	Future research


